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A Note on the Numerical Solution
of the Wave Equation With Piecewise
Smooth Coefficients

By David L. Brown

Abstract. The numerical solution of the initial value problem for the wave equation is
considered for the case when the equation coefficients are piccewise smooth. This problem
models lincar wave propagation in a medium in which the properties of the medium change
discontinuously at interfaces. Convergent difference approximations can be found that do not
require the explicit specification of the boundary conditions at interfaces in the medium and
hence are simple to program. Although such difference approximations typically can only be
expected to be first-order accurate, the numerical phase velocity has the same accuracy as the
difference approximation would if the coefficients in the differential equation were smoooth.
This is proved for the one-dimensional case and demonstrated numerically for an example in
two space dimensions in which the interface is not aligned with the computational mesh.

1. Introduction. In this note we consider the numerical solution by finite difference
approximation of the scalar wave equation

0%u
(1'1) P(x9y)'5l_2_ v 'P‘(x’ y)Vu=0

on -c0 <X, y<oo, t>0 with initial conditions u(x, ¥,0) and du(x, y,0)/9t
specified. Here u = u(x, y,t) is a scalar function of its arguments and p(x, y),
p(x, y) are piecewise smooth coefficients. This problem models linear wave propa-
gation in a piecewise smooth medium. Efficient and accurate methods for solving
such problems numerically are of interest in the modelling of seismic wave propaga-
tion in geophysics [1], [4].

Suppose for the moment that p and p are piecewise constant. For definiteness we
assume that —o0 < x, y < oo is divided up into two semi-infinite regions by the
curve f(x, y) =0, and that p = p,, p =14 for f(x, y) < 0 and p = py, p = p for
f(x, y) > 0. Because of the discontinuity in the coefficients along f(x, y) = 0,
additional conditions on the dependent variable 4 must be specified in order to
uniquely determine the solution of (1.1). The usual conditions are that u(x, y) and
i(x, yX(du/dn) be continuous across the line f(x, y)=0. (Here du/dn is the
normal derivative of u on f.) The entire problem can be reformulated as follows:

(12) Py = p’lvzu =0 forf(xa y) < 0’
Py, — P'zvzu =0 fOl‘f(x, )’) >0,
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with

(1.3) [u(x, »)] fixm=0 = 0,

[ﬂ“‘n(xv }')]/(x.y)-o =0

(plus the same initial conditions as for (1.1)). Here [g(x, y)] f(x.yy=0 15 the jump in g
across the line f(x, y) = 0 and subscripts denote partial differentiation. In general
we are interested in the numerical solution of (1.2), (1.3) for arbitrary smooth curves
f(x, y)=10. If a rectangular finite difference mesh is used, the (approximate)
specification of the interface conditions (1.3) can be difficult since the curve
f(x, y) = 0 may not be aligned with that mesh.

The purpose of this note is to point out two simple results on difference
approximations for (1.2), (1.3) that can be helpful in the situation just described.
Although these results follow from well-known results for finite difference ap-
proximations to hyperbolic equations, they are apparently not well understood. It is
(in principal) straightforward to find finite difference approximations to the problem
(1.1) that are of arbitrary order of accuracy (say p) when the coefficients p and p are
smooth functions. The first result of interest is that such a difference approximation
can be used for the problem (1.2), (1.3) with piecewise constant coefficients and will
converge to the true solution of that problem in the limit of meshwidth going to zero.
In particular, the method will typically be a pth-order accurate approximation to the
differential equation (1.2) and at least a first-order accurate approximation to the
interface conditions (1.3). (The same result holds for the corresponding piecewise-
smooth coefficient problem as well.)

For each frequency component of a computed solution to the problem (1.2), (1.3),
the error can be decomposed into a phase velocity error and an amplitude error that
is possibly complex but constant as a function of location (x, y). The second result
of interest is that if a centered difference approximation is used to approximate the
differential equation (1.2), the accuracy with which the phase velocity is computed is
the same as the accuracy with which the differential equation (1.2) is approximated,

14
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while the accuracy with which the amplitude is computed is determined by the
accuracy with which the interface conditions (1.3) are approximated. (This result
assumes, of course, that an exact representation of the initial data is used.)

Suppose that the initial data for the problem (1.2), (1.3) consist of a wave pulse
located somewhere to the left of the interface f(x, y) = 0 and moving initially
towards the interface. In the exact solution to the problem, the pulse moves towards
the interface until it reaches it. An interaction with the interface occurs, and
reflected and transmitted wave pulses result. In the numerical solution to (1.2), (1.3),
essentially the same phenomena are observed, but, due to the phase error of the
solution, the wave pulse disperses and will propagate with incorrect group velocity
both before and after it interacts with the interface. (This is well known and is
discussed, for example, by Trefethen [6]). As a result, after some time the location of
the pulse can be entirely incorrect. On the other hand, the amplitude of the reflected
and transmittted pulses is determined only by the approximation to the interface
condition (1.3) and so does not deteriorate in accuracy once the pulse has interacted
with the interface. One can argue, therefore, that it is much more important to use a
high-order approximation to the differential equation (1.2) than it is to use a
high-order approximation to the interface condition (1.3). An implication of the two
results stated above is, therefore, that an adequate numerical approximation to the
problem (1.2), (1.3) can be obtained without explicitly approximating the interface
conditions (1.3). This is a very important conclusion from the point-of-view of
minimizing the complexity of a computer program which is to be used for modelling
linear wave propagation in a piecewise-smooth medium.

2. Decompositien of the Computational Error. The computation error associated
with a difference approximation to the problem (1.2), (1.3) can be decomposed into
an amplitude error and a phase velocity error. In this section we will show that if the
difference method used to approximate the differential equation (1.2) (the “interior
approximation”) is centered, then the phase velocity error results entirely from this
interior approximation, while the error in the amplitude results from the inaccuracies
associated with the approximation of the interface conditions (1.3). This result is
actually fairly obvious as we can show by the following explicit computation.

To simplify the comparison with the solution of the difference approximation we
choose to solve (1.2), (1.3) in one space dimension and by using a Laplace transform
over ¢. The problem can be restated as follows:

(2.1) u,— ctu,, =0 for-o0o <x<0,1>0,
v, — v, =0 for0<x<o0,7>0,
with interface conditions
(2.2) u(,1) =v(0,1), cu,(0,¢)=c2,(0,1)
and initial conditions
(2.3) u(x,0)=f(x), u,(x,0)=—-¢f(x) for-o0 <x < o0,

where f(x) € C°(-0 < x < &) for some § < 0. (Although not explicitly mentioned
below, we take 6 < —nh in order that Eq. (2.16a) be valid. n and # are defined
below.) Here, for convenience, we have taken p, = p, = 1 and represented p,, 1, as
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¢, ¢}, the square of the velocities in each medium. The initial conditions can be
thought of as a wave pulse moving initially to the right, for example.

To solve the problem (2.1)-(2.3) we Laplace transform (2.1) over ¢ and use (2 IHto
obtain for each s with Re s > 0 the ordinary differential equations

. s, 1(1, s
(243) Uy — C_lzu = 2 clf (x) Clzf(x))
and
52
(2.4b) O — 50 =0,
%]
where
W= w(x,s)= —:Z%fww(x, t)e S dt
0

defines the Laplace transform of the function w(x, t). The interface conditions (2.2)
become

(2.5) #(0,s) = #0,s) and cia,(0,s)=c36.(0,s).

It is clear by substitution that a particular solution of the inhomogeneous equation
(2.4a) is given by

J D S L -
(2.6) U(x,s) = zﬂfo ef(x = cyt) dt.
The general solution (bounded for all Re s > 0) of (2.4) is then given by
(2.7) a(x,s)=U(x,s)+o,(s)e™’,  #(x,5) = 0y(s)e"**/,

where the exponential functions e**/“! and e~**/*2 are fundamental solutions of the
homogeneous forms of (2.4a) and (2.4b), respectively, and o,, 0, are coefficients that
will be determined by the interface conditions. Substitution of (2.7) into the interface
conditions (2.2) gives for 0,, 0, the values

(28) o(s) = o2 U0.5),  oa(s) =

U(O s).

