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Abstract The term “discrete element method” (DEM) in
engineering science comprises various approaches to model
physical systems by agglomerates of free particles. While
shapes, sizes and properties of particles may vary, in most
DEM models, particles are not confined by constraints, but
subject to applied forces derived from potential fields and/or
contact laws. This general approach allows for widespread
use of DEM models for physical phenomena including gas
dynamics, granular flow, fracture and impact analysis. How-
ever, its characteristic feature, combining particle restraints
and forces into applied forces, does not only provide for flex-
ible adaption of DEM to different physics, but also creates
the most limiting restriction: Evaluation of the applied forces
for each particle is computational expensive restraining the
time sequence and sample size for numerical analyses. As an
ansatz to circumvent this obstacle for a class of DEM models,
we propose a model order reduction method based on coher-
ency in the dynamics of particles. While initial flexibility
of DEM is conserved, computational effort can be reduced
significantly.

Keywords Discrete element method · Karhunen–Loève
transform · Model order reduction · Hybrid adaptive model

1 Introduction

The discrete element method (DEM), often also referred to
as molecular dynamics (MD) or Distinct Element Method,
has become a well established method for the numerical
simulation of mechanical systems. Introduced by Cundall

P. Glösmann (B)
Department of Mechanical Engineering, University of California,
Berkeley, USA
e-mail: gloesmann@tu-harburg.de

[1] to investigate the dynamics of granular material, the
DEM is currently used to model such phenomena as gran-
ular settlement, e.g. [2,3], stability of assemblies [4–7] or
granular/structure interactions in material handling processes
[8–10]. In recent publications the DEM is expanded to anal-
yses of solid structures, ref. e.g. [11]. The research interest
focuses on three main topics: impact, fracture and stress in
homogeneous or compound material. Current studies cover
impact behavior of automobile glass [12], fatigue or fracture
of specimen under various stresses [13–16], and also stress
in structures under large deformation [17] or loads [18].

Despite the multitude of applications, further spread of the
DEM is restrictively coupled to progress in computational
power: Typically, DEM models are based on the assump-
tion of unrestraint single particles subject to potential fields.
This approach allows for very simple formulations of the
equations of motion (5) and (6) and thus for flexible models.
However, the evaluation of the right-hand sides of Eqs. (5)
and (6) can become very numerical expensive, depending on
the range and choice of governing potentials U . Up to date,
the numerical costs limit size and time interval of numerical
analyses by DEM, Ref. [19]. Approaches to circumvent these
limitations either depend on homogeneous material proper-
ties combined with hexagonal closest packing (hcp), the “unit
cells” as introduced by Tavarez et al. [20], or imply a priori
model restrictions by using a hybrid FEM/DEM model, e.g.
[21].

As an ansatz to loosen this constraint for a class of DEM
models, we propose a model order reduction method based
on coherency in the dynamic behavior of particles. While
initial flexibility of DEM is conserved, computational effort
can be reduced significantly.

This paper is outlined as follows: At first, in Sects. 2 and 3
we present the basic concept of DEM and introduce the KLT
in the formulation of model order reduction. Then, in Sect. 4
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we discuss our new approach for a hybrid DEM model. In
Sect. 5 we present an example for the numerical simulation
of a reduced order DEM model. Finally we summarize our
findings.

2 A simple DEM model

Discrete element method models vary as much as the objects
of analyses. However, there are a few common properties to
characterize the DEM: structures that may represent bodies
or fluids are not regarded as continua but as assemblies of
discrete elements. As a result of this approach, forces act
between discrete elements and are evaluated individually for
each element. This results in a system of (formally) decou-
pled, more or less stiff equations of motion (5) and (6). There
are two major branches of DEM that differ in the formulation
of particle–particle forces: (1) Models that assign attracting
and repulsing potential fields to each particle, merely used
to model dynamics on atomistic scale1 and (2) Models that
apply elasto-plastic contact laws, employing more complex
neighborhood/contact detection algorithms, mainly used at
macro-scale level.

