
UCLA
UCLA Electronic Theses and Dissertations

Title
Automating Personalized Battery Management on Smartphones

Permalink
https://escholarship.org/uc/item/191531w8

Author
Falaki, Mohamamd Hossein

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/191531w8
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Automating Personalized Battery Management

on Smartphones

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Mohammad Hossein Falaki

2012

c© Copyright by

Mohammad Hossein Falaki

2012

Abstract of the Dissertation

Automating Personalized Battery Management

on Smartphones

by

Mohammad Hossein Falaki

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2012

Professor Deborah Estrin, Chair

The widespread use of smartphones and proliferation of mobile applications are

reshaping many other areas ranging from social networking to health care To-

day’s smartphones are much more capable than before, but mobile application

are still restricted by limited resources on smartphones. The key hypothesis of

this dissertation is that resource management on smartphones can be improved

by adapting to usage patterns of users. We extensively studied users in the wild

to characterize smartphone usage. We discovered significant diversity in smart-

phone usage. Along all aspects that we studied, users differ by one or more orders

of magnitude. This finding suggests that resource management policies and al-

gorithms on smartphones can become more effective if they learn and adapt to

user behavior.

We developed the prototype of a system that adaptively manages battery, one

of the most strained resources on smarthpones, and evaluated its performance.

PowerLeash is a system that gives users control over their smartphones’ battery

lifetime when running background applications. With PowerLeash a user who is

running power consuming background applications on her smartphone can decide

ii

how long her battery should last. PowerLeash continuously monitors the phone’s

battery level, the user’s interactions with the phone, and progress of background

applications. It builds a personalized model to estimate battery consumption

based on usage and background applications progress. Using the on-line model

and other information, PowerLeash dynamically adjusts the power consumption

of background applications to meet the user’s desired battery lifetime. We have

designed PowerLeash to be easy to deploy, easy to use, and easy to incorporate

in background applications. PowerLeash can run on any Android smartphone as

a user level application, and relies only on information that is available to user-

level processes. We present the design of PowerLeash and a detailed performance

evaluation based on user studies. We use the lessons from deploying PowerLeash

on volunteers smartphones to inform future iterations.

iii

The dissertation of Mohammad Hossein Falaki is approved.

Mark H. Hansen

Mani B. Srivastava

Lixia Zhang

Deborah Estrin, Committee Chair

University of California, Los Angeles

2012

iv

To my parents, Mehri and Hassan,

and to my lovely wife, Afsoon.

v

Table of Contents

1 Introduction . 1

1.1 Problem Statement . 1

1.2 Approach . 4

1.3 Contributions . 5

1.4 Related Work . 6

1.4.1 Characterizing Smartphone Usage 6

1.4.2 Power and Battery Management 8

1.4.3 Usage Monitoring . 12

2 Characterizing Smartphone Usage 14

2.1 Data Collection . 17

2.1.1 Dataset1 . 18

2.1.2 Dataset2 . 18

2.1.3 Dataset3 . 19

2.1.4 Representativeness of conclusions 19

2.2 User Interactions . 21

2.2.1 Interaction Time . 23

2.2.2 Interaction Sessions . 24

2.2.3 Diurnal Patterns . 28

2.3 Application Usage . 32

2.3.1 Number of applications . 32

vi

2.3.2 Application Popularity . 33

2.3.3 Application Sessions . 38

2.4 Traffic . 41

2.4.1 Traffic per day . 42

2.4.2 “Interactive” traffic . 44

2.4.3 Diurnal patterns . 46

2.4.4 Traffic composition . 47

2.4.5 Transfer sizes . 51

2.4.6 Performance . 56

2.5 Energy Consumption . 60

2.6 Smartphone Usage Models . 65

2.6.1 Session Lengths . 65

2.6.2 Time between Sessions . 68

2.6.3 Application Popularity . 70

2.7 Summary . 71

3 Automating Battery Management 74

3.1 System Design . 75

3.1.1 Design principles . 77

3.1.2 Design Overview . 78

3.2 Power Consumption Model . 81

3.2.1 Discussion . 82

3.2.2 Evaluation . 84

vii

3.3 Estimating Interactive Usage . 88

3.3.1 Highly Variable Usage . 88

3.3.2 Short-term Memory in Usage 89

3.3.3 Estimation Algorithm . 95

3.4 Adaptation Policy . 95

3.4.1 ShortLeash Policy . 97

3.4.2 LongLeash Policy . 99

3.4.3 PowerLeash Policy . 100

3.5 Simulation . 102

3.5.1 Simulation Procedure . 102

3.5.2 Comparing Policies . 103

3.6 User Deployment . 109

3.6.1 Evaluation . 111

3.6.2 Discussion . 118

3.7 Conclusion . 121

4 Lessons . 122

4.1 User Interface . 122

4.1.1 Battery Goal Setting UI 124

4.1.2 Feedback to Users . 126

4.2 Battery Lifetime Estimation . 127

4.2.1 Problem statement . 128

4.2.2 Diagnosis . 129

viii

4.2.3 Solution . 130

4.3 Improving Adaptation Policy . 131

4.4 Summary . 134

5 Conclusions . 136

5.1 Summary of the Thesis . 136

5.1.1 Charachterizing Smartphone Usage 137

5.1.2 Managing Battery Lifetime 138

5.2 Comments on Design of PowerLeash 140

5.2.1 Design Choices . 140

5.2.2 Implementation Choices 141

5.3 Future Work . 142

5.3.1 Improving PowerLeash . 143

5.3.2 Extending Automated Personalization 145

A Measuring Smartphone Usage with SystemSens 147

A.1 Architecture & Design . 148

A.1.1 SystemSens Client . 149

A.1.2 Data format . 152

A.1.3 SystemSens Server . 152

A.1.4 External Sensors . 153

A.2 Evaluation . 154

A.2.1 Data Size . 154

A.2.2 Energy Consumption . 155

ix

A.3 Monitoring Smartphone Research Deployments 159

A.3.1 Unexpected User Behavior 161

A.3.2 Debugging Battery Consumption 162

A.4 Summary . 164

References . 165

x

List of Figures

1.1 Trends of energy supply (battery capacity) and demand on cell

phones before 2006 by Neuvo [Neu04] demonstrate a growing gap

between the two. This gap is more significant with smartphones. . 3

2.1 Ratio of voice usage to total usage. The x-axis is user percentile

and users are sorted in decreasing order of ratio. Voice usage in

Dataset1 is higher than that in Dataset2 in which phones were

used for personal use. 20

2.2 Total interaction per day during the first and second halves of

study for each user. Users within each dataset are sorted based on

the interaction time in the first half. The y-axis is log scale. We

see rougly similar usage in the two halves therefore we conclude

that usage was not significantly impacted by initial excitement or

learning time. 22

2.3 The mean and the upper end of the standard deviation of inter-

action minutes per day. (a) All users in each dataset. (b)&(c)

Different demographics in the two datasets. The y-axes are log

scale. Within each dataset there is an order of magnitude differ-

ence among suers. 23

2.4 The mean and the upper end of the standard deviation for the

number of sessions per day and the session length. The y-axes are

log scale. We observe a wide range of variation among users and

the mean session length varies across users by an order of magnitude. 25

xi

2.5 (a) Scatterplot of session count per day and mean session length of

various users. (b) The mean and 95% CI of session count per day

for users in Dataset2 with different mean session lengths. There

is little correlation between users’ number of sessions and session

length. 26

2.6 CDFs of session length and time between sessions for two example

users. The x-axis ranges in the graphs are different. For any given

user, most of the sessions are short but some are very long. The

median session length is less than a minute but some are longer

than an hour (not shown in the graph) 27

2.7 The mean and 95% CI of interaction time, number of sessions, and

session length during each hour of the day for an example user from

each dataset. Daytime use is much higher than nighttime use, and

the exact pattern for different users is different. 29

2.8 (a) Scatterplot of diurnal ratio of interaction time per hour and

interaction minutes per day. (b) The mean and 95% CI of diurnal

ratio vs. total interaction time per day. Diurnal ratios vary across

users, and roughly 70% of the users in each dataset have a peak

hour usage that is more than twice their mean usage. 30

2.9 Diurnal ratio of the interaction time, the number of sessions, and

the session length for different users. The y-axis ranges for the

number of sessions is different. Users tend to have different number

of sessions as well as different session lengths at different hours of

the day therefore both variation in number of sessions and session

length contribute to variations in interaction time across the day. 31

xii

2.10 Number of applications installed and used by users of each dataset

varies significantly across users. In both datasets the median is

median number of applications is 50. 33

2.11 Relative time spent running each application for example users in

each dataset. Inset is the semi-log plot of application popularity.

Clearly users devote the bulk of their attention to a subset of

applications of their choice. For each user application popularity

can be modeled by an exponential distribution. 34

2.12 Relative time spent with each application during each hour of the

day for a sample user and her top applications. We find that

relative application popularity is not stable throughout the day

and has a diurnal pattern. 35

2.13 Relative popularity of each application category across all users

in each dataset. While the results are not identical across the

two datasets, they are similar to a first order: Communication

dominates in both. 35

2.14 The mean and 95% CI of relative popularity of application cate-

gories among users of different demographics. User demographics

do not seem to impact relative application popularity. 36

2.15 The mean and 95% CI of relative popularity of application cate-

gories among different classes of users based on interaction time

per day. Users in different classes have similar application usage. . 38

2.16 Histogram of the number of applications called during each inter-

action session for all the users in Dataset2. An overwhelming ma-

jority of interactions include only one applications therefore users

tend to interact with their phone for one task at a time. 39

xiii

2.17 The mean and 95% CI of session lengths of different application

categories. The y-axis is log scale. Different application types have

different session lengths. Maps and games tend to have the longest

and those related to productivity and system the shortest. 40

2.18 The mean and the upper end of the standard deviation of session

lengths of two applications. For each application the mean session

lengths of users differ by more than two orders of magnitude. . . . 41

2.19 The mean and the upper end of the standard deviation of the traffic

sent and received per day by users in Dataset1. The amount of

sent and received traffic per day varies across users by about three

orders of magnitude. 42

2.20 The mean and 95% CI of relative popularity of each application

category among high and low traffic consumers. Communication

applications are more popular among users that consume more

traffic. 43

2.21 The fraction of interactive traffic. For about 90% of the users

of 50% of the traffic is interactive. We also observe significant

diversity among users in terms of interactive traffic. 45

2.22 (a) The mean and 95% CI for traffic generated per hour by an

example user. (b) The diurnal ratio of traffic per hour for all users.

