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Abstract of the Dissertation

A System-Level Analysis of a Wireless Low-Power

Biosignal Recording Device

by

Rodney James Chandler

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2012

Professor Jack W. Judy, Chair

Development of brain-machine interfaces and treatment of neurological diseases can bene-

fit from analysis of recorded data from implanted electrodes. Existing wireless neural record-

ing systems are often bulky, dissipate too much heat to be implanted, or only have a small

number of channels. Furthermore, advances in micro-machined electrodes provide the pos-

sibility of high-density recordings, but the companion electronics do not provide enough

simultaneous channels with low enough power, wireless telemetry, or a small form-factor. A

system level view of wireless recording-circuitry which could overcome these deficiencies is

described in this work. The overall system comprises of an analog front end (AFE), digital

signal processing (DSP), and transmitter (TX). Each block is analyzed, and system-level

specifications are derived. Based on these specifications, each block can be optimized for

low power and small area. The analog front-end uses open-loop amplifiers to support lower

voltage operation than previously published work. A prototype amplifier was also fabricated

to measure performance in a 65-nm CMOS process that is needed for low-power digital signal

processing. The amplifier performance was comparable to other recently published amplifiers

with 2.5 µV noise in 10 kHz bandwidth while dissipating 17.2 µV from a low 1 V supply. The

use of programmable bias currents in the amplifier, to exploit the trade-off between noise

and power, was proposed to set each individual amplifier’s noise level (and power) to meet
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requirements for accurate spike detection. Literature reviews of digital-signal processors and

transmitters are used to construct approximate models of power versus performance. These

models are then used to investigate the overall system power with different levels of digital

processing. With a target application of neural spike recording, four modes (raw data, spike

detection, feature extraction, and clustering) were analyzed. A system that uses feature

extraction yields the lowest overall power, supports 400 channels with a practical wireless

link, and consumes approximately 8 mW.
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CHAPTER 1

Introduction

1.1 Background

Neuroscience research is required for several reasons. This work, in particular, has been influ-

enced by the desire for (a) treatments for neurological disorders requiring measurement and

monitoring of abnormal behavior of the brain, (b) developing models for the normal function

of the brain, so that synthetic circuits can be devised to restore function to damaged regions,

and (c) develop brain-computer interfaces (examples are implementing brain-controlled pros-

thetic limbs for amputees, more intuitive, natural, machine-control interfaces, and restoring

motor control to stroke victims).

All the above examples rely on monitoring brain signals. These signals can be monitored

in a variety of ways, from electroencephalography (EEG), which requires electrodes placed

on the scalp, to micro-electrode implantation in the brain. Depending on the technique

employed, the data gathered will range from the ensemble response of millions of neurons

(EEG), down to the behavior of a handful of individual neurons per implanted electrodes.

EEG-based monitoring is suitable for systems that can be trained to detect high-level be-

havior such as blinking or the intention to move in a certain direction. On the other hand,

it is theorized that signals recorded from implanted electrodes can be used to obtain more

precise information. One study of the combined network interaction from hundreds of neu-

rons is led by Blair et. al.. The specific aims of Blair’s work are to (a) measure how position

and velocity are encoded in the rat brain, within specialized neuronal networks known as

1



grid- and place-cells, and (b) develop mathematical models for this behavior. Furthermore,

long-term goals include applying their results, based on the mapping of physical quantities

such as position and velocity, to more abstract concepts such as how one navigates through

a lifetime of memories.

As many preclinical trials use small-animals such as mice and rats, the size and power

of the system must be minimized. A small, low-power system facilitates a broad range of

applications (from first-order preclinical small-animal trials to primate experiments). All

applications require similar processing, but differ greatly in their power, size, and weight

constraints. Therefore, it behooves us to develop the system with the tightest constraints

in mind. A platform that is flexible enough to be used in many neuroscience applications,

such as the one proposed in this dissertation, would encourage the sharing of collective

experiences, and assist in developing best practices for neural recording, while also allowing

neuroscientists to focus on the experiment itself.

Before describing the requirements of the proposed system, a few applications will be

presented to set the stage.

1.2 Applications

Successfully developing the proposed technology will make it possible to routinely perform

wireless high-channel-count and high-bandwidth neural recording in freely moving test sub-

jects. Such a capability has important clinical (e.g., epileptic seizure mapping) and preclini-

cal (e.g., brain-computer-interface development and recording within enriched environments)

applications.
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1.2.1 Clinical Application: Epileptic-Seizure Mapping

Epilepsy and its development in the intact brain are poorly understood. The gross features

of the disease are known, but the nuances of its workings, its development, and its natural

triggers remain largely obscure. In broad strokes, an epileptic seizure occurs when neurons

in a small area of the brain begin to fire in synchrony. This firing overwhelms other necessary

brain functions and results in a complete shutdown of the central nervous system and a loss

of consciousness in extreme cases. Epilepsy affects millions in the United States alone —

according to some estimates as much as 1 to 2% of the population [1]. Epileptic insults range

in their effects from the facial twitching and momentary blankness of expression typical of

petit mal seizures, to the emotional outbursts, hallucinations, and flashbacks of temporal-

lobe seizures, to the loss of consciousness and violent convulsions seen in grand mal seizures.

Causes of epilepsy include genetics, head trauma, and various brain disorders. Epilepsy is

normally treated with medications designed to inhibit neuronal activity by increasing the

effectiveness of the inhibitory neurotransmitters. There is also on-going research into using

electrical stimulation to manage the disease.

Scientifically, one of the most important questions to answer relates to the process by

which the brain develops the capacity for epileptic insults, before any overt signs of epilepsy

are present. Clinically, the goal is to localize the source of drug-resistant seizure activity to

enable surgical intervention. When such localization cannot be performed with non-invasive

imaging technologies, direct brain electrophysiology may be used. Presently, patients are

admitted to the epilepsy ward, surgery is performed to attach a grid of many electrodes to

the cortex or to implant electrodes into the brain, and continuous recordings are performed

in the clinic until enough seizure activity is recorded to enable accurate source localization.

Unfortunately, a well-known fact is that seizure frequency during such clinical experiments is

far less than normal. As a result, patients often must stay in the hospital for up to two weeks

for enough data to be obtained [1]. Such a long hospital stay with many (∼100) transcranial

3



and percutaneous wires is a great burden to the patient and increases their health risks. A

hypothesis for the cause of reduced seizure activity observed in the clinical setting is the

fact that the physical activity and behavior of patients is greatly reduced and altered due

to being tethered to the bed. In addition, the wired nature of existing systems means that

recordings are not obtained when the patient moves away from the bed (e.g., moving between

rooms, etc.) and it is possible that the already infrequent seizure activity may be missed. A

wireless system capable of recording from ∼100 channels may provide substantial benefits to

the patient. Although typically the system may only need to record signals with a sampling

rate of <1000 Hz, a system capable of sampling at higher rates (∼20 kHz) would enable the

same system to simultaneously record from implanted micro-electrodes. Furthermore, the

ability of the mobile wireless system to perform local signal processing could enable the early

detection of seizure onset, which would also have clinical benefits (i.e., prepare the patient

and care provider for the seizure so that the data obtained can be of the highest value).

1.2.2 Preclinical Application: Brain-Computer Interfaces

The development of brain-computer interfaces (BCI) is an active area of research based on

multi-channel EEG [2] or single-unit electrophysiological recordings [3–9]. A goal of BCI

research is to restore movement to those who have lost a limb, or link a computer interface

to the brains of those suffering from cerebral palsy or Lou Gehrigs disease. By recording the

electrical activity from the brain, a computer can be programmed to deduce the intention

of movement and control a robotic device or prosthetic. Although the early work performed

with rodent models used a fair number of electrodes (∼16), there has been a drive towards

using even larger numbers. For example, there has been success with BCI systems operating

with ∼100 channels non-invasively with humans, and invasively with a higher-order preclinical

animal model (i.e., primate) [9]. Although a wired system is acceptable for such experiments

that are typically performed acutely and in a configuration that is physically constraining,

there are experimental motivations for a wireless neural-recording system. One motivation is

4



to study the long-term performance of invasive neural-electronic interfaces, which are known

to degrade with time sometimes slowly (over months) and sometimes quickly (sub-second)

[10]. Another motivation is to perform synchronous and asynchronous BCI experiments in

mobile test subjects, initially in animals [5] [6] but then eventually in humans. With non-

invasive BCI recording systems, a low sampling rate (<1000 Hz) is sufficient to capture EEG

activity and the level of signal processing varies.

With invasive BCI recording systems, a high sampling rate (∼20 kHz) is needed to capture

spike activity, but there is also interest in recording local field potentials with the same

system. Although some researchers may configure systems that record spike activity to

simply stream the full waveform to the receiver, others may prefer the mobile system to

perform substantial signal processing as well (e.g., event/spike detection and spike sorting).

The ability of our proposed system to be reconfigured through software to employ a wide

range of sampling rates, resolutions, and user-defined signal-processing algorithms, will make

it extremely useful for the diverse BCI community, and not just for those using smaller animal

models.

1.2.3 Preclinical Application: Recording of Brain Activity in Enriched Envi-

ronments

The influence of an enriched environment on brain development, plasticity, and recovery is

known to be critical but is poorly understood. The environment in which the animal lives

and is studied, from the moment it is born, plays a critical role in initial and ongoing brain

development.

Several paradigms have been used to demonstrate the effects of environment on lower-

order animal models (e.g., rodents). The best characterizations of these differences have been

reported in maternal behaviors [11], light-dark rearing [12], exercise [13] [14], diet [13–16],

and environmental complexity [17–20] all of which induce lasting changes in brain anatomy
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and/or function. One of the oldest models of experience-dependent plasticity is housing in

an enriched environment. Bennett et al. were the first to report that rearing rats in complex

housing conditions resulted in changes in brain weight and cortical thickness [19], as well as

in behavior. In general, enriched-environment rearing provides frequent novel stimuli to test

subjects in the form of toys, exercise devices, spatial arrangements, handling, social interac-

tions, and sometimes even smells and sounds. When rats reared in an enriched environment

are compared to those reared in standard laboratory conditions, or to those reared in ”im-

poverished” conditions, the enriched-environment animals consistently demonstrate changes

in neuroanatomy (e.g., increases in brain weight [19][21], cortical thickness [22], dendritic

arbors [23], glial number [20], brain capillaries [24][25], and even hippocampal neurogenesis

[26]), changes in behavior (e.g., superior cognitive performance on tasks of spatial learning,

including Morris water maze [26, 27] and the radial arm maze [28]), and changes in patho-

logical processes with high clinical relevance, including the recovery from a stroke or head

trauma, to epilepsy, to the effects of pre-natal alcohol exposure.

It has long been contended that standard laboratory-animal-housing conditions are ac-

tually impoverished, when compared to ’wild type’ surroundings [29]. In fact, it may be

argued that comparison of experimental effects in standard-housed animals provides only

part of the picture, particularly when attempting to extrapolate such results to the human

condition. Important conclusions derived from such research demonstrate that differences in

brain signaling as a function of the animal environment are sufficient to call into question

conclusions made from research that is not done in an enriched environment [30].

An enriched environment is one that consists not only of a greater number of objects

(e.g., wheels, tunnels, rocks, and toys), but also of an enriched social setting with additional

animals. The optimal environment from a neuroscientific point of view is not the one with

the most stimuli or animals, but the one that most resembles the natural environment of an

animal in the wild. Overcrowding degrades neural development in much the same manner as

does a lack of social interaction. Neurons in brain slices prepared from animals exposed to
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an enriched environment show a dramatic increase in cell proliferation, dendritic branching,

and expression of the genes that lead to receptor formation [30]. In most societies, it is fair to

consider the normal human condition to be one of considerable ’enrichment’, with complex

social interactions, educational programs, language, art, and recreational opportunities. In

the laboratory, it is likely that subtle but important impairment of ”higher-level” functions

will be missed by experimental paradigms that reduce animal behavior to the lowest common

denominator.

A wireless neural-recording system that could be used to perform preclinical experiments

with lower-order animals models as small as a rat, could be used to ascertain the impor-

tance of an enriched environment on conditions of clinical relevance (e.g., recovery from a

stroke or head trauma, epilepsy, the effects of pre-natal alcohol exposure). Such a wireless

neural-recording system may not initially need to record from a high channel count, but

the availability of micromachined microprobe arrays makes it increasingly common to per-

form high-channel count experiments even in rats. Thus, the expandable performance of our

proposed telemetry system is likely to be highly valuable. In addition, the frequency range

of neural signals of interest in such experiments varies from <100 Hz (e.g., theta waves)

to ∼6 kHz (e.g., single units). The ability of the same miniature neural-recording system

to be reconfigured in terms of channel count, resolution, sampling rate, and extent of sig-

nal processing would enable a greater range of experiments to be performed in an enriched

environment.

1.3 System Description

Advances in miniaturization of microelectrode arrays have made it possible to chronically

implant hundreds (or even thousands) of extracellular electrode tips into the nervous tissue of

animal or human subjects in order to monitor the activity of dozens or hundreds of individual

neurons in real time. In principle, it should be possible to gather data from these minia-
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turized electrode arrays while unrestrained subjects move freely about their environment,

thus capturing neural activity during normal behaviors. But in practice, this potential for

high-density neural monitoring in unrestrained subjects has yet to be fully realized, because

with hundreds or thousands of electrode channels implanted in a single subject, it becomes

necessary to transmit very large volumes of real-time data from the brain to a machine that

can process and store the data. A reliable high-bandwidth data-transmission bus is needed

for relaying all of this data from brain to machine. In many cases, exquisitely miniaturized

electrodes must still be connected to recording and monitoring equipment by large, bulky

cables that restrict the ability of subjects to move and behave freely. Unavailability of in-

terface circuitry that can multiplex hundreds of channels of data in a small form with low

power have prevented miniaturized electrode arrays from being used to their full potential

in applications such as brain-machine-interface devices for controlling robotic prosthetics

in movement-disabled patients, and in laboratory research investigating how populations of

neurons encode information and regulate behavior in freely behaving animals.

Many existing systems use a fully parallel data bus: a multiconductor cable in which

each channel of data is relayed from brain to machine via a separate wire (Figure 1.1(left)).

However, there are several major drawbacks to this solution. First, with hundreds or thou-

sands of channels, the multiconductor cable can become very large and bulky, especially

for small experimental animals like mice and rats. Second, the connectors that join these

cables to the implanted microelectrode array are a very vulnerable point in the circuit, often

consisting of hundreds of very small and fragile connector pins that can be easily broken

during the process of connecting and disconnecting the cable to the subject (especially ani-

mal subjects, such as a squirming rat). If even a single connector pin is broken, a repair job

costing hundreds of dollars and several man hours becomes necessary. Third, the connector

cable tethers the subject to the data acquisition equipment, thereby restricting the subject’s

ability to move around and behave freely without twisting or breaking the cable. This prob-

lem can be partially ameliorated by using a rotational commutator, but such commutators
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Figure 1.1: (left) Connector and cable detail. (right) Ceiling mounted commutator and video

cameras, attached to headstage amplifiers via 3 m cable.

become very large and expensive for cables consisting of hundreds of conductors (Figure 1.1

(right)).