Substitution of (2.8) into (2.7) follows by inverse Laplace transformation yields the
following representation for the solution to (2.1)-(2.3) in terms of Fourier trans-
forms:

u(x, 1) =f(x — ;1) + 5— 5 ] cz U(O iw)eetrs/a gy,

22 v(x, 1) = ] —2— U(O iw)e'l=x/) dg,
g tece

An interpretation of this solution is the following: The initial pulse f(x) moves to
the right with speed ¢, until it reaches the boundary. (This part of the solution
depends only on the differential equation and the intial data.) At the boundary, it is
partially reflected and partially transmitted. The reflection and transmission coeffi-
cients are given by R = (¢; — ¢;)/(¢; + ¢;) and T = 2¢,/(c; + ¢;), respectively,
and were determined by the interface conditions. Each frequency component
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0(0, iw) of the reflected wave moves to the left with speed —c,. Similarly, each
frequency component of the transmitted wave moves to the right with speed c,.
(This is clear from looking at the phase of the complex exponentials in the integrals.
Since those complex exponentials were the fundamental solutions of the differential
equations, it is again obvious that the propagation of the reflected and transmitted
waves is determined only by the differential equation.)

In the rest of this section we will demonstrate that the solution of a centered
difference approximation to the problem (2.1)-(2.3) behaves in the same way, i.e., the
phase (and its error) are determined by the interior approximation and the reflection
and transmission coefficients (and their errors) are determined by the interface
approximation.

We approximate (2.1) with a time-continuous finite difference approximation
given by

Ru,
?—CIQ(E)u,,=O, v=-n,-n—1,-n-2,...,
2.10
(2.10) .
atz—czQ(E)v,=0, v=n+1,n+2,...,
where

0(E)= & ¥ (8 + E7)

j=0

is a centered difference operator of width 2n + 1 and consistent with 92/3x2. Here
u, = u,(t) and v, = v,(t) are approximations to u(x,, t) and v(x,, t), respectively.
Ew,:= w,,,, and the meshpoints x, are defined by x, = vh + y where h < y < h.
(The uniform meshwidth is given by 4.) The interface conditions (2.2) are approxi-
mated with the 2n relations given by

(2.11) BW(E)ug(t) = B (E)vy(t), p=1,2,...,2n.
For the understanding of the error, it is not important to specify the difference
operators B{*) and B{* in detail, although it is clear that we must require that the

relations (2.11) be consistent with the interface conditions (2.2). The initial data for
the problem (2.10), (2.11) are taken as

d ,
(2.12) w0 =f(x) (0= -o(x,).
As in the continuous case, we will solve the discrete problem (2.10)—(2.12) explicitly

using Laplace transforms. After Laplace transformation, the problem is replaced
with, for each s with Re s > 0, the ordinary difference equations

©

2
(2.132) o(E)i, ~ 434, = %( RAQRIO)!

2
(2.13b) Q(E)a, ~ =4,=0,
5]
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with interface conditions
(2.14) B (E)iy(1) = BP(E)6,(1), w=12,...,2n.

Since (2.13b) is a homogeneous difference equation with constant coefficients, its
general solution is given by linear combinations of powers of the roots «;(s),
j =1,2,..., 2n of the characteristic equation

(2.15) x"(Q(tc) —i—;) =

The solution of the homogeneous form of (2.13a) is determined in a similar way,
with corresponding characteristic roots denoted by A;(s),j = 1,2,..., 2n. It is well
known (see,e.g., Gustafsson, Kreiss and Sundstrom [3, Section 5]) that for Res > 0
the roots & ;(s) separate into two distinct groups: M;(x) containing those roots «;(s)
with |x; (s)| <1 and M,(x) containing those roots «;(s) with |x;(s) > 1. The
number of roots in each group, counted according to their multiplicity is indepen-
dent of s for Re s > 0. Furthermore, since (2.13b) is a centered difference approxi-
mation, each of M,(x), M,(x) contains exactly n roots. Exactly the same result is
true for M,(\) and M,(). Hence, corresponding to Eqs. (2.7) for the continuous
problem, the general solution (bounded for all s with Re s > 0) of (2.13) is given by

(2.16a) a(s)=U(s)+ X P(»)A(s)" forr<
A EMy(A)
(2.16b) 6,(s)= X Pi(»)k(s)” forv>
eMl(x)

where fJ,(s) is a particular solution of (2.13a) and P,(»), }.’j(v) are polynomials in »
of degree equal to the multiplicity of A;, respectively, x; minus one. Since M,(A;)
contains »n roots, the coefficients in Eq.(2.16a) depend on n free parameters r,,..., 7,.
Similarly the coefficients in (2.16b) depend on n free parameters r, ., ,,..., 5,. These
parameters are determined by substituting Eqs. (2.16) into the interface conditions
(2.14), whence we obtain a 2n X 2n linear system of equations

(2.17) D(s)r = U,(s)b,

where r:= (r,, 13,..., 13,)", b is a vector of length 2n and D(s) is a 2n X 2n matrix.
The system (2.17) can be solved boundedly for r if the discrete problem (2.10)-(2.12)
is stable. (Compare with Lemma 10.3 of Gustafsson, Kreiss and Sundstrom [3].)

The representation of the solution of (2.10)-(2.12) in terms of Laplace transforms
can be written down by using the following lemmas, which can be taken as obvious:

LEMMA 1. If the difference approximation (2.10) is accurate of order p, then one of
the \; € M,(X) can be written as

(2.18a) A (s) = e+ 0EPhoN/er,
Similarly one of the x; € M,(x) can be expressed as
(2.18b) Ky (5) = e™hA+OUPh™N/cs,

Furthermore, A, and «; are simple roots and |\, (iw)| = |, (iw) = 1.
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LEMMA 2. If (2.10) is accurate of order p, then the particular solution of (2.13a) can
be expressed as

(2.19) U,(s) = O(x,, s)(1 + O(s?h*)).

LEMMA 3. If the interface approximation is accurate of order q, then the solution of
(2.17) gives
G~ 6

(2.20) P(») = s Uy(s)(1 + 0(s%R7)),

Pl(") =

2¢, -
e Oals)(1 + 0(s ),

and P(v) = O(s%9), P,(v) = O(s%h?) for j + 1.
It is obvious, therefore, that corresponding to (2.9) we have the following

representation for the solution of the discrete problem (2.10)-(2.12) in terms of
Fourier transforms:

_L «© iwty, :
(2.21a) u,,(t)—zwf_xe U,(iw) do

“2: ).

{ Cl —‘('2
-0

221+ 0(eh)) D0, m)}

X gl + x(L+0(wPh?)/c) gy

(21b)  u,(1) = %f‘”{ 26,

(s (1 + om0, iw)}

X eiw(t=x(1+O(wPh?N/c2)

(Here we have assumed that ¢ < p.) The second integral in Eq. (2.21a) represents the
reflected wave. Equation (2.21b) gives the transmitted wave. Comparing the Egs.
(2.9), we see that the reflection and transmission coefficients R and T associated with
the difference approximation are related to the true coefficients by

R(wh) = R(1 + O(w%9)) and T(wh)=T(1 + O(wh?)).

Again, each frequency component of the reflected and transmitted wave moves into
its respective medium with (frequency dependent) speed

_&(wh) = —c,(1 + O(wPhP)) and &(wh) = cy(1 + O(w?h?)),

respectively. Note also that since the difference approximation is centered, the
complex exponential in each of the integrals in Eqs. (2.21) has unit magnitude, i.e.
there is no decay of amplitude in the waves as they propagate. We have therefore
proved

THEOREM (DECOMPOSITION OF THE ERROR). If the difference aproximation (2.10) is
accurate of order p, the interface approximation (2.11) is accurate of order q < p, and
the method (2.10), (2.11) is stable, then the reflection and transmission coefficients
R(wh), T(wh) associated with the interface will be accurate of order q while the phase
velocities ¢,, &, of the discrete media will be accurate of order p.
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3. Convergence and Numerical Examples. In this section we explicitly calculate
reflection and transmission coefficients for a difference approximation to the prob-
lem (2.1)-(2.3). We also give numerical evidence to illustrate the conclusions of the
introduction. For convenience we will actually consider a similar problem given by

(3.1a) u,=a*u, on-1<x<0
and
(3.1b) v, =b%,, on0<x< o

with interface conditions
(3.2) u(0,1) =v(0,¢), a*u.(0,1)=b%(0,1¢).

For the purposes of this example we will consider a boundary value problem in
which a signal propagates into the region [-1,00) from the left. For this reason
boundary conditions

(3.3) u(-1,1) = /(1)
are given. Furthermore we specify homogeneous initial conditions:
u(x,0) =u,(x,00=0, -1<xx<0,

34
(34) v(x,0) =v,(x,0)=0, 0<x<o0.

We now Laplace transform the problem over ¢ and obtain for each frequency s with
Re s > 0 a boundary value problem for the ordinary differential equation

(3.5a) s?’a=a%*h,, -1<x<0,

(3.5b) s%=b%.,, 0<x<oo0.

