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Abstract

Economics of Lifecycle analysis and greenhouse gas regulations

by

Deepak Rajagopal

Doctorate in Philosophy in Energy and Resources

University of California, Berkeley

Professor David Zilberman, Chair

Interest in alternatives to fossil fuels has risen significantly during the current decade.

Although a variety of different alternative technologies have experienced rapid growth,

biofuels have emerged as the main alternative transportation fuel. Energy policies in

several countries envision blending biofuels with fossil fuels as the main mechanism to

increase energy independence and energy security. Climate change policies in several

regions are also riding on the same hope for reducing emissions from transportation. The

main advantage of biofuels is that they are technically mature, cheaper to produce and

more convenient to use relative to other alternative fuels. However, the impact of current

biofuels on the environment and on economic welfare, is controversial. In my dissertation

I focus on three topics relevant to future energy and climate policies. The first is the

economics of lifecycle analysis and its application to the assessment of environmental

impact of biofuel policies. The potential of biofuel for reducing greenhouse gas emissions
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was brought to the fore by research that relied on the methodology called lifecycle analysis

(LCA). Subsequent research however showed that the traditional LCA fails to account

for market-mediated effects that will arise when biofuel technologies are scaled up. These

effects can increase or decrease emissions at each stage of the lifecycle. I discuss how the

LCA will differ depending on the scale, a single firm versus a region and why LCA of

the future should be distinguished from LCA of the past. I describe some approaches for

extending the LCA methodology so that it can be applied under these different situations.

The second topic is the economic impact of biofuels. Biofuels reduce the demand for oil

and increase the demand for agricultural goods. To high income countries which tend to

be both large importers of oil and large exporters of agricultural goods, this implies two

major benefits. One of the one hand it reduces the market power of OPEC (Oil Producing

and Exporting Countries), a cartel of nations which is the single largest oil exporting

entity in the world, and is an entity considered unreliable. On the other hand, it reduces

the demand for domestic farm subsidies. At the same crops comprise a small share of

the retail price of food. As a result, the expected negative impact of biofuel was at worst

a small increase in the retail price of food. However, the food price inflation in the year

2008 suggests that the negative impact on food consumers was significantly higher than

expected and also outweighed the impact fuel consumers. I estimate the effect on biofuels

on food and oil prices and compare them to other estimates in the literature and also relate

these to prices observed in the real world. The third topic is the economics of greenhouse

gas regulations of transportation fuels. Climate change policies such as United Nations’

Kyoto protocol, European Union Emission Trading Scheme, and the Regional Greenhouse
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Gas Initiative in the US north-east mandate an aggregate emission target, called a cap

and allow regulated entities to trade responsibilities for abatement. Furthermore, these

policies have generally and sometimes exclusively targeted the electricity and industrial

sector for emission reduction. However, the Low carbon fuel standard and Renewable

fuel standard are two policies about to be implemented by the State of California and the

US federal government, which exclusively target the transportation sector for emission

reduction. Furthermore, these regulations mandate emission intensity target for fuels

rather than aggregate emission reduction. I compare the cost-effectiveness of these two

types of regulations, namely, aggregate emission caps versus emission intensity standards

and discuss how prices, output and emissions vary between these two types of policies.

Professor David Zilberman
Dissertation Committee Chair
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Chapter 1

Introduction

The International Energy Agency predicts that global demand for oil (excluding biofuels)

will increase approximately 25% to reach 106 million barrels per day by the year 2030[1].

This scenario embodies the effects of measures and policies in place as of mid-2008 as

well as expectation of high prices and slower growth in demand. Crude oil import price

is expected to average over $100 per barrell (2007 dollars) between 2008-2015 and rise

to $120 by the year 2030. The price is higher because the of bulk of the increase in

supply of liquid fuels is expected to come from natural gas (through liquefaction) and oil

sands which are costlier than conventional oil. Fuels from these sources are on a lifecycle

basis also more carbon-intensive than when those produced conventional crude oil. This

obviously does not bode well for efforts to mitigate global climate change[2]. Last but not

least, the events of 11th September 2001 have spurred US and other large oil importing

countries to seek greater energy security by reducing reliance on oil and energy indepen-

dence by reducing energy imports.
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As a result of these drivers, alternative energy sector has witnessed rapid growth

in during the current decade. The world has witnessed a similar rise in demand for al-

ternative energy before, most notably in the aftermath of the OPEC oil embargo which

happened in 1973. As spectacular as the rise in investments was then, the following

decade witnessed a steep decline in oil prices and a consequent decline in interest in al-

ternative energy[3, 4]. This time however, the geopolitics of oil post 9/11, rapid growth

in emerging economies, peak oil concerns, and a new consensus on combating climate

change, suggest that current interest is likely to be sustained [5, 6, 7].

Several technologies that have the potential to supply a large share of global

energy demand for transportation are either undergoing R&D or already under produc-

tion today[8]. Liquid biofuels (henceforth referred to simply as biofuels), battery-gasoline

hybrid vehicles, plug-in electric cars, compressed natural gas vehicles, and hydrogen fuel

cell vehicles are some alternatives to gasoline or diesel-powered automobile technologies.

Given the the right economic and policy conditions, such technologies can capture a sig-

nificant share of the oil market. Today, ethanol (from grains and cane) and biodiesel (from

oil seeds) which are called first-generation biofuels represent the single largest alternative

to oil in use and comprise about 1% of the global supply of transportation fuels [9]. The

emergence of biofuels as the main alternative is attributable to its relative advantage

in terms of cost, convenience, and technical maturity of the production process[9]. The

agricultural and chemical processes (fermentation or trans-esterification) for production

of biofuels and distribution and end-use infrastructure for consuming them are all estab-

lished.
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However, the recent evidence about the performance of biofuels in delivering

economic and environmental benefits is controversial [9, 10]. 1. Recent biofuels have had

a small but positive impact on energy security by slowing down the rate of growth in

imports of oil. The have also had a similar impact on the price of fuel. Our estimates

suggest that the US ethanol mandates lowered gasoline prices by 2%-3%[11]. The im-

pact on greenhouse gas emissions is uncertain. Although initial research suggested that

biofuels like corn based ethanol and biodiesel from edible oil seeds can have significantly

lower greenhouse gas intensity than their fossil substitutes on a lifecycle basis, a more

recent estimate suggests the contrary. While the assumptions employed by the latter are

controversial, it estimates emissions which are not considered in a traditional lifecycle

assessment (LCA) framework. The next chapter discusses this in more detail. Biofuels

have also had unintended adverse impacts. They have been partially responsible for the

increase in price of food commodities especially grains and oil seeds. Quantitative esti-

mates of the impact of biofuels on food prices are wide ranging from as low as 3% to as

high as 75%[12, 13, 14, 15] . Our own estimates suggest that ethanol raised corn prices

between 15% to 30%[11].

Biofuels account only for about 1% of global fuel use for transportation [9]. And

yet they have generated significant controversy about their impact on environment and

the poor. This notwithstanding, the expectation is that share of biofuels will grow sub-

stantially during the next couple of decades. The report by the U.S. Department of Energy

and U.S. Department of Agriculture (USDA) concludes that it is possible to replace up to
1This pertains more to corn-ethanol and biodiesel which have witnessed rapid growth since the year

2000 and not Brazilian cane ethanol which has been in use since the 1970s



4

30% of current U.S. gasoline consumption with biofuels by 2030[16]. Approximately 60

countries including 23 developing countries have policies to support the development and

commercialization of biofuels [8]. In the US, policies such as the California Low Carbon

Fuel Standard (LCFS) and US Energy Independence and Security Act (EISA) mandated

Renewable Fuel Standard (RFS) envision that blending clean biofuels with fossil fuels will

be the principal mechanism for reducing GHG emissions from transportation. The reason

for continued emphasis on biofuels is the promise of second-generation biofuels, namely,

biofuels produced from cellulosic-biomass from sources such as agricultural and forestry

residues, municipal solid waste and grasses grown on marginal land[16, 17, 18]. Such

biofuels are expected to deliver significant GHG benefits while having minimal impact on

food supply and the natural habitat. Theoretical estimates of yield, land-intensity and

carbon-intensity of these type of biofuels certainly warrant a serious effort to develop such

technologies. However, the poor performance of the biofuel policies has not only to do

with the inherent nature of the first-generation technology (such as it being based on food

crops and low yield per hectare of land) but also the limitations of the method used to ex

ante assess the performance of biofuels, namely LCA and also the types of policies used,

namely blending mandates and trade barriers against imports of more efficient biofuels.

A detailed review of the environmental, economic and policy literature on biofuels can be

found in Rajagopal and Zilberman[9] and Rajagopal, Sexton et al.[8].

In my dissertation I focus on three different but interconnected topics. The

first is the economics of lifecycle analysis and its application to the assessment of en-

vironmental impact of biofuel policies. The potential for biofuel as a GHG mitigation
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option was brought to the fore by work which relied on a methodology called lifecycle

analysis. However it has now emerged that in addition to the several advantages there

exist some limitations to this methodology as it exists today as a tool for guiding carbon

policies. I identify some of these and describe a framework for overcoming them. The

second topic is the economic impact of biofuels. Biofuels reduce the demand for oil and

increase the demand for agricultural goods. I estimate the effect on biofuels on food and

oil prices and compare them to other estimates in the literature and also relate these

to prices observed in the real world. The third topic is the economics of GHG regula-

tions. GHG policies such as United Nations’ Kyoto protocol, European Union Emission

Trading Scheme (ETS), and the Regional Greenhouse Gas Initiative (RGGI) in the US

north-east mandate an aggregate emission target, called a cap and allowed regulated enti-

ties (nations, states or firms) to trade responsibilities for abatement. Furthermore, these

policies have generally or sometimes exclusively targeted emission reduction in electricity

and industrial sector. However the LCFS and RFS which exclusively target emission

reduction in the transportation sector, mandate emission intensity target for fuels rather

than aggregate emission reduction. I compare the cost-effectiveness of these two types of

regulations, namely, aggregate emission caps versus emission intensity standards in the

context of transportation fuels. These topics are discussed in chapters two, three and four

respectively. A summary of the main contributions of my research and the conclusions is

presented in chapter five.
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Chapter 2

The role of economics in lifecycle

environmental impact assessment

2.1 Motivation for LCA

Emission-control policies have generally been designed to hold polluters responsible only

for emissions arising directly from a pollution-generating site. Examples include regula-

tion of smoke stack emissions at an industrial facility and regulation of emissions from the

tail-pipe of an automobile. A pollution-generating site was not responsible for emissions

associated with the production of inputs it consumes so long as they are produced at

another site. For instance a factory manufacturing steel using electricity from the electric

grid was not accountable for emissions arising during the production of electricity. If ev-

ery pollution-generating site within a region is regulated this approach of regulating only

on-site emissions is efficient. However if not all polluters within the region are regulated
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there can be leakage, i.e., increase in emissions from unregulated sites as a result of the

policy. In the worst case, pollution (in aggregate or the intensity per unit output) can

exceed that prior to regulation. For instance, regulation of GHG emissions in OECD

region can lead to an increase in emission from developing countries such as China and

India. This will occur since polluting industries are likely to relocate from the former

to the latter and to the extent that production in the latter is more pollution intensive

aggregate pollution will increase. Even within a region, regulation of emissions from just

one set of polluters (say transportation) can lead to increase in emissions from another

(say, agriculture). If the emissions are global pollutants like any of the greenhouse gases

then the region of interest is the entire world. This suggests that GHG policies should

be economy-wide (all sectors) and global. However, for a variety of reasons which are

beyond the scope of the discussion here, this is not the case. Several of the emerging

GHG legislations such as California’s LCFS and the US EPA’s RFS are policies exclu-

sively targeting transportation fuels.

It is in this context that lifecycle analysis has emerged as an important tool of

environmental impact assessment. Lifecycle analysis or lifecycle assessment is a method

for calculating the net flow of materials especially pollutants to the environment during

the lifecycle of a product. LCA is a systems approach to evaluating the environmental

footprint of products, materials, and processes [19, 20]. The goal behind the development

of LCA was to quantify the resource and environmental footprint of a product over its

entire lifecycle from raw material extraction, manufacturing, and use till ultimate dis-

posal. By resource footprint we mean the total physical flow of both extractive resources
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such as materials, energy, water etc. and pollution such as green house gases, criteria air

pollutants, toxic chemicals etc. through the various stages of the lifecycle. The lifecycle

of the fuel includes several stages, namely, production and/or extraction of the feedstock

(say, mining of oil), transportation of the feedstock to the processing facility, processing

of feedstock to final product (oil refining), transportation and distribution to end-user,

and use of the the final product (tailpipe emissions). For this reason, LCA is also referred

to as well-to-wheel analysis or cradle-to-grave analysis. The net emissions estimated via

LCA is used to estimate the ultimate environmental impact like global warming, acidifi-

cation, smog, ozone layer depletion etc. using established scientific relationships between

emissions and impact. The idea of regulation based on lifecycle emissions is therefore in

principle appealing.

2.2 Literature

2.2.1 LCA methodology

Depending on whether the assessment is for the average ouptut from a region or whether

it is done for output produced using a specific combination of technologies two major

types of LCA exist today, namely, Economic Input-Output LCA and process-LCA.

Economic Input-Output Lifecycle Analysis (EIO-LCA)

The EIO-LCA approach computes the resource requirements and environmental emissions

associated with production of a given value worth of a good, say, $1 million worth of

steel or electricity. It does so by tracing out the various economic transactions related
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to production like manufacturing, transportation, mining and related requirements etc.

that would take place in order to produce the given value of the good. This information

is derived from the economic input/output table of the economy a concept originally

developed by Wassily Leontief. Several countries in the world routinely produce such

input/output models. In the US, the Department of Commerce maintains a 491 sector

industry input-output model of the US economy i.e., a IO table which has 491 rows

and columns. The EIO model is a representation of an economy in which the rows and

columns in the table represent the various sectors of the economy and the entries in the

tables represent total sales from one sector to others, purchases from one sector, or the

amount of purchases from one sector to produce a dollar of output for the sector. This

model has been used extensively to calculate the environmental impact of major industrial

products like steel, concrete, automotive fuels etc. [19, 20] While simple and intuitive

this approach has a few drawbacks. Since it assumes fixed proportions in production

(Leontief preferences), it does not allow for substitution between inputs within a given

sector. While this is not unreasonable in the short-run it is not good in the longer run

and some times even in the short run. For example, even in the short-run farm operations

offer scope for substitution between fossil energy and labor or between capital and energy.

For example farmers may use less tilling or irrigation and use more land in response to

higher energy prices. Such effects cannot be captured in this framework. Fertilizer and

energy industries may also switch from gas to coal within the medium term in response

to high oil prices or vice versa in response to a carbon pollution tax. Second, since the

EIO table is aggregated across the whole economy, it captures the average effect rather
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than the marginal effects which are more important from a policy stand point. However

EIO-LCA will do a good job of predicting the average performance of well established

and mature industries like steel and automobile manufacturing.

Process-LCA

The process approach to LCA is based primarily on the standard recommendations of the

Society of Environmental Toxicology and Chemistry (SETAC) and emphasizes detailed

modeling of each and every process in the production chain (Hendrickson06). For example

in the case of biofuel production, process LCA would distinguish between farming with

irrigation and without irrigation, between farming with no-till, low-till and regular till,

between inorganic and organic farming or between dry-mill and wet-mill fermentation of

corn to ethanol etc. This approach is useful when analyzing the environmental impact

of emerging products and technologies the effects of which are likely to be marginalized

when one deals with industry wide aggregate data. For example, the LCA of cellulosic

ethanol or the LCA of gasoline produced from tar sands is difficult to model using the EIO

tables because of lack of availability of disaggregated data for the relevant sectors and

activities. Process LCA is the technique used in the assessment of biofuels [21, 22, 23, 24].

2.2.2 LCA of biofuels

Early assessments based on process-LCA with a few notable exceptions concluded that

on average the major types of biofuels such as cane ethanol produced in Brazil, corn

ethanol produced in the US, soy biodiesel produced in the US and rapeseed biodiesel in

the EU all had lower GHG intensity compared to gasoline or diesel [25, 22, 26]. However
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average LCA hides significant heterogeneity in emissions across producers of a given

type of biofuel. For instance, the LCA of corn ethanol varies significantly depending on

whether ethanol producers use coal or natural gas during the processing corn to ethanol.

The GHG intensity of coal-based ethanol is 6% lower than that for gasoline whereas the

GHG intensity of gas-based ethanol is 30% lower [27]. Recent research paints a more

pessimisstic picture with respect to average emissions. Searchinger et al predict that US

ethanol mandates will lead to net increase in GHG emissions relative to gasoline [10].

While the assumptions employed by Searchinger et al. are controversial, it nevertheless

addresses a methodological gap in the earlier assessments, namely, the exclusion what have

come to be called called indirect emissions. However, both the initial accounting based

on process LCA models and the more recent calculations based on economic equilibrium

models are complementary to each other. The former focus on what can be termed

direct emissions and the latter on indirect emissions. In other words, one could say that

traditional LCA is an assessment of direct emissions.

2.3 LCA for policy

2.3.1 Classification of emissions

Depending on the mechanism by which emissions occur they can be classified into two

categories, namely, direct and indirect.

1. Direct emissions: Direct emissions comprise all emissions associated with pro-

duction and use of inputs used to produce the final product. These can be further

classified as,
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(a) Direct on-site emissions: These are emissions at the regulated site. For

example, if the regulated site is an ethanol biorefinery, then these are emissions

from combustion of coal or natural gas used in converting corn or sugarcane

to ethanol. From figure 2.1, we can see that for US ethanol corn production,

biorefinery emissions comprise 55% of total direct emissions.

(b) Direct off-site emissions: These are emissions occuring away from a final

regulated site but are directly attributable to the final output. Again, assume

the regulated site is an ethanol biorefinery. Ethanol producers use crops pro-

duced in farms, which use fertilizers and this leads to emission of nitrous oxide,

a potent GHG whose global warming potential is 300 times that of carbon-di-

oxide. From figure 2.1 we can see that 45% of the total direct emissions are

offsite, largely attributable to use fertilizers in corn production.

2. Indirect emissions: Indirect emissions arise from indirect effects, which arise

when there is a large shock to an economy. In the context of biofuels, one the

main indirect effects is land use change. Demand for biofuel raises demand for

farmland, which causes marginal land to enter production, a process which called

agricultural extensification. If marginal land is rich in carbon, say pastures or

forest land, clearing this land releases carbon stored in the soil and above-ground

in the biomass to the atmosphere. Biofuels however may not be directly grown on

such lands. Instead biofuels may displace food crops which may then be grown on

marginal land. Such emissions are called indirect land use change (ILUC) emissions.

Figure 2.2 illustrates the fact that ILUC emerges from the interaction of market
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Figure 2.1: Breakdown of direct GHG emissions from production of US corn ethanol
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Figure 2.2: One possible chain of events leading to ILUC

for land for various uses (and often across the globe). It is hard to identity all

the parcels of land that was or will be converted to farmland because of increase a

global increase in crop demand. There are also other indirect effects in the context of

biofuels that are important from GHG standpoint, such as the effect on oil markets,

on fertilizer markets etc.

2.3.2 Types of LCA from regulatory perspective

Lifecycle estimates will differ depending on the unit of analysis (firm or micro and region

or macro) and the timing of assessment (ex post and ex-ante).

1. Ex post micro assessment: This is an assessment of emissions of a single firm for
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Figure 2.3: Classification of lifecycle estimates
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a period in the past. For instance, a biofuel producer operating under an emission

permit in the current year may be required to provide a certificate of compliance for

renewal of his permit. If there is full traceability simple accounting of the physical

inputs and outputs based on conventional process LCA technique is adequate. An

implementation of this approach is the BESS model [28]. As explained earlier only

direct emissions need to be computed at the firm level while indirect emissions are

attributed on average to each firm (see below).

2. Ex post macro assessment: This is an ex post impact assessment of a large

project such as a regional biofuel mandate. In this case we need to calculate both

direct and indirect emissions.

• Ex post macro direct emissions: If there is full traceability of inputs and

outputs for each firm, simple aggregation of micro emissions will yield macro

emissions. If full information for each firm is not available, an alternative

approach is to use industry average values within a process LCA framework

to calculate average LCE per unit of biofuel. Aggregate emissions can then be

estimated simply by multiplying this by the total quantity of biofuel produced

or consumed. An implementation of this approach is the Greenhouse gases,

Regulated emissions and Energy use in Transportation (GREET) model [21].

• Ex post macro indirect emissions: The process LCA approach does not

incorporate the economic linkages that result in ILUC. There are different

possible approaches for estimating ILUC emissions. Section 2.5.3 describes

these in more detail. With any approach, the challenge in ex post assessment
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is in ascribing the appropriate share of total land use change that was ob-

served during the given time interval to biofuels because several other factors

including economic growth and weather shocks would have impacted the same.

Evidence on ILUC from the recent expansion of biofuel is just beginning to

emerge. Higher corn prices are reported to have caused a reduction in acreage

enrolled under the conservation reserve program [29]. However, we are not

aware of any ex post analysis that tries to rigorously quantify ILUC due to

biofuels.

3. Ex ante micro assessment: Sometimes a policy-maker may be interested in

predicting how different policies affect output and pollution when firms are hetero-

geneous. Firms’ response to policies will differ depending on the time frame under

consideration. In the short run, it is reasonable to assume that the production func-

tion of a firm is characterized by fixed ratio between the different inputs used in

production (such as capital, labor and energy) and possess little flexibility to adjust

these ratios in response to change in the relative prices [30]. A reasonable ex-ante

estimate then is just the current LCE which can be estimated using process-LCA.

However, in the long run, firms can undertake investments that alter the production

relationship and therefore the LCE. For example, an ethanol biorefinery may switch

from gas to coal based conversion if it expects the relative price of gas to increase

substantially enough to justify switching costs. To reiterate, at the firm-level we

are concerned only with estimating direct emissions.
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4. Ex ante macro assessment: Estimating emissions under different future scenarios

is often undertaken in policy analysis. For example, a policy-maker may want to

the assess the impact of the Energy Policy Act 2006 which mandates the production

of 36 billion gallons of biofuel in the US by the year 2022.

• Ex ante macro direct emissions: Estimating the aggregate pollution for

an industry, composed of many small firms is a challenging task. However, in

the short run aggregation is possible if we assume fixed input output ratios. It

has been shown that industry aggregate output and input can be expressed as

functions of prices and parameters of the distribution of the input to output

ratios across the firms in the industry[31]. It is more challenging to estimate

this in the long run. We discuss some methods later.

• Ex ante macro indirect emissions: Ex-ante estimation of indirect emis-

sions requires methods similar to that for ex post assessment with some dif-

ferences. Unlike ex post assessment, ILUC can be estimated ex-ante while

keeping all other factors that influence ILUC at pre-determined levels. There-

fore, ILUC can be simulated for a given rate of economic growth and climatic

conditions. However, since the future is uncertain, this is in some ways more

challenging than ex post assessment.

Current LCA methodology assumes fixed input output ratio in production. This assump-

tion is suitable for ex post accounting of direct emissions or for short-run ex-ante assess-

ment. In the long-run production may occur under conditions that are different techni-

cally and economically. Estimating indirect emissions requires a multi-market analysis.



19

However, estimating indirect emissions is controversial for many reasons, one of which

is the method of estimation [32, 33]. In the rest of the paper we describe methods for

improving the state-of-the-art in estimation of direct and indirect emissions.

2.3.3 A framework for regulation

Economists have long pointed out that the most efficient mechanism for internalizing

pollution externalities is a pollution tax which equals the marginal cost of damage from

emissions [34, 35, 36]. A GHG tax provides incentives to shift production away from more

GHG-intensive to less GHG-intensive processes in the least-cost manner. However, opti-

mal taxes have proved infeasible because of our inability to accurately estimate marginal

social damage. It has also been shown that taxes are the least-cost mechanism to achieve

any arbitrary level of emission reduction [34, 37]. However, because of political economic

constraints pollution standards (such as an upper-bound on maximum emissions per unit

of output) have been preferred over pollution taxes. Hence we focus on GHG standards.

Today, one of the most widely discussed policies for controlling GHG emissions

from transportation is a GHG standard for fuels. An emerging legislation is California’s

Low Fuel Carbon Standard [38]. In this case regulation aims to establish an upper bound

for GHG emissions per unit of fuel sold in California. Fuels whose GHG intensity lies

below the upper bound will be permitted to be sold in the market. Let fonD denote the

direct onsite emissions, foffD denote the direct offsite emissions, fI denote the average

indirect emissions, and f the upper bound on emissions (all per unit of energy). The
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upper bound standard requires that each regulated producer satisfy the constraint,

fonD + foffD + fI ≤ f (2.1)

But since each regulated site takes the average indirect emissions per unit of energy as

given, this effectively implies that each regulated producer ensure that,

fonD + foffD ≤ f − fI (2.2)

Figure 2.4 shows emissions from ethanol produced under various scenarios of direct emis-

sions relative to the upper bound which is set to equal emissions from gasoline. Indirect

emissions are held constant in all these scenarios and assumed as one-third that estimated

by Searchinger et. al [10]1). This shows that only producers of type C through type F

will qualify as per the standard. The upper-bound (f) is fixed by the regulator, and this

can be done in a number of ways which we do not discuss here2. Instead we focus on

methods for estimating fonD , foffD , fI . But before doing so, we classify LCA into different

types since the method for estimation varies depending on the type of assessment.

2.4 Sensitivity of lifecycle estimates

Figure 2.1 shows the breakdown of direct emissions from production of corn ethanol in

the US. This shows that the conversion of corn to ethanol in the biorefinery and the use
1The rationale for this is explained later in the section on estimating ILUC
2This framework is also applicable for assessing the impact of an emission-trading scheme on heteroge-

neous firms. In this case each regulated firm would be required to possess permits for emissions exceeding
their quota
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Figure 2.4: Impact of upper bound on different biofuel producers
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Table 2.1: Sensitivity of ethanol LCA to fuel mix

Scenario

kg of CO2

eq. offset
per liter of
ethanol

% change
over base-
line

1 Baseline (Farrell et al Science 2006) 0.18 -
2 net GHG displacement if average biorefinery

uses only coal based energy
0.09 -50%

3 net GHG displacement if average fertilizer pro-
duction facility uses only coal based energy

0.07 -61%

4 net GHG displacement if both the average biore-
finery and fertilizer producer use only coal

-0.01 -106%

5 net GHG displacement if average biorefinery
uses only gas based energy

0.42 133%

of nitrogen fertilizer in corn cultivation are two major sources of GHG emissions from

ethanol production. Both these activities are energy intensive and currently depend on

coal or natural gas. Estimates suggest that on average biorefineries derive 60% of their

energy from coal and 40% from natural gas3[22]. Farrell et al. [22] also estimate that

direct emissions per unit of energy from corn ethanol is on average 20% below that from

conventional gasoline [22]. We performed sensitivity analysis of their model to the relative

share of of coal and gas use in biorefining and fertilizer production. The results are shown

in table 2.1. We find that depending on the value of this share direct emissions may be

higher or lower than gasoline. This shows that LCE is sensitive to relative input shares

which ultimately is a function of relative prices and other economic parameters. This is

the motivation for developing lifecycle indicators as function of prices of inputs instead

of just quantities of inputs [39].
3Any given biorefinery may use either coal or natural gas. However, averaging across all producers, it

appears as that each unit of corn is converted using a mix of coal and natural gas.
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2.5 Estimating emissions

With full information about outputs and inputs we can use simple accounting to exactly

calculate LCE. However, in the absence of full information we need to estimate LCE. For

instance, say we are interested in estimating LCE when the future price of coal increases

by 50% relative to natural gas . Economic theory predicts that firms will respond to

this change both by using less energy and through interfuel substitution, i.e., using less

coal relative to natural gas. The ability to respond depends on several factors such as

switching costs and the price elasticity of demand for fuels. These elasticities tend to

be higher in the long run compared to the short run. Further elasticity is higher for the

industry than for a single firm. Estimating the change in LCE in response to a change

relative prices using current LCA is a two step process. First, one has to estimate using

an economic model the new input shares in response to the price shock. The modified

input shares can then be used in a process LCA model to calculate the modified LCE.

The model we describe below integrates the two steps into a single unified model,

one that can simulate the change in LCE as a function of change in economic parameters.

In doing so we recognize the relative strengths of the process LCA and the economic

models. The former has the benefit of detailed representation of the technology while

the latter can predict price response. However, retaining the same level of detail in

technology and price variables for all inputs in the lifecycle model is complex and also

avoidable for estimation purposes. For instance figure 2.1 shows that biorefining and

fertilizer related emissions comprise more than 95% of the total direct emissions from

corn ethanol production. Thus small changes in these stages may have a large impact on
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Figure 2.5: A simple model

LCE than large changes at other stages.

2.5.1 Ex-ante estimation of direct micro emissions

We illustrate how LCE can be estimated as an explicit function of input prices. In order to

keep the mathematical exposition simple and intuitive, we use a simplified representation

of biofuel production (see figure [2.5]). We later generalize the results to a production

function with more than two inputs and multiple stages in the lifecycle. Let us assume

that ethanol is produced with two inputs namely, corn and energy. Corn is produced

using two inputs, land and energy. Finally, energy can be produced from two different

sources with different carbon intensities, natural gas and coal. We assume a competitive

industry structure where producers take price as given and maximize profit.

Ybf is quantity of biofuel produced, Yby is quantity of co-product produced, Xb
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is quantity of biomass required to produce the given quantity of biofuel, Xep is quantity

of energy required to convert plant matter to biofuel, Xl is quantity of land to produce

the required quantity of plant matter, Xef is quantity of energy embodied in farm inputs

other than land, Xcp, Xgp is quantity of coal and gas required to process biomass into

biofuel, Xcf , Xgf is quantity of coal and gas embodies in farm inputs - notably fertilizer,

Zf is pollution from farm phase, and Zp is pollution from biorefining or processing phase.

Production function: Let us denote the production relationships as follow,

Ybf = Ff (Xb, Xe)

Yby = Fcp(Xb, Xe)

Xb = Fb(X1, Xef )

Xep = Fe(Xcp, Xgp) and Xef = Fe(Xcf , Xgf )

Zf = Gf (Xcp, Xgp)

Zp = Gp(Xcf , Xgf )

with, Fi′ > 0, Fi′′ < 0, Gi′ > 0, Gi′′ = 0, (linear pollution function)

Then Γ = Zf +Zp denotes the total direct emission from processes that yield both biofuel

and a co-product. Co-products of current biofuel production find use either as animal

feed (distiller’s dried grains (DDG) from corn, soybean cake from soybean) or as a source

of captive energy (sugarcane bagasse or lignin from cellulose). Therefore, a share of the

total emissions should be allocated to the co-product. The total emissions due to corn

ethanol can be written as

Γbf = (1− α)Zf + Zp (2.3)
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where, α is the share of emissions allocated to the co-product.4

Pollution function: Lets assume pollution arises solely from the use of energy and not

other inputs. Assuming that the carbon intensities of coal and natural gas are constants,

the pollution function G is linear in the quantity of coal and natural gas consumed at

any given stage. Therefore,

Zf = Gf (Xcf , Xgf ) = bc ∗Xcf + bg ∗Xgf (2.4)

Zp = Gp(Xcp, Xgp) = bc ∗Xcp + bg ∗Xgp (2.5)

where bc, bg are carbon coefficients for coal and gas respectively. Differentiating Zf and

Zp with respect to pi where i ε (coal, gas) we get,

∂Zf
∂pi

= bc
∂Xcf

∂pi
+ bg

∂Xgf

∂pi
(2.6)

∂Zp
∂pi

= bc
∂Xcp

∂pi
+ bg

∂Xgp

∂pi
(2.7)

∂Γbf
∂pi

= (1− α)
∂Zf
∂pi

+
∂Zp
∂pi

(2.8)

Expressing as elasticities: The change in LCE as a function of change in price of

coal pc is,

∂Γbf
∂pc

=
1
pc

[(1− α)[bcXcf ε
f
cc + bgXgf ε

f
gc] + [bcXcpε

p
cc + bgXgpε

p
gc]]

Expressing as a elasticity of LCE with respect to price of input,
4DDG offsets corn on the margin. Therefore co-product credit is allocated as a share of the emissions

associated with corn production. Since 1 bushel of corn (56 lbs) yields about 2.7 gallons of ethanol and
18 lbs of DDG which we assume as equal in value to 18 lbs of corn this implies α = 18/56 = 0.32
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εΓbf =
1

Γbf
[(1− α)[bcXcf ε

f
cc + bgXgf ε

f
gc] + [bcXcpε

p
cc + bgXgpε

p
gc]]

where, εjki is the price elasticity of energy source k with respect to energy source i in the

jth production process.

Extending this to production using an arbitrary number of inputs and stages,

∂Γbf
∂pi

=
1
pi

K∑
k=1

bk{(
J∑
j=1

(Xj
kε
j
ki))−X

by
k ε

by
ki)}

where, i ε (1..K), K is the number of different types of energy sources, and J is the

number of different processes in the production tree.

There are a few limitations to this model. By implying instantenous subsitution

between inputs in response to change in prices, we have assumed zero switching costs. In

reality, producers will respond only if relative prices change more than a certain amount

and are expected to remain at levels that provide incentives for switching. This requires

modeling price response within a technology adoption framework. However, this assump-

tion may not be completely unrealistic in certain cases. For instance, emerging cellulosic

conversion technologies are expected to allow switching between a variety of different

feedstock with minor adjustments to feedstock pre-treatment processes. There is a large

literature which estimates elasticities of substitution between different types of energy for

different sectors of the economy [40, 41, 42]. However, estimating the elasticities for some

of the newly emerging industries can prove to be a challenging task.

2.5.2 Ex ante estimation of aggregate direct emissions

The comparative static analysis described applies so long as we can assume the price as

exogenous. Certain prices that are exogenous at the firm-level may be endogenous when
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considered at the aggregate level. However, because biofuels represent a small share of

total demand for energy, the prices of coal, natural gas, and electricity can be considered

exogenous. With regard to oil or gasoline price, although a large biofuel supply such

as a national biofuel mandate will have some impact on oil price, it is yet plausible to

assume biofuel producers take oil prices as given[14]. However, with regard to land, a

large biofuel project may have significant impact on land prices and hence must be treated

as endogenous. If the parameter of interest is endogenous, we need to model producer

response using a multi-market framework similar to that for indirect emissions which we

discuss next.

2.5.3 Estimation of indirect emissions: ILUC emissions for biofuels

As mentioned earlier estimating indirect emissions requires modeling the linkages between

different markets. There are different modeling approaches one can employ. One option

is to use an economic input-output(EIO) based LCA model [19]. The EIO framework

captures the inter-industry linkages necessary for estimating indirect effects. However, IO

framework imposes a Leontief (fixed input share) structure on production and also does

not model constraints on avaliable resources such as land and labor. EIO-LCA approach

is suitable for ex post assessment than ex ante.

Another option is to use a computable general equilibrium (CGE) model which

allows a more flexible production structure (substitution between inputs with different

pollution intensities) and also incorporates constraints on resources. [42, 43, 44]. However,

like IO models, CGE models require a wealth of data and specification of a number of

parameters for representing supply and demand in all the sectors. Often reliable estimates
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of several parameters may not available and one is forced to base his or her calculations

on ’best guesses’. However, if only a limited number of inter-industry interactions are

important and if macroeconomic linkages have only second-order importance, then a

CGE approach would be inefficient. Far too much time and effort will have to be spent

in specifying and calibrating parts of the model, which are not critical to the sectors

of interest. A more simple approach can be a multi-market partial equilibrium model

focussing on linkages between a small number of markets, which are strongly linked either

on the supply side or the demand side [45]. Using the FAPRI model, Searchinger et al.

[10] estimate that a 56 billion liter increase over and above the projected US biofuel

output by 2015 will cause global agricultural land to expand by 10.6 million hectares.

These estimates are however highly controversial [32]. However, equilibrium models are

currently the popular approach for estimating ILUC.

A third, even simpler, option is to use statistical techniques to estimate the

relationship between agricultural production and agricultural land use. We provide one

illustration. Let L(t) denote global agricultural acreage at time t and Q(t) denote global

agricultural output at time t. Let δL
L denote the percentage change in acreage and δQ

Q

the percentage change in output during the time interval (t,t+ δt). We can then estimate

a parameter called the elasticity of agricultural acreage with respect to output as εL/Q =

δL/L
δQ/Q . A low value of elasticity of acreage implies increase in production was accompanied

by relatively little expansion in acreage with intensification contributing the lion’s share of

the increase in output. For example, between 1960 and 2007, combined global agricultural

output of six major crops (wheat, corn, rice, soybean, sorghum, and cotton) increased
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228%, while total acreage under these crops increased only 33%, which implies εL/Q is

0.14. 5 Rearranging the elasticity expression we get,

δL = εL/Q(
L

Q
)δQ (2.9)

If we are concerned with small changes in output the elasticity of acreage estimated from

historical data can be assumed constant and used in the above expression to estimate

ILUC (δL). We use this expression to estimate ILUC for the same scenario as that

analyzed by Searchinger et al. An increase in ethanol output of 56 billion litres implies

increase in corn demand of 140 million tonnes (δQ)6. Furthermore, in the year 2006 the

combined global acreage of the three major food grains, namely, rice, wheat and corn was

about 510 million hectares (L) while combined global production was 1950 million tonnes

(Q). Plugging in these values for εL/Q, L,Q and δQ we estimate ILUC for the scenario

analyzed by Searchinger et al. as 5.1 million hectares7. Statistical approaches have the

advantage of being simple and empirically well grounded. Obviously one can and needs

to explore more sophisticated relationships by controlling for factors such as technology,

prices, weather and economic growth in the statistical model. There is a rich literature in
5Historical data from the US Department of Agriculture database available online at

http://www.fas.usda.gov/psdonline/psdhome.aspx.
6At a conversion efficiency of 2.7 gallons of ethanol per bushel of corn.
7This estimate is conservative, given that we assume the quantity of corn allocated to ethanol is

entirely replaced by new supply so that consumption of corn as food remains unchanged. This is unlikely
because demand for food is not inelastic and will adjust to higher corn prices. Yet, we find Searchinger
et al’s estimate of 10.6 million hectares is more than twice ours. However, our estimate may be too
optimistic if we consider the relationship between agricultural output and acreage since the year 1990,
which suggests an elasticity of 0.36. This suggests ILUC equals 13.2 million hectares. But historical
trends may change as policies, market conditions, and biophysical developments can influence how much
of future agricultural production occurs, through intensification or through expansion. Adoption of yield-
enhancing technologies such as agricultural biotechnology and increase in acreage under irrigation can
slow the expansion of agriculture.
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agricultural economics which employs econometric techniques to model acreage response

to prices and policies which can serve as a useful starting point [46]. The literature on

estimation of ILUC is at a rudimentary stage and requires further research.