In this paper, we focus on the procedural aspects of the
DEM evaluation scheme itself. Therefore, we choose a sim-
ple DEM model: we apply spherical elements governed by
potential forces. We represent specimen or particular regions
of interest �, with boundary ∂� by assemblies of particles
pi ∈ �, with coordinates {xi yi zi } ∈ � ∪ ∂�.

Let us use a cartesian inertial reference frame K0{O , e1,
e2, e3} to describe the particle coordinates xi := [xi yi zi ]T

and the angles of rotation ϕi := [φi θi ψi ]T of particle pi

about global axes e1, e2 and e3 at xi . Furthermore, we collect
the coordinates of all particles by the vector of generalized
coordinates

q := [
x1 x2 . . . xN ϕ1 ϕ2 . . .ϕN

]T
. (1)

2.1 Equation of motion

If we agree that particles are subject to potential field forces,
we can use Lagrange’s method to derive the equations of
motion. Let us express Lagrange’s function by

L = Tt + Tr − V, (2)

with components

Tt =
N∑

i=1

mi xT
i xi

2
,

1 also referred to as “Molecular Dynamics”

Tr =
N∑

i=1

ωT
i Ii · ωi

2

denoting the kinetic energy of (t)ranslation and of (r)otation,
and the potential energy V . Note, that the potential energy
V can be calculated by superposition of individual potentials
Ui j as

V (x1, . . . , xN , ϕ1, . . . ,ϕN ) =
N∑

i=1

N∑

j=1, j �=i

Ui j (di j ), (3)

where di j := ‖xi − x j‖ is the distance between particles i
and j. Then, from Lagrange’s principle

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0, i = 1, 2, . . . , N . (4)

we directly obtain Newton’s and Euler’s equation for rigid
bodies

mi ẍi =
N∑

j=1, j �=i

−∂U j

∂xi
=

N∑

j=1, j �=i

fi j , (5)

Ii · ω̇i + ωi × Ii · ωi =
N∑

j=1, j �=i

−∂U j

∂ϕi
=

N∑

j=1, j �=i

�i j , (6)

where i, j = 1, 2, . . . , N . This equation is the core of the
DEM and appears to be quite simple. However, evaluating
the individual particle–particle forces fi and moments �i is
the actual challenge of the DEM algorithms and is numeri-
cally very expensive. Since we focus on spherical particles,
we can disregard Eq. (6) and rewrite Eq. (5) in matrix repre-
sentation

q̈ = M−1 f, (7)

where M is the diagonal mass matrix and f is the vector of
resultant particle forces.

2.2 Particle forces

Neglecting contact problems, we are left with potential driven
particle–particle interactions. The most popular potentials in
the framework of DEM are Gravitational potential of two
masses, Coulomb potential as a result of electric charge, Har-
monic potential as in Hooke’s law, van der Waals potential
and the more complex Lennard–Jones potential, ref. e.g. [22].

The Lennard–Jones potential combines an attractive and
a repulsive part, where the repulsive portion is similar to van
der Waals potential

Ui j (di j ) = α ε

((
σ

di j

)n

−
(
σ

di j

)m)
, m < n (8)
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Fig. 1 Lennard–Jones potential Ui j versus particle distance
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Fig. 2 Lennard–Jones force fi j versus particle distance

whereα = 1
n−m (

nn

mm )
1

n−m and parameter ε describes the mag-
nitude of the potential, while σ determines the neutral dis-
tance such that d0 := dUi j

ddi j
|d0 = 0.