The interface and boundary conditions become

(3.6) a(-1,5) = f(s), a(0,s5)=25(0,s), a*a.(0,s)= 5% (0,s).

The problem (3.5)—(3.6) has bounded solutions of the form

(3.7) i(x,s) =0+ 0,/ -1<x<0

b

(3.8) i(x,5)=0e*", 0<x<oo,

for all s with Res > 0. Substituting the general solution (3.7) and (3.8) into the
boundary conditions (3.6), we obtain a linear system of equations for the constants
0;, i =1,2,3. Solving this system, we can find the reflection and transmission
coefficients, R and T respectively, which are given by

0, _ a—b

(3.9) :=o_l_a+b’ :_o_,~a+b'

(This is, of course, the same result we found in Section 3.)
We now approximate the problem (3.1)-(3.3) with the time-continuous difference
approximation given by

9w,

(3.10) atz" =D,c:D.w,, »v=-N,...,-1,0,1,...
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with boundary conditions w_,(¢) = f(¢) and initial conditions w,(0) = dw,(0)/9t =
0. Here D,w,:= h"Aiw,; w,(t) = w(x,, t) is an approximation to u(x,, ) for
x < 0 and to v(x,, t) for x > 0. The meshpoints are given by x, = (» — a)h where
h = (N + a)7L. (See diagram below.)

Ty Tower Tonze T Ty T Ta %3
. | 1 |4 1 | —
T 1 l 1 1 1
A —*lah fa—
=-1 x=0

Intuitively, we expect problem (3.10) to give a second-order approximation to the
differential equation (3.1) and at least a first-order approximation to the interface
conditions (3.2) if ¢, is a consistent representation of the velocity function
a forx<0
c(x)= ’
(x) { b forx > 0.
In this section we are particularly interested in considering the following choice for
¢, which gives a second-order approximation to the interface conditions. This
representation was proposed by Tikhonov and Samarskii [5] for second-order
ordinary differential equations with discontinuous coefficients:
2

a forvr <0,
(3.11) Z={(asa*+ (1 -a)/b?)" forv=1,
b? forv > 2.

(In general for the differential equation with variable coefficients u,, = (a*(x)u,),,
¢, is given by ¢;2 = [i",,a(x) 2 dx.) The problem (3.10), (3.11) can be solved

TaBLE 1
Discrete l,-norm errorsatt=1.5

Method Second-order (3.15) | Fourth-order (3.16]
Interface Location h z<0 xz>0]=z2z<0 z> 0
1/10 1.0102 .6569 2777 .1191
=0.0 1/20 5415 .3433 .0656 0261
=5 1740 .1442 1033 | .0040 .0025
1/80 .0365 .0257 .0004 .0004
1/10 1.0201 .63B81 1564 .1431
=02 1/20 4858 .3471 .0412 .0296
a=0 1740 .1329 .1034 | .0047 .0026
1/80 .0351 L0257 .0010 .0004
1710 1.0449 .6331 .2635 .1355
=05 1/20 4928 .3534 .0665 .0371
a=0. 1740  .1363 .1042 | .0129 .0037
1/80 .0358 .0257 .0031 .0007
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explicitly using Laplace transforms in a similar manner as for the continuous
problem above. Note that, in this case, the (Laplace-transformed) “interface condi-

tions” are taken as

(3.12) s*w,=D,c,D.w, forv=0,1.
- -
* x x PN PR R __‘_y
~ /x X X X v Y -
R
- P 2 -
- -+
x -
A
te et
V
x
— T =
7 ’\gl
x % x s aa -~
x g
- |-
x
- / -
o . J XL )
- x
o -
©
ST =
e PPN PPN ———
=8
2
¢ -
<
-~ =
°
’ 1 i 1 N 1 4 U T
-1.0 -0.9 0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 2. Second-order method with second-order interface approximation
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The reflection and transmission coefficients can be derived, and are second-order
accurate for all choices of 0 < a < 1. In particular, for a = 0,

~ sh?
R(sh) = R(l $3hy 0(s3h3)),
(3.13)
T(sh) = T(l + b——as2h2 + o(s3h3)).
8a%b

Numerical computations were made for an interface problem for the wave equation
(3.1) on -1 <€ x < 1 with the interface at x = 0. Initial conditions were specified so

x v oy — s, .o-ooAA—/ t = 2.000

x aa t = 1.500

— 11/\ AAAAAAAA t = 1.000

2 . . — eeeeaad 1= 0.500
Q-— =
-3 -
o
<2 . t = 0.000
DO
“
2 u
2
?_, -
-e
)

1 1 1 I | 1 | 1
=10 0.8 <0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 .10
X

FIGURE 3. Fourth-order method with second-order interface approximation
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e PRI IS DTN ecse. %] 1= 2.000

J
J
x
3
3
3
+
-
]

1.500

-] / . =
-
I~
. ” X = SN T 1.000

2 " ——— . t = 0.500
2] R
}J p—
<2 e 1= 0.000
Do
-/
8 o
2
3 1N
<
’ ] { 1 | 1

<0 -0.8 «0.6 “0.4 -0.8 -0.0 0.2 I)L 0!3 0!0 1.0
X
FIGURE 4. Fourth-order method with first-order interface approximation

that a pulse would propagate from the region -1 < x < 0 to the interface at x = 0
where reflected and transmitted signals are generated. For the interior approxima-
tion, we used both a second-order method
(3.14) w,(t + k) =2w,(t) —w,(t — k) + k2D, (c2D.w,(1))
for v=1,2,...,2N — 1, where N2 =1 and x,:= -1 + (v — a)h and a method
with fourth-order space differences,
(3.15) w,(t+ k) =2w,(t) —w(t— k) + k*D,.c}D_w,(1)

k*n?

- W(D+1)_(D+c3D_w,(t)) + D, (2D, D?w,(1)))
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for v =2,3,..., N — 2. (In the latter computations, (3.14) was used for » = 1 and
v = 2N — 1.) We also used Richardson extrapolation in ¢ to improve the accuracy of
the solutions computed with (3.15) to fourth order in ¢. The initial conditions
specified were

w,(0) = exp(-160(x, + .5)%)
and
w,(=k) = exp(-160(x, + ak + .5)°).
At the left and right boundaries, “nonreflecting” boundary conditions were used:
(3.16) wo(? + k) = wy(1) + kaD ,wy(1),
wyn (8 + k) = wyn (1) — kbD_w, y(1).

The values a = .5, b = 1.2 and k/h = .5 were used for the medium velocities and
mesh ratio, respectively.

To check the convergence rate of the method we made computations with
meshwidths # = 1/10, 1/20, 1/40, and 1/80 and interface location parameter
a =0, .2, and .5. The discrete L,-norm errors on both sides of the interface at
t = 1.5 are summarized in Table 1. (Here we define the discrete L,-norm by
ll#,ll, = (N ohu?)'/2) For the “O(h*)” approximation (3.14) it is evident that the
convergence rate is O(h?) for all three values of a. Although for the “O(h*)”
approximation (3.15) the convergence rates are only somewhat better than O(4?),
note that the magnitude of the error is greatly reduced in comparison to the
second-order method. This is mainly due to the improvement of signal propagation
effects that we get by using a fourth-order method in the interior. This can be seen
graphically in Figures 2 and 3. These figures show a time history of the solution
from ¢ = 0.0 to ¢ = 2.0. Figure 2 shows the results using the second-order approxi-
mation (3.14), and Figure 3 shows the results using the fourth-order approximation
(3.15). In these figures, the solid curve represents the true solution while the symbols
‘x” and ‘+’ represent the calculated solution to the left and to the right of the
interface, respectively. The meshwidth used for this calculation was 4 = 1/20. Note
that both the location of the pulse and its apparent amplitude are better with the
fourth-order method than with the second-order method.

There does not seem to be a simple extension of this method to two space
dimensions that will give second-order accuracy overall. However, even if the
interface conditions are only approximated to first order, the results of Section 2
indicate that one can expect to get much better qualitative results using a fourth-order
difference approximation in the computations. We demonstrate this with several
numerical examples. First, in Figure 4 we show a one-dimensional example where
the fourth-order approximation was used in the interior of the region and a
first-order interface approximation was applied. Even though the computed solution
is therefore only formally first-order accurate, the resuits are qualitatively better than
in Figure 2, where the second-order method was used for the interior approximation.