To solve these problems, we will develop a high-bandwidth, miniaturized wireless data

transmission system for relaying large volumes of electrophysiological data from implanted

electrode arrays to a data acquisition system. In collaboration with experienced users of

existing technology, we have identified the major technological hurdles that must be overcome

before such a wireless neural recording system can become truly practical and useful. Our

system will solve these problems by incorporating a miniaturized, wearable data-acquisition

computer system that can be remotely programmed by the experimenter at any time. We

are confident that this system will make it possible, for the first time, to achieve ultra-high-

density electrophysiological monitoring (hundreds or thousands of channels) of single-unit

electrodes in fully unrestrained human and animal subjects.
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The hardware to perform the neuroscience research described above has the following

minimum requirements: (a) high-fidelity, simultaneous recording from hundreds of elec-

trodes, (b) relaying the recorded signals to a digital-signal processor to perform experiment-

dependent operations, such as detection, alignment, feature extraction, and classification,

and (c) transferring the neural information to an archive server, or generating a electrical

feedback signal.

To make the system implementable in practice, the following requirements are also in-

troduced:

The system must be low power, to avoid tissue damage from heating, and to allow a low-

weight battery for a given operational lifetime. Specifically, the total power dissipation must

be less than 80 mW/cm2. For a 100 channel, 1 cm2 integrated circuit (IC), this upper-power

limit corresponds to a power dissipation of less than 800 µW per channel. For a system

weight of 10 g, assuming 50% is due to the battery with a energy density of 120 W·hr/kg

(typical for lithium ion batteries), and a target experiment duration of 1 hour, the maximum

power per channel is 120 W·hr/kg × 5 g / 100 channels, or 6 µW. In this example, we are

limited by the power source, rather than limits due to potential tissue damage. Providing

power over an inductive link is unsuitable because of its short range (∼10 cm).

While it is arguable whether the system must be wireless, the key benefit of a wireless

approach is the elimination of the wiring harness and the connectors. This harness and

connectors are problematic because the system must be physically small, the wiring har-

ness consists of low-gauge wire, and miniature connectors are fragile. The main problems

that arise are (a) damaging the connector after numerous reconnections and (b) the weight

and limited movement due to the wiring itself. A small, squirming rat only adds to the

likelihood of a damaged wired link. As expensive, custom circuitry and hand-made hous-

ings are presently used in the experiment, time-consuming repairs are undertaken instead of

replacement. As surgery to implant electrodes is also time-consuming and expensive, it is

imperative to minimize damaging the hardware attached to the implants. The heavy cable
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must also be towed by the rat, which impedes the extent of their mobility, and eliminates

the possibility for experiments using enriched environments including tunnels and complex

mazes. A rotational commutator improves mobility, but ideally, the rat would be untethered.

1.4 Proposed Solution

This work aims to deliver a device that is small, yet capable of wirelessly transmitting as

much information as possible with a given battery. Some investigators seek real-time, raw

neural signals captured with high-fidelity (i.e., at least 8-bit resolution and 30 kS/s sampling

rates), while others are only interested in the spike waveforms and/or events. The ability to

transmit over distances up to 10 m, operate for up to 24 hrs, and yet weigh less than 10 g,

would facilitate unencumbered movement for the subject, longer experimental sessions, and

the ability to use the system with small animals, respectively. A system that can achieve

these goals has the potential of broad appeal to the neuro-scientific community.

1.5 Organization

The remainder of the thesis is organized as follows. Chapter 2 summarizes previously pub-

lished systems. In order to facilitate system level analysis, each building block is analyzed in

Chapter 3. Next with the block estimates, the system level performance can be calculated

for different configurations, and the optimal configuration determined. One of the key blocks

is the analog front-end amplifiers, and the implementation of these amplifiers is described in

Chapter 5. Finally, conclusions and future work are summarized in Chapter 6.
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CHAPTER 2

Literature Review

2.1 Introduction

Each wireless biosignal recording system is composed of several key parts: electrodes, ampli-

fiers, detection and signal processing, and a transmitter. A complete system is configured by

using a certain approach for each of the blocks, and partitioning the system into a front-end

and a back-end. The front-end performs basic signal processing, and the back-end performs

additional processing and archival of data. The resulting system partition leads to a certain

level of performance in terms of power, noise, range, area, and datarate. Signal fidelity

(e.g., distortion of the amplifiers and spike detection accuracy) is also important, but not

always reported, and so it is not included here. Integrated circuits are low in weight, which

indicates that the total system weight is mostly due to the battery, antennae and printed

circuit boards. The required battery weight is related to power dissipation and experiment

duration, so this constraint is implicitly captured. In this Chapter, we will review some

existing systems in terms of these performance metrics. In Chapter 3, we will examine these

performance trade-offs, e.g. power versus noise, in more detail.

Existing wireless neural-recording systems range from fully integrated analog transmitters

[33],[34], to analog transmitters with threshold-based spike detection [35], [36], [37] to digi-

tal application-specific integrated circuits (ASICs) [38], to microcontroller-based embedded

systems [39], to commercial-off-the-shelf (COTS) PC-based systems [40]. Fully integrated

transmitters and ASICs benefit from being very small (several mm2) and low power (sev-
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Figure 2.1: Different system configurations for wireless neural recording: (a) analog recording

(b) spike detection (c) digital signal processing.

eral mWs), thus enabling them to be implanted with the electrode and inductively powered

(when an external power source can be worn).

In the interest of increasing channel count and sampling rate while maintaining rea-

sonable battery life, some groups have demonstrated solutions with some on-board signal-

processing capability, such as thresholding as demonstrated in [35] and [36]. Unfortunately,

these threshold-based systems typically cannot differentiate spikes from artifacts, and require

circuit redesign to modify the spike-detection algorithms. The limited adoption of existing

wireless neural recoding systems by the neuroscientific community may be an indicator that

users could benefit from a greater degree of flexibility in terms of methods for spike detection.

Chae has published a system in [41] that also includes feature extraction and clustering, and

a high datarate transmitter. Such a system, with the capability to provide spike event data

along with many channels of raw data, is a step closer to providing the needed flexibility.
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2.2 Classification of Recording Systems

Figure 2.1 shows systems that use (a) analog recording, (b) spike detection, and (c) using

a digital-signal processor (DSP) for feature extraction and/or clustering. Each system is

comprised of two parts. The first part shown is the frontend, which includes the blocks from

the analog frontend (AFE) to the transmitter (TX). The frontend takes inputs from several

electrodes and applies the appropriate gain and frequency-band selection, and combines the

multiple electrode signals into a single stream. The combined stream is transmitted wire-

lessly to the backend receiver. As the frontend is intended to be battery powered and/or

implanted, it must be low power and have a small size, and any increase in frontend com-

plexity must be balanced against these constraints. One of the key goals of this dissertation

is to determine the optimal frontend complexity and explore the performance tradeoffs for

different applications. The backend, which includes the blocks from the receiver (RX) to the

application PC, does not have these constraints, so the design of the backend is relatively

trivial compared to the frontend. The backend receiver can use off-the-shelf components,

which suggests that the frontend transmitter should be able to interface standard compo-

nents.

For the analog recording case (Fig. 2.1a), time-division multiplexing is used to interleave

multiple electrode channels. Analog recording system examples have been published by

Mohseni [33] and TBSI [42]. The basic architecture is shown in Figure 2.1a. The advantage

of this type of system is simplicity. The amplifier increases the signal level from a few

millivolts to approximately 1 V to drive an FM modulator. Because the output is an analog

modulation, any noise and interference that is incident on the receiver can reduce the signal

quality. Since there is no signal processing, it is not possible to detect spikes or other events

in the frontend – signal processing occurs after the backend receiver. If a feedback signal

is required (e.g. to control a prosthetic limb), it must to calculated in the backend, and

transmitted back to the frontend. If the system included signal processing in the front-end,
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it is feasible that the feedback signal could be generated locally. For this reason, analog

recording has limited applications for applications that also include stimulation.

A spike detection system (Fig. 2.1b) is comprised of the following blocks. The amplifier

and bandpass filter processes the signal to remove the energy outside the wanted band and

increases the signal amplitude to be larger than the noise floor of subsequent blocks. A

simple analog comparator then compares the instantaneous amplitude to a predetermined

threshold and generates a pulse if the amplitude is higher. The output is now a 1-bit sequence,

and this digital data can drive an FSK modulator instead of an FM modulator. Because the

output is low resolution (1 bit), the transmitter complexity is low but the waveform has been

reduced to a 1-bit representation. The data from multiple spike detectors are interleaved and

synchronization markers are added before being wirelessly transmitted to the backend. Since

the waveform is reduced to a single bit, no analog-to-digital converter (ADC) is required for

the spike detection system. Examples have been published by Sodagar [43] and Harrison

[35], which use a simple form of spike detection. Their spike detection operates by comparing

instantaneous amplitude with a predetermined threshold. The threshold is set by measuring

the average amplitude over an extended time period, which is a measure of the system noise

floor, and setting the threshold to be larger than this noise floor. The threshold is typically

programmable, and can be set by circuitry operating in the background [44], or by user

intervention. How accurately can an actual spike event can be detected in the presence of

noise? Analysis of this topic has been performed by Gibson [45], and it was shown that simple

thresholding has inferior spike detection performance in high background noise environments.

In turn, this leads to higher power dissipation of the frontend analog amplifiers to keep their

own noise low. For this discussion, the key disadvantage to note is that spike detection

should be as accurate as possible, and not use an inferior algorithm, in order to encourage

widespread adoption of the system in neuro-scientific community. Incorporating a range

of spike detection algorithms is one solution, as is including the ability to keep more raw

data. Both Harrison and Sodagar include the capability to transmit the complete digitized
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waveform of a user-selectable channel (with 8- or 12-bit resolution), in addition to 1-bit

spike detection data. Adding the high-resolution waveform data to the thresholded outputs

increases the data-rate that the transmitter must support at the cost of performance, but

is a good compromise between only having 1-bit data for a high number of channels, or

a small number of channels with high resolution. Furthermore, the single high-resolution

channel can be used during initial setup and training to observe which electrodes have useful

data and to set the threshold of the comparators. Spike detection relies on the fact that it

is sufficient to record the time of a spike event, and discard the spike waveform details as

unimportant. However, false alarms or missed detections will occur; this behavior needs to

be acceptable to the experimenter, and the complexity (i.e. power and area) of the detector

must be balanced with spike detection accuracy. If one compares analog recording and spike

detection, spike detection allows a reduction in datarate required of the wireless transmitter

or a higher number of channels to be transmitted. For these reasons, spike detection is

a useful technique in reducing the power dissipation of the system. On the other hand,

analog recording keeps the complete spike waveform and the background noise (which can

be required for certain experiments) but it is more difficult to create a system with a high

channel-count.

Finally, Fig. 2.1c shows a system that includes some form of digital-signal processing to

process the raw data to obtain a reduction in the amount of data sent to the transmitter.

This reduction in datarate is required for high-channel-count systems to keep the transmitter

feasible within a limited power budget. Spike detection is performed first and then additional

processing is performed. Feature extraction measures the key features of a spike waveform

such as peak, slope, and duration. Clustering is an additional step that, based on certain

waveform metrics, maps a spike waveform to a certain event or a single neuron. Feature

extraction and clustering are computationally expensive, and need high resolution digitiza-

tion to be accurate. Typically 10 to 14 bit resolution is used depending on the application.

Feature extraction and clustering can be considered as a form of application-specific lossy
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compression and they reduce the data-rate required of the transmitter; other compression

general purpose techniques could be used but would be less efficient. For a high-channel-

count wireless system, if the data is not processed on chip, the outgoing data-rate can be

high. In the system published by Chae [41], the data-rate per channel is 180 kbps, or 18 Mbps

for 100 channels. Generally, transmitters that have power dissipation limited to a few tens

of milliwatts can achieve up to 10 Mbps in indoor environment. The ultra-wideband (UWB)

transmitter implemented in [41] claims a peak data-rate of 90 Mbps, which is enough for 500

channels of raw data, over a short transmit range, while consuming 6 mW from the power

supply.

There are three interesting claims in Chae’s publication: (a) with optimization and low-

power design techniques it is possible to produce a system with a high-channel count without

resorting to compression and keeping the total system power around 6 mW, (b) it is possible

to design a high data-rate transmitter that has a low power of 1.6 mW and a capacity

of 90 Mbps to support a high-channel count, and (c) feature extraction in the frontend

can also have a low power of 1.5 mW for 100 channels. Overall, it shows that a low-

power neural recording system is feasible based on (a) and (c). Regarding (b) however, the

implementation of the wireless link and transmitter may be difficult. My own opinion is

that the UWB transmitter performance may be sensitive in realistic settings. In particular,

our goal is to have a range of approximately 10 m to allow untethered recording of freely-

moving subjects. It is unclear if the UWB link is robust enough to supply high data-rate

that is claimed at longer range and with other potential wireless interference nearby. Since

the Federal Communication Commission dictates that UWB transmit power levels should

be low, there may be issues with achievable link quality. Furthermore, widespread adoption

of UWB technology in general consumer markets has been limited, with other non-UWB

radio products satisfying the need for high datarate wireless communications. One possible

reason for the lack of UWB adoption is that it may be difficult achieve high data-rates in

real-world situations. Furthermore, obtaining off-the-shelf components for a UWB receiver
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Table 2.1: Summary of existing wireless neural recording systems.

Author TBSI Mohseni Sodagar Harrison Chae Walker

Year 2007 2005 2007 2007 2008 2011

Ref. [42] [33] [43] [35] [41] [46]

Type Analog Analog Spike/DSP Spike/DSP DSP Analog

Channels 62 4 64 100 128 96

Power (mW) 30.8 2.2 14.4 13.8 6.0 6.5

Area (mm2) 25 4.8 19 28 63 25

Noise (µW) 10 7.1 8 5.1 4.9 2.2

Bandwidth (kHz) 3 10 10 5 20 10

Datarate (Mbps) 4 4 0.50 0.33 90 30

Transmitter FM FM FSK FSK UWB N/A

Range (m) 3 0.5 0.02 0.13 1 N/A

may be more expensive than non-UWB options. Based on these concerns, I feel that it may

still be necessary to use some form of data compression to keep the wireless link more robust

and power dissipation reasonable.

Although the system does not provide wireless capability, Walker [46] has recently demon-

strated a 96-channel system with a power dissipation of 6.5 mW while providing 10-bit raw

data for all channels over wired serial connection. The design achieved low-power and noise

by optimized analog amplifiers, and its techniques are applicable to all neural signal acqui-

sition systems.

A summary of published solutions is shown in Tab. 2.1. In the next section, the perfor-

mance of the each of published systems will be summarized, and compared to our goals for

a low-power wireless neural recording system.
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2.3 Summary

Key examples of wireless telemetry systems have been described in this Chapter. For this

summary, we will examine several performance metrics: power, area, noise, and range. For

power and area, we will calculate the approximate per-channel value by dividing by the

number of channels. This is not the most accurate model as certain shared blocks such as

reference voltage generators and local oscillators may not need to be scaled per channel.

Noise is a measure of the minimum signal that can be detected, and is primarily set by the

analog front end, i.e. power and area would increase if the noise is lowered. Noise often scales

inversely with the square of power and area. We will consider noise in a qualitative manner

in this section, and defer detailed analysis for Chapter 3. Range is also very application

specific, as some systems only require a very short range if an intermediate relay stage is

added between the frontend and backend. Other systems, on the other hand, were designed

from the outset to be capable of longer range. Nonetheless, we can still obtain a qualitative

assessment for what has been achieved to date. Our discussion focuses on scaling these

systems to a large number of channels, hence we need to estimate the performance for a

single channel. A summary of performance is given in the following list:

• Power: The analog recording systems in Table 2.1 use approximately 0.5 to 1 mW of

power per channel. Mohseni uses approximately 140 µW per channel, plus 1.5 mW for

the frequency modulator. Sodagar uses 225 µW per channel for the spike detection

system. The FSK modulator in Harrison’s system uses 6.9 mW, plus 69 µW per

channel. The lowest power system is by Chae and dissipates 1.6 mW in the transmitter

and 34 µW per channel. If we consider the per-channel power and examine Chae’s

system, we find that circuit techniques to disable blocks when their output is not

sampled is used to reduce overall power; the effect switching in the signal path is

not understood however and we feel that further analysis is required. Secondly, the

UWB transmitter is much lower power per bit transmitted. Conservative estimates
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would place the transmitter power between these extremes, and we expect around

5 mW for our transmitter. Our expected per-channel power, i.e. the amplifier and

signal processing, is around 50 µW. Even in systems that use extensive digital signal

processing, most of the power is used by the analog frontend and transmitter. For this

reason, we will focus on reducing the power of these blocks and it may be advantageous

to use additional DSP to reduce the power required of the amplifiers and transmitter.

• Area: The area-per-channel ranges from 1.2 mm2 to 0.29 mm2, and process technologies

range from 1.5 µm to 90nm CMOS. The largest area-per-channel is from Mohseni with

its unoptimized area as shown in the published prototype, is excluded from this area

discussion. The smallest is by Harrison at 0.29 mm2 despite it having the having

the lowest noise, which implies that it is a well-optimized design. Both of the spike

detection systems have small area, which is not surprising since they do not include the

ability to digitize all channels simultaneously. The analog recording system by TBSI

and the feature extraction system by Chae have areas of 0.40 mm2 and 0.49 mm2

respectively. Since the digital-circuitry area of all these systems is not dominant,

process scaling (i.e. 65-nm CMOS) is of limited benefit. In fact the smallest area-per-

channel system is implemented in 350 nm CMOS by Harrison. It is difficult to identify

a clear trend from this data, and we summarize the following: the expected area is

between 0.3 and 0.49 mm2 per channel.

• Noise: The amplifier performance sets the limit on achievable noise, and can be traded

off with power and area. The systems in Table 2.1 show 5 to 10 µV of noise. We will

dissect this specification thoroughly in Section 3.3.

• Range: The range achievable is a function of power transmitted from the antenna and

the data-rate, and will be examined in Section 3.7. The transmitter power dissipation

has two main components, from the oscillator and upconverter/power amplifier circuits.

Increasing range is primarily a function of the power amplifier, while the oscillator
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power is set by required phase noise of the modulation scheme used.

One final point is that these systems have often been designed with a fairly specific appli-

cation in mind. This makes a direct comparison difficult. One outcome of this dissertation

will be to gain a better understanding of the implications of circuit imperfections such as

analog circuit noise and distortion, ADC resolution, and feature extraction algorithms, on

the overall quality of the recorded data.

In this Chapter we have examined system published to date to determine stat-of-the-art

performance and generate some rough estimates of performance for our system. Chapter 3

deals with the optimization of individual blocks where these estimates will be scrutinized,

while Chapter 4 deals with the overall system optimization.
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CHAPTER 3

Block Level Design

3.1 Introduction

In this chapter we review the power and area estimates for each of the major blocks in the

wireless biosignal telemetry system. Each of the blocks (neurons and electrodes, amplifier,

analog-to-digital converter, digital-signal processors, and transmitter) shown in Figure 3.1

will be discussed in the following sections. The key concerns are also listed for each block.

3.2 Neurons and Electrodes

This section discusses the electrical characteristics of neurons and the electrodes used to

sense their activity.

There are several classes of biological signals that can be measured, with different fre-
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Figure 3.1: Block diagram of biological signal recording system.
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quency content and amplitudes. Each type of signal use specialized electrodes, yet the signal

level is still too small for signal processing. Amplifiers provide two main benefits: (a) a low

level signal can be corrupted by additional noise in the signal processing blocks if gain is not

applied and (b) the amplitude must also be increased to be compatible with the ADC full

scale.
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Figure 3.2: (a) Characteristics of different biosignals, (b) A recording of a neural spike.

Figure 3.2a shows commonly measured biological signals as described by Harrison in [47].

These signals are

• EEG: Electroencephalography is the recording of the ensemble behavior of tens of

thousands of neurons within a brain, typically on the scalp. EEG is a large-scale

observation of brain activity, and has poor spatial resolution.

• LFP: Local-field potentials are recorded from implanted electrodes, and sense the ac-

tivity of neurons up to 3 mm from the electrode. A 300 Hz filter is used to remove

higher frequency components.
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Figure 3.3: An Electrical Model of a Neuron.

• ECG/EMG: Electrocardiograph and Electromyography record the electrical activity

of cardiac and skeletal muscles respectively.

• Neural spikes are recorded from an implanted electrode, capture the activity of a small

number of neurons. Specifically, neural spikes refer to extracellular action potentials.

Recording neural spikes is the main goal of this research. An example of a neural

spike, after bandpass filtering to remove unwanted signals such as LFP, is shown in

Fig. 3.2b. Two (possibly three) neurons can be identified by their spike shapes. The

spike recording data was taken from Rutishauser et. al. [48].

From an electrical perspective, a neuron is comprised of a number of voltage-controlled

ion channels, such as sodium, potassium, and chlorine. Each ion has an associated electrical

potential, and conductance from inside the cell to outside. From a circuit perspective, the

neuron is simply modeled by a voltage source with a dc offset VO and an action-potential

waveform VAP. There is also a resistance associated with the neuron from the average

conductance during a spike event, and a spreading resistance from the neuron to the electrode

through the intervening ionic solution.

A simple electrical model of neuron is shown in (Fig. 3.3). The different ions channels

are shown in (a). The ion channel conductances are voltage dependent, and the reaction

time of these channels determines the shape of the action potential (also known as a spike).
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Figure 3.4: Electrode Model

A lumped model which reduces the network in (a) to an offset voltage, a transient voltage

source, and a source resistance is shown in (b). It is assumed that RNeuron is small compared

the electrode resistances. For circuit modeling, (b) is adequate.

While the electrode itself is ideally little more than a conductor in most cases, the inter-

action between the electrode and electrolytic solution surrounding it requires modeling of the

electrochemical interactions. Firstly, the electrode has a finite surface area, which introduces

a resistive path RS from the electrolyte to the electrode. Secondly, the charged ions at the

interface form a voltage gradient, and this charge-storage can be modeled as a capacitor CP,

with a dc voltage across the capacitor representing the electrochemical interaction of the

ions at the interface. The voltage across the interface can be up to 1-2 V [49],[50]. Proper

selection of the ground electrode for the circuit can help cancel this offset voltage, and keep

the inputs within the input-common-mode range of the amplifier.

Differential sensing also reduces the offset to the dc mismatch between the reference and

sensing electrode. A resistive leakage path (RP) also exists in parallel with the capacitor,

but is typically negligible when considering the frequency response of the probe. However,

it does show the dc offset of the electrode/electrolyte interface is coupled to the amplifier

input. It should be noted however that the electrode interface is actually a complex non-

linear system, and the model shown here is a simplification to enable circuit design. More
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details can be found in [51].

3.3 Analog Front-End Amplifier

3.3.1 Differential Amplifier Configuration

In general terms, the neural amplifier must

• reject large dc offset voltages that occur at the tissue-electrode interface,

• provide enough frequency selectivity of the small neural signal of interest

• amplify the small signal to levels used by subsequent signal processors

• reject unwanted signals such as ac mains and other common-mode disturbances

• provide selectable reference potentials

• be able to drive the following stages (typically an ADC)

• have low input-referred noise

The dc offset voltage arises due to two main effects. The electrochemical half-cell that

occurs around the conductive electrode in the ionic inter-cellular fluid gives rise to a voltage

between approximately ±1.5 V depending on the electrode material [50]. Since we detect

the differential voltage between the desired electrode and a reference electrode, which helps

ensure that the signal received by the amplifier is within its common-mode range, the ampli-

fier only sees a fraction of the half-cell potential. The reference electrode must be connected

to an appropriate potential. The potential outside a nerve cell also depends on the concen-

trations of the ions inside and outside of the membrane, and this resting potential is around

-60 mV [52]. The combined effect of these dc offsets results in a few hundred millivolts of
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dc offset at the amplifier input which must be removed before amplification, otherwise the

linear range of the amplifier will be exceeded, and distortion and/or saturation will occur.

As seen in Fig. 3.2a, different signals occupy different frequency bands. To extract spike

information efficiently, other signals such as LFP must be removed to minimize the required

dynamic range of the amplifier. Spike frequency content is approximately within 1 kHz to

10 kHz. A filter profile with a high-pass corner frequency of 100 Hz and a low-pass corner

of 10 kHz is used. As spike amplitudes for extra-cellular recording are typically between 50-

500 µV, and ADC full-scales voltages are on the order of 0.5 V, we require a maximum voltage

gain of 10,000 to match the ADC’s full-scale. As the amplifier input is high impedance, it

is susceptible to coupling of undesired signals such ac mains (50 or 60 Hz). For robust

operation, amplifier operation should be largely unaffected by a 10 mVp−p common-mode

signal at 60 Hz. Specified another way, this signal should result in no more than 5% of

the amplifier full-scale output swing, which gives a common-mode gain requirement of less

than -52 dB. The amplifier should also provide a multiplexer to select different reference

potentials. Such flexible configurations allow for optimizing common-mode noise rejection

by choosing a reference electrode judiciously. This is because it is common to have access to

a choice of reference electrodes, and it is not generally known in advance what combination

of electrode and reference will give the cleanest signal. The amplifier must also be able to

drive the ADC input impedance, which is typically a few picofarads for ADCs in the 8-12 bit

resolution range.

Finally, the amplifier should have low input-referred noise. As noise and power are tightly

linked, the noise specification will be carefully examined. The SNR is defined as

SNR = 20 log10

(
Vp−p,spike

6 · vn,tot

)
(3.1)

where Vp−p,spike is the peak-to-peak voltage amplitude of the spike waveform, and vn,tot is

the input referred rms noise voltage of the system (of which the dominant sources are the

electrode and amplifier stages).
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Based on system level studies [53], an SNR of greater than 5 dB is required (Fig. 3.5),

which in turn, specifies that for a 50 µV spike the total noise of the system should be less

than 4.7 µV. Electrode resistance of 45 kΩ (per electrode in the signal/reference pair) gives

3.9 µV thermal noise integrated over a 10 kHz bandwidth, which then leads to an amplifier

noise requirement of less than 2.5 µV. The noise contributions for 5 dB SNR for a low and

high amplitude spike are shown in Table 3.1. The table also shows that a high amplitude

spike can tolerate a much higher amplifier noise vn,in for the same SNR. The associated

power-noise trade-off will be explored in Section 3.3.7, where we consider a technique to

minimize power dissipation.

Table 3.1: Noise Contributions for 5 dB SNR

Low Amp. High Amp. Unit

BW 10000 10000 Hz

SNR 5 5 dB

Vp−p,spike 50 500 µV

vn,tot 4.69 46.86 µV

vn,elec 3.92 3.92 µV

vn,in 2.56 46.70 µV

Finally, the amplifier should operate from a low supply-voltage to be compatible with

the digital signal processing and a single-cell battery.

Table 3.2 summarizes the amplifier specifications.

3.3.2 Existing Neural Amplifiers

Most neural spike amplifiers implemented to date use a capacitively-coupled amplifier to

remove the dc offset voltage and implement large impedances for low-frequency signals in

a small area. Furthermore, the passband voltage gain of this amplifier is well-defined by
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Figure 3.5: Required SNR of different spike detection algorithms. For a NEO detector, 5-dB

is the minimum SNR for good detection and false-alarm probabilities. Based on data from

[53].
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Table 3.2: Spike Amplifier Specifications

Input Referred

Offset Voltage
<1 mV

Input Referred

Noise Voltage
<2.5 µV

Filter Corner

(High-Pass)
100 Hz

Filter Corner

(Low-Pass)
10 kHz

Voltage Gain

(Differential)
80 dB

Voltage Gain

(Common-Mode)
−52 dB

Output Swing 1 Vp−p Output Load 2 pF

C 1 
C 2 

R B 

V in 
V out 

Vn,amp

Cin

Figure 3.6: Capacitively Coupled Amplifier. vn,amp is the noise of the amplifier.
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the ratio of the two capacitors C1 and C2. The high-pass corner frequency is 1/(R · C1).

When the resistance is implemented by a pseudo-resistor [54], a giga-ohm resistance can be

implemented in a small area. However it is non-linear, so cannot be used for the signal

path if distortion is a concern. The low-pass pole is constructed by the finite bandwidth of

the amplifier. A capacitor-based feedback network also achieves high input impedance with

physically small components – using resistors for a similar input impedance would introduce

a large parasitic capacitance which would increase power consumption and area. As the

electrode capacitance is typically greater than 200 pF, which is much larger than C1 used

in typical integrated circuit implementations, the frequency response from a neuron to the

output of the amplifier is determined solely by the circuit elements shown in Figure 3.6.

Examples of this amplifier architecture can be found in [41,49,55–59]. Alternate approaches

such as chopper stabilization [60] and dc stabilization [61] are also used but the most power-

efficient designs to date use ac-coupled amplifiers. AC coupled amplifiers also completely

isolate the dc offset from the amplifier (though transient disturbances still mandate the use

of a mechanism to reset the low frequency (i.e. slow settling) bias network). As the dc

offset is difficult to predict, ac coupling is preferred for this work. Furthermore, dc isolation

between the biological tissue and electronics is required to avoid chemical interaction, even

under fault conditions.
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3.3.3 Amplifier Design

3.3.3.1 Noise Contributions

The input-referred noise contributions for the amplifier configuration shown in Figure 3.6

are summarized by Eqs. 3.2 and 3.3. As the high-pass corner fl is pushed lower, the noise

contributed by the feedback resistor RB (used for dc biasing) contributes less noise. However

the corner cannot be made arbitrarily low as the achievable resistance has an upper limit,

and unwanted signals such as ac mains and LFP will also be amplified if the corner is made

too low. The value of RB is fixed after the capacitor size C1 and fl are chosen, and RB does

not appear in Eq. 3.3 explicitly. As fl is essentially determined by application requirements,

the key variable for optimization is C1 in the familiar kT/C form.

v2
in,amp =

[
1 + s ·RB · (C1 + C2 + Cin)

1 + s ·RB · C1

]2

· v2
n,amp (3.2)

vin,res =

√
2

π

1

AV

fl ·
√
kT

C1

· 1

f
·∆f (3.3)

As the gain is given by Eq. 3.4, and the electrode noise is injected at the input of the

circuit, the electrode noise has the same frequency response as the amplifier itself. The

resistance of the electrode therefore sets the minimum achievable noise (along with the

background noise of thousands of neurons near the electrode). As frequency dependence of

electrodes is often negligible for neural spike amplifiers, modeling the electrode as a single

capacitor is appropriate, and there is no additional frequency dependence (Eq 3.5).

H(s) =
Vout
Vin

=
s ·RB · C1

1 + s ·RB · C2

(3.4)

v2
elec = 4 · k · T ·RE · |H(s)|2∆f (3.5)
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Figure 3.7: Noise contributions for an ac-coupled neural spike amplifier.

The noise equations given are for a single-ended circuit, with two times the noise power

present in differential implementations. Fig. 3.7 shows that the electrode noise is the domi-

nant noise source. As previously mentioned, the noise generated by the electrode is outside

the control of the circuit designer. In Fig. 3.7, a more sophisticated electrode model has

been used which causes the noise peaking around 1 Hz. The next largest noise source is the

amplifier contribution, and will be the focus of subsequent optimization.
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3.3.4 Transistor-Level Design

We now consider the design of the operational amplifier. The lowest power design to-date

uses a folded-cascode operational transconductance amplifier (OTA) [59], and is shown in

Figure 3.8. Approximate dc bias voltages are also shown, assuming that the input and

output common-mode voltages are equal (as is the case when a resistor from output to input

is used to set the common mode input level).

Because of the tall stack of transistors required to implement an op-amp, operation at

low-voltage is difficult. We will look at an open-loop amplifier with a minimum number of

stacked transistors to compare the power efficiency.

The total noise power, when input referred, can be given approximately by v2
n,M1 · (1 +

gm5/gm1). Using Equations A.11 and A.12, the total noise can be plotted as a function

of Vds,sat and hence supply voltage (Figure 3.9). For the minimum V DD calculation, it is

assumed that 0.5 V is sufficient for the other transistors, and Vds,sat is allocated to M5.

Now we see that the source of this degraded Op Amp performance at low voltage is due

to limited headroom which leads to poor rds. Although we have not shown it here, stability

concerns also limit the Vds,sat that can be applied. Referring to Figure 3.9, we see when Vds,sat

is limited to 200 mV, the noise is limited to 1.4× the noise power of the input device. With a

higher supply voltage, it is possible to reduce the noise contribution of the non-input devices.

As shown in Figure 3.8, a degeneration resistor R1 is used to reduce the transconductance

of the current source M5. Requiring a high supply voltage is in opposition to low power

operation, so a different approach is needed.

To obviate this low supply-voltage issue, the Op Amp can be replaced with cascaded low

gain stages, as shown in Figure 3.10. The analysis in Section 3.3.3 is still valid, with C2

set to zero. The total noise and power in this design is dominated by the first stage even

for moderate (greater than 5 V/V) values of voltage gain. However, in an Op Amp circuit,

negative feedback is used to stabilize the voltage gain.
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Figure 3.8: Amplifier used by [59], showing approximate bias voltages if operating at a 1 V

supply.

To maintain a stable gain with our cascaded structure, calibration circuitry will be used.

Because we aim to use a deep-submicron CMOS process and only need to track the relatively

slow changes in dc gain, digital calibration will consume low area and power that what

would otherwise be required to achieve similar noise performance with a single-stage design.

To summarize, we will implement a cascaded amplifier structure capable of low-voltage

operation, which takes advantage of the power and area-efficient digital processing available

in deep-submicron digital CMOS.
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55

Figure 3.9: Relative noise from M5 as a function of Vds,sat and V DD.

Figure 3.10: Cascaded Amplifiers to replace using Op Amps, when using a low supply voltage.
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3.3.5 Optimization

For a given application, we now wish to determine the power and area of the preamplifier

circuit. Capacitor C1 and amplifier current ID are the key specifications of the design and

we will use these to determine the required amplifier power and area. First we will show

the optimum bias current, and corresponding noise, for the amplifier with a given capacitor

size. A key technique for low power designs is to bias the input devices in sub-threshold to

maximize the gm/ID ratio. As we also wish to minimize input capacitance, it is expected

that biasing near the edge of sub-threshold, i.e. IC ≈ 0.1, should give the lowest power.

With this operating point in mind, the minimum supply current and corresponding noise

can be derived.

3.3.5.1 Optimal Bias Current

For a fixed inversion coefficient (IC) or current density, we wish to sweep the bias current

to minimize the total input referred noise v2
in,amp. The noise of the amplifier alone, with its

input devices biased in sub-threshold, is given by Eq. 3.6. Since we have set a fixed IC,

increasing the amplifier current to reduce noise also increases the input capacitance of the

amplifier. The proportionality constant α relates supply current to input capacitance in the

form Cin = αID. Bias conditions and technology node affect the scaling between Cin and ID,

and it is desirable to have a small input capacitance for a given bias current, which implies

α should be minimized.

v2
n,amp = 4 · k · T · γ ·KAMP ·

VT

κ
· 1

ID

·∆f (3.6)

where KAMP is a proportionality constant relating the noise of the amplifier to the noise of

a single transistor. KAMP is essentially a function of the amplifier biasing and architecture

used.

With the input capacitance Cin expressed as α · ID, the input referred noise is:
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v2
n,in =

(
C1 + C2 + α · ID

C1

)2

· v2
n,amp (3.7)

In order to minimize the vn,in noise, C1 must be made as large as possible. However

this consumes a large amount of chip area, so we must trade-off capacitor area versus noise.

Suppose we choose a value for C1 based on an area requirement, and then determine the

minimum achievable noise. The noise is large whenever ID is small (Eq. 3.6) or large (Eq.

3.7), which implies that there is an optimum value somewhere in between.

Substituting Eq. 3.6 into Eq. 3.7 and solving for the minimum value of vn,in w.r.t ID

yields the result that the minimum noise is obtained when ID is equal to (C1 + C2)/α. The

optimum input capacitance is C1 + C2, independent of α and bias conditions. This is a

key observation 1: the noise is minimized when the input capacitance Cin of the amplifier is

equal to the sum of the source capacitors C1 and C2. This observation allows us to quickly

choose the input capacitance Cin from C1 and vice versa. The input-referred noise-voltage is

also two times the amplifier noise-voltage at the minimum. We have assumed the electrode

impedance is much smaller than that of C1; if it is not then its effect should be included.

The required current can be obtained by first solving Eq. 3.8 for W, given that IC

was chosen for high gm/ID efficiency and transistor length L was chosen to meet dc gain

requirements. The current is finally given by Eq. 3.9

W =
ID · κ · L

2 · µ · Cox · V 2
T

=
C1 + C2

Cox

· 1

1− κ+ IC
· 1

L
(3.8)

ID = IS · IC

=
2

κ
· µ · Cox · V 2

T ·
W

L
· IC (3.9)

1It is also not surprising when considering the maximum power transfer theorem.
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Using the EKV equations in Appendix A, we can derive an expression for α valid in the

weak inversion region:

α =
κ · L2

2 · µ · V 2
T

·
(

1 +
1− κ
IC

)
(3.10)

Repeating the previous derivation using this definition of α yields the minimum noise in

Eq. 3.11:

v2
in,min = 16 · 1 + C2/C1

C1

· VT

κ
· k · T · γ ·KAMP · α ·∆f

= 8 · 1 + C2/C1

C1

· γ ·KAMP · q · L2

µ
·
(

1 +
1− κ
IC

)
·∆f (3.11)

Several key points are worth noting regarding Eq. 3.11. The ratio C2/C1 is 1/AV where

AV is the amplifier’s passband gain. The gain should then be maximized to reduce the input

noise. Minimizing L also minimizes the noise, but L may be constrained by other consider-

ations such output resistance rds. NMOS devices should be used to maximize mobility µ, as

long as flicker noise is not a concern. Biasing should maximize IC also, up to the edge of

weak inversion. Finally, after the other parameters have been set, we can select C1 to meet

the noise requirement (for a given process technology). While scaled technologies provide

shorter channel lengths, the increased gate leakage current processes after the 0.18 µm node

introduces other issues which must be solved before using these technologies for the input

device. Using the thick-oxide I/O transistors (which are typically available in all processes)

for the analog portion of the design and thin-oxide transistors for the digital design provides

a good compromise.

Figure 3.11 shows the input referred noise for 3 different capacitor sizes. Three curves

are shown, for different values of C1. The larger C1 is, the smaller the minimum noise that

can be achieved, although it requires a larger current ID to reach the minimum noise. For

the neural spike amplifier described in this dissertation, an input noise of 2.5 µV has been
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selected. Since we know for a given capacitor size for C1, although we do not yet know what

size that is, the amplifier noise must be half of the input referred amount, or 1.25 µV. For

a differential circuit (which requires
√

2 lower noise per device), and assuming a 50/50 split

of thermal and flicker noise (again
√

2 for uncorrelated noise sources), the thermal noise of

M1 (vn,th−M1) must be less than 0.625 µV. The drain current can then be calculated from

ID = 4kTγUT/κ/v
2
n,th−M1, which is approximately 6.6 µA. This current requires a device

W/L of 100µm/0.5µm, which presents around 75 fF of gate capacitance. However, in the

next section, we will see that flicker noise imposes a larger device area, and thus sets the size

of C1.

An alternate approach to optimize the amplifier would be to maximize the SNR. When

the input capacitance of the amplifier is comparable to the coupling capacitor C1, a reduction

in gain is expected. If the gain is reduced substantially, then the noise contributions of

subsequent stages have more effect on the SNR measured at the output. An amplifier with

60 dB dc gain and 10 MHz unity-gain frequency (UGF) configured for 40 dB passband gain

(i.e. C1/C2=100) is analyzed with the aid of Fig. 3.12.

The size of the amplifier is scaled as we move along the x-axis from small input capaci-

tance, which has corresponding low power and high noise, to large input capacitance which

in turn has low noise and high power. The gain is measured at 10 kHz which is the upper

passband frequency. Even when the amplifier has small input capacitance, a gain error of

∼1 dB results from finite dc gain. As the input capacitance increases, the feedback factor of

the circuit is reduced, and the gain also is reduced, with a sharp decline as Cin approaches C1.

The noise behavior has been previously described, and reaches a minimum around Cin = C1.

The SNR is also measured, and peaks when the input referred noise is minimized. Provided

that the amplifier gain is high enough to suppress the noise of subsequent stages, the reduced

gain does not affect the optimization, and the tradeoff between area through Cin and power

still applies.
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Figure 3.12: Amplifier gain, noise, and SNR as function of input capacitance Cin.
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3.3.6 Accounting for Flicker Noise

So far, meeting the noise specification has focused on thermal noise. For low-frequency

designs, flicker noise is also significant. Given the optimized design based on thermal noise

constraints, we calculate the additional noise from flicker noise. If gate-referred noise power

spectral density for a MOSFET in saturation is modeled by

Sflicker(f) =
KF0

W · L
· 1

f
·, (3.12)

we see that gate area W · L must be chosen to reduce the noise, and a process-dependent

constant KF0 determines the absolute value.

The input-referred noise over a band from f1 to f2 is given by

v2
n,in−flicker =

(
C1 + Cin

C1

)2

· KF0

W · L
· ln(f2/f1) (3.13)

≈
(
C1 + Cox · (1− κ) ·W · L

C1

)2

· KF0

W · L
· ln(f2/f1) (3.14)

The value of W that minimizes the input noise is

W =
C1

Cox · (1− κ) · L
(3.15)

This leads to a Cin that in turn sets the value for C1. For the TSMC 65-nm process used

for the amplifier in Chapter 5, flicker noise is high, and requires a gate area of 1874 µm2 for

0.625 µV of flicker noise over a band from 100 Hz to 10 kHz. The minimum capacitance C1

for this amplifier is 1.4 pF. Using a large C1 will result in lower input referred noise at the

expense of more area. With an input device with W/L of 3750µm/0.5µm, and assuming the

input devices are 2/3 of the total area, we can calculate the space available for C1 assuming

we can place capacitors over active devices. In this case, we can make C1 as large as 3.1 pF

before it is larger than the amplifier itself (assuming 1fF/µm2 for the capacitors). Since C1 is
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greater than the minimum required, we could reduce the device and capacitor sizes, or allow

thermal noise to increase in exchange for reduced supply current. However, this still serves

as an initial estimate, and leaves some margin for modeling inaccuracy and other effects.

Finally, we discuss the choice of channel length, since flicker noise only specifies a certain

gate area. We can implement this area as a wide device with a short channel, or increase

both width and length (compared to the thermal-noise-limited design). With a wide device

(i.e. increased W only to increase area), IC is reduced, and for a large device (i.e. increased

both W and L), IC is constant. In both cases the input capacitance Cin is larger than what

we needed for thermal noise.

Rewriting the equation for input capacitance in weak inversion (A.8) as

Cg,weak = (IC + 1− κ) · Cox ·W · L (3.16)

=
κ · ID

2 · µ · U2
T

· L2 + (1− κ) · Cox ·W · L (3.17)

shows that increasing L affects both terms. For this reason, it is preferred to increase W .

Either option is feasible though, as increasing W will also increase the source/drain area of

the MOSFET which was not included in this analysis, and the second term dominates in

3.17.

3.3.7 Adjustable Biasing

The design given produces an amplifier that meets the requirements for a minimum amplitude

signal. However, in a system with a large number of electrodes, many channels will have

higher amplitudes and will exceed the SNR requirement. Reducing the current from the

maximum value so that the no more than the required SNR of 5 dB is maintained will

maximize the efficiency of the overall system while keeping the same detection accuracy.