To demonstrate that our model order reduction proce-
dure holds under extreme nonlinear governing equations, we
chose Lennard–Jones potential for particle–particle forces

fi j (di j ) = 24ε
1

d2
i j

(
σ

di j

)6
(

1 − 2

(
σ

di j

)6
)

di j , (9)

with the choice of m = 6, n = 12 leading to d0 = 21/6 · σ and
ε = 200.2 Figures 1 and 2 display potential and force
vs. particle–particle distance di j , negative force values act
attractive, while positive values do the opposite. Since both
curves, potential and force, rapidly decay to zero as the
distance increases we can regard Lennard–Jones potential
as a short range potential. Provided our above mentioned
choice of parameters, the Lennard–Jones force has a range
of about 2.5 times the neutral distance. Thus, we can define a
“cut–off distance” dcut = 2.5·d0 and we can limit the number

2 A more general approach to potential fields and interacting particle
dynamics can be found in [24].

of considered particle–particle forces in the resultant force

fi ≈
C<N∑

j=1

fi j , j (i) ∈ { j | ‖x j − xi‖ ≤ rcut}, (10)

to C that is significantly smaller that the number of total
particles N .

2.3 Boundary conditions

It is quite common to apply periodic boundary conditions
when modeling systems with potential particle forces. This
is done by folding the configuration space in either direction
and bring them to connection. In order to model rigid bound-
aries and driving forces in addition to the “free particles”
p
i ∈ 
 ⊂ �, “constraint particles” p�i ∈ � ⊂ � are intro-
duced that bear the same potential as the free particles, but are
subject to holonomic constraints φ(x1, x2, . . . , xN , t) = 0.

2.4 Neighborhood lists

Taking into account the limited range of potentials Ui and
the fact that fi j = f j i , DEM routines evaluate a fraction of
all particle–particle forces, only. The calculation of forces is
guided by an array of “neighborhood lists” Li , that for each
particle pi lists its “left sided” neighbors. These particles
p j ∈ Li are chosen by

p j ∈ Li := {p j | ‖x j − xi‖ < dcut + dres

∧(x j < xi ) ∧ (y j < yi )

∀ j = 1, 2, . . . , N , j �= i}, (11)

to prevent redundant calculations. Additional distance dres is
a reserve distance that reduced the number of necessary list
updates by considering particle inertia.

However, despite these simplifications the evaluation of
the right hand side of (5) still involves a large number of
numerical operations for each time step, thus the need for a
further model reduction persists.

2.5 Numerical procedure

Although not obvious, due to (9) and (10) the equations of
motion (5) turn out to be rather stiff. Thus, we use a fourth
order multi–value implicit integration scheme in Gear’s
predictor–corrector notation, as proposed in [23]. The numer-
ical integration routine is executed in the main loop: Predic-
tor P → Error evaluation E → Corrector C, as per P(EC)m .

For first order differential system representation, the set
of derivatives for each particle pi is combined in

yi (n) = [
xi (n)x′

i (n)x
′′
i (n)x

′′′
i (n)x

′′′′
i (n)

]T
, (12)

123



378 Comput Mech (2010) 45:375–385

where we used x′(n) := d(x(n))/dn as abbreviation. For the
sake of clarity, in this section we neglect vector notation of
the particle position, write time in form of x ′

n := x ′(n) and
omit particle number index “i”. The integration routine of
the simple DEM model then is evaluated by

Predictor step P; we simply extrapolate the current par-
ticle position from its current state

yp =

⎡

⎢
⎢⎢⎢⎢
⎣

xn + x ′
nh + 1

2 x ′′
n h2 + 1

6 x ′′′
n h3 + 1

24 x ′′′′
n h4

x ′
n + x ′′

n h + 1
2 x ′′′

n h2 + 1
6 x ′′′′

n h3

x ′′
n + x ′′′

n h + 1
2 x ′′′′

n h2

x ′′′
n + x ′′′′

n h

⎤

⎥
⎥⎥⎥⎥
⎦
. (13)

Error evaluation E ; requiring the differential equation to
satisfy y′

n+1 = F(yn+1), which we find to equal

x ′′
p = 1

m
f (x p). (14)

Thus, we can determine the extrapolation error by

ε = 1

m
f (x p)− x ′′

p. (15)

Corrector C; the corrected estimate then becomes

yn+1 =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

x p + c0 ε h2

x ′
p + c1ε

h
2

f (x p)

x ′′′
p + c3 ε

1
3h

x ′′′′
p + c4 ε

12
h2

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(16)

with corrector coefficients c0, c1, c3 and c4.