2.6 Summary

The carbon intensity of conventional fossil fuel say coal, oil or natural gas does not ex-

hibit significant variability across producers. Furthermore, carbon emissions attributable

to these fuels is concentrated in the combustion phase of the lifecycle. In contrast for

several of the emerging energy sources such as biofuels, batteries and coal-based liquids

lifecycle emissions are not concentrated in the combustion phase. Emissions during com-

bustion represent only a share of the total emissions attributable to the production or use

of these fuels. Furthermore GHG intensity tends to vary across producers. This coupled

with the fact that GHG is a global pollutant and that several of the GHG policies are

regional or sectoral in scope, led to the emergence of LCA as an important tool for envi-

ronmental policy making. LCA has a long and successful tradition as a tool for improving

product design and as a tool for show casing social responsibility on the part of private

firms. However, relying on current LCA estimates for making decisions about long-term

policies is not recommended.

The outcome of LCA is a number such as the average GHG intensity per liter of

biofuel produced using a certain crop. The current method of performing LCA is simple

and intuitive so long as we are concerned with estimating emissions in the past and in

the context of a small (price-taking) region or a single firm. Using this methodology to
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estimate emissions in the future or in the context of a large region or both is challenging.

In using current LCA method for such purposes we are assuming that the production

structure is Leontief-type (fixed-proportion). This is not true except in the short-term.

When there exist possibilities for substitution between inputs, economic intuition sug-

gests that profit-maximing producers (or utility-maximing consumers) will respond to

changes in relative price of different inputs (or goods). Therefore emission intensity of

production is a function of prices and should be calculated as such. To this end a partial

equilibrium framework to estimate emissions as function of prices has been introduced.

This is reasonable when the price changes under question are exogenous. When prices

are endogenous, emissions must be estimated using a multi-market or general equilibrium

framework. A second assumption implicit in extrapolating current LCA into the future

is that there exist no constraints on the factors of production such as land, labor, capital

and energy. This is also not true. Increasing output in one sector leads to reallocation

of resources across different markets (or simply across different uses, when markets are

missing as in the case of goods such as clean air or biodiversity). This is evidenced by

the debate on indirect emissions due to land use change induced by large-scale biofuel

production. Modeling such changes requires a multi-market equilibrium or general equi-

librium framework. Thirdly, LCA is a purely supply side analysis which does not take into

account the role of demand. This limitation also can be overcome using an equilibrium

framework. Addressing these limitations will allow LCA to become a more reliable tool

for policy making. Without doubt, future effort should focus on the role of uncertainty

in LCA.
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Chapter 3

Economics of biofuels: Impact on

food and fuel markets

3.1 Background

Agricultural and fuel commodity prices which had been on upward trend since 2003-

2004 peaked during 2008, the year of food and financial crises[47, 48] (see figure 3.1).

Interestingly, the period between 2003 and 2008 was also the period during which the

production of biofuels such as ethanol and biodiesel grew several fold. During this time

global ethanol production from corn and sugar cane more than doubled from 30 billion

liters to 65 billion liters while biodiesel production from edible oil seeds such as soybean,

oil palm and rapeseed expanded six-fold from 2 billion liters to 12 billion liters[49]. The

increase in biofuel demand, which was concentrated in the US and the EU, was driven
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Figure 3.1: Commodity price trends

largely by government mandates and subsidies.1 This has led to the popular opinion that

biofuel policies in the high income countries are the major cause for the run up in food

prices and the crisis.

Biofuels reduce the demand for oil and increase the demand for agricultural

goods. To high income countries, which tend to be both large importers of oil and large

exporters of agricultural goods, this implies a double whammy for the domestic economy.

One of the one hand it reduces the market power of the OPEC cartel, a large exporter of

oil and a grouping of countries considered politically volatile and hostile to the former’s

interests. On the other hand, it reduces the demand for domestic farm subsidies. With

crops comprising a small share of cost of food in these countries the impact on food

consumers will likely be small. To low income countries where crops comprise a major

share of cost of food, the fallout of increase in crop prices will be higher. Empirically,

however the story is more complex and therefore one may observe a different movement in
1Growth in domestic demand in Brazil, a large producer has increased was insignifcant relative to

growth in the US, EU and other OECD countries.
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prices. The impact of biofuels may be dwarfed or amplified by exogenous shocks to supply

and demand. Economic growth, weather and exchange rates fluctuations are example of

more traditional shocks to affect demand and supply of food. Under such circumstances

one should be cautious in interpreting observed trends as the effect of a single policy or

single phenomenon such as expansion of biofuels.

This chapter aims to quantify the contribution of biofuel demand, especially the

US ethanol demand, on international crop prices and also on fuel prices. Knowing the

effect on crop prices, one can then extrapolate this to the effect on the retail price of

food. I first describe a static partial equilibrium model to estimate the effect of ethanol

demand on corn and gasoline price in the US. We use this model to simulate the effect

of US ethanol demand on the price of corn, soybeans and gasoline. Following this I

present a broader review of the literature on the effect of biofuels on food prices. The

review reveals the importance of understanding the market for storage to better predict

the effect of any large supply or demand shock on commodity prices. The effect of

introducing the simplified model of storage into the partial equilibrium model is also

illustrated. I conclude by identifying areas for future work.

3.2 Partial equilibrium model with no storage

A stylized model of supply and demand for a crop that has multiple uses, like food

and fuel, is shown in figure. Assuming that bioufels are a costlier fuel and no biofuel

is consumed in the initial equilibrium, (price P0 and quantity Q0) determined by the

intersection of total demand (DT0) and supply (S0). This situation is depicted in fig-



36

ure a. Due to economic growth or due to biofuel policies, demand for biofuel increases,

reflected by an upward shift in biofuel demand as shown in figure b. For simplicity, we

assume no change in commodity supply in the short run, so the short run equilibrium

is determined by the intersection of the new demand, DTS , and supply, S0. This new

equilibrium is characterized by price PS and quantity QS . Crop prices increase and food

supply decreases (QSF < Q0). Total agricultural production may increase (QS > Q0).

In the long run supply increases, yielding the equilibrium denoted by (PL, QL). This sit-

uation is depicted in figure c. In this equilibrium, price is lower than the short run price,

and both fuel and food supply are higher than in the short run. Productivity-enhancing

technologies like agricultural biotechnology can increase supply without increasing the

agricultural land base. The impact of biofuel on gasoline price can be estimated using a

similar approach. A model of the oil market with two fuels gasoline and ethanol on the

supply side and a demand for transportation fuel is shown in figure. This figure how-

ever, shows the effect of biofuel under two different scenarios of elasticity of supply and

demand for fuel. Comparing the figure a and b we can see that holding ethanol supply

fixed, ethanol has higher impact on price of fuel (∆P1 > ∆P2) when supply and demand

for oil is more inelastic. The single market equilibrium can be extended to multi-market

equilibrium with many different crops or fuels which have interlinkages with biofuel crops

on the supply or demand side. This can also be extended to include multiple regions.

We develop and simulate one such model to predict the effect of U.S. ethanol

production. We consider four commodities, two crops (corn and soybean) and two fuels

(gasoline and ethanol), in our model. We consider two regions: the United States and the
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Table 3.1: Elasticities used to represent the different scenarios
Scenarios

Own price supply
elasticities

High Mid Low

Corn 0.5 0.4 0.3
Soy 0.5 0.4 0.3
Gas 0.3 0.4 0.5
Own price de-
mand elasticities
Corn -0.5 -0.4 -0.3
Soy -0.5 -0.4 -0.3
Gas -0.3 -0.4 -0.5

rest of the world (ROW). We assume the own and cross-price elasticities for supply and

demand do not vary across these two regions. The equilibrium prices and quantities are

then computed under two different scenarios: without biofuel production and with biofuel

production at 2007 levels. We report results under three distinct sets of assumptions on

price elasticities for crops and for gasoline. These are listed in table 3.1. We consider

a high scenario characterized by highly elastic crop markets and an inelastic gasoline

market; a low scenario that assumes the oppositea low elasticity for food and an elastic

gasoline market; and a mid scenario that assumes moderately elastic markets for both

food and gasoline. Biofuel production is shown to have the greatest benefit to consumers

in the high scenario. Ethanol demand is assumed inelastic in order to simulate the ef-

fect of a mandate. The elasticity assumptions for each scenario are summarized in table

1. Research suggests that gasoline elasticities tend to be less than 0.3 in the short-run.

Similarly, for corn and soy, short-run elasticities tend to be less than 0.3. If so, our high

scenario provides a conservative estimate of the net consumer benefits from biofuel pro-

duction. Even long-run gasoline elasticities are less than 0.5. To reduce the complexity
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Table 3.2: Price impact of US ethanol consumption under the different scenarios
Optimistic or
high scenario

Intermediate
or mid sce-
nario

Pessimisstic or
low scenario

Percent change in
gasoline price

-2.40% -1.80% -1.40%

Percent change in
corn price

15% 20% 28%

Percent change in
soy price

10% 13% 20%

of simulations and for ease of exposition, we assume fixed cross-price elasticities between

corn and soy across all scenarios. In our analysis, we include the impact of biodiesel

on the soy market, but we do not estimate the impact of biodiesel production on the

diesel market, which further makes our assessment of fuel market benefits conservative.

Including the diesel market equilibrium would increase consumer benefits.

The price effects are shown in table 3.2. The model predicts that ethanol con-

sumption in 2007 which was about 6.5 billion gallons of ethanol, increased corn prices

between 15% (high scenario) and 28% (low scenario). The price of soy increased between

10% and 20%. At the same time absent ethanol consumption, gasoline prices would be

between 2.4% higher (high scenario) and 1.4% higher (low scenario).

Figures 3.2, 3.3, 3.4, 3.5 and 3.6 show the welfare change to various groups. In

the mid scenario, we find that gasoline consumers worldwide benefited from 2007 U.S. bio-

fuel production by about US $31.3 billion because of 1.8% lower gas prices.The total cost

to food consumers and to U.S. taxpayers (in the form of subsidy payments), however, was

US$52.8 billion. The net gains to corn and soybean producers was about 27 billion US$.

Thus, under plausible conditions and partial equilibrium analysis, ethanol production

is associated with a net benefit worldwide of US$1.7 billion. Overall, the ROW gained
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Figure 3.2: Welfare change for all consumers under the three scenarios

Figure 3.3: Welfare change for US consumers under the three scenarios
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Figure 3.4: Welfare change for ROW consumers under the three scenarios

Figure 3.5: Welfare change for all consumers under the three scenarios
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Figure 3.6: Net welfare change due to biofuels under the three scenarios

US$4.7 billion, whereas the U.S. lost US$3 billion (net of taxes). In the United States,

under the mid scenario, we find that gasoline consumers gained approximately US$7.2

billion, whereas the total cost to corn and soy consumers was US$17.4 billion, and the

cost to taxpayers from the U.S. Volumetric Excise Tax Credit was US$2.2 billion. Higher

food prices benefited U.S. corn and soy producers by US$11 billion (the ROW producers

gained US$27 billion). For further details on the model the reader should refer [11].

3.3 Review of literature

Between 2007 and 2008, ethanol production in the US by 8%. In contrast it grew 34%

between 2006 and 2007. We therefore expect the model described above would a price

effect of similar magnitude, around 30% in the worst case (i.e., low scenario) for 2008.

However during 2008, the food prices rose much more spectacularly compared to during

2007, to levels not witnessed since the 1970s (in real terms) with serious implication for
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food security among the poor populations of the world[47]. Several reports and some peer

reviewed papers describing the factors responsible for the global food price inflation in

2007 and 2008 have appeared [12, 13, 11, 48]. This literature can be classified under two

categories, namely, ex ante assessments and ex post assessments. The latter is the more

recent, and explains (in some cases also quantifies) the role of various factors behind the

price rise. The former comprises of studies, which began emerging a few years back, and

whose objective was to simulate impact of biofuel mandates that were beginning to be

put in place, on the price of agricultural commodities in the medium and long-run.

3.3.1 Ex ante assessment

There is a long tradition of use equilibrium techniques to ex ante predict the effects of one

or more policies on prices, welfare and a variety of other economic variables[50]. Equi-

librium models can be classified as partial equilibrium and general equilibrium models.

Partial equilibrium models are essentially a collection of supply and demand equations

representing economic behavior of agents in one or more markets of interest. These mod-

els have several limitations, such as lack of acknowledgement of the finiteness of resources

such as land, labor and capital, no explicit budget constraint on households and no check

on conceptual and computation consistency of the model [51]. These limitations can be

overcome by using a general equilibrium approach. The main drawback of a computable

general equilibrium model is the large data requirements and the high degree of complex-

ity.

Examples of well-known partial equilibrium models include IMPACT, AGLINK/COSIMO,
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FAPRI, and FASOM.2 Examples of general equilibrium models include GTAP, LINKAGE

and USAGE. 3. These models were all initially, developed to analyze the impact of do-

mestic agricultural policies and international trade policies. Subsequently these models

have found application in the context of GHG and biofuel policies. The predictions of

analyzes using some these models is described below.

Partial equilibrium analyses

The International Model for Policy Analysis of Agricultural Commodities and Trade

(IMPACT) is a partial-equilibrium model that has often been used by the International

Food Policy Research Institute (IFPRI) for projecting global food supply food demand

and food security to 2020 and beyond. Using this model, Msangi et al. simulate the

impact of biofuel under different scenarios on the price of food in different regions [52].

In one of the scenarios, which focused on rapid global growth in biofuel production under

conventional conversion technologies, the price for major crops ranges between 30% and

76% by 2020. There is significant increase in malnutrition in many developing country

regions with sub-Saharan Africa being the hardest hit. Using the AGLINK and COSIMO

models, the OECD predicts the impact of achieving the stated policy targets (as of 2006)

for biofuels in several countries [53]. It finds that compared to a situation with unchanged

biofuel quantities at their 2004 levels, crop prices could increase by between 2% in the

case of oilseeds and almost 60% in the case of sugar by the year 2014.
2IMPACT - Model developed by the International Food Policy Research Institute, AGLINK/COSIMO

- Model owned by Organization for Economic Cooperation and Development (OECD) and Food and
Agricultural Organization (FAO) , FAPRI - Model owned by University of Missouri, and FASOM - Model
developed at Texas A&M University

3GTAP- Model developed at Purdue University, LINKAGE - The World Bank’s model and USAGE -
Model developed at Monash University, Australia
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General equilibrium analyses

Although there are a number of CGE based assessments of biofuel policies on greenhouse

gases, energy price, employment etc only a limited number emphasize the impact on the

price of food. Dixon and Osborne use a dynamic CGE model called USAGE to quantify

the economy-wide effects of partial replacement of crude petroleum with biofuels in the

US. He forecasts the impact of the current biofuel policies on the U.S. economy in 2020[54].

Although there is no direct discussion of the impact of these policies on the global price

of food, the model predicts a reduction in agricultural exports and an increase in the

export prices. Gohin and Moschini assess the impacts of the European indicative biofuel

policy on the EU farm sector with a farm-detailed computable general equilibrium model

and predicts positive income effects on farmers in the EU[55]. Birur, Hertel and Tyner

use the GTAP-E model to study the impact of six drivers of the biofuel boom, namely,

the hike in crude oil prices, replacement of MTBE by ethanol as a gasoline additive in

the US, and subsidies for ethanol and biodiesel in the US and EU[44]. They find that

between 2001-2006 these drivers were responsible for 9% increase in price of coarse grains

in the US, 10% increase in price of oilseeds in the EU-27 region, and 11% for sugarcane

in Brazil. Similar impacts were observed on energy-exporting countries in Latin America

and sub-saharan Africa.

3.3.2 Ex post assessment

Abbot, Hurt and Tyner through a review of several reports on the food crisis conclude

that there are three key drivers of food price increases: the depreciation of the dollar,
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global changes in production and consumption of key commodities, and the role of biofuels

in commodity price increases[12]. They however do not present any quantitative estimate

of percentage contribution to the total price rise that is attributable to a specific factor

such as biofuel consumption. The Food and Agriculture Organization in its State of Food

and Agriculture 2008 report also states that growing demand for biofuels are only among

several factors driving increases in agricultural commodity prices. It concludes that as-

cribing a value to the contribution of biofuels to total price rise is challenging task[48].

An USDA report describing the factors leading the food price rise concludes that the run

up in commodity price reflects a trend of slower growth in production and more rapid

growth in demand that led to tightening of world balances of grains and oilseeds over the

last decade[15]. Biofuels are mentioned as just one in a number of demand-side factors

that includes bad weather, depreciation of US dollar, increasing in production costs and

government policies in food importing and exporting countries.

Historical data on agricultural commodity prices shows that the price rise of

2008 while unprecedented in magnitude was not unique. Sudden run-ups in food prices

were observed between 1971-1974 and between 1994-1996 [47]. While biofuels were unique

to the recent crisis, the other factors discussed above were common to one or both the

crises. Furthermore, each of the three periods of peak prices have been marked by a

below normal ratio of stocks to use. An International Monetary Fund report assessing

the impact of rise in food and fuel price on macro-economic indicators such as balance

of payments, overall inflation, and poverty, also concludes that biofuels are one among

several factors, which coincided to cause the price rise[56]. This report says for rice crop,
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restrictive trade policies were the major reason for the run up in the prices.

While the reports mentioned above are largely qualitative in nature, there are

a few that quantify the effect of biofuel on total price rise. One report, and by far the

most pessimistic about the role of biofuels, estimates that biofuels related developments

were responsible for 70 to 75% of the price rise between 2002 and 2008[13]. This report

uses historical data to estimate the elasticity of world price of agricultural commodities

with respect to the price of energy and related inputs to agriculture and with respect to

changes in the value of the dollar. Using these elasticities, he estimates that between 2002

and 2007, higher price of energy increased export prices of major U.S. food commodities

by about 15-20% points and the depreciating dollar increased food prices by about 20%

points. Taken together he argues this translates into a 25 to 30% increase in total price.

The author argues that depletion of stocks, shifting for food cropland for production of

energy crops, speculative activity and government response in the form of food export

bans which caused prices to rise were the consequence of demand for biofuels and hence

biofuels explain the remaining 70 to 75% of the increase.

In contrast to the above simple statistical calculation, Rosegrant estimates the

effect of biofuels using a simulation-based approach[57]. He simulates the market equi-

librium under two different scenarios, namely with and without high fuel demand. For

the former he simulates a scenario in which biofuel grows at a rate which was observed

between 1990-2000. This is the period before the rapid takeoff in demand for bioethanol.

For the latter he simulates actual demand for food crops as a feedstock for biofuel, from

the years 2001 through 2007. Based on these simulations he estimates that weighted av-
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erage grain price increased by an additional 30% under the high biofuel scenario, i.e., the

actual situation. The increase was highest for maize (39%) and lower for wheat and rice

(22% and 21% respectively). And as described earlier our models estimate that ethanol

production in the US in 2007 may have been responsible for a 15% to 28% increase in

the world price of maize and 10% to 20% increase in the world price of soy[11].

3.3.3 Summary of literature

Rigorous impact assessment literature is scarce or non-existent. However there is a con-

sistent theme that can be emerges from our review, namely, the depletion of total storage

of grains to historically low levels, which have not been witnessed since the 1970s. This

was the result of consumption exceeding production in each year for several successive

years on account several factors, one of which was biofuel demand. On the demand side,

another major factor is rapid economic-growth in emerging economies which increased de-

mand for meat, a highly grain intensive product. On the supply side, bad weather in key

grain-producing regions (especially wheat growing regions such as Australia), stagnation

of productivity growth (due to under-investment in agricultural research and technol-

ogy and infrastructure such as irrigation) and increase in production costs (due to high

energy prices) have resulted in slow or negative growth in production. Prices spiraled

even further as a result of policies such as export bans on grains and import tariffs on

non-grain biofuels (especially the US import tariffs on cane ethanol from Brazil) and on

account of speculative activity in reaction to such policies. Lastly, the depreciation of

the US dollar relative to major world currencies has also been a contributing factor to

commodity price increases (Abbott, Hurt et al. 2008; Rosegrant 2008). Historically, when
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the dollar is weak, commodity prices tend to be higher, and when the dollar is strong,

commodity prices tend to be lower. However, with different countries adopting different

policies towards biofuels and trade, assessing the country-level impacts of these factors

require case-by-case analysis.

In any case with several different factors at play, identifying the contribution

of any one factor such as biofuel is a challenging task. The estimates of the impact of

biofuels are wide-ranging. The most pessimistic estimate is that suggest about 70 to 75%

of the increase in food commodities was attributable to biofuel production where as the

more optimistic estimates suggest 30% or lower. With further research no doubt better

estimates can be produced. One reason why the optimisitic estimates may be an underes-

timate is because of a lack of representation of the market for storage in such models. We

are not aware of any standard equilibrium models including those mentioned earlier that

includes even a simplified representation of storage. The following section discusses the

implications of excluding storage and describes one way of modeling the demand storage

in a multi-market equilibrium framework.

3.4 Food inventory and biofuels

3.4.1 Recent trends

Historical trends in production, consumption, stock (inventory) and price at the global

level for four major crops, namely, maize, wheat, rice and soybeans are shown in figures

3.7, 3.8, 3.9, and 3.10 respectively. Data on inventories was obtained from the United

States Department of Agriculture’s PSD database while the data on the international
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Figure 3.7: Historical data for maize

price was obtained from the IMF Price database on prices of primary commodities.4

Price data was not available for the years prior to 1980 and hence are not shown. It

is immediately apparent from the data that years in which prices increased, the level of

inventory declined and viceversa. Years in which a local minimum in inventory levels was

reached were also the years in which price reached a local maximum.

3.4.2 Analytical model of storage

For storable goods, the ability to adjust the level of storage (also referred to as inventory

or stock) can play a crucial role in maintaining price stability and reducing price volatility

when there is a supply or demand shock. During periods of excess of supply, demand

from storers protects producers from rapidly descending prices while during period of

scarcity, supply from storage protects consumers from rapidly ascending prices. This

role of storage however becomes apparent only at times when the ability to increase or
4Available online at http://www.fas.usda.gov/psdonline/ and http://www.imf.org/external/np/res/commod/index.asp

respectively
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Figure 3.8: Historical data for wheat

Figure 3.9: Historical data for rice
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Figure 3.10: Historical data for soybean

decrease storage ceases. The latter occurs when inventory is exhausted. Both crops and

fuels are storable good although the nature of storage differs in many ways. Crops can

be stored only post-production while cheapest form of storing fuels (fossil fuels in our

context) is to not produce them, i.e. leave them in the ground.5 Fuel production can be

adjusted to demand relatively easily by increasing the rate of extraction (assuming there

is sufficient slack in refining capacity) whereas agricultural production cannot be given

the time involved between planting and harvest.

With storage, equilibrium does not require a price where supply in a given

period equals consumption in that period, but a price where supply or harvest (Ht)

equals demand (Dt) plus the net change in storage during the current period ∆It.

Ht = Dt + ∆It
5Some amount of oil is also stored after extraction such as in the form of Strategic Petroleum Reserves

held by the US government.
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∆It = It − It−1, the difference in stock at the end of time t and the stock at the end of

time t-I. Using this the above equation can be rewritten as,

Ht + It−1 = Dt + It

The left hand side can be called as the total availability At, at time time and the right

hand side is the sum of demand for consumption and the demand for storage. We can see

that the left hand side is not a function of crop price at time t (pct). Planting decisions

for harvest at time t need to be made at time t-1. Therefore it is reasonable to assume

that supply depends on expected prices for the next period t at time t-1 (Et−1[pct ]).

Likewise It−1 is a function of price in period t-1(pct−1) and Et−1[pct ]. If prices are close

to random walks, the current period price is a good forecast for next period’s expected

price. Therefore It = f(pct).

In this chapter we do not focus on the theoretical underpinnings of speculative

storage, which is a dynamic and forward-looking decision. Anticipation of future storage

decisions affect current ones and these intertemporal links are made more complex by

non-negativity constraint on aggregate storage, i.e., one cannot borrow from the future

or that storage cannot be negative[58]. Instead we assume that one can estimate an

empirically derived storage demand function using historical data on prices and storage,

It = It(pct , p
c
t−1, It−1). Consumption demand for crops comprises of demand for food

(Dcf ) and demand for biofuel production (Dcb). The demand for food is a function of

price of crops t whereas crop demand for biofuels is a function both crop price and the



53

Figure 3.11: Graphical representation of equilibrium with demand for storage

oil price (pot ). The equilibrium condition can now be written as

Ht + It−1 = Dcf (pct) +Dcb(pct , p
o
t ) + It(pct , p

c
t−1, It−1)

Knowing Ht, It−1, p
o
t , p

c
t−1 and the shape of demand functions Dcf , one can determine

the effect of different levels of biofuel consumption Dcb on crop prices. A graphical

representation of such an equilibrium is shown in figure 3.11. This model also suggests

that for a given quantity of fresh supply from harvest a lower level of beginning stocks will

lead to a higher level of prices when demand exceeds harvest. Therefore a fixed biofuel
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Figure 3.12: Biofuel effect depends on crop availability in a given year

mandate will cause prices to increase more as the level of inventories decline. Therefore

changes in price due to biofuels should be estimated taking into account the available

level of inventory. Figure 3.12 shows total demand for a crop under two situations, with

and without biofuel and the total availability in a given period under two situations,

with a high and low level of inventory. We can see that as availability decreases, the

impact of a biofuel mandate increases. This also suggests that holding harvested supply

constant, a model without the market for storage will overestimate the price effect of

biofuel when inventory is large i.e, stocks to use ratio is high relative to a shock due to

biofuels compared to one which includes the market for storage. If inventories are low,

i.e., stock to use ratio is small, the two models will not differ significantly.
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3.4.3 Numerical simulation: Effect of biofuel consumption on crop prices

and inventory

Crop demand for food : Let us assume that the demand for crop can be represented

as

Dcf = β0 − β1p
c
t

Assuming an elasticity of demand for food, εfoodd and the price, p0 and quantity of corn

q0 at a given time in the past. Given these parameters we can estimate,

β1 = εfoodd

[
q0

p0

]
β0 = q0 − β1p0

Crop demand for biofuel : Let B denote the quantity of biofuel demanded under a

mandate. If γ is the biofuel yield per unit of crop (say, liters per tonne or gallons per

tonne), then we can write,

γDcb = B

For several starch and oilseed based biofuels the co-product of biofuel production is a

substitute to the crop itself. If δ is the fraction of crop consumed for biofuel production

that is replaced (or returned) to food or feed use, then the effective crop demand for

biofuel use is,

γDcb

1− δ
= B
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Demand for storage : Carter, Rausser and Smith[59] estimate a relationship between

prices and inventory as follows,

ln
pct
pct−1

= α+ βln

[
It
It−1

]
+ µ

They estimate α̂ and β̂ for several major crops such as corn, wheat, rice, soybeans, and

cotton. Using their estimates for α̂ and β̂ and rearranging their equation, we can predict

storage demand in any given year as,

It(pct) = e
− α̂
β̂

[
pct
pct−1

] 1

β̂

It−1

Substituting these expressions for Dcf , Dcb and It, and gathering all the terms to one

side, we can write the following expression in which the only unknown is the pc2007,

Ht + It−1 − β0 − β1p
c
t −

1− δ
γ

Bt − e
− α̂
β̂

[
pct
pct−1

] 1

β̂

It−1 = 0

For calibrating the food demand equation we assume that the elasticity of food demand

is −0.2 and we use the international price and global quantity of corn consumed for

non-biofuel purposes in 2006. We then use data on ending stocks in 2006 and harvested

production in 2007, to predict what the international price of corn would be in the

year 2007 with and without biofuel. We compare the price effects for different levels

of inventory, namely, the actual level of inventory in 2007 and half the actual level of

inventory in 2007. The data and the price estimates are shown in tables 3.3 and 3.4

respectively. The model predicts that biofuel caused corn prices to increase 11% in the
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Table 3.3: Input parameters for simulation with storage demand
Parameter Value Unit Description
εD 0.2 Elasticity of demand for corn

for food
pc2006 123.25 $/tonne Average world price of corn in

US in 2006
qcf2006 740 million

tonne
Quantity of corn consumed in
US in 2007

B2007 6.5 billions of
gallons

Quantity of ethanol produced
in US in 2007

γ 106.3 gallons per
tonne

Yield of biofuel per ton of crop

δ 0.32 Share of corn consumed
for ethanol replaced by
co-product

H2007 705 million
tonne

Quantity of corn harvested in
US in year 2007

I2006 125 million
metric ton

Year ending stock in US in
2006

α̂ 0.02 from Carter, Rausser and
Smith[59]

β̂ -0.36 from Carter, Rausser and
Smith[59]

Table 3.4: Results of simulation with storage
Model predictions under different levels
of ending stock in 2006

I2006=
$125/tonne

I2006=
$62.5/tonne

Price of corn in 2007 with biofuel
($/tonne)

150 165

Price of corn in 2007 without biofuel
($tonne)

135 140

% increase in price compared to 2006 22% 34%
% increase in price relative to the coun-
terfactual of no biofuel for 2007

11% 18%
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actual case and 17% if inventories were half the actual levels in 2007.

3.5 Summary

Biofuels no doubt caused food prices to increase. However there are several other factors

one has to contend with before quantifying the effect of biofuels. Economic growth in the

developing world caused demand for both food and fuel to increase. Higher fuel prices

increased the demand for biofuel beyond levels specified by mandates. Bad weather in key

grain exporting regions reduced production at time when demand was growing. These

combined with depreciation of the U.S. currency contributed to the recent spike in the

price of food. The effect of biofuels on food prices depends on the level of inventory

and more accurately, the stocks to use ratio. We have illustrated how an empirically

estimated storage demand function can be incorporated into an equilibrium framework

to simulate the effect of biofuels on prices. The one-crop, one-region model can be ex-

tended without much difficulty to represent the market for multiple crops across multiple

regions engaging in trade. This model can also be solved recursively over multiple time

periods, to simulate the phenomenon of successive years of declining inventory or declin-

ing stocks-to-use ratio. This model will predict that crop price will increase at a faster

rate as stocks to use ratio declines. This is envisioned as future work. The empirical

challenge is to identify the supply and demand curves for agricultural commodities and

fuels. Biofuels improved the welfare of farmers and gasoline consumers. Conservative

estimates assuming a competitive oil market suggest biofuels conferred billions of dollars

in benefits to oil importing nations.
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The situation in both food and fuel markets can be improved through policies

that expand supply, for example, enhanced agricultural research and less restrictive reg-

ulation of agricultural biotechnology. High prices due to biofuels may provide incentives

for innovation in and adoption of productivity-enhancing technologies both in agriculture

and energy sectors. Policies can affect the speed, timing, and nature of these technolog-

ical changes. If mandates are to be used, the level of mandates to should be adjust to

the situation in food markets. Shifting to second generation feedstock such as cellulosic

biomass will weaken the linkage that has developed because of biofuels between food

and fuel markets. Future research should also consider the impact of biofuels on other

sectors of the economy including land, water, fertilizer, labor, livestock, food processing,

electricity and fuel transportation to name a few.



60

Chapter 4

Greenhouse gas regulation of

fuels: Emission quotas versus

emission intensity standards

4.1 Introduction

Some of the major GHG policies implemented till date such as the Kyoto pro-

tocol and the EU Emission Trading Scheme (ETS) mandate reduction in aggregate emis-

sions. While the Kyoto mandates national emission reduction targets, the ETS mandates

targets for emission reduction for stationary polluting sources such as electric power

plants and/or industrial facilities within a specified region. One of the first regulations

to exclusively target GHG emissions from transportation is California’s Low Carbon Fuel
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Standard (LCFS) which mandates a target for GHG intensity of transportation fuels.1

Economic theory says that given certain conditions, an unit emission fee equal to

the marginal social cost of pollution achieves the first-best (efficient) outcome i.e, attains

the optimum level of pollution at least cost[60, 61]. Difficulty in estimating the social cost

of pollution leads to the pursuit of cost-effective policies, wherein the goal is to attain a

politically chosen target level of pollution[34, 62, 37]. These policies can be implemented

either by pricing pollution or by allocating pollution rights. Often instead of choosing a

target level of pollution, policy makers choose a target level of pollution intensity i.e, an

upper-limit on the quantity of pollution per unit of output. This type of policy is also

more generally known as performance-standards. Hence when the pricing approach is

infeasible, policy makers can choose from different quantity-based approaches for reduc-

ing pollution. However, it appears that performance standards are the preferred form of

environmental regulation[63]. Policies such as tail-pipe emission standards, corporate av-

erage fuel economy standards, and renewable fuel standards suggest that this is certainly

the case for transportation. When damage depends on concentration of pollutant in the

ambient environment, performance based standard such as emission intensity standard

has optimal properties. When damage depends on aggregate stock of pollution emission

this type of policy is sub-optimal.

Being able to predict the effect of different types of policies on variables such as

abatement cost, price, output, and pollution is necessary for making good decisions. Fur-

thermore while climate change requires long-term policies, the short-run effect of different
1Staff Report: Proposed Regulation to Implement the Low Carbon Fuel Standard - Initial Statement

of Reasons (ISOR) Available online at http://www.arb.ca.gov/fuels/lcfs/lcfs.htm
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policies on such variables should not be ignored. For costly short-run effects can gener-

ate public opposition to replace policies which may be beneficial in the long-term[37].

Hochman and Zilberman[37] compare the effects of two policy tools, namely, an emission

tax and an emission standard per unit of output. They find that while as expected,

both policies reduce emissions and output; surprisingly enough, taxes may in some cases

lead to an increase the emission intensity of output. With carbon taxation continuing

to be politically unpopular, we focus our attention on quantity-based policies. Newell

and Pizer[64] compare emission regulation and emission-intensity regulation (emission

indexed to GDP) of GHG when there is uncertainty in abatement cost and derive condi-

tions under which one is more efficient than the other. Since they focus on economy-wide

policies their model abstracts away from the sector-specific characteristics which can af-

fect the relative performance of the two policies as we show in this paper.

Our interest is in comparing emission intensity standard and emission quotas

for a sector-specific or product-specific regulation. There is a growing tendency in the

case of quantity-based policies to allow trading of pollution rights between regulated enti-

ties [65]. The LCFS policy too allows trading of emission credits/permits between firms.

However, policies that do not permit trading of pollution rights are also common such

as the Clean Air Act standards for toxics. In the model we describe here we assume no

trading between firms. While this simplifies the mathematical exposition, it does not

however affect the conclusions, which as we explain later hold if trading is permitted.

The differences between the two policies stem from a fundamental characteristic of each

policy which is not affected by whether trading of pollution rights is allowed or not. We
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focus on a price-taking region and assume linear technologies i.e., production function is

fixed proportion. We focus on the short-run and so we assume that capacity is fixed. We

find that an emission quota is more or in the worst case as cost effective as an emission

intensity standard for achieving a given level of emission reduction. We also find that

aggregate output from the region can be higher or lower than under a quota.

4.2 Model and analytic results

We model the behavior of fuel-producing firms facing environmental regulation.

As mentioned above we focus on a price-taking region, with a number of competitive

price-taking producers who produce a homogeneous product, transportation fuel. The

market price of the finished fuel is p. Firms convert inputs to output in fixed-proportion.

Firms are heterogenous, differing in capacity q0
i which we assume is fixed, in marginal cost

c0
i (constant for a given firm), and in the pollution intensity of output γ0

i . We also assume

that ∂c0i
∂γi

< 0, ∂
2c0i
∂γ2
i
> 0, i.e., cleaner fuels are costlier to produce.Using this notation, profit

π0
i and pollution Z0

i can be expressed as,

π0
i = (p− c0

i )q
0
i

Z0
i = γ0

i q
0
i

A firm can reduce emissions in any of the following ways.

1. Adopt cleaner inputs: A firm can reduce emissions by adopting technology that re-

duces emission intensity (for instance switch to newer vintage that is more efficient)
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or adopt cleaner energy as in input (for instance switch from using coal to using

natural gas).

2. Blend with cleaner fuels: Fuels differing in pollution intensity can be blended to

produce a fuel with intermediate level of pollution intensity. In fact policies such as

the LCFS and RFS envision that blending gasoline (or diesel) with cleaner biofuels

will be the principal mechanism for reducing GHG emissions from transportation.

3. Cut production: A firm can reduce its total emissions by simply reducing its output.

However, if firms have to reduce the pollution intensity of output then it is not

sufficient to merely reduce output.The firm has to consider this in conjunction with

one of the options above.

Henceforth we refer to these choices simply as option A, option B and option C respec-

tively.2 The two types of regulations we consider impose different constraints on firms.

An emission intensity standard while limiting the maximum allowable emissions per unit

of output, does not restrict the aggregate emissions per facility. The converse is true for

an aggregate quota.

The optimization problem of a firm with fixed capacity is,

max
∆γi,∆q∗i ,∆qi

πi = {p(q0
i + ∆qi + ∆q∗i )︸ ︷︷ ︸

Revenue

− (c0
i + ∆ci(∆γi))(q0

i + ∆qi)︸ ︷︷ ︸
Production cost

− (p+ cti)∆q
∗
i︸ ︷︷ ︸

Blending cost

}

subject to the constraint that, the average emission intensity is less than the emission
2These options are named such that, option A implies adoption, option B implies blending and option

C implies cutting or reducing output.
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intensity standard, z

γ0
i q

0
i + ∆γiqi + γ∗i ∆q∗i
q0
i + ∆qi + ∆q∗i

≤ z

or subject to the constraint that, total emissions are below the quota, Zi 3

Z0
i + ∆γiqi + γ∗i ∆q∗i ≤ Zi

It is worth pointing out that generally intensity standards are uniform across all

firms (not indexed by i) while the emission quotas tend to be firm-specific (indexed by

i). Holding output constant, any arbitrary level of emission intensity can be translated

into an equivalent level of emissions. Similarly any given level of intensity reduction can

be translated into an equivalent level of emission reduction and vice versa. Therefore

for any firm i, and producing output q0
i before regulation, we can write, Zi = z ∗ q0

i (or

∆Zi = Z0
i − z ∗ qi).

The decision variables for the firm are, ∆γi, the amount by which it lowers

emission intensity of its own processes by adopting new technology or by switching fuels

(option A), ∆q∗i , the quantity of output it procures from other sites for blending (option

B), and ∆qi, the amount by which the firm lowers its own production (option C). Since

we assume linear technologies, the firm will choose only of the options to reduce pollution

(i.e., corner solution). Therefore the decision variable effectively is the discrete choice of
3Equivalently, the constraint under a quota can also be expressed as

∆γiqi + γ∗i ∆q∗i ≥ ∆Zi, where ∆Zi = Z0
i − Zi
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selecting one among the three options for reducing pollution. The firm will choose the

most cost-effective option. We describe the economics of each option below.

• Option A (Adopt): Let us assume that the firm i has K discrete choices to reduce

emission intensity, with each choice having constant marginal cost. If choice k,

k ∈ 1..Ki involves a cost ∆cik and reduces emissions intensity by ∆γik, the average

cost (AC) of pollution reduction for the kthchoice is,

ACA = min{∆cik
∆γik

} k ∈ 1..Ki

• Option B (Blend): A firm can blend dirty-fuel it produces with a cleaner fuel

produced either by itself at a different location (Option Bown) or by another firm

(Option Bmarket).

Option Bown: Let c∗i represent the cost of producing the cleaner fuel with p−c∗i > 0

(the firm earns positive profits on the clean fuel), cti the the cost of transporting

it to the site producing the dirty-fuel and γ∗i the pollution intensity of clean

fuel. Let the firm blend the dirty and clean fuels in the ratio (1 − α) and α

respectively. The average cost of pollution reduction by blending with clean

fuel purchased in the market is,

ACBown =
cti

γ0
i − γ∗i

Option Bmarket: Here we assume the firm purchases the clean fuel at the market

price p and transports it at a cost ct∗i to its facility for blending with its fuel.
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The pollution intensity of clean fuel is γ∗i (γ∗i < γ0
i ). Let the firm blend the

dirty and clean fuels in the ratio (1− α) and α respectively. The average cost

of pollution reduction by blending with clean fuel purchased in the market is,

ACBmarket =
p+ ct∗i − c0

i

γ0
i − γ∗i

Corollary : The average cost of pollution reduction by blending is independent of

the blend ratio. (See appendix for detailed derivation).

• Option C (Cut production): Lowering output by one unit lowers pollution by a

quantity γ0
i and lowers profit by an amount p− c0

i . This implies that average cost

of pollution reduction by decreasing output is,

ACC =
p− c0

i

γ0
i

Table 4.1 summarizes the cost-effectiveness of each option available to a firm.

These support the following propositions.

Proposition 1: Under emission quota, firms will prefer to reduce output rather than

blend with cleaner fuels from the market.

Proof : Comparing the average cost of abatement for option Bmarket and option C shown

in table 4.1 we can see that,

ACBmarket > ACC ∀ cti > 0, γ∗i > 0 and γ∗i < γ0
i
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Consider a more realistic assumption, that cleaner fuel is costlier or that there is positive

to cost of physically blending different fuels to produce the final fuel. We can see that

this only makes cost of blending option to increase further relative to option C.

Proposition 2: For any given firm, abatement costs under an emission intensity stan-

dard is equal to or greater than abatement cost under an emission quota.

Proof :

Case 1 : Firm produces both dirty and clean fuels.

The cost of achieving compliance with an emission intensity standard is,

Cub = min{ACA, ACBown}

The cost of achieving compliance with a quota is,

Cquota = min{ACA, ACBown , ACC}

If ACC < ACBown and ACC < ACA

then Cub > Cquota

else Cub = Cquota

This implies that Cub ≥ Cquota
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Case 2 : Firm produces only dirty fuel

The cost of achieving compliance with an emission intensity standard is,

Cub = min{ACA, ACBmarket}

The cost of achieving compliance with a quota is,

Cquota = min{ACA, ACC}

Since ACC < ACBmarket this again implies that Cub ≥ Cquota. Therefore an emission

intensity standard is costlier or equal at-best to a emission quota for a regulated firm.

The intuition behind the proposition is that the choice set under an emission quota has

more lower cost options than the choice set under an emission intensity standard.

Lemma: An increase in output price (or equivalently a reduction in cost of an input)

increases the cost of abating emissions by reducing output relative to the cost of abating

emissions by other means. To the extent that this is true, the inefficiency of an intensity

standard relative to a quota will decrease.

Proposition 3: Aggregate output under an emission quota can be higher or lower than

that under an intensity standard depending on the cost-effectiveness of reducing emissions

by reducing output relative to that through technology adoption and through blending

with clean fuels, holding production capacity of firms fixed.

Proof : If technology adoption and blending with clean fuels are both unprofitable



71

(π1
i (A) < 0 and π1

i (B) < 0) then emission intensity standards will force inefficient firms to

exit. However, under an emission quota inefficient firms can reduce output and continue

to operate. If the production capacity of firms is fixed (i.e., efficient firms cannot increase

output to make up for the reduction in capacity due to exit of inefficient firms), then

emission quotas will result in higher output than or at least the same amount of output

as under intensity standard.

If technology adoption or blending with clean fuels is not costly enough to force

firms to exit (π1
i (A) > 0 or π1

i (B) > 0), and if lowering output is still the cheapest

abatement option (ACA > ACC and ACB > ACC), then emission intensity standard will

result in higher output than or at least the same amount of output as under quota. This

is because even though reducing output is the cheapest abatement option, firms cannot

lower their emission intensity by doing so.

4.3 Numerical example

We illustrate the theoretical model using representative data on cost and emis-

sions for ethanol production in the US (see table 4.3). Ethanol biorefineries use either

coal or natural gas as the source of energy for producing ethanol from corn. The GHG

intensity of ethanol from produced with coal is higher than that produced with natural

gas (89gCO2e/l and 61gCO2e/l respectively).4 We consider two policies, an emission

intensity standard that requires the GHG intensity of ethanol to be below 75gCO2e/l

and a quota that requires a 15.7% reduction in emissions by the coal-producing firm
4gCO2e/l refers to grams of carbon-di-oxide per liter of ethanol.
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Table 4.2: Input parameters to the simulation for various scenarios
Scenarios* I II III IV V
Price of ethanol
($/liter)

0.628 0.942 0.628 0.628 0.942

Coal-based ethanol pro-
duction cost ($/liter)

0.430 0.430 0.430 0.430 0.430

Ethanol transportation
cost - rail ($/liter)

0.050 0.050 0.050 0.100 0.075

Ethanol transportation
cost - road ($/liter)

0.130 0.130 0.130 0.260 0.195

Energy used in biorefin-
ing (MJ/liter)

13.85 13.85 13.85 13.85 13.850

GHG intensity of coal-
based corn ethanol in
gCO2e/liter

89 89 89 89 89.000

GHG intensity of gas-
based corn ethanol in
gCO2e/liter

61 61 61 61 61.000

Price of coal energy
($/MJ)

0.0020 0.0020 0.0020 0.0020 0.002

Price of natural gas en-
ergy ($/MJ)

0.0105 0.0105 0.0262 0.0105 0.010

* Scenarios are the following,
I: Base case - see appendix for further explanation
II: Ethanol price is 50% higher than base case
III: Natural gas is 2.5X costlier relative to coal than base case
IV: Transportation cost is 2X than base case
V: Ethanol price and transportation cost are 1.5X of base case

Table 4.3: Calculated average cost of abatement in $/gCO2e for each option
Scenarios I II III IV V
Option A - Switching
from coal to gas

0.0042 0.0042 0.0119 0.0042 0.0042

Option B own 0.0032 0.0032 0.0032 0.0064 0.0048
Option B market 0.0103 0.0215 0.0103 0.0135 0.0231
Option C 0.0022 0.0057 0.0022 0.0022 0.0057
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Table 4.4: Minimum cost of compliance under each policy
1. Firm produces dirty and clean fuel
Scenarios I II III IV V
Cost under intensity
standard

0.0032 0.0032 0.0032 0.0042 0.0042

Cost under emission
quota

0.0022 0.0032 0.0022 0.0022 0.0042

Relative cost of inten-
sity standard

145% 100% 145% 188% 100%

2. Firm produces only dirty fuel
Cost under intensity
standard

0.0042 0.0042 0.0103 0.0042 0.0042

Cost under emission
quota

0.0022 0.0042 0.0022 0.0022 0.0042

Relative cost of inten-
sity standard

188% 100% 463% 188% 100%

(assuming no change in firm’s output) 5. Coal-using biorefineries can either switch to

natural gas as the source of heat(option A), blend with own cleaner gas-based ethanol,

in case it owns such a facility (option Bown), blend with gas-based ethanol purchased in

market (option Bmarket) or simply reduce output (option C) (see table 4.3). For option

A we assume switching is comprised only of difference in fuel cost but no fixed-cost.This

is not a realistic assumption. Yet we do so, because our purpose is to only illustrate the

model and not to rule out any option. The option chosen by a representative firm under

either policy in different economic situations and the least-cost policy given a situation is

shown in table 4.3. Table 4.3 shows that firms will incur significantly higher cost under

an emission intensity standard policy. We can see that the incentive to blend increases

with increase in the fuel price or switching cost. However, fuel price increase will likely

raise transportation cost which decreases the incentive to blend. Therefore, the net effect
5We can see that if there is no change in output, the two regulations imply the firm’s fuel has the same

pollution intensity on average( 89−75
89

= 15.7%)
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is ambiguous. Comparing scenarios I and II we can see that an increase in output price

reduces the incentive to reduce output in order to reduce pollution and thereby decreases

the inefficiency of an intensity standard relative to a quota.

4.4 Discussion

For a price-taking region, a more efficient policy is one which imposes lower cost

on producers to achieve a given level of emission reduction. Emission quotas impose lower

or in the worst case the same cost as emission intensity standards in the short-run (when

capacity is fixed). The higher efficiency of quotas stems from the fact it provides firms,

the additional option of achieving compliance by lowering output whereas the latter does

not. The numerical example illustrates how the abatement cost may differ between the

two policies under different economic conditions. Although our application has been in

the context of transportation fuels, the result is true for GHG emissions from other prod-

ucts too.

The efficiency gained through the option to reduce output will be higher if there

is variability in macro-economic circumstances. During a period of low or negative eco-

nomic growth (like during the current recession) when producer margins are small (or

demand is low), pollution reduction is more easily achieved through lower production

(or consumption) without necessarily lowering emission intensity which requires adopting

new and costlier technologies. 6 On the other hand, during periods of high economic
6Gasoline consumption in the US in the year 2009 is expected to be 7% lower compared to 2007. This

represents a reduction of about 10.7 billion gallons of gasoline. If a megajoule of corn ethanol reduces
GHG emissions 18% relative to a megajoule of gasoline (ignoring indirect emissions such as that from land
use change because of increased corn production), about 88 billion gallons of ethanol would be required
to achieve the same amount of GHG reduction that will be achieved simply from reduction in demand.
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growth, quotas will serve as a binding cap on aggregate emissions which under an emis-

sion intensity regulation may increase due to higher output (or consumption). Thus an

emission intensity standard can lead to higher than optimal level of abatement during

difficult economic times and an increase in emissions during a good economic times.

Our results hold even when we allow for emission trading (which we have not

considered) under either policy. Performance-based standards such as emission intensity

standards by definition tend to be uniform across firms. Emission quotas on the other

hand tend to be polluter-specific. Often they require that polluters reduce emissions by

a certain percentage relative to emissions at a certain time (e.g. reduction targets under

Kyoto protocol). While emission trading has come to be accepted in the case of emission

quotas, there has been limited experience with market-based emission intensity standards.

The program that led to the phase-down of lead in gasoline is an example of market-based

performance standard which was highly cost-effective compared to performance-standard

which did not allow trading and banking.7. Emission trading reduces the inefficiency

of both an intensity standard and an emission quota when there is heterogeneity across

firms. Irrespective of tradability of pollution rights, firms cannot simply reduce output

under an intensity standard. Therefore an emission quota with trading i.e., a cap and

trade policy will be more flexible than a performance-standard with trading. Further-

more, provisions such as banking and borrowing of permits will improve the flexibility of

both quotas and intensity standards but not make intensity standards more flexible than

emission quotas. It can also be shown that an intensity standard that varies with time

This represents about 14-fold increase in ethanol consumption in the US and 7-fold increase in global
production of ethanol.

7Policies such as CAFE standards for automobile manufacturers and Renewable portfolio standards
for electricity also allow either trading or banking or both. But these are not emission policies



76

will for the same reason be less flexible than an aggregate emission quota that varies with

time.

Emission quotas reduce the likelihood of blending of clean and dirty fuels. Blend-

ing with clean-fuels if they are already being produced, will reduce the effectiveness of

the policy in inducing adoption of cleaner technologies by polluting firm. In the worst

case simple blending may result in no real emission reduction compared to the pre-policy

situation.8 The incentive to blend decreases with an increase in the cost of clean fuels or

an increase in cost of transporting fuels.