The current can be reduced in two ways. One is to reduce the amplifier bias current. In

this regime, which we call adjustable bias, the input capacitance remains roughly constant
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(mostly due to gate-to-bulk capacitance) and amplifier noise vn,amp increases with decreasing

current. The second method is using several amplifiers connected in parallel to adjust the

current (and noise). In both cases, the coupling capacitance C1 is constant. In this second

method, which we call parallel amplifiers, we are switching in additional amplifiers when

needed, and the input capacitance increase as the current increases. The effect of increased

current is stronger than the increased amplifier input capacitance, and the noise decreases.

In comparison to the adjustable bias method, only the current changes, rather than device

operating points such as IC. The results are shown in Fig. 3.13.
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Figure 3.13: Adjustable bias with parallel amplifiers or variable bias current. Parallel am-

plifiers give a better noise-power tradeoff.

We will estimate the capacitance and current for an amplifier with a 10-kHz noise band-

width and 2.5 µV noise. Beginning with a normalized current of 1, we set the bias to current

to meet the noise requirement. This occurs with ≈1.4 pF for C1 and ID of 6.6 µA. As the cur-

rent is reduced for variable biasing, the noise power is inversely proportional to the current,
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and increases rapidly. In contrast for parallel amplifiers, we can use 16 unit amplifiers (UA)

in parallel for the lowest noise. Decreasing the number of amplifiers in parallel decreases

the current and input capacitance while increasing the noise. The plot shows the noise for

a configuration with 1, 2, 4, 8 and 16 amplifiers in parallel. For all these configurations, the

parallel amplifiers yield lower noise for the same supply current than the variable bias case.

Using parallel amplifiers would allow an aggressive reduction in current. The drawback is

the added wiring complexity and parasitics to connect these amplifiers, when needed. A

combination of both techniques could also be used to achieve a wide range of operating

points.

3.3.8 Summary of the Design Methodology

The design methodology can be summarized as follows:

1. Determine the required input-referred noise for the amplifier from system requirements.

2. Initially, for a minimum capacitor size, assume that the amplifier noise must be half

the input-referred noise.

3. Assume flicker noise and thermal noise contributed equally, and determine the device

current to meet thermal noise requirements. This also determines the input capacitance

required for a thermal-noise limited design.

4. Calculate the gate area to meet the flicker noise requirement, and compare this to the

area required for the thermal noise case.

5. Capacitor C1 is determined by the larger of Cin based on thermal and flicker noise

constraints.

6. If the fabrication process allows capacitors over active devices, compare the size of C1

to the input devices, and increase C1 until it covers the amplifier.
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7. After the initial design is complete, refine the design with simulation.

3.4 Analog-to-Digital Converters

Low-power ADCs are a critical part of many applications, and as such, several examples

exist in the literature that are suitable for use in a biosignal-data-acquisition systems.

Based on recent published work (such as [62–64]), ADCs with a figure-of-merit (FoM)

on the order of 100 fJ/conv-step are readily achievable in the 8 to 12 bit range. Fig. 3.14

shows a survey of ADCs against different FoMs. As technology and circuit architectures

improve, the FoM also improves. In the future, FoMs ten times lower may be commonplace

[64]. Power increases linearly with speed, and exponentially with resolution (and often faster

than 2B). Area is primarily determined by the resolution.

If we assume FoM is determined by reviewing comparable ADCs with different resolu-

tions and speeds, we can estimate the power of the ADC that meets our requirements. Our

estimated power PADC is given by

PADC = FoM · Fs · 2B (3.18)

where B is the number of bits, and Fs is the sampling rate.

A low FoM indicates that little energy is expended for each conversion of a sample.

Lines of constant FoM are also shown on Fig. 3.14. Several ADCs achieve a performance

close to 100 fJ per conversion-step, with two close to 10 fJ/conv-step. We use 100 fJ/conv-

step as our benchmark for estimating ADC power. ADC area can also be estimated from

the survey (not shown). The most power efficient ADCs use the successive approximation

register (SAR-ADC) architecture. Their high power-efficiency, moderate speed, and medium

resolution match the needs of biosignal acquisition.

For an 8-bit, 24 kSa/s, 100-fJ/conv-step ADC, the power consumption is expected to be

614 nW; we will use this as our benchmark ADC power. Silicon area ranges from 0.021 to
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Figure 3.14: Plot comparing of recent low-power ADCs.

0.24 mm2; for the estimates below we use 0.03 mm2 (A0) and 8 bits (B0) as our baseline

ADC area.

The area (AADC) of the ADC is modeled by Equation 3.19.

AADC = A0 × 22·(B−B0) = 0.03× 22·(B−8) (3.19)

As we alluded to earlier, it may be beneficial to only use the ADC when a spike is

detected. The system could be configured to wait for a spike to be detected, enable the

ADC and digitize the spike, and enter a standby mode after the spike data is captured.

That is, the ADC is operated with a duty cycle of less than 100%. With this mode of

operation, the ADC digitizes the input with an average rate of rD samples per second (which

must be less than Fs). The exact role of rD will be explained later in Section 3.5.4. A buffer is
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also included to drive the ADC and store samples in an analog memory (See Section 3.5.3.3).

The power of this buffer is given by Pbuf. It is assumed that the standby power of the ADC

is 10% of the ADC when sampling at full speed, and that the buffer does not dissipate power

in standby mode. The power averaged over operational and standby modes is given by Eq.

3.20,

PADC,eff = (0.9 · FoM · 2B + Pbuf/Fs) · rD

+0.1 · FoM · 2B · Fs (3.20)

where Fs is the sampling rate (24 kSa/s) and rD is the detection rate in samples/s, defined

later in Eq. 3.22.

We also assume that interleaving the ADC with up to 64 channels has little impact on

the overall performance.

In this section we have described a mathematical model for the power and area of the

ADC as a function of resolution B and sampling rate Fs. We will use this model to help

determine the system power.

3.5 Spike Detection

One question that arises when optimizing spike-detection hardware is whether spike detection

should be performed in the analog or digital domain.

Many existing systems perform spike detection in the analog domain (e.g., [35,43,49,65–

67]), while others choose to perform spike detection in the digital domain (e.g., [68–70]). The

assumption is that analog spike detection is more power-efficient since the ADC would only

need to run when spikes are detected, whereas in digital detection the ADC must be running

constantly, since detection occurs only after sampling (Fig. 3.15). However, performing

computations in the digital domain has the advantage that digital-design techniques, such

as voltage scaling and interleaving, can be employed that are not trivial in the analog domain.

50



A BPF

ADC

Spike
Detection

a

EN

ADC
Spike

Detection

b

Figure 3.15: Block diagram for (a) digital spike detection and (b) analog spike detection.

In this section, we attempt to determine whether analog or digital spike detection is more

efficient, with respect to both power and area. Circuits are simulated in 65-nm bulk CMOS,

with thick oxide 250-nm transistors used for some parts of the analog designs.

3.5.1 Spike-Detection Algorithms

Because many algorithms for spike detection exist, we chose to analyze a couple of algorithms

with different computational complexities. Implementing the algorithms in the analog or

digital domain will result in different power and area for the complete system. The preferred

algorithm will have lower overall power and/or area.

The two chosen algorithms are absolute-value thresholding and nonlinear energy operator.

In absolute-value thresholding, a threshold is applied to the absolute value of the waveform

x(n) [71]. In the nonlinear energy operator (NEO) method [71–74], a threshold is applied to

the NEO ψ:

ψ[x(n)] = x2(n)− x(n+ 1) · x(n− 1). (3.21)
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Figure 3.16: Outputs of spike detector for each mode of operation. In Pulse Output mode,

a pulse is outputted each time the waveform crosses the threshold. In Spike Output mode,

spike samples are outputted for optional feature extraction and clustering.

3.5.2 Modes of Operation

We also chose to analyze each algorithm for two different modes of operation (Fig. 3.16).

In Pulse Output mode, the spike detector only outputs a pulse when the signal (|x| or ψ)

crosses the threshold. Most published analog spike detectors operate in this mode. It is the

simplest mode, since it requires neither memory nor an ADC (in the case of analog spike

detection). However, in applications that require single-unit activity, spike sorting must

be performed following spike detection. If only spike times are outputted, then the spike

shapes are lost, making subsequent spike sorting impossible. Therefore, the second mode of

operation (Spike Output) that we analyzed is transmitting 1-ms-worth of waveform samples

before the threshold crossing (the “spike preamble”) and 2-ms-worth of waveform samples

after the threshold crossing. Although 3 ms is much longer than a typical spike, this provides

a sufficient number of samples for subsequent alignment.
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3.5.3 Analog Spike Detection

Before we consider different implementations of the analog spike detectors, we will briefly

consider the signal levels. With this information, we are able to specify tolerable degradation

due to the analog circuit (such as noise and offsets). As shown in Fig. 3.15, the detector

circuitry is placed after amplification. Typical extracellular spike amplitudes are in the 50

to 500 µV range, with worst-case noise of 10 µV. With a preamp voltage gain of 100 V/V,

the noise at the detector and ADC input is 1 mV. The analog detector must keep its own

electronic noise and offset voltages below this level. While this is achievable with modest

power, we compare the analog and digital implementations to determine which is optimal.

We will only describe the dominant power and area contributors; clock power, for instance,

was found to be negligible at the operation frequency of neural spike recording. The supply

voltage assumed is fixed at 1 V for the analog portions. Area calculations are based on total

active MOSFET area (W × L) and capacitors with a specific capacitance of 1 fF/µm2.

3.5.3.1 Absolute-Value Threshold Detector

Absolute-value thresholding can be performed with a clocked comparator and a switched-

capacitor (SC) difference circuit. The primary error is the comparator offset voltage. Smaller

offsets can be achieved by increasing the device area at the cost of power dissipation. The

other significant error source is charge injection from the switches.

The comparator shown in Fig. 3.17 draws approximately 0.176 µA from a 1-V supply.

The gate area of the input devices is 10 µm2, yielding a random offset of 10.8 mV (in 65-nm

CMOS). Assuming an ADC full-scale of 500 mV, this offset would result in a 10% error in

the desired threshold. However this could be overcome by circuit techniques such as auto-

zeroing, or by increasing the device area further. The area is dominated by the sampling

capacitor C1 (500 fF), which leads to an area estimate of 500 µm2.

A reference circuit is also required. The supply current of approximately 0.2 µA would
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Figure 3.17: Schematic for a low-power dynamic comparator.

drive the input capacitance of the comparator in its comparison phase. For absolute-value

thresholding, two comparators are used to detect positive and negative crossings. The total

power of an analog spike detector is 2×0.18 + 0.2 = 0.54 µW.

3.5.3.2 Analog Nonlinear Energy Operator (NEO) Detector

Because analog continuous-time differentiation is prone to being noisy, its time constant is

sensitive to process variation, and for a more direct comparison to the digital implementation,

we implement the discrete-time version of the NEO as shown in Eq. 3.21.

In order to implement Eq. 3.21 we require an analog multiplier and analog memory. The

algorithm can be implemented with the circuit shown in Fig. 3.18. After the first half of
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Figure 3.18: Implementation of the Non-Linear Energy Operator algorithm in the discrete–

time analog domain.

the clock period (Φ1), a new sample is buffered in the C1 array. During Φ2, the products

x2(n) and x(n − 1) · x(n + 1) are computed from the corresponding capacitor voltages. A

commutator after the capacitor array routes the correct sample to the multipliers, and the

routing is updated each clock cycle. The products are stored on C2. Auto-zeroing of the

multipliers is achieved during Φ2, with C2 implementing Output Offset Storage (OOS). This

allows smaller devices to be used in the multipliers to save area.

Because the linear input range of a typical Gilbert multiplier is on the order of ±50 mV,

only limited gain can be applied to the signal. Hence thermal noise of the multiplier may

cause excessive degradation of the SNR. Simulations show that 140-nA tail current for the

multiplier is sufficient for 150-µV noise (1.5 µV at the preamplifier input).

The power of the combined circuitry (2 multipliers and 3 amplifiers, plus comparator) is

2 × 0.14 + 3 × 0.1 + 0.38 = 0.96 µA. The analog NEO circuit requires a total of 5 pF of

capacitance, so the total area is approximately 5000 µm2.
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Figure 3.19: Implementation of analog memory for storing the signal before a spike has been

detected.

3.5.3.3 Analog Memory

In some applications, it is advantageous to retain the samples before the spike detect event.

This is easily done in a digital implementation, but it somewhat difficult to do in an analog

implementation. One solution, by Anelli [75], is shown in Fig. 3.19. In other applications

that do not require the spike preamble, e.g. Ppulse Output mode, we can ignore this power

and area.

Setting the storage capacitance (C1) as 100 fF meets kT/C (thermal) noise requirements.

The total area is computed as 24 samples × 100 fF × 1 fF/µm2 × 2 (for a differential

implementation) yielding a total area of around 4800 µm2.

After a spike is detected, the memory must be read by the ADC. A buffer, in the form of a

flip-around track-and-hold, provides good linearity. To estimate the power of this amplifier,

we assume a two-stage OTA. Behavioral simulations show that gm1 = 0.564 µS is required
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to meet the settling time requirement. The total opamp current, assuming gm2=3gm1 is then

8 × (gm1+gm2) × VT/κ = 180 nA. Our estimate for the total amplifier is 1.5× the area of

the compensation capacitors (2 pF), for a total area of 3000 µm2.

3.5.4 Effect of SNR and Firing Rate on Analog Detection Power

Since SNR and firing rates can vary significantly across neural recordings, it is important to

check the validity of this analysis for a wide range of SNRs and firing rates. For example, if

the rate of detection increases as SNR decreases due to false alarms, then the power of analog

spike detection would also increase due to more frequent use of the ADC. If so, there could

be a range of SNRs and firing rates for which digital detection is more efficient. Therefore,

we estimated the variation in power consumption for the analog detection hardware with

SNR and firing rate.

We generated data with the neural signal simulator used in [45] for SNRs ranging from

about 15 dB to -10 dB. We then performed spike detection using both algorithms, using the

automatic threshold calculation techniques described in [45], and calculated the probability

of detection (PD) and the probability of false alarm (PFA) at each SNR. These rates were

then used to calculate the detection rate rD in samples per second for each SNR using Eq.

3.22:

rD = max{rN · l · PD + (FS − rN · l) · PFA, Fs}, (3.22)

where rN is the firing rate of the neurons (which can be the sum of firing rates of multiple

neurons) in spikes per second and l is the length of a spike in samples per second. rD can

be thought of as the number of samples that the ADC must convert/quantize per second.

Note that the maximum value that rD can take is Fs. This equation was used in Eq. 3.20

to calculate the power of the ADC.