3 Basics of KLT

We employ the Karhunen–Loève transform (KLT) in a
Ritz–ansatz to change the representation of the generalized
coordinates q, based on the reference frame K0{O, e1, e2,

. . . , eN } to a representation α based on KLT-basis 
 =
{ψ1,ψ2, . . . ,ψN }. Unless the coordinates q are uncorre-
lated α by far is the more efficient representation of the par-
ticle motion.3

Figure 3 gives an insight into the idea of KLT for a
two-dimensional configuration space: Let the ellipse resem-
ble data of dynamic system behavior of q(t). When posi-
tions are represented by tupel {y1, y2} according to reference
frame K0{O, e1, e2}, initially, it takes both coordinates for
a reasonable good description. Since coordinates y1 and y2

are correlated, statistically, we can find a reference frame

3 Various authors e.g. Meyer and Matthies [25] or Lall et al. [26] have
shown that the KLT-basis is the optimum basis with respect to least
squares measurement.

ψ 1

ψ 2

e1

e2

y2

y1

α2 α1
O

Fig. 3 Coordinate transform by KLT

K0{O,ψ1,ψ2}, that better fits the overall system behavior.
Thus, provided that the ellipse is flat enough, we may
represent the system motion by just the first coordinate α1

without significant loss of information, e.g. [27]. In this sec-
tion we briefly introduce the mathematical background of the
KLT procedure and refer to e.g. [28] for a detailed discussion.

The KLT is a signal-dependent transform which means
that basis
 depends on the process under investigation: q(t).
With discretized time t = n ·h and discrete particles the KLT-
expansion of particle coordinates can be expressed by

q̃(n) = q(n)− q̄ = F(n) =
N∑

i=1

αi (n) · ψ i , (17)

as superposed products of time-dependent coefficients αi (n)
and “characteristic functions” ψ i , while mean-value vector
q̄. Equation (17) equals

q̃(n) = �α(n) (18)

and the inverse transform

α(n) = �−1q̃(n). (19)

in vector/matrix notation, with α(n) := [α1(n)α2(n) · · ·
αn(n)]T and transformation matrix � := [ψ1ψ2 · · ·ψN ].
Following Karhunen [29], we can find characteristic func-
tions that incorporate coherent motion in a set of given data
of D = {q(1),q(2), . . . ,q(n)} if we require uncorrelated
coordinates

E{αi (n)α j (n)} = λ jδi j , i, j = 1, . . . , n, (20)

where λ j ∈ R ≥ 0 are unknown scalars and δi j is
Kronecker’s function. We are free to demand characteristic
functions ψ i to be orthogonal. Thus, assuming normalized
characteristic functions relation �−1 = �T holds for the
KLT-transform matrix. Inserting Eq. (17) into Eq. (20) and
considering orthonormal ψ i leads to

E{ψT
i qqTψ j } = λ jδi j , i, j = 1, 2, . . . , N . (21)

We can extract time-independent ψ i, j from estimate E{·, ·}
and regard q(n) as vector random process. Thus, Eq. (21)
turns into
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ψT
i Cqqψ j = λ jδi j , i, j = 1, 2, . . . , N . (22)

that is satisfied by solutions ψ i , i = 1, 2, . . . , N of eigen-
value problem

Cqqψ i = λiψ i , i = 1, 2, . . . , N , (23)

with covariance matrix Cqq = E{qqT } of q(n).
Equation (23) gives N eigenvalues λi and N eigenvectors

ψ i , that can be normalized by Gram–Schmidt procedure.
Basis 
 spans vector space Q ⊂ R

N of system dynamics q
completely. The KLT is a unique coordinate transform. Pro-
vided that all characteristic functions are considered KLT is
a lossless transform, as well.

In general, the motion represented by the few first weigh-
ing factors αi , i = 1, 2, . . . ,M 
 N (ordered by the eigen-
values λi ) along the corresponding characteristic functions
ψ i cover more than 95% of the power/kinetic energy of
the system. Therefore, truncating the sum of characteris-
tic functions at i = M in Eq. (17) we can approximate
N -dimensional system of equations of motion

q̈ = F(q, q̇, n) (24)

in coordinates of q by reduced M-dimensional system of
equations

q̈ ≈ �̃
T ¨̃α + q̄, (25)

where

¨̃α = F(α̃, ˙̃α, n) (26)

and reduced transform matrix �̃.
Let us note that D is collected by the “method of snap-

shots” as introduced by Sirovich [30] from representative
simulation data. Due to fixed D approximation quality of
Eq. (25) might change for certain perturbed systems. In their
recent publication Glösmann and Kreuzer [31] address this
issue and discuss a measure to monitor the performance of
reduced KLT-basis �̃.

4 A hybrid DEM–KLT model

In various problems, analyzed by DEM, e.g. impact or inden-
tation of solids, the actual region of high stress (potential
energy V ) and/or high velocity (kinetic energy T ), respec-
tively, is limited. Consequently, there is no need to model
the entire specimen/volume (entity � ∪ ∂�) in all detail.
Thus, allowing for some (controlled) simulation error, we
can separate discretized entity � ⊂ � ∪ ∂� into regions of
high interest, that are modeled by free particles p
i ∈ 
 and
regions of little interest, represented by groups of “cluster
particles” p�ki ∈ �k , where
 ⊂ �,�k ⊂ � and
∩�k = ∅
while �k ∩ � j = ∅ ∀ k �= j .

free particles pΘ

cluster particles pΓ

interface particles pΞ

constraint particles pΦ

Fig. 4 Cantilever beam modeled by hybrid DEM/KLT method particle
types

If we find coherency in the dynamics of all particles p�ki
of cluster k, we can represent their behavior by characteristic
functionsψki . Thus, we can express the motion of all cluster
particles p�ki of cluster k by a set of reduced order differential
equations of type (26).4

This ansatz leads to a reduced order hybrid DEM/KLT-
model, where the reduction is well controlled by the choice
of the portion of cluster particles out of the total number of
particles. The stronger the motion of the particles per clus-
ter is coupled, the less equations (degrees of freedom) per
cluster are necessary to describe its dynamics. Thus, locally
a decisive order reduction is achieved.

At this point, we have to formulate the interface equations
for displacements/forces between 
 and �k . This is an easy
task to do and the solution is quite intuitive: throughout the
model reduction, we never change the basic model itself. We
still model entity�∪ ∂� by discrete elements. However, we
partially project the coordinates qk of the cluster particles
p�ki onto the reduced KLT-basis of coherent particle motion

k for representation. Therefore, in order to couple cluster
particles and free particles, we have to identify those cluster
particles, that have an effect on the surrounding free parti-
cles. These we call “interface particles” p�ki ∈ �k ⊂ �k .
Figure 4 displays the different particle types, exemplarily,
at the hybrid DEM/KLT model of a cantilever beam that is
suspended at the bottom and driven at the top.

The reduced order hybrid DEM/KLT method involves the
following steps

1. Simulation of full order DEM-model; to obtain a refer-
ence data base D,

2. Identification of clusters �k /cluster particles p�ki ; regions
of little interest, subject to model order reduction,

4 Since we apply the KLT to cluster particles only, we omit superscript
“�” in vector of coordinates α and characteristic functions ψ .
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3. Identification of interface particles p�ki for each cluster k,
4. Calculation of characteristic functions ψki ; KLT-

procedure for all particles p�ki of each cluster k,
5. Model order reduction; setting up the hybrid equations of

motion of free particles p
i with reduced order equations
and of cluster particles p�ki of each cluster and

6. Approximation of macroscopic Lennard–Jones forces;
approximation of stiffness parameters kk for each clus-
ter k,

that are discussed shortly in the following.

4.1 Reference data base

The full size DEM-model simulation provides necessary data
base D to identify the regions of little interest �k and to cal-
culate the covariance matrices Cqq k for each cluster k.

4.2 Identifying cluster particles

Depending on the criterion, potential energy, kinetic energy
or a combination of both, the cluster particles can be iden-
tified by their contribution to the total energy of the system,
using

p�i =
⎧
⎨

⎩
pi |V̄ (pi ) ≤ µ · 1

N

N∑

j=1

V̄ (p j ) ∀ pi , p j ∈ �
⎫
⎬

⎭
,

p�i =
⎧
⎨

⎩
pi |T̄ (pi ) ≤ µ · 1

N

N∑

j=1

T̄ (p j ) ∀ pi , p j ∈ �
⎫
⎬

⎭
or

p�i =
⎧
⎨

⎩
pi |(T̄ (pi )+V̄ (pi ))≤µ · 1

N

N∑

j=1

(T̄ (p j )+V̄ (p j ))

∀pi , p j ∈ �
⎫
⎬

⎭
, (27)

respectively, where µ is a predefined constant factor, e.g.
µ = 10%.5

4.3 Identifying interface particles

The interface particles p�ki ∈ �k ⊂ �k can be separated from
the cluster particles by the entries of their neighborhood lists
Li . While the particles p�ki of one cluster k only refer to and
are referred to by particles of the same cluster, the interface
particle also are linked to particles outside of cluster k.

5 Here, symbol ·̄ resembles the average of · in time.
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Fig. 5 Approximations of Lennard–Jones force
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Fig. 7 Sketch of suspended
cantilever beam

4.4 Characteristic functions

The dynamic behavior of particles p�ki of each cluster
k can be described by one set of equations (26), using
reduced basis 
k . Each set of characteristic functions
{ψk1,ψk2, . . . ,ψk M } is calculated by Eq. (23), while covari-
ance matrix Cqqk is derived from the reference data base D.

4.5 Reduced order hybrid DEM/KLT equation of motion

Since we partition the entity of particles � of a DEM model
into free particles 
 and groups of cluster particles � (with
bounding interface particles), we also have to divide coordi-
nate vector q = [q
q�]T with q� = [q1q2 · · · qZ ]T , mass
matrix M = diag{M
M1M2 · · · MZ } and vector of gener-
alized forces f = [f
 + f� + f
 ] of Eq. (7), accordingly.

In addition, for each cluster k, we replace qk by Weighing
Factors αk , Eq. (17), using the most significant characteris-
tic functions �̃k = [ψk1ψk2 . . .ψk M ], only. Thus, we obtain
the reduced order hybrid DEM/KLT equation of motion
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Table 1 Sensitivity of reduced
order hybrid DEM/KLT model
�̃ simulation results against
different types of excitation
compared to full size DEM
model simulation results

aSingle core processor 1.73 GHz

Form Freq. (Hz) Ampl. (d0) Je tDEM ta
Hybr

(min) (min)

Sinusoidal 0.2 3 3.16e-2 32.98 6.88

Sinusoidal 0.4
√

3 3.17e-2 30.41 10.83

Sinusoidal 0.8 3
√

3 2.39e-2 23.16 9.87

Step �t = 0.1 s 3
√

3 1.92e-3 26.71 8.97

Triangular 0.65 3
√

3 1.25e-4 29.74 10.29
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q̈ ≈ M−1

 [f
 + f� + f�]

¨̃α1 = �̃
T
1 M−1

1 [k1(�̃1α̃1)+ f�1]
¨̃α2 = �̃

T
2 M−1

2 [k2(�̃2α̃2)+ f�2] (28)

...

¨̃αZ = �̃
T
Z M−1

Z [kZ (�̃Z α̃Z )+ f�Z ],

where f
 describes forces between free particles p
, f�
describes forces acting between free particles p
 and inter-
face particles p�, while f� resembles driving forces acting
between constraint particles pφ and free particles p
/inter-
face particles p�, respectively. Vectors kk describe the non-
linear macroscopic stiffness of cluster k. Vectors f�k contain
the coordinates of force vector f� acting on the cluster parti-
cles of clusters k.