Figures 5, 6 and 7 show the results of some computations of the wave equation in
two space dimensions. The example chosen models the interaction of waves from a
circular source with an interface that is oriented obliquely to the computational
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FIGURE 5b. Second-order method t
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FIGURE 5e. Second-order method t = 1.6

FIGURE 5f. Second-order method t = 2.0
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FIGURE 5g. Second-order method t = 2.4

FIGURE 6a. Fourth-order method t = .4
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FIGURE 6f. Fourth-order method t = 2.4

FIGURE 7a. Fourth-order method, fine mesh t = .8
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FIGURE 7b. Fourth-order method, fine mesht = 1.6

FIGURE 7c. Fourth-order method, fine mesh t = 2.4
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mesh. We approximate the wave equation in two space dimensions,
u, = (czux)x + (czu},)y,
with a second-order method,
(317) D, D_w(x,y,1) =D, (*(x = th, y, 1) D_ w(x, y, 1))
+D+.y(c2(x, y =4k, t)D_ w(x, y, t)),
and a fourth-order method in which the term

k2h? )
S (Do u((x = h, y,1)D. DL w(x, y,1)
+D§_'XD_‘X(C2(X - %h’ Vs I)D_‘XW(X, Y, t)))

and a similar term in y are subtracted from the right-hand side of (3.17). (Here the
notations D, , and D_, are used to denote the forward and backward divided
differences in the g-direction.) The computational region is given by 0 < x <1,
0 < y < 2. The wave speed c is given by

_[5 forx < .3+y/5,
C(x)_{l.O forx > .3 + y/5,

and the initial conditions for the difference approximation are given by
w(x, y,0) = w(x, y, k) = exp(—ZOO((x -1/50 + (y - 1)2)),

which models a circularly symmetric source that is initially moving both inwards and
outwards with respect to its center. The boundary conditions were chosen to model
transparent boundaries at x =0, y =0 and y = 2 and a reflective boundary at
x = 1. The actual conditions used were difference approximations to the “absorbing”
type Al boundary condition of Clayton and Engquist [ 2, p. 1531] for the first three
conditions and a numerical approximation to u,(1, y, ¢) = 0 for the final boundary
condition. For all computations, the mesh was uniform in both x and y and the
timestep ratio used was k/h = .5, where h = Ax = Ay is the mesh width in both the
x and y directions. Figures 5a-g show the numerical solution of this problem
computed using the second-order method (3.17). The solution is displayed in
hidden-line plots for uniformly spaced times between ¢ = 0 and ¢+ = 2.4. Fifty points
in x and 100 points in y were used in the computational mesh. Figures 6a—f show the
numerical solution of the problem computed using the fourth-order method. Note
that even after the waves interact with the interface, the fourth-order method gives
much “cleaner” results. It is particularly evident in the plots for ¢ = 1.6 and later
that the dispersion error is significantly larger for the second-order method than for
the fourth-order method. For comparison, the same computation was made with the
fourth-order method on a finer mesh (150 points in x and 300 points in y). These
results are shown in Figures 7a—c. Comparison of the various plots for 7 = 2.4
indicate that some of the lower amplitude waves in the solution are much more
readily discernable in the fourth-order coarse mesh computations than in the
corresponding second-order results. These computations indicate that the analysis
for the one-dimensional case given in Section 2 gives a good picture of what to
expect in two-dimensional computations as well. It is clear that the numerical group
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velocity is better approximated in the fourth-order example than in the second-order
example, even after the interaction with the interface takes place. This again verifies
the main point of this note, which is to point out that if one is interested in obtaining
qualitatively correct behavior in linear wave propagation problems, the accuracy
with which the phase or group velocity is approximated is more important than the
accuracy with which internal boundary conditions are represented.
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problem.
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with Piecewise Smooth Coefficients

David L. Brown
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1. Introduction

In this note we consider the numerical solution by finite difference approxi-

mation of the scalar wave equation

9%

Fren -V-ulz;y)Vu =0 (1.1)

p(z.y)

on —= < z,y < w, £= 0 with initial conditions u(z.y.0) and B8u(z.y.0)/6t
specified. Here u =u(z,y.t) is a scalar function of its arguments and p(z.y),
u(z,y) are piecewise smooth coefficients. This problem models linear wave pro-
pagation in a piecewise smooth medium. Efficient ardaccurate methods for solv-
ing such problems numerically are of interest in the model]ing of seismic wave
propagation in geophysics [1], [4].

Suppose for the moment that p and u are piecewise constant. For
definiteness we assume that —= < z,y < = is divided up into two semi-infinite
regions by the curve f(z,y) =0, and that p=p,, u=u, for f(z,y) < 0 and
P =pa, = pg for f(z,y) > 0. Because of the discontinuity in the coefficients
along f(z,y) =0, additional conditions on the dependent variable © must be

specified in order to uniquely determine the solution of (1.1). The usual condi-
tions are that u(z,y) and u(z .y)g%be continuous across the line f(z,y) = 0.

(Here g%is the normal derivative of © on f.) The entire problem can be refor-

mulated as follows:
Prug — V% =0 for f(zy)< 0
Poly —ueV2u =0 for f(z,y)> 0 (1.2)

with
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Figure 1: A piecewise constant medium

[u(z-y)]f(z,y) =0=0
[atn (2. Y)]s e gy =0 =0 (1.3)

(plus the same initial conditions as for (1.1)). Here [g(Z.¥)];(z4) =0 is the jump
in g across the line f(z,¥) = 0 and subscripts denote partial differentiation. In
general we are interested in the numerical solution of (1.2),(1.3) for arbitrary
smooth curves f (z,y) =0. If a rectangular finite difference mesh is used, the
(approximate) specification of the interface conditions (1.3) can be difficult

since the curve f (z,y) = 0 may not be aligned with that mesh.

The purpose of this note is to point out two simple results on difference
approximations for (1.2),(1.3) that.can be helpful in the situation just described.
Although these results follow from well-known results for finite difference
approximations to hyperbolic equations, they are apparently not well-
understood. It is (in principle) straight-forward to find finite difference approxi-
mations to the problem (1.1) that are of arbitrary order of accuracy (say p)
when the coefficients u and p are smooth functions. The first result of interest is

that such a difference approximation can be used for the problem (1.2).(1.3)
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with piecewise constant coefficients and will converge to the true solution of
that problem in the limit of meshwidth going to zero. In particular, the method
will typically be a pth-order accurate approximation to the differential equation
(1.2) and at least a first-order accurate approximation to the interface condi-
tions (1.3). (The same. result holds for the corresponding piecewise- smooth
coefficient problem as well.)

For each frequency component of a computed solution to the problem
(1.2), (1.3), the error can be decomposed into a phase velocity error and an
amplitude error that is possibly complex but constant as a function of location
(z.y). The second result of interest is that if a centered difference approxima-
tion is used to approximate the differential equation (1.2), the accuracy with
which the phase velocity is computed is the same as the accuracy with which the
differential equation (1.2) is approximated, while the accuracy with which the
amplitude is computed is determined by the accuracy with which the interface
conditions (1.3) are approximated. (This result assumes, of course, that an

exact representation of the initial data is used.)

Suppose that the initial data for the problem (1.2),(1.3) consist of a wave-
pulse located somewhere to the left of the interface f(z,y) = 0 and moving ini-
tially towards the interface. In the exact solution to the problem, the pulse
moves towards the interface until it reaches it. An interaction with the inter-
face occurs, and a reflected and transmitted wave pulse result. In the numerical
solution to (1.2),(1.3), essentially the same phenomena are observed, but due to
the phase error of the solution, the wave pulse disperses and will propagate with
incorrect group velocity both before and after it interacts with the interface.
(This is well-known and is discussed, for example, by Trefethen [8]). As a result,
after some time the location of the pulse can be entirely incorrect. On the other
hand, the amplitude of the reflected and transmitted pulses is determined only
by the approximation to the interface condition (1.3) and so does not
deteriorate in accuracy once the pulse has interacted with the interface. One
can argue, therefore, that it is much more important to use a high-order
approximation to the differential equation (1.2) than it is to use a high-order
approximation to the interface condition (1.3). An implication of the two results
stated above is, therefore, that an adequate numerical approximation to the
problem (1.2),(1.3) can be obtained without explicitly approximating the inter-
face conditions (1.3). This is a very important conclusion from the point-of-view
of minimizing the complexity of a computer program which is to be used for
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modelling linear wave propagation in a piecewise-smooth medium.

2. Decomposition of the computational error -

The computational error associated with a difference approximation to the
problem (1.2),(1.8) can:be decomposed into an amplitude error and a phase
vglocity error. In this section we will show that if the difference method used to
approximate-the differential equation (1.2) (the "interior approximation') is cen-
tered, then the phase velocity error results entirely from this interior approxi-
mation while the error 1n the amplitude results from the inaccuracies associ-
ated with the approximation of the interface conditions (1.3). This result is
actually fairly obvious as we can show by the following explicit computation.