Figure 3.20 shows the variation in power of the analog implementation of NEO with
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Spike Output mode. The detection rate, and therefore the power, remain constant across

SNRs until around -5 dB, when the number of detections (power) begins to decrease. This

is due to the adaptive nature of the threshold, which is based on a multiple of the mean of

the NEO, and which, therefore, increases as the noise increases. Figure 3.20 also shows that

the power increases linearly with the firing rate, due to the linear increase in detection rate

with firing rate, with a maximum variation in power of about 600 nW. (Similar results, not

shown, were obtained for the absolute-value method.) To simplify the analysis, we use an

operating point of 1.3-dB SNR and 100-Hz firing rate when presenting the results in Section

3.5.6.

3.5.5 Digital Spike Detection

In order to obtain power and area estimates for the digital implementations of the spike-

detection algorithms, both the absolute-value threshold and the NEO detection methods

(Spike Output and Pulse Output modes as explained earlier) were implemented in the

Matlab/Simulink-based design environment. Each of the above algorithm was implemented

with 2, 4, 8, 16 and 32 channel data-stream interleaving to determine a power-area efficient

implementation. The RTL was auto-generated from the Simulink model using the Synplify

DSP blockset. Power and area estimates were then obtained from the synthesis reports for

these designs when synthesized with DC compiler from Synposys. Simulated neural data

was input to RTL simulations to obtain switching activity estimates for the design. These

estimates were then annotated into the synthesis flow to obtain power estimates for the

digital spike-detection module.

Based on technology evaluation results for our design in 65-nm bulk CMOS process, we

chose to operate the circuits at a reduced supply voltage of 0.4 V. Since standard-cell libraries

are characterized for the nominal supply voltage (1 V), we specified a higher clock frequency

for synthesis in order to account for the increase in delay due to supply voltage scaling. We
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Figure 3.20: Variation in power of analog NEO spike detection, Spike Output mode, due to

changes in SNR and neuronal firing rates. (Note: Firing rate can represent the sum of firing

rates from multiple neurons.) The variation was calculated by subtracting the minimum

power from each value. The power remains constant across SNRs until about -5 dB, at

which point it begins to decrease, and the power increases steadily with firing rates, until

saturation, when the ADC is operating at its maximum 24 kSa/s.

also evaluated the reduction in leakage power due to supply voltage scaling for basic gates.

The switching power and leakage power numbers obtained from synthesis were thus scaled

down to their corresponding values at 0.4 V to make comparisons for power consumption.
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Figures 3.21 and 3.22 show the area and power per channel versus the number of channels

interleaved. Interleaving usually increases the power due to increased switching activity of

logic and a similar number of registers switching at a faster rate. However, if the supply

voltage is scaled, savings in the leakage power of logic and the increase in switching power

are comparable. Thus, the total power consumed per channel versus degree of interleaving

has a global minimum. From the above results we find 8-channel interleaving to be a power-

area efficient implementation for the detection algorithms considered. Also we observe that

area and power for Spike Output mode are significantly higher than those for Pulse Output

mode. This is due to the additional logic and memory required to provide the detected spikes

(with preamble) as the output. It should be noted that we use a register-based memory for

our design to guarantee functional operation at 0.4 V. However, use of a custom low-voltage

memory would reduce the power difference between Pulse Output and Spike Output mode

implementations. We find that variation in SNR and firing rate does not cause significant

variations in the power consumed by the DSP. This result is expected, due to two major

reasons: a) SNR and firing rate do not affect the ADC power for digital detection b) SNR

and firing rate only affect the switching power of a portion of the DSP, which does not cause

a significant change in the total power of the DSP scaled to 0.4 V. Hence, we expect the

results of the above analysis to be valid for a wide range SNR and firing rates.

3.5.6 Results

Figure 3.23 shows the power per channel and area per channel for each algorithm and output

mode. The first row of plots corresponds to power per channel, and the second row of plots

correspond to area per channel. Solid red (blue) lines correspond to the total power/area

per channel of analog (digital) detection, including the power and area of the ADC. The

solid red (blue) line can be decomposed into the power/area of detection alone, indicated by

the dashed red (blue) line, and the ADC power when operating at the maximum rate (Fs),

indicated by the dashed black line.
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Figure 3.21: Power estimates obtained from Synopsys for NEO, Spike Output mode. The

total power (Ptotal) is divided into switching power (Pswitching) and leakage power (Pleakage).
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Figure 3.22: Area estimates for NEO, Spike Output mode, obtained from Synopsys as a

function of the number of channels interleaved.
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The power for analog detection in the pulse mode is constant across bit resolution since

there is no need for the ADC. In the case of the Spike Output mode, the power for analog

detection does increase with bit resolution, since the ADC power increases. However, the

increase in analog detection power due to the ADC is less than that for digital detection.

This is because the ADC is only active for a limited time in case of analog detection. As

for the area tradeoff, there is a crossover between analog and digital implementations in the

case of Pulse Output mode. At higher bit resolution, the area for analog implementation

is less since the area of the ADC dominates. However for the Spike Output mode, the area

of digital detection is less than that of the analog detection.

From these plots we can conclude that digital spike detection is better for resolutions of

up to 8 or 9 bits, depending on the algorithm used. Until this point, the ADC power is small.

Hence the saving in ADC power achieved by analog detection does not outweigh the lower

power cost of the DSP implementation. However, since the power and area of the ADC scale

exponentially with bit resolution, the ADC starts to dominate at higher resolution. The

analog detection, therefore, is more power-efficient in this domain.

3.5.7 Summary of Spike Detection

We have compared the power consumption and the area of analog and digital spike detection.

We demonstrated that power is not a strong function of SNR or firing rates; thus, the results

shown for the operating point 1.3 dB, 100 Hz are valid across a wide range of SNRs and

firing rates. We also showed that the tradeoff between digital and analog detection is a

strong function of the bit resolution. For lower resolutions, digital implementations are

more efficient, whereas for higher resolutions, analog implementations are more efficient.

Therefore, the choice of whether to implement hardware spike detection in the analog or

digital domain is dependent on the desired resolution.
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Figure 3.23: Power per channel and area per channel for each algorithm and output mode.

The first row of plots corresponds to power per channel, and the second row of plots cor-

responds to area per channel. Solid red (blue) lines correspond to the total power/area

per channel of analog (digital) detection, including the power/area of the ADC. The solid

red (blue) line can be decomposed into the power/area of detection alone, indicated by the

dashed red (blue) line, and the ADC power/area when operating at the maximum rate (Fs),

indicated by the dashed black line. For each algorithm and output mode, a crossover point

exists between analog and digital, indicating that for lower resolutions digital spike detec-

tion is more power/area- efficient, while for higher resolutions analog spike detection is more

power-efficient.
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3.6 Digital Signal Processing

There are two aspects worthy of discussion regarding digital signal processing. First, how

much signal processing should be performed before transmitting data off-chip? Second, how

is the chosen system implemented efficiently?

To address the question of on-chip processing, several options are considered. Three cho-

sen options for spike processing are (1) detection and alignment only, (2) feature extraction,

and (3) clustering. Implementation of detection has been previously discussed, but we revisit

it in the context of the whole system.

In conventional circuits, either the signal is passed directly to the transmitter, or only de-

tected spikes are sent. Feature extraction and clustering can be performed off chip. Clearly,

passing the raw data to the transmitter requires the least hardware, has the highest fi-

delity since the waveform is uncompressed, but also has the highest datarate. Detection

and alignment requires additional hardware with the advantage that the datarate can be

reduced. Feature extraction and clustering requires even more hardware to implement, and

substantially reduce the datarate. Lossy compression such as adaptive differential pulse code

modulation (ADPCM) can also reduce the data rate of the raw data down to 65%, while

maintaining a correlation with the original signal of 99.9% [76,77].

Because both feature extraction and clustering greatly reduce the amount of data required

to represent a spike, and hence can reduce the power required for the transmitter since fewer

bits are transmitted.

Table 3.3, which is based on data published by Karkare [78], shows the power consumption

per channel for each of the different options, with their corresponding data rate of processed

signals per channel. Immense reductions in data rate can be achieved, which in turn eases

the load on the transmitter. The amount of data compression is dependent on the spike

firing rate. Table 3.3 assumes a firing rate of 100 Hz, a 10-bit ADC, and 48 samples/spike

[79].

65



Table 3.3: DSP Power for Different Levels of Processing

µW/chan kbps/chan

Raw Data 0 300

Spike Detect 1 48

Feature Extraction 4 10

Clustering 8 0.4

With these power estimates, we will be able to calculate the required data rate that the

transmitter must support. With the datarate, we will also be able to estimate the power of

the transmitter.

3.7 Wireless Transmitter

When designing a wireless telemetry link, one must consider the physical limitations of the

transmitter, the channel (i.e., the medium between the transmitted and the receiver), and

the receiver. A full wireless-link budget, which calculates the required transmitter power

level, starts at the output of the transmitter and ends with demodulated data from the

receiver. An expression for the required transmitted power level as a function of the critical

physical limitations involved, is given by

PTX =
(2 · k · T ·RS) ·NF · SNR ·BW

PL ·RFM ·GRX ·GTX

. (3.23)

FSPL =

(
4 · π · d
λ

)2

(3.24)

For a 10 m link at 2.4 GHz operation, the path loss is 66dB. Assuming a receiver sensi-

tivity of -70 dBm and antenna gain of 10 dB, the required output power from the headstage

is -14 dBm.
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The first group of terms represents the noise generated by a 50-ohm resistor (RS) in a

matched RF system, which takes into account the impedance at the antenna. The second

term is the noise figure NF , which is the ratio of the noise at the output of the receiver

to the noise contribution due to a 50-ohm resistor passed through the receiver. The third

term is the SNR required for decoding the digital data with a bit-error rate of less than

10−6. Although this error rate may seem high, conventional coding strategies can be used

to reduce the error rate to a level required for a given application. The last term of the

numerator is the bandwidth of the communication channel. The terms of the denominator

involve critical components of the communication channel. The path loss PL, represents the

reduction of transmitted power as a function of distance from the transmitter. Rayleigh-

fading margin RFM takes into account the changes in received power due to the constructive

or destructive overlap of signals arriving from multiple paths (i.e., multipath interference).

The transmitter antenna gain GTX takes into account the impact of the antenna design on its

ability to efficiently transmit power to the channel. Similarly, the receiver antenna gain GRX

takes into account the impact of the design of the receiver antenna on its ability to receive

power from the channel. This term will also include gain achieved through multiple-input-

multiple-out (MIMO) strategies when used, although we expect that in this application there

will be only a single input (i.e., SIMO) [80].

Ultimately, the multipath issue imposes a limit on the maximum data rate that can be

achieved for a given communication channel. A transmitted signal may take multiple paths

to the receiver. As a result, there is a spread in arrival times of a given transmitted signal at

the receiver. The symbol length is the name given to the duration of time used to transit a

unique representation of a bit pattern. The symbol time must be significantly greater than

the spread in arrival times. Typically, a factor of 10 is considered to be acceptable. The delay

spread (i.e. the rms value of arrival times at the receiver) of a typical room is approximately

20 ns [81, 82]. Given the 10× design rule-of-thumb, the symbol length must be at least 200

ns (i.e., 5× 106 symbols/s). By encoding two bits into each symbol, the maximum data rate
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is 10 Mbps at the cost of transmitter complexity.

Numerical values for each component of the link budget are given in Table 3.4 (which

shows Eq. 3.23 in log form) and are either directly calculated or taken from literature. The

result of all of this analysis, is that the minimum power delivered by the transmitter to

the channel must be at least 12.6 µW (-19 dBm). Of course, this value is dependent on the

selection of the modulation scheme, the design of the individual components, and the specific

needs of the application. Implementing an efficient transmitter to deliver the required output

power is still an active research topic.

A 2.4 GHz transmitter has been previously published by Zolfaghari for use in an IEEE

802.11b or Bluetooth radio with a power dissipation of 12 mW, and an output power of

0 dBm. The maximum datarate of this system is 11 Mbps, which is close to our desired

maximum data rate of 10 Mbps. Since our required output power is much lower, the bias

current of the transmitter can be substantially reduced. Compared to the original 0 dBm

output power, an output power of -19 dBm would require a reduced output voltage swing

that is 1019/20 times smaller. This raises the possibility that the power amplifier could be

removed, and the antenna driven directly from the mixer. Without a heavy load on the

mixer, the switches, which load the local oscillator (LO) buffers could also be reduced. The

power of the transmitter is composed of 7.5 mW in the power amplifier, 3.75 mW in the LO

buffers, and 0.75 mW in the upconversion mixer. We estimate that the power dissipation

could be reduced by removing the power amplifier and decreasing the power of the LO buffers

by 50%, to yield a transmitter power of 2.6 mW. Based on this estimation, we claim that

3 mW for the transmitter is feasible.

3.8 Conclusion

The optimization of several key blocks of a wireless telemetry system has been described. The

optimization of amplifier noise and area, as a function of capacitor size and bias current, has
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Table 3.4: Simple RF Link Budget

Noise Power -174 dBm 50 Ω at 300 K per Hz

Receiver NF 8 dB Conservative Estimate

Required SNR 10 dB BPSK @ BER=10−6

Bandwidth BW 70 dB 10 MHz

Path Loss PL 62 dB n = 2, d = 10m, f = 2.4GHz

Rayleigh Fading RFM 20 dB

RX Diversity -15 dB

Required PTX -19 dBm

been described. State-of-the-art ADCs have been reviewed, and shown to have sufficiently

low enough power dissipation to be compatible with a low-power biosignal telemetry system.

Digital signal processing, at both the algorithm and circuit level have been discussed, along

with strategies for minimizing power (i.e. selecting an NEO algorithm to maintain reliable

spike detection, voltage scaling, and pipelining with time-interleaving).
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CHAPTER 4

System Design

4.1 Introduction

We now have estimates of all the blocks that are used in constructing a wireless biosignal

recording system. In this chapter, we will estimate the minimum achievable system power.

4.1.1 System Candidates

The block diagram of a wireless biosignal telemetry system using digital detection (i.e. detec-

tion is post-ADC) in shown in Figure 4.1. A signal from an implanted electrode is measured

relative to a reference electrode. The reference electrode is connected at a point which min-

imizes interference and allows the desired signal to be observed with the best fidelity. The

electrodes connect to a recording system that will process the data.

For this analysis, our targeted application is neural spike recording, and one of the first

Amp BPF ADC Det. FE Clust.