This system of equations can be simplified further, if we
find that matrices Kk of linearized kk sufficiently approx-
imate the macroscopic stiffness of cluster k. Then, we can
rewrite Eq. (29) by

q̈ ≈ M−1

 [f
 + f� + f�]

¨̃α1 = �̃
T
1 M−1

1 [K1�̃1α1 + f�1]
¨̃α2 = �̃

T
2 M−1

2 [K2�̃2α2 + f�2] (29)

...

¨̃αZ = �̃
T
Z M−1

Z [KZ �̃ZαZ + f�Z ]

that can be integrated very efficiently.

4.6 Approximation of macroscopic Lennard–Jones forces

There are two important requirements for the DEM/KLT
method to significantly reduce the numerical integration
effort: Firstly, the KLT procedure is used to identify the most
significant characteristic functions (eigenforms) of cluster
motion and thus to reduced the degrees of freedom. Sec-
ondly and equally important, it is necessary to approximate
the macroscopic cluster stiffnesses by kk or even Kk , respec-
tively.

Macroscopic stiffness vector/stiffness matrix of each clus-
ter k can be derived from the reference data D by e.g.
least squares procedure. Figures 5 and 6 show least squares
approximation and error of Lennard–Jones particle forces by
polynomials up to third order. We can observe, that although
Eq. (9) is of 12th order, already polynomials of third order can
be used to approximate Lennard–Jones forces quite good.
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Fig. 10 Characteristic function ψ2

5 An exemplary study: dynamics of a cantilever beam

We study the dynamic behavior of a cantilever beam,
exemplarily. The cantilever beam is driven at its top end by
transverse sinusoidal excitation. Fig. 7 shows a sketch of the
set up.

We follow the hybrid DEM/KLT-method as proposed in
Sect. 4: at first we simulate the motion of the 2D-DEM model
for one period and store positions, velocities and resultant
forces of particles in a data set D. Then, we identify the
particles of minor interest. We choose cluster particles p�i
to comply with kinetic energy criterion of Eq. (27), where
µ = 1.5. Finally, we simulate the hybrid DEM/KLT model
and compare the results.

With initial conditions {q(0) = q0, q̇(0) = 0} and a sinu-
soidal excitation ( f = 0.2 Hz, a = 3d0, confer Table 1)
below the first eigenmode, the DEM model of the cantilever
beam shows the typical motion pattern. However, the DEM
model is capable of revealing the transient dynamics as the
transversal displacement wave travels from top to bottom, as
well.

5.1 Identified cluster particles

We use simulation data set D to select the cluster particles
and find that the p�i are located in a well defined area of
�. Moreover, the cluster particles form an interconnecting,
closed set (group without inclusions), as shown in Fig. 4.
While the total number of particles is 702, the number of
identified cluster particles is 468. Thus, we will keep 234
free particles p
i .

−5 0 5 10 15
0

10

20

30

40

50

60

x

y

Ψ
3

Fig. 11 Characteristic function ψ3
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Fig. 12 Characteristic function ψ4

5.2 Karhunen–Loève decomposition

The KLT decomposition of the displacements of the cluster
particles gives 468 eigenvaluesλ j and corresponding charac-
teristic functions ψ j . The first 12 eigenvalues are displayed
in Fig. 8. A logarithmic scale6 is necessary to differentiate
between eigenvalues number 4 and higher. Since eigenvalue
λ j represents the contribution of the corresponding charac-
teristic functionψ j to the system dynamics, it is obvious that
only a small number of characteristic functions is necessary
to capture the relevant cluster motion.