We find that diurnal ratio varies across users but most users have

a strong diurnal behavior. 46

2.23 (a) Smartphone traffic per day is one order of magnitude smaller

than residential broadband traffic. (b) Ratio of traffic sent on the

WiFi interface varies widely across users. The median is almost 0.5. 47

xiv

2.24 Ratio of downlink to uplink traffic. There is a wide variation

among users, caused by diversity in application usage. The av-

erage across all users for downlink to uplink traffic is 6:1. 49

2.25 Transfer sizes in Dataset3. The x- axes are log scale. While the

mean transfer size is 273 KB sent and 57 KB received, most trans-

fers are extremely small and 30% of transferes contain fewer than

1K bytes and 10 packets. 52

2.26 Transfer sizes in Dataset1. The x-axis is log scale. Transfer sizes

are dominated by small transfers as well. 53

2.27 The overhead of layers below TCP and SSL (inclusive) in Dataset3.

“TCP+” captures overhead of TCP and all layers bellow it. The

median TCP+ overhad at byte-level is 12%. “SSL+” captures

overhead of SSL and all layers bellow it for SSL-based transfers.

The median SSL+ overhad is 40%. 54

2.28 Performance of TCP transfers in Dataset3. (a) median RTT is 125

ms for transfers that happen when the radio is already awake and

10% of transfers observe an RTT of more than 0.5 seconds. (b)

Retransmission rate for transfers that transfer send more than 10

data packets in a given direction. 60% of connections observe no

retransmissions but 25% of them retransmit 5% of the packets. (c)

Throughput of TCP transfers with at least 10 packets in a given

direction. Most transfers have very low throughput — the median

is 0.8 Kbps for uplink and 3.5 Kbps for downlink. (d) Performance

bottleneck analysis based on [ZBP02]. 57

xv

2.29 Timelapse of the remaining battery level indicator in controlled

experiments with two different workloads at room temperature.

Benchmark1 turns the screen on and off periodically. Benchmark2

computes and idles periodically. This graph suggests that the level

indicator can be used to estimate energy drain. 61

2.30 The mean and the upper end of the standard deviation of one

hour energy drain for Dataset1 users during discharge periods.

Battery level indicator decreases roughly linearly for two different

benchmarks. We conclude that the level indicator can be used to

estimate energy drain. 62

2.31 (a) The mean and 95% CI of energy drain of an example Dataset1

user. (b) Diurnal ratio of all users in Dataset1. We find two orders

of magnitude difference among users. While heaviest users drain

250 mAh, the lightest of the users drain only 10 mAh. 63

2.32 The histogram of session length for sample users of each dataset.

Most interaction sessions are very short and the frequency drops

as the length increases. However, inconsistent with exponential

behavior there are some very long sessions. In addition, there is a

spike in frequency of session length for each user. 66

2.33 QQ plot of session lengths model for a sample user. The linearity

of the fitted line graphically indicates that the mixture model is a

good fit for session length values. 67

xvi

2.34 Distribution of inferred model parameters that describe session

length values of users in both datasets. While the users can be

modeled using the same mixture model, the parameters of this

model vary widely across users. The distribution of the Pareto

location parameter indicates that most users never change the de-

fault timeout of the screen. 69

2.35 QQ plot of session offtime model for a sample user. The linear re-

lation between model quantiles and observed quantiles graphically

suggests that the model fits the data well. 70

2.36 Distribution of inferred model parameters that describe the distri-

bution of time between sessions for users in both datasets. The

shape is consistently less than one which indicates that the longer

the screen has been off, the less likely it is to be turned on again

by the user. 71

2.37 (a) The mean square error (MSE) when application popularity

distribution is modeled using an exponential. MSE is less than 5%

for 95% of the suers which indicates that the exponential drop in

application popularity is true for almost all users. (b) The inferred

rate parameter of the exponential distribution for different users.

The rate varies by an order of magnitude among users. 72

3.1 General architecture of PowerLeash. PowerLeash consists of a user

interface, application interfaces, and a background service. 78

3.2 User interface of PowerLeash that prompts user to set a battery

goal after every charging instance. 79

xvii

3.3 Sampled battery level (a) and voltage (b) for an example user.

Battery information on Android is broadcast event based, therefore

the sampling interval varies. Both battery level and voltage vary

unevenly, but battery voltage is much more noisy. Therefore we

decided to use battery level. 83

3.4 Actual and predicted battery level for two example discharge cy-

cles of a user. (a) A case where the model very accurately predicts

changes in battery level based on resource consumption. (b) Ex-

ample of a case where the model fails to accurately predict battery

level. 85

3.5 Absolute and relative error of two models when predicting battery

level at the end of a discharge cycle. The error, while noticeable,

is low. The median of relative error is 0.11 and the mean is 0.14. . 86

3.6 Absolute error of a (a) generic battery model and (b) old battery

model compared to personalized recent models for each user when

predicting battery level at the end of a discharge cycle. We con-

clude that model accuracy is lower when an old or stale model is

used or when the model is not personalized. 87

3.7 Mean and standard deviation and sample of one day of screen and

traffic usage for an example user as a function of time of day. Vari-

ations in mean values are much smaller than the standard devia-

tion across each mean. Throughout the day each parameter is on

average statistically similar, that is, the error bars are overlapping. 88

xviii

3.8 Autocorrelation of screen time (a) and cellular traffic (b) across 10

minute intervals at different time lags. There is significant correla-

tion at lag = 1 implying that smartphone interaction parameters

have short-term memory. 90

3.9 (a) 3-dimensional scatter plots of screen, CPU and network usage

for two example users. Blue points belong to the inactive cluster

and red points belong to the active cluster. (b) bivariate clusplot of

usage matrix. The cluster labeled as number 2 represents inactive

times. (c) transition probabilities assuming a first-order Markov

chain. We see that both of these example users are very likely

to stay in the inactive state. This observation matches with the

skewed distribution of usage parameters. 91

3.10 Probability of being in inactive state computed from real traces

and simulated state sequence based on a first order Markov Chain.

The close match between simulated and observed marginal prob-

abilities for all users confirms that smartphone interactive usage

behaves based on a first-order Makrov Chain with two states. . . 92

3.11 BIC of different number of clusters for two sample users. We find

that for all other users, similar to these two example users, BIC

increases with the number of clusters and the rate of its growth is

much faster for 1-5 clusters. 93

3.12 WSS of different number of clusters for the two sample users. WSS

monotonically decreases as the number of clusters increases but if

there is an optimal number of clusters, the rate of WSS decrease

would flatten beyond that point. 94

xix

3.13 The GAP statistic for the two sample users. For these two users

K = 2 maximizes the GAP statistic. 95

3.14 CDF of the error when estimating usage parameters for next 10

minutes using past and recent usage for all users. For all usage

parameters recent mean is a better estimator of future compared

to passed mean. The difference in error of these two approaches is

more significant for traffic, CPU and memory usage. 96

3.15 Pseudocode of ShortLeash policy. ShortLeash maintains a tight

control over the energy used by background applications. To avoid

rapid changes in assigned budgets ShortLeash uses additive in-

creases and multiplicative decrease (AIMD). 98

3.16 Pseudocode for LongLeash policy. LongLeash gives background

applications significant freedom because the budget is not decided

based on current level alone. 100

3.17 Pseudocode for PowerLeash policy. PowerLeash can be controlled

by adjusting the size of planning window (W) to emulate Short-

Leash or PowerLeash. 101

3.18 (a) Actual, best possible, and simulated battery level during a

sample discharge cycle. In this example the simulated battery level

ends the discharge cycle very close to the battery goal. (b) Actual

and assigned budget for the same discharge cycle. PowerLeash is

capable of meeting the battery goal by effectively turning off the

background application between 4 and 7 hours into the experiment.104

xx

3.19 CDF of battery deficit of ShortLeash, LongLeash, PowerLeash and

an Oracle policy that knows the future. The deficit of ShortLeash

and PowerLeash policies are distributed between -5% and +5%

with PowerLeash being slightly closer to Oracle. The performance

of LongLeash is not as good as the other too and it misses the

battery goal more often. 105

3.20 Scatter plot of battery deficit vs. model error during each dis-

charge cycle for ShortLeash, LongLeash, and PowerLeash policies

and the least square fit. ShortLeash battery deficit is not signifi-

cantly correlated with model error. LongLeash deficit is strongly

correlated and PowerLeash stands in between. 106

3.21 Battery levels and Least square fitted line during an example dis-

charge cycle. The red arrow shows the Linear Error during this

cycle. 107

3.22 Scatter plot of battery deficit vs. linear error during each dis-

charge cycle for ShortLeash, LongLeash, and PowerLeash policies

and least square fitted line. Battery deficit of ShortLeash and

PowerLeash have significant correlation with linear error. 108

3.23 CDF of battery deficit of PowerLeash and LongLeash when com-

pared to the Oracle versions of those policies. The Oracle algo-

rithms know the future. The slight difference between the two

version quantify the error caused by usage estimation error. 109

3.24 Histogram of (a) battery discharge cycles and (b) the length of

battery goals submitted by users with bin size of one hour. 111

xxi

3.25 Number of discharge cycles that included battery goals for all the

deployment users. On average each user submitted 16 effective

battery goals. A few users (users 5, 6, 10, 13, 18, 19, 20) continued

using PowerLeash for a few days after the end of the user study. . 112

3.26 Examples of different battery discharge cycles from the deploy-

ment. In each case the red dotted line is a straight line that con-

nects the beginning and end of the battery goal. These graphs

are generated by the PowerLeash server visualization. (a) Selected

battery goal is too short. (b) PowerLeash successfully meets bat-

tery goal. (c) PowerLeash fails to meet the battery goal. 114

3.27 Number of discharge cycles of each type for all the deployment

users. For two users, 1 and 5, all the discharge cycles are trivial.

For most users, majority of the recorded discharge cycles are triv-

ial. This means that in most cases our users chose a battery goal

that did not trigger the PowerLeash budget scheduling policy to

take any action. 115

3.28 (a) Break-down of total battery discharge cycles (b) success vs.

failure probability, and (c) different failure types. More than half

of the total cases are trivial. When ignoring the trivial cases, in

about 60% of the remaining cases PowerLeash succeeds in throt-

tling background applications just enough to meet the battery goal.116

xxii

3.29 Examples of different failure cases from deployment. In each case

the red dotted line is a straight line that connects the beginning

and end of the battery goal. (a) The battery goal was set too long.