To simplify the comparison with the solution of the difference approxima-
tion we choose to solve (1.2),(1.3) in one space dimension and by using a Laplace
transform over t£. The problem can be restated as follows:

2
U —C)

Uy = 0 for—o <2< 0,t=20

Uy —C5Uz =0 for0<z < o,t>0 (2.1)
with interface conditions

w(0t) =v(0,t), cPu.(0.t) =cfuz(0.t) (2.2)
and initial conditions |

w(z,0) =f(z), w(z.0)=—-—cf'(z) for—= < z < = (2.3)

where f(z) £ C;°(—= < z < 6) for some 6 < 0!, Here for convenience we have
taken p; = pp = 1 and represented u, 4z as ¢, cZ, the square of the velocities in
each medium. The initial cohditions can be thought of as a wave pulse moving
initially to the right, for example.

To solve the problem (2.1)-(2.3) we Laplace transform (2.1) over £, and use
(2.3) to obtain for each s with Res = 0 the ordinary differential equations

1 Although not explicitly mertioned below, we take 6 < —nh in order that equation (2.16a)
be valid. n and h are defined below.
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e =~ St = (L (z) - Sr(2)) (2.42)
Cla 21T cl 012
and
~ 82 ~
Vg — —3 V=0 (2.4b)
Cz :
where

w ='u:(z.s) = #{w(z,t)e"‘ dt

defines the Laplace transform of the function w(z,t). The interface conditions
(2.2) become

-

1:(0,s) = ;(O.S) and 0121:,(0,3) = CE;,,(O,S). (2.5)

It is clear by substitution that a particular solution of the inhomogeneous equa-
tion (2.4a) is given by

{I(z,s) = -511-;—0 e f(z —c,t)dt. (2.6)

The general solution (bounded for all Res = 0) of (2.4) is then given by
&(z,s) = I;(z.s) + 0 4(s)e ™"

';(z,s) = gy(s)e =42 (2.7)

2%£1 and e %2 are fundamental solutions of

where the exponential functions e
the homogeneous forms of (2.4a) and (2.4b) respectively and o,, 05 are
coefficients that will be determined by the interface conditions. Substitution of

(2.7) into the interface conditions (2.2) gives for g,, o, the values

Cy —cCp ~
oy(s) = ﬁU(O.s)
ey =~
oa(s) = -E:-;IC—ZU(D,S) (2.8)

Substitution of (2.8) into (2.7) followed by inverse Laplace transformation yields
the following representation for the solution to (2.1)-(2.3) in terms of Fourier

transforms:
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C; — ie(t +z4,)

u(zt)=f(zx —c,t) + 21r o T 0 J(O'L e dw
_1 o r 2y A gl -z
v(z t) = - :{: it o U(0iw)e de (.9)

An interpretation of this solution is the following: The initial pulse f'(z) moves
to the right with speed ¢, until it reaches the boundary. (This part of the solu-
tion depends only on the differential equation and the initial data.) At the boun-
dary, it is partially reflected and partially transmitted. The reflection and

L. . . c, —c _c
transmission coefficients are given by R = 4 2 and 7= ——
c; +cg cy, +c2

respectively
and were determined by the interface conditions. Each frequency component
(7(0.1',0) of the reflected wave moves to the left with speed —c,. Similarly each
frequency component of the transmitted wave moves to the right with speed c3.
(This is clear from looking at the phase of the complex exponentials in the
integrals. Since those complex exponentials were the fundamental solutions of
the differential equations, it is again obvious that the propagation of the

reflected and transmitted waves is determined only by the differential equation.)

In the rest of this section we will demonstrate that the solution of a cen-
tered difference approximation to the problem (2.1)-(2.3) behaves in the same
way, i.e. the phase (and its error) are determined by the interior approximation
and the reflection and. transmission coefficients (and their errors) are deter-

mined by the interface approximation.

We approximate (2.1) with a time-continuous finite difference approxima-

tion given by

*u, 2
322 C1 Q(E)u, =0 v=—n,—n-1,—n-2, -
%, 2
5% °2 Q(E)u,=0 v=n+ln+l, - (2.10)

where

QE) = 57 3, Ay(8 + B7)

u, = u,(t) and v, = v, (t) are approximations to u(z,.t) and v(z,t) respectively,
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Fw,:=w,,,, and the meshpoints =z, are defined by =z,=vh +7y where
—h < 9 < h. (The uniform meshwidth is given by k). The interface conditions
(R.2) are approximated with the 2n relations given by

B¥ (E)u,(t) = B (B, (t). p=12,---.2n (2.115

For the understanding of the error, it is not important to specify the difference
operators B{# and B{* in detail although it is clear that we must require that
the relations (2.11) be consistent with the interface conditions (2.2). The initial
data for the problem (2.10),(2.11) are taken as

w(0)=F (@) prul0) = —of (z,). (2.12)

As in the continuous case, we will solve the discrete problem (2.10)-(2.12) expli-
citly using Laplace transforms. After Laplace transformation, the problem is

replaced with, for each s with Res = 0, the ordinary difference equations

QEYay - Soti, = 2Ly (z) — <t (2)) (2.132)
v 012 21T \ cl J clz
QB =~z = (2.13b)
2 .
with interface conditions
B (EYuo(t) = B (BYo,(t).  m=12.---.2n. (2.14)

Since (2.13b) is a homogeneous difference equation with constant coefficients, -
its general solution is given by linear combinations of powers of the roots &;(s),

j =12, - .Bn of the characteristic equation
52
(@ (k) — c—g): 0 (R.15)
2

The solution of the homogeneous form of (2.13a) is determined in a similar way,
with corresponding characteristic roots denoted by A\j(s), 7 =12, - 2n. It is
well-known (éee e.g. Gustafsson, Kreiss and Sundstrom [3], section 5) that for
Res > 0 the roots k;(s) separate into two distinct groups: M,(«x) containing
those roots «;(s) with |k;(s)| < 1 and M(x) containing those roots ic;(s) with
|g;(s)| > 1. The number of roots in each group, counted according to their
multiplicity is independent of s for Res > 0. Furthermore, since (2.13b) is a cen-

tered difference approximation, each of M,(x), Ms(x) contains exactly n roots.
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Exactly the same result is true for M,(A) and Ms(\). Hence, corresponding to
equations (2.7) for the continuous problem, the general solution (bounded for
all s with Res > 0) of (2.13) is given by

;,(s) = 5}(3) + Y Pi(v)\(s)” forvs 0 (2.16a)
Ay e Ho(N)
1:,,(5) = ) .;,-(v)rcj(s)” forv= 0 (2.18b)
xy e HMy(x)

where (},,(s) is a particular solution of (2.13a).and P;(v), ;j(u) are polynomials in
v of degree equal to the multiplicity of A; respectively x; minus one. Since
Mz(\;) contains n roots, the coefficients in equation (2.16a) depend on n free
parameters r,, - - - ,7,. Similarly the coefficients in (2.16b) depend on n free
parameters Tp4. ' * T2, These parameters are determined by substituting
equations (2.18) into the interface conditions (2.14) whence we obtain a 2nx2n

linear system of equations
D(s)r=Uys)b (2.17)

where r:= (7,73, - -+ ,72,)7, b is a vector of length 2n and D(s) is a Bnx2n
matrix. The system (2.17) can be solved boundedly for r if the discrete problem
(2.10)-(2.12) is stable. (Compare with Lemma 10.3 of Gustafsson, Kreiss and
Sundstrom [3]). v

The representation of the solution of (2.10)-(2.12) in terms of Laplace
transforms can be written down by using the following lemmas, which can be

taken as obvious:

Lemma 1: If the difference approximation (2.10) is accurate of order p,

then one of the \; € M2(\) can be written as

A(s) = @0 F OETAINAL (2.18a)
Similarly one of the «; € M,(x) can be expressed as

Ky(s) = g h(LFOETATIE, (2.18b)

Furthermaore, \, and k, are simple roots and |\ (iw)] = |6 (1w)]| = 1.

Lemama 2: If (2.10) is accurate of order p, then the particular solution of
(2.13a) can be expressed as

Ufs) = U(z,s)(1 + O(sPhP)). (2.19)



-9- David L. Brown

lemma 3: If the interface approzimation is accurate of order q, then the
solution of (2.17) gives

Py(v) = m'Uo(S)(l + O(s7h7))

i) = T r—T(s)(1 + O(s7h9) (2.20)
and P;(v) = 0(s7h9), Py(v) = O(sTh?) for j # 1.