The characteristic functions ψ j represent 2 dimensional
empirical eigenforms of all cluster particles. Figures 9, 10,

6 The change in magnitude of the first two eigenvalues even exceeds
an exponential decay.
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Fig. 13 Characteristic function ψ5
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Fig. 14 Characteristic function ψ6

11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 show the 12 most
important characteristic functions corresponding to the first
12 eigenvalues of KL decomposition of data D. The circles
represent individual particles, while the lines are gradients
of particle motion.7 Thus, nodes and anti–nodes of vibration
modes can well be detected. Characteristic functionsψ1,ψ2,
ψ4,ψ5,ψ6,ψ8,ψ9 andψ12 are very similar to linear eigen-
modes of transverse beam vibration. In addition, KL decom-
position of the simulated motion of the DEM model also
reveils symmetric and asymmetric forms of combined trans-
versal and longitudinal motion, as captured by characteristic
functions ψ3, ψ7, ψ10 and ψ11.

7 The length of the lines represent the displacements qualitatively.
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Fig. 15 Characteristic function ψ7
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Fig. 16 Characteristic function ψ8

5.3 Reduced order hybrid DEM/KLT model

As mentioned above, we keep the 234 most important parti-
cles as free particles p
i and choose basis �̃ = [ψ1 ψ2 · · ·
ψ19] of the first 19 characteristic functions, derived from
data set D as ansatz functions to model the dynamics of the
468 cluster particles p�i . Thus, instead of initially 1404 dof
of the original DEM model, we now have a reduced hybrid
DEM/KLT model of 468 + 19 = 487 dof. We achieve a
model order reduction by almost 2/3.

Accuracy and sensitivity of reduced order hybrid
DEM/KLT model

To compare the simulation results of the reduced order hybrid
DEM/KLT model with the initial DEM model, we employ
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Fig. 17 Characteristic function ψ9
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Fig. 18 Characteristic function ψ10

performance functional

Je = 1

N T

T∑

n=1

‖q(n)− [q̃(n)+ q̄]‖ h (30)

as a measure, where h is the step size of the numerical inte-
gration.

Since it is a well known fact that characteristic functions
are case sensitive to changes in the system boundary condi-
tions, we investigate the performance of the reduced basis of
ansatz functions �̃ simulating the dynamics of the cantilever
beam applying different forms of excitation.

Table 1 provides an overview of the simulation settings
and results. It is obvious, that the reduced order hybrid DEM/
KLT model gives equally accurate results for all forms exci-
tation while consuming only about 1/3 of simulation time
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Fig. 19 Characteristic function ψ11
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Fig. 20 Characteristic function ψ12

compared to the original DEM model. Naturally, there are
limits to this procedure: These good approximations hold
under moderate excitation amplitudes, only. At 0.4 Hz and
at 0.8 Hz the cantilever beam shows resonance phenomena,
resulting in larger vibrational amplitudes. In these cases, due
to increased particle–particle distances the linear approxi-
mations of the Lennard–Jones particle forces become signif-
icantly inaccurate. Thus, in order to simulate larger particle
displacements by reduced order hybrid DEM/KLT model it is
be necessary, to approximate Lennard–Jones forces by non-
linear functions, as proposed in Sect. 4.6.
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6 Conclusion

The DEM is a well established procedure in molecular
dynamics and recently, becomes more and more popular
in structural mechanics. However, high computational costs
still limit DEM applications for nano–scale mechanical prob-
lems.

In this paper, we introduce a new algorithm to approximate
DEM models by reduced order hybrid DEM/KLT models. In
an exemplary study we show reduction in model order and
in simulation time of almost 2/3 by the hybrid DEM/KLT
method compared to the original, full-size DEM model.

The accuracy of the simulation results of the reduced order
hybrid DEM/KLT model is surprisingly high considering the
large reduction ratio in degrees of freedom. In this particu-
lar example, the choice of ansatz function for approximating
the highly nonlinear Lennard–Jones particle–particle forces
imposes limitations.

Nevertheless, we think that the reduced order hybrid
DEM/
KLT model approach may be a milestone on the path towards
atom–based nano-scale mechanical simulations.
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