Within the world of emission intensity standards, a lifecycle GHG emission in-

tensity standard applied to the final fuel can be more or less efficient than an emission

intensity standard on each intermediate input used of the production chain. Intuitively

speaking, in the case of the former, the firm has a potentially larger set of mitigation

options to choose from, it can abate emissions either directly or indirectly by purchasing

cleaner inputs. In economic terms, firms can on the margin equalize abatement costs

across the supply chain. If there are limits on emission intensity at each stage this may

not be possible. However, lifecycle based policies can result in no net reduction in life-

cycle emission or in the worst case increase lifecycle emissions. For instance, when there

is heterogeneity in upstream activities (e.g. pollution associated with farming) and these

activities serve multiple markets not all of which are unregulated, (e.g. crops can be sold
8There are parallels to be drawn here to auto manufacturers adjusting the mix of small (efficient) and

large (inefficient) cars in their fleet, rather than improving the fuel economy of each model in order to
comply with CAFE. Furthermore, some manufacturers began producing flex-fuel cars, cars capable of
running on E85 in addition to gasoline, in order to take advantage of the extra mileage credits provided
for such vehicles. Although extra credits for flex-fuel cars was based on on the assumption that these
would run on E85 50% of the time; estimates seem to suggest that flex fuel vehicles are run on E85 less
than 1% of the time.
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both in food and fuel markets), a lifecycle based policy may lead to mere reallocation of

pollution between regulated (fuel) and unregulated (food) markets. In other words, crops

that are less input-intensive (produced from fertile soils with less inputs and high yield)

are used by fuel producers while those that are more input-intensive crops are used for

food. In the worst-case this may lead to an overall increase in polluting inputs and hence

emissions from such activities. In the context of biofuels, this phenomenon is called indi-

rect land use emissions. Determining the net effect of lifecycle based regulations requires

a general equilibrium analysis.

In future work we will address some of the limitations of our model. One is

exogeneity of prices. If the region implementing the policy is large then there will be

price-effects of regulation which cannot be ignored and these effects may vary under dif-

ferent policies. The assumption of fixed capacity is another limitation. While this is

reasonable in the short to medium term, addressing climate change requires long term

policies. We have also not considered administrative costs which can differ significantly

for different types of regulations.
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Chapter 5

Conclusion

My dissertation makes contributions to three broad areas which will continue to figure

prominently in debates on energy and climate change policies. These are, the use of

environmental lifecycle analysis as a basis for regulation, the economic impact of biofuel

policies and the economics of different types of GHG regulations of transportation fuels.

In this chapter I summarize the contributions made to these areas and present my con-

clusions.

Biofuels have brought LCA to the forefront of environmental and energy policy

debates. More generally, the need for LCA in policy analysis will arise under any of

the following situations, namely, when regulation is at the product-level, when lifecycle

emissions are not concentrated at the product stage or when emissions are site-specific or

producer-specific. This means that LCA is relevant for analyzing the impact of several

other emerging technologies such as batteries, oil sands, coal-based liquids and natural

gas based liquids. LCA based environmental regulation of products, is essentially a back
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door way of regulating emissions in unregulated sectors. For instance, LCA based regu-

lation of biofuels, is an indirect way of regulating emissions from agriculture.

A pre-requisite for lifecycle based regulation is that we should be able estimate

lifecycle emissions reasonably well and this is a challenging task. The current method of

performing LCA is an assessment of the past and not an indicator of the future. This lim-

its its usefulness as a tool for making long term policy decisions. LCA indicators do not

merely reflect technical relationships between inputs and outputs but implicit in them is

a representation of prevailing economic and policy situation. Therefore as economic and

policy conditions change, the production function and therefore pollution function will

change. Estimating lifecycle indicators as explicit functions of prices can help us better

predict the lifecycle impact in future. For this, traditional LCA models which contain a

detailed representation of the production technology should be integrated with decision-

theoretic models which can predict how economic agents will respond when incentives

change.

Second, for policy purposes, lifecycle emissions based on accounting of emissions

attributable to a batch of output from a single firm should be distinguished from lifecycle

emissions attributable to the aggregate output of a region. The distinction between the

two being what is often referred to as indirect effects and indirect emissions. Such effects

arise as a result of the interlinkages between markets either on the product side or the

input side or both. Integrating LCA with economic models with representation of these

interlinkages such as partial or general equilibrium models will allow us to predict the

lifecycle impacts under different types of policies.
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Emissions estimated using LCA can be used in conjunction with any type of

policy instrument. Both price-based such as emission fee or quantity-based instruments

such as emission caps and emission intensity standards (more generally, performance

standards) can be implied based on lifecycle emissions. The environmental economics lit-

erature on instrument choice focuses largely either on the differences between price-based

and quantity-based policies or on the difference between policies which permit trading in

pollution rights (market-based) and those which do not allow trading (direct controls).

In chapter we focus on a question relating to instrument choice received relatively less

attention, namely the difference between emission caps and emission intensity standard.

We show that given certain conditions, for climate change mitigation, emission caps will

be more efficient and emission intensity standards. This has immediate relevance from a

policy stand point. The first two regulations of GHG exclusively from transportation are

emission intensity standards. Both Low Carbon Fuel Standard and the Renewable Fuel

Standards mandate emission intensity limits for transportation fuels. In contrast, ear-

lier regulations such as the Kyoto protocol, Emission Trading Scheme, and the Regional

Greenhouse Gas Initiative mandate emission caps rather than emission intensity limits.

The question of efficiency of different instruments or different types of policies is

no doubt important. For GHG emissions, the scope i.e., the reach of the policy is equally

if not more important. Even the most efficient level of GHG tax on transportation emis-

sion can be inefficient if GHG emissions from agriculture are unregulated. This suggest

GHG policies should be economy-wide and target all activities that lead to emissions.

That said even the efficient economy-wide domestic tax under autarky can be inefficient
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when there is international trade. Domestic policies may lead to relocation of polluting

activities to regions abroad with higher pollution intensity. This suggests that GHG poli-

cies should ideally be both economy-wide and global in scope.

In the interim however, i.e, until climate change policies become global and

binding on the obligated parties, LCA can play an important role in designing regional

or sectoral policies. The effectiveness of LCA based policies however depends on the

accuracy of estimates of lifecycle emissions. The debate about the uncertainty of indirect

emissions of biofuels is a case in point. A low but incorrect value for GHG intensity of

biofuels can lead to emissions of GHG at a faster rate than fossil fuels. Thus the impor-

tance of accurately estimating lifecycle emissions cannot be understated.

Biofuels have a had significant impact on food and fuel markets. Quantifying the

contribution of biofuel to the run up in food prices is hard since the food markets experi-

enced several other supply and demand shocks concurrently. The contribution of biofuels

better understood by understanding the situation with regard to the inventory and how

biofuels impact inventory. We find that the impact of a given quantity of biofuel on food

supply will be low or high depending on whether inventory is high or low respectively.

While the impact of biofuels on food prices has generated much discussion, the impact of

biofuels on fuel markets has gone unnoticed. Our simulations suggest that biofuels have

caused fuel prices to decline 1% to 2%. Albeit small in price terms, taking into account

the quantity of fuel consumed, which is far higher than the quantity of grains, the impact

on the revenue of oil exporting nations. This is a conservative estimate since we assumed

a competitive market structure for oil market. Taking into account non-competitive be-



82

havior in oil market, one is likely to find that the impact of biofuel is higher. To the

extent that reducing oil imports and reducing the market power of OPEC is a major

driver for biofuel policies (and this should not be hard to believe since policy makers are

likely aware that there exist cheaper ways of decarbonizing the economy than biofuels),

this is a welcome impact. That said, subsidizing corn ethanol and taxing cane ethanol is

not the most efficient way of achieving this outcome. Broadly speaking, the short-term

economic impacts of biofuels will depend on a variety of factors such as the harvest in any

given year, the oil price, economic growth, strength of the dollar, and level of inventory.

Public acceptance of biofuels should be expected to ebb and flow depending on what it

perceives as these short-term impacts. The long-term impacts will depend on factors such

as investment in technological change, population and economic growth, climate change,

and long-term policies towards energy, agriculture, and the environment. The biofuel

policy debate is likely to be an ongoing one in the near future.

In conclusion, addressing climate change requires both immediate measures and

a long term commitment to GHG emission reduction. The immediacy constraint has

relaxed somewhat due to the economic recession which began in 2008. It is predicted

that in 2009 gasoline consumption in the US is likely to be 7% lower compared to that

during the year 2007. This translates into a reduction of approximately 10.7 billion gal-

lons of gasoline during 2009. Ignoring indirect emissions from biofuels and assuming that

a megajoule of corn ethanol reduces GHG emissions 18% relative to a megajoule of gaso-

line, this implies that approximately 88 billion gallons of ethanol would be required to

achieve the same amount of GHG reduction that will be achieved simply from a fall in
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demand during 2009. This represents about 14-fold increase in ethanol consumption in

the US and 7-fold increase in global production of ethanol during 2008. The impact this

would have had on food and land is not hard to imagine. Emissions from other sectors

and world wide will also likely decrease or increase at a slower rate on account of the

economic slowdown. Policy makers should use this windfall gain to design better policies

using the latest knowledge rather than proceed with pre-conceived policies.

This means rethinking biofuel policies that were designed prior to the 2008 when

policy makers considered the environmental and economic risk of biofuels to far less than

their belief today. The weight of evidence suggests that current generation of biofuels,

i.e., ethanol and biodiesel produced from crops used as food, leave a lot to be desired. The

positive impact of such fuels on energy security, on fuel consumers and food producers has

been outweighed by the negative impact on food consumers and uncertain impact on the

environment. The future of biofuels depends on the second generation biofuels from cel-

lulosic sources including agricultural, forestry and municipal wastes. Today, cutting-edge

knowledge in genomics and biotechnology, process chemistry, and engineering are being

applied to producing novel biofuels from these types of feedstock. If these investments

bear fruit, liquid biofuels have the potential to displace a substantial amount of oil over the

next few decades, with limited negative impact on food supply and the natural habitat.

The food-fuel tradeoffs can be mitigated further through policies which lead to enhanced

agricultural research and less restrictive regulation of agricultural biotechnology. Even

within the first generation not all biofuels are created equal. The economic and environ-

mental impact varies depending on the type of crop and how and where it is produced
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and processed. Policies should encourage the adoption of those biofuels with the highest

net benefit and least negative impact on the poor. Biofuel policies should be one among

a portfolio of policies to reduce pollution that includes pollution taxation, energy effi-

ciency and conservation; integrated planning of land use, zoning and transportation; and

other technologies that are tried, tested and deployed to address the problems of climate

change and rising energy demand. Taxation of pollutiona theoretically efficient policyis

made difficult because of political economy considerations. Nevertheless, pollution taxes

should be part of our energy future.
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Appendix

A. Derivation of average cost of emission reduction by blending

Let the firm blend the dirty and clean fuels in the ratio (1−α) and α respectively.

GHG emissions per unit of blend is,

γ1
i = (1− α)γ0

i + αγ∗i

Reduction in GHG emissions with respect to unblended fuel, γ0
i ,

∆γB = γ0
i − γ1

i = γ0
i − (1− α)γ0

i + αγ∗i = α(γ0
i − γ∗i )

Option Bown:

The cost of producing one unit of blended fuel,

c1
i = (1− α)c0

i︸ ︷︷ ︸
production cost of dirty fuel

+ α(c∗i + cti)︸ ︷︷ ︸
production and transport cost of clean fuel

Incremental cost in selling blend as opposed to selling as separate fuels ,

∆CBown = c1
i − c0

i = (1− α)c0
i + α(c∗i + cti)− (1− α)c0

i − αc∗i = αcti

⇒ Average cost of reducing GHG emissions by blending own fuels,

ACBown =
∆CBown

∆γB
=

αcti
α(γ0

i − γ∗i )
=

cti
γ0
i − γ∗i
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Option Bmarket:

The cost of producing one unit of blended fuel,

c1
i = (1− α)c0

i︸ ︷︷ ︸
production cost of dirty

+ α(p+ ct∗i )︸ ︷︷ ︸
cost of clean-fuel purchased and transported for blending

Incremental cost of blend compared to own dirty-fuel,

∆CBmarket = c1
i − c0

i = (1− α)c0
i + α(p+ ct∗i )− c0

i = α(p+ ct∗i − c0
i )

⇒ Average cost of reducing GHG emissions by blending own fuel with fuel from market,

ACBmarket =
∆CBmarket

∆γB
=
α(p+ ct∗i − c0

i )
α(γ0

i − γ∗i )
=
p+ ct∗i − c0

i

γ0
i − γ∗i

B. Data sources for numerical illustration

1. Price of ethanol = 0.67 ∗ Pg + 0.5, where, Pg(= $2.8/gallon), is the average retail

price for regular, conventional (non-reformulated) gasoline in the US in 2007. We

assume that ethanol is priced for energy relative to gasoline, 0.67 is the correction

for energy content, 0.5 is the 50 cent/gallon is the excise tax credit

2. Coal-based ethanol production cost: OECD estimate for ethanol production cost

[66]

3. Ethanol transportation cost by rail: [67]
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4. Ethanol transportation cost by road: [67]

5. Energy used in biorefining: EBAMM model estimate

http : //rael.berkeley.edu/ebamm/

6. GHG intensity of coal-based corn ethanol: EBAMM model estimate

7. GHG intensity of gas-based corn ethanol: EBAMM model estimate

8. Price of coal energy: average delivered price to industries in US for 2007 http :

//www.eia.doe.gov/cneaf/coal/page/acr/table34.html

9. Price of natural gas energy - average US commercial price in 2007

http : //tonto.eia.doe.gov/dnav/ng/ng pri sum dcu nus m.htm