It is obvious, therefore, that corresponding to (2.9) we have the following
representation for the solution of the discrete problem (2.10)-(2.12) in terms of

Fourier transforms:

u(t) = # [ et Ufim)da

1 Cp iw(t +z(1 + O(PhP)) )
+ {1 + O(wh?
5 [c1 oo {1 + O(07h ))U(O zw)] dw (2.21a)

_ 1 7 Bey T I SO 4 1wt —z(1 + O(P P 1ey)
v,(t) = o _{ [c1 T cz\l + 0(wTR ) U(0iw)re d (2.21b)

(Here we have assumed that ¢ < p.) The second integral in equation (2.21a)
represents the reflected wave. Equation (2.21b) gives the transmitted wave.
Comparing w1th equatlons (2.9) we see that the reflection and transmission
coefficients R and T associated with the difference approx1matmn are related to
the true coefficients by R(wh) = R(1 + O(w%h?)) and T(wh.) = T(1 + O(w?h9)).
Again, each frequency coAmponent‘ of the reflected and transmitted wave moves
into  its respective. medium with (frequency dependent) speed
-:l(wh) = —¢,(1 + O(wPhP)) and gz(wh) =cy(1 + O(wPhP)) respectively. Note
also that since the difference approximation is centered, the complex exponen-
tial in each of the integrals in equations (2.21) has unit magnitude, i.e. there is

no decay of amplitude in the waves as they propagate. We have therefore proved

Theorem (Decomposition of the error): If the difference approrimation
(2.10) is accurate of order p, the interface approrimation (2.11)is accurate of
order q < p, and the method (2. 10) (2.11) is stable, then the reflection and
lransmission. coefficients R(wh) (wh) a.ssocw.ted with the interface will be
accurate of order g while the phase velocities cl, cz of the discrete media will be

accurate of order p.
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3. Convergence and Numerical Examples

In this section we explicitly calculate reflection and transmission
coeflicients for a difference approximation to the problem (2.1)-(2.3). We also
give numerical evidence to illustrate the conclusions of the introduction. For

convenience we will actually consider a similar problem given by
uy = au,, on -1< z =<0 (3.1a)
and
vy = by, on 0=z < w (3.1b)
with interface conditions
2 (0,t) =v(0,t), a®uz(0,t) = b2, (0,¢). (3.2)

For the purposes of this example we will consider a boundary-value problem-in
which a signal propagates into the region [—1,=) fromn the left. For this reason

boundary conditions
u(=1,t) = f(¢t) (3.3)
are given. Furthermore we specify homogeneous initial conditions:
u(z,0) =u;(z,0) = 0 -1=z=<0
v(z,0) =v(z,0)= 0 0< z <o, (3.4)

We now Laplace transform the problem over £ and obtain for each frequency s
with Res = 0 a boundary-value problem for the ordinary differential equations

sPu= aa'c:u -1=z=0 (3.5a)
stu=by, O0<z< . (3.5b)
The interface and boundary conditions become
w(-1.5) = £(s), u(0:s) =v(0.5), @2uy(0.5) = b¥,(0.5) (3.6)
The problem (3.5)-(3.8) has bounded solutions of the form
Q(z,s) =0, + geS*h, 1< <0 (8.7)
;(z,s) = gge %A, 0z < o (3.8)

for all s with Res = 0. Substituting the general solution (3.7) and (3.8) into the
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boundary conditions (3.8), we obtain a linear system of equations for the con-
stants g4, 7 = 1,2,3. Solving this system, we can find the reflection and transmis-

sion coefficients, # and T respectively, which are given by

92 _a-b
R'— 0, a+b
7.=23 - _Ra (3.9)

g, a+bd

(This is, of course, the same result we found in section 3.)

We now approximate the problem (3.1)-(3.3) with the time-continuous

difference approximation given by

%w,

et Dyc?D w, v=-N, - ,-10,1," - (3.10)

with  boundary conditions w_yx(¢)=F(f) and initial conditions

w,(0) = eq—‘w,(o) = 0. Here D ,w,:=h~'A,w,, w,(t)=w(z,t)is an approxima-

tion to u(z,t) for z < 0 and to v(z,.t) for z > 0. The meshpoints are given by

z, = (v —a)h where h = (N + a)”!. (see diagram below)

Ty Toyr1 Toprs 1 % 1 Tg T3
\ L 1 | | 4 { ) -
T 1 i I 1 ) 1
| '—*‘ oh b+

X=- x=0

Intuitively, we expect problem (3.10) to give a second-order approximation to
the differential equation (3.1) and at least a first-order approximation to the
interface conditions (8.2) if ¢, is a consistent representation of the velocity

function

a for z < 0
c(z)-—b for x > 0

In this section we are particularly interested in considering the following choice

’
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for ¢, which gives a second-order approximation to the interface conditions.
This representation was proposed by Tikhonov and Samarski [5] for second-

order ordinary differential equations with discontinuous coefficients;!

a? for v= 0
cZ = {(aa? + (1-a)p?)™? for v=1 (3.11)
b2 for v= 2

The problem (3.10),(3.11) can be solved explicitly using Laplace transforms in a
similar manner as for the continuous problem above. Note that in this case, the

(Laplace-transformed) 'interface conditions" are taken as

-~ -~

s?w,=D,c,D_w, for v=0,1. (3.12)

The reflection and transmission coeflicients can be derived, and are second-

order accurate for all choices of 0 < aa=< 1. In particular for a =0,

Rish) = R(1 + S22 4 0(s%h9))

- 4ab

~ b-

T(sh) = T(1 + Ba—;’)—sghz + 0(s3h9)). (3.13)

Numerical computations were made for an interface problem for the wave equa-
tion (3.1) on -1 =< z = 1 with the interface at z = 0. Initial conditions were
specified so that a pulse would propagate from the region —1 < z < 0 to the
interface at x = 0 where a reflected and transmitted signal are generated. For

the interior approximation, we used both a second-order method
w(t+k) = 2w (t) —w,(t—k) + k?D (c2D_w/t)) (3.14)

for v=1,2, -+ 2N-1, where Nh =1 and z,:= -1 + (v—a)h and a method with

fourth-order space differences,

wy(t+k) = 2w, (t) —wy(t —k) + k2D.cZD w(t)
- —‘k;ifz D.DADsoED 1)) + Dole2DiDPw (t)) (3.15)

for v=2,3,..,.N-2. (In the latter computations, (3.14) was used for v=1 and

! In general for the differential equation with variable coefficients uy; = (@?(z)u;); . ¢, is
given by "

c® = a(z)2dz
y (vl)n
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v=2N —1). We also used Richardson extrapolation in t to improve the accuracy
of the solutions computed with (3.15) to fourth-order in't. The initial conditions
specified were

w,(0) = exp(—160(z, + .5)?)
and
w, (k) = exp(-160(z, + ak + .5)%)
At the left and right boundaries, "nonrefiecting” boundary conditions were used:
w, (t+k) = w,(t) + kaD ,w,(t)
Woy(t+k) = way(t) —kbD_way(t) (3.18)

The values a = .5, b = 1.2 and kA = .5 were used for the medium velocities and

mesh ratio, respectively.

To check the convergence rate of the method we made computations with
meshwidths A =1/10,120,140, and 1/80 and interface location parameter
a =0., .2, and .5. The discrete Lz-norm ! errors on both sides of the interface at
t = 1.5 are summarized in Table 1. For the "O(h?)" approximation (3.14) it is evi-
dent that the convergence rate is 0(h?) for all three values of a. Although for
the "O(h*)" approximation (3.15) the convergence rates are only somewhat
better than O(h?), note that the magnitude:of the error is greatly reduced in
comparison to the second-order method. This is mainly due to the improvement
of signal propagation effects that we get by using a fourth-order method in the
interior. This can be seen graphically in figures 2 and 3. These figures show a
time history of the solution from ¢ = 0.0 to £ = 2.0, Figure 2 shows the results
using the second-order approximation (3.14) and figure 3 shows the results
using the fourth-order approximation (3.15). In these figures, the solid curve
represents the true solution while the symbols 'x’ and '+’ represent the calcu-
lated solution to the left and to.the right of the interface respectively. The
meshwidth used for this calculation was h = 120. Note that both the location of
the pulse and its apparent amplitude are better with the fourth-order method

than with the second-order method.

N ¥
! Here we define the discrete Lanorm by |u,ll2=| Y hu,?l
v=0
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There does not seem to be a simple extension of this method to two space
dimensions that will give second-order accuracy overall. However, even if the
interface conditions are only approximated to first order, the results of section
R indicate that one can expect to get much better qualitative results using a
fourth-order difference approximation in the computations. We demonstrate
this with several numerical examples. First, in figure 4 we show a one-
dimensional example where the fourth-order approximation was used in the
interior of the region and a first-order interface approximation was applied.
Even though the computed solution is therefore only formally first-order accu-
rate, the results are qualitatively better than in figure 2, where the second-order

method was used for the interior approximation.

Figures 5, 6 and 7 show the results of some computations of the wave equa-
tion in two space dimensions. The example chosen models the interaction of
waves from a circular source with an interface that is oriented obliquely to the
computational mesh. We approximate the wave equation in two space dimen-

sions,
uy = (cPug)z + (),
with a second order method,
DyyD_yw(zyt) = (3.17)
Dyz((cP(z—Yh .y t)D_zw(z y.t)) + Diy((c®(z.y—Jh .t))D_yw(z.y t))

and a fourth order method in which the term
22
!c'z'g—(ﬂm(ca(x —¥h 3y t)D, . DR jw(zy t)) + DEJD_.,(ce(z —#hy t)D_w(z y.t))

and a similar term in y are subtracted from the right-hand side of (3.17). (Here
the notations D,, and D_, are used to denote the forward and backward
divided differences in the g-direction.) The computational region is given by

0= z < 1,0=< y < 2. The wavespeed c is given by

_]5 for z. < .3+y /Ao
¢@) =110 for z> 3+ys

and the initial conditions for the difference approximation are given by

w(z,y.0) = w(z.y.k) = exp(—200((z —1/5)% + (y —1)?))
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which models a circularly symmetric source that is initially moving both inwards
and outwards with respect to its center. The boundary: conditions were chosen
to model transparent boundaries at z =0, ¥y =0 and y =2 and a reflective
boundary at z = 1. The actual conditions used were difference approximations
to the "absorbing” type Al boundary condition of Clayton and Engquist ([1]. p.
1531) for the first three conditions and a numerical approximation to
u.(1,y,t) =0 for the final boundary condition. For all computations, the mesh
was uniform in both z and ¥ and the timestep ratio used was kA =.5, where
h = Az = Ay is the meshwidth in both the x and y directions. Figures 5a-g show
the numerical solution of this problem computed using the second-order
method (3.17). The solution is displayed in hidden-line plots for uniformly
spaced times between £ = 0 and £ = 2.4. Fifty points in z and 100 points in y
were used in the computational mesh. Figures 6a-f show the numerical solution
of the problem computed using the fourth-order method. Note that even after
the waves interact with the interface, the fourth-order method gives much
"cleaner” results. It is particularly evident in the plots for £ = 1.6 and later that
the dispersion error is significantly larger for the second-order method than for
the fourth-order method. For comparison, the same computation was made with
the fourth-order method on a finer mesh ( 150 points in z and 300 points in y).
These results are shown in figures 7a-c. Comparison of the various plots for
¢t =2.4 indicate that some of the lower amplitude waves in the solution are much
more readily discernable in the fourth-order:coarse mesh computations than in
the corresponding second-order results. These computations indicate that the
analysis for the one-dimensional case given in section 2 gives a good picture of
what to expect in two-dimensional computations as well. It is clear that the
numerical group velocity is better approximated in the fourth-order example
than in the second-order example, even after the interaction with the interface
takes place. This again verifies the main point of this note, which is to peint out
that if one is interested in obtaining qualitatively correct behavior in liﬁear wave
propagation problems, the accuracy with which the phase or group velocity is
approximated is more important than the accuracy with which internal boun-

dary conditions are represented.
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Discrete 1,-norm errorsatt=1.5

Method Second-order (2.15) 1 Fourth-order (3.16)
Interface Location h z < 04_::: >0lx<0 z>0
1710 1.0102 .6589 2777 .1191
o=0.0 1/20 5415 .3433 | .0656 .0261
) 1740 1442  ,1033 | .0040 .0025
1/80 0365 .0257 | .0004 .0004
1710 1.0201 .6381 1564 .1431
=02 1/20 4858 .3471 | .0412 .0296
) 1/40 L1329 .1034 | .0047 .0028
1/80 .0351 .0257 | .0010 .0004
1/10 1.0449 6331 .2835 .1355
a=05 1/20 4928 .3534 | .0865 .0371
- 1/40 1863 .1042 .0129 .0037
1/80 .0358 .0257 | .0031 .0007

Table 1
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Figure 5b: Second-order method t = .4
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Figure 6f: Fourth-order method t = 2.4
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Figure 7b: Fourth-order method, fine mesh t = 1.6



7¢: Fourth-order method, fine mesh t = 2.4



N O~

.36 - David L. Brown

References

(1]

[2]

[3]

(4]

(5]

[6]

Alterman, Z. and F.C. Karal, Jr. (1968), Propagation:of elastic waves in a lay-
ered media by finite difference methods,:Bull. Seis. Soc. of Amaerica, 58, pp.
367-398.

Clayton, R.W. and B. Engquist (1977), Absorbing boundary conditions for

acoustic and elastic wave equations, Bull. Seis. Soc. of America, 67, pp.
1529-1540.

Gustafsson, B., H.0. Kreiss and A. Sundstrom (1972), Stablity theory of
difference approximations for mixed initial boundary problems. II, Math.
Comput., 26, pp. 649-6886.

Kelly, K.R., R.W. Ward, Sven Treitel and R:M Alford, Synthetic seismograms; a
finite-difference approach, Geophysics, 41, pp. 2-27.

Tiknonov, AN. and A.A. Samarskii (1961), Homogeneous difference schemes,
Z. Vycisl. Mat. ¢ Mat. Fiz., 1, pp 5-63.

Trefethen, L.N. (1982), Group velocity in finite difference schemes,

" 'STAM Review, 24, pp. 113 -136.



. emmese
———

AMERICAN MATHEMATICAL SOCIETY

JAMES H. BRAMBLE, EDITOR DEPARTMENT OF MATHEMATICS
Mathematics of Computation WHITE HALL
CORNELL UNIVERSITY

ITHACA, NEW YORK 14853

Professor David L. Brown
Department of Applied Mathematics
California Institute of Technology
Pasadena, CA 91125

Dear Professor Brown:

I would like to acknowledge receipt of an additional copy of
your paper, "A Note on the Numerical Solution of the Wave
Equation with Piecewise Smooth Coefficients," together with
original drawings for the figures for the same. As of now,
we expect to include your paper in the April 1984 issue of
MATHEMATICS OF COMPUTATION.

Sincerely yours,

Anjta I. Wahlbin
Technical Editor



CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA 91125

APPLIED MATHEMATICS 217-850 18 August 1983
FIRESTONE LABORATORY

Dr. James H. Bramble, Editor
Mathematics of Computation
Department of Mathematics
White Hall

Cornell University

Ithaca, NY 14853

Dear Dr. Bramble:

Enclosed please find the additional copy of my paper (your
reference: P-4332) "A note on the Numerical Solution of the Wave
Equation with Piecewise Smooth Coefficients" that you requested.
I enclose also the original copies of pages 17 - 35 which contain
the figures. Unfortunately I am unable to locate the original
copies of figures 2 through 4; the remaining pages contain the
originals.

Sincerely,

David L. Brown

DLB/ib

Enclosures



AMERICAN MATHEMATICAL SOCIETY

JAMES H. BRAMBLE, EDITOR DEPARTMENT OF MATHEMATICS
Mathematics of Computation August 12, 1983 WHITE HALL
' CORNELL UNIVERSITY

ITHACA, NEW YORK 14853

Dr. David L. Brown Reference:P-4332
Department of Applied Mathematics

California Institute of Technology

Pasadena, CA 91125

Dear Dr. Brown:

I am happy to inform you that your paper, "A Note on the
Numerical Solution of the Wave Equation with Piecewise

Smooth Coefficients,”" has been accepted for publication

in MATHEMATICS OF COMPUTATION. As soon as we receive one

more copy of the revised manuscript and original drawings of the
figures, we will be able to inform you in which issue your
paper will appear.