(b) PowerLeash misses the goal because of unexpected interactive

usage. (c) Due to model error PowerLeash assigns too much budget

to background applications. 117

3.30 Histogram of expected lifetime of 1% battery capacity in minutes.

For each discharge cycle, we get this value by dividing the length

of the cycle in minutes by the change in battery level from the

beginning to the end of the cycle. The man value for all users is

about 6 minutes. 119

3.31 CDF of battery deficit of PowerLeash based on simulations. The

probability of the deficit being inside the ±2.5 band is 63%. . . . 120

4.1 CDF of length of battery goals and actual battery lifetime of dis-

charge cycles that start with more than 90%. The probability of

lasting less than 5 hours is less than 5%, but about 40% of the

submitted battery goals are less than five hours. 123

4.2 Current and Future user interfaces of PowerLeash to get the user’s

desired battery goal. The new UI is different from the old one in

three major ways. It asks a different question, has a different input

method, and always presents the user with reasonable default value.125

4.3 Temporal summary of Mobility classification data. The gap be-

tween 6pm and 9pm marked by the error color is caused by the

Mobility application stopping as a result of running out of budget. 127

xxiii

4.4 Initial algorithm for estimating maximum feasible battery lifetime.

r̃i is the estimated usage of the ith resource during each day —

median of daily usage within past two weeks. This algorithm sets

all adaptive applications work vectors to zero and estimates the

needed to consume the remaining battery capacity. 128

4.5 CDF of battery deficit of PowerLeash based on simulation results

using deployment data. Considering the same 30 minutes margin

for success we see that the probability of is 60% which closely

matches deployment results. 132

4.6 Pseudocode for new PowerLeash policy. LinearError is last resid-

ual of the least square fitted line to battery level readings. This

algorithm subtracts the LinearError from available battery capac-

ity to get the new available battery capacity that can be assigned

to background applications. 133

4.7 CDF of battery deficit of PowerLeash with and without the lin-

ear error offset. When offsetting linear error success probability

increases by 10%. 134

A.1 The architecture of the SystemSens client application. Event-

based sensors generate a log record whenever the corresponding

state changes. Polling sensors record the corresponding informa-

tion at regular intervals. The main thread is responsible for record-

ing both event-based and polling sensors. 149

xxiv

A.2 Example of a SystemSens data record. Every SystemSens record

contains time stamp, local time, user ID, version number and type

name. The content of the data field is another JSON object and

its structure depends on the type field. 153

A.3 CDF of the number of records generated per hour for two example

users. The median for the first user is 408 and for the second user

is 445. 155

A.4 Average power consumption of a Galaxy S smartphone with dif-

ferent versions of SystemSens. When the phone is woken up the

marginal cost of polling additional sensors is insignificant. In ad-

dition, writing data into the persistent storage is not expensive

in terms of power. Therefore, the most effective way of reducing

energy consumption of SystemSens is increasing the polling interval.156

A.5 Lines fitted to battery level readings show the impact of running

SystemSens on battery life of an old Nexus One phone. SystemSens

reduced the battery lifetime of this phone by about two hours. . . 159

A.6 Snapshot of SystemSens battery graph of a user who used a backup

battery. 162

A.7 Snapshot of a SystemSens graph showing average CPU usage dur-

ing one day for a user. Colors represent CPU frequency. 163

A.8 Snapshot of a SystemSens graph showing the number of cellular

disconnection events per hour during one day for a user with poor

connectivity at work. 164

xxv

List of Tables

1.1 A high-level comparison of different BDM systems. Unlike pre-

vious systems PowerLeash only manages power consumption of

background applications and relies on a low-fidelity battery model

that can be build on the phone as the system is being used. These

two features allowed us to deploy PowerLeash in the wild and eval-

uate its performance. 9

2.1 An overview of the datasets in our study. The first is a high-

fidelity data set collected by deploying a custom logger on 33 An-

droid smartphones. The second ata set consists of 222 Windows

Mobile users. The third dataset contains packet-level traces from

10 smartphone users. 17

2.2 Ports (in parenthesis) used by IP packets in Dataset1 that carry

over 0.1% of the bytes. HTTPS, HTTP and IMAP4S are the dom-

inant ports suggesting that main traffic generators on smartphones

are email, browsing and other web-based applications. 50

2.3 Traffic generated by applications in Dataset1. Browsing dominates

smartphone traffic and media and maps are other major contribu-

tors in addition to messaging. 51

3.1 Quantities monitored by PowerLeash to build the power profile

and their units. 81

3.2 Mean of absolute error of estimating usage parameters for next 10

minutes for Recent and Past algorithms. 97

xxvi

3.3 Definition of simulation parameters. Each parameter is computed

at the end of a discharge cycle. We used deficit as the performance

metric of the simulation. 103

4.1 Intercepts for battery drain model of two users with and with-

out any background applications. the intercept of the model built

while Mobility was running is significantly larger than the model

with no background application confirming that the intercept is

not an unbiased estimator of base power consumption. 130

4.2 Analysis of variance indicates that PowerLeash battery deficit can

be explained by both model error and linear error. 132

A.1 List of default SystemSens virtual sensors, their type, and meaning.151

A.2 Median length of different record types of SystemSens. The median

length of all records is 159 characters and the mean is 362. 157

xxvii

Acknowledgments

This research would not have been possible without help and support from

many individuals and organizations. Words cannot not do justice to them, but I

would like to name a few.

First and foremost I would like to thank my adviser, Deborah, whose support

was critical in every stage of this work. Deborah helped me with more than tech-

nical advice and mentorship. She taught me how to find research problems that

can impact people’s lives in a meaningful way, and when I was lost in technical

details of research she reminded me not to loose sight of the real world — “the

bigger picture.” I was very fortunate to work with and learn from her.

I had the opportunity to work with three brilliant researchers from Microsoft,

Ratul Mahajan, Srikanth Kandula and Dimitrios Lymberopoulo, during the sum-

mer of 2009. Since then Ratul continued mentoring me. I owe him for teaching

me rigorous attention to details, and critical thinking.

I was fortunate to benefit from the valuable advice of Ramesh Govindan,

Mani Srivastava and Lixia Zhang. Knowing that I could go to three of the best

minds in the field and ask for advice at any time gave me peace of mind. Mark

Hanson’s advice on statistical methods and thinking both inside and outside of

classrooms helped me a great deal. Srinivasan Keshav, my master’s adviser at

the University of Waterloo, was the one who prepared me for Ph.D. research. I

am indebted to all these professors.

During the Ph.D. years the Center for Embedded Networked Sensing was my

second home , and all CENS members were like family. Nithya Ramanathan,

Martin Lukac, Eric Graham, and Hongsuda Tangmunarunkit were as kind and

xxviii

helpful as elder siblings; they never hesitated to help me with their valuable

experience.

Every day I enjoyed working with all the talented folks at UCLA. William Wu,

John Hicks, Brent Longstaff, John Jenkins, Joshua Selsky, Donnie Kim, Min Mun,

Jinha Kang, Dony Goerge, Cheng-Kang Hsieh, Faisal Alquaddoomi, Eric Wang,

Cameron Ketcham, Kannan Parameswaran, Andrew Parker and, and Eric Yuan

from CENS, and Zainul Charbiwala, Younghun Kim, Thomas Schmid, Supriyo

Chakraborty from NESL, and many others enriched my day-to-day academic and

professional experience during these years.

I never had to worry about paper work and administrative details because

of Betta Dawson, Wesly Uehara, Dennis Urie, Jeff Goldman, Xuan-Mai Vo, Iris

Portillo, Terance Tashiro, and Karen Kim with their excellent support as CENS

staff members. I specially enjoyed Betta’s help and support with human subject

studies.

Even outside of school I learned a lot through technical and non-technical

conversations with my friends, Earl, Roozbeh, Hamid, and Ardeshir, just to

name a few.

I was very lucky for having Hassan Falaki and Mehri Ahardehi as parents.

They were my ultimate source of encouragement for persistence in education

since the very early days. During the past ten years that I was away from them,

they patiently hid their feelings and anxiety to let me grow and flourish.

And most of all, I wish to thank my lovely wife, Afsoon Alishahi, for her

patience and encouragement. Without her, my journey as a Ph.D. student would

have been lonely and hard.

xxix

Vita

2006 B.S. (Compuer Engineering), Sharif University of Technology,

Tehran, Iran.

2006–2008 Research Assistant, Tetherless Computing Lab, University of

Waterloo, Ontario, Canada

2006–2008 Teaching Assistant, Computer Science, University of Waterloo,

Ontario, Canada

2008 M.Math. (Computer Science), University of Waterloo, Ontario,

Canada.

2009 Intern, Microsoft Research, Redmond, Washington.

2010 Intern, Cisco Systems, San Jose, California.

2008–2012 Graduate Student Researcher, Center for Embedded Networked

Sensing, UCLA, Los Angles, California.

Publications

Hossein Falaki, Ratul Mahajan, and Deborah Estrin, SystemSens: A Tool for

Monitoring Usage in Smartphone Research Deployments, ACM MobiArch 2011.

Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth Kandula,

and Deborah Estrin, A First Look at Traffic on Smartphones, ACM IMC, 2010.

xxx

Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos,

Govindan Ramesh, and Deborah Estrin, Diversity in Smartphone Usage, ACM

MobiSys, 2010.

S Guo, M Derakhshani, H Falaki, U Ismail, R Luk, E Oliver, S Rahman, A

Seth, M Zaharia, S Keshav Design and implementation of the kiosknet system,

Computer Networks, 2011.

Hossein Falaki, Ramesh Govindan, and Deborah Estrin, Smart Screen Manage-

ment on Mobile Phones, CENS TechReport, 2009.

S Guo, H Falaki, E Oliver, S Rahman, A Seth, M Zaharia, S Keshav Very Low-

cost Internet Access Using Kiosknet, ACM SIGCOMM Computer Communica-

tion Review, 2007.

Hossein Falaki The Wi-Fi Roaming Game, WINE, 2007.

Earl Oliver, Hossein Falaki, Performance Evaluation and Analysis of Delay Tol-

erant Networking, MobiEval, 2007.

xxxi

CHAPTER 1

Introduction

1.1 Problem Statement

Mobile phones are being adopted at a phenomenal pace. Cell phone penetration

has exceeded those of landline phones, personal computers, television sets and

FM radio receivers in both the industrialized world and developing countries

[Aho10]. Smartphones, mobile phones that can offer “PC-like” functionality, are

a growing subset of mobile phones. Smartphones have already passed PCs in sale

globally [can12]. According to industry estimates, in the third quarter of 2011,

44% of Americans have smartphones [nie11] and the number is growing especially

among the young. In January 2012 smartphone penetration was 66% among the

24-34 age group.

The widespread use of smartphones is reshaping several other areas of comput-

ing, ranging from social networking to health care. However, mobile application

are still restricted by limited resources on smartphones. Smartphone limitations,

when compared to current personal computers, are more significant in i) screen

and keyboard size, ii) computation power, iii) size of fast memory, iv) communi-

cation bandwidth, and v) battery capacity. The small screen and keyboard (when

there is a physical keyboard) sizes are direct consequences of the small form-factor

of smartphones — the very feature that makes them ubiquitous. Smartphones

can be equipped with more powerful processors, excess fast memory, and high

1

bandwidth wireless technologies. In fact, in recent years processing, memory

and wireless bandwidth of smartphones have all dramatically improved, but at

the cost of much higher power consumption. Therefore, we argue that battery

capacity is the most important performance bottleneck on smartphones.

While transistor density doubles approximately every two years [Sch97] and

communication bandwidth increases by 50% every year [Nie98], energy density of

batteries used in low power electronics has been doubling every 35 years [Pow95].

On mobile phones, the capacity of Li-ion batteries have been increasing only

linearly during the past few years [Neu04] and they are unlikely to keep up with

the exponential pace of energy demand on smartphones.

The diagram in Figure 1.1 by Yrjo Neuvo [Neu04] qualitatively demonstrates

energy supply and demand trends on cell phones before 2006. The evolution of the

iPhone serves as a great example for these trends on modern smartphones. The

first generation of the iPhone in 2007 had a 620 MHz ARM based processor with

a 1400 mAh battery Li-ion battery. Four years later, in 2011, the latest iPhone

4S featured a 1 GHz dual-core ARM based CPU, but the battery capacity had

increased only 20 mAh to 1420 mAh.

Figure 1.1 also shows another fundamental limit of power consumption in

pocket-size computers, referred to as the power density limit. Consuming more

than 3 Watts in a small form-factor, like a smartphone, will generate too much

heat and increases the temperature to the extent that the user cannot comfortably

hold the phone.

Despite the limited resources, service requirements of smartphones are higher

than mobile personal computers, such as laptops. Mobile phones are always with

their users and are expected to run 24/7. But despite having larger batteries,

many users plug their laptops when they use them for an extended time. Also

2

Figure 1.1: Trends of energy supply (battery capacity) and demand on cell phones

before 2006 by Neuvo [Neu04] demonstrate a growing gap between the two. This

gap is more significant with smartphones.

users do not expect their laptops to continue operation after they close them in

their cases.

The growing gap between energy demand and battery capacities on smart-

phones combined with users’ expectations of their phones’ battery life time have

lead to a dilemma for application developers: having components that continu-

ously run in the background enables new features but renders the users dissat-

isfied, because it makes the battery life short and unpredictable. For example,

mobile health applications and systems can offer much better service if they could

continuously monitor users’ physical activity on their phones. But because of the

adverse impact of continuous background tasks on battery life, mobile health

applications with this feature are not popular among the general public.

Unlike fully interactive applications, users do not have direct control over the

resource consumption of background tasks. Therefore, the onus is on developers

of background applications to select “optimal” duty cycling configurations. We

will show in this dissertation that due to user and devise diversity, there is no

single optimal configuration. For this reason, most applications with background

3

components expose one or more parameters to the users to enable them to manu-

ally personalize the power consumption configuration. For example, IMAP/POP

mobile email clients allow users to change the polling interval. But even if users

understood the relation between these configuration parameters and battery con-

sumption rate, they rarely change them because it is cumbersome. 1

This dissertation presents a solution to the following key problem: How

to enable background applications on smartphones to consume just

enough power to meet users’ expected battery life time?

1.2 Approach

Our approach to solving the battery management problem is based on two key

assumptions.

Managing only background applications We assume users can effec-

tively control battery consumption of interactive applications. In addition, we

try to avoid inhibiting what a user is actively involved with. As an example, we

assume that no user would like his/her browsing to slow down because of the

intervention of the battery management system. Therefore, we will only manage

power consumption of the background components of applications. This makes

battery management more challenging, because we have to account for random

user interactions.

Personalization In this dissertation we will provide strong evidence that

smartphone users are very diverse. In addition, new applications enter smart-

phone app stores every day which will change usage patterns, and smartphone

1In our user studies on two different mobile platforms we found that majority of users never
change the default screen timeout value.

4

hardware specifications change regularly. Therefore, a successful solution to the

battery management problem should be able to adapt to a different usage pat-

terns and work on any hardware platform. This requirement has guided many of

your design decisions.

1.3 Contributions

Characterizing Smartphone Usage Using detailed traces from 255 users

across multiple user studies, we conducted a comprehensive study of smartphone

use. We characterized intentional user activities — interactions with the device

and the applications used — and the impact of those activities on network and

energy usage. We found immense diversity among users. Along all aspects that

we studied, users differ by one or more orders of magnitude. For instance, the

average number of interactions per day varies from 10 to 200, and the average

amount of data received per day varies from 1 to 1000 MB. This level of diversity

suggests that mechanisms to manage battery consumption will be more effective

if they learn and adapt to user behavior. We found that qualitative similarities

exist among users that facilitate the task of learning user behavior. We present

these results in Chapter 2.

PowerLeash: A System to Automate Battery Management We built

and deployed PowerLeash, a system that gives users control over their phone’s

battery life time and automates personalization of background applications for

developers. PowerLeash monitors the user’s interaction with the phone and bat-

tery drain, and learns the impact of background applications on battery drain

rate. With a simple user interface, PowerLeash receives the user’s desired battery

life as user input. With this information PowerLeash dynamically changes the

5

power consumption configuration of background applications to meet the user’s

battery expectation. In Chapter 3 we present the architecture and design of

PowerLeash and results from a user deployment of the system. We closely in-

vestigate the shortcomings of our system and propose remedies. In addition, we

outline general guidelines that systems similar to PowerLeash can benefit from

in Chapter 4.

SystemSens To facilitate smartphone user studies to better characterize

smartphone usage and battery consumption we built a comprehensive smart-

phone monitoring system named SystemSens. We used SystemSens in several

user studies to support our research. In addition, we offered the SystemSens

source code to the community and more than 20 other researchers have been

using it. We present SystemSens in Appendix A.

1.4 Related Work

In this section we present the research and work for each of the three major

contributions.

1.4.1 Characterizing Smartphone Usage

In a range of domains, there is a rich history of work that characterizes user

workloads. However, because smartphone adoption has gathered pace relatively

recently, our work represents one of the few to study how people use smartphones.

Along with other recent works, our findings help complete the picture. Baner-

jee et al. and Rahmati et al. report on battery charging behaviors [BRC07,

RZ09a]. Like us, they find considerable variation among users. Banerjee et al.

also propose a predictor that estimates the excess energy of the battery at the

6

time of charging, using a histogram of past battery usage [BRC07]. Shye et al.

study the power consumption characteristics of 20 users [SSG09]. They infer

properties such as which components in the phone consume most power and ex-

plore optimizations based on these characteristics. Rahmati and Zhong study 14

users of a particular demographic to study which applications are popular in that

demographic, where the phone is used, and how it is shared among users [RZ09b].

In contrast to these works, we focus on understanding different aspects of

smartphone use (e.g., interactions and traffic) and on exposing the diversity of

user behaviors, instead of only the average behavior. Our study also entails an

order of magnitude more users than previous efforts.

There is a body of work in modeling the aggregate behavior of mobile users.

Using traces from a large cellular operator some network related aspects of mobile

usage have been modeled. Halepovic et al. and Williamson et al. report that

call arrivals are bursty and present diurnal patterns [WHS05]. Willkomm et al.

and Brown et al. report that mobile users call duration can be approximately

modeled by a lognormal distribution [BGM05, WMB08]. We use traces collected

on the mobile device itself and focus on modeling the interactions of individual

users instead of the aggregate behavior.

Prior to the prevalence of smartphones, Zhong used PDAs to study the energy

implications of high user interaction delays relative to the computing hardware

and called it the “slow-user problem”

Given the challenge of conducting measurements on mobile devices, existing

studies of mobile traffic are based on observations from the infrastructure [SRH06,

MSF10, BMV04, Lee06, WPH07, TRK09]. Recently, Maier et al. study packet-

level traces from residential DSL connections at an aggregation point [MSF10].

Using hints such as HTTP user-agent strings, they identify traffic from mobile

7

hand-held devices and observe that this traffic is dominated by multimedia con-

tent and mobile application downloads. Trestian et al. study 3G authentication

traces from a provider to measure the correlations between location, time-of-day

and application usage [TRK09]. Our approach of monitoring devices is comple-

mentary to these studies. It provides a comprehensive view of monitored devices

and enables us to study aspects of smartphone traffic such as interaction with

radio power management that would otherwise be difficult.

Svoboda et al. study the distribution of traffic between access technologies

(GPRS and UMTS) and services [SRH06]. Also complementary to our work are

studies that conduct active measurements using synthetic workloads [HXM10,

CBR04, CCC04, MSZ07]. Such studies can analyze network characteristics in

a range of conditions. But they do not provide a view of what users actually

experience, which was our focus.

1.4.2 Power and Battery Management

Power-aware computing on mobile devices has been the subject of numerious

studies. There is a rich body of literature that views mobile devices as an em-

bedded system with multiple components [Neu04] and aims to reduce the power

consumption of one or more components. A commonly used name for this class

of techniques is dynamic power management (DPM). In addition to determining

when to idle or turn on/off the target component, DPM techniques include volt-

age and frequency scaling of the CPU [PLS01, PS01, FRM02, YDS02, GCW95,

GML00, WWD96], managing brightness and color of the screen [DZ11a, KVM11,

ATS11] efficient management of wireless network interfaces [MC11, KK98, SK97],

and power-aware memory allocation [DKV01, LFZ00, HPS03].

In contrast to DPM techniques, there are battery drain management (BDM)

8

System Device Managed Power Development Deployed

Name apps model burden in field

Odyssey Laptop All Offline Low No

high-fidelity

ECOSystem Laptop All Offline, High No

high-fidelity

Cinder Smartphone All Offline, High No

high-fidelity

Llama Smartphone, Some Offline, Low No

Laptop high-fidelity

PowerLeash Smartphone Background Online, Low Yes

low-fidelity

Table 1.1: A high-level comparison of different BDM systems. Unlike previous

systems PowerLeash only manages power consumption of background applica-

tions and relies on a low-fidelity battery model that can be build on the phone

as the system is being used. These two features allowed us to deploy PowerLeash

in the wild and evaluate its performance.

techniques. Instead of reducing the power consumed by individual components,

BDM allocates power among applications such that the total battery drain rate

is compliant with a specified goal. This goal is typically that the battery should

last until a certain time (e.g., the next charging opportunity). Prior work shows

that DPM and BDM are complementary [FS99].

Table 1.1 lists the main BDM systems that we are aware of and provides a

high-level comparison between them and PowerLeash . We first describe these

systems and then explain how our work differs.

9

Odyssey [FS99] was the first BDM system that showed how changing power

allocated to applications can help meet user-specified battery deadlines. It es-

timates the current drain rate and the desired rate for meeting the deadline.

Based on the two estimates, it signals applications to increase or decrease their

“fidelity,” which causes them to consume more or less power.

ECOSystem [ZEL02, ZEL03] and Cinder [RRS11] explicitly allocate the amount

of energy consumed by each application. ECOSystem introduces a new unit of

energy consumption, called currentcy, which represent the right to consume a

certain amount of energy within a fixed interval. ECOSystem issues currentcy

at the begining of each epoch to applications, based on total desired drain rate

(which in turn is based on the battery deadline) and application priority. An

application can use a hardware resource (e.g., CPU, NIC) only to the extent to

which its currentcy allows.

Cinder generalizes this explicit allocation model. It introduces the abstrac-

tions of reserves and taps, which allow an application to delegate its energy

allocation to other applications. They also allow applications to pool their allo-

cations to accomplish tasks that individual applications cannot (e.g., turning of

the NIC consumes a lot of power).

Llama [BRC07] is a BDM system with an approach opposite to all the others.

Instead of limiting functionality to increase user satisfaction, Llama proposes to

increase user satisfaction by taking advantage of the excess energy that is left in

the battery before each recharge. This approach by itself is not novel and has been

proposed in systems such as SMERT [ZWS06] before. Based on their user study

findings, the authors conclude that most recharges happen when the battery has

substantial energy left [BRC07]. Llama uses history of battery level information

to estimate the energy that is likely be unused (with 90% confidence) the next

10

time that the phone is plugged to charger. It devotes this energy to increase

the functionality of the phone — Llama increases the brightness of the screen

and the rate of uploading of a hypothetical ECG application. Llama relies on

a high-fidelity model that is built offline, but it builds the histogram of battery

levels at charging time online. It estimates the time of next charging event based

on past average.

PowerLeash differs from these systems in a few notable ways. First, our goal

is to manage the power consumption only of background applications. We posit

that this goal better captures users’ desires. They do not want, for instance, the

browser to be artificially restrained when they are using it actively. They would

instead prefer that the power consumed by background applications be reduced

if they use the browser heavily. At a technical level, the difference between

managing all applications vs. only background ones might appear small at first

(e.g., just assign higher priority to interactive applications). But allowing for

unrestrained interactive usage means that the total amount of power that can be

allocated to managed applications varies (unpredictably) with time, which calls

for different allocation mechanisms.

Second, prior systems rely on a high-fidelity power model that is built offline

(using specialized equipment) and separately for each hardware type. This makes

it hard to extend the system to new devices and applications. To get around this

limitation we derive the model online and exclusively from data that is easily

available in current commodity smartphones. The resulting model inevitably has

lower fidelity—current devices only provide coarse information that makes energy

modeling less accurate [SSG09, DZ11b]—but we show that it is nevertheless useful

for our purposes.

Third, ECOSystem and Cinder impose a high burden on application develop-

11

ers. Applications are given a fixed amount of energy resource and developers need

to figure out how to best use that resource, which can also be a function of the

hardware they are running on. While this gives developers the most flexibility,

we believe that it is also a difficult model to implement. In contrast, we provide

a much simpler interface to developers. Applications are told how many units of

“work” they can do in a given amount of time, where the application itself gets to

define what a unit of work is (e.g., it could be polling once for GPS). We consider

Odyssey’s developer burden to be similarly low; it signals to applications when

they should increase or decrease their fidelity.

Finally, PowerLeash is the first BDM system that has been deployed and

tested in the wild, under realistic usage and environmental conditions. Prior

systems were tested in the lab environment with a handful of chosen applications.

1.4.3 Usage Monitoring

Like us, other researchers have developed logging utilities. MyExperience [FCC07]

is one of the earliest tools built to measure device usage and context information

in situ. It runs on Windows Mobile smartphones and supports active context-

triggered experience sampling. SystemSens is designed and implemented for An-

droid smartphones. However, a Windows Mobile port of an early version of Sys-

temSens exists [FLM10]. Unlike MyExperience, SystemSens is a passive logging

tool — we chose not to engage with users to minimize impact on usage. System-

Sens users are able to tag interesting phenomena regarding their experience on

the web interface.

LiveLab [CTZ10] is a similar research tool implemented for the iPhone plat-

form. It measures usage and different aspects of wireless network performance.

A key feature of LiveLab is “in-field programmability.” The ability to update a

12

logging tool in the field is critical in any real deployment. We realized this need

and implemented a separate tool named CENS Updater that can update not only

SystemSens but also all other CENS applications in the field. LiveLab is built to

run on “jailbroken” iPhones and is capable of collecting a wide range of OS and

network related information. We decided to limit the sensing capabilities of Sys-

temSens, but to keep the potential user base as wide as possible by implementing

it to run on stock Android smartphones.

Both MyExperience and LiveLab focus on data collection on the phone. Sys-

temSens is an end-to-end system that includes a web-based visualization and

authentication service to provide feedback to users while preserving their pri-

vacy. In addition, the web interface greatly facilitate browsing and interpreting

the data for researchers.

13

CHAPTER 2

Characterizing Smartphone Usage

Despite the rapid growth of smartphone penetration beyond a few studies that

report on users’ charging behaviors [BRC07, RQZ07] and relative power con-

sumption of various components (e.g., CPU, screen) [SSG09], many basic facts

on smartphone usage are unknown: i) how often does a user interact with the

phone and how long does an interaction last? ii) how many applications does a

user run and how is her attention spread across them? iii) how much network

traffic is generated?

Answering such questions is not just a matter of academic interest; it is key

to understanding which mechanisms can effectively improve user experience or

reduce energy consumption. For instance, if user interactions are frequent and

the sleep-wake overhead is significant, putting the phone to sleep aggressively

may be counterproductive [FGE09]. If the user interacts regularly with only a

few applications, application response time can be improved by retaining those

applications in memory [Esf06]. Similarly, if most transfers are small, bundling

multiple transfers [BBV09, SNR09] may reduce per-byte energy cost. Smartphone

usage will undoubtedly evolve with time, but understanding current usage is

important for informing the next generation of devices.

We analyze detailed usage traces from 255 users of two different smartphone

platforms, with 7-28 weeks of data per user. Our traces consist of two datasets.

For the first dataset we deploy a custom logging utility on the phones of 33

14

Android users. Our utility captures a detailed view of user interactions, network

traffic, and energy drain. The second dataset is from 222 Windows Mobile users

across different demographics and geographic locations. This data was collected

by a third party.

We characterize smartphone usage along four key dimensions: i) user inter-

actions; ii) application use; iii) network traffic; and iv) energy drain. The first

two represent intentional user activities, and the last two represent the impact of

user activities on network and energy resources. Instead of only exploring aver-

age case behaviors, we are interested in exploring the range seen across users and

time. We believe that we are the first to measure and report on many aspects of

smartphone usage of a large population of users.

A recurring theme in our findings is the diversity across users. Along all

dimensions that we study, users differ by one or more orders of magnitude. For

example, the mean number of interactions per day for a user varies from 10 to

200; the mean interaction length varies from 10 to 250 seconds; the number of

applications used varies from 10 to 90; and the mean amount of traffic per day

varies from 1 to 1000 MB, of which 10 to 90% is exchanged during interactive

use. We also find that users are along a continuum between the extremes, rather

than being clustered into a small number of groups.

The diversity among users that we find stems from the fact that users use their

smartphones for different purposes and with different frequencies. For instance,

users that use games and maps applications more often tend to have longer inter-

actions. Our study also shows that demographic information can be an unreliable

predictor of user behavior, and usage diversity exists even when the underlying

device is identical, as is the case for one of our datasets.

Among the many implications of our findings, an overriding one is that mech-

15

anisms to improve user experience or energy consumption should not follow a

one-size-fits-all mindset. They should instead adapt by learning relevant user

behaviors; otherwise, they will likely be only marginally useful or benefit only a

small proportion of users.

We show that despite quantitative differences qualitative similarities exist

among users, which facilitates the task of learning user behavior. For several key

aspects of smartphone usage, the same model can describe all users; different

users have different model parameters. For instance, the time between user inter-

actions can be captured using the Weibull distribution. For every user, the shape

parameter of this model is less than one, which implies that the longer it has

been since the user’s last interaction, the less likely it is for the next interaction

to start. We also find that the relative popularity of applications for each user

follows an exponential distribution, though the parameters of the distribution

vary widely across users.

We demonstrate the value of adapting to user behavior in the context of a

mechanism to predict future energy drain. Predicting energy drain is an inher-

ently challenging task. Bursty user interactions at short time scales combined

with diurnal patterns at longer time scales lead to an energy consumption pro-

cess that has a very high variance and is seemingly unpredictable. We show,

however, that reasonably accurate predictions can be made by learning the user’s

energy use signature in terms of a “trend table” framework. For predicting the

energy use one hour in the future, our predictor’s 90th percentile error is under

25%. Without adaptation and basing the predictions on average behavior, the

90th percentile error is 60%.

16

#users Length Plat. Demographics Information logged

DS1 33 7-21

weeks/user

Android 16 high school stu-

dents,

Screen state, applications used

17 knowledge work-

ers

network traffic, battery state

DS2 222 8-28

weeks/user

Windows 61 SC, 65 LPU, 59

BPU, 37 OP

Screen state, applications used

Mobile Country: 116 USA,

106 UK

DS3 10 26-84

weeks/user

8 Windows 10 Knowledge

workers

Packet level traces including link

layer

2 Android Network: 7 AT&T,

3 T-Mobile

Table 2.1: An overview of the datasets in our study. The first is a high-fidelity

data set collected by deploying a custom logger on 33 Android smartphones. The

second ata set consists of 222 Windows Mobile users. The third dataset contains

packet-level traces from 10 smartphone users.

2.1 Data Collection

Our work is based on three sets of data. The first is a high-fidelity data set

that we gathered by deploying a custom logger on the phones of 33 Android

users. The second data set consists of 222 Windows Mobile users across different

demographics. Together, these data sets provide a broad and detailed view of

smartphone usage. The thir data set contains packet-level traces from 2 Andriod

and 8 Windows Mobile users. We leave for the future the task of studying other

smartphone platforms such as iPhone and BlackBerry. The characteristics of our

datasets are summarized in Table 2.1.

17

2.1.1 Dataset1

Our first set of traces is from 33 Android users who ran SystemSens. We introduce

SystemSens in Appendix A. These users consisted of 17 knowledge workers and

16 high school students. Knowledge workers were computer science researchers

and high school students were interns in a single organization and were recruited

by a third person on our behalf. As stated in our study consent form, the users’

identities were not revealed to us. The participants were given HTC Dream

smartphones with unlimited voice, text and data plans. We encouraged the users

to take advantage of all the features and services of the phones. The data was

gathered between May and October 2009. There is 7-21 weeks of data per user,

with the average being 9 weeks.

2.1.2 Dataset2

Our second data set was collected by an organization that was interested in

investigating smartphone usability and application popularity. This organization

provided 222 users with Windows Mobile smartphones from different hardware

vendors. It also paid for their voice and data plans. For representativeness,

the users were drawn from different demographics as shown in Table 2.1. The

demographic categories were defined based on what users stated as the primary

motivation for using a smartphone. Social Communicators (SC) wanted to “stay

connected via voice and text.” Life Power Users (LPU) wanted “a multi-function

device to help them manage their life.” Business Power Users (BPU) wanted

“an advanced PC-companion to enhance their business productivity.” Organizer

Practicals (OP) wanted “a simple device to manage their life.” The subjects

were asked about their intended use of the phone before the study and were

categorized based on their answers. To our knowledge, the results of this study

18

are not public.

Traces were collected using a logger that recorded start and end time of each

application. This information was logged using the ActiveApplication API call of

the OS, which reports on the executable that currently has the foreground window

(with a callback for changes) Other details that our custom logger in Section 2.1.1

records (e.g., network traffic and battery level) were not logged in this study.

Thus, this dataset has lower fidelity than the first one, but it provides a view of

smartphone usage across a broader range of users.

The traces were collected between May 2008 and January 2009. There is 8-28

weeks of data per user, with the average being 16 weeks.

2.1.3 Dataset3

Our third dataset is from 8 Windows Mobile (HTC Touch) users and 2 Android

(HTC Dream) users. It contains packet-level traces, including link layer headers,

for data sent and received by the smartphone. We collected these traces using

Netlog on Windows Mobile and tcpdump on Android. The traces were stored

locally and uploaded at regular intervals using the USB connection.

All users are knowledge workers. Each had an unlimited data plan with their

carrier (7 AT&T, 3 T-Mobile). The users were resident in two different cities in

the USA. Across all users, there is 532 days of data. For individual users, the

data varies from 26 to 84 days.

2.1.4 Representativeness of conclusions

An important concern for user studies such as ours is whether the resulting con-

clusions represent the entire population. There are two potential sources of bias

19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100
User percentile

V
oi

ce
 u

sa
ge

 r
at

io

Dataset1
Dataset2

Figure 2.1: Ratio of voice usage to total usage. The x-axis is user percentile and

users are sorted in decreasing order of ratio. Voice usage in Dataset1 is higher

than that in Dataset2 in which phones were used for personal use.

in our data: i) the users are not representative; and ii) the measured usage is not

representative. We believe that our conclusions are general. The first concern is

alleviated by the fact that aside from some quantitative differences, we find re-

markable consistency among users in the two datasets. This consistency suggests

generality given that the two datasets are gathered independently, on different

platforms, and Dataset2 was professionally designed to be representative.

The second concern stems from the possibility that users may not be using

the monitored smartphones as their primary devices or that the usage during the

monitoring period may not be normal. All users in Dataset2 used the provided

smartphones as their primary devices. We do not know this aspect with certainty

for Dataset1, but we understand from anecdotal evidence that some users used

20

these devices as their only phones and others took advantage of the unlimited

minutes and text plans. We study voice usage as indicative of the extent to

which users relied on the monitored devices. Higher voice usage suggests use as

primary phones. Figure 2.1 shows the ratio of time users spent in phone calls to

total time spent interacting with the phone (Section 2.2). We see that the overall

voice usage in Dataset1 was higher than that in Dataset2 in which all users used

the phone as their primary device.

Given that the monitored devices tended to be primary and the long duration

of the monitoring interval, we conjecture that our traces predominantly capture

normal usage. Earlier work has pointed to the possibility of an initial adoption

process during which usage tends to be different than long-term usage [RZ09b].

To show that our traces are not dominated by the initial excitement of users or

other special events that cause usage to be appreciably different from the normal

usage, Figure 2.2 shows the average interaction time per day (Section 2.2) in the

first and second halves of the datasets for each user. We see roughly similar usage

in the two halves. Detailed investigation shows that the visible differences in the

averages of the two halves, especially in Dataset1, are not statistically significant.

Other measures of usage (e.g., network activity) look similar. We do not claim

that instances of abnormal usage are absent in the datasets, but the monitored

period was long enough for our results to not be impacted by such instances.

2.2 User Interactions

We begin our analysis by studying how users interact with their smartphones,

independent of the application used. We characterize application use in the next

section, and the impact of user actions on network traffic and energy drain in the

following sections.

21

1
10

10
0

10
00

0 20 40 60 80 100
User percentile

A
ct

iv
e

tim
e

(m
in

ut
es

)
Dataset1 1st half
Dataset1 2nd half
Dataset2 1st half
Dataset2 2nd half

Figure 2.2: Total interaction per day during the first and second halves of study

for each user. Users within each dataset are sorted based on the interaction time

in the first half. The y-axis is log scale. We see rougly similar usage in the two

halves therefore we conclude that usage was not significantly impacted by initial

excitement or learning time.

We define an interaction interval, also referred to as a session , differently for

each dataset. In Dataset1, we deem a user to be interacting with the phone when-

ever the screen is on or a voice call is active. In Dataset2, an interaction is defined

as the interval that an application is reported to be on the foreground. This in-

cludes voice calls because on Windows Mobile a special program (“cprog.exe”) is

reported in the foreground during voice calls.

22

1
10

10
0

10
00

0 20 40 60 80 100
User percentile

A
ct

iv
e

tim
e

(m
in

ut
es

)

Dataset1
Dataset2

(a) All users

High school
Knowledge worker

1
10

10
0

10
00

0 20 40 60 80 100
User percentile

A
ct

iv
e

tim
e

(m
in

ut
es

)

(b) Dataset1

SC
OP
BPU
LPU1

10
10

0
10

00

0 20 40 60 80 100
User percentile

A
ct

iv
e

tim
e

(m
in

ut
es

)

(c) Dataset2

Figure 2.3: The mean and the upper end of the standard deviation of interaction

minutes per day. (a) All users in each dataset. (b)&(c) Different demographics

in the two datasets. The y-axes are log scale. Within each dataset there is an

order of magnitude difference among suers.

2.2.1 Interaction Time

Figure 2.3(a) shows a basic measure of user interaction—the number of minutes

in a day that a user interacts with the smartphone. The plot shows the mean

and the standard deviation of this number for each user. For visual clarity, in

such graphs, we plot only the upper end of the standard deviation; plotting both

ends occludes the other curves. The interested reader can estimate the lower end

since standard deviation is symmetric around the mean.

Dataset1 users tend to have more interaction minutes because, as we show

later, they tend to have longer interaction sessions while having a similar number

of sessions. Within each dataset, however, there is an order of magnitude differ-

ence among users. In Dataset1, the lower end is only 30 minutes in a day. But

the high end is 500 minutes, which is roughly eight hours or a third of the day.

We are surprised by this extremely high level of usage.

Figure 2.3(a) also shows that users cover the entire range between the two

23

extremes and are not clustered into different regions. The lack of clusters implies

that effective personalization will likely need to learn an individual user’s behavior

rather than mapping a user to one or a few pre-defined categories.

We examine two factors that can potentially explain the extent to which a

user interacts with the phone but find that neither is effective. The first is that

heavier users use different types of applications (e.g., games) than lighter users.

But, we find that the relative popularity of application types is similar across

classes of users with different interaction times (Section 2.3.2). The second is

user demographic. But, as Figures 2.3(b) and 2.3(c) show, the interaction times

are similar across the different demographics in the two datasets. Within each

demographic, user interaction times span the entire range. In Section 2.3.2, we

show that user demographic does not predict application popularity either.

To understand the reasons behind diversity of user interaction times, we study

next how user interaction is spread across individual sessions. This analysis

will show that there is immense diversity among users in both the number of

interaction sessions per day and the average session length.

2.2.2 Interaction Sessions

Interaction sessions provide a detailed view of how a user interacts with the phone.

Their characteristics are important also because energy use depends not only on

how long the phone is used in aggregate but also on the usage distribution. Many,

short interactions likely drain more energy than few, long interactions due to the

overheads of awakening the phone and radio. Even with negligible overheads,

battery lifetime depends on how exactly energy is consumed [RVR03]. Bursty

drain with high current levels during bursts can lead to a lower lifetime than a

more consistent drain rate.

24

Dataset1
Dataset21

10
10

0

0 20 40 60 80 100
User percentile

S
es

si
on

 c
ou

nt

(a) Number of sessions

1
10

10
0

10
00

0 20 40 60 80 100
User percentile

M
ea

n
se

ss
io

n
le

ng
th

 (
s)

Dataset1
Dataset2

(b) Session length

Figure 2.4: The mean and the upper end of the standard deviation for the number

of sessions per day and the session length. The y-axes are log scale. We observe

a wide range of variation among users and the mean session length varies across

users by an order of magnitude.

Figure 2.4(a) shows the number of sessions per day for different users. We

again see a wide variation. Individual users interact with their smartphone any-

where between 10 to 200 times a day on average.

Figure 2.4(b) shows the mean and standard deviation of interaction session

lengths. Dataset1 users tend to have much longer sessions than Dataset2 users.

Given that they have roughly similar number of interactions per day, as seen in

Figure 2.4(a), their longer sessions explain their higher interaction time per day,

as seen in Figure 2.3(a).

Within each dataset, the mean session length varies across users by an order

of magnitude. Across both datasets, the range is 10-250 seconds.

Explaining the diversity in session lengths: Several hypothesis might

25

0
50

10
0

20
0

0 20 60 100 140
Session length (s)

S
es

si
on

 c
ou

nt

Dataset1
Dataset2

(a)

0
50

15
0

25
0

S
es

si
on

 c
ou

nt

<
10

10
−

20

20
−

30

30
−

40

40
−

60

>
60

Session length (s)

(b)

Figure 2.5: (a) Scatterplot of session count per day and mean session length of

various users. (b) The mean and 95% CI of session count per day for users in

Dataset2 with different mean session lengths. There is little correlation between

users’ number of sessions and session length.

explain the differences in different users’ session lengths. One hypothesis is that

users with longer sessions concentrate their smartphone usage in fewer sessions.

Figure 2.5 shows, however, that there is little correlation between users’ num-

ber of sessions and session length. Figure 2.5(a) shows a scatterplot of session

count versus mean length for different users. There is one data point for each

user. Figure 2.5(b) shows the dependence of session count on session length by

aggregating data across Dataset2 users. It plots the observed mean and 95%

confidence interval (CI) for session counts per day for users with different mean

session lengths. The differences in the session counts are not statistically signifi-

cant. In other words, it is not the case that users who have longer sessions have

fewer or more sessions.

Our other hypotheses are related to application use. The second hypothesis is

26

Dataset1 example user
Dataset2 example user

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 200 600 1000
Session length (s)

C
D

F

(a) Session lengths

Dataset1 example user
Dataset2 example user

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1000 2000 3000
Time between sessions (s)

C
D

F

(b) Time between sessions

Figure 2.6: CDFs of session length and time between sessions for two example

users. The x-axis ranges in the graphs are different. For any given user, most of

the sessions are short but some are very long. The median session length is less

than a minute but some are longer than an hour (not shown in the graph)

that users run varying numbers of applications during an interaction, and users

that tend to use more applications per session have longer sessions. The third

hypothesis is that users run different applications and some applications, such as

maps, have longer sessions than others. The fourth one is that even for the same

application, users have different session lengths.

Our analysis of application use in §2.3 reveals that the second hypothesis is not

explanatory, as users overwhelmingly use only one application per session. It also

reveals that the third and fourth hypotheses are likely contributors to diversity in

session lengths. Note that the inability of application types to explain interaction

time per day, which we mention in the previous section, is different from their

ability to explain session lengths.

27

Distribution of a single user’s sessions: We find that for any given user,

most of the sessions are short but some are very long. Figure 2.6(a) shows the

CDF of session lengths for two example users. The median session length is less

than a minute but some are longer than an hour (not shown in the graph). A

similar skewed distribution can be seen for all users in our datasets, albeit with

different median and mean session length values. This highly skewed distribution

also explains why the standard deviations in Figure 2.4(b) are high relative to

the mean. In Section 2.6.1, we show how session lengths depend on the screen

timeout values.

Figure 2.6(b) shows that the time between sessions, when the phone is not

used, also has a skewed distribution. Most are short (relative to the mean) but

some are very long. We show later that these off periods have the property that

the longer a user has been in one of them, the greater the chance that the user

will continue in this state.

2.2.3 Diurnal Patterns

We now study diurnal patterns in interaction. The presence of such patterns has

several consequences. For instance, the length of time a given level of remaining

battery capacity lasts will depend on the time of day.

Figure 2.7 shows for two example users that, as expected, strong diurnal

patterns do exist. As a function of the hour of the day, Figure 2.7(a) plots the

mean number of interaction minutes per hour. It also plots the 95% confidence

interval (CI) around the mean, which can be used to judge if the differences in

the means are statistically significant. We see a clear pattern in which daytime

use is much higher than nighttime use, though the exact pattern for different

users is different.

28

Dataset1 example user

0
5

10
15

20
25

0 3 6 9 13 17 21
Hour of day

T
ot

al
 in

te
ra

ct
io

n
(m

in
ut

es
) Dataset1 example user

0
5

10
15

0 3 6 9 13 17 21
Hour of day

N
um

be
r

of
 s

es
si

on
s

Dataset1 example user

0
50

10
0

15
0

0 3 6 9 13 17 21
Hour of day

M
ea

n
se

ss
io

n
le

ng
th

 (
s)

Dataset2 example user

0
5

10
15

20
25

0 3 6 9 13 17 21
Hour of day

T
ot

al
 in

te
ra

ct
io

n
(m

in
ut

es
)

(a) Interaction time

Dataset2 example user

0
5

10
15

0 3 6 9 13 17 21
Hour of day

N
um

be
r

of
 s

es
si

on
s

(b) Number of sessions

Dataset2 example user

0
50

10
0

15
0

0 3 6 9 13 17 21
Hour of day

M
ea

n
se

ss
io

n
le

ng
th

 (
s)

(c) Session length

Figure 2.7: The mean and 95% CI of interaction time, number of sessions, and

session length during each hour of the day for an example user from each dataset.

Daytime use is much higher than nighttime use, and the exact pattern for different

users is different.

Figure 2.7(a) also shows that usage at hours in the night is low but not

completely zero. We believe that this non-zero usage stems from a combination

of irregular sleeping hours and users using their devices (e.g., to check time) when

they get up in the middle of the night.

To capture the significance of the diurnal pattern for a user, we define the

diurnal ratio as the ratio of the mean usage during the peak hour to the mean

usage across all hours. A diurnal ratio of one implies no diurnal pattern, and

higher values reflect stronger patterns. Figure 2.9(a) plots the diurnal ratio in

interaction time for all users. It shows that while diurnal ratios vary across users,

roughly 70% of the users in each dataset have a peak hour usage that is more

29

Dataset1
Dataset2

1
6

11
16

21

0 100 200 300 400
Total interaction (minutes)

D
iu

rn
al

 r
at

io

(a)

<
30

30
−

60

60
−

90

90
−

12
0

12
0−

15
0

15
0−

20
0

20
0−

30
0

>
30

0

0
1

2
3

4
5

D
iu

rn
al

 r
at

io

Total interaction (minutes)

(b)

Figure 2.8: (a) Scatterplot of diurnal ratio of interaction time per hour and

interaction minutes per day. (b) The mean and 95% CI of diurnal ratio vs. total

interaction time per day. Diurnal ratios vary across users, and roughly 70% of

the users in each dataset have a peak hour usage that is more than twice their

mean usage.

than twice their mean usage.

Explaining the diversity in diurnal patterns: To help explain the vari-

ability among users’ diurnal ratios, in Figure 2.8 we study its dependence on

interaction time. Figure 2.8(a) shows a scatterplot of the diurnal ratio and the

mean interaction time per day. We see that the diurnal ratio tends to be inversely

correlated with interaction time. Figure 2.8(b) shows this negative correlation

more clearly, by aggregating data across users. It plots the mean and 95% CI of

the diurnal ratio of total interaction time per day for users with different total

interaction times. The diurnal ratio decreases as interaction time increases. This

inverse relationship suggests that heavy users tend to use their phone more con-

30

1
5

9
13

17
21

0 20 40 60 80 100
User percentile

D
iu

rn
al

 r
at

io

Dataset1
Dataset2

(a) Interaction time

1
2

3
4

5

0 20 40 60 80 100
User percentile

D
iu

rn
al

 r
at

io

Dataset1
Dataset2

(b) Number of sessions

1
5

9
13

17
21

0 20 40 60 80 100
User percentile

D
iu

rn
al

 r
at

io

Dataset1
Dataset2

(c) Session length

Figure 2.9: Diurnal ratio of the interaction time, the number of sessions, and the

session length for different users. The y-axis ranges for the number of sessions

is different. Users tend to have different number of sessions as well as different

session lengths at different hours of the day therefore both variation in number

of sessions and session length contribute to variations in interaction time across

the day.

sistently during the day whereas light users tend to have concentrated use during

certain hours of the day.

Understanding the source of diurnal patterns: The variation in inter-

action time of a user across the day can result from variation in the number of

interaction sessions or the length of individual sessions. We find that both factors

contribute. Users tend to have different number of sessions as well as different

session lengths at different hours of the day. Figures 2.7(b) and 2.7(c) illustrate

this point for two example users. They plot the mean number of sessions and the

mean session length for each hour of the day.

Figures 2.9(b) and 2.9(c) show the strength of the diurnal pattern for the

number of sessions and session length for all the users. Observe that compared

to interaction time and session length, the diurnal ratio of the number of sessions

tends to be lower.

31

2.3 Application Usage

We now study the applications that users run when they interact with their

smartphones. Unlike previous attempts to understand mobile application usage

[CS08, RZ09b, SLG08] that use diaries and interviews, we rely on the mobile

phone’s OS to report application usage. We define an application as any exe-

cutable that the OS reports. On Windows Mobile, we get timestamped records

of start and end times of application executions in the foreground. On Android,

we log usage counters that are updated by the OS. Every time the OS calls the on-

Start, onRestart or onResume method of an Android application it starts a timer.

The timer stops when the onPause, onStop, or onDestroy method is called. We

record periodically the cumulative value of the timer for each installed applica-

tion. This information on the extent of application use is not as accurate as the

equivalent information on Windows Mobile, but it helps us understand relative

time spent by the user in each application.

2.3.1 Number of applications

Figure 2.10 shows the number of applications used by users in each dataset over

the length of their trace. We see that this number varies significantly, from 10 to

90, across users. The median is roughly 50. We are surprised by this high number

given that the iPhone, which is reported to have thousands of applications, is not

part of our study. Our results show that avid use of smartphone applications is

a trait shared by Android and Windows Mobile users as well.

32

0
20

40
60

80
10

0

0 20 40 60 80 100
User percentile

N
um

be
r

of
 a

pp
lic

at
io

ns

Dataset1
Dataset2

Figure 2.10: Number of applications installed and used by users of each dataset

varies significantly across users. In both datasets the median is median number

of applications is 50.

2.3.2 Application Popularity

The large number of applications installed by the users does not mean that they

use them equally. We find that users devote the bulk of their attention to a subset

of applications of their choice. Figure 2.11 illustrates this popularity bias for

example users in each dataset. It plots the relative popularity of each application,

that is, the ratio of the time spent interacting with the application and the

total time spent interacting with the smartphone. The bars show the popularity

PDF for the top 20 applications, and the inset shows the semi-log plot for all

applications. Because they are binary names, even some popular applications

may appear unfamiliar. For instance, in Dataset1, “launcher” is the default

home screen application on Android; in Dataset2, “gwes” (Graphical, Windows,

33

la
un

ch
er gm

al
ar

m
cl

oc
k

ta
lk

co
nt

ac
ts

m
ap

s
m

m
s

ph
on

e
m

us
ic

br
ow

se
r

ca
m

er
a

sy
st

em
se

ns
be

nc
hm

ar
k

w
er

ta
go

ve
nd

in
g

ca
le

nd
ar

se
tti

ng
s

tip
pi

nt
im

e
te

tr
is

an
dr

oi
d

Dataset1 example user

U
sa

ge
 r

at
io

0.
00

0.
10

0.
20

0.
30

0 20 401e
−

07
0.

01

ie
xp

lo
re

gw
es

tm
ai

l
ho

m
e

bu
bb

le
br

ea
ke

r
P

ok
er

Li
ve

S
ea

rc
h

ca
le

nd
ar

G
oo

gl
eM

ap
s

po
ut

lo
ok

T
P

C
S

ol
ita

re
K

aG
lo

m
pv

bl
oa

d
cp

ro
g

se
rv

ic
es

te
ls

he
ll

pi
m

g
ap

pm
an

Y
G

oN
et

w
m

pl
ay

er

Dataset2 example user

U
sa

ge
 r

at
io

0.
00

0.
05

0.
10

0.
15

0 20 40 601e
−

06
0.

01

Figure 2.11: Relative time spent running each application for example users in

each dataset. Inset is the semi-log plot of application popularity. Clearly users

devote the bulk of their attention to a subset of applications of their choice. For

each user application popularity can be modeled by an exponential distribution.

and Events Subsystem) is the graphical shell on Window Mobile.

The graphs show that relative application popularity drops quickly for both

users. In Section 2.6.3, we show that for all users application popularity can be

modeled by an exponential distribution.

Diurnal patterns: Interestingly, application popularity is not stable through-

out the day, but has a diurnal pattern like the other aspects of smartphone use.

That is, the relative popularity of an application is different for different times

of the day. Figure 2.12 illustrates this for an example user in Dataset2. We

see, for instance, that tmail.exe, which is a messaging application on Windows

Mobile, is more popular during the day than night. Time dependent application

popularity was recently reported by Trestian et al., based on an analysis of the

network traffic logs from a 3G provider [TRK09]. Our analysis based on direct

observation of user behavior confirms this effect.

34

0 4 8 12 17 22
Hour of day

0
20

40
60

80
U

sa
ge

 r
at

io
 (

%
)

services.exe
wmplayer.exe
calendar.exe
poutlook.exe
WLMMessenger
cdial.exe
pimg.exe
cprog.exe
iexplore.exe
home.exe
tmail.exe

Figure 2.12: Relative time spent with each application during each hour of the

day for a sample user and her top applications. We find that relative application

popularity is not stable throughout the day and has a diurnal pattern.

comm. 44%

browsing 10%

other 11%

prod. 19%
media 5%

maps 5%
games 2%
system 5%

Dataset1

comm. 49%

browsing 12% other 15%

prod. 2%
media 9%

maps 2%

games 10%

system 1%

Dataset2

Figure 2.13: Relative popularity of each application category across all users in

each dataset. While the results are not identical across the two datasets, they

are similar to a first order: Communication dominates in both.

Aggregate view application popularity: To provide an aggregate view

of what users use their smartphones for, we categorize applications into eight

distinct categories: i) communication contains applications for exchanging mes-

sages (e.g., email, SMS, IM) and voice calls; ii) browsing contains Web browser,

35

Dataset1

P
er

ce
nt

ag
e

(%
)

0

20

40

60

80

co
m

m
.

br
ow

si
ng

ga
m

es

m
ed

ia

m
ap

s

pr
od

.

sy
st

em

ot
he

r

High school
Knowledge worker

Dataset2

P
er

ce
nt

ag
e

(%
)

0

20

40

60

80

co
m

m
.

br
ow

si
ng

ga
m

es

m
ed

ia

m
ap

s

pr
od

.

sy
st

em

ot
he

r

SC
OP
BPU
LPU

Figure 2.14: The mean and 95% CI of relative popularity of application categories

among users of different demographics. User demographics do not seem to impact

relative application popularity.

search, and social networking applications; iii) media contains applications for

consuming or creating media content (e.g., pictures, music, videos); iv) productiv-

ity contains applications for calendars, alarms, and for viewing and creating text

documents (e.g., Office, PDF reader); v) system contains applications for chang-

ing user preferences and viewing system state (e.g., file explorer); vi) games; vii)

maps; and viii) other contains applications that we could not include in any of

the categories above, e.g., because we did not know their function.

Figure 2.13 shows the mean relative popularity of each application category

across all users in each dataset. While the results are not identical across the two

datasets, they are similar to a first order. Communication dominates in both.

Browsing is another major contributor in both datasets. Maps, media, and games

have a comparatively lower but nevertheless substantial share of user attention.

Relationship to user demographic: To understand the extent to which

36

user demographic determines application popularity, Figure 2.14 shows the mean

and 95% CI of relative popularity of each application category for different user

demographics. As for interaction time (Section 2.2.1), we see that the impact of

user demographics in our datasets is minimal. In Dataset2, the relative popu-

larity of various application types is similar for each of the four demographics.

In Dataset1, there are noticeable differences in the mean for communication,

games and productivity applications. High school students use communication

and games applications more, while knowledge workers use productivity appli-

cations more. However, considering the overlap of confidence intervals, these

differences in application popularity are not statistically significant.

From this result and the earlier one on the lack of dependence between user

demographic and interaction time (Section 2.2.1), we conclude that user demo-

graphic, at least as defined in our datasets, cannot reliably predict how a user

will use the phone. While demographic information appears to help in some

cases (for e.g., the variation in usage of productivity software in Dataset1), such

cases are not the norm, and it is hard to guess when demographic information

would be useful. Pending development of other ways to classify users such that

these classes more predictably explain the variation incorporating factors specific

to a user appear necessary. This insensitivity to user demographic has positive as

well as negative implications. A negative is that personalization is more complex;

we cannot predict a users’ behavior by knowing their demographic. A positive

implication is that the range of user behaviors along many dimensions of interest

can be found in several common demographics. This simplifies the task of uncov-

ering the range because recruiting subjects across multiple demographics tends

to be difficult.

Relationship to interaction time: We also study if users that interact

37

Dataset1

P
er

ce
nt

ag
e

(%
)

0

20

40

60

80

co
m

m
.

br
ow

si
ng

ga
m

es

m
ed

ia

m
ap

s

pr
od

.

sy
st

em

ot
he

r

High
Low

Dataset2

P
er

ce
nt

ag
e

(%
)

0

20

40

60

80

co
m

m
.

br
ow

si
ng

ga
m

es

m
ed

ia

m
ap

s

pr
od

.

sy
st

em

ot
he

r

High
Medium
Low

Figure 2.15: The mean and 95% CI of relative popularity of application categories

among different classes of users based on interaction time per day. Users in

different classes have similar application usage.

more with their phones tend to use different applications. For each dataset, we

sort users based on their average interaction time per day and partition them

into different classes. For Dataset1, we use two classes, one each for the top and

the bottom half of the users. For Dataset2, which has more users, we use three

classes for the top, middle, and bottom third of the users. Figure 2.15 shows the

mean and 95% CI for relative time spent with each application category by each

user class. We see that users in different classes have similar application usage.

Thus, we cannot explain why some users use the phone more simply based on

the applications that they use.

2.3.3 Application Sessions

We now study the characteristics of application sessions. We conduct this analysis

only for Dataset2, based on timestamps for when an application is started and

ended; Dataset1 does not contain this information precisely. Because applications

38

89.2

7.4
2.2 0.6 0.2 0.1

1 2 3 4 5 6

0
20

40
60

80
10

0

Apps per session

P
er

ce
nt

ag
e

(%
)

Figure 2.16: Histogram of the number of applications called during each inter-

action session for all the users in Dataset2. An overwhelming majority of inter-

actions include only one applications therefore users tend to interact with their

phone for one task at a time.

can run in the background, start and end refer to the period when the application

is in the foreground.

Applications run per interaction: We begin by studying the number of

applications that users run in an interaction session. Figure 2.16 shows that an

overwhelming majority, close to 90%, of interactions include only one applica-

tion. This graph aggregates data across all users. We did not find statistically

significant differences between users. A large fraction of sessions of all users have

only one application.

That interaction sessions very often have only one application session suggests

that users tend to interact with their smartphone for one task (e.g., reading email,

checking calendar, etc.) at a time, and most of these tasks require the use of only

39

m
ap

s

ga
m

es

co
m

m
.

m
ed

ia

br
ow

si
ng

pr
od

.

sy
st

em

ot
he

r

1
10

10
00

S
es

si
on

 le
ng

th
 (

s)

Figure 2.17: The mean and 95% CI of session lengths of different application

categories. The y-axis is log scale. Different application types have different

session lengths. Maps and games tend to have the longest and those related to

productivity and system the shortest.

one application.

Application session lengths: Because interaction sessions are dominated

by those with only one application, the overall properties of application sessions,

such as their lengths, are similar to those of interaction sessions (§2.2).

However, studying the session lengths of applications separately reveals in-

teresting insights. Different application types have different session lengths, as

shown in Figure 2.17, for the categories defined earlier. Interactions with maps

and games tend to be the longest and those related to productivity and system

tend to be the shortest.

Further, given an application, different users run them for different times.

Figure 2.18 shows this effect for a messaging application, tmail.exe, and a brows-

40

tmail

1
10

10
0

10
00

0 20 40 60 80 100
User percentile

S
es

si
on

 le
ng

th
 (

s)

iexplore

1
10

10
0

10
00

0 20 40 60 80 100
User percentile

S
es

si
on

 le
ng

th
 (

s)

Figure 2.18: The mean and the upper end of the standard deviation of session

lengths of two applications. For each application the mean session lengths of

users differ by more than two orders of magnitude.

ing application, iexplