
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Coordinated resource management for guaranteed high performance and efficient
utilization in Lambda-Grids

Permalink
https://escholarship.org/uc/item/18t6t09s

Author
Taesombut, Nut

Publication Date
2007

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/18t6t09s
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Coordinated Resource Management for Guaranteed High Performance

and Efficient Utilization in Lambda-Grids

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Nut Taesombut

Committee in charge:

 Professor Andrew A. Chien, Chair

 Professor Walter A. Burkhard

 Professor Chung-Kuan Cheng

 Professor Rene L. Cruz

 Professor George Papen

2007

Copyright

Nut Taesombut, 2007

All rights reserved.

iii

The dissertation of Nut Taesombut is approved, and it is

acceptable in quality and form for publication on microfilm:

Chair

University of California, San Diego

2007

iv

DEDICATION

For their caring, support and encouragement,

I dedicate this dissertation to all my family and teachers.

v

TABLE OF CONTENTS

Signature Page .. iii

Dedication ... iv

Table of Contents .. v

List of Figures .. vii

List of Tables .. xi

Acknowledgements .. xii

Vita, Publications, and Fields of Study ... xv

Abstract .. xvii

Chapter 1 Introduction ... 1

 1.1 A Novel Opportunity of the Lambda-Grid .. 1

 1.2 The Problem .. 3

 1.3 Previous Work .. 6

 1.4 Thesis Statement ... 8

 1.5 Approach ... 9

 1.6 Contributions... 11

 1.7 Dissertation Roadmap ... 13

 1.8 Acknowledgement .. 13

Chapter 2 Background and Related Work .. 14

 2.1 Lambda-Grid Architecture .. 14

 2.2 Grid Middleware ... 16

 2.3 Dynamic Network Provisioning Systems ... 19

 2.4 Resource Selection in Wide-Area Systems... 21

 2.5 Resource Specification Languages ... 24

Chapter 3 Thesis Statement .. 28

 3.1 Context .. 28

 3.2 Problem Definition.. 29

 3.3 Thesis Statement ... 32

 3.4 Acknowledgement .. 34

Chapter 4 System Design and Implementation ... 35

 4.1 Overview of Distributed Virtual Computer .. 35

vi

 4.2 Integrated Specification Language ... 38

 4.3 Application Resource Abstraction .. 45

 4.4 Integrated Resource Selection ... 52

 4.5 Prototype Implementation ... 67

 4.6 Summary ... 77

 4.7 Acknowledgement .. 78

Chapter 5 Evaluating Resource Selection Strategies .. 79

 5.1 Methodology ... 79

 5.2 Selection Quality and Cost.. 91

 5.3 System Lambda Utilization and Throughput .. 97

 5.4 Summary ... 100

Chapter 6 Network Information Sharing Challenges and Impacts 101

 6.1 Information Sharing Challenges ... 102

 6.2 Network Information Models ... 103

 6.3 Methodology ... 108

 6.4 Impact of Intra-domain Factors .. 114

 6.5 Impact of Inter-domain Factors .. 120

 6.6 Summary ... 124

 6.7 Acknowledgement .. 126

Chapter 7 Case Studies with Geosciences Applications ... 127

 7.1 Collaborative Data Visualization for Earth Sciences................................... 127

 7.2 Problem, Challenges and Approach ... 129

 7.3 Experimental Setup .. 132

 7.4 Experiment Results .. 135

 7.5 Summary .. 139

 7.6 Acknowledgement ... 140

Chapter 8 Summary and Future Work .. 141

 8.1 Summary .. 141

 8.2 Implications.. 143

 8.3 Future Work ... 145

Appendix ... 149

References ... 152

vii

LIST OF FIGURES

Figure 1-1: Separate Management of Network and Grid Resources. An Application

Sequentially Contacts Grid Middleware and Network Services for Resource

Allocation and Private Network Configuration .. 8

Figure 2-1: Physical Architecture of a Lambda-Grid ... 15

Figure 2-2: A Sample RSL Specification that Describes the Resource Needs of a Job 24

Figure 2-3: Example ClassAd Specifications: (a) An Application Request and (b) A

Resource Description .. 25

Figure 2-4: Example Redline Specifications: (a) An Application Request; and (b)

Resource Descriptions .. 25

Figure 2-5: A Sample SWORD Query Describing Application Resource Needs 26

Figure 2-6: A Sample vgDL Resource Specification for a Loosely-Coupled Group

of Compute Clusters ... 27

Figure 4-1: DVC Integrated Resource Management Architecture 36

Figure 4-2: The BNF Description of the DVC-ISL Resource Specification Language 39

Figure 4-3: An Abstract Resource Configuration for Tightly Coupled Sets of

Compute Clusters .. 42

Figure 4-4: A Sample DVC-ISL Specification for Tightly Coupled Sets of Compute

Clusters ... 43

Figure 4-5: An Abstract Resource Configuration for a Multicast Group 44

Figure 4-6: A Sample DVC-ISL Specification for a Multicast Group 44

Figure 4-7: DVC Resource Abstractions Enable a Simple View of a Private Local

Distributed Computing Environment under a Single Security Domain 45

Figure 4-8: The DVC Virtual Namespace Simplifies Application Management of

Heterogeneous Resource Names and Aids Application Portability 49

Figure 4-9: The DVC Environment Provides Uniform Access to Distributed

Resources through Virtualization ... 50

Figure 4-10: DVC High-Speed Communication Architecture 51

Figure 4-11: Selecting Network and End Resources to Satisfy Application Needs 53

Figure 4-12: Description of the Separate Resource Selection Algorithm..................... 55

Figure 4-13: Description of the SA-based Combined Resource Selection Algorithm . 56

Figure 4-14: Functional Flow of the Top-down Hierarchical Combined Selection

Algorithm .. 61

viii

Figure 4-15: Description of the Top-down Hierarchical Combined Selection

Algorithm .. 61

Figure 4-16: Creating Abstract Networks at Different Hierarchical Levels with

Network Clustering ... 62

Figure 4-17: Partitioning the Verizon Global Network with Different Edge Weight

Assignment Methods .. 65

Figure 4-18: Pruning Resource Candidates and Solving the Simplified Selection

Problem at Different Hierarchical Levels ... 66

Figure 4-19: DVC System Software Architecture .. 68

Figure 4-20: Implementing the DVC Environment with a Group of Cooperative

Daemon Processes (DVC Manager and Ghost Managers) 70

Figure 4-21: Binding Remote Resources into the DVC Environment Using Globus

GRAM/GSI ... 72

Figure 4-22: Resource Binding Overhead as a Function of the Number of Resources 72

Figure 4-23: The DVC System Software Implementation Exploits the PIN/PDC for

Configuring a Private Optical Network across Domains 73

Figure 4-24: Comparison of the Transfer Rate between Different Transport

Protocols with and without the Wrapper Module with Varying Message

Size .. 76

Figure 4-25: Comparison of the Transfer Time between Different Transport

Protocols with and without the Wrapper Module with Varying Message

Size .. 76

Figure 5-1: A Resource Request for High-Performance Distributed Computing

Applications (ClusterSet(4,8)) .. 84

Figure 5-2: A DVC-ISL Resource Specification for High-Performance Distributed

Computing Applications (ClusterSet(4,8)) ... 84

Figure 5-3: A Resource Request for Collaborative and Remote Data Visualization

Applications (DataViz(N)).. 86

Figure 5-4: A DVC-ISL Resource Specification for Collaborative and Remote Data

Visualization Applications (DataViz(2)) .. 86

Figure 5-5: A DVC-ISL Resource Specification for a Content Delivery Request 88

Figure 5-6: Selecting a Set of Replica Servers from the End Resource Pool of the

Studied Lambda-Grid Configuration .. 89

Figure 5-7: Comparison of Selection Cost and Quality with Different Algorithms

Using DataViz(N) with Varying Request Complexity: a) Selection Time; b)

Success Ratio; c) Resource Quality and d) Application Lambda Distance 93

ix

Figure 5-8: Comparison of Selection Cost and Quality with Different Algorithms

Using ClusterSet(C,N) with Varying Request Complexity (C,N):

a) Selection Time; b) Success Ratio; c) Resource Quality and d) Application

Lambda Distance .. 95

Figure 5-9: Comparison of Selection Time with Different Algorithms Using

DataViz(6) with Varying Lambda-Grid Size .. 96

Figure 5-10: Comparison of Selection Time with Different Algorithms Using

ClusterSet(12,16) with Varying Lambda-Grid Size ... 96

Figure 5-11: Comparison of Resource Efficiency and Application Performance of

Different Algorithms as a Function of the Request Rate: a) System Lambda

Utilization; b) System Throughput and c) Average Application

Communication Latency ... 98

Figure 6-1: Physical Architecture of a Multi-carrier, Optical Circuit-Switched

Network... 104

Figure 6-2: Approximating the Latency of an End-to-end Network Path across

Domains Using ConnDom .. 105

Figure 6-3: Information Details of the Studied Network Information Models 106

Figure 6-4: Resource Selection and Network Path Computation Architecture for a

Distributed Content Delivery Application .. 111

Figure 6-5: Description of the Replica Server Selection Algorithm........................... 112

Figure 6-6: Evaluating the Intra-domain Impact of Network Information Models

Using Metro-area Networks: a) System Lambda Utilization; b) System

Throughput; c) Average Application Latency and d) Network

Configuration Cost .. 115

Figure 6-7: Evaluating the Intra-domain Impact of Network Information Models

Using ISP Backbone Networks: a) System Lambda Utilization; b) System

Throughput; c) Average Application Latency and d) Network

Configuration Cost .. 119

Figure 6-8: Fiber Map of the Level3 Backbone Network in Northeastern USA 120

Figure 6-9: Evaluating the Impact of Network Information Models Using a

Multi-domain Network with Top-tier ISPs: a) System Lambda Utilization;

b) System Throughput; c) Average Application Latency and d) Network

Configuration Cost .. 121

Figure 7-1: Parallel Visualization of Multiple 3D Theoretical Models of

Deformation along the San Andreas Fault in California 127

Figure 7-2: Collaborative and Remote Data Visualization System Architecture 128

Figure 7-3: The OptIPuter’s International Lambda-Grid Testbed and iGrid2005

Networking Infrastructure ... 133

x

Figure 7-4: A DVC-ISL Specification for the Collaborative Visualization

Application .. 136

Figure 7-5: The Trajectory of the Aggregate Transmission Rate when Running the

Collaborative Visualization Application with GTP .. 139

Figure A-1: The Full BNF Description of the DVC Integrated Specification

Language ... 150

xi

LIST OF TABLES

Table 4-1: A List of Environment Variables that Can be Specified in a Job

Specification ... 75

Table 5-1: Detailed Specifications of the Compute Machine for Simulation Study ... 81

Table 5-2: Details of the Studied Multi-domain, Global Network Topology............... 81

Table 5-3 Details of the Studied Lambda-Grid Configurations.................................... 83

Table 5-4: Required Resource Attributes of Compute Clusters for

High-Performance Distributed Computing Applications 85

Table 5-5: Required Resource Attributes of Rendering Clusters for Collaborative

and Remote Data Visualization Applications ... 87

Table 5-6: Data Object Replication and Distribution of the Studied Lambda-Grid

Configurations... 89

Table 6-1: Details of the Studied AboveNet’s Metropolitan Network Topologies 109

Table 6-2: Details of the Studied ISP Backbone Network Topologies 109

Table 6-3: Summary of Utility of Different Network Information on the Studied

Metrics .. 124

Table 7-1: Number of Code Lines of the Studied Collaborative Visualization

Application by Modules .. 136

Table 7-2: The Resource Selection and Allocation Performance of the Studied

Collaborative Visualization Application... 137

Table A-1: The Syntax of Terminals in the DVC-ISL BNF Description 149

Table A-2: The List of End-resource Attributes of the DVC-ISL 149

Table A-3: The List of Network Connectivity Attributes of the DVC-ISL 151

Table A-4: The List of Internal Communication Node Attributes of the DVC-ISL .. 151

xii

ACKNOWLEDGEMENTS

 There are many people who I am deeply indebted to and so privileged to know, and

without them this dissertation wouldn't have been a reality. I cannot name them all here, and

cannot hope to adequately repay them.

 First and foremost, I sincerely thank my advisor, Professor Andrew Chien, for his endless

support, patience and overall guidance through various stages of my Ph.D. study. I admire him

for always believing in me, teaching me so many aspects of life, and challenging me to improve

myself. I considerably benefited from discussions with him, and his inputs on research ideas have

greatly contributed to this dissertation. I would also like to thank my committee members,

Professor Walter Burkhard, Professor Chuang-Kuan Cheng, Professor Rene Cruz and Professor

George Papen, for their eagerness to spend time learning my research and give me invaluable

comments.

 I am grateful to the entire faculty, staffs, and students in the OptIPuter project for

providing me the opportunity to conduct the cutting-edge research in advanced optical

networking and distributed computing systems. I am indebted to countless number of people for

their time and support for software, hardware and system administration to make the research

presented here feasible.

 I thank all my colleagues at UCSD for their support through these years. I am fortunate to

have opportunities to work with extremely talented and high-spirited graduate students. I thank

everyone in the CSAG group, especially Ryan Wu, Dionysios Logotheis, Richard Huang, Frank

Uyeda, Huaxia Xia, Justin Burke, Eric Weigle, Ju Wang, Xin Liu, Luis Rivera, Adam Brust, Troy

Chuang, Alex Olugbile, Jerry Chou and Ryo Sugihara. I thank them for their friendships,

compassion and valuable discussions that helped improve my research. I especially thank Yang-

Suk Kee for his generous support and guidance on my research and many aspects of life.

xiii

 I thank all my friends in San Diego, especially Thawee Techathamnukool, Chanathip

Namprempre, Kitirat Panupong, Nada Wasi, Yuenyong Songsiridej, Martha Stacklin and David

Hutches, for making my life here so worthwhile and enjoyable. Without their continuing support

and encouragement I wouldn't make it through all these years. I am also deeply indebted to my

teachers and friends at the San Fran Dhammaram Temple and KPY Buddhist Monastery for

helping me understand the ultimate purpose of life and encouraging me to do the right things.

 Last but not least, I want to thank my parents and sister for their never-ending love,

support and guidance. My father has been the greatest influence on my life. His determination

and courage are rare and never cease to impress me. My mother's love and generosity to her

children are unmatched and have always inspired to be the person that I am today.

 Part of Chapter 1, Chapter 3 and Chapter 4 is published as “Distributed Virtual Computer

(DVC): Simplifying the Development of High Performance Grid Applications” by Nut

Taesombut and Andrew A. Chien in the proceedings of the Workshop on Grids and Advanced

Networks (GAN’04), April 2004. The dissertation author was the primary researcher and co-

author of this paper.

Chapter 6, in part, is published as “Evaluating Network Information Models on Resource

Efficiency and Application Performance in Lambda-Grids” by Nut Taesombut and Andrew A.

Chien in the proceedings of ACM/IEEE International Conference on High Performance

Computing and Communication (SC’07), November 2007. The dissertation author was the

primary researcher and co-author of this paper.

Chapter 7, in part, is published as “Collaborative Data Visualization for Earth Sciences

with the OptIPuter” by Nut Taesombut, Xinran Wu, Andrew A. Chien, Atul Nayak, Bridget

Smith, Debi Kilb, Thomas Im, Dane Samilo, Graham Kent and John Orcutt in Journal of Future

Generation Computer Systems, Vol. 22(8), October 2006. The dissertation author was the

primary researcher and co-author of this paper.

xiv

 The work presented here was supported in part by the National Science Foundation under

awards NSF Cooperative Agreement ANI-0225642 (OptIPuter), NSF CCR-0331645 (VGrADS),

NSF ACI-0305390, and NSF Research Infrastructure Grant EIA-0303622. Support from the

UCSD Center for Networked Systems, BigBangwidth, and Fujisu is also gratefully

acknowledged.

xv

VITA

2000 Bachelor of Engineering, Chulalongkorn University, Thailand

2002-2003 Teaching Assistant, Department of Computer Science and Engineering,

 University of California, San Diego

2003 Master of Science, University of California, San Diego

2003 Research Intern, AT&T Research Lab

2003-2007 Research Assistant, University of California, San Diego

2007 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

N. Taesombut and A. A. Chien. "Evaluating Network Information Models on Resource

Efficiency and Application Performance in Lambda-Grids,” in Proceedings of ACM/IEEE

International Conference on High Performance Computing and Communication (SC’07),

November 2007.

N. Taesombut and A. A. Chien. "Evaluating the Impacts of Network Information Models on

Applications and Network Service Providers," in Proceedings of IEEE International Symposium

on High Performance Distributed Computing (HPDC’07), June 2007

R. Singh, N. Schwarz, N. Taesombut, et al. "Real-time Multi-scale Brain Data Acquisition,

Assembly, and Analysis Using End-to-End OptIPuter," Journal of Future Generation Computer

Systems, Vol. 22(8), October 2006. pp. 1032-1039.

N. Taesombut, X. Wu, A. A. Chien, et al. "Collaborative Data Visualization for Earth Sciences

with the OptIPuter," Journal of Future Generation Computer Systems, Vol. 22(8), October 2006.

pp. 955-963.

N. Taesombut, F. Uyeda, A. A. Chien, et al. "The OptIPuter: High-Performance, QoS-Guaranteed

Ntwork Service for Emerging E-Science Applications," IEEE Communication Magazine, Vol.

44(5), May 2006. pp. 38-45.

N. Taesombut and A. A. Chien. "Distributed Virtual Computer (DVC): Simplifying the

Development of High Performance Grid Applications," in Proceedings of the Workshop on Grids

and Advanced Networks (GAN'04), April 2004.

A. Boldyreva and N. Taesombut. "Online Encryption Schemes: New Security Notions and

Constructions," in Proceedings of the RSA Conference 2004 Cryptographers' Track (CT-

RSA'2004), February 2004.

xvi

N. Taesombut, R. Huang, and P. V. Rangan. "A Secure Multimedia System in Emerging Wireless

Home Networks," in Proceedings of the 7th IFIP Conference on Communication and Multimedia

Security, October 2003.

N. Taesombut, V. Kumar, R. Dubey, P. V. Rangan. "A Secure Registration Protocol for Media

Appliances in Wireless Home Networks," in Proceedings of the 2003 IEEE International

Conference on Multimedia and Expo, July 2003.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

 Studies in Distributed Computing and Advanced Optical Networking

 Professor Andrew A. Chien, University of California, San Diego

xvii

ABSTRACT OF THE DISSERTATION

Coordinated Resource Management for Guaranteed High Performance and Efficient

Utilization in Lambda-Grids

by

Nut Taesombut

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Andrew A. Chien, Chair

 Emerging configurable optical networks and Grid computing create intriguing

opportunities for new application capabilities and resource efficiencies. Applications can exploit

dedicated, high-speed optical circuits to tightly interconnect remote resources on-demand, and

achieve high quality of service. However, they must contend with the complexity of highly

distributed and heterogeneous resource environments. In addition, network configurability

presents unique challenges, adding the complexity of planning configurations to that of traditional

end resource management.

 To enable efficient and simple development of high performance applications, this

dissertation proposes the Distributed Virtual Computer (DVC), a novel integrated architecture for

xviii

managing configurable networks and wide-area resource sharing. The DVC allows an application

to describe and acquire a combined set of communication and end resources, and then

automatically manages them for guaranteed, high performance. Such an integrated approach

enables coordinated resource management improving both application capabilities and resource

efficiencies.

 In this framework, a key challenge is selecting appropriate sets of resources for individual

applications. We formulate the selection problem, explore several approaches, and evaluate each

via simulation. Best performance is achieved by techniques that combine the selection of

communication and end resources. Such approaches produce high-quality solutions both for

application performance and for network efficiency, and scale well for large resource

environments. This enables an online service where applications can request and acquire high-

quality resources quickly on-demand.

 In a multi-domain network, a critical tension exists between service providers who are

business competitors. As a result, controlled information sharing is required that balances their

competitive positions and enables efficient resource selection. We characterize the network

information that could be shared between providers and assess how individual information affects

applications and service providers. Our results suggest providers should share their internal

information as it can improve their resource efficiencies and application performance.

 We implement a DVC system software prototype and present experimental results with

real scientific applications and optical networks. We demonstrate our prototype enables the

simple configuration of collaborative data visualization environments that can be flexibly run on

different physical resource configurations. Additionally, the applications are able to exploit

dedicated optical circuits on-demand and efficiently utilize the network capacity.

1

Chapter 1. Introduction

1.1 A Novel Opportunity of the Lambda-Grid

 Large-scale e-science applications such as scientific data distribution and sharing [1],

computational steering [2] and collaborative data visualization [3], are emerging in virtually

every scientific field, including earth science [4], neuroscience [5], oceanography [6], nuclear

physics [7] and astronomy [8]. They can be used to simulate and analyze highly complex

systems, but require massive aggregations of computing, storage and visualization resources.

Because such applications involve teraflop-scale computation, petabyte-scale distributed data

collections and wide-area collaboration, their resource requiremenets cannot be satisfied

within a single organization.

 Grid computing [9] has emerged as a technology that enables coordinated resource

use across geographical locations and organizations. Grid resources, such as distributed

computing clusters, petabyte data stores and other high-end scientific instruments, can be

securely shared through a Virtual Organization (VO) [10]. A VO is a set of relationships and

sharing policies that grant users access to resources across traditional organizational

boundaries. This enables scientific researchers to exploit far greater computing, storage and

collaboration capabilities. Examples of today's important Grid projects include TeraGrid [11],

iVDGL [12], GriPhyN [13] and EU-DataGrid [14].

Today, the phenomenal amount of data being produced, collected and processed by

these Grids poses a significant challenge to e-science applications. For example, the

Biomedical Informatics Research Network (BIRN) [5] is a National Institutes of Health

(NIH)-funded project to support global collaboration of medical neuroscience research. The

NIH estimates the current total data held by BIRN sites is 10 petabytes, and this figure is

likely to increase 1,000x in the next decade. In addition, EarthScope is the National Science

2

Foundation (NSF)-supported project [4] studying the structure and evolution of the Earth's

crusts in North America. EarthScope has deployed modern observational sensors over a span

of Alaska and other parts of the U.S. that produce 40 terabytes of seismic data annually.

Supporting real-time scientific data analysis and sharing such large quantities of information

requires extremely high bandwidth and reliable network service. For instance, a typical

scientific dataset, such as a high-resolution 3D image of scanned mouse brains, can be as large

as 100's of gigabytes. Achieving real-time, remote data acquisition, visualization and

exploration requires a data transfer rate of several gigabits per second as well as bounded

communication jitter and delay. With emerging scientific applications’ tremendous increase in

demand for bandwidth and QoS traffic characteristics, the traditional best-effort Internet is

insufficient.

 Recent advances in optical transmission and distributed network control plane are

producing novel wide-area networks with dramatically increased bandwidth and controllable

performance properties. A key driver is the Dense Wavelength Division Multiplexing

(DWDM) technology which enables large numbers of wavelengths (or lambdas) to be carried

over a physical fiber thus improving available bandwidth by several folds. Specifically, each

lambda can carry a signal at a bit rate of ten gigabits per second, and the aggregate throughput

of a fiber (100’s of lambda’s) can be up to several terabits per second. Further, a maturing

network control plane is enabling dynamic provisioning of these lambdas. A high-speed

optical circuit (or lambda) can be configured on-demand to tightly interconnect remote

resources in seconds and optimize application data flows. Because each lambda is independent

and congestion-free, network properties such as bandwidth, jitter and delay can be planned

and controlled. Dynamic network provisioning not only allows individual applications to

obtain dedicated use of real "private" networks, but also enables efficient use of

communication resources (e.g., switch ports and wavelengths). Examples of advanced lambda

3

network facilities include OptIPuter [15], National Lambda Rail [16], DRAGON [17],

CHEETAH [18], Global Lambda Interchange Facility (GLIF) [19], CANARIE's CA*net 4

[20], and NetherLight [21].

 A Lambda-Grid [22] is a Grid in which network resources (e.g., switch ports and

lambdas) can be dynamically scheduled and allocated just like other distributed end resources

(compute, storage, scientific instruments, etc.). Such an infrastructure provides revolutionary

communication capability because geographically distributed resources can be tightly coupled

with dedicated, high-speed optical connections on-demand. In effect, they can be treated as

though in the same machine room. This enables a range of innovative distributed applications

involving large data objects and collections, large computations and real-time remote data

access, only possible with 10's to 100's of Gbps and guaranteed quality of network service.

1.2 The Problem

Although Lambda-Grids provide dramatic opportunities for new computation,

communication and collaboration capabilities, building high-performance applications that

efficiently exploit resources in such infrastructures is extremely difficult. Significant questions

include: how to simplify application use of configurable optical networks and shared,

distributed resources; how to select appropriate resources for applications; and how limited

network information affects application communication performance and resource utilization.

1.2.1 How to Simplify the Development of High-Performance Applications in

Lambda-Grids

 When compared to either sequential or parallel programming, the difficulties in

developing applications which efficiently exploit configurable optical networks and grid

resources are daunting. In particular, applications (or consequently application programmers)

4

must contend with the complexity of dynamic and unreliable resource environments. End

resources (e.g., compute, storage and visualization) are heterogeneous, varying in type,

interface, availability and runtime performance. They are drawn from a range of distributed

resource providers that represent distinct administrative domains and may impose diverse

security and sharing policies on the use of these resources. In the face of these challenges,

applications want to achieve high capability and reliable performance, and even tolerate

asynchronous changes in resource availability and runtime behaviors.

 In addition, applications must deal with the complexity of configurable optical

networks in Lambda-Grids. First, utilizing configurable networks requires the applications to

understand details of the underlying telecommunication infrastructures, including low-level

communication resources (e.g., optical switches, links and lambdas), and how to configure and

compose them into desired end-to-end network connections. Second, when a network is

partitioned into domains (i.e., multiple distinct service providers), establishing an application

across networks requires management of multi-domain optical routing and signaling. Third,

delivering the performance of high-speed, long distance connections requires the use of novel,

exotic transport protocols. These protocols, including Group Transport Protocols (GTP) [23],

UDP-based Data Transport (UDT) [24] and Composite Endpoint Protocol (CEP) [25], are a

research activity in and of themselves.

 In summary, enabling simple development of high-performance distributed

applications in Lambda-Grids requires new system abstractions that hide the complexity of

configurable networks and wide-area resource sharing, while exposing novel communication

capabilities in a convenient fashion.

5

1.2.2 How to Select Appropriate Resources for Applications

 A significant challenge in achieving high application performance and efficient

resource usage in Lambda-Grids is selecting appropriate sets of resources for individual

applications. In these environments, we need to match application components (e.g.,

computation tasks) with suitable end resources (e.g., compute, storage and visualization), as

well as select communication resources (e.g., optical switches, ports and links) and compose

them into satisfying network connections. Application performance is highly dependent on the

quality of end resources and network connections that host its computation and

communication. For example, the performance of compute-intensive applications, such as

scientific and engineering simulation, depends on the CPU speed, physical memory size and

disk space of compute resources. On the other hand, the performance of interactive distributed

applications, such as collaborative data visualization, is dependent on the throughput and

latency of network connections. With the high heterogeneity and vast number of available

resources, applications need to identify and select high-quality resources quickly (within a few

minutes) and use them to achieve high performance and low turnaround time.

 When thousands of applications take part in the collective sharing of resources, it’s

necessary to maximize overall system throughput and resource utilization by conserving the

use of scarce resources. In Lambda-Grids end computing and storage resources are plentiful,

but a core physical network may contain bottleneck links. For example, the Level3

international optical network includes Points-of-Presence (PoPs) in major cities in US and

Europe. While these PoPs are highly connected, the bottlenecks are the links crossing the two

continents. If there are a large number of applications requesting network paths across the

bottleneck links (e.g., allocate compute and storage resources in different continents), they

cannot simultaneously run. This could lead to low resource utilization and system throughput.

6

Therefore, one of the key objectives in the resource selection task is to find a solution with the

minimal total distance of optical paths allocated for each application.

1.2.3 How Available Network Information Affect Application Performance and

Resource Efficiency

 While configurable optical networks are gaining popularity, a significant challenge is

controlled network information sharing. Network information (including details of service

providers’ internal network topologies, link capacity and usage) is essential for effective path

computation for grid applications and enables efficient resource usage and high application

communication performance. However, with a wide-area network composed of multiple

independently managed sub-networks (or domains), a critical tension is between service

providers who are business competitors and not willing to share their internal network

information to protect their security and competitive positions. This poses key challenges for

intelligent network information sharing that must not only maintain competitive advantages of

individual service providers, but also enables efficient end-resource and network path

selection for distributed applications. Towards this goal, fundamental questions include: what

basic types of network information that might be shared between service providers and how

individual information factors affect applications’ and service providers’ ability to utilize

resources.

1.3 Previous Work

 While Lambda-Grids provide intriguing raw hardware capabilities, the middleware

must harness resources into a form usable by applications to achieve high execution

performance and enable efficient resource usage. These are difficult goals because the

underlying software and hardware infrastructures have daunting complexity and applications

7

exhibit increasingly complicated and competing requirements for resources. Prior research

projects on middleware for Grids [26-30] and wide-area configurable optical networks [17, 18,

31, 32] are far from solutions for application developers with little knowledge of configurable

optical networks and Grid environments. In particular, all these systems manage either

network or end resources separately, assuming relative simple models for the other domain.

Specifically, existing Grid middleware systems [26-30] assume fixed network connectivity

(i.e., the Internet) between distributed resources and control only end resources (compute,

storage, visualization, etc.). They manage these end resources for high efficiency and

performance, but lack the ability to plan and dynamically configure optical networks. On the

other hand, optical network services [17, 18, 31, 32] can manage and configure dedicated

optical circuits on-demand, but assume publicly accessible end resources. Therefore, they

cannot grant users access to end resources across domains. To obtain coordinated use of both

resource types, applications must interact with multiple distinct middleware services. Because

these services do not coordinate network and end resource selection/allocation, the result is

limited application capabilities (e.g., no real-time guarantee and sub-optimal performance) and

inefficient use of resources.

 Figure 1-1 demonstrates how an application obtains use of compute and network

resources in Lambda-Grids with existing middleware. In this example, the application requires

two compute clusters and a private optical connection between them. Because compute and

network resources are independently managed by Grid middleware and optical network

services, the application needs to issue separate requests for the allocation of these resources.

Specifically, the application first contacts Grid middleware for allocation of compute

resources and later negotiates with optical network services (which represent distinct network

service providers) for configuration of a private optical circuit. Although feasible, this

approach could lead to two significant problems. First, it causes inefficient use of network

8

resources. In the former step compute resources are chosen with limited information about

available connections; therefore, the allocated resources can be widely distributed and it

requires a long optical circuit path (i.e., multiple switch ports and links to be allocated) to

realize the required connectivity. Second, in the presence of resource contention, the required

network connectivity may not be possible since the longer the optical circuit to be configured,

the higher chance some of its resource components (e.g., switch ports and lambdas) are

already occupied by other applications.

Figure 1-1: Separate management of network and Grid resources. An application sequentially contacts

Grid middleware and network services for resource allocation and private network configuration.

1.4 Thesis Statement

 Our research investigates an integrated model for managing configurable optical

networks and wide-area resource sharing to enable convenient and efficient development of

high-performance distributed applications in Lambda-Grids. Our approach uses system

abstractions that separate the configuration of resources from the application programming

9

and execution. In this model, an application (or user) describes its requirements for

communication and end resources, and the integrated middleware service is responsible for

matching them with an appropriate set of distributed resources and private networks. The

selected resources are then automatically configured, reserved and managed; the application

can make general use of them as a private distributed presence. Such combined acquisition of

both network and end resources enables coordinated resource management improving

resource efficiencies and application capabilities.

My thesis is stated as follows:

 Guaranteed, high application performance and efficient resource usage can be

achieved simultaneously in Lambda-Grids by integrated selection of end resources (e.g.,

computers, storages and visualization) and network resources.

1.5 Approach

 To investigate our thesis, we develop the Distributed Virtual Computer (DVC), an

integrated resource management architecture that enables an application to conveniently

describe and acquire a combined set of private networks and end resources. The architecture

provides a resource specification language in which the application can describe its

communication and end resource needs in a general form. Then, the DVC implementation

uses this information to drive resource selection and network configuration optimization.

 In order to study how to realize application resource requirements effectively, we

formulate the resource selection problem, and then explore several implementation

approaches. We design and evaluate novel combined resource selection algorithms which use

heuristics based on simulated annealing and top-down hierarchical selection. We compare

10

them to several alternative separate selection approaches of network and end resources via

simulation, exploring a range of realistic application models and Lambda-Grid resource

configurations. Specifically, we evaluate each algorithm’s result quality, cost, and scalability

as a function of application request complexity and resource configuration size. Our results

show that the combined approaches produce good results for both application performance

and resource efficiency, significantly better results than those of separate selection.

Additionally, these results are obtained with computational effort low enough that the

algorithms could be used online for realistic large-scale Lambda-Grids. This proves our thesis.

 Further, we investigate the network information sharing problem. We characterize the

information that might be shared by network service providers and study the impact of the

available information on the quality of resource selection results in terms of application

performance and resource efficiency via simulation. Our experiments use a range of realistic

metropolitan, national, and global network topologies derived from Internet Service Providers

(ISPs). Our results clearly identify which information factors are important for applications to

effectively select network paths and encourage collaboration between service providers to

promote overall network efficiency and productivity.

 Based on the results from the previous studies, we design and implement the DVC

architecture as a system software prototype. We use it to demonstrate the feasibility and

effectiveness of the integrated resource management approach with deeper evaluation based

on real use with scientific applications and optical networks. The prototype is evaluated in

enabling collaborative visualization environments for geosciences on the OptIPuter's Lambda-

Grid testbed [15]. This shows that guaranteed, high application performance can be achieved

practically.

11

1.6 Contributions

 The primary contribution of this dissertation is an integrated resource management

architecture and combined resource selection algorithms that enable high application

performance and resource efficiency in Lambda-Grids. Specific contributions are summarized

below:

1. Definition of the Distributed Virtual Computer (DVC), a novel approach for

managing network and end resource sharing for Lambda-Grids. The DVC allows an

application to conveniently describe and acquire a set of distributed resources (compute,

storage and network) and use them as a private distributed presence. The combined

resource acquisition provides opportunities for integrated resource selection allowing for

high application performance and resource efficiency to be simultaneously achieved. In

addition, the DVC’s integrated abstraction simplifies application management of

communication and end resources in complex Lambda-Grid environments.

2. Definition of a resource specification language which describes application resource

requirements, including traditional end resource specification and explicit high-level

description of the needed communication resources. Such an expression enables an

application to expose unique communication capabilities of Lambda-Grids and enables

network service providers to manage their resource utilization for high efficiency.

3. Design, implementation and evaluation of novel combined resource selection

algorithms. We formulate the resource selection problem, explore several approaches,

and evaluate them via simulation. Our results demonstrate the best performance is

achieved by techniques which combine the selection of communication and distributed

end resources. We present two combined selection algorithms based on simulated

annealing and top-down hierarchical selection. Using simulation, both algorithms are

12

shown to produce good results for both resource quality and efficiency. Further, the

algorithm that uses top-down hierarchical technique not only achieves high-quality results,

but also scales well with both application request complexity and Lambda-Grid size. This

enables an online use where resources can be automatically selected, allocated and

configured on-demand in minutes for large-scale scientific applications which typically

run for hours or days.

4. Characterize the impact of network information models on application performance

and resource efficiency. We study the network information sharing problem in a network

composed of competing service providers. We characterize the information that might be

shared and define a spectrum of network information models. To evaluate the impact of

the proposed models, we use simulation across a range of real providers' network

topologies. Our results suggest that network providers should make their internal network

information available (completely or partially) as it can significantly improve application

performance and resource efficiency.

5. Development of the DVC system software prototype. We design and implement the

DVC system software prototype to demonstrate the feasibility and benefits of the DVC

architecture. Key components of this prototype include integrated abstractions for simple

application development, combined resource selection for high application capability and

resource efficiency, as well as virtual resource names and unified communication

interfaces for high application portability and flexibility.

6. Demonstration of the DVC system software prototype with real scientific

applications. At the iGrid2005 conference, we demonstrate the benefits and capability of

the DVC prototype in enabling collaborative and remote data visualization for

geosciences. The demonstration shows scientific collaborations can be conveniently,

dynamically, and optimally constructed with our software. Such capabilities enable groups

13

of scientists from separate institutions to interactively analyze the large datasets in real-

time. The construction of such applications (without manual configuration by IT

administrators) is not possible without our software.

1.7 Dissertation Roadmap

 The remainder of this work follows this outline. In Chapter 2, we present the requisite

background in Grid computing and configurable optical networks, and discuss related work.

Chapter 3 describes the specific context of this work, defines the problem, and presents our

thesis statement. In Chapter 4, we describe the design and implementation of the DVC

coordinated resource management architecture. We present the resource specification

language that describes application resource requirements, virtual resource naming and

communication abstractions, and combined resource selection algorithms. Chapter 5 evaluates

different resource selection approaches via simulation across a range of realistic application

and resource configuration models. In Chapter 6, we evaluate the impact of network

information models on the quality of resource selection. Chapter 7 assesses the DVC system

software prototype in enabling collaborative visualization environments for earth sciences.

Finally, we summarize the dissertation and discuss future research directions in Chapter 8.

1.8 Acknowledgement

 Chapter 1, in part, is published as “Distributed Virtual Computer (DVC): Simplifying

the Development of High Performance Grid Applications” by Nut Taesombut and Andrew A.

Chien in the proceedings of the Workshop on Grids and Advanced Networks (GAN’04), April

2004. The dissertation author was the primary researcher and co-author of this paper.

14

Chapter 2. Background and Related Work

In this chapter, we present the background and most relevant work in the field.

Section 2.1 provides general assumptions on network and end resource hardware for Lambda-

Grids. Section 2.2 is an introduction to current approaches for Grid middleware, while Section

2.3 surveys a range of research efforts in enabling dynamic network provisioning. Section 2.4

discusses current approaches for wide-area resource selection. Section 2.5 surveys existing

specification languages describing application resource needs in Grids and other wide-area

distributed systems.

2.1 Lambda-Grid Architecture

 “Grid” computing [9] has emerged as a set of new technologies and infrastructures

supporting coordinated resource sharing in dynamic, heterogeneous, and multi-institutional

distributed systems. Grid computing has become increasingly important for advanced

scientific and engineering applications [1-8] that require large-scale aggregations of

distributed computing resources, data objects, and scientific tools to solve complex problems.

In this environment, IT administrators of different organizations establish a Virtual

Organization (VO) [10], a set of relationships and sharing policies to grant users access to

resources across traditional organizational boundaries. These resources can be allocated on-

demand and used to achieve high computing, storage and collaboration capabilities. To

interconnect remote computing and storage resources, traditional Grid systems have been built

over IP packet-switched networks (i.e., Internet) supporting only best-effort service.

 Recent advances in optical networking technologies are rapidly changing the current

model of wide-area communication, moving from a best-effort, network-constrained world

into a deterministic-performance, network-rich world. Dense Wavelength Division

Multiplexing (DWDM) has emerged as an efficient technique that allows a single fiber to

15

carry multiple wavelengths (lambdas), and increases available network capability to several

terabits per second. Furthermore, maturing middleware in the network control plane [17, 31,

32] is enabling the ability to dynamically configure and dedicate these high-speed optical

circuits to applications on-demand. Such private connections have several key advantages

over shared, best-effort Internet connections. These include security and controllable

performance properties (guaranteed bandwidth and bounded communication delay and jitter).

Figure 2-1: Physical architecture of a Lambda-Grid

 A Lambda-Grid [22] is a collection of geographically separated end resources

(computing, storage, visualization, etc.) that can be securely shared through a VO and tightly

interconnected with dedicated optical connections on-demand. Figure 2-1 illustrates the

physical architecture of such an infrastructure. Due to the falling price of commodity hardware

and the increasing popularity of cluster configurations [33], the end resources are typically

organized into clusters. Each cluster contains a collection of homogeneous resources locally

managed and tightly coupled via fast Ethernet (packet) switches. The core optical network is

16

composed of optical switches interconnected by DWDM optical links. Each end resource has

one or more optical interfaces paired to one optical switch; these interfaces may be connected

via direct links or through fast border packet switches. There are two types of optical circuits

(lambdas) that can be configured:

• End-to-end dedicated lambdas. These directly connect pairs of end resources with private

connections. This approach guarantees quality of network service, but requires each end

resource to have a direct optical interface to the core network.

• Switch-to-switch lambdas. One or both ends of these lambdas may terminate at a shared

border switch; this allows efficient sharing of connections by a set of end resources. Private

connections and quality of service can be achieved via VLANs – only end resources

participating in the connections are assigned private IP subnet addresses.

 In a wide-area Lambda-Grid system, the core network can be partitioned into sub-

networks that provide autonomous administrative domains for distinct network service

providers. These network providers manage their own communication resources and peer with

others to exchange traffic and promote overall network productivity. Configuring optical

circuits to interconnect remote end resources may require a distributed network control plane

managing interdomain optical routing and signaling.

2.2 Grid Middleware

Grid middleware combines a set of security, resource management, data management,

information, monitoring and other services required to efficiently operate a multi-

organizational, shared resource environment. Development of grid middleware has received

considerable attentions; the notable ones include Globus [26], Condor-G [28], EEGE gLite

[29], GridLab [30], and Virtual Grid [27].

17

The Globus system [26] is a grid middleware realizing the VO concept and providing

fundamental grid services for security [34], resource discovery [35], data communication [36],

and remote resource access [37]. Globus employs a layered architecture where applications or

high-level grid services can be built from lower-level core services. Its strives to provide a

simple grid computing environment, defining standard resource configuration, negotiation and

communication protocols and presenting uniforms interfaces to applications. For instance,

WS-RF [38] is a product of the Globus effort to make Grid resources uniformly accessible

through existing web service technologies. Further, the system supports soft QoS guarantee

through resource reservation [39]. Unlike the DVC, the Globus system neither manages

configurable network resources nor optimizes resource configurations for applications.

The Condor-G system [28] manages compute-intensive jobs for high throughput in a

multi-institutional, shared resource environment. It combines Condor’s computation

management schemes [40] with Globus’s interdomain resource management protocols [26] in

harnessing idle grid resources and supporting hosting environments for remote job execution.

It works in this manner: Users submit jobs to be executed. Condor-G allocates the appropriate

resources, initiates and manages computations, and informs of completion or failure. Condor

jobs are also automatically checkpointed and migrated between idle machines to ensure

correct completion. In contrast to the DVC, the Condor-G system cannot allocate optical

resources and guarantee quality of network service for applications.

gLite [29] is the grid middleware of the EU-funded EGEE (Enabling Grids for E-

sciencE) project. It leverages existing middleware (including Globus [26], Condor [40] and

LCG [41]) to provide high-level grid services that are more efficient and reliable. Key services

include workload management for scheduling computational tasks, data management for

managing distributed files, and information management for monitoring, collecting, and

retrieving grid information. It also provides GridFTP [36] and gLiteIO [42] for high-

18

performance data transfer and access capabilities. The gLite middleware follows a service-

oriented architecture providing compliance with other grid services. Unlike DVC applications,

those in gLite cannot exploit dedicated optical circuits to achieve high performance and

quality of service guarantee.

The GridLab project [30] aims for a set of high-level grid services and interfaces

simplifying the development of grid applications. Key services include grid resource

information, brokering, monitoring, visualization and data management. GridLab Resource

Management System (GRMS) [43] is a meta-scheduling system that abstracts low-level grid

resource management complexity, while including features for load-balancing among clusters,

replica management, remote data access and application migration. Grid application

developers use these services through a Grid Application Toolkit (GAT) [44]. Unlike DVC

applications, those in GridLab need to deal with the complexity of configurable optical

networks, including dynamic network configuration and heterogeneous addresses.

The Virtual Grid runtime system [27] enables easy and efficient development of grid

applications. It provides a simple abstraction of the grid environment and an integrated set of

resource management services allowing applications to acquire high-quality resources quickly

and adapt to asynchronous changes in resource conditions and application requirements. This

system has a unique “slot” abstraction allowing applications to specify, discover, and allocate

resources across time. This improves both scheduling quality and efficient resource use. In

contrast to the DVC, the Virtual Grid system doesn’t select and allocate optical network

resources for applications.

The key limitation of these systems [26-30] is that they assume the traditional best-

effort Internet model and manage only end computing and storage resources. Therefore, they

lack the ability to control and expose novel communication capabilities of Lambda-Grids,

including dynamic network configuration, high-speed communication, and optical multicast

19

[45]. Furthermore, most systems focus on the “configuration” and “negotiation” aspects of

grid resource management without optimizing resource and network configurations for

applications.

2.3 Dynamic Network Provisioning Systems

Many research efforts explore the ability to dynamically configure connections

(lambdas) in wide-area, optical circuit-switched networks. Dynamic lambda provisioning not

only enables efficient use of communication resources, but also allows applications to flexibly

use and modify private connections according to need. There are at least four extant

approaches for configurable optical networks.

CHEETAH [18] is a networking framework allowing applications to obtain dedicated,

end-to-end optical connections on a dynamic call-by-call basis. Applications submit file

transfer requests similar to FTP services (i.e., two end hosts, bandwidth and duration) and

CHEETAH optimizes the scheduling, configuration, and use of network resources. The

current implementation employs GMPLS control plane [46] to realize dynamic provisioning

of optical circuits. The created circuits are held only as long as necessary to complete the

transfers. CHEETAH addresses technical issues such as high-speed communication [47] and

optical circuit scheduling [48]. However, there are several key remaining issues. These include

interdomain routing and signaling, as well as security and heterogeneous network

management.

UCLP [32] is a user-controlled lightpath provisioning service architecture that allows

applications to create end-to-end optical connections across multiple domains. It models

optical resources as lightpath objects (LPOs) that can be described, advertised and discovered

through web service technologies. Network providers first create short LPOs (pre-established

direct or single-domain lightpaths) and deposit them into a LPO registry. To realize their

20

communication needs, applications discover, select and compose these short LPOs into

composite LPOs or end-to-end connections.

DRAGON [17] is a networking solution that manages dynamic provisioning of

deterministic optical paths across multi-domain, heterogeneous networks. Primarily built over

GMPLS-based optical networks, it incorporates advanced features for authentication,

authorization, accounting (AAA) [49], and resource scheduling. A key component is the

Network Aware Resource Broker (NARB) [50] that computes feasible network topologies and

instantiates the required connectivity according to need. Applications specify their

communication requirements with the Application Specific Topology Description Language

(ASTDL) that can express complex topologies (e.g., involving more than two end hosts).

Photonic Interdomain Negotiator (PIN) [31] is a distributed control plane architecture

providing dynamic provisioning of end-to-end optical paths across heterogeneous network

domains. The architecture is composed of a collection of distributed PIN agents located in

different domains that manage interdomain optical routing and signaling. During the dynamic

optical path setup, PIN agents along the path translate interdomain signaling messages into

corresponding intra-domain signaling messages and pass them to the local control planes. The

current implementation employs the Photonic Domain Controller (PDC) service [51] to

dynamically establish optical paths within each domain.

These four systems can configure underlying optical connections though presenting

diverse interfaces to describe application communication needs. Specifically, UCLP,

PIN/PDC and CHEETAH can form a network path between two endpoints per call, while the

DRAGON approach can express and instantiate a network configuration composed of multiple

paths. Here, network service providers see varying degrees of flexibility for efficient resource

management. However, all these systems assume known (or publicly accessible) end points

and manage only communication resources. Hence, they cannot optimize application resource

21

configurations that span both network and end resources (e.g., computing and storage) and

cannot coordinate their allocation.

The current DVC system prototype exploits PIN/PDC for dynamic configuration of

dedicated optical circuits, but is not limited to it. The DVC is a high-level middleware service

that can interface with other dynamic network provisioning systems (including CHEETAH,

DRAGON, UCLP, etc.).

2.4 Resource Selection in Wide-Area Systems

 Research in wide-area resource selection in grid communities has been widespread.

Although Grid computing provides the ability to share and use resources across domains, the

distributed ownership of resources leads to the problem of heterogeneous resource usage

policies. To run an application, the user needs to find a set of appropriate resources not only

matching the application requirements, but also satisfying the imposed use policies of service

providers. Consequently, many grid systems formulate the resource selection problem as a

“matchmaking” process.

 As part of Condor [40], the first matchmaking system [52] was proposed for

symmetric, bilateral matching of a single application component with a single resource. When

multiple matches are found, resources are ranked to find the one that can produce better

performance. However, the system selects a single resource and implements a simple

exhaustive search algorithm, thereby limiting its usability and scalability. In Gangmatching

[53], the matchmaking framework was extended to support co-selection of heterogeneous

resources. The system implements a backtracking search algorithm and uses an indexing

scheme which improves the efficiency and scalability of resource selection. Redline [54] also

presents a resource selection framework based on symmetric matching, but it reinterprets the

selection task as a constraint satisfaction problem and applies a range of constraint-solving

22

techniques [55]. Unlike our research, neither Gangmatching nor Redline optimizes optical

network configurations for applications.

 Tangmunarunkit et al. [56] presented an ontology-based resource-matching

framework for the Gird. Unlike the aforementioned work, this system doesn’t require the

symmetric specifications of application requirements and resources. The function is carried

out based on rules using domain background knowledge instead of exact syntactical matching.

The ontology-based matching system employs a deductive database engine [57] to solve the

resource selection problem.

 RGIS [58] and R-GMA [59] employ a relational data model to build grid information

services that discover and select end resources in response to users’ queries. They develop

different search heuristics, including non-deterministic, approximate and scoped queries, that

allow users to tradeoff between the execution time and the number of results. Our work can

benefit from RGIS and R-GMA in querying grid resource availability. In contrast to these

systems, our approach combines the selection of both communication and distributed end

resources.

Kee et al. [27] introduced the classification for different types of resource aggregates

with good or poor shared network connectivity (including ‘Cluster’, ‘TightBag’ and

‘LooseBag’) and built a relational database storing information and selecting end resources

based on this classification. In addition to a structured resource database, the system applies a

range of simplifying request reduction and query synthesis techniques for efficient and high-

quality resource selection. Acceptable resource candidates are ranked based on a user-defined

ranking function, and the top candidates are chosen to optimize application performance. In

contrast to this system, our approach considers configurable networks and integrates the

selection of communication and end resources for both high application performance and

network efficiency.

23

SWORD [60] is a wide-area resource discovery service that selects resources to host

applications in large-scale distributed environments. SWORD’s design focuses on service

robustness and scalability, so it is primarily built over a distributed query processing

infrastructure. SWORD supports multi-attribute, range queries and exploits a distributed hash

table (DHT) to efficiently store and retrieve resource information from distributed nodes. It

allows the user to specify a penalty function on desired resource attributes and provides an

optimizer selecting a set of resources with the minimum penalty cost. SWORD’s optimizer

implements heuristics that first rank candidates by end-resource quality and then select

resource configurations (among the top candidates) with good connectivity. In contrast, our

approach simultaneously selects communication and end resources for better network

efficiency.

Huang and Steenkiste [61] presented an architectural framework for dynamic service

composition in a wide-area system. It enables service developers to describe how to compose

specific services from distributed end resources and provides a generic synthesizer for

optimizing the service configurations. Different resource selection algorithms were proposed

to implement the synthesizer, including simulated annealing, simulated annealing with local

search, and exhaustive search. These techniques represent the tradeoff between the selection

cost and quality. Our approach also employs the simulated annealing technique, but combines

the selection of network and distributed end resources.

 Emulab’s assign [62] and netEMBED [63] formulate the resource selection task as a

network-embedding problem. Emulab’s assign uses simulated annealing and genetic

algorithms for mapping application components onto a small, shared network. The goal here is

to maximize resource efficiency. On the other hand, netEMBED employs different search

heuristics (including constraint filtering, random walk and lazy neighbor search) to find a

valid mapping in a large-scale distributed resource infrastructure. Unlike our work, both

24

Emulab’s assign and netEMBED assume shared network connectivity and don’t optimize

composed optical connections for applications.

 All of the aforementioned systems [27, 52-54, 56, 58, 59-63] assume a fixed

connectivity model between end resources and evaluate application communication needs

against network performance measurements. In Lambda-Grids, network connections are

established on-demand and it is possible to plan and control their capabilities. Network

configurability is computationally harder and adds complex planning configurations to end

resource selection.

2.5 Resource Specification Languages

 A resource specification language describes application requirements and preference

for resources. The design of the language is critical; a good one should be expressive to

support a wide range of applications and allow them to drive the selection of good-quality

resources that can make a major performance difference.

Figure 2-2: A sample RSL specification that describes the resource needs of a job

 The Globus resource specification language (RSL) [64] provides a declarative view of

resource requests exchanged between components of the Globus Resource Management

architecture. The RSL also provides a way for applications to describe the resource

requirements of submitted jobs to the Grid. The core RSL syntax is a hierarchical structure of

relations, where each relation (<attribute,value>) associates an attribute name with a value.

Figure 2-2 illustrates an example RSL specification that describes a job’s request for four

&(executable= ‘/home/user1/bin/a.out’)

(directory = ‘/home/user1’)

(environment = (DATADIR ‘/home/user1/data’))

(|(&(count=4)(disk>200))(&(count=8)(disk>100)))

25

compute nodes with at least 200 GB of disk space or 8 nodes with at least 100 GB of disk

space.

 (a) (b)

Figure 2-3: Example ClassAd specifications: (a) an application request; and (b) a resource description

 The Condor ClassAd language [65] allows service providers and users to describe the

capabilities and requirements of resources to be used in a matchmaking process. A ClassAd

specification includes: 1) properties of this ClassAd; 2) constraints that must be satisfied by a

single or set of matching ClassAd(s); and 3) a ranking function that describes preference on

matching ClassAds. A collection of ClassAds match if all their constraints are satisfied. Figure

2-3 (a-b) show two examples of ClassAds respectively describing an application request and a

resource.

 (a) (b)

Figure 2-4: Example Redline specifications: (a) an application request; and (b) resource descriptions

[

 type = “request”;

 user = “UserA”;

 org = “UCSD-CSE”;

 requirement = cpuSpeed > 2.4 && memory > 1024;

 rank = other.cpuspeed*1000 + other.memory

]

[

 type = “resource”;

 cpuSpeed = 3.2;

 memory = 1024;

 diskSpace = 250;

 user-list = {“UserA”, “UserB”, “UserC”};

 requirement = IsMember(other.user, user-list)

]

request = [

 user = “UserA”;

 comp ISA SET [CPUSpeed > 2.4; memory > 1024];

 storage ISA [DiskSpace > 300]

 Forall x in comp;

 x.bandwidth[storage.hn] > 30;

 Sum(comp.CPUSpeed) > 6;

]

storage1 = [hn = “hostA”; DiskSpace = 400]

computer1 = [CPUSpeed = 3.2; memory = 2048;

 bandwidth = DICTIONARY [{“hostA”, 40},

 {“hostB”,20}]]

computer2 = [CPUSpeed = 3.0; memory = 4096;

 bandwidth = DICTIONARY [{“hostA”, 32},

 {“hostB”,10}]]

26

 Redline [66] is a constraint specification language that describes properties or

requirements of resources. Unlike other constraint languages, it incorporates new types of

constraints and predicates more suitable for specifying a request/resource. Compared to

ClassAd and RSL, the constraint language approach allows more expressive specification of

application resource needs, including complex resource aggregates and set-related functions.

Figure 2-4 (a-b) respectively illustrate a sample request specification and three specifications

for resources. The former describes a request for a group of compute machines, a storage

resource and a network connection.

Figure 2-5: A sample SWORD query describing application resource needs

SWORD [60] provides a query specification language expressing application

requirements for resources. Queries in SWORD often contain: 1) a number of equivalent

resource groups, each defined by a number of required nodes, a range of acceptable

performance attributes, as well as inter- and intra-group connectivity; and 2) penalty functions

[67] that guide detailed choices amongst acceptable resources to optimize application

Group group1

 NumMachines 4

 Required CpuSpeed [1.0, 3.2]

 Preferred CPUSpeed [2.4, 3.2], penalty 100.0

 Required AllPairs BW [10, MAX]

 Preferred AllPairs BW [20, MAX], penalty 10.0

Group group2

 NumMachines 2

 Required FreeDisk [100, MAX]

 Preferred FreeDisk [300, MAX], penalty 80.0

 Required AllPairs BW [10, MAX]

 Preferred AllPairs BW [20, MAX], penalty 10.0

InterGroup

 Required OnePair BW group1 group2 [5, MAX]

27

performance. Figure 2-5 illustrates an exemplary SWORD query requesting two resource

groups and network connectivity between them.

Figure 2-6: A sample vgDL resource specification for a loosely-coupled group of compute

clusters

The vgDL description language [68] specifies Virtual Grids [27], which provide

simplifying resource abstractions for grid applications. A vgDL specification describes

resource needs as different hierarchies of resource aggregates (including ‘Cluster’, ‘LooseBag’

and ‘TightBag’), used by applications to express forms of parallelism and communication

optimization. It also specifies a ranking function guiding detailed choices amongst acceptable

candidates. Figure 2-6 illustrates an example vgDL specification requesting a loosely-coupled

group of compute clusters.

Traditional resource specification languages [60, 64-66, 68, 71] express application

communication needs implicitly as end resource attribute constraints (e.g.,

server1.Bandwidth[server2] > 100 Mbps). This approach is limited to specification of end-to-

end connectivity requirements and cannot describe complex communication structures of

Lambda-Grids, including sharing properties, multi-path connections and optical multicast

[45].

VGrid1 = LooseBag<ClusterNode>[4-8]{ClusterNode =

Cluster<Node>[8-16] {Node = {memory > 1024MB, CPUSpeed > 1GHz}}

Rank(Node) = CPUSpeed

28

Chapter 3. Thesis Statement

3.1 Context

 Emerging large-scale scientific and engineering applications depend on distributed

cyber-infrastructures. Example applications include distributed computational steering [2],

collaborative data visualization [3], scientific data distribution and sharing [1] and distributed

content delivery. Typically, such applications are compute- and communication-intensive,

requiring access to massive collections of distributed compute resources and data objects as

large as several terabytes. In support, underlying infrastructures must deliver dramatic

compute and storage capabilities and high quality network services which include extreme

bandwidth (tens or even hundreds of gigabits per second) and controllable jitter and latency.

 With the emergence of Lambda-Grids, large-scale aggregations of compute clusters

and petabyte data stores with high-speed and predictable network performance to support

scientific applications have become possible. Such infrastructures enable applications to

exploit dedicated optical circuits to tightly interconnect geographically dispersed resources

across organizational boundaries. Applications can make use of these resources to achieve

high performance, synchronous collaboration, quality of service and real-time guarantee.