Sincerely yours,

e [, 157 A4

ames H. Bramble

JHB/aw



CH L’;,;.}

& A
A
1y

YA o I\ 4
.)’d QX- J;l" ‘t{ ¥



AMERICAN MATHEMATICAL SOCIETY

JAMES H. BRAMBLE, EDITOR DEPARTMENT OF MATHEMATICS
Mathematics of Computation May 25, 1983 WHITE HALL
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

Dr. David L. Brown
Department of Applied Mathematics Reference:P- L4332

Celifornia Institute of Technology
Pasadena, CA 91125

Dear pr. Brown:

I would like to acknowledge receipt of your revised paper
A Note on the Numerical Solution of the Wave Equation

with Piecewise Smooth Coefficients
which you have submitted for publication in MATHEMATICS OF

COMPUTATION.
Sincerely yours,
(Beih/l

i/ Wesds,
Anita I. Wahlbin
Technical Editor



CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA 91125

APPLIED MATHEMATICS 217-30

FIRESTONE LADORATORY 10 May 1983

Prof. James H. Bramble N
American Mathematical Society

Department of Mathematics

White Hall

Cornell University

Ithaca, NY 14853

Dear Prof. Bramble:

Enclosed please find two copies of my revised version of "A Note on
the Wave Equation with Piecewise Smooth Coefficients', reference #P - 4332.
I was unable to find a simple proof of my original theorem 1, and so
decided to delete that section from the paper altogether. I think that
the referee will agree that this deletion will not significantly detract
from the main point of the paper. Indeed, the consistency of the methods
for the one-dimensional case is demonstrated numerically in the final
section. I have, however, taken the referee's suggestion and included
some two-dimensional computations in the examples presented in the final
section. I also have made a few minor changes in the wording of the
abstract and in the first paragraph of the introduction.

My apologies for the delay in returning the corrected version to you.

Sincerely,

David L. Brown

DLB/ib



Referee's report on

The paper "A Note on the Numerical Solution of the Wave Equation
with Piecewise Smooth Coefficients" by David L. Brown is very
well written and the problem which is discussed in the paper

is of importance in many applications Several interesting
observations are clearly explained. I suggest the paper for

publication after a minor revision.

In the proof of theorem 1 the convergence as h + 0 is not
proved. For the integral expression (2.8) to converge, vh must

have some extra properties.

It is also possible to improve the paper by adding a sample
two dimensional computation since it is the multidimensional

case that is of most interest.



AMERICAN MATHEMATICAL SOCIETY

JAMES H. BRAMBLE, EDITOR DEPARTMENT OF MATHEMATICS

Mathematics of Computation February 2, 1983 WHITE HALL
' CORNELL UNIVERSITY

ITHACA, NEW YORK 14853

Dr. David L. Brown Reference:P-4332
Department of Applied Mathematics

California Institute of Technology

Pasadena, CA 91125

Dear Dr. Brown:

I am happy to inform you that your paper, "A Note on the
Numerical Solution of the Wave Equation with Piecewise -
Smooth Coefficients," has been accepted for publication

in MATHEMATICS OF COMPUTATION subject to the minor changes
outlined in the enclosed report. We will look forward to
receiving two copies of your final manuscript incorporating
these changes. Please sign and return the enclosed Copyright
Transfer Agreement together with your manuscript.

Sincerely yours:

ames H, Bramble

JHB/aw



CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA 91125

APPLIED MATHEMATICS 217-80

FIRESTONE LABORATORY 21 January 1983

Dr. James H. Bramble, Editor
Mathematics of Computation
Department of Mathematics
White Hall

Cornell University

Ithaca, NY 14583

Dear Dr. Bramble,

I'm writing to enquire on the status of my paper "A Note on the
Numerical Solution of the Wave Equation with Piecewise Smooth Coeffi-
cients" (Reference P-4332) which I submitted through Heinz Kreiss last
May. Heinz assures me that it should have gone through the review pro-
cess by now; can you give me any more information?

Thank you very much.

Sincerely,

David L. Brown

DLB/ib



TO: pr. David L. Brown

“Transfe

American Mathematical Society
429 White Hall, Cornell University
Ithaca, New York 14853 -
(607) 256-7410

Date:  May 10, 1982

Anita Wahlbin, Technical Editor

“To expedite the processing of this paper, please sign the Copyright
r Agreement below and return it to Anita Wahlbin at the address above
as soon as possible. ‘It is AMS policy that papers are accepted for publica-
tion in AMS journals with the understanding that a transfer of copyright
(subject to the reservations listed) is a condition for publication.

P-L4332 ' COPYRIGHT TRANSFER AGREEMENT
Copyright to the article entitled - ‘ S

A Note on the Numerical Solution of the Wave Equation with Piecewise Smooth

[Title) Coefficients

by | Devid L. Brown

. [Author(s)) ‘
is hereby transferred to the American Mathematical Society (for works of the U, S. government or for works

supported by grants from agencies of the U. 8. government: to the extent transferrable), such transfer to be
effective upon acceptance for publication in MATHEMATICS OF COMPUTATION with the following ‘

reservations: . ‘

1. The author reserves the right to refuse permission to third parties to republish all or part of this
article, or translation thereof, in any form. However, the American Mathematical Society may grant such
rights with respect to entire books or journal issues as a whole, .

2. The Society agrees to grant permission to reprint this article ina volume of collected or selected
works of the author(s) and to waive any fees for such republication, ) : _ : o
8. The Society also agrees to authorize reprinting by third parties if requested to do so by the
author(s) at any time two or more years after the date of publication in this journal. The Society reserves -

‘To be signed by at least one of the authors (who agrees to notify the others, if any) or, in the case of
a "work made for hire," by the author's employer. o o . .

Ui A Ao~

the right to impose a charge to the third party for such permission, ’ PR

(SignatuFe ' (Title (if not author)]

_Dovid L Rrown [8 frany (552

{Print Name] [Date]

. 219/82

(over)




AMERICAN MATHEMATICAL SOCIETY

JAMES H. BRAMBLE, EDITOR DEPARTMENT OF MATHEMATICS
Mathematics of Computation May 10, 1982 WHITE HALL

CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

'

Dr. DAvid L. Brown

Department of Applied Mathematics
California Institute of Technology
Pasadena, CA 91125

/
Reference:P- 1332

Dear Dr. Brown:

I would like to acknowledge receipt of your paper

A Note on the Numerical Solution of the Wave Equation

with Piecewise Smooth Coefficients
which you have submitted for possible publication in MATHEMATICS

OF COMPUTATION.

It will be submitted to & referee competent in the field of your
research, and we shall publish or return your manuscript in accor-
dance with the recommendations of the referee.

A transfer of copyright to the American Mathematical Society is now
required as a condition for publication in this journal. Please sign
and return immediately the enclosed form along with any items 1nd1cated
in the checklist below.

In future correspondence regarding this paper, please refer to our
reference number at the top of this page.

Sincerely yours,

Dinde ) Attty

Anita I. Wahlbin
Technical Editor

Abstract__

AMS(MOS) Subject Classification Numbers
Additional Copies

Original figures



CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA., CALIFORNIA 91125

APPLIED MATHEMATICS 217-80

FIRESTONE LABORATORY ) 1 AUgUSt 1983

Ms. Anita I. Wahlbin
American Mathematical Society
Department of Mathematics
White Hall

Cornell University

Ithaca, NY 14853

Dear Ms. Wahlbin:

Please be advised of the following errata in my revised manuscript
(Reference P - 4332), A Note on the Numerical Solution of the Wave
Equation with Piecewise Smooth Coefficients:

On title page, last paragraph should read:

Research partially supported by Office of Naval Research Contract
no. N0O014-80-C0076. Computer time provided by the Stanford
Exploration Project, Stanford University Dept. of Geophysics and
on the Caltech Applied Mathematics Department "Fluid Dynamics VAX"

On page 36 (list of references), the following reference was accident-
ally omitted in the revised manuscript:

[6] Trefethen, L.N. (1982), Group velocity in finite difference schemes,
SIAM Review, 24, p.p. 113 -136.

Thank you very much.

Sincerely,

David L. Brown

DLB/ib

S e p——



Dea- b Wl ldiw -

- \Mamwuw
Colade > W aansed (Rz,é-wwu; p- %132.)
A Noke on N wrmnen cal Jo»Q,W{\» Joluhin of ug  Wowe
Equotoon i Pxewwc Sumstt, Coe Lhcia -

Bt page, Lt paaeyregds dbmdol el

Retearch oty supporttl Ay Ofpe of Nend
Qesearch,  Orbcact us.  Neooit—¥o - Coozg. UYITN
Co wypacken ‘['Ww( (rau-{w ﬂ'—r o ) WSWW ar(om\%—u
Qr‘e{}u“t W &aubwol Vi 6rs: De it 4
Goplepinn ok on Tl Apphad :
Mosiomaes — Deyantuent  Fland %U\am VAL

On by 2 (of o cdounes) oo oW wndy efetia
M&—%t‘—&:(}qka‘r- 3 MM u«‘
o mmwn’#-w ac MJU’] © Y

i Trebetlen, LoN. UQ%?.) Growy, ue,uwha o

I‘{.ﬁm‘h’, OUJHJ/WUL bbq,d/vmba[ M 7;&)
Febe 10-136.

b\’k — WD \/\A/(VOPA -
\M‘U vy i Sk 1 o