MUX TX

Signal 
Electrode

Reference 
Electrode

+

-

Output

Figure 4.1: Schematic diagram of a wireless biosignal telemetry system, showing options for

different output signal modes. Digital detection is shown.
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questions is whether analog or digital detection should be used. Spike amplitudes range

from implanted electrodes range from 50 µV to 0.5 mV, with background noise in the range

2 µV. This corresponds to an SNR of 13 dB for a minimum-level signal, To ensure the ADC

quantization noise does not degrade performance, a margin of 20 dB is added, and the ADC

SNR should be greater than 33 dB An automatic gain loop is assumed that will adjust the

peak signal levels to stay within the ADC full-scale and a dynamic-range margin of 6 dB is

added. The final ADC minimum SNR is then 13+20+6=39 dB, or approximately 7 bits.

Since the resolution is low, it is preferable to use digital detection.

The system can be broken in three main sections: (a) the analog front-end (AFE) (b)

signal processor (SP) and (c) transmitter (TX). Figure 4.1 shows that all system modes

require an analog front-end amplifier and bandpass filter (BPF). The purpose is to boost

the signal level and reject unwanted signals. The power and area of the AFE is primar-

ily determined by the noise and bandwidth requirements of the target application, and is

essentially independent of the TX and SP design. On the other hand, design of the TX

and SP are linked. A high-power complex SP that reduces the datarate allows a reduction

in power of the TX. Therefore from a system optimization perspective, we must trade off

signal processing complexity with transmitter datarate to minimize the overall power and

area. The output of the system can be taken from one of the following: AFE, ADC, de-

tector, feature extractor, or clustering processor. Blocks that are not used can be disabled

to save power, or not included in the final system implementation, e.g. if the raw data is

taken from the AFE, the ADC and subsequent blocks could be powered down. For a given

mode, the corresponding output is routed via a MUX to the TX. Note that the MUX is not

required if the hardware is fixed; it is shown here to conceptually illustrate different modes

or could be used to provide flexibility on actual hardware. We label the five possible modes

as: (a) analog waveform (b) digital raw data (c) spike detection (d) feature extraction and

(e) clustering. We will review each case qualitatively with respect to power and area, before

calculating the totals. Chapter 2 also described similar systems that have been published,
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and we will use these as benchmarks later in this chapter. For the system proposed in this

dissertation, we will use estimates presented in Chapter 3 for our optimized blocks.

4.1.1.1 Output Modes

In the first case (a), the analog signal after the BPF can be transmitted directly using an

analog transmitter, e.g., a FM transmitter. Since the output signal is an analog modulation

it is more sensitive to noise and interference and an inefficient use of bandwidth compared to

digital modulation. However when the environment is free of wireless interference and only

a small number of channels are transmitted, this is a viable option. The original waveform

can be faithfully reproduced up to the fidelity of the amplifier and transmitter. We use this

case as the baseline for comparison with other cases.

The next case (b), takes the output of the ADC and transmits the uncompressed raw data.

This is similar to case (a), except now the analog waveform is sampled in time and quantized

to a level of 8 to 12 bits. The sampling process causes aliasing which can corrupt the desired

signal, but can be reduced by the improving the selectivity of the BPF and/or increasing the

sample rate. Quantization also introduces additional noise into the signal path and is reduced

by increasing the resolution, i.e. the number of bits. Increased selectivity, sample rate, and

resolution increases the power and area of the BPF and ADC. However once the signal is

digitized, digital error-correction can be applied in the TX to improve the robustness of the

transmitted data to unwanted interference. Furthermore, compression algorithms can be

applied to the digital data to reduce the datarate required. Lossy compression methods such

as ADPCM can be used reduce the data rate to 35% while maintaining a high correlation

with the original signal. While it may seem counterproductive to add additional circuitry

(i.e. area and power), we claim that the more robust transmitter performance offsets the

cost of digitization and signal processing. In this work, we do not use ADPCM, and instead

use specialized algorithms.
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Both (a) and (b) continuously transmit the signal. However, if the aim is to detect the

firing of a neuron instead of recording the complete spike, a binary detector can be used

to detect the neuron firing. This is case (c). Detection can capture the samples associated

with a spike by creating a recording window around the time that a spike was detected.

The “worthless” noise between spikes can then be discarded. This reduces the data rate,

and can reduce the overall power of the system if the transmitter does not need to transmit

while waiting for a spike detection event. In contrast to the previous two cases, the power

now depends on the firing rate of neurons. Spike detection can be performed before or after

the ADC. Analog detection, i.e. before the ADC, allows the ADC to be in a low power

mode when there is no spike to digitize and save overall power. A spike detector may be

triggered by a signal level increase compared to the time-averaged noise level. Since there a

time delay between the start of a spike waveform and detection event, the waveform must be

buffered so that data before the detection event is not lost. The buffer memory is trivial to

implement with digital circuitry in low power and area, but analog memory implementation

has a significant overhead. This overhead makes analog detection less attractive depending

the difference between (a) the power required for analog detectors with buffering and (b)

operating the ADC and digital detector. This was discussed in Section 3.5, where it was

concluded that digital detection is preferable when the ADC resolution is less than 10 bits.

Additionally, once the signal has been digitized, complex digital signal processing algo-

rithms can be implemented on chip. These algorithms have been investigated by Gibson and

Karkare in [45]. Instead of general-purpose compression algorithms, spike-processing-specific

algorithms can be used to achieve higher compression and lower data rates. After spike de-

tection, feature extraction (case d), computes key parameters of a spike waveform such as

amplitude and arrival time. However it is not possible to reconstruct the original waveform

after feature extraction, but the key parameter are chosen such that sufficient information

is computed to discern different spikes, i.e. spikes originating from different neurons. The

amount of data reduction can be substantial as a spike may be sampled at 24 kS/s with a
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resolution of 10 bits over 3 ms, which results in 720 bits per spike. Feature extraction may

reduce this to a small number of parameters requiring a total of 150 bits resulting in 21% of

the data required for spike detection. The actual transmitted data rate is dependent on the

frequency of spike detection, while in data streaming mode it is independent of firing rate.

The additional cost of performing feature extraction on chip must be weighed against the

reduced power consumption of the transmitter.

Finally we discuss case (e). Clustering requires additional processing, and is the most

complex scheme considered in this dissertation. One way to interpret clustering is that each

detected spike waveform is compared to a set of waveforms, and a best match is determined

from a relatively small set. The reference waveforms may be continuously updated, or trained

by automatic or manual means before data collection begins. Hence clustering typically

requires a large amount of memory to store the reference and detected waveforms. The data

required for each classified waveform can be as low as 6 bits which results in a very low data

rate, and would allow recording from thousands of channels while keeping the transmitter

data rate within practical limits.

4.1.1.2 Transmitter Operation

The maximum allowable datarate for the transmitter is limited by the bandwidth, power, and

bit error rate. In an effort to make transceiver design practical, 10 Mbps datarate has been

chosen, based on the fact that bit error rate (BER) becomes unacceptable beyond 10 Mbps.

This 10 Mbps limit can be overcome with more complex transmitters and receivers, but is

considered beyond the scope of this work [80].

The selected signal is routed to the transmitter. In the case of analog waveform mode, the

transmitter constantly transmits data. If the waveform is digitized, the data can be buffered,

which then allows the transmitter to be enabled only when needed. This can be employed in

cases (b)-(e). As previously discussed, a maximum transmitter data rate of 10 Mbps is used.
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The recorded neural signals are buffered, and a packet of data transmitted every TLATENCY.

It is assumed that the power amplifier is able to be enabled instantaneously, and hence its

power is proportional to datarate. The synthesizer, on the other hand, has a start-up time,

as well as time operating when data is being transmitted. The transmitter start-up time is

given by TSTART. Hence there is time before each packet transmission that the synthesizer

is wasting power, i.e. not transmitting bits. It is assumed the latency is much larger than

the startup time. In each period TLATENCY, the system will buffer an average of NBUFFER

bits of data. The amount of data depends on the selected mode. The time TSYNTH that the

synthesizer is on is given by TSTART+NBUFFER/(10 Mbps). The duty cycle of the synthesizer

is TSYNTH/TLATENCY, from which we can determine average power. It should be noted that

when the data buffer fills rapidly enough the synthesizer will remain on as there will not be

enough time to restart it before the next packet. Each recording channel generates 192 kbps

for raw data, and can be reduced depending on the mode as shown in Table 4.1, which in

turn reduces the duty cycle of transmitter operation.

Table 4.1: Data rates for different modes.

Mode Raw Data ADPCM DET FE CLUST

kbps 192 64 48 10 0.4

Power 0 1 1 4 8

From this discussion, it is clear that using compression reduces the power required for

the transmitter and that increasing the latency reduces overhead of the synthesizer startup

time. Since ADPCM uses similar power to DET, but has a higher data rate, we will exclude

ADPCM from further analyses.
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Figure 4.2: Different system configurations for wireless neural recording: (a) raw data (b)

spike detection (c) digital signal processing.

4.1.1.3 System Summary

Published systems were summarized in Chapter 2. Based on these systems which had from

4 to 128 channels, we will estimate their power and area as the number of channels increases

up to a maximum channel count of 1000. In the next section, we will examine these systems

in more detail. We will then construct our system using the blocks described in Chapter 3,

and compare the proposed system to the existing work as a function of channel count.

4.2 System Power Estimates

Now that we have power estimates for the main blocks of the wireless telemetry system, we

can calculate the power dissipation for each system mode. Three different DSP methods are

compared for the system.

The next step is to determine whether it is beneficial to use compression while taking

power and digital-system complexity into account. To do this, we will calculate the power

for each option to determine which has the lowest power.

The system power is determined by summing the contributions from the AFE, one of the
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DSP implementations, and TX. The power for the AFE is based on noise specifications and

is constant for all modes. The power dissipation and data compression of the DSP increases

across the detection, feature extraction and clustering modes. The improved compression

allows a reduction in TX data rate. The block power is summarized in Table 4.2.

Table 4.2: Power for each block.

Block Power Unit Note

AFE 6 µW/chan 20 kHz, 3 µV noise

DSP Det. 1 µW/chan

DSP FE 4 µW/chan

DSP Clust 8 µW/chan

Synth 3 mW 500 µs startup. TX blocks

UPX 1.5 mW are shared over all channels.

To calculate the power for a system with a given number of channels, we add the per-

channel entries for the AFE and DSP multiplied by the number of active channels. The

aggregate data rate from all channels can be calculated based on the average data rate per

channel. With this data rate, the duty cycle and power dissipation of the transmitter can

be calculated. A latency of 1 ms is used for these calculations. The total system power is

then the sum of these components.

The first case that we examine is raw data mode (Fig. 4.2a). The calculations are shown

graphically in Figure 4.3. In this mode, we can transmit up to 50 channels before hitting

the 10 Mbps limit. For a small number of channels, the power is slightly lower than 2 mW.

The synthesizer is enabled 500 µs before the transmitter. When 25 channels are active the

transmit time is also approximately 500 µs, i.e. the complete transmit window of 1 ms is

used. For more than 25 channels, it is necessary for the synthesizer to be on constantly,

and as such, the average power of the synthesizer does not increase as more channels are

77



0 20 40 60 80 100
Number of Channels

0 2 4 6 8 10 12 14 16 18

0

1

2

3

4

5

6

Analog FE

Synth

PA

System

Aggregate Data Rate [Mbps]

Po
w

er
 [m

W
]

DSP Raw Algorithm
Transmit Latency 1 ms
Tstart 500 uS

Figure 4.3: Raw streaming.

added. This is the reason for the reduced slope with more than 25 channels. With 192 kpbs

per channel, a 10 Mbps transmitter can support approximately 50 channels of uncompressed

data. For less than 2.5 Mbps, the synthesizer power, due to its slow start-up, is significant

compared to the UPX power. This can be reduced by using a faster-start-up synthesizer or

a longer buffer (leading to longer latency). The total power for 52 channels is 5.8 mW, or

110 µW per channel.

Introducing spike detection and only transmitting spike data (Fig. 4.2b) reduces the

amount of transmit data from 192 kbps to 48 kbps. Figure 4.4 shows that the DSP power

required is negligible and the total power is reduced to 54%. Since the detection DSP power

is low, the lower data rate provides significant power saving in the transmitter. With this

approach, 100 channels is now possible using a 4.8-Mbps link. In this analysis a 100 Hz spike

detection rate was assumed. Lower spike rates would provide even greater power savings as

only detected spikes are transmitted.
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Figure 4.4: DSP-detection mode.

Similarly, using feature extraction and clustering reduce the overall system power com-

pared to raw data mode. In the feature extraction case, both the DSP and TX power are

low which indicates that feature extraction is an excellent choice for integration. While clus-

tering can further reduce the data rate, the DSP power now approaches the power of the

AFE. Hence it is recommended that clustering should only be used in situations that require

very high number of channels. An exception would be devices that need the identification of

single neuron activity on the implanted device; future brain-machine interfaces may require

such functionality.

With the estimates given so far, it is clear that the synthesizer is a bottleneck in achieving

even lower power. If this startup time of the synthesizer can be eliminated, the power would

follow a curve similar to the power amplifier, i.e. pass through the origin of our plots. Two

approaches are to develop a synthesizer that can “hold” its state while going into a low-power

state and return quickly to stable operation, or use an oscillator in open-loop mode, with
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Figure 4.5: Power dissipation of feature extraction and clustering modes.

digital control to set the frequency. For simplicity, the second option is considered here.

There are three issues that must be considered (a) an open-loop oscillator has high close-

in phase noise, and this must not overwhelm the signal that we transmit (b) the startup

time must be much shorter than we currently have and (c) the receiver be able to track

the frequency drift due to the open-loop operation. Figure 4.6 shows the performance an

LC oscillator that dissipates 1 mW from a 1.2 V supply. The measured phase noise of the

oscillator yields a 42 dB SNR, which indicates that phase noise will not limit performance

for a BPSK signal that requires 6 dB SNR for demodulation. The startup time, due to

thermal noise in this simulation, shows that the output is stable in approximately 40 ns

after the bias current is applied. The receiver design to track the open-loop oscillator is not

considered here. The use of such an oscillator could reduce the power of the overall system

substantially.

Another question that arises is can high (i.e. 60 GHz) frequency transmitters be used to

transmit the full raw-data stream and avoid the need for compression. Leeson’s equation (Eq.

4.1) indicates that with the same modulation data occupying frequency offsets up to ∼10 MHz

(centered around the carrier) the power of the oscillator must be increased. This is because
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Figure 4.6: Performance of open-loop LC oscillator.

if the carrier frequency f0 is increased, the power Pavs must be increased to compensate. For

this reason, it is preferable to keep the transmitter frequency low. However, other constraints

such as the presence of interference also play a role in the selection of frequency.

L(fm) =
F · k · T
2 · Pavs

[
1 +

(
f0

2 · fm ·QL

)2
]

(4.1)

where L(fm) is the phase noise in dBc/Hz, F is empirical constant for the oscillator topology,

Pavs is the average power through the resonator, f0 is the carrier frequency, fm is the frequency

offset from the carrier, and QL is the quality factor of the resonator.

The final question is can we increase the latency of the transmitter, so that the synthesizer

could remain off for longer durations. Longer buffering requires more memory, and we can

estimate how much memory we could add before it becomes 10% of the analog frontend

power. The leakage current of memory in 65-nm CMOS is approximately 104 pA. With

6 µA in the analog frontend, 104 pA leakage current in a standard-cell memory block, and

8 bits per sample, ∼7200 samples can be stored within a reasonable power limit. At 24 kS/s,

this would provide a buffer depth of 300 ms. This could reduce the synthesizer power

significantly compared to a latency of 1 ms. With a 2.6 µm2 standard-cell memory layout,

the area of memory to hold 7200 samples would be 0.15 mm2. Unfortunately, this is similar

to the area of the analog frontend, and it may be prohibitive to use this technique.
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4.3 Conclusion

We have shown a system design for wireless telemetry that enables a large number of chan-

nels. Previously published work is shown in Fig. 4.7. Analog implementations [33, 83] are

suitable for low channel counts, and have higher power compared to the other systems.

Spike-detection systems [35, 43] show high channel counts and/or lower power per channel.

Finally, spike sorting [41] demonstrates the potential (and even necessity) for increasing

local-digital-signal processing to facilitate a low-power system. The estimates for different

modes of our proposed system are also shown in the figure. Four cases (a) raw digital data,

(b) spike detection, (c) feature extraction, and (d) clustering as shown. All realizations yield

lower power than the corresponding published work.
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Figure 4.7: Implemented Wireless Neural Recording Systems: Michigan [33, 43], Utah [35],

UCSC [41], TBSI [42]. Designs are not normalized (for bandwidth, input referred noise,

range, and features.)
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CHAPTER 5

Implementation

5.1 Introduction

Using the design methodology described in Section 3.3.8, the schematic complete amplifier

is shown in Figure 5.1. The design is implemented in TSMC’s 65-nm CMOS process with

mixed-signal device process options (MIM capacitors and unsalicided polysilicon resistors).

Stage 1 is the largest amplifier since it requires the lowest noise. Stage 2 and 3 use the

same amplifier core, but stage 2 does not use ac coupling to maximize the gain. Stage

3 is ac coupled to prevent the dc offset saturating the amplifier. Stage 4 is included for

testing, and operates from a higher supply to allow a source follower output to drive large

off-chip load capacitance. The output of each stage is also connected to an output pad, so

that debugging could be done if necessary, as well as adjusting the frequency response with

external components. Biasing is not shown. For testability, all bias currents are externally

generated. This allows debugging, as well as the ability to use external sources to adjust the

bias and investigate the noise-power trade-off of the amplifier.

The schematics of the amplifiers are shown in Fig. 5.2 and Fig. 5.3. Current source

loads were added instead of pure resistive loads to allow a higher gain. Unfortunately, the

noise of the current sources was not measured before tapeout and adds a significant amount

of noise, but the noise was still close to the original target of 2.5 µV.

Simulation shows that the total noise for the amplifier is 3.2 µV integrated over a band

from 100 Hz to 10 kHz with a supply current of approximately 8 µA. The ac voltage gain
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Figure 5.2: Stages 1–3 of the designed amplifier.
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Figure 5.3: Stages 4 of the designed amplifier.

is 58 dB to the output of the 3rd stage, and 78 dB after the buffer. Simulated distortion is

less than -51 dBc.

The layout of the amplifier is shown in Fig. 5.4.

5.1.1 Test PCB

A schematic diagram of the printed circuit board used for testing is shown in Figure 5.5. A

low-frequency source is used to generate a sinusoidal input. A resistive attenuator is used

to reduce the amplitude to the micro-volt level required for the amplifier. The amplifier is

driven signal ended at the positive input terminal with the other terminal grounded, which

is similar to how it would be used in practice. A commercial differential amplifier is used to

convert the output to a single-ended signal before driving the spectrum analyzer. Since the

spectrum analyzer has a 50Ω input impedance, a resistive divider is also used at the output

of the SE-to-differential stage to keep the load resistance above the minimum required.

86



Figure 5.4: Layout of a cascaded open-loop amplifier topology. Total area is 0.2 mm2.
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Figure 5.5: Schematic diagram of the printed circuit board and test equipment.

5.2 Measurement Results

The frequency response and gain for the amplifier are shown in Fig. 5.7. The gain is

approximately 5 dB lower than simulated. It is unclear why the gain is lower, but gain

depends on bias current, but measuring the total supply current accurately was difficult.

A parasitic gate leakage current in the ESD diodes of approximately 5.5 µA was estimated

from simulation (Fig 5.6). Since the gain is on the order of (gm · RL)4, an error of 15% in

the 17 µA supply current measurement could account for this gain discrepancy, and could

be affected by the ESD diode leakage. However, the absolute gain of the circuit was not a

primary concern. The noise however matches reasonably well with expectation. Noise was

integrated up to 10 kHz, with the assumption noise higher than this frequency would be

removed by filtering in the DSP.

The noise versus supply current is shown in Fig. 5.8. The bias currents in the first three
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Figure 5.6: Supply leakage current through M1 of approximately 5.5 µA.

stages were adjustable. Reducing the bias currents causes the voltage gain to reduce and the

noise increase. The output stage bias was kept constant. It is expected that the noise should

be proportional to the square of the supply current. However, with a constant current in the

output stages, there is a minimum power Pmin that the amplifier dissipates. As shown in Fig

3.5, the amplifier noise that can be tolerated, based on SNR considerations, varies with the

signal conditions. With a weak spike signal, the amplifier would operate at minimum noise,

and consequently, highest supply current of 17 µA. With a stronger signal, the allowable

noise is also higher, which corresponds to lower power. For the prototype amplifier, Fig. 5.8

shows the noise-power tradeoff.

In a large array of amplifiers, with a range of spike amplitudes, there can be power savings

overall if each amplifier current is set optimally. For instance, if all electrodes received a weak

signal, then all amplifiers would be required to operate at maximum current. On the other

hand, if a range of amplitudes were present, e.g. having a Gaussian distribution with a mean

and standard deviation of 400 µV and 100 µV respectively, the overall power would be 62%
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Figure 5.7: Measured gain and noise compared to simulation, for 17 µA supply current.

lower. This is illustrated in Fig. 5.9.

The third harmonic distortion is better than -35 dBc when measured at the spectrum

analyzer, although simulation shows this is limited by the output buffer. Without the output

buffer, distortion is better than -41 dBc (Fig. 5.10).

5.3 Summary

The performance of the amplifier is compared in Tab. 5.1. This chapter described the

implementation of a low-power amplifier for neural spike recording. It was implemented in a

65 nm CMOS process with a 1 V supply. The supply current is adjustable from 2 to 17 µA,
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with corresponding input referred noise of 2 to 10 µV, and gain from 24 to 73 dB. The active

area is 0.17 mm2. The adjustable bias current would allow power dissipation to scale with

received signal strength, which could potentially save power over a large array of amplifiers.

Sharing the bias generation between several blocks could reduce the power dissipation as

well.

Finally, the amplifier is compared to other recent work in Table . Since NEF does

not account for supply voltage, the comparison uses Normalized Power to compare power

efficiency. Normalized Power estimates the power required for each amplifier, and scaled for

different bandwidth and input referred noise, and is calculated by

Normalized Power = (9.5 kHz/Bandwidth) · (Noise/2.5 µV)2

. This work was fabricated in a process that allows dense integration of digital circuitry, but

also has high flicker noise, which leads to large device area for the amplifier. Both open-loop

topologies show similar power efficiency, but the best efficiency is observed for an inverter-

based topology. The implemented amplifier also has higher gain which is implemented by
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Figure 5.10: Third harmonic distortion comparison between simulation and measurement.

additional gain stages, which increase the noise and power.
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Author Wattanapanitch Chang Rai This Work

Ref [59] [84] [85]

Noise 3.1 1.7 1.8 2.5 µV

Area 0.16 0.043 0.062 0.17 mm2

Power 7.60 1.00 12.5 17.2 µW

Bandwidth 5.3 0.292 11.5 9.5 kHz

VDD 2.8 2.5 1.0 1.0 V

Technology 0.35 µm 0.25 µm 0.13 µm 65 nm

Topology OTA Open-Loop Inverter Open-Loop

Voltage Gain 40.0 40.0 38.3 74 dB

Normalized Power 20.9 15.0 5.35 17.2 µW

Noise PSD 42 85 18 21 nV/rtHz

Table 5.1: Performance comparison with other amplifiers.
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CHAPTER 6

Conclusions

Circuitry similar to that described in this work is necessary to address significant research

problems in neuroscience, ranging from understanding neural processes to repair brain func-

tion, to designing brain-machine interfaces to aid amputees and stroke victims. Before such

major issues can be solved, it is necessary to have a low power system which will not impair

the health or mobility of human subjects, and allow long term measurements to be taken.

High density, state-of-the-art micromachined electrodes allow observations from a large num-

ber of electrode implant sites, and this work elevates the efficiency of associated electronics

to match this capability.

State-of-the-art systems have significant limitations, either in terms of area or power dis-

sipation, which subsequently limit the total number of channels supported, and thus limited

their effectiveness for neuroscience research. To find the lowest power system several system

configurations were considered, and the building blocks for these systems were analyzed.

With advances in CMOS technology and low-power design techniques, the improved perfor-

mance of the digital sections of the system have been previously demonstrated. The analog

front-end and transmitter were the focus of this work since these areas have yet to match

the performance of the other blocks. Furthermore, the reduced data rate provided by the

DSP can be leveraged to use a lower power transmitter. The noise of the analog amplifiers

was minimized for a given power budget, and a methodology was described for the amplifier

design, which highlights the key trade-offs in terms of area, power and noise, that can be used

for optimization by the system designer. A prototype 1 V amplifier was also fabricated to
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measure performance in a 65-nm CMOS process that avoided the high-supply voltage com-

monly used in previous designs. The low-supply-voltage operation allows integration with

low-power digital signal processing on a compact single-chip design. The amplifier noise-

efficiency performance was comparable to other recently published amplifiers. The range of

signal and noise conditions over a large number of channels can be incorporated into the

system-level optimization by setting each amplifier current to meet the required SNR while

using minimum power. The programmable bias current feature was also included in the

prototype.

Finally, with power estimates of all the blocks in the system, the different system config-

urations were analyzed to determine whether raw data, spike detection, feature extraction

or clustering was the most power efficient. This study focused on neural spikes, and found

that a system that uses feature extraction yields the lowest overall power, can support 400

channels with a practical wireless link, while consuming approximately 8 mW. This is an im-

provement on existing work, while also providing flexibility for different modes, and provides

significant capability for future neuroscience research.
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APPENDIX A

A Short Summary of EKV Model

A.1 IS Definition

The characterization centers on the following normalization:

IS =
2

κ
· µ · Cox · V 2

T ·
W

L
(A.1)

Next the Inversion Coefficient IC, is defined as:

IC =
ID

IS

(A.2)

When IC is equal to 1, the device is in moderate inversion. Strong and Weak inversion are

approximately occur when IC is >10 and <0.1 respectively. It is also common to characterize

inversion level by the current density Iρ. Inversion level will be described as IC or current

density, as the two terms are convey the same concept, but have different mathematical

definitions.

Iρ = ID/W =
2 · µ · Cox · V 2

T

κ · L
· IC (A.3)

A.2 Transconductance

The transconductance of the device can be approximated by:
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gm =
2 · κ · ID

VT

· 1

1 +
√

1 + 4 · IC

= 4 · µ · Cox · VT ·
W

L
· IC

1 +
√

1 + 4 · IC
(A.4)

The transconductance approaches its asymtotic values given by equations A.5 and A.6.

Note that A.6 overestimates transconductance in strong inversion (2·κ is greater than unity),

but in practice such high levels of IC are not achievable.

gm =
κ · ID

VT

(A.5)

gm =
√

2 · κ ·
√

2 · µ · Cox ·
W

L
· ID

=
√

2 · κ · gm,square law (A.6)

A.3 Capacitance

The capacitance of a MOSFET is given by:

Cg,strong = Cgs,strong =
2

3
· Cox ·W · L (A.7)

Cg,weak = Cgs,weak + Cgb,weak = (IC + 1− κ) · Cox ·W · L (A.8)

Shown in (Figure A.1), a series combination of Cg,strong and Cg,weak can be used to ap-

proximate the capacitance from weak to strong inversion. [86]

Using equations A.7, A.8, and A.2, the input capacitance Cin is:
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Cin = Cg,strong‖Cg,weak

=
κ · ID · L2

µ · V 2
T

· IC + 1− κ
IC · (3 · IC − 3κ+ 5)

(A.9)

Cin

Cg,strong

Cg,weak

Figure A.1: Interpolation of Strong and Weak Inversion capacitances.

Additionally, the gate-to-source overlap capacitance can be included as Cov:

Cov = Cgs,overlap ·W =
Cgs,overlap

Cox

· κ · L · Id

µ · V 2
T · IC

(A.10)

A.4 Saturation Voltage VDS,sat

The FET is considered to be in saturation mode when Vds > Vds,sat [87], where

Vds,sat = 2 · VT ·
√
IC + 0.25 + 3 · VT. (A.11)

With this definition, gm can be expressed as

gm =
2 · ID

n · (Vds,sat − 2 · VT)
. (A.12)
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Figure A.2: Small-Signal model of a MOSFET.

A.5 Modelling of Transistors versus IC

Most modelling of MOS transistors focuses on strong inversion. However, low-power applica-

tions often benefit from subthreshold operation. The following section briefly describes the

EKV model [86] that approximates device behavior from weak inversion to strong inversion.

This model will be used to search for an optimal operation point.
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Symbol Description Value Units

k Boltzmann Constant 1.380×10−23 J/K

T Temperature 310 K

Cox Oxide Capacitance (350nm CMOS) 4.5 fF/µm2

µ Charge Carrier Mobility – µm2/V/s

µN Mobility in N-type Material 350×108 µm2/V/s

µP Mobility in P-type Material 100×108 µm2/V/s

γ Channel Noise Coefficient 1/2 to 2 –

κ Subthreshold Swing 0.7 –

n Subthreshold Slope (=1/κ) 1.4 –

VT Thermal Voltage @ 37◦C (= k · T/q) 26.8 mV

q Electron Charge 1.609×10−19 C

W Transistor Width – µm

L Transistor Length – µm

IS Normalization Current 1.104 ×W/L (NMOS) µA

ID Transistor Drain-to-Source Current – µA

IC Inversion Coefficient ≈0.1–10 –

Iρ Current Density (= ID/W ) ≈1–100 µA/µm

KCAP Capacitor Density 1 fF/µm2

KFET (Input Device Area)/(Amplifier Area) 1/3 –

Table A.1: Constants and Variables used to characterize Amplifiers.
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