 While Lambda-Grids provide intriguing raw hardware capabilities, there are

significant challenges about how to support the application use of these complex resource

environments. For effective utilization, a service model is needed that is both simple to use

and delivers key novel capabilities. The infrastructures admit a wide range of possible service

models, varying in optimization objective, level of application visibility, and granularity of

resource allocation. Our research focuses on the use of a Distributed Virtual Computer (DVC),

an integrated application resource abstraction, as a service model. In this model, an application

requests and acquires a private collection of resources which combine distributed end

29

resources (including computers, storages and visualization) with a set of dedicated optical

circuits. These resources are then bound into a single virtual domain and transparently

managed for high performance and synchronous collaboration. An application in this virtual

environment can have direct, secure, high-speed and reliable access to remote resources.

3.2 Problem Definition

 To enable the DVC abstractions and the service model outlined above, a number of

significant and difficult challenges must be addressed. These include: how to provide a virtual

application resource environment, how to represent application resource needs, how to

efficiently select resources for high-performance applications, and how limited network

information affects application performance and resource utilization.

3.2.1 How to Provide a Virtual Application Resource Environment

 Although feasible, building applications that effectively exploit wide-area resource

sharing and novel communication capabilities of Lambda-Grids is difficult. Such applications

must contend with the complexity of Grid environments, which are distributed, dynamic,

heterogeneous and untrusted in terms of resources and networks involved. Grid resources span

many administrative domains and vary in type, performance property, availability and naming

mechanisms (e.g., full naming, dynamic and internal network address). Furthermore, utilizing

network configurability directly requires an understanding of complex telecommunication

infrastructures and application management of interdomain optical routing and signaling.

Without simplified interfaces to such computing environments, developing applications to

manage resource dynamics, heterogeneity and network configurability is impractical.

 Additionally, delivering the performance of high-speed, long distance connections

require the use of novel, exotic transport protocols. Lambda-Grids allow dynamic construction

30

of private, high-speed wide-area networks. Many advanced transport protocols [23-25, 69, 70]

are being developed for delivering novel communication capabilities in such networks. These

protocols are optimized for certain communication paradigms (e.g., point-to-point vs.

collective, and streaming vs. reliable), and applications can exploit a mixture of these

protocols to optimize their data flows. However, utilizing different protocols with varied

interfaces complicates application programming.

 Our objective is to develop programming abstractions and tools which allow for the

construction and deployment of applications in a convenient way similar to a local private

distributed computing environment. Toward that goal, there are open questions about how to

provide a uniform access to heterogeneous resources, how to handle dynamic resource

changes, how to provide a uniform communication interface, and how to abstract multi-

domain security.

3.2.2 How to Represent Application Resource Requirements

 Another significant challenge is the definition of a specification language that

describes application resource requirements, including distributed end resources and private

optical networks. The language’s design is critical because it allows applications to share

specific knowledge of their resource needs and drive resource selection and network

configuration optimization. Ideally, it must be expressive enough to describe unique

communication structures of Lambda-Grids (e.g., connection sharing and optical multicast),

while supporting simple specifications for inexperienced users such as scientists. In addition,

the language should allow expression of abstract resources and network topologies providing

the underlying resource planning services with sufficient flexibility to optimize resource

configurations for the application and enable efficient resource use.

31

 To date, most resource specification languages for Grids [60, 64-66, 68, 71] describe

application communication requirements implicitly as end resource property constraints. This

is a limited expression of end-to-end network connectivity and cannot describe unique

communication structures in Lambda-Grids, such as sharing properties and photonic multicast.

3.2.3 How to Select Resources for Applications

 The selection of appropriate resources for individual applications is an important

challenge in achieving high application capabilities and resource efficiency. Application

performance is dictated by a range of factors; these depend on the application’s characteristics.

For example, communication latency and jitter are critical for real-time applications, and

compute clusters' CPU speed and physical memory are critical for high-performance

computing applications. With the increasing number of available resources in Lambda-Grids

(as many as hundreds of thousands), it’s necessary to identify and select good resources

quickly for applications to achieve high-performance or real-time execution. In addition (with

many users joining in the collective sharing of resources), it is also important to conserve the

use of scarce resources, such as bottleneck network links, in order to maximize the system

throughout.

 Our resource selection problem has many similarities to resource selection problems

for Grids [27, 53, 60] and network embedding problems [62, 63]. However, network

configurability presents unique challenges, adding the complexity of planning configurations

to that of end resource selection. This type of network planning is more difficult than end-

resource selection as it involves the optimization of composed communication resources.

32

3.2.4 How Available Network Information Affects Application Performance and

Resource Utilization

 With a network comprised of multiple independent Internet Service Providers (ISPs),

a key challenge is controlled information sharing not only enabling efficient resource

selection, but also maintaining the competitive advantages of individual providers. Due to

numerous issues of trust, security and economics, ISPs hide sensitive information about their

networks, and the limited information available may affect the quality of resource selection.

Consequently, this may impact application communication performance and resource

utilization in Lambda-Grids. Significant and open research questions are what types of

information matters and how it affects applications’ and ISPs’ ability to utilize network

resources.

3.3 Thesis Statement

 Our research investigates an integrated framework for managing configurable optical

networks and wide-area resource sharing in Lambda-Grids. Such integrated management

enables coordinated resource use and combined resource selection for optimizing

configurations for applications. My thesis is stated as follows:

 Guaranteed, high application performance and efficient resource usage can be

achieved simultaneously in Lambda-Grids by integrated selection of end resources (e.g.,

computers, storages and visualization) and network resources.

 To prove the thesis, we first need to demonstrate the feasibility and advantages of the

integrated resource management idea. Our approach develops an integrated resource

33

management architecture allowing individual applications to describe and acquire a combined

set of network and end resources in Lambda-Grids. This architecture provides a simple service

model for applications, enables applications to share information about their resource needs,

and allows integration of resource and network configuration optimization. Guaranteed

application performance is achieved by dedicating use of resources for the entire duration of

application execution. Further, the combined resource management enables construction of

integrated resource abstractions for applications, including a single security domain, a single

namespace, and uniform resource access. These abstractions enable complex collections of

highly dynamic and heterogeneous resources to be used like a physically secure, localized

LAN/SAN environment.

 Combined resource selection is our approach to achieve high application performance

and resource efficiency in Lambda-Grids. Such approach enables optimization to span both

network and end resources, and simultaneously achieves both goals. While combined selection

offers great flexibility of choices, it is difficult computationally and algorithms that guarantee

optimal solutions are not practical at resource scale (thousands to millions of resources). Our

approach uses heuristics based on simulated annealing and top-down hierarchical selection.

Such techniques improve selection time significantly while providing high-quality resource

selection without compromise.

 To study the impact of limited network information on application performance and

resource efficiency, a spectrum of network information models is defined and we assess how

the choice of model affects the quality of resource selection. For our evaluation to broadly

useful, we consider a range of realistic ISP optical network topologies at metropolitan,

national and global scales. This also enables us to study the impact of network topology

design on the utility of different network information factors.

34

 As a final proof of our thesis, we build a system software prototype which realizes the

integrated resource management architecture. The prototype is used to demonstrate the

effectiveness of our integrated resource management approach with greater credibility and

deeper evaluation based on real use with scientific applications. This prototype shows that

guaranteed, high application performance is achieved in Lambda-Grids.

3.4 Acknowledgement

 Chapter 3, in part, is published as “Distributed Virtual Computer (DVC): Simplifying

the Development of High Performance Grid Applications” by Nut Taesombut and Andrew A.

Chien in the proceedings of the Workshop on Grids and Advanced Networks (GAN’04), April

2004. The dissertation author was the primary researcher and co-author of this paper.

35

Chapter 4. System Design and Implementation

 This chapter presents the design and implementation of the Distributed Virtual

Computer (DVC), an integrated middleware service for easy and efficient development of

high-performance applications on Lambda-Grids. Key aspects of the DVC include a simple

model of use for applications, a resource description language that integrates application

resource needs, simple naming and communication interfaces that integrates a wealth of

underlying network complexity, as well as combined resource selection for high application

capability and resource efficiency.

 This chapter is organized as follows. Section 4.1 introduces the Distributed Virtual

Computer and its key components. Section 4.2 presents the DVC Integrated Specification

Language describing combined application resource needs. Section 4.3 discusses key DVC

abstractions that simplify application management of security, resource, naming and

communication. Section 4.4 presents two combined resource selection algorithms based on

simulated annealing and top-down hierarchical selection. Section 4.5 discusses the

implementation of the DVC system prototype. Section 4.6 summarizes the chapter.

4.1 Overview of Distributed Virtual Computer

The Distributed Virtual Computer (DVC) architecture supports coordinated resource

management and provides a simple service model for applications. The architecture builds on

two insights from our experience in developing distributed applications and services on

Lambda-Grids. First, building applications that exploit network configurability and cross-

domain resource sharing is extremely difficult. Application developers need to understand

details of the underlying software and hardware infrastructures and manage highly dynamic

and heterogeneous resources. The selection and configuration process of wide-area distributed

resources is tedious and error-prone. Second, supporting synchronized use of network and end

36

resources requires coordination between network services and Grid resource managers. This is

impossible without a well-developed model of use (or service model) with Grid resource and

network service providers.

Figure 4-1: DVC integrated resource management architecture

To support easy and efficient development of high-performance applications on

Lambda-Grids, we develop the DVC integrated resource management architecture shown in

Figure 4-1. Key elements include:

• DVC-ISL – an "integrated specification language" that describes application resource

requirements, including traditional end resource specification and explicit high-level

description of communication resources. The language allows applications to share

specific knowledge of their resource needs and drive resource selection and network

configuration.

• DVC-RCP – a "resource configuration planner" which takes a DVC-ISL specification as

input, and (subject to information about currently available resources) returns a resource

configuration matching the specification. The DVC-RCP integrates resource selection and

37

network planning producing the configuration that enables high application capability and

resource efficiency.

• DVC-RC – a "resource configuration" that is the output of the DVC-RCP and describes a

combined set of distributed end resources and optical networks to realize the application

resource requirements as given in the DVC-ISL.

• DVC-RB – a "resource binder" which takes a DVC-RC as input and negotiates with Grid

resource managers and optical network services for co-allocation of the end resources and

private networks as described in the DVC-RC.

• DVC environment – a middleware-enabled, configurable collection of private end

resources and optical networks transparently managed for guaranteed, high performance

and quality of service. The DVC environment also provides a simple set of abstractions to

simplify application management of naming, security, communication and resources.

Here, an application (or user) can conveniently describe, acquire, and use a private set

of distributed end resources and optical networks. Specifically, the application creates a DVC-

ISL specification describing its resource requirements, and passes it to the resource

configuration planner (DVC-RCP). In response, the DVC-RCP retrieves information about

available resources from Grid and network information services and matches the given

specification with a resource configuration (DVC-RC) that represents an appropriate set of

network and end resources. The DVC-RC is then presented to the application. If not satisfied

with the result, the application modifies its specification and repeats the process. Then, the

application passes the DVC-RC to the resource binder (DVC-RB) that instantiates it by

allocating the corresponding end resources and optical networks. All these resources are then

bound into a DVC environment, a simplified computing environment with the complexity of

use comparable to a private, local distributed system. Within the environment, the application

uses these resources to achieve secure, high-performance, reliable execution. In addition, the

38

application can configure the DVC environment and modify its configurations according to

evolving application requirements and resource conditions. As an example, the application can

dynamically add end resources and optical connections into the environment. It can also

organize the allocated resources into sub-domains for group management.

The proposed architecture has integrated resource management. This allows for

coordination between communication and end resources to achieve high, guaranteed

application performance. Furthermore, the combined acquisition of both resource types

provides opportunities for integrated resource selection which can improve application

capabilities and resource utilization in Lambda-Grids.

4.2 Integrated Specification Language

 A key element of the DVC approach is a resource specification language (DVC-ISL),

describing application communication and end-resource requirements and allowing their use

for driving both resource selection and network configuration. These DVC-ISL specifications

are simple, making it easy for high-level users with little knowledge of the underlying

resource infrastructures, yet expressive, allowing expression of complex network structures in

Lambda-Grids.

 The DVC-ISL language builds on the Redline constraint language [66] adding simple

extensions for explicit high-level description of network structures (i.e., communication nodes

and links are named). Such explicit description enables applications to expose the unique

communication capabilities of Lambda-Grids; these include photonic multicast [45] and

connection sharing properties. The DVC-ISL differs from traditional description languages for

Grids [60, 64-66, 68] where application communication requirements are implicitly specified

as end resource attribute constraints (e.g., server1.Bandwidth[server2] > 1Gbps), which is

limited to the expression of end-to-end network connectivity.

39

 It should be noted that the set of switches and links in the desired networks do not

have to fully specify. Applications simply describe high-level network connectivity constraints

(e.g., end-to-end bandwidth and latency) and leave the task of composing network resources to

the DVC-RCP. Explicitly specifying network structures only provides a means for

applications to share specific knowledge about their communication needs and this allows

opportunities for optimizing application performance and resource efficiency.

Figure 4-2: The BNF description of the DVC-ISL resource specification language

Figure 4-2 provides a BNF description of the DVC-ISL excluding parts of the original

Redline language (RL_ConstList and RL_ArithExpr). The full BNF description is given in the

Appendix. Key features of the DVC-ISL language include.

• Resource constraints and preferences

• Resource aggregates

• Internal communication nodes

• Network connectivity

DVC-ISL-Spec ::= Identifier ‘=’ ‘[’StatementList ‘]’

StatementList ::= Statement [‘;’ Statement]*

Statement ::= Identifier ‘ISA’ ‘[’ RL_ConstList ‘]’

 | Identifier ‘ISA SET’ ‘[’ RL_ConstList ‘]’

 | Identifier ‘ISA CONN’ ‘(’ ReferenceList ‘)’ ‘[’ RL_ConstList ‘]’

 | Identifier ‘ISA CNODE’ ‘[’ RL_ConstList ‘]’

 | RL_Const

 | RankFunc

ReferenceList ::= Reference [‘,’ Reference]*

RankFunc ::= (‘Maximize’ | ‘Minimize’) ‘(’ RL_ArithExpr ‘)’

40

4.2.1 Resource Constraints and Preferences

 To support applications that are sensitive to resource and network performance

characteristics, the DVC-ISL can specify constraints on resources with acceptable ranges of

their per-node or collective attributes, such as CPU speed, physical memory, disk storage and

processor architecture type. Evaluations are run with these constraints against current resource

performance status and availability information in a database. These determine which

resources are acceptable and can be allocated for the requesting application. Further, to enable

applications to guide detailed choices among acceptable candidates that can make major

performance difference, the DVC-ISL supports specification of a “ranking function”. An

arithmetic expression, the ranking function computes and compares the quality of resource

candidates. The use of a ranking function informs the resource configuration planner (DVC-

RCP) to choose the “best” resource candidates that have either maximum or minimum rank

value.

4.2.2 Resource Aggregates

 Many scientific and engineering applications require aggregations of resources for

large-scale computation, data repositories and high-performance visualization. The required

computing nodes and disk storages are often generic and interchangeable; they may share

some common attributes such as processor architecture and operating system types. To capture

these resource aggregate requirements, the DVC-ISL supports requests for “resource sets”

corresponding to collections of homogeneous resources. These resource sets can have

different types of network connectivity, depending on the specified communication

constraints.

41

4.2.3 Internal Communication Nodes

 Applications are not all alike. Different types require differing transport services. For

example, high-performance computing applications need the ability to exchange data among

many computing nodes, while collaborative data visualization applications require the ability

to multicast information. One possible way to meet these different requirements is to use

multiple point-to-point connections. However, this approach is costly and perhaps infeasible in

the presence of resource contention. Instead, these requirements can be efficiently realized

with the use of special network hardware such as photonic multicast and aggregate switches.

 To capture complex network requirements, the DVC-ISL can describe internal

communication nodes (or “cnodes”) in the network. A cnode allows traffic exchange between

its interfaces (or links connecting to it) and may offer different types of transport services.

These include:

• Cross-connect – the ability to exchange traffic between a fixed pair of its interfaces

• Exchange – the ability to exchange data traffic between any pair of its interfaces. This

capability allows for traffic aggregation and connection sharing.

• Multicast – the ability to optically duplicate an input signal and deliver it to multiple output

interfaces.

 By default, a cnode corresponds to an exchange switch. When large numbers of end

resources are in need of full connections, using exchange switches can reduce the number of

optical circuits required (n compared to (n*(n-1))/2 circuits).

4.2.4 Network Connectivity

The DVC-ISL supports three types of network connectivity constraints, including

“intra-cluster”, “lambda” and “internet”.

42

• Intra-cluster – This connectivity constraint is defined against a resource set indicating all

the resources must be machines within the same physical cluster. In a cluster environment, a

collection of resources are tightly coupled via local high-speed and low-latency Ethernet

switches.

• Lambda – This constraint specifies that two or more endpoints (end resources or cnodes)

are interconnected via private optical circuits. Each circuit is a direct, secure, and

congestion-free path between resources. It provides high transport performance and

guaranteed quality of service.

• Internet – This constraint indicates that two or more endpoints are interconnected via a

shared packet-switched network or the Internet. This allows aggregation of traffic from

multiple endpoints. However, it may cause congestion and unpredictable performance.

4.2.5 Example DVC-ISL Specifications

Here, we present two DVC-ISL specification examples and highlight their advantages.

Figure 4-3: An abstract resource configuration for tightly coupled sets of compute clusters

43

Figure 4-4: A sample DVC-ISL specification for tightly coupled sets of compute clusters

Many scientific applications [27] require large-scale resource aggregations for

complex computation. Large sets of distributed computing resources in Lambda Grids can be

assembled from multiple organizations and tightly interconnected with dedicated optical

circuits. Figure 4-3 and Figure 4-4 illustrate a sample resource configuration for tightly

coupled sets of compute resources and a DVC-ISL specification describing it. Specifically,

Lines 2-5 describe four resource sets, each containing eight compute nodes, and specify each

node has CPU speed faster than 2.4 GHz with a physical memory size greater than 1024 MB.

To define all nodes in each resource set to be machines within the same physical cluster, Lines

6-9 specify the intra-cluster connectivity constraints on them. Lines 10-14 specify optical

connectivity between these clusters. Instead of asking for network connectivity between every

pair of clusters, the specification describes an exchange switch and optical connectivity from

each cluster to this communication node. This approach reduces the number of required

optical circuits if a large number of clusters need to be all interconnected. Further, by

describing network connectivity between them, the resulting links connecting different

clusters can be efficiently shared among communications going from any node in one cluster

(1): ClusterSet =[

(2): cluster1 ISA SET [CPUSpeed >= 2.4; Memory >= 1024]; Count(cluster1) == 8;

(3): cluster2 ISA SET [CPUSpeed >= 2.4; Memory >= 1024]; Count(cluster2) == 8;

(4): cluster3 ISA SET [CPUSpeed >= 2.4; Memory >= 1024]; Count(cluster3) == 8;

(5): cluster4 ISA SET [CPUSpeed >= 2.4; Memory >= 1024]; Count(cluster4) == 8;

(6): conn1 ISA CONN (<cluster1>)[type="intra-cluster"; Bandwidth>=1000];

(7): conn2 ISA CONN (<cluster2>)[type="intra-cluster"; Bandwidth>=1000];

(8): conn3 ISA CONN (<cluster3>)[type="intra-cluster"; Bandwidth>=1000];

(9): conn4 ISA CONN (<cluster4>)[type="intra-cluster"; Bandwidth>=1000];

(10): cnode1 ISA CNODE [Required(exchange)];

(11): lambda1 ISA CONN (<cluster1>,<cnode1>) [type = "lambda"; Bandwidth >= 1000 ;Latency <20];

(12): lambda2 ISA CONN (<cluster2>,<cnode1>) [type = "lambda"; Bandwidth >= 1000 ;Latency <20];

(13): lambda3 ISA CONN (<cluster3>,<cnode1>) [type = "lambda"; Bandwidth >= 1000 ;Latency <20];

(14): lambda4 ISA CONN (<cluster4>,<cnode1>) [type = "lambda"; Bandwidth >= 1000 ;Latency <20];

(15): Maximize((Avg(cluster1.CPUSpeed) + Avg(cluster2.CPUSpeed) + Avg(cluster3.CPUSpeed) +

 Avg(cluster4.CPUSpeed))/4)

(16):]

44

to any node in another. This can be implemented by allocating optical circuits terminating at

fast border packet switches attached to each cluster. Line 15 defines a ranking function with

the optimization objective to maximize the average CPU speed of the four clusters.

Figure 4-5: An abstract resource configuration for a multicast group

Figure 4-6: A sample DVC-ISL specification for a multicast group

Photonic multicast [45] is an efficient communication structure for one-to-many

communications. It doesn’t require optical-electronic-optical (OEO) conversion and only one

transmitter is needed; thereby, it provides high bandwidth, low latency, and efficient resource

use. Figure 4-5 and Figure 4-6 show a sample of photonic multicast and a DVC-ISL

specification describing it. Specifically, Line 2 specifies a data source, a storage machine that

contains a particular dataset. Lines 3-4 specify multicast clients at three known locations.

Lines 6-10 describe a multicast connection where a communication node with the ‘multicast’

(1): MulticastGroup =[

(2): storage ISA [InSet(DataSet, "Potomac.scene")];

(3): client1 ISA [Hostname == "grid3.ucsd.edu"];

(4): client2 ISA [Hostname == "igrid111.cs.uic.edu"];

(5): client3 ISA [Hostname == "dream.cse.uci.edu"];

(6): mcaster ISA CNODE [Required(opt-mcast)];

(7): lambda1 ISA CONN (<storage>,<mcaster>) [type = "lambda"; Bandwidth == 1000 ;Latency <20];

(8): lambda2 ISA CONN (<mcaster>,<client1>) [type = "lambda"; Bandwidth == 1000 ;Latency <20];

(9): lambda3 ISA CONN (<mcaster>,<client2>) [type = "lambda"; Bandwidth == 1000 ;Latency <20];

(10): lambda4 ISA CONN (<mcaster>,<client3>) [type = "lambda"; Bandwidth == 1000 ;Latency <20];

(11): Minimize(lambda1.Latency + Avg(lambda2.Latency + lambda3.Latency + lambda4.Latency))

(12):]

45

capability and optical circuits from this node to individual clients are defined. Line 11 defines

a ranking function with the optimization objective to minimize the average latency between

the data source and three clients.

4.3 Application Resource Abstraction

 To simplify application use of resources in Lambda-Grids, we develop a DVC

environment, an integrated resource abstraction providing applications with simple usage and

performance model. The DVC environment provides an abstraction layer insulating

applications from the full complexity of building robust and secure applications on highly

dynamic and heterogeneous resource environments. Key DVC abstractions include a single

security domain, virtual resource names and groups, uniform resource access, and unified

communication interfaces. Altogether, the resulting programming complexity is comparable to

a private, locally distributed computing environment.

Figure 4-7: DVC resource abstractions enable a simple view of a private local distributed

computing environment under a single security domain

46

Figure 4-7 illustrates a high-level view of a DVC environment (shown in the middle).

This environment can be viewed as a collection of resources assembled from several remote

sites. These sites may span multiple administrative domains (shown with distinct dotted

boxes) and enforce diverse resource management, naming and security policies. The DVC

abstractions enable a simple computing environment where the assembled resources are

tightly connected via a reliable, private network and controlled under a single administrative

domain. For the application to be able to run on different physical resource configurations

without modification, the DVC environment provides a private virtual namespace and

uniform access to the distributed resources.

• Single security domain – each DVC environment is private to a single or groups of users;

all logically grouped resources are centrally managed under a single security domain. DVC

implementation mechanisms ensure it is secured as a local private distributed environment.

• Virtual resource names and groups – to support application flexibility and portability

across different physical resource configurations, the DVC environment provides a simple

virtual resource namespace (hostnames and IP addresses). Communication among these

names is implicitly tied to the dynamically configured networks and allocated resources.

Resources can also be identified as groups; this provides for easy group-based management.

• Uniform resource access – the DVC environment allows direct, uniform access to

distributed resources, masking heterogeneous access policies and mechanisms imposed by

distinct resource providers. Resources are allocated and configured prior to application

execution time. Then, they can be accessed directly via DVC control channels and simple

interfaces.

• Unified communication interfaces – To provide uniform access to the advanced transport

protocols [23-25, 69, 70] needed to deliver high performance; the DVC environment

47

provides a unified communication interface. This interface leverages the DVC namespace

and groups and provides convenient access and procession of novel capabilities such as

photonic multicast.

4.3.1 Single Security Domain

To simplify application management of multi-domain security in Grids, a DVC

environment provides a single security domain. Each environment is private to a single or

group of users. Within the DVC environment, the user has full control over the allocated

network and end resources. Each environment is initiated with a base set of security

properties, but the user may set various levels of security and trust amongst resources,

including network. Based on the configured security level, the underlying DVC services select

and implement appropriate security mechanisms prior to application runtime. The application

assumes a secure computing environment during actual execution.

To realize the DVC single security domain abstraction, the DVC relies on and

leverages the Globus’s Grid Security Infrastructure (GSI) [34] that provides standard security

mechanisms for authentication, authorization, and secure remote job invocation. The GSI

implements a Virtual Organization (VO), a set of relationships and sharing policies permitting

coordinated use of distributed resources across traditional organizational boundaries by a

community of users. However, VO’s are configured cooperatively among the IT

administrators of all participating organizations, so change is difficult and slow. The

Community Authorization Service (CAS) [72] is a VO-enabled service eliminating the need

for direct interaction between resource providers, thus addressing the flexibility and scalability

problems of the VO construction. The DVC environment assumes an existence of VO and

CAS, but it is a dynamic application instance oriented structure. A VO can be easily

48

instantiated within a DVC by a single user, and may come and go dynamically when a single

application runs.

To contend with complex security policies required by large-scale collaborative

applications such as scientific data distribution and sharing [1], finer-grained security domains

can be formed across a subset of resources within the DVC environment. Users may set access

control or a trust level for individual resources and security sub-domains. Three security

options are available: 1) trusted network and resources; 2) trusted network and untrusted

resources; 3) untrusted network and resources. Depending on the option selected, proper

security mechanisms like authentication, authorization and encryption are transparently

implemented and enforced within the DVC environment.

4.3.2 Virtual resource names and groups

To aid application portability and resource management, the DVC environment

provides a virtual private namespace (IP addresses and hostnames) for resources. With the

allocation of a new resource into the DVC environment, it is assigned a unique virtual

hostname and IP address. An application can explicitly choose meaningful names to simplify

organization of resources. The virtual namespace insulates the application from the

complexity of heterogeneous resource naming mechanisms (e.g., full naming, dynamic and

internal network addresses) imposed by distinct resource providers. It enables the application

to run on different physical resource configurations without the need for modification.

49

Figure 4-8: The DVC virtual namespace simplifies application management of heterogeneous

resource names and aids application portability

Figure 4-8 illustrates a sample DVC environment implemented with different physical

resource configurations on two separate application runs. The two resource sets are bound into

the DVC environment and assigned with the same set of virtual IP addresses (i.e., an identical

namespace). This approach has several advantages including high application portability and

runtime adaptation. Because the namespace is kept constant, the application can be

independently run on the two resource configurations. Furthermore, to compete with

asynchronous changes in resource availability and dynamic application requirements, the

resources in the DVC environment can be transparently replaced. A virtual name whose

presence remains intact can be associated with several distinct physical resources over time.

From the application perspective, resources within the DVC environment are as reliable and

easily accessible as in a local distributed environment.

In addition, the DVC model provides a set of group naming operations to simplify

application management of collective communication and resources. At first, all resources are

bound into a simple flat namespace. An application can create group, hierarchical, or other

50

naming structures for resources, providing easy group-based management. For example, the

resources can be grouped based on their functions (e.g., storage, computing and visualization),

communication roles (e.g., data source and sink), network locations, or other criteria. These

groups can be grown, shrunk, subsetted or combined. This allows for flexible usage. Each

group is associated with a unique logical name and IP address. The use of group names (or IP

addresses) provides a natural basis for describing collective operations on resources. For

instance, a multicast connection can be created between a virtual IP address of a resource and

a group IP address.

4.3.3 Uniform resource access

Figure 4-9: The DVC environment provides uniform access to distributed resources through

virtualization

 The DVC environment provides uniform access to Grid resources through

virtualization, masking the complexity of site-specific management systems and resource

heterogeneity. As shown in Figure 4-9, it provides a simple interface and virtualization

services that application developers can use to directly access and manage remote resources.

51

Through this interface, applications only view simple virtual resources with the complexity of

use comparable to that of a local cluster environment.

The DVC resource abstraction is realized by the cooperation of the virtualization

services on individual resources. Lightweight control processes are created on them when new

resources are allocated into the DVC environment. These processes enable a simple view of

resources as they mask resource heterogeneity and complexity by providing a uniform way for

the applications to interact. They in turn interact with physical resources via their native

interfaces. Throughout application execution, these control processes also monitor resource

utilization and availability, and may adjust the environment in response to dynamic

application requirements and asynchronous changes in resource status.

4.3.4 Unified communication interfaces

Figure 4-10: DVC high-speed communication architecture

The DVC environment provides a set of uniform communication interfaces to a range

of novel transport protocols [23-25, 69, 70]. While these protocols are crucial for delivering

the performance of high-speed, long distance connections, their diverse native interfaces

complicate an application programming effort. To simplify application use of these protocols,

we develop an integrated communication framework as shown in Figure 4-10. Here, the

52

implementations of individual protocols are provided as transport drivers. The framework

integrates these drivers and presents uniform communication APIs to applications. These APIs

are sock-like interfaces (socket, listen, bind, connect, send, recv, sendfile, close, etc.) which

leverage the DVC virtual namespace and resource group names for simple expression of

communication within the DVC environment. As virtual resource names (or IP addresses) are

used for communication, the DVC implementation module translates them into physical IP

addresses and calls appropriate protocol drivers. The use of these interfaces enables the

applications constructed with the traditional socket interfaces to be easily ported to the DVC

environment, thereby achieving the novel communication capabilities with minimum

reprogramming effort.

4.4 Integrated Resource Selection

 A significant problem in enabling high application performance and efficient resource

use is the selection of appropriate sets of resources for individual applications. In Lambda-

Grids, network configurability presents unique challenges for resource selection, adding the

complexity of composed network connections to that of end resource selection. Here, we

formulate the problem and present details of our combined resource selection approaches.

4.4.1 Problem Formulation

In the DVC model, applications describe and acquire combined sets of

communication and end resources. As illustrated in Figure 4-11, the DVC-RCP is a resource

planning service that takes a DVC-ISL specification and, subject to available network and grid

resource information, matches it with an appropriate subset of the system resources. The

DVC-ISL specification describes constraints on components (e.g., end resources, resource sets

and communication nodes) and the DVC-RCP is responsible for matching these components

53

with the physical resources (e.g., computers, storage clusters and exchange switches). To

realize application network connectivity requirements, the DVC-RCP selects a set of optical

switches and links and composes them into satisfying network connections. This entire

resource matching and network composition process is referred to as the resource selection

problem.

Figure 4-11: Selecting network and end resources to satisfy application needs

Our problem shares many similarities with resource selection problems for Grids [27,

53, 60] and network embedding problems [62, 63], proven as NP-hard. However, it differs

from these in that it is not necessarily a one-to-one mapping between components in the

application request and physical resources. For instance, required network connections are

realized by sets of network switches and links. This kind of network planning is complex and

is computationally harder than end-resource selection as it involves optimization of composed

network resources.

Finding an acceptable solution that meets all application resource requirements is the

primary goal. Two optimization objectives also need to be considered. The first is to select a

54

resource configuration that maximizes application capabilities. For many significant scientific

applications, their performance is highly dependent on the sets of resources that host their

computation and communication. Application performance may be dictated by a range of

factors, depending on the application’s characteristics. The DVC-ISL allows specification of a

ranking function to guide choices of resource candidates that can make major application

performance difference. Hence, the goal is to optimize the rank value of the solution. The

other objective is to minimize network resource use in terms of total lambda (circuit) distance.

This optimizes application communication latency while maximizing the probability of

satisfying future application requests by conserving use of lambdas.

For large Lambda-Grids and/or complex application requirements, the resource

selection task is very difficult. We consider large resource environments, comprised of

millions of end resources (10
6
 and more) and a few thousands of optical switches.

Applications may also ask for a large number of indepdendent components which cannot be

selected separately. Therefore, the problem is computationally hard and algorithms that

guarantee optimal solutions are not practical at resource scale.

4.4.2 Current Practice: Separate Resource Selection

Traditionally, communication and end resources are managed separately by optical

network and Grid middleware services. To acquire both types of resources, an application first

queries a Grid resource broker [26, 27] for a set of available end resources and then contacts

network services [17, 31, 32] to realize the desired network connections between them. If the

chosen end resources are far apart, realizing the required connectivity may be impossible. To

avoid repeated selection, the resource broker can produce multiple sets of end-resource

candidates with good resource quality and the application presents these choices (as endpoints

to be interconnected) to the network services. Finally, the network services return the resource

55

configuration (a combined set of end resources and private networks) with the lowest network

cost. We refer to this approach as the separate selection algorithm (Sep). Figure 4-12 provides

a short description of the algorithm.

Figure 4-12: Description of the separate resource selection algorithm

 The above algorithm and close variants are employed in recent resource selection

systems such as Virtual Grids [73], SWORD [60] and recipe-based service composition [61].

While these systems target resource environments with the traditional shared Internet, they

separate the selection of end resources and the evaluation of network constraints in order to

effectively solve the complex selection problems in a reasonable amount of time. This fast and

simple approach should produce solutions with good resource quality enabling high

application performance. However, it may incur high communication cost because end

resources are chosen with little knowledge of available network connections. We use this

separate selection approach as a baseline for our experiments.

4.4.3 Simulated Annealing Based Combined Resource Selection

 While integrated resource selection provides opportunities for optimization of choices

that span both communication and end resources, it is a computationally intensive task. An

Separate Resource Selection Algorithm (Sep)

 1. For each component of a specification (an end resource or resource set), select N best
 candidates that satisfy all per-node and set attribute constraints that favorably contribute
 to a good rank value.

 2. Among the chosen sets of candidates, enumerate all combinations to generate resource
 configurations and label them with their respective rank values

 3. For each resource configuration, compose the required sets of network connections. If
 there is any unsatisfied connectivity constraint, reject that configuration

 4. Among the accepted configurations, return the one with the best rank. Ties are broken in
 favor of the configuration with the lowest network cost.

56

exhaustive algorithm [61] that enumerates all possible combinations of resource candidates

and guarantees optimal solutions are not practical at resource scale (thousands to millions of

resources). Use of a randomized heuristic algorithm offers a good trade-off between selection

optimality and cost; good algorithmic design will enable it to find near-optimal solutions in a

modest amount of time. Our approach uses a randomized search heuristic based on simulated

annealing (SA) with simultaneous end-resource selection and network configuration

optimization. Figure 4-13 provides a high-level description of the SA-based combined

selection algorithm (SA-Com).

Figure 4-13: Description of the SA-based combined resource selection algorithm

 The SA algorithm is an iterative improvement search technique based on the physical

process of “annealing” [74]. First, it produces a random resource configuration (RC0)

combining a set of chosen end resources and optical circuits. Then, the algorithm uses a

generation function to control the transition from one configuration (RCi) to another (RCi+1),

and uses a scoring function to determine the quality of a given configuration. If the new

configuration (RCi+1) has a better score than the previous one (RCi), the transition is accepted.

SA-based Combined Resource Selection Algorithm

1. Initialize current temperature tc, final temperature tf, and number of iterations numItr

2. Generate an initial random resource configuration RC0

3. Calculate the score of RC0 using the “scoring function”

4. Repeat until tc < tf

a. Use the “generation function” to generate a new resource configuration RCi+1 from
RCi

b. Calculate the score of RCi+1 using the “scoring function”

c. Generate a random number r on [0,1] and calculate the accept probability accProb
using the “acceptance function”

d. If RCi+1 has a “better score” than RCi, or r < accProb, accept the transition from RCi

to RCi+1. Otherwise, reject RCi+1.

e. If RCi+1 is the best solution thus far, let RCbest ← RCi+1

f. Update tf using the “cooling schedule” after numItr iterations

5. If RCbest satisfies all constraints, return RCbest

57

Otherwise, it is accepted with some probability, as controlled by the current temperature (tc).

At first, the temperature is set to such a high value that nearly all new configurations are

accepted. After a certain number of iterations, it is slowly reduced at the rate controlled by a

temperature cooling schedule. When the current temperature is low enough, only better new

configurations are accepted so the search is converted close to the optimal. Throughout the

search process, the algorithm records the best-score configuration (RCbest) found thus far, and

returns it when the current temperature drops below the pre-set final temperature (tf) and if it

meets all application resource requirements.

 The design of the key functions of the algorithm, including the generation function,

the scoring function, the acceptance function and the temperature cooling schedule are all

significant to the quality of resource selection.

4.4.3.1 Generation Function

 The function takes one resource configuration (RCi) as input and modifies it to

produce a new configuration (RCi+1). Each resource configuration is sets of physical

communication and end resources that are mapped to individual application components in the

specification. In this way, a new configuration is generated by randomly picking one

application component (ck) and matching it with a new single or set of physical resource

candidates, depending on the type of ck. For example, “single-node”, “resource-set” and

“cnode” components are matched with a storage server, compute cluster, and exchange

switches, respectively. Further, if ck has required network connectivity to any of other

components, the function calls the network configuration planning module to compose

necessary connections. To realize point-to-point connections, the module uses the Dijkstra

shortest-path algorithm with the goal to minimize the distance of the composed optical circuit

paths. Application communication latency as well as network resource efficiency is optimized

58

in this manner. To compose multicast connections, the module implements the “re-route-to-

source” heuristic [75], shown to construct a multicast tree in constrained WDM networks with

minimal average communication delay.

 We maintain a list of application components and their respective domains – which

represent sets of resource candidates that can be mapped to individual components. To derive

the domain of each component, we use a node consistency algorithm [76] and rely on the

database technique [77] to efficiently filter out those candidates that do not satisfy “per-node”

constraints involving only that component. So that the search space is further reduced, we

leverage the concept of “physical equivalence class” [62] to reduce the domain for each

component. In a typical Grid environment, collections of homogenous resources are logically

grouped into clusters. The resources within a cluster (such as computing nodes or storage

systems), are generic and indistinguishable in terms of hardware and network properties.

Because choosing any of these resources won’t affect the quality of resource selection, we

pick only one as representative and add it into the domain. Extra care must be taken when the

same set of resources can be mapped to multiple application components. Here, we avoid

adding the same resource candidates into the domains of different components.

4.4.3.2 Scoring Function

 The function inputs a resource configuration and produces a score that represents its

quality. The configuration with the best score is considered the best solution according to the

three optimization objectives outlined in Section 4.4.1. These goals are: 1) to find a solution

satisfying all application resource requirements; 2) to maximize application capabilities, as

determined by a user-defined ranking function; and 3) to minimize network resource use (or

conversely maximize network efficiency). Hence, we represent the score (scorei) as a three-

tuple (sati, ranki, costi), where sati is the total number of satisfied constraints, ranki is the rank

59

value and costi is the network cost of the evaluated resource configuration (RCi). We hold that

scoreA = (satA, rankA, costA) is better than scoreB = (satB, rankB, costB), if any of the following

three conditions are met:

Inside the scoring function, there are two kinds of constraints evaluated. The first is a

network connectivity constraint, including connectivity types and quality of service. The other

is an end-resource attribute constraint involving more than one application components.

Examples include the minimum total disk space, average CPU speed and compatible software

of sets of machines. The function doesn’t consider end-resource attribute constraints that

involve only one component because they’ve already been evaluated during the discovery of

the domain for each component. We characterize the network cost as the total weighted

distance of all lambdas (optical circuits) of the evaluated resource configuration, or formally

Σi di*wi where di is the distance and wi is the number of allocated wavelengths of the optical

circuit i.

The critical challenge in implementing this function is keeping the computational cost

low. Because the function is called every time that a new resource configuration (RCi+1) is

generated, its computational cost contributes to a large fraction of the total running time of the

selection algorithm. To minimize this cost, we take an advantage of the property that a new

resource configuration (RCi+1) is only slightly different from its base (or previous)

configuration (RCi). This is because the generation function picks one component and finds a

new mapping for it. Instead of re-evaluating the number of satisfied constraints, rank value

and network cost for all components, the function checks only those affected by the new

mapping.

(1) satA > satB, or

(2) satA = satB and rankA > rankB, or

(3) satA = satB and rankA = rankB and costA < costB.

60

4.4.3.3 Acceptance Function

 The function computes the probability of accepting a new resource configuration

(RCi+1) that has a worse score than its base one (RCi). It is defined as exp(-penalty/tc), where tc

is the current temperature and penalty is the penalty value of the new configuration RCi+1. The

penalty is computed as penalty = ((TotalConst – SatConst)/(TotalConst)*100), where

TotalConst is the total number of constraints in the specification and SatConst is the number

of satisfied constraints of RCi+1.

4.4.3.4 Temperature Cooling Schedule

 The cooling schedule controls how the temperature cools down and reaches the stop

point of the algorithm. We use a simple geometric cooling function tc = tc*α, where α is a

cooling rate and tc is the current temperature. The function is called every after numItr

iterations, where numItr is the sum of the total number of candidates for each application

component. The rationale is to allow consideration of every possible candidate for individual

components before the temperature is reduced in each step. We set parameters α=0.95, starting

temperature ts=60, finish temperature tf=0.75. These were chosen based on a large set of

training experiments that allow the search to converge to a final RC close to optimal.

4.4.4 Top-down Hierarchical Combined Resource Selection

 When we apply the SA-Com algorithm to large resource environments (comprised of

millions of end resources and thousands of network switches), it can be expensive

computationally. This is due to the immense solution space and a large number of circuit

computations over large networks. To address this scalability issue, we develop a novel top-

down hierarchical combined selection algorithm (Hier-Com) based on network clustering. As

illustrated in Figure 4-14, the high-level concept is to obtain a sequence of successive

61

approximations of the original selection problem (via network clustering) until the size of the

simplified problem is small enough to be directly solved by SA-Com. Then, the solutions to

the simplified problems are used to prune candidates and drive resource selection in the more

complex problems.

Figure 4-14: Functional flow of the top-down hierarchical combined selection algorithm

Figure 4-15: Description of the top-down hierarchical combined selection algorithm

Top-down Hierarchical Combined Resource Selection Algorithm

1. Use the “network clustering function” to create abstract networks (net1, net2, …, netn) at
 different hierarchical levels from an original networks (net0)

2. Let i ← n

3. Repeat until i = 0

g. Initialize a new simplified selection problem probi

 - Create a simplified resource environment from neti
 - Use the “candidate filter function” that uses the solution soli+1 to prune resource
candidates

h. Solve the problem probi using the SA-Com algorithm and produce the solution soli

i. i ← i -1

4. Initialize a final simplified selection problem prob0 from net0

j. Use the “candidate filter function” that uses the solution sol1 to prune resource
candidates

5. Solve the final problem prob0 using the SA-Com algorithm and returns the final solution
 sol0

62

Figure 4-16: Creating abstract networks at different hierarchical levels with network clustering

 Figure 4-15 provides a high-level description of the Hier-Com algorithm. It operates

as follows. First, the network clustering function is used to create abstract networks (net1, net2,

…, netn) at different hierarchical levels. As shown in Figure 4-16, at each level we cluster the

switches that are topologically close in the original physical network (net0) into equal-size

domains. The abstract network (neti) consists of abstract switches representing these domains

and abstract links summarizing the network connectivity between these domains. At higher

hierarchical levels, the number of domains decreases and the domain size increases. Starting

from the top level n, end resources are connected to the abstract switches that represent their

domains – the resources are in the same domains as their physical switches. The resulting

resource environment is a simplified selection problem (probn) – with a smaller size network

(netn) – that can be effectively solved by SA-Com. The solution (soln) indicates, for each

application component, from which domain end resources will be chosen in the final result.

Specifically, in soln, if the selected resource for a component ck is in domain A that consists of

switches 1-3, in the final result the selected resources for ck will be chosen from only those

candidates connected to switches 1-3. The rationale here is to approximate good selection of

end resources by first using the coarse-grained, domain-level networks and later refining it.

63

Then, we proceed to use the abstract network in the next lower level (neti) and exploit the

previous solution (soli+1) to prune resource candidates from irrelevant domains with the

candidate filter function. The result is a new simplified selection problem (probi) and is solved

with SA-Com. This process is repeated until the lowest level is reached. As we proceed to

more refined levels, domain size decreases and we can get more detailed information about the

regions in the original network that the end resources will be picked from for each component.

At the bottom level, we use the original network (net0) and return the solution (sol0) as a final

result.

 The effectiveness here depends on the design of the key functions of the algorithm,

including the network clustering function and candidate filtering function. Following is a

discussion of the details of these functions.

4.4.4.1 Network Clustering Function

 The function accepts a parameter clusterSize and generates abstract networks at

different hierarchical levels by recursively clustering switches into domains of clusterSize

elements. As an example illustrated in Figure 4-16, we set clusterSize to 3, and it takes two

iterations to cluster the original network (comprised of 27 optical switches) into two abstract

networks (comprised of 9 and 3 domains). For the Hier-Com algorithm to be effective,

switches that are topologically close together must be grouped into the same domain. This is

because we use these domains to approximate communication cost between remote switches

and assume good network connectivity within a domain.

 The network clustering can be modeled as a min-cut graph partitioning problem and

solved with a generic graph partitioning algorithm. To solve it quickly and effectively, we

exploit the METIS’s state-of-the-art min-cut graph partitioning tool [78]. The challenge is how

to construct an input graph to METIS by setting its edge weights appropriately so that the

64

resulting network is well clustered. In a graph-partitioning problem, the goal is the number of

weighted edge-cuts to be minimized. In the network clustering problem, the objective is to

place the switches with no or high-latency connections into different domains (or partitions).

Therefore, we set edge weight to be inversely proportional to its corresponding link latency.

Different approaches were explored and the following edge weight assignment formula was

chosen:

 Here eij is a link (or edge) between two switches, MaxLat is the maximum latency of

all links, Lat(eij) is the link latency and Weight(eij) is the edge weight of the link eij.

 Figure 4-17 (a-c) give an exemplary result of partitioning the Verizon global network

[79] with different edge weight assignment methods. In these figures, the different symbols

represent the resulting domains assigned to switches after the network is partitioned. We see

that our method (shown in Figure 4-17 (b)) produces the best result where the network is well

partitioned based on geographical regions and the resulting domains have the least size

variation. We also evaluate different edge weight assignment methods with other real ISP’s

metropolitan, national and global networks and find that our approach achieves better or

comparable quality of the network partitioning results.

()
()

1100*
)(

)(+

 −
=

MaxLat

eLatMaxLat
eWeight

ij

ij

65

(a) 1/Lat(eij)

(b) (((MaxLat – Lat(eij))/MaxLat) * 100) + 1

(c) (((MaxLat – Lat(eij))
2
/(MaxLat)

2
) * 100) + 1

Figure 4-17: Partitioning the Verizon global network with different edge weight assignment methods

66

After the network is clustered (or partitioned) in each step, we create an abstract

network where abstract switches represent the resulting domains and abstract links summarize

the network connectivity between them. Our goal is to appropriately set the latency and

bandwidth of each abstract link so it represents good approximation of the communication

cost between remote switches and doesn’t eliminate any feasible solution. During

implementation, we approximate respectively the latency and available bandwidth of an

abstract link by the average latency and sum bandwidth of all physical links across the two

domains.

4.4.4.2 Candidate Filter Function

 Figure 4-18: Pruning resource candidates and solving the simplified selection problem at

different hierarchical levels

 The function prunes resource candidates in the current abstract network (neti) using

the solution (soli+1) and information about the domains in the abstract network at the level

above (neti+1). The rationale is to make the complex selection problem solvable at resource

scale (millions of end resources) by approximating good selection of end resources in a

coarse-grained, domain-level network and using its solution to prune resource candidates from

irrelevant domains. Specifically, for each application component ck in the specification, we

67

filter out those candidates not in the same domain in the network neti+1 as the selected

resources mapped to ck in the solution soli+1.

As illustrated in Figure 4-18, we employ the Hier-Com algorithm to solve the problem

of selecting one computer and one storage server with minimizing their communication delay

the set goal. At first, the algorithm creates abstract networks at two hierarchical levels (see

Figure 4-16). Starting from the top level, the algorithm calls the SA-Com subroutine to solve

the simplified selection problem with the abstract network net2. The solution sol2 consists of

one computer and one storage resource in the domain D1. Then, the algorithm proceeds to the

next level and uses sol2 to filter out resource candidates from the other domains (D2 and D3).

The result is the simplified resource selection problem with a much smaller solution space that

can be effectively solved with SA-Com. This process is repeated until the bottom level is

reached.

This resource candidate pruning technique has potential to significantly reduce the

solution space and improve the running time of the Hier-Com algorithm. In a typical Grid

environment, a large number of end resources (including computers and storage systems) are

available across the wide area; though they are often generic and interchangeable. Hence, each

application component usually has many candidates, ranging from hundreds to several

thousands. Chapter 5 demonstrates the top-down hierarchical selection technique based on

network clustering and candidate pruning greatly improve the selection time over SA-Com by

75.7% while maintaining good selection quality properties.

4.5 Prototype Implementation

Our key research contribution is the Distributed Virtual Computer (DVC), an

integrated resource management framework enabling high application performance and

resource efficiency in Lambda-Grids. Based on real use with scientific applications and

68

Lambda-Grid infrastructures, we develop a system software prototype implementing the DVC

architecture. This section discusses several key prototype implementation issues.

Figure 4-19: DVC system software architecture

 As illustrated in Figure 4-19, the DVC framework is realized by a range of system

software efforts in advanced distributed computing, high-speed communication, security

management, and network control planes. Our approach is to leverage existing grid

technologies for basic security and resource access, while being innovative to extract the novel

capabilities of Lambda-Grids. In particular, we exploit the Globus’s GRAM [37] to implement

our resource binding service (DVC-RB) and rely on Grid Security Infrastructure (GSI) [34]

for standard mechanisms for cross-domain authentication and authorization. We use the

Photonic Interdomain Negotiator/Photonic Domain Controller (PIN/PDC) [31, 51] to

dynamically configure a private network. Further, we implement a unified communication

framework in Section 4.3.4 to integrate a range of high-speed transport protocols. These

include TCP, GTP [23], CEP [25], UDT [24], etc. We leverage these grid and network service

69

components to implement DVC abstractions and make more application-oriented services

available to developers.

The DVC prototype provides a set of simple interfaces (APIs) for application

developers to create and manage a DVC environment. The package includes DVC

configuration modules and runtime libraries with which applications can dynamically

acquire/release resources, manage resource namespaces and security, submit jobs to execute

on resources, as well as manage high-speed data transfers.

The following subsections describe in detail how the DVC:

• Manages and controls a DVC environment,

• Binds and manages end resources,

• Configures a private optical network, and

• Manages job execution.

4.5.1 DVC Environment Management

 A DVC environment is a private computing environment simplifying the execution of

distributed applications on Lambda-Grids. It provides a simple set of abstractions to enable

complex collections of grid resources to be used in a fashion similar to that of a Storage Area

Network (SAN) in terms of use and performance models. As shown in Figure 4-20, the DVC

environment is realized by a group of daemon processes cooperatively running on a user’s

local host and remote end resources. When the user initiates a new DVC environment, a single

daemon process, called a DVC manager, is created and associated with it. This manager is

responsible for controlling and managing the DVC environment. It implements the resource

configuration planner (DVC-RCP) and resource binder (DVC-RB) services that discover,

acquire and bind resources into the DVC environment. The DVC manager also serves as

domain security authority, managing trust relationships and implementing necessary security

70

policies and mechanisms. To foster robust applications, it monitors resources to detect

asynchronous changes in resource performance and availability, and handles these events

according to the previously agreed policies.

Figure 4-20: Implementing the DVC environment with a group of cooperative daemon processes (DVC

manager and ghost managers)

 When new end resources are bound into the DVC environment, the DVC manager

initiates another lightweight daemon process, called a ghost manager, to run on each resource.

The ghost manager has a major responsibility in visualizing a simple computing environment

on the remote resource, serving as an intermediate layer between the application and the end

resource. To simplify application management of naming, resource and communication, it

implements a virtual namespace, unified communication interfaces, as well as mechanisms for

uniform resource access. As well, the ghost manager periodically monitors and reports

71

resource status (including information about utilization, availability and active job processes)

back to the DVC manager.

 The DVC manager maintains a DVC descriptor that records the current DVC

environment configuration and status. The descriptor includes information about DVC

resources, the ghost managers on those resources, configured private networks, security and

communication configuration, as well as active jobs. The DVC manager maintains a master

copy of this descriptor and periodically updates its changes to the ghost managers.

4.5.2 End Resource Binding

 The DVC system prototype can dynamically allocate and bind end resources into a

DVC environment. As shown in Figure 4-21, to obtain access to remote resources, the DVC-

RB service (implemented inside a DVC manager) authenticates to the site-specific resource

managers under the user’s identity, and initiates a DVC ghost manager on each resource.

Subsequently, the ghost manager directly accepts commands from the DVC manager and

performs necessary tasks (e.g., job invocation and job status inquiry) on the resource. In our

implementation, we use Globus Resource Allocation Manager (GRAM) [37] as a secure

gateway to the heterogeneous, site-specific resource managers, such as PBS [80] and SGE

[81]. We use Grid Security Infrastructure (GSI) for user authentication and access

authorization across administrative domains. Still, the DVC resource binding model is not

limited to Globus GRAM/GSI. It can be easily applied to other resource management systems

such as Condor [40].

72

Figure 4-21: Binding remote resources into the DVC environment using Globus GRAM/GSI

Figure 4-22: Resource binding overhead as a function of the number of resources

 A key challenge in implementing the DVC-RB is rapidly binding a large number of

end resources into a DVC environment. Many applications require tens to hundreds of

resources for large-scale computation; they must allocate them quickly so as to minimize the

turnaround time. Our approach is to bind multiple resources in one collective operation and

73

employ non-blocking calls to GRAM servers. This allows for multiple outstanding requests to

remote GRAM servers and reduces the total resource binding time. Figure 4-22 shows the

resource binding overhead as a function of the number of resources to bind in a local cluster.

As can be seen, 28 resources were bound in less than a second. This overhead is typically very

small, given that most large-scale scientific and engineering applications run [2,3] for several

hours or longer.

4.5.3 Optical Network Configuration

Figure 4-23: The DVC system software implementation exploits the PIN/PDC for configuring a private

optical network across domains

 The DVC system prototype has the ability to configure optical circuit paths

(lightpaths) dynamically to realize private networks for high bandwidth, low jitter

communication. These paths may interconnect geographically distributed end resources across

multiple networks and administrative domains. To obtain a desired network configuration, the

DVC resource binder (DVC-RB) employs the Photonic Interdomain Negotiator (PIN) [31], a

74

distributed control architecture for dynamic lightpath provisioning. The PIN addresses the

complex issues of interdomain routing, signaling and security for lightpath scheduling and

configuration. As shown in Figure 4-23, the PIN architecture is composed of distributed PIN

servers across heterogeneous networks. One server is required and responsible for each

network domain. For each optical path to configure, the DVC-RB passes the pair of endpoint

references (e.g., public IP addresses of end resources) together with the required connectivity

properties (e.g., bandwidth) to the local PIN server. In response, the server propagates the

request message to remote domains until the destination is reached. For each domain along the

path, the corresponding PIN server translates the request into an intradomain signaling

message and dispatches it to a set of Photonic Domain Controller (PDC) servers [51] which

control individual optical switches. Finally, each PDC server modifies the configuration of its

local switch to establish the requested optical path. In our implementation, the network path

configuration operation is atomic. If any subset of optical paths cannot be created, all pre-

established paths are released and the failure notice is reported back to the application.

So that it provides guaranteed high-speed communication performance, the DVC

model dedicates a set of optical circuit paths to each application throughout its execution time.

The allocated optical paths are reserved for private use until the DVC environment terminates

(unless the circuit path release is explicitly requested by the application). To release the

reserved paths, the DVC-RB makes a request to the local PIN server. The request is then

forwarded through different network domains and the responsible PDC servers ultimately

release the configured circuits.

Although the current DVC system prototype utilizes the PIN/PDC for dynamic

network configuration, it is not limited to it. The DVC model is also compatible with a wide

range of other dynamic lightpath provisioning tools such as UCLP [32], DRAGON [17],

DRAC [82] and Bigbangwidth [83].

75

4.5.4 Job Execution Management

The DVC prototype supports reliable execution of an application’s jobs. It schedules

jobs to run on distributed end resources under the DVC environment based on their priority,

submission time, or other applicable policies. It also mediates communication among remote

jobs and supports job restarts and migration in case of unexpected execution failure or

resource unavailability.

Table 4-1: A list of environment variables that can be specified in a job specification

Variable Name Value Type Description

Remotedir string A working directory location at remote resources

Executable string A path to an executable file at remote resources

Numproc integer The number of processes to invoke for this job

Stdin string A standard input of the job process(s) on remote resource

Stdout string A standard output of the job process(s) on remote resources

Stderr string A standard error of the job process(s) on remote resources

Arguments list of string(s) Input arguments of the job process(s) on remote resources

Environment list of string(s) Unix environment variables to set before launching job

process(s)

Ifiles list of string(s) A list of files to transfer from a local host to remote resources

before launching job process(s)

Ofiles list of string(s) A list of files to transfer from remote resources to a local host

after job processes(s) is completed

To submit a job to run, the user creates a job specification describing the

characteristics and desired execution environments. Table 4-1 lists the environment variables

that can be specified. When an application is started, the DVC manager selects computing

resources from the DVC resource pool and binds them up with the application. When the

application spawns computing tasks to run on remote resources, the DVC manager directly

contacts the corresponding ghost managers (bypassing GRAM and other site-specific resource

managers) to invoke processes on the chosen resources.

76

4.5.5 Integrated Communication Library

Figure 4-24: Comparison of the transfer rate between different transport protocols with and without the

wrapper module with varying message size

Figure 4-25: Comparison of the transfer time between different transport protocols with and without

the wrapper module with varying message size

 We implement the DVC communication architecture (see Figure 4-10) that provides a

set of uniform interfaces to the novel transport protocols (including GTP, UDT and CEP). We

import these protocols in the form of transport drivers and implement a lightweight interface

wrapper module. Extra care must be taken in the implementation that the wrapper module

must not incur a significant overhead to the original protocol performance, including

77

achievable transfer rate and communication latency. A simple experiment verifies this where

we set up two dedicated hosts on a local cluster and ran memory-to-memory data transfers

with different transport protocols with and without the wrapper module. We varied the

message length, measured the transfer time, and calculated the transfer rate.

 Figure 4-24 and 4-25 compares the resulting transfer rate and sending time when we

use GTP and UDT with and without the DVC wrapper module. Our results show the wrapper

module doesn’t incur any noticeable overhead for all message size. For each protocol, we

achieve the comparable transfer performance for the runs both with and without the wrapper

module.

4.6 Summary

 In this chapter, we presented several DVC system design and implementation issues.

We first introduced the DVC architecture (service model) and its key components. We

presented the DVC Integrated Specification (DVC-ISL) that allows explicit description of

application communication requirements. We discussed a set of simplifying DVC abstractions

enabling the complex Lambda-Grid environments to be used in a fashion comparable to a

private resource workgroup. We then presented two novel combined resource selection

algorithms (SA-Com and Hier-Com) to optimize application capabilities and network resource

efficiency in Lambda-Grids. Lastly, we discussed the key implementation issues of the DVC

system prototype.

78

4.7 Acknowledgement

 Chapter 4, in part, is published as “Distributed Virtual Computer (DVC): Simplifying

the Development of High Performance Grid Applications” by Nut Taesombut and Andrew A.

Chien in the proceedings of the Workshop on Grids and Advanced Networks (GAN’04), April

2004. The dissertation author was the primary researcher and co-author of this paper.

79

Chapter 5. Evaluating Resource Selection Strategies

We have presented the DVC that provides a simple service model for applications and

allows for coordination between communication and end resources to achieve guaranteed

application performance. A key element of the DVC system is the DVC-RCP (resource

configuration planner) that combines the selection of network and end resources to enable

high application capabilities and network resource efficiency. As proof, we evaluate different

resource selection strategies via simulation across a wide range of realistic application models

and resource environments. Our metrics include success ratio, selection cost, resource quality,

application lambda distance, system throughput and network utilization.

This chapter is organized as follows. Section 5.1 describes our evaluation

methodology, including a simulation model, resource environments, application models and

evaluation metrics. The quality of results that each selection algorithm can achieve and the

selection cost is evaluated in Section 5.2. Section 5.3 looks at how different selection

algorithms affect resource utilization and system throughput. Finally, we summarize our

simulation results in Section 5.4.

5.1 Methodology

 We compare and evaluate three resource selection algorithms (separate selection

(Sep), SA-based combined selection (SA-Com) and hierarchical combined selection (Hier-

Com) via simulations, synthetic application request workloads and realistic Lambda-Grid

resource configurations. The following key research questions are of particular interest in this

evaluation:

• What solution quality can each selection algorithm achieve (in terms of end-resource quality

and network resource efficiency)?

80

• How often does each algorithm succeed or fail (as a function of application request

complexity and resource configuration)?

• How fast does each algorithm run? How does the runtime scale with application request

complexity and Lambda-Grid size?

• How do resource selection decisions of each algorithm shape overall system resource

utilization and throughput?

• How do the combined selection algorithms and the separate selection algorithms compare

overall?

In this empirical study, the following components are used to construct our

experiments:

• Synthetic workloads modeled after realistic applications targeting Lambda-Grids, including

high-performance computing, collaborative and remote data visualization, and distributed

content delivery applications.

• Synthetic Lambda-Grid configurations based on state-of-the-art research tools for

generating communication and Grid resources (cluster and host information) with the

distribution matching the currently deployed ISP network topologies and computational

Grids.

For all experiments, we ran simulation on a single compute machine. Table 5-1 shows

its detailed specification. We employed the MySQL database [77] to store and provide Grid

and network resource information. For each experiment, we ran resource selection and the

MySQL server as two separate threads.

81

Table 5-1: Detailed specifications of the compute machine for simulation study

Attribute Name Attribute Value

Number of processors 4

Processor model Intel Xeon 2.8 GHz

Hardware platform i686

Cache size 512 KB

Physical memory 2 GB

Disk space 210 GB

Operating system GNU/Linux

Kernel release 2.6.9-22.ELsmp

5.1.1 Lambda-Grid Configurations

In order to assess selection algorithms in resource environments that scale past the

complexity of the currently deployed Lambda-Grids, we use synthetic resource configurations.

The simulated infrastructures are comprised of optical circuit-switched networks and Grid

resources.

Table 5-2: Details of the studied multi-domain, global network topology

Internet Service

Providers (ISPs)

Network

Presence

Number of

PoPs

Number of

Links

Average

Edge Degree

Average Link

Latency

(msec)

AT&T Global 115 170 2.957 6.814

British Telecom Global 109 189 3.468 6.625

Cogent North America/

Europe

87 100 2.299 1.921

Global Crossing Global 329 389 2.347 1.552

Level3 USA/Europe 59 97 3.288 2.283

NTT/Verio Global 39 74 3.795 13.324

Qwest USA 53 99 3.736 2.493

Sprint Global 282 379 2.688 3.214

Time Warner USA 48 73 3.042 2.110

Verizon Global 98 187 3.816 7.950

Interdomain Links 597 5.400

Total 1219 2351 3.857 4.590

We consider two types of realistic optical network topologies. First, we use a real map

of the multi-carrier Internet backbone network, consisting of ten leading Internet Service

Providers (ISPs) in the world – AT&T [84], BT [85], Cogent [86], Global Crossing [87],

Level3 [88], NTT/Verio [89], Qwest [90], Sprint [91], Time Warner [92] and Verizon [79].

82

We derived the current network topology of individuals ISPs from their company websites and

then inferred their peering points from the Rocketfuel’s traceroute data [93, 94] (generated by

300 traceroute servers across the globe). To reduce the number of traces that needed to be

looked up, we used the AS-peering relationships information published by CAIDA [95, 96],

and selected only those traceroutes that traverse pairs of the peering ISPs. Such map is a PoP-

level network topology where each Point-of-Presence (PoP) represents a network access point

in a city, and we substituted these access points with optical switches. To derive the latency of

a link between two PoPs, we determined the latitude and longitude of their geographical

presence, calculated their distance using the great circle method [97], and computed the

latency using this distance divided by the speed of light. The resulting topology has 1,219

switches and 2,351 links; the details are given in Table 5-2. While we consider only a small

number of ISPs, they are the dominant network service providers in the world and account for

a large fraction of today’s optical fiber infrastructures.

 Second, in order to evaluate the scalability of different algorithms, we used the BRITE

topology generator [98] to generate large multi-domain network topologies with varying

numbers of switches (from 1,000 to 10,000). We carefully chose BRITE’s parameters so that

the edge degree and average link latency of the generated topologies are close to those of the

real Internet backbone network above. For all networks, we assigned 20 lambdas, each at 1

Gbps, to individual links.

Our Grid (end) resource model is based on recent work [33] on realistic resource

modeling for today’s computational Grids, such as GriPhyN [13], TeraGrid [11], iVDGL [12]

and EU-DataGrid [14]. For each derived network above, we generated synthetic end resources

(cluster and host information) and randomly assigned them to individual switches. Each

switch is connected to 4 clusters (or 268 end resources) on average. Each end resource was

given a unique IP address and is connected to its switch via a 10 Gb/s uplink.

83

Table 5-3: Details of the studied Lambda-Grid configurations

Configuration

ID

Number of

ISPs

Number of

Switches

Number of

Links

Average Link

Latency

(msec)

Number of

End

Resources

Internet

Backbone

10 1,219 2,351 3.857 331,203

Brite-1000 10 1,000 2,030 3.675 272,476

Brite-2000 20 2,000 4,080 3.735 532,771

Brite-4000 40 4,000 8,160 3.699 1,069,288

Brite-6000 60 6,000 12,240 3.671 1,596,973

Brite-8000 80 8,000 16,320 3.728 2,126,462

Brite-10000 100 10,000 20,400 3.713 2,769,338

 Table 5-3 summarizes the resulting Lambda-Grid configurations. Our largest resource

environment is comprised of 10,000 optical switches and 2.8 millions of end-resources, which

is significantly larger than existing Lambda-Grid infrastructures, such as OptIPuter [15],

CHEETAH [18] and DRAGON [17].

5.1.2 Application Models

 In our evaluation we use synthetic workloads derived from a range of realistic

application models targeted for Lambda-Grids. These includes: 1) high-performance

distributed computing; 2) collaborative and remote data visualization; and 3) distributed

content discovery. The details of the request workloads for these applications are discussed

below.

84

5.1.2.1 High-Performance Distributed Computing

Figure 5-1: A resource request for high-performance distributed computing applications;

(ClusterSet(4,8))

Figure 5-2: A DVC-ISL resource specification for high-performance distributed computing

applications; (ClusterSet(4,8))

A popular and significant application model for Lambda-Grids is high-performance

distributed computing (HPDC). HPDC is employed extensively by many scientific and

engineering applications, such as high-energy physics [7], seismic processing [99], financial

analysis [100], climate modeling [101] and bioinformatics/genetic research [102]. These

ClusterSet_4_8 =[

 cluster1 ISA SET [CPUSpeed > 2.5; MemoryFree > 3296; DiskFree > 150]; Count(cluster1)==8;

 cluster2 ISA SET [CPUSpeed > 2.5; MemoryFree > 3296; DiskFree > 150]; Count(cluster2)==8;

 cluster3 ISA SET [CPUSpeed > 2.5; MemoryFree > 3296; DiskFree > 150]; Count(cluster3)==8;

 cluster4 ISA SET [CPUSpeed > 2.5; MemoryFree > 3296; DiskFree > 150]; Count(cluster4)==8;

 conn1 ISA CONN (<cluster1>) [type = "intra-cluster"; Bandwidth >= 1000];

 conn2 ISA CONN (<cluster2>) [type = "intra-cluster"; Bandwidth >= 1000];

 conn3 ISA CONN (<cluster3>) [type = "intra-cluster"; Bandwidth >= 1000];

 conn4 ISA CONN (<cluster4>) [type = "intra-cluster"; Bandwidth >= 1000];

 lambda1 ISA CONN (<cluster1>, <cluster2>) [type = "lambda"; Bandwidth >= 1000; Latency < 60];

 lambda2 ISA CONN (<cluster1>, <cluster3>) [type = "lambda"; Bandwidth >= 1000; Latency < 60];

 lambda3 ISA CONN (<cluster1>, <cluster4>) [type = "lambda"; Bandwidth >= 1000; Latency < 60];

 lambda4 ISA CONN (<cluster2>, <cluster3>) [type = "lambda"; Bandwidth >= 1000; Latency < 60];

 lambda5 ISA CONN (<cluster2>, <cluster4>) [type = "lambda"; Bandwidth >= 1000; Latency < 60];

 lambda6 ISA CONN (<cluster3>, <cluster4>) [type = "lambda"; Bandwidth >= 1000; Latency < 60];

 Maximize((Avg(cluster1.CPUSpeed) + Avg(cluster2.CPUSpeed) + Avg(cluster3.CPUSpeed) + Avg(cluster4.CPUSpeed))/4)

]

85

examples all involve large-scale computations and massive data transfers. Typically, HPDC

applications require a large set of compute resources, as well as high-throughput and low-

latency communication services [103]. Therefore, we model the resource request for these

applications as ClusterSet(C, N) or tightly-coupled sets of compute clusters shown in Figure 5-

1. A sample DVC-ISL specification for ClusterSet(4,8) is illustrated in Figure 5-2.

Specifically, it requests for C compute clusters, each with N nodes, and lambda connectivity

between each pair of clusters. Each compute node has three desired attributes: CPU speed,

physical memory, and disk space. In order to investigate their impact on the quality of

resource selection, we varied the required values of these attributes as shown in Table 5-4.

Table 5-4: Required resource attributes of compute clusters for high-performance distributed

computing applications

Attribute Name Distribution Low End High End Distribution biased

toward

Minimum CPUSpeed Zipf 1.0 GHz 3.0 GHz high end

Mimimum MemoryFree Zipf 512 MB 4096 MB high end

Minimum DiskFree Zipf 80 GB 160 GB high end

Minimum Intracluster

Communication Speed

Constant 1 Gbps 1 Gbps -

The required lambda connectivity is 1 Gb/s of bandwidth and less than 60 msec of

latency. For many HPDC applications, their performance is highly influenced by the

computing speed of the resources hosting their computations. Therefore, we model the ranking

function of these applications as to maximize the average CPU speed of the allocated compute

clusters. To scale request complexity, we increase the number of required clusters (C) as well

as the number of nodes per cluster (N).

86

5.1.2.2 Collaborative and Remote Data Visualization

Figure 5-3: A resource request for collaborative and remote data visualization applications;

(DataViz(N))

Figure 5-4: A DVC-ISL resource specification for collaborative and remote data visualization

applications; (DataViz(2))

DataViz_2 =[

 display1 ISA [Hostname == “10.4.84.78”]; display2 ISA [Hostname == “10.29.168.82”];

 storage1 ISA [InSet(DataSet, "data_2343 ")]; storage2 ISA [InSet(DataSet, "data_78 ")];

 storage3 ISA [InSet(DataSet, "data_108")]; storage4 ISA [InSet(DataSet, "data_2343 ")];

 cluster1 ISA SET [CPUSpeed > 2.4; MemoryFree > 4096; DiskFree > 160]; Count(cluster1)==16;

 cluster2 ISA SET [CPUSpeed > 2.4; MemoryFree > 4096; DiskFree > 160]; Count(cluster2)==16;

 cluster3 ISA SET [CPUSpeed > 2.4; MemoryFree > 4096; DiskFree > 160]; Count(cluster3)==16;

 cluster4 ISA SET [CPUSpeed > 2.4; MemoryFree > 4096; DiskFree > 160]; Count(cluster4)==16;

 conn1 ISA CONN (<cluster1>) [type = "intra-cluster"; Bandwidth >= 1000];

 conn2 ISA CONN (<cluster2>) [type = "intra-cluster"; Bandwidth >= 1000];

 conn3 ISA CONN (<cluster3>) [type = "intra-cluster"; Bandwidth >= 1000];

 conn4 ISA CONN (<cluster4>) [type = "intra-cluster"; Bandwidth >= 1000];

 lambda1 ISA CONN (<cluster1>, <display1>) [type = "lambda"; Bandwidth >= 4000];

 lambda2 ISA CONN (<cluster2>, <display1>) [type = "lambda"; Bandwidth >= 4000];

 lambda3 ISA CONN (<cluster3>, <display1>) [type = "lambda"; Bandwidth >= 4000];

 lambda4 ISA CONN (<cluster2>, <display2>) [type = "lambda"; Bandwidth >= 4000];

 lambda5 ISA CONN (<cluster3>, <display2>) [type = "lambda"; Bandwidth >= 4000];

 lambda6 ISA CONN (<cluster4>, <display2>) [type = "lambda"; Bandwidth >= 4000];

 lambda7 ISA CONN (<storage1>, <cluster1>) [type = "lambda"; Bandwidth >= 2000];

 lambda8 ISA CONN (<storage2>, <cluster2>) [type = "lambda"; Bandwidth >= 2000];

 lambda9 ISA CONN (<storage3>, <cluster3>) [type = "lambda"; Bandwidth >= 2000];

 lambda10 ISA CONN (<storage4>, <cluster4>) [type = "lambda"; Bandwidth >= 2000];

 Maximize((Avg(cluster1.CPUSpeed) + Avg(cluster2.CPUSpeed) + Avg(cluster3.CPUSpeed) + Avg(cluster4.CPUSpeed))/4)

]

87

Collaborative and remote data visualization is becoming increasingly important for

many scientific fields, including oceanography [6], biomedical [1] and earth science [4]. This

application enables researchers from distant institutions to interactively visualize and analyze

very large data objects in real-time [3]. This enhances the understanding of complex scientific

systems. We model the resource request DataViz(N) for collaborative data visualization as

shown in Figure 5-3. Figure 5-4 shows a sample DVC-ISL specification for DataViz(2).

Specifically, scientists at N known remote locations (on the right of the figure) want to

simultaneously visualize three datasets (shown in red, yellow and green boxes) on their local

displays. The visualization of each dataset is driven by one rendering cluster of 16 nodes. The

required resource attributes of the rendering clusters are given in Table 5-5.

Table 5-5: Required resource attributes of rendering clusters for collaborative and remote data

visualization applications

Attribute Name Minimum Requirement

CPUSpeed 2.4 GHz

MemoryFree 4096 MB

DiskFree 160 GB

Minimum Intracluster

Communication Speed

1 Gbps

Each cluster is capable of handling only one dataset, but can support up to three

remote displays. As illustrated in Figure 5-3, to support N displays, it requires N+2 rendering

clusters. The required network connectivity between each pair of the displays and rendering

clusters is 4 Gb/s of bandwidth and less than 60 msec of latency. The request also requires

each cluster to have 2 Gb/s lambda connectivity to a storage server which stores a replica of a

certain dataset to visualize. The ranking function for this application is to maximize the

average CPU speed of the rendering clusters. To scale request complexity, we increase the

number of display locations (N).

88

5.1.2.3 Distributed Content Delivery

Figure 5-5: A DVC-ISL resource specification for a content delivery request

A distributed content delivery application was chosen because it shares many aspects

with “scientific data distribution and sharing” [1], which features large collections of

distributed data objects and on-demand communication, and is a dominant large-scale

scientific application targeting Lambda-Grids today. Our workload for this application are

synthetic traces of content delivery requests where each request is a client at a known location

requesting for the streaming of a certain movie object via a 1 Gb/s private network. Initially, a

collection of movie objects were replicated and distributed across a set of replica servers. The

ranking function for this application is to minimize the communication latency between the

client and the chosen replica server.

5.1.3 Replicating and Distributing Data Objects

 To support the application models above, we assume each Lambda-Grid configuration

contains a set of replica servers. Each server maintains a collection of (movie) data objects.

The replica servers with certain data objects are key requirements of collaborative data

visualization and distributed content delivery applications (See Figure 5-4 and Figure 5-5).

Our approach uses the following realistic model based on recent research [104, 105] to

replicate and distribute data objects among the replica servers.

DeliveryRequest =[

 client ISA [Hostname == “132.239.226.35”];

 storage ISA [InSet(DataSet, "data_410”)];

 lambda ISA CONN (<client>, <storage>) [type = "lambda"; Bandwidth >= 1000]

 Minimize(lambda.Latency)

]

89

Figure 5-6: Selecting a set of replica servers from the end resource pool of the studied Lambda-Grid

configuration

 The replica servers were chosen randomly from the end resource pool of each

Lambda-Grid configuration as illustrated in Figure 5-6. In order to compare the evaluation

results across Lambda-Grid configurations, we used the same ratio of servers to network

switches. The number of servers is four times the number of switches and each server has 2

TB of free disk space. Further, for each configuration we generated 5,000 distinct movie

objects. We assume these movie contents are of 2K Digital Cinema resolution (up to

2160x1080) with a stream rate of 250 Mbit/s [104]. The average size of these movies is 200

GB. This size runs for approximately one hour and 50 minutes. Table 5-6 shows the number

of replica servers and the total number of replicated data objects for each Lambda-Grid

configuration.

Table 5-6: Data object replication and distribution of the studied Lambda-Grid configurations

Configuration

ID

Number of

Switches

Number of

End

Resources

Number of

Replica

Servers

Number of

Distinct

Objects

Number of

Replicated

Objects

Internet

Backbone

1,219 331,203 4,876 5,000 46,159

Brite-1000 1,000 272,476 4,000 5,000 38,908

Brite-2000 2,000 532,771 8,000 5,000 78,243

Brite-4000 4,000 1,069,288 16,000 5,000 156,927

Brite-6000 6,000 1,596,973 24,000 5,000 234,943

Brite-8000 8,000 2,126,462 32,000 5,000 312,424

Brite-10000 10,000 2,769,338 40,000 5,000 389,899

90

Our decisions for replicating movie objects to replica servers are based on the

popularity replication heuristic algorithm [105]. The popularity of data objects follows the

Zipf distribution with a skew parameter of 0.75. Using this popularity distribution, each server

picked and stored as many objects as storage allowed. The data objects in resource requests

for collaborative data visualization and distributed content delivery applications were also

picked based on this popularity.

5.1.4 Evaluation Metrics

 Using the experimental settings mentioned, two steps are taken in evaluating the three

selection algorithms (separate selection (Sep), SA-based combined selection (SA-Com), and

hierarchical combined selection (Hier-Com)). For the first set of experiments, key questions

include what quality of results each algorithm can achieve and at what cost. We consider two

types of application requests – high-performance distributed computing (ClusterSet) and

collaborative data visualization (DataViz), and use the following four metrics.

1. Selection Cost – the total running time of the selection process. Good selection results are

acceptable and useful only if the selection time is reasonable.

2. Success Ratio – the fraction of selections that produce satisfying results. Good selection

algorithms should produce a high success ratio even with high application request

complexity.

3. Resource Quality – the average quality of end resources in the solution, where the quality

of resource R is the percentile of R when all resource candidates are sorted according to

the user-defined ranking function. Good results produce high resource quality enabling

high application performance.

4. Application Lambda Distance – the total weighted distance of all lambdas (optical

circuits) allocated for each application, or formally Σi di*wi where di is the distance and wi

91

is the number of allocated wavelengths of the link i. Good selection quality will produce

low application lambda cost because: 1) it optimizes application communication latency;

2) it minimizes the cost of the ISPs to set up the private network; and 3) it increases the

probability of satisfying application requests in the future by conserving use of lambdas.

 \

For the second set of experiments, we evaluated how resource selection decisions of

each algorithm affect system throughput, network utilization, and application communication

performance in the face of resource contention. Trace-driven simulations and distributed

content delivery application workloads were used here.

1. System Lambda Utilization – the fraction of available lambdas in the system allocated

for use.

2. System Throughput – the number of active requests (or applications) in the system.

Good network efficiency should be determined by two indicators: high system throughput

at high load and a slow growth rate of system lambda utilization at low load.

3. Application Communication Latency – the average latency of the allocated circuit paths

(lambdas) in the result. Low network latency is crucial for good streaming performance of

the distributed content delivery application.

5.2 Selection Quality and Cost

 We investigate the significant questions of what solution quality the three selection

algorithms (Sep, SA-Com and Hier-Com) can achieve and at what cost. Here, we consider two

types of application requests – ClusterSet and DataViz, and use simulations across a range of

Lambda-Grid sizes and resource request complexity. For all experiments, we measured and

reported the average value of the selection cost and quality over 120 selection trials.

92

5.2.1 Impact of Request Complexity

 In the first experiment, we evaluate and compare the three algorithms (Sep, SA-Com

and Hier-Com) using the Lambda-Grid configuration with the multi-ISP, Internet backbone

network, and the application request DataViz with varying complexity. To observe the impact

of the clusterSize parameter of Hier-Com, we use three clusterSize values (8, 12 and 16).

Figure 5-7(a) compares the selection time of different selection approaches. For all cases, Sep

and SA-Com have the fastest and slowest running time. This was expected because while Sep

separates the tasks of selecting end resources and networks, SA-Com combines them. This

increases the problem’s complexity significantly. We also see that the Hier-Com approaches

improve the selection time over SA-Com by 75.7-90.8 percent. This improvement is attributed

to the hierarchical selection technique which considerably reduces numbers of considered

candidates and circuit path computation across the large networks. Among the Hier-Com

approaches (Hier-Com-8, Hier-Com-12 and Hier-Com-16), Hier-Com-8’s average selection

time is slightly longer than that of the other two because Hier-Com-8 recursively clusters the

network into four hierarchical levels while Hier-Com-12 and Hier-Com-16 does it into three

levels.

 Figure 5-7(b) compares the selection success ratio of different selection approaches.

Overall, success ratio decreases with higher request complexity, and both SA-Com and Hier-

Com always achieve higher success rate than Sep. Sep’s success ratio drops quickly because

with the separate resource selection, network constraints are not evaluated until end resources

are chosen. With a higher request complexity requiring more optical links, there is a higher

chance that some network requirements cannot be fulfilled. On the other hand, SA-Com’s and

Hier-Com’s success ratio remains high and close to optimal even with the most complex

request (n = 10).

93

Figure 5-7: Comparison of selection cost and quality with different algorithms using DataViz(N) with

varying request complexity (N): a) selection time; b) success ratio; c) resource quality and d)

application lambda distance

94

 The charts in Figure 5-7(c-d) illustrate the resource quality and application lambda

cost of different selection approaches. It is apparent that SA-Com and Hier-Com achieve good

optimality in both selection quality metrics whereas Sep produces good resource quality but

with high lambda cost. This is because in Sep end resources are first chosen based on their

end-resource rank regardless of their network proximity. In contrast, SA-Com and Hier-Com

provide optimization spanning both communication and end resources. Both SA-Com and

Hier-Com have comparable selection quality (within eight percent difference) and improve the

lambda cost over Sep by 28.6-52.1 percent. These results show that Heir-Com can be as

effective as SA-Com in terms of selection quality, although it scales better with request

complexity. In addition, no significant difference was found in the selection quality of Hier-

Com using various values of the clusterSize parameter for this experiment.

 Next, we ran a similar set of experiments using the request ClusterSet with varying

complexity. The charts in Figure 5-8(a-d) illustrate the resulting selection time, success ratio,

resource quality and application lambda cost of different selection approaches. Overall, these

results confirm our other findings. Specifically, Sep achieves the fastest running time and high

resource quality, though it produces solutions with high network cost. In contrast, both SA-

Com and Hier-Com achieve good optimality in both resource quality and application lambda

cost. For ClusterSet, the saving in runtime gained from using Hier-Com over SA-Com is even

more evident, reducing from approximately five hours to five minutes for the largest problem

size (ClusterSet(12,8)). There is also a significant improvement in application lambda distance

from using SA-Com and Hier-Com over Sep, accounting for 75.1 %.

95

Figure 5-8: Comparison of selection cost and quality with different algorithms using ClusterSet (C,N)

with varying request complexity (C, N): a) selection time; b) success ratio; c) resource quality and d)

application lambda distance

96

5.2.2 Impact of Lambda-Grid Size

 The scalability of the three selection algorithms (Sep, SA-Com and Hier-Com) is

evaluated using the Lambda-Grid configurations with BRITE topologies with varying

numbers of switches and end resources. Our largest resource environment is comprised of

10,000 network switches and 2.7 millions of end resources.

Figure 5-9: Comparison of selection time with different algorithms using DataViz(6) with varying

Lambda-Grid size

Figure 5-10: Comparison of selection time with different algorithms using ClusterSet(12,16) with

varying Lambda-Grid size

 The charts in Figure 5-9 and Figure 5-10 illustrate the running time of different

selection approaches with varying Lambda-Grid complexity for DataViz(6) and

ClusterSet(12,16), respectively. The charts show a similar trend for all algorithms where the

selection time increases with larger Lambda-Grid size. It is evident that SA-Com has the

97

slowest running time and the fastest growth rate due to the complexity of combined selection.

While SA-Com offers good selection quality, its high selection cost makes it unacceptable for

large resource environments. However, we find that the hierarchical selection technique in

Hier-Com reduces the selection cost significantly, making it attractive for large Lambda-Grids

comprised of thousands of switches and millions of end resources. Further, among the Hier-

Com approaches, the selection time slightly increases with higher clusterSize value. This is

because using smaller clusterSize value results in the network partitioning into larger-size

domains at the top hierarchical level and thus larger numbers of bad resource candidates can

be filtered out early.

5.3 System Lambda Utilization and Throughput

 A key requirement for a resource selection algorithm is that it must enable efficient

resource utilization in order to maximize the potential of deploying future applications on a

fixed resource environment. To investigate how different algorithms affect network utilization

in the presence of resource contention, we used synthetic distributed content delivery

workloads and trace-driven simulations. Our workloads are traces of content delivery requests.

Requests are removed from a queue individually and each is allocated a private network path

to the replica server storing a particular data object. If the request cannot be satisfied (e.g., no

available optical path), it will be placed in the system queue and re-evaluated the next time

some active requests terminate. In order to observe the system under different loads, we scale

the request rate. For each rate, we use 25 traces, each with 52,000 requests shuffled in a

random order. For all experiments, we use the Lambda-Grid configuration with the multi-ISP,

Internet backbone network.

98

Figure 5-11: Comparison of resource efficiency and application performance of different algorithms as

a function of the request rate: a) system lambda utilization; b) system throughput and c) average

application communication latency.

Figure 5-11(a) illustrates the average system lambda utilization of the three selection

algorithms (Sep, SA-Com and Hier-Com). It’s apparent for low system load (<6

requests/min), the utilization grows with higher request rate for all algorithms. This is as

expected, because there is little resource contention and all new requests can be allocated with

private optical circuits (lambdas). Because Sep makes less efficient use of lambdas – its

solutions require longer circuit paths on average, its growth rate is faster than that of SA-Com

99

and Hier-Com. The growth rates of SA-Com and Hier-Com are comparable. This implies they

achieve a similar level of resource efficiency.

At high load when the network becomes congested, the utilization of all the

algorithms reaches a saturation point. All algorithms have a comparable saturation point

between 9.9 and 10.3 %. This limit is due to the nature of our workload traces that contain

many requests requiring lambda paths over some bottleneck links and thus cannot be

simultaneously satisfied.

 Figure 5-11(b) compares the average system throughput of the three algorithms. At

low load, the system throughput for all algorithms is indistinguishable. This is because

virtually all new requests can be satisfied and admitted. At high load when the system enters

the steady state, Sep’s system throughput is the lowest at 499 applications while SA-Com and

Hier-Com achieve a comparable throughput at 1,327 and 1,316 applications, respectively. This

is because SA-Com and Hier-Com combine the selection of communication and end

resources, enabling the system to avoid the selection of bad replica servers to which the clients

cannot have good connectivity (or do not have access at all due to the resource contention).

 Figure 5-11(c) compares the average application communication latency of the three

algorithms. For all cases, SA-Com and Hier-Com achieve a comparable level of application

latency. As well, they both outperform Sep. This is as expected, because SA-Com and Hier-

Com can choose the replica servers based on their connectivity to the requesting clients, while

Sep cannot. Here, SA-Com slightly outperforms Hier-Com because Hier-Com simplifies the

problem with recursive network clustering and candidate filtering. However, the increase in

average application latency is small, accounting for 0.695 msec on average.

100

5.4 Summary

 In this chapter, we have shown that high application performance and efficient

resource usage can be simultaneously achieved by employing specific algorithms for

combined resource selection. To solve complex resource selection problems, we presented two

novel combined selection algorithms based on simulated annealing (SA-Com) and top-down

hierarchical selection heuristics (Hier-Com). As shown through simulations, both algorithms

offer good optimality in both end resource quality and network transmission cost, a key

requirement for achieving high application performance and resource efficiency. Further, the

algorithm based on hierarchical selection (Hier-Com) not only achieves excellent quality of

results, but also scales well with both application request complexity and Lambda-Grid size.

For instance, it’s capable of identifying good solutions within several minutes for large

resource environments comprised of thousands of optical switches and millions of end

resources.

101

Chapter 6. Network Information Sharing Challenges

and Impacts

Previously, we evaluated different resource selection strategies for realizing

application resource requirements in Lambda-Grids. For all experiments, we have assumed

that applications and the underlying resource planning service (DVC-RCP) have full

knowledge of available network resources, including network topology and link

capacity/usage information. While this assumption is applicable for small Lambda-Grid

testbeds, it is no longer acceptable for large-scale systems spanning the wide area. Typically,

large networks (including the Internet) are partitioned into sub-networks which provide

scalability and autonomous administrative domains for each Internet Service Provider (ISP).

Because interworking between ISPs raises issues of security, trust, and financial benefits, they

are not willing or able to share details of their internal networks [106].

In configurable optical networks, information sharing is crucial for effective path

computation across networks and for good resource selection decisions for distributed

applications. This chapter will investigate how the available information affects applications’

and service providers’ ability to utilize network resources. Section 6.1 deals with both key

motivations and difficult issues of information sharing. In Section 6.2, we characterize the

basic types of information that might be shared between ISPs and provide a spectrum of

network information models (NIMs). Section 6.3 describes the methodology used to evaluate

the proposed models. In Section 6.4 and Section 6.5, we evaluate the intra-domain and inter-

domain impacts of the proposed models on application performance and network efficiency.

Lastly, the results are summarized in Section 6.6

102

6.1 Information Sharing Challenges

 While configurable optical networks provide dramatic opportunities for new

application capabilities, they also present significant information sharing challenges. Network

information (including network topology, link capacity and usage, peering points, etc.) is

crucial for effective path computation across networks for distributed applications and

efficient traffic engineering for ISPs. This type of traffic management allows the network

resources (lambdas) to be utilized more efficiently and leads to better network productivity.

However, there are many reasons why ISPs are not inclined or able to share their internal

network information.

• Security – revealing sensitive details of ISPs’ internal networks (e.g. switch locations, core

links without backup) makes them vulnerable to a range of security threats, including

Denial-of-Service (DoS) attacks [107]. Because such threats potentially cause an

infrastructure loss and/or service discontinuity, this information is treated as confidential.

• Financial Benefits – publishing internal network information could point a way to other

ISPs to gain competitive advantages by offering better network coverage, capacities and/or

quality-of-service. This could drive customers elsewhere. In a bandwidth broker model

[108], exposing this information also makes ISPs lose bargaining power over selling

services to more profitable customers.

• Internal Network Management – by advertising detailed internal network information and

letting an external entity manage path selection through their networks, ISPs lose control

over their resource usage and management. This may cause poorly utilized resources, thus

making them unwilling to share information.

103

• Interdomain Routing Policy Enforcement – information hiding provides a means for ISPs

to enforce interdomain routing policies. Certain network providers may refuse a transit

service to all or a restricted set of other carriers by advertising to their neighboring peers

only those routes they use or allow [109].

• Protocol Heterogeneity – ISPs may use diverse network management protocols (e.g., PNNI

[110], OSPF with GMPLS-extension [46]) to obtain and propagate topology as well as

resource information inside their networks. Incompatibility among these protocols may limit

the nature and extent of network information that could be shared.

Although detailed network information is important for effective network

management, it is often unavailable due to numerous issues of security, economics, and

politics. This poses key challenges for controlled information sharing that must not only

enable effective path selection for Grid applications, but also maintains competitive

advantages for individual ISPs.

6.2 Network Information Models

 A critical challenge for configurable optical networks is definition and widespread

acceptance of Network Information Model (NIM). This provides information about network

capabilities and resources (and possibly in the future, reliability, price, etc.) to higher levels of

the system; that information informs the selection and configuration process of a private

network for applications. Ideally, NIM would maintain a competitive advantage of individual

ISPs, while at the same time enabling effective network resource selection for high application

capabilities and resource efficiency.

 Here, we describe assumptions on the architecture of a configurable optical network,

characterize network information, and define a spectrum of network information models.

104

Figure 6-1: Physical architecture of a multi-carrier, optical circuit-switched network

6.2.1 Information Categorization

 A configurable optical network consists of a collection of optical switches

interconnected by DWDM optical links. In such a network, a connection is created on-demand

and formed by a set of optical switches. These switches forward data along the established

circuit paths. In today’s Internet, networks are partitioned into sub-networks providing

autonomous administrative domains for each Internet Service Provider (ISP). These provide

the autonomy and scalability of the Internet. Figure 6-1 depicts a simple example of a multi-

domain, configurable optical network. The network consists of interconnected groups of

optical switches managed independently by three ISPs.

 A network switch linking only to other switches within the same domains is called an

internal switch, while a switch with links to other domains is called a border switch. A link

between two border switches is called an interdomain link, whereas a link terminating at any

internal switch is called a domain link. Essentially, we can classify network information into

two main categories: domain and interdomain information.

105

• Domain network information – includes topology and link state information of a domain

(e.g., each ISP’s network). Domain topology information specifies the connectivity between

nodes and links within a domain, the latency of each domain link, and which end resources

are attached to each node. Domain link state information specifies the capacity and usage of

domain links. A “node” can be generalized as either an optical switch or Point of Presence

(PoP) depending on whether the network is switch-level or PoP-level.

• Interdomain network information – includes interdomain (domain-to-domain) topology

and connectivity information. Interdomain topology information specifies interconnection

between domains, including their peering points, and the latency, capacity, and usage of

each interdomain link. Interdomain connectivity information provides network reachability

information among ISPs. It can be viewed as “distance vector” information which is similar

to that of BGP [109] indicating at which domains and via which interdomain paths a

particular domain can be reached.

Figure 6-2: Approximating the latency of an end-to-end network path across domains using ConnDom

106

6.2.2 Model Definition

 We present six different network information models below. Figure 6-3 summarizes

what types of information are available for each model.

Figure 6-3: Information details of the studied network information models

1. Open Interdomain, Open Domain (Open) – provides complete domain and interdomain

network information. It assumes complete trust amongst ISPs (i.e., an open infrastructure),

allowing an external agent to control the selection and configuration process of an entire

network path for an application. This simple model is widely deployed in experimental

Grid and advanced optical network testbeds, such as OptIPuter [15], CANARIE’s CA*net

4 [20], and CHEETAH [18].

2. Open Interdomain, Topology Domain (TopoDom) – includes all network information

except domain link state information. Here, the key idea is while ISPs can profitably share

their domain topologies, they aren’t willing to reveal information about internal resource

capacity/usage. This is because others can exploit it for their own competitive advantages.

An exemplary use of this model is an ISP with multi-regional domains (e.g., AT&T US

and Europe) which are operated by different business units with their own revenue targets

[106].

107

3. Open Interdomain, Connectivity Domain (ConnDom) – provides interdomain topology

information and an approximation of domain link connectivity. The rationale here is

although complete domain information cannot be shared, some abstraction of domain

connectivity can be useful to enable more effective path selection [106]. Specifically for

our approach, the model provides approximate latency of connectivity between border

nodes and between pairs of each border and internal node within a domain. Figure 6-2

gives an approximation of domain connectivity of the network in Figure 6-1. It can be

seen how this approach is useful to estimate the total latency of a circuit path across

domains, while hiding physical domain topologies. In our implementation, we

approximate this latency by computing the latency of the shortest physical network path

between two nodes assuming infinite lambdas on links along the path.

4. Topology Interdomain (TopoInter) – includes interdomain topology information. Due to

numerous economics and security issues, each ISP hides all details of its internal network.

Although this provides limited domain information, it also offers diverse interdomain

paths.

5. Connectivity Interdomain (ConnInter) – provides interdomain connectivity information.

This approach reflects the philosophy of interdomain routing in today’s Internet which

relies on the Border Gateway Protocol (BGP) [109] to disseminate interdomain

reachability and route information. Being distance-vector-based, the model offers neither

diverse interdomain path nor link state information.

6. No Information (None) – doesn’t provide any network information. A potential

connection between two edge devices can only be inferred from their network interface

card (NIC) speed.

108

6.3 Methodology

 Our methodology is described next to evaluate the impact of network information

models on applications’ and ISPs’ ability to utilize network resources. In brief, we use trace-

driven simulation across a range of realistic ISPs’ metropolitan, national, and global networks,

and use the distributed content delivery application (See Section 5.1.2.3) as our workload. In

the following, we describe the details of our simulation model, resource selection strategies,

and the evaluation metrics.

6.3.1 Lambda-Grid Configuration

 To make our evaluation of NIMs broadly useful, we consider a range of realistic ISP

optical network topologies. Ideally, the studied networks must be diverse in size, network

design, complexity and geographical presence. This will allow us to explore the impact of

these factors on the utility of different network information. Unfortunately, due to numerous

economics and security issues, ISPs often keep their physical fiber topologies confidential. To

evaluate the proposed NIMs, our strategy is to utilize real ISP fiber network topologies

wherever possible and also use ISP PoP-level network topologies to approximate their

physical fiber maps.

 Our metropolitan network topology models were derived from AboveNet’s metro-area

fiber maps [111]. While a few ISPs publish this information, AboveNet provides the most

comprehensive network maps. We chose to use eight of the AboveNet metro-area network

topologies (all in major cities) and decoded them manually from the published fiber map

images. The details of these networks are summarized in Table 6-1.

109

Table 6-1: Details of the studied AboveNet’s metropolitan network topologies

City Number of

PoPs

Number of

Links

Average

Edge Degree

Average Link

Latency

(msec)

Boston 15 19 2.533 0.016

Chicago 33 43 2.606 0.030

Houston 25 34 2.720 0.036

Los Angeles 24 24 2.000 0.022

Philadelphia 22 25 2.273 0.031

San Francisco 38 47 2.474 0.031

Seattle 23 25 2.174 0.030

Washington DC 35 44 2.514 0.028

Our wide-area network topology models were derived from Rocketfuel’s router-level,

ISP backbone network map collection [93, 94]. Originally, these maps were extracted from the

“traceroute” data generated by 300 traceroute web servers across the world. We carefully

selected eight ISP network maps – AT&T, Ebone, Exodus, Level3, Sprint, Telstra, Tiscali and

Verio; these are large and diverse enough for meaningful study. Using these ISPs, we reduced

their router-level topologies to PoP-level (city-level) topologies. Specially, we grouped routers

by their geographical locations which were inferred from their DNS names [112]. This

reduction simplified our analysis but preserved validity as ISP’s traffic engineering decisions

are usually made at the PoP-level [114, 115]. The details of these ISP networks are

summarized in Table 6-2.

Table 6-2: Details of the studied ISP backbone network topologies

Internet Service

Providers (ISPs)

Network

Presence

Number of

PoPs

Number of

Links

Average

Edge Degree

Average Link

Latency

(msec)

AT&T US 110 140 2.546 1.918

Ebone US/Europe 27 46 3.407 2.110

Exodus US/Europe 22 36 3.273 5.672

Level3 Global 48 4000 16.667 6.678

Sprint Global 44 86 3.909 6.792

Telstra Australia 55 57 2.073 4.648

Tiscali Europe 47 80 3.404 2.986

Verio Global 119 229 3.849 3.633

 To study the impact of various inter-domain factors, we used a realistic map of the

multi-carrier, Internet backbone network outlined in Section 5.1.1 (see details in Table 5-2).

110

This network map is comprised of ten large ISPs – AT&T [84], BT [85], Cogent [86], Global

Crossing [87], Level3 [88], NTT/Verio [89], Qwest [90], Sprint [91], Time Warner [92],

Verizon [79]. While we considered only a small number of ISPs, these ten ISPs are the

dominant network service providers in the world (9 tier-1 ISPs and 1 high-degree tier-2 ISP

[116]), and together account for a large percentage of today’s optical fiber infrastructures. It

should be noted that we didn’t use Rocketfuel’s ISP network topologies (which we used to

study intra-domain factors above) because only five of these ISPs are directly peered and

inadequate for meaningful study.

 Once these network topologies were derived, we assigned lambdas and latency for

each link in these networks. For each link we assigned 20 lambdas, each at 1 Gb/s. To obtain

the latency of a link between two PoPs, we first determined the latitude and longitude of their

geographical presence, calculated their distance using the great circle method [97], and

computed the latency using this distance divided by the speed of light. Using this method, we

assumed all links are laid along the shortest path between two cities (PoPs).

 Using a statistical Grid resource generator [33], we generated end resources (cluster

and host information) with the distribution matching the currently deployed Grid

infrastructures, such as TeraGrid [11] and iVDGL [12]. These resources were given unique IP

addresses and randomly assigned to PoPs of each network topology model. Each PoP consists

of 270 end resources on average, and each resource has a 10 Gb/s uplink to the core network.

6.3.2 Application Model

 To evaluate the proposed NIMs, our workloads are synthetic traces of movie content

delivery requests. Each request is as shown in the application abstract configuration model on

the top of Figure 6-4, which specifies a client’s IP address (chosen randomly), a requested

movie, and a private network path (1 Gb/s). It’s assumed each of the derived networks in

111

Section 6.3.1 contains a set of replica servers, each maintaining a collection of movie contents.

For each request, the goal is to find the server with the movie replica closest to the client. The

notion of “closest” is determined by the minimum lambda distance (or latency) between the

client and the chosen server. If the request cannot be satisfied, it will be placed in the system

queue and re-evaluated when some lambdas in the system are released.

Figure 6-4: Resource selection and network path computation architecture for a distributed content

delivery application

 The outcome of resource selection for each application request above is an optical

path request to network service providers. As shown in the middle of Figure 6-4, resource

selection using different NIMs results in three types of optical path requests. For all NIMs, the

optical path request specifies the IP address of the client and chosen server together with a

“loose” network path between them. For TopoInter and ConnInter, the loose network path is

an interdomain path, a result of path computation and selection using interdomain topology

and connectivity information. For Open, TopoDom and ConnDom, this path is also decorated

112

with information about which border nodes should be used to make connections between

providers’ networks. Such border nodes are derived from the chosen end-to-end network path

from resource selection using domain network information provided by Open, TopoDom and

ConnDom. For None, the loose network path is merely an abstract link. Subsequently, the

optical path request is given to the corresponding ISPs in order. As the request crosses

different ISPs, a representative entity of each ISP uses its internal network information to

compute a specific intra-domain path through its network. Given these intra-domain paths, a

final end-to-end physical network configuration is derived.

 For each network model, the locations of replica servers were randomly chosen from

its end resource pool. The same ratio of servers to PoPs was used and the number of servers is

four times that of PoPs. Each server has 2 TB of disk space. We generated 500 movie objects

for each metro-area network model and 5,000 objects for each of the rest. We assume these

movie contents are of 2K Digital Cinema resolution with a stream rate of 250 Mbit/s [104].

The average size of these movies is 200 GB, running approximately one hour and 50 minutes.

Our decisions for replicating movie objects to replica servers are based on the popularity

replication heuristic algorithm [105].

6.3.3 Replica Server Selection and Network Path Computation

 To select a replica server with the content replica requested by an application, we use

the algorithm shown in Figure 6-5.

Figure 6-5: Description of the replica server selection algorithm

Replica Server Selection Algorithm

1. Determine all servers with a replica of the requested movie using information provided
 by Grid Information Service (GIS)

2. Use the provided NIM to compute (or approximate) the “shortest” path between the
 client and each server candidate

3. Among all candidates, select the server with the “shortest” path

113

This is a greedy search algorithm which leads to good results that are close to optimal.

The notion of a “shortest” path varies according to the considered NIM:

• Open – uses all network information to determine the minimum-latency, end-to-end path

• TopoDom – assumes infinite lambdas on domain links and determines the minimum-

latency, end-to-end path

• ConnDom – uses summarized domain network connectivity and interdomain topology

information to approximate the minimum-latency, end-to-end path. If a network path is

within a domain, the latency is zero

• TopoInter – uses interdomain topology information to find the path with minimum

interdomain hop count.

• ConnInter – always uses the provided interdomain path in the interdomain connectivity

information.

• None – assumes an equal cost for all paths.

Given an optical path request, each ISP computes an intra-domain path through its

network. A pair of ISPs may have multiple peering points. Without specific border nodes

provided, we implemented the “early exit” peering policy for an upstream ISP to select an

intra-domain path to a downstream ISP. Specifically, the upstream ISP uses the peering point

closest to the source (or ingress border node) as destination for path computation and

selection. In [94], Spring et al. discovered “early exit” is the most common policy accounting

for 20-30% of all ISP pairs in the Internet.

6.3.4 Evaluation Metrics

 The following four metrics were used to evaluate the proposed information models:

114

1. System Lambda Utilization – the average fraction of available lambdas in the system

allocated for use.

2. System Throughput – the average number of applications running in the system.

3. Application Communication Latency – the average lambda distance (or latency) of the

network path that is allocated for each application.

4. Network Setup Cost – the average number of optical circuit setups that must be configured

for each application.

Note that high system lambda utilization doesn’t necessarily mean the network

resources are efficiently utilized. The system may experience high network utilization due to

uneconomical use of resources. On the other hand, it may experience low resource utilization

due to the nature of a workload (e.g., a large number of requests to the same bottleneck links).

Good network efficiency should be determined by two indicators: high system throughput at

high load and a slow growth rate of system lambda utilization at low load. Good application

performance is determined by low application communication latency. To minimize the

operational cost of ISPs, low network setup cost is preferential.

6.4 Impact of Intra-domain Factors

In this section, we evaluate the impact of various intra-domain factors on the

usefulness of network information models across a range of realistic ISP metropolitan,

national and global networks. Here, we consider only the three models (Open, TopoDom and

None) to investigate the utility of domain topology and link state information.

115

Figure 6-6: Evaluating the intra-domain impact of network information models using metro-area

networks: a) system lambda utilization; b) system throughput; c) average application latency; and d)

network configuration cost

116

6.4.1 Metropolitan Network

We used eight AboveNet metropolitan networks (see Table 6-1) to evaluate and compare

between the three NIMs (Open, TopoDom and None). The results below were reported using

the request rate of 10 requests/min, which is high enough for all metrics to be measured at

their saturation regions.

 Figure 6-6(a) shows the average system lambda utilization for Open, TopoDom and

None. For all topologies Open achieves the highest lambda utilization. This is because Open

provides complete domain information allowing us to identify good solutions with low-

latency paths and avoid congested links at high system load. Lambdas are more efficiently

used as a result and more applications admit into the system on average. In terms of lambda

utilization, we see no clear superiority between TopoDom and None. As explained below,

while TopoDom produces higher system throughput, it allocates fewer lambdas per

application on average.

 As shown in Figure 6-6(b), for all topologies Open’s system throughput is always

higher than that of TopoDom, and both outperform None. These results indicate that domain

topology information is a key for achieving good system throughput, while link state

information has a positive impact as well. Without domain topology information, a lot of

solutions with long-latency paths are chosen but they cannot be simultaneously realized due to

their high demand of lambdas. Another finding is the size and topological structures of a

metro-area network have impact on the advantage of Open over TopoDom. The superiority of

Open becomes more evident in larger and denser networks, such as Chicago and Washington

DC. This is because these networks offer more diverse paths, and link state information can be

used to take advantage of these paths when the network becomes congested.

117

 The charts in Figure 6-6(c-d) respectively illustrate the average application

communication latency and network setup cost for the three models. We can see the

comparable results between Open and TopoDom, while they both achieve much lower

application latency and network setup cost than None. This shows the significance of domain

topology information for these performance dimensions, while link state information has little

impact. Domain topology information is required for computing the latency of a network path

which is essential for comparing the quality of solutions and making efficient path selection

decisions. We also see the correlation between the application latency and network setup cost

metrics because a NIM that makes more efficient use of lambdas will likely allocate shorter

optical paths and requires less numbers of circuit setups.

6.4.2 ISP Backbone Network

 Next, we analyze the utility of the three network information models (Open,

TopoDom, None) using real ISP backbone networks (see Table 6-2). In the following results,

we used the request rate of 40 requests/min, which is high enough for all metrics to be

measured at their saturation regions.

 The chart in Figure 6-7(a) illustrates the average system lambda utilization for the

three models. We find that Open always achieves the highest utilization. Depending on ISPs,

Open outperforms TopoDom and None by 3.1-9.8 percent and 2.8-21.0 percent, respectively.

As explained above, this is attributed to domain topology and link state information which

leads to better overall network efficiency and system throughput.

 The simulation results show a strong influence of network topology design on system

lambda utilization. The most common network design among the studied ISPs is “hub-and-

spoke”. These ISPs, including AT&T, Telstra, Tiscali and Verio, have stubs in major cities

and spokes that fan out connections to smaller cities. For such ISPs, the bottlenecks are the

118

links connecting major hubs and we observe their system lambda utilization using Open in the

range of 22.2 to 36.5 percent. In comparison, Level3 includes PoPs in major cities in US and

Europe. While these PoPs are highly connected, the bottlenecks are the links across the two

continents. Because our workloads contain a fair number of requests to these links

(applications and data replica are in different continents), other links are relatively

underutilized. This leads to low system lambda utilization even with Open (13.9 percent).

Exodus and Ebone represent another network design paradigm where their network topologies

are more balanced graphs – where links are more evenly distributed among nodes. These two

networks have no true bottleneck link, and we can achieve higher system utilization for all the

three models (48-60 %).

 As shown in Figure 6-7(b), for all ISPs, Open achieves higher system throughput than

TopoDom, while both outperform None. These results confirm our findings presented above

that both domain topology and link state information contribute to better system throughput.

Depending on the studied ISPs, we see varying degrees of advantage of Open over TopoDom.

This implies the impact of network topology of an ISP on the utility of domain link state

information. Among the studied ISPs, we see it is most beneficial using Level3. Figure 6-8

illustrates the portion of the Level3 network in the Northeastern USA. While most cities are

highly-connected, Newark and Garden City each have one link to New York. Because these

two links have one of the lower latency (0.047 and 0.103 msec), they are highly utilized (often

picked by our resource selector). When these links become congested at high load, if the

resource selector doesn’t know about the link usage, it will continue to choose solutions

including these links and fail. With link state information, it can avoid these congested links

and select other feasible candidates. While observing similar effects across ISPs, we find its

most impact on Level3 because their PoPs are highly-connected and hence a majority of their

links are blocked form being utilized.

119

Figure 6-7: Evaluating the intra-domain impact of network information models using ISP backbone

networks: a) system lambda utilization; b) system throughput; c) average application latency; and d)

network configuration cost

120

Figure 6-8: Fiber map of the Level3 backbone network in Northeastern USA

 Figure 6-7(c-d) shows the comparison of average application latency and network

configuration cost for the three models. We see no major difference between the results of

Open and TopoDom, while both achieve much lower average application latency and network

setup cost than None. These results also confirm our findings presented above that while

domain topology information contributes to lower application latency and network setup cost,

link state information has little impact on these dimensions of performance.

6.5 Impact of Inter-domain Factors

 We next analyze the impact of various inter-domain factors on the usefulness of

network information models using the realistic multi-ISP, global network (see Table 5-2). We

consider all the six network information models (Open, TopoDom, ConnDom, TopoInter,

ConnInter and None) to investigate the utility of different interdomain and domain network

information. To observe the system under different loads, we report the results with varying

application request rates.

121

Figure 6-9: Evaluating the impact of network information models using a multi-domain network with

top-tier ISPs: a) system lambda utilization; b) system throughput; c) average application latency; and d)

network configuration cost

122

 Figure 6-9(a) compares average system lambda utilization for the six information

models as a function of a load. At low system load a model with better network efficiency can

be observed by its slower growth rate of the utilization with higher load. We see the growth

rate of Open and TopoDom is lower than of ConnDom, TopoInter, ConnInter, whereas the

growth rate of all these models is slower than that of None. The differences in the

demonstrated system lambda utilization are attributed to the network information with varying

degrees of abstraction supplied by individual models. These results demonstrate that while

interdomain topology or connectivity information alone contributes to better resource

efficiency (lower growth rate), domain topology information has the most positive impact on

it.

 As the request rate continues to increase and the network resources become

congested, we see the growth rate of each model moves from linear increase to a flattened

saturation region. Open’s saturation region is the highest at ~10.7 percent, that of None is the

lowest at ~6.8 percent, and the rest have the saturation region in the range of 9.1-9.2 percent.

These results show the benefit of domain link state information on improving overall system

lambda utilization. At high system load, this information helps to avoid congested links and

take advantage of diverse domain paths. Note that none of the studied models achieve lambda

utilization close to the full network capacity (only 6.8-10.7 percent). This low network

utilization is attributed to the nature of our workload traces that contain many requests

requiring long lambda paths over some bottleneck links and thus cannot be simultaneously

satisfied.

 The chart in Figure 6-9(b) shows the comparison of system throughput for the

proposed models. At low load, and for all models, the average number of running applications

increases linearly with higher load and at approximately the same rate. This is due to the fact

that the network is not congested, and almost all new application requests can be satisfied and

123

admitted into the system. We find that at high load (>20 requests/min) the system throughput

for each model reaches a saturation point. The saturation points for Open, TopoDom,

ConnDom, TopoInter, ConnInter and None are at 910, 746, 446, 396, 391 and 190

applications, respectively. These results show that while interdomain topology and

connectivity information is useful, domain topology and link state information has greater

impact on improving system throughput. Closer investigation reveals that because the studied

network contains a small number of large ISPs, we can see more influence of domain

information over interdomain information. In addition, since most pairs of ISPs are directly

peered in the studied network, we see little benefit of interdomain topology over interdomain

connectivity information. While topology information offers diverse interdomain paths, these

paths are more difficult to be realized because they span multiple large networks. Lastly we

see some advantage of ConnDom over TopoInter, implying the usefulness of approximate

domain connectivity information in ConnDom.

 As shown in Figure 6-9(c), there are observable differences in the average application

latency achieved by different network information models. We find that Open and TopoDom

produce the lowest and comparable application latency. This confirms our findings that while

domain topology information plays a key role in achieving low application latency, link state

information has minimal impact on it. We also find that TopoInter’s and ConnInter’s average

application latency is much lower than that of None. This implies interdomain topology and

connectivity information is useful. However, the latency of TopoInter is slightly higher than

that of ConnInter. This is because ConnInter limits us to use only the shortest interdomain

paths (given in the interdomain connectivity information) thereby leading to lower application

latency on average. Lastly, in terms of average application latency, we see some benefit of

summarized domain connectivity information in ConnDom. With this information, we can

124

estimate the latency of a network path across domains. This is useful for comparing the quality

of solution candidates and making better path selection decisions.

 Figure 6-9(d) shows the average number of circuit setups for different network

information models as a function of a load. For all load, both Open and TopoDom require the

lowest network setup cost, while ConnDom, TopoInter and ConnInter all produce a higher and

comparable cost. These results imply the need for domain topology information to achieve

low network setup cost. Interdomain network information also has some impact .

6.6 Summary

 In this chapter, we define a spectrum of network information models (NIMs) and

evaluate their impact on applications’ and service providers’ ability to utilize network

resources in Lambda-Grids. Our simulation studies show that the choice of model is

important, leading to significant differences in system throughput, lambda utilization, network

setup cost and attained application performance.

Table 6-3: Summary of utility of different network information on the studied metrics

Network

Information

Usefulness on the Metric

System

Utilization

System

Throughput

Application

Latency

Network Setup

Cost

Interdomain

connectivity

Medium Medium Medium Medium

Interdomain

topology

No Minimal No No

Approx. domain

connectivity

Low Low Medium Low

Domain topology - High High High

Domain link state Medium Medium No Minimal

 Table 6-3 summarizes the utility of different network information on the studied

metrics. The usefulness of individual information is determined by its improvement over the

previous information factor for a given metric. The results show two significant factors are

domain topology and link state information. Domain topology information enables efficient

125

network path computation and selection, a key driver for high system throughput, low

application latency, and network configuration cost. Conversely, domain link state information

is useful when a network becomes congested, necessitating the ability to identify and avoid

highly-utilized links. At high load, domain link state information improves both system

throughput and overall lambda utilization.

 Another important factor contributing to better system throughput, application latency,

and network setup cost is interdomain connectivity information. When domain information

cannot be shared, such connectivity information is useful to approximate the quality of

network paths by their interdomain hop count. Another finding is interdomain topology

information provides minimal improvement (or sometimes even negative impact) over

connectivity information. This is because our studied network has a small number of large

ISPs (some with >280 PoPs) and the efficiency of path selection is highly influenced by intra-

domain factors. The benefits of interdomain topology information could be more evident in

the network with a larger number of smaller ISPs. Lastly, when combined with interdomain

topology information, approximate domain connectivity information can be useful. Such

information enables an estimation of a network path cost with higher degree of precision,

leading to better application latency and system throughput.

 Our results show a strong influence of the network topology of an ISP on system

throughput and utilization of lambdas. In the network with highly connected nodes (e.g.,

Level3 and Verio), domain link state information is most advantageous, allowing available

lambdas on diverse intra-domain paths to be identified and improving system throughput.

Among the studied ISPs, Exodus and Ebone have their links more evenly distributed among

nodes and achieve the highest lambda utilization. The ISPs with the “hub-and-spoke” network

topology design (AT&T, Tiscali, etc.) have bottleneck links connecting between major hubs,

126

while Level3 have those crossing between the US and Europe. Due to these links, they achieve

lower system lambda utilization.

 In short, our results encourage cooperation between ISPs to share internal network

information. Such information sharing can make major difference in better resource efficiency

and lower operational cost for ISPs and better network service for applications. In addition,

part of ISPs’ internal network information was already obtained as shown in this research.

6.7 Acknowledgement

 Chapter 6, in part, is published as “Evaluating Network Information Models on

Resource Efficiency and Application Performance in Lambda-Grids” by Nut Taesombut and

Andrew A. Chien in the proceedings of ACM/IEEE International Conference on High

Performance Computing and Communication (SC’07), November 2007. The dissertation

author was the primary researcher and co-author of this paper.

127

Chapter 7. Case Studies with Geosciences Applications

The unique capabilities of the DVC include a simple use model for applications,

resource configuration optimization, dynamic network configuration, and simple resource

naming and communication interfaces that integrate a wealth of underlying network

complexity. In this chapter, we present case studies of collaborative visualization

environments for earth sciences to demonstrate the DVC capabilities in practice. We

demonstrate such collaborative environments can be effectively and conveniently constructed

on an international-scale Lambda-Grid testbed; these applications are not feasible without the

DVC due to the complexity of heterogeneous, wide-area distributed resource environments

and configurable optical networks.

7.1 Collaborative Data Visualization for Earth Sciences

Figure 7-1: Parallel visualization of multiple 3D theoretical models of deformation along the San

Andreas Fault in California

The quality and amount of geosciences data being produced, collected, and used in the

last few years has risen dramatically. For example, the EarthScope [4] is a National Science

Foundation (NSF)-supported project to develop a national cyberinfrastructure to study the

128

development of the Earth’s crusts in North America. The EarthScope’s data collections are

massive – individual modern 3D seismic images of the Earth’s substructures can be as large as

50 GB, and the total seismic data assembled per year exceeds 40 TB [117]. Exploiting the

availability of these high-quality images, a wide range of research is being pursued to develop

advanced visualization tools [118] that will enable scientists to interactively explore data

objects at very high resolution in multiple dimensions. As illustrated in Figure 7-1, scientists

are employing parallel visualization of multiple 3D theoretical models to study the

deformation along the San Andreas Fault in California.

Figure 7-2: Collaborative and remote data visualization system architecture

Collaborative and remote data visualization has become increasingly prevalent and

important for geosciences [3]. As shown in Figure 7-2, such collaboration enables researchers

from geographically dispersed locations to simultaneously and interactively visualize, explore,

and analyze very large data objects in real-time. This improves the quality of scientific data

interpretation and the understanding of complex geological systems. However, the

development of these applications is facing a challenge in their high demand for network

129

bandwidth, quality of service, and large-scale resource aggregation across organizations. With

today’s networking infrastructures (i.e., the Internet), it’s impossible for scientists to transfer

data quickly to support real-time analysis and achieve good interactive visualization

performance.

 The ability to build wide-area collaborative visualization environments is made

possible with advanced configurable optical networks and resource sharing in the form of Grid

[9]. Although there are many previous efforts [119-121] on building such applications on

Lambda-Grids, effectively all of existing systems are static or limited in capabilities.

Specifically, either their construction requires direct cooperation among IT administrators of

the participating organizations or their configurations are fixed with certain sets of physical

resources. When users move from one resource configuration to another (e.g., to use different

sets of data replica servers), it usually requires extra efforts for application reprogramming or

resource reconfiguration.

7.2 Problem, Challenges and Approach

7.2.1 Problem

 Using visualization of high-resolution images to study complex geological systems

has become very popular among scientists who study the earth. As an example shown in

Figure 7-1, researchers at the Scripps Institution of Oceanography (SIO) are using the

EarthScope’s seismic data to analyze the deformation along the San Andreas Fault zone in

California. To produce 3D images of the strain fields resulting from this deformation, they

simulate the theoretical models and employ the ‘Fledermaus’ visualization package [122] to

arrange seismic data into a georeferenced coordinate system. The result is a set of ‘scene’ files

that can be viewed and explored by the ‘iView3d’ visualization tool [123]. To share these

130

scene flies with colleagues, the SIO researchers create replicas and make them available on a

distributed set of storage servers for download. Until recently, such scientific data sharing

techniques are confined to local-area environments because a vast number of large scene files

are required for meaningful data correlation analysis.

Remote and collaborative data visualization helps enhance the productivity of

scientific data interpretation [3]. As illustrated in Figure 7-2, such collaboration enables

scientists to interactively visualize and collaboratively analyze the scene files (3D strain field

images) with other scientists who are far away. To enable this collaboration, underlying

resource infrastructures must support remote resource access across organizational boundaries

and high-quality network service. This is made possible with Lambda-Grids, which allow

widely dispersed resources to be securely shared through a Virtual Organization (VO) and

tightly interconnected with dedicated, high-speed optical circuits.

7.2.2 Challenges

Although the resource requirements of wide-area collaborative visualization

environments can be met by emerging Lambda-Grid infrastructures, building these

applications remains difficult for many reasons.

First, identifying and selecting network, storage, and visualization resources in the

system requires a good understanding of the complex telecommunication and wide-area

distributed resource infrastructures. For example, the scene files are replicated and distributed

across a large collection of distributed storage servers. It is important to locate the servers with

the files of interest that are close to the visualization resources. This will achieve good

interactive visualization performance. Further, the resource selection process is not simply a

one-to-one mapping between application components and physical resources. Utilizing

configurable networks requires the ability to compose communication resources (e.g., optical

131

links and switches) into end-to-end network connections. Such network composition is

computationally hard and requires an understanding of the details involved in underlying

network infrastructures.

Second, employing resources in federated systems and wide-area configurable

networks involves management of cross-organization security, heterogeneous resource

capabilities, as well as multi-domain optical routing and signaling. This requires negotiation

with several distinct server providers which impose diverse policies and mechanisms on their

resource use. This configuration process can be complex and time-consuming.

Third, collaborative visualization environments employ Grid resources with

heterogeneous naming mechanisms. Typically, resources are hidden under firewalls [124],

network address translation (NAT) [125] and/or non-routed networks; therefore, their IP

addresses can be either private or dynamically assigned. Managing heterogeneous and

dynamic resource names (or IP addresses) complicates application development. Further, it

may require modification to the application when different sets of physical resources are used

due to their assorted names.

Forth, achieving the performance of high speed, long-distance connections requires

the use of novel, exotic transport protocols (including UDT, GTP, etc.). Collaborative

visualization applications can exploit a mixture of these protocols to optimize data transfers

depending upon certain network conditions (e.g., dedicated vs. shared networks) and

communication patterns (e.g., point-to-point vs. data aggregation). However, utilizing various

protocols with diverse interfaces and implementation complicates application programming.

7.2.3 Approach

To address these challenges, our work employs the DVC to construct collaborative

visualization environments. The DVC automates on-demand resource discovery, selection,

132

and allocation, allowing the applications to be optimally constructed on a high-quality set of

resources (e.g., low network latency). A virtual computing environment is created and

assigned the allocated resources with virtual names and IP addresses, enabling the applications

to be flexibly run on different sets of physical resources without modification. On the created

DVC environment, we built a simple collaborative visualization program that acquires scene

files on-demand from the remote storage resources and simultaneously visualizes them at

distributed visualization sites. This program was implemented with the DVC unified

communication interface, which allows it to switch to use different transport protocols without

any reprogramming effort.

 We measured and evaluated the performance of the collaborative visualization

environment establishment. We show the collaborative environment can be quickly

constructed in seconds and independently run across different physical resource

configurations.

7.3 Experimental Setup

We deploy the DVC prototype on the OptIPuter’s international testbed [15] and use it

to develop collaborative visualization applications for geosciences. Our experiments include

online resource discovery and selection, dynamic resource and network allocation, virtual

computing environments, high-speed data transfer, remote visualization and scientific

collaboration.

133

7.3.1 OptIPuter Lambda-Grid Infrastructure

Figure 7-3: The OptIPuter’s international Lambda-Grid testbed and iGrid2005 networking

infrastructure

Our experiments are constructed on the OptIPuter’s international Lambda-Grid

testbed [15] and the networking infrastructure provided by iGrid2005 [126]. The OptIPuter

[15] is an NSF funded research project exploiting the availability of dynamic high-speed

optical paths to provide revolutionary capabilities for emerging e-science. As illustrated in

Figure 7-3, the infrastructure is comprised of distributed storage clusters across sites at the

University of California at San Diego (UCSD), University of Illinois at Chicago (UIC) and

University of Amsterdam (UvA). There are five storage clusters on the UCSD campus, each at

the Department of Computer Science and Engineering (CSE), School of Engineering (SOE),

San Diego Supercomputing Center (SDSC), School of Medicine (SOM) and Scripps

134

Institution of Oceanography (SIO). Two visualization clusters are located there as well: one at

the CalIT2/UCSD and another at SIO/UCSD. Each of these is connected to a tiled display wall

which can visualize multiple data objects in parallel on multiple screens. Each storage and

visualization node has a 2.0 GHz or faster, 1 GB of more memory and a Gigabit Ethernet NIC.

 The storage and visualization clusters are interconnected by 10 Gbps heterogeneous

optical networks. The visualization cluster at CalIT2/UCSD has two 10 Gbps uplink interfaces

– 10 Gbps aggregate connectivity to/from UvA and UIC, and 10 Gbps aggregate connectivity

to other sites at UCSD. The connection between CalIT2 and UvA/UIC is static and already in

place; therefore, no dynamic network setup is needed. This is due to the fact we lack

administrative access to the optical switches at Chicago and Amsterdam. The UCSD

OptIPuter network is controlled by a configurable optical cross-connect (OXC) switch. This

switch, in turn, is controlled by software and capable of dynamically switching connection

from one storage cluster on the UCSD campus to the CalIT2 visualization cluster. Each UCSD

storage cluster (expect SIO) has one 10 Gbps uplink interface to this switch.

7.3.2 Software Configuration

 A set of software components were deployed to set up our experiments. Specifically,

we established a Virtual Organization (VO) [10] including all the sites above. We used Grid

Security Infrastructure (GSI) as standard security mechanisms for authentication and

authorization. We configured and set up Globus GRAM [37] and MDS [35] servers on

individual storage and visualization nodes. The former serves as a gatekeeper that authorizes

the user for secure remote resource access, while the latter monitors resource performance and

creates a directory service for resource discovery and selection. We also installed the iView3d

visualization package on each node at the visualization clusters.

135

 Additionally, we set up PIN/PDC servers on three dedicated hosts to manage network

resources at UCSD, UIC and UvA. These three sites were organized into three separate

network domains. We used the PIN/PDC server at UCSD for both controlling the OXC switch

and interdomain routing. However, we used the PIN/PDC servers at UIC and UvA only for

interdomain routing because we lack administrative access to control the switches at both

sites.

7.4 Experiment Results

 We used the DVC prototype to construct a collaborative visualization application on

the OptIPuter infrastructure. The application inputted the name of datasets (collections of

scene files), acquired them from remote storage clusters, and visualized them with iView3d on

the tiled display wall at CalIT2. Simultaneously, the application visualized the same datasets

at the tiled wall at SIO; this was done in order to enable the scientists at both sites to

collaborate and analyze the data. However, at this site the entire library of the datasets were

already present on disks and the requested scene files were loaded locally. We didn’t acquire

the datasets remotely here because of insufficient incoming network bandwidth to SIO.

 To simplify the development of the collaborative visualization application, we created

a DVC virtual computing environment that included three storage clusters, two visualization

clusters and lambda connections. A virtual namespace was created and assigned individual

storage and visualization nodes with unique virtual IP addresses. We implemented the

application to utilize these addresses so that it can be run independently on different sets of

physical resources.

 Our implementation of the collaborative visualization application was written in 703

lines of C/C++ code. Table 7-1 breaks down the number of lines by modules. Without the

136

DVC prototype, developing the collaborative visualization application with the same

complexity would be impractical or it requires manual configuration by IT administrators.

Table 7-1: Number of code lines of the studied collaborative visualization application by modules

Module Name Number of Lines Percentage

Global variable declaration 68 9.67 %

Main 98 13.94 %

Resource binding and network

configuration

25 3.55 %

Remote data transfer 107 15.22 %

Display device configuration and

visualization software launcher

86 12.23 %

Other utility functions 319 45.38 %

Total 703

7.4.1 Resource Selection and Allocation Performance

Figure 7-4: A DVC-ISL specification for the collaborative visualization application

 We started by evaluating the DVC resource selection and allocation performance. We

used the DVC-ISL resource specification shown in Figure 7-4 and presented it to the DVC

resource planning service (DVC-RCP). On the first run, the service returned with the physical

resource configuration that includes 13 storage nodes at SOE/UCSD, 7 storage nodes at UIC,

5 storage nodes at UvA, 25 visualization nodes at CalIT2 and 8 visualization nodes at SIO.

These particular storage nodes were picked because the requested datasets were present on

their disks; as well they all had the required network bandwidth to the visualization cluster at

(1): viz-cluster1 ISA SET [InSet(SpecialHW, “11x5 tiled-display”)]; Count(viz-cluster1)==25;

(2): viz-cluster2 ISA SET [InSet(SpecialHW, “4x2 tiled-display”)]; Count(viz-cluster2)==8;

(3): str-cluster1 ISA SET [InSet(DataSet, “SoCalSAFS00-40”)]; Count(str-cluster1) == 13;

(4): str-cluster2 ISA SET [InSet(DataSet, “SoCalSAFS41-80”)]; Count(str-cluster2) == 7;

(5): str-cluster3 ISA SET [InSet(DataSet, “SoCalSAFS81-99”)]; Count(str-cluster3) == 5;

(6): lambda1 ISA CONN (<viz-cluster1>, <str-cluster1>) [type=“lambda”; bandwidth >= 10000];

(7): lambda2 ISA CONN (<viz-cluster1>, <str-cluster2>) [type=“lambda”; bandwidth >= 6000];

(8): lambda3 ISA CONN (<viz-cluster1>, <str-cluster3>) [type=“lambda”; bandwidth >= 4000]

137

CalIT2. Even though the four UCSD storage clusters (SOM, SOE, CSE and SDSC) had better

network connectivity to CalIT2 than that of UvA and UIC, only one UCSD storage cluster

was chosen. This is due to the network hardware constraint at UCSD, which allows only one

cluster to connect to CalIT2 at a time (controlled by the OXC switch). The returned resource

configuration also includes the network configuration to establish the optical circuit path

between the SOE storage cluster and the CalIT2 visualization cluster. The connections

between the visualization cluster and the storage clusters (UvA and UIC) were pre-configured

and static. Therefore, no dynamic network setup was required.

 Next, the selected resources were allocated to create a new DVC computing

environment. The DVC prototype employs the Globus GRAM for remote resource allocation

and uses PIN/PDC for dynamic network configuration. In total, we allocated 58 storage and

visualization nodes and set up one optical circuit path between CalIT2 and SOE. The entire

resource configuration took 5.495 seconds. Table 7-2 breaks down the time in each step. We

see that 14.94%, 60.55% and 24.51% is spent on the resource discovery and selection, end

resource allocation, and dynamic network setup, respectively. The high resource allocation

time is attributed to that fact that many storage nodes at UvA and UIC remotely from CalIT2

were allocated.

Table 7-2: The resource selection and allocation performance of the studied collaborative visualization

application

Operation Time (sec) Percentage

Resource discovery and selection 0.821 14.94 %

End resource allocation 3.327 60.55 %

Dynamic network configuration 1.347 24.51 %

Total 5.495

138

7.4.2 DVC Environment Configuration

 To make application management of communication in heterogeneous and dynamic

networks simpler, the DVC environment provides a virtual namespace. Once allocated, the

CalIT2 visualization and SOE storage nodes were assigned private IP addresses to utilize the

dynamically configured optical circuit. As a result, each visualization node at CalIT2 had two

IP addresses: one for communication from/to UvA/UIC and another for communication

from/to SOE. To shield the application from managing these heterogeneous addresses, the

DVC assigned virtual IP addresses (and logical hostnames) to individual nodes. When these

virtual addresses were used for communication, the DVC mapped them to the appropriate

physical resource addresses and directs the traffic to the proper destination. Another advantage

of this approach is application portability. Specifically, the same application can be run

independently on different sets of physical resources because the same set of virtual names

can be assigned to them. As an example of this portability, during these experiments we could

replace the SOE storage clusters with other UCSD storage clusters (SOM, SDSC or CSE) and

easily run the application.

7.4.3 Collaborative and Remote Data Visualization

 Next, we built the collaborative visualization application on the DVC environment.

The application inputted the name of datasets (collections of scene files) and transferred them

on-demand from the three storage clusters (UvA, UIC and SOE) to the visualization cluster at

CalIT2. Here, we used the DVC unified communication interface, which allows us to switch

to use different transport protocols, including TCP, UDT and GTP. In our experiment, each of

the 25 visualization nodes received a dataset of size 1.4 GB. The data transfer performance

was measured when different protocols were used. For example, Figure 7-5 illustrates the

139

trajectory of the aggregate data aggregation rate when we ran the application with GTP. The

data illustrates that GTP achieved a peak transfer rate of 16.3 Gbps out of the 20 Gbps

available bandwidth, or 81.5% utilization.

Figure 7-5: The trajectory of the aggregate transmission rate when running the collaborative

visualization application with GTP

 In the final step, the application visualized the transferred datasets with ‘iView3d’ on

the visualization clusters at CalIT2 and SIO. It displayed multiple scene files in parallel on the

tiled display panels, allowing the scientists at the two locations to simultaneously observe and

analyze the correlation between different sets of data.

7.5 Summary

 This chapter presented case studies for constructing collaborative visualization

environments with the DVC prototype on the real, large-scale Lambda-Grid testbed. Our

argument was that while such collaborative environments are feasible with emerging Grid and

optical network infrastructures, many technical challenges remain. These challenges include:

1) on-demand discovery, selection and configuration of network and end resources; 2)

development of applications on cross-domain, wide-area distributed environments; and 3)

140

management of heterogeneous resource names; and 4) use of novel exotic protocols to achieve

high performance.

 Our experiments demonstrated the key capabilities of the DVC that address these

challenges for real application examples. These include: efficient resource discovery and

selection, dynamic resource allocation and private network configuration, as well as a virtual

resource namespace and unified communication interfaces for application flexibility and

portability. Together, these capabilities enable collaborative visualization applications to be

effectively and conveniently constructed in seconds and successfully exploit the novel

communication capabilities of Lambda-Grids.

7.6 Acknowledgement

Chapter 7, in part, is published as “Collaborative Data Visualization for Earth

Sciences with the OptIPuter” by Nut Taesombut, Xinran Wu, Andrew A. Chien, Atul Nayak,

Bridget Smith, Debi Kilb, Thomas Im, Dane Samilo, Graham Kent and John Orcutt in Journal

of Future Generation Computer Systems, Vol. 22(8), October 2006. The dissertation author

was the primary researcher and co-author of this paper.

141

Chapter 8. Summary and Future Work

In this chapter, we summarize our research and results. Section 8.1 summarizes the

coordinated resource management approach that enables integrated resource abstractions and

combined resource selection. Section 8.2 presents the implications and impacts of our work.

Finally, a number of possible directions for future work are outlined in Section 8.3.

8.1 Summary

Lambda-Grids provide intriguing opportunities for new computation, communication

and collaboration capabilities at the cost of more heavy-weight, user-controlled resource

management. Supporting easy and efficient development of high-performance applications in

dynamic, heterogeneous and multi-institutional distributed resource environments is a critical

challenge. Furthermore, utilizing network configurability presents unique challenges and adds

the complexity of resource management and planning for networks to that for end compute or

storage resources.

We propose the Distributed Virtual Computer (DVC), a novel integrated approach for

managing network and end resources for high application performance and resource efficiency

in Lambda-Grids. The DVC provides a simple service model – applications describe and

acquire a dedicated set of communication and end resources, and subsequently make use of

them as a private distributed presence to achieve quality of service, including high

performance, synchronous collaboration and real-time. Key components of the DVC include:

1) a resource specification language describing combined application resource needs and

exposing novel communication capabilities; 2) a resource planning service integrating end

resource selection and network configuration optimization; 3) a resource binding service

coordinating allocation of communication and end resources; and 4) a set of simplifying

abstractions encapsulating a wealth of network and grid resource complexity. Altogether,

142

these services provide a simplified computing environment of the Lambda-Grid infrastructure

with the complexity of use comparable to that of a private, local distributed system.

 In the DVC model, a key challenge in enabling high application performance and

efficient resource use is the selection of appropriate sets of resources for individual

applications. The problem is formulated and several different resource selection strategies are

explored. The key advantage of the DVC architecture is the integration of network

configuration planning and end resource selection. We present two combined resource

selection algorithms based on simulated annealing and top-down hierarchical selection. These

are then evaluated via simulation across a range of realistic resource configurations and

application models for Lambda-Grids. Our simulations demonstrate that the two combined

selection approaches achieve good optimality for both application performance and network

resource efficiency. Compared to traditional separate selection approaches, they produce

better results for success selection rate, system throughput, network transmission, and setup

cost. Further, the algorithm based on top-down hierarchical combined selection not only

achieves good quality of results, but also scales well with both application request complexity

and Lambda-Grid size.

 For a large-scale Lambda-Grid system, the underlying network is typically partitioned

into domains operated by different Internet Service Providers (ISPs). A key challenge is

network information sharing that must not only enable efficient resource selection for grid

applications, but also maintain competitive advantages of individual ISPs. This information

sharing problem was studied for configurable optical networks and how the available

information affects ISPs’ and applications’ ability to utilize communication resources was

evaluated. Our simulation shows that 1) domain topology information is crucial for good

resource efficiency, low network transmission and setup cost; 2) domain link state information

contributes to better system throughput and utilization of lambdas; 3) when internal network

143

information cannot be shared, appropriate domain connectivity information helps improve

system throughput and application communication latency; and 4) design of an ISP network

has a strong impact on system lambda utilization and the utility of domain link state

information. The first empirical data is presented here on the resource efficiencies of real ISPs

and the ability of an application to utilize network resources with limited network information

sharing.

 To demonstrate the feasibility and advantages of the DVC idea, we develop the DVC

system software prototype. The prototype builds on and leverages existing dynamic network

provisioning tools and grid services, being innovative to enable applications to use novel

communication capabilities of Lambda-Grids. To evaluate it based on real use with scientific

applications, we employ the prototype to enable collaborative visualization environments for

geosciences. We demonstrate the distributed scientific collaboration applications can be

effectively and conveniently constructed on the OptIPuter’s international-scale testbed and to

successfully utilize the Lambda-Grid capabilities.

8.2 Implications

The main implication of our research is DVC coordinated resource management is a

viable scheme enabling easy and efficient development of high-performance applications in

Lambda-Grids. First, the presented DVC architecture demonstrates its feasibility and benefits

in allowing applications to conveniently acquire and use resources in the distributed grid

infrastructure and configurable networks. We have shown that scientific collaborative

visualization environments can be constructed with the DVC implementation prototype in

seconds across the international-scale Lambda-Grid testbed. Second, our simulation shows the

combined resource selection schemes (enabled by the DVC architecture) can produce good

results for success rate, resource quality, and network resource efficiency. Consequently, these

144

properties enable high application capabilities and system throughput. Third, we have

demonstrated the combined approach based on hierarchical selection not only produces good

results, but also scales well with the size of resource configurations past that of the currently

deployed Lambda-Grids.

The second implication is deep understanding of network information sharing

required for efficient resource selection for grid applications and effective traffic engineering

for network service providers. Specifically, our simulation results demonstrate that providers’

internal network information (including topology, link capacity and usage) is essential for

better system throughput, network efficiency and application communication performance.

These results suggest that collaboration between service providers can produce better overall

network productivity as well as offer better network service to applications.

Our research enables a radical new type of distributed application paradigm that can

exploit dedicated optical circuits to tightly couple geographically dispersed resources on-

demand. With the DVC, applications express their communication and resource needs; and the

DVC implementation configures network and end resources to support those needs. These

resources are dedicated for use by applications and transparently managed for guaranteed,

high performance and synchronous collaboration. This capability provides dramatic

opportunities for new, innovative applications that involve large data objects and collections,

large computations, high-performance visualization and wide-area collaboration. Examples of

applications benefiting from such capabilities include:

• Distributed computational steering

• Collaborative and remote scientific data visualization

• Distributed scientific data distribution and sharing

• Distributed commercial content delivery, such as Akamai, BitTorrent and broadcast

television

145

• Emerging distributed services involving large amount of content, indexing, etc., such as

Google, Yahoo, etc.

Our research also provides a foundation for the use of coordinated network and

resource management to support efficient development of high-performance applications in

Lambda-Grids. Such coordinated management allows the integration of end resource selection

and network configuration optimization. This improves both application capabilities and

resource efficiencies. Existing dynamic network provisioning services and grid middleware

manage communication and end resources separately, so such combined resource selection

was impossible previously.

Finally, our work encourages network service providers to share their internal network

information for better overall network productivity. Such information sharing improves their

resource use efficiency and offers better network services to applications, thereby attracting

more customers to the providers’ networks. In fact, many Internet Service Providers (ISPs)

(including AboveNet, NLR and Level3) publish this information today (completely or

partially) and there are a range of research efforts [129-131] on inference techniques to

effectively approximate ISP and Internet topologies. Therefore, other network providers are

also encouraged to make this information available. Further, if complete internal network

information cannot be shared, ISPs should provide approximate domain connectivity

information which can improve network efficiency.

8.3 Future Work

Our research focused primarily on demonstrating the viability of the coordinated

resource management approach in supporting efficient and easy development of high-

performance applications for Lambda-Grids. Along this avenue, we studied the resource

selection and network information sharing problems, evaluating different selection strategies

146

and the impacts of the available information on the quality of results. While we believe that

we have made significant contributions in these areas, more advances can be made to improve

our research. In this section, we identify several future research directions.

8.3.1 Deeper Simulation Studies

Further extensions can be made to improve the simulation studies of the resource

selection and network information sharing problems. First, better application workloads can

improve realism. While in our experiments we used synthetic workloads modeled after

realistic scientific applications for Lambda-Grids, they may not perfectly represent real

resource requests used in the infrastructures. Therefore, our studies can benefit from the real

application workloads of emerging scientific distributed infrastructures such as BIRN and

EarthScope. Second, broader multi-ISP network models can improve the fidelity of the study

of the impact of network information models. The studied multi-ISP, Internet backbone

network model was derived from ten large ISPs, and most pairs of these ISPs are directly

peered. As a result, we observed little impact of interdomain network topology information on

resource efficiency and applications. In fact, there are also a large number of small ISPs in the

real Internet, and it would be interesting to see how these ISPs affect the utility of interdomain

information. Third, broader application models can improve our understanding of the impact

of the limited network information on applications and ISPs. Due to physical resource

constraints, our experiments used the content distribution workload because each request is the

simple selection of a replica server and a circuit path. Such simple requests enable us to have

high enough numbers of requests in each workload trace to saturate the network and observe

the effect of resource contention. Nevertheless, using more application models to evaluate the

network information models would provide more insightful results. Forth, better resource

selection algorithms can improve the evaluation of the impact of network information models.

147

The current simulation used only simple (greedy) algorithms to evaluate all models. While this

method is used for fair comparison, there are opportunities to improve the attained results of

each model by designing appropriate resource algorithms specific for it.

8.3.2 Automatic Generation of Application Resource Specification

In the DVC model, applications (or consequently application developers or users)

explicitly describe and acquire the needed communication and end resources. A key challenge

is understanding what applications require and prefer, and to create appropriate resource

specifications to drive the resource selection and network configuration optimization. This is

critical because the selection of suitable resources can make major performance difference for

applications. However, constructing optimal resource specifications is difficult – it requires

some experience with the underlying infrastructures and applications. As a result, high-level

users (such as scientists) end up using sub-optimal specifications, thereby leading to limited

application capabilities and/or inefficient resource use.

Therefore, a possible future research direction includes a framework to automatically

generating optimal resource specifications for applications. This could be done by analyzing

the structures of application implementation codes and/or the runtime behaviors of previous

application runs. Experimenting with applications on different sets of resource configurations

(either via simulation or real testbeds) would lead us to a prediction model for optimal

application resource requirements.

8.3.3 Framework for Controlled Network Information Sharing

Our research identified information sharing as problematic for configurable optical

networks and demonstrated that collaboration between ISPs can improve both overall network

efficiency and productivity. A possible future research direction would include a framework

148

for controlled information sharing that maintains security and financial benefits of individual

ISPs. To date, most ISPs (e.g., AT&T, Verizon, and Sprint) reply on the BGP protocol for

exchanging interdomain route information and hide domain network information, or they (e.g.,

NLR and OptIPuter) provide full low-level domain information. These models have clear

commercial limitations, and represent only two extreme points on the spectrum of possible

design. Potential controlled information sharing models include some abstraction

(approximation) of domain topologies, internal link connectivity and capacity. Simulation

studies similar to our work can be used to evaluate the impact of these models on applications

and ISPs.

8.3.4 More Application Experiments

 In this dissertation, we developed the DVC system software prototype and used it to

construct collaborative visualization environments for geosciences. Possibly, future work will

evaluate it with broader types of scientific applications and with more complicated resource

configurations. Potential applications include wide-area earthquake warning systems [127],

remote scientific instrument control [128], scientific data distribution and sharing for

biomedical research [5], etc. Additional Lambda-Grid testbeds include DRAGON [17],

CHEETAH [18], Global Lambda Interchange Facility (GLIF) [19], CANARIE’s CA*net 4

[20], and ISPs’ dark fiber infrastructures. While the current prototype is robust and

implements most key components of the DVC architectures, some challenges remain: 1)

management of very large collections of resources and application components (i.e., several

hundreds to thousands); 2) support for complex communication mechanisms such as multicast

and distributed shared memory; and 3) support for hard QoS quality-of-service guarantee.

149

Appendix: Integrated Resource Specification Language

Definition

 The DVC integrated specification language (DVC-ISL) describes resource

configurations (including network, computer, storage, visualization and other instruments) that

host applications’ computation and communication. This allows applications to share specific

knowledge of their resource needs, and drive resource selection and network configuration

optimization. Figure A-1 shows the full BNF description of the DVC-ISL. Table A-1 provides

the syntax of its terminals (in the form of regular expression). Table A-2, A-3 and A-4

respectively list end-resource, connectivity and internal communication node attributes

recognized by the DVC.

Table A-1: The syntax of terminals in the DVC-ISL BNF description

Token Name Regular Expression Example Value

Real (-)?{0-9}*[\.]{0-9}+ 3.417, -0.0023

Integer (-)?{0-9}+ 12500, -39

Boolean (true | false) true, false

Undefined Undefined Undefined

Error Error Error

String \"[a-zA-Z0-9_\-\)\(\.]*\" "GNU/Linux"

Identifier [a-zA-Z_-][a-zA-Z0-9_-]* comp1, storage20

Reference \<[a-zA-Z0-9_\-\)\(\.]*\> <comp1>

Table A-2: The list of end-resource attributes of the DVC-ISL

Attribute

Name

Type Description Example Constraint

Hostname String Hostname/IP address Hostname == “192.168.82.2”

CPUSpeed Real CPU clock speed (GHz) CPUSpeed > 2.4

Platform String Computer platform name Platform == “x86_64”

CPUModel String CPU model name CPUModel == “AMD
Opteron(tm) Processor 246”

CPUCache Integer CPU layer-2 cache size (MB) CPUCache >= 512

CPUCount Integer Total number of CPUs CPUCount == 2

MemoryTotal Integer Total memory size (MB) MemoryTotal >= 2048

MemoryFree Integer Free memory size (MB) MemoryFree >= 1024

DiskTotal Integer Total disk space (GB) DiskTotal > 200

DiskFree Integer Free disk space (GB) DiskFree > 120

OSName String Operating system name OSName == “Linux”

SpecialHW Set of string List of attached hardware InSet(SpecialHW, “tiled-
display”)

DataSet Set of string List of stored dataset InSet(DataSet,
“seismic.scene”)

150

Figure A-1: The full BNF description of the DVC integrated specification language

DVC-ISL-Spec ::= Identifer "=" Specification

Specification ::= "["StatementList "]"

StatementList ::= Statement [";" Statement]*

Statement ::= Identifier "ISA" "[" ConstraintList "]"

 | Identifier "ISA SET" "[" ConstraintList "]"

| Identifier "ISA CONN" "(" ReferenceList ")" "[" ConstraintList "]"

| Identifier "ISA CNODE" "[" ConstraintList "]"

| Predicate

 | Constraint

ConstraintList ::= Constraint [";" Constraint]*

Constraint ::= Identifer "=" LogicalExpr

 | Identifer "=" "ENUM" "[" PrimitiveTypeList"]"

 | Identifer "=" "DICTIONARY" "[" DicElementList "]"

 | Identifer "=" "[" ExprSet "]"

 | Identifer "=" "{" ExprList "}"

 | LogicalExpr

LogicalExpr ::= RelationalExpr

| LogicalExpr ("&&" | "||") RelationalExpr

| "Required" "(" ExprSet ")"

RelationalExpr ::= ArithExpr

| RelationalExpr (">" | "<" | ">=" | "<=" | "==" | "!=") ArithExpr

ArithExpr ::= AggrOprExpr

| ArithExpr ("+" | "-" | "/" | "%" | "&" | "|" | "^" | "<<" | ">>") AggrOprExpr

AggrOprExpr ::= SetOprExpr

| ("Count" | "Min" | "Max" | "Avg") "(" PosfixExpr ")"

SetOprExpr ::= UnaryExpr

| ("InSet" | "Set_Intersection" | "Set_Union" | "Set_Difference" |

"Set_S_Difference") "(" PostfixExpr "," LogicalExpor ")"

UnaryExpr ::= PostfixExpr

| ("+" | "-" | "!") UnaryExpr

PostfixExpr ::= TypeExpr

| Identifer ["." Identifer] ["[" PostfixExpr "]"]

TypeExpr ::= PrimitiveType

| Identifer | "(" LogicalExpr ")"

ExprList ::= LogicalExpr ("," LogicalExpr)*

ExprSet ::= LogicalExpr ("," LogicalExpr)*

DicElementList ::= DicElement ("," DicElement)*

DicElement ::= "{" String "," PrimitiveType "}"

Predicate ::= ("Maximize" | "Minimize") "(" ArithExpr ")"

 | ("Forall"| "Forany") Identifer "in" Identifer

ReferenceList ::= Reference ["," Reference]*

PrimitiveTypeList ::= PrimitiveType ("," PrimitveType)*

PrimitveType ::= Real | Integer | String | Boolean | Reference | Undefined | Error

151

Table A-3: The list of network connectivity attributes of the DVC-ISL

Attribute Names Type Description Example Constraint

type String Connectivity type (either

“internet”, “lambda”, or

“intra-cluster)

type = “lambda”

Bandwidth Real Bandwidth of individual

connections (Mbps)

Bandwidth > 2000

Latency Real Latency (ms) Latency < 20

Table A-4: The list of internal communication node attributes of the DVC-ISL

Attribute

Name

Type Description Example Constraint

Hostname String Hostname/IP address Hostname == “172.31.20.1”

exchange - Allow aggregation of traffic Required(exchange)

opt-multicast - Allow duplication of an

optical signal as-is to enable

multicast (one-way)

Required(opt-multicast)

152

References

[1] V. Astakhov, A. Gupta, S. Santini, and J. S. Grethe, “Data Integration in the Biomedical

Informatics Research Network (BIRN),” in Proceedings of the 2
nd
 International Workshop on

Data Integration in Life Sciences (DILS’05), July 2005.

[2] J. M. Brooke, P. V. Coveney, J. Harting, S. Jha, S. M. Pickles, R. L. Pinning and A. R.

Porter, “Computational Steering in RealityGrid”, in Proceedings of the UK e-Science All

Hands Meeting, September 2003.

[3] T. A. DeFanti, J. Leigh, et al., “Teleimmersion and Visualization with the OptIPuter,” in

Proceedings of the 12
th
 International Conference on Artificial Reality and Telexistence

(ICAT’2002), December 2002.

[4] EarthScope. http://www.earthscope.org

[5] BIRN – Biomedical Informatics Research Network. http://www.nbirn.net

[6] ORION – Ocean Research Interactive Observatory Networks.

http://www.orionprogram.org

[7] J. Bunn and H. Newman, “Data-Intensive Grids for High-Energy Physics,” in Grid

Computing: Making the Global Infrastructure a Reality,” F. Berman, G. Fox, and T. Hey, Eds.

John Wiley & Sons, Inc., New York, 2003.

[8] AstroGrid. http://www2.astrogrid.org

[9] I. Foster and C. Kesselman, editors, “The Grid: Blueprint for a New Computing

Infrastructure,” Morgan Kaufmann, 1999.

[10] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of Grid: Enabling Scalable

Virtual Organizations,” International Journal of Supercomputer Applications, 15(3), 2001.

[11] TeraGrid. http://www.teragrid.org

[12] iVDGL – International Virtual Data Grid Laboratory. http://www.ivdgl.org

[13] GriPhyN – Grid Physics Network. http://www.griphyn.org

[14] The DataGrid Project. http://eu-datagrid.web.cern.ch/eu-datagrid

[15] L. L. Smarr, A. A. Chien, T. A. DeFanti, J. Leigh, and P. M. Papadopoulos, “The

OptIPuter,” Communications of the ACM, Vol. 46(11), November 2003.

http://www.optiputer.net

[16] National LambdaRail. http://www.nlr.net

153

[17] T. Lehman, J. Sobieski, and B. Jabbari, “DRAGON: A Framework for Service

Provisioning in Heterogeneous Grid Networks,” IEEE Communications Magazine, Vol. 44(3),

March 2006. http://dragon.east.isi.edu

[18] X. Zheng, M. Veeraraghavan, N. S. V. Rao, Q. Wu, and M. Zhu, “CHEETAH: Circuit-

Switched High-Speed End-to-End Transport Architecture Testbed,” IEEE Communication

Magazine, Vol. 43(8), August 2005.

[19] Global Lambda Integrated Facility. http://www.glif.is

[20] CANARIE's CAnet 4. http://www.canarie.ca/canet4

[21] NetherLight. http://www.netherlight.net

[22] T. DeFanti, C. de Laat, J. Mambretti, K. Neggers, and B. St. Arnaud, “TransLight: A

Global-Scale LambdaGrid for e-Science,” Communications of the ACM, Vol. 26(11),

November 2003.

[23] R. Wu and A. A. Chien, “GTP: Group Transport Protocol for Lambda-Grids,” in

Proceedings of the 4
th
 IEEE/ACM International Symposium on Cluster Computing and the

Grid (CCGrid’2004), April 2004.

[24] Y. Gu and R. L. Grossman, “UDT: UDP-Based Data Transfer for High-Speed Wide Area

Networks,” Journal of Computer Networks, Vol. 51(7), May 2007.

[25] E. Weigle and A. A. Chien, “The Composite Endpoint Protocol (CEP): Scalable

Endpoints for Terabit Flows,” in Proceedings of the IEEE Conference on Cluster Computing

and the Grid (CCGrid’2005), April 2005.

[26] I. Foster, “Globus Toolkit 4: Software for Service-Oriented Systems,” in Proceedings of

the IFIP International Conference on Network and Parallel Computing, Springer-Verlag,

LNCS 3779, 2006. http://www.globus.org

[27] Y. Kee, D. Logotheis, R. Huang, H. Casanova, and A. A. Chien, in Proceedings of the

IEEE Conference of Cluster Computing and the Grid (CCGird’2005), April 2005.

[28] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G: A Computation

Management Agent for Multi-Institutional Grids,” in Proceedings of the 10
th
 IEEE Symposium

on High Performance Distributed Computing, August 2001.

[29] Lightweight Middleware for Grid Computing (gLite). http://www.glite.org

[30] G. Allen, K. Davis, et al., “Enabling Applications on the Grid – A GridLab Overview,”

International Journal of High Performance Computing Applications, August 2003.

[31] O. Yu, A. Li, Y. Cao, L. Yin, M. Liao, and H. Xu, “Multi-Domain Lambda Grid Data

Portal for Collaborative Grid Applications,” Journal of Future Generation Computer Systems,

Vol. 22(8), October, 2006.

154

[32] J. Wu, S. Campbell, J. M. Savoie, H. Zhang, G. Bochmann, and B. St.Arnaud, “User-

Managed End-to-End Lightpath Provisioning over CA*net4,” in Proceedings of the National

Fiber Optic Engineers Conference (NFOEC), September 2003.

[33] Y. Kee, H. Casanova, and A. A. Chien, “Realistic Modeling and Synthesis of Resources

for Computational Grids,” in Proceedings of the ACM Conference on High Performance

Computing and Networking (SC’04), November 2004.

[34] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A Security Architecture for

Computational Grids,” in Proceedings of the 5
th
 ACM Conference on Computer and

Communication Security Conference, 1998.

[35] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid Information Services for

Distributed Resource Sharing,” in Proceedings of the 10
th
 IEEE International Symposium on

High-Performance Distributed Computing (HPDC-10), August 2001.

[36] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu and I. Foster,

“The Globus Striped GridFTP Framework and Server,” in Proceedings of the ACM

Conference on High Performance Computing and Networking (SC’2005), November 2004.

[37] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke,

“A Resource Management Architecture for Metacomputing Systems,” in Proceedings of the

IPPS/SPDP Workshop on Job Scheduling Strategies for Parallel Proceedings, 1998.

[38] The WS-Resource Framework. http://www.globus.org/wsrf/

[39] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy, “A Distributed

Resource Management Architecture that Supports Advance Reservations and Co-Allocation,”

in Proceedings of the International Workshop on Quality of Service, 1999.

[40] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor – A Distributed Job

Scheduler,” in Thomas Sterling, editor, Beowulf Cluster Computing with Linux, the MIT

Press, 2002.

[41] LHC Computing Grid Project. http://lcg.web.cern.ch/LCG/

[42] P. Badino and P. Kunszt, “gLite I/O User’s Guide v.1,” EGEE Technical Report 570771,

March 2005.

[43] GridLab Project: W-9 Resource Management.

http://www.gridlab.org/WorkPackages/wp-9/

[44] GridLab Project: W-1 Grid Application Toolkit.

http://www.gridlab.org/WorkPackages/wp-1/

[45] J. Leigh, L. Renambot, T. A. DeFanti, M. Brown, E. He, N. Krishnaprasad, J. M. A.

Meerasa, A. Nayak, K. Park, R. Singh, S. Venkataraman, and C. Zhang, “An Experimental

OptIPuter Architecture for Data-Intensive Collaborative Visualization,” in Proceedings of the

3
rd
 Workshop on Advanced Collaborative Environments (WACE’03), June 2003.

155

[46] H. Liu, D. Pendarakis, N. Komaee, and D. Saha, “GMPLS-Based Control Plane for

Optical Networks: Early Implementation Experience,” in Proceedings of the International

Symposium and Exhibit on the Convergence of Information Technology and Communications,

August 2002.

[47] A. P. Mudambi, X. Zheng, and M. Veeraraghavan, “A Transport Protocol for Dedicated

End-to-End Circuits,” in Proceedings of the IEEE International Conference on

Communications (ICC’06), June 2006.

[48] M. Veeraraghavan, H. Lee, E. K. P. Chong and H. Li, “A Varying Bandwidth List

Scheduling Heuristic for File Transfers,” in Proceedings of the IEEE International Conference

on Communications (ICC’04), June 2004.

[49] J. Vollbrecht, P. Calhoun, et al., “AAA Authorization Framework,” RFC 2904, August

2000.

[50] DRAGON Project: Network Aware Resource Broker (NARB).

http://dragon.east.isi.edu/twiki/bin/view/Main/NARB

[51] Photonic Domain Controller. http://www.evl.uic.edu/cavern/rg/20031003_he

[52] R. Raman, M. Livny, and M. Solomon, “Matchmaking Distributed Resource

Management for High Throughput Computing,” in Proceedings of the 7
th
 IEEE Symposium on

High Performance Distributed Computing (HPDC-7), July 1998.

[53] R. Raman, M. Livny, and M. Solomon, “Policy Driven Heterogeneous Resource Co-

Allocation with Gangmatching,” in Proceedings of the 12
th
 IEEE Symposium on High

Performance Distributed Computing (HPDC-12), June 2003.

[54] C. Liu and I. Foster, “A Constraint Language Approach to Matchmaking,” in

Proceedings of the 14
th
 Workshop on Research Issues on Data Engineering: Web Services for

E-Commerce and E-Government Applications, March 2004.

[55] K. Marriott and J. S. Peter, Programming with Constraints: An Introduction, The MIT

Press, Cambridge, Massachusetts, 1998.

[56] H. Tangmunarunkit, S. Decker, and C. Kesselman, “Ontology-based Resource Matching

in the Grid – The Grid Meets the Semantic Web,” in Proceedings of the International

Semantic Web Conference (ISWC’2003), October 2003.

[57] S. Decker and M. Sintek, “Triple – A Query, Inference, and Transformation Language for

the Semantic Web,” in Proceedings of the 13
th
 International Semantic Web Conference

(ISWC’2002), June 2002.

[58] P. Dinda and D. Lu, “Nondeterministic Queries in a Relational Grid Information

Service,” in Proceedings of the ACM Conference on High Performance Computing and

Networking (SC’03), November 2003.

[59] S. Fisher, “Relational Model for Information and Monitoring,” Technical Report GWD-

GP-7-1, 2001.

156

[60] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, “Design and Implementation

Tradeoffs for Wide-Area Resource Discovery,” in Proceedings of the 14
th
 IEEE Symposium

on High Performance Distributed Computing, July 2005.

[61] A. Huang and P. Steenkiste, “Building Self-Configuring Services using Service-Specific

Knowledge,” in Proceedings of the 13
th
 IEEE International Symposium of High-Performance

Distributed Computing (HPDC-13), June 2003.

[62] R. Ricci, C. Alfeld, and J. Lepreau, “A Solver for the Network Testbed Mapping

Problem,” ACM SIGCOMM Computer Communication Review, Vol. 33(2), April 2003.

[63] J. Londono and A. Bestavros, “NetEMBED: A Network Resource Mapping Service for

Distributed Applications,” Boston University Technical Report (BUCS-2006-032), December

2006.

[64] The Globus Resource Specification Language (RSL) v1.0.

http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html

[65] The ClassAd Language Reference Manual v2.4.

http://www.cs.wisc.edu/condor/classad/refman.pdf

[66] C. Liu and I. Foster, “A Constraint Language Approach to Grid Resource Selection,”

University of Chicago Technical Report TR-2003-07, 2003.

[67] D. Oppenheimer, J. Albrecht, D. Patternson, and A. Vahdat, “Scalable Wide-Area

Resource Discovery,” UC Berkeley Technical Report UCB//CSD-04-1334, July 2004.

[68] A. A. Chien, H. Casanova, Y. Kee, and R. Huang, “The Virtual Grid Description

Language: vgDL,” UCSD Technical Report CS2005-0817, 2005.

[69] E. He, J. Leigh, O. Yu, and T. A. DeFanti, “Reliable Blast UDP: Predictable High

Performance Bulk Data Transfer,” in Proceedings of the IEEE Cluster Computing

(Cluster’2002), September 2002.

[70] V. Vishwanath, J. Leigh, E. He, M. D. Brown, L. Long, L. Renambot, A. Verlo, X.

Wang, and T. A. DeFanti, “Wide-Area Experiments with LambdaStream over Dedicated

High-Bandwidth Networks,” in Proceedings of the 25
th
 Conference on Computer

Communications (INFOCOMM’2006), April 2006.

[71] Z. Huang, L. Gu, B. Du, and C He, “Grid Resource Specification Language Based on

XML and Its Usage in Resource Registry Meta-Service,” in Proceedings of the 2004 IEEE

International Conference on Services Computing (SCC’04), September 2004.

[72] L. Pearlman, V. Welch, I. Foster, and C. Keselman, “A Community Authorization

Service for Group Collaboration,” in Proceedings of the 3
rd
 IEEE International Workshop on

Policies for Distributed Systems and Networks (POLICY’02), June 2002.

[73] Y. Kee, K Yocum, A. A. Chien, H. Casanova, “Improving Grid Resource Allocation via

Integrated Selection and Binding,” in Proceedings of ACM/IEEE International Conference on

High Performance Computing and Communication (SC’06), November 2006.

157

[74] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”

Science, Vol. 200(4598), May 1983.

[75] X. Zhang and J. Y. Wei, “Constrained Multicast Routing in WDM Networks with Sparse

Light Splitting,” Journal of Lightwave Technology, Vol. 18(12), December 2000.

[76] K. Marriott and J. S. Peter, “Programming with Constraints: An Introduction,” the MIT

Press, Cambridge, 1998.

[77] MySQL. http://www.mysql.com

[78] G. Karypis and V. Kumar, “A Fast and Highly Quality Multilevel Scheme for

Partitioning Irregular Graphs,” SIAM Journal on Scientific Computing, Vol. 20(1), December

1998.

[79] Verizon Business: Global Network Map.

http://www.verizonbusiness.com/us/about/network

[80] Portable Batch Scheduler. http://www.openpbs.org

[81] Sun Grid Engine. http://gridengine.sunsource.net

[82] D. B. Hoang, T. Lavian, S. Figueira, J. Mambretti, I. Monga, S. Naikasatam, H. Cohen,

D. Cutrell and F. Travostino, “DWDM-RAM: An Architecture for Data Intensive Service

Enabled by Network Generation Dynamic Optical Networks,” in Proceedings of the IEEE

Workshop on High-Performance Global Grid Networks, November 2004.

[83] BigBangwidth Lightpath Accelerator System version 2.5.2, User and Installation Guide.

[84] AT&T Global Network Map. http://www.corp.att.com/globalnetworking

[85] BT Global Services: Network Maps. http://www.bt.net/info/maps.shtml

[86] Cogent Communication: Network Map. http://www.cogentco.com/htdocs/map.php

[87] Global Crossing Interactive Network Map.

http://www.globalcrossing.com/network/network_interactive_map.aspx

[88] The Level3 Network.

http://www.level3.com/images/global_map/Level_3_Network_map.pdf

[89] NTT Communications: Global IP Network.

http://www.ntt.net/english/about/network_map.html

[90] Qwest Network Maps. http://www.qwest.com/about/qwest/network/index.html

[91] Sprint Global IP Network. http://www.sprintworldwide.com/english/maps

[92] Time Warner Telecom IP Network Map.

http://www.twtelecom.com/about_us/lg_ip_map.html

158

[93] Rocketfuel: An ISP Topology Mapping Engine.

http://www.cs.washington.edu/research/networking/rocketfuel

[94] N. Spring, R. Mahajan, and Wetherall, “Measuring ISP Topologies with Rocketfeul,” in

Proceedings of the ACM Conference of the Special Interest Group on Data Communication

(SIGCOMM’02), August 2002.

[95] CAIDA’s Inferred AS Relationships Dataset. http://as-rank.caida.org/data

[96] X. Dimitropolos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun, K. C. Claffy, and

G. Riley, “AS Relationships: Inference and Validation,” ACM SIGCOMM Computer

Communication Review (CCR), Vol. 37(1), January 2007.

[97] W. F. Kern and J. R. Bland, Solid Mensuration with Proofs, Second Edition, John Wiley

& Sons, 1954.

[98] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to Universal

Topology Generator,” in Proceedings of the International Workshop on Modeling, Analysis

and Simulation of Computer and Telecommunications Systems (MASCOTS’01), August 2001.

[99] D. Churchill, S. Padina, and R. P. Bording, “Seismic Tomography as a High Performance

Application,” in Proceedings of the 20
th
 International Symposium on High-Performance

Computing in an Advanced Collaborative Environment (HPCS’06), May 2006.

[100] P. Wilmott, “Derivatives: The Theory and Practice of Financial Engineering”, John

Wiley & Sons, 1998.

[101] J. Taylor, M. Dvorak, and S. Mickelson, “Developing Grid Based Infrastructure for

Climate Modeling,” in Proceedings of the International Conference on Computational

Science (ICCS’02), April 2002.

[102] B. M. E. Moret, D. A. Bader, and T. Warnow, “High-Performance Algorithm

Engineering for Computational Phylogenetics,” Journal of Supercomputing, Vol. 22(1), May

2002.

[103] S. Park, J. Lee, and S. Hariri, “A Multithreaded Message-Passing System for High

Performance Distributed Computing Applications,” in Proceedings of the 18
th
 International

Conference on Distributed Computing Systems, May 1998.

[104] A. Bilgin and M. W. Marcellin, “JPEG2000 for Digital Cinema,” in Proceedings of the

2006 IEEE International Symposium on Circuits and Systems (ISCAS’2006), May 2006.

[105] J. Kangasharju, J. Roberts, and K. W. Ross, “Object Replication Strategies in Content

Distribution Networks,” Computer Communications, Vol. 25(4), April 2002.

[106] G. M. Bernstein, V. Sharma, and L. Ong, “Interdomain Optical Routing,” Journal of

Optical Networking, Vol. 1(2), February 2002.

[107] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet Denial of Service: Attack

and Defense Mechnisms, Prentice Hall PTR, 2005.

159

[108] Z. L. Zhang, Z. Duan, and Y. T. Hou, “On Scalable Network Resource Management

Using Bandwidth Brokers,” in Proceedings of the 8
th
 Network Operations and Management

Symposium (NOMS’2002), April 2002.

[109] Y. Rekhter and P. Gross, “Application of the Border Gateway Protocol in the Internet,”

RFC 1772, T. J. Watson Research Center, IBM Corporation, MCI March 1995.

[110] The ATM Forum Technical Committee, “Private Network-Network Specification

Interface v.1 (PNNII 1.0),” af-pnni-0055.000, March 1996.

[111] AboveNet IP and Fiber Maps. http://www.above.net/products/maps2/index.html

[112] V. N. Padmanabhan and L. Subramanian, “An Investigation of Geographic Mapping

Techniques for Internet Hosts,” in Proceedings of the ACM Conference of the Special Interest

Group on Data Communication (SIGCOMM’01), August 2001.

[114] N. Taft, S. Bhattacharyya, J. Jetcheva, and C. Diot, “Understanding Traffic Dynamics at

a Backbone POP,” in Proceedings of the SPIE ITCom Workshop on Scalability and Traffic

Control IP Networks, July 2001.

[115] N. Spring, R. Mahajan, and T. Anderson, “Quantifying the Causes of Path Inflation,” in

Proceedings of the ACM Conference of the Special Interest Group on Data Communication

(SIGCOMM’03), August 2003.

[116] X. Dimitropoulos, D. Krioukov, G. Riley, and K. C. Claffy, “Revealing the Autonomous

System Taxonomy: The Machine Learning Approach,” in Proceedings of the 7
th
 Passive and

Active Measurements Workshop (PAM’06), April 2006.

[117] H. B. Newman, M. H. Ellisman, J. A. Orcutt, “Data-Intensive E-Science Frontier

Research,” Communications of the ACM, Vol. 46(11), November 2003.

[118] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera, A. Johnson, and J. Leigh,

“High-Performance Dynamic Graphics Streaming for Scalable Adaptive Graphics

Environment,” in Proceedings of the ACM/IEEE Conference on High Performance

Networking and Computing (SC’06), November 2006.

[119] A. Hutanu, G. Allen, et al., “Distributed and Collaborative Visualization of Large Data

Sets using High-Speed Networks,” in Journal of Future Generation Computer Systems, Vol.

22(8), October 2006.

[120] J. Leigh, L. Renambot, et al., “The Global Lambda Visualization Facility: An

International Ultra-high-definition Wide-area Visualization, in Journal of Future Generation

Computer Systems, Vol. 22(8), October 2006.

[121] J. Jo, W. Hong, et al., “Interactive 3D HD Video Transport for E-Science Collaboration

over UCLP-enabled GLORIAD Lightpath, in Journal of Future Generation Computer

Systems, Vol. 22(8), October 2006.

[122] IVS 3D – Fledermaus Professional.

http://www.ivs3d.com/products/fledermaus/fledermaus_pro.html

160

[123] IVS 3D – iView3D. http://www.ivs3d.com/products/iview3d/

[124] N. Freed, “Behavior of and Requirements for Internet Firewalls,” RFC 2979, October

2000.

[125] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear, “Address

Allocation for Private Internets,” RFC 1918, February 1996.

[126] P. Grosso, P. de Boer, and L. Winkler, “The Network Infrastructure at iGrid2005:

Lambda Networking in Action,” in Journal of Future Generation Computer Systems, Vol.

22(8), October 2006.

[127] K. H. Kim, “Wide-Area Real-Time Computing in a Tightly Managed Optical Grid – An

OptIPuter Vision,” in Proceedings of the 18
th
 IEEE International Conference on Advanced

Information Networking and Applications, March 2004.

[128] T. E. Molina, G. Yang, A. W. Lin, S. T. Peltier, and M. H. Ellisman, “A Generalized

Service-Oriented Architecture for Remote Control of Scientific Imaging Instruments,” in

Proceedings of the 1
st
 IEEE International Conference of e-Science and Computing, December

2005.

[129] B. Wong, A. Slivkins, E. G. Sirer, “Meridian: A Lightweight Network Location Service

without Virtual Coordinates,” in Proceedings of the ACM Conference of the Special Interest

Group on Data Communication (SIGCOMM’05), August 2005

[130] M. den Burger, T. Kielmann, H. E. Bal, “TopoMon: A Monitoring Tool for Grid

Network Topology,” in Proceedings of the 2002 International Conference on Computational

Science, April 2002.

[131] H. V. Madhyastha, T. Isdal, et al., “iPlane: An Information Plane for Distributed

Services,” in Proceedings of the 7
th
 USENIX Symposium on Operating Systems Design and

Implementation, November 2006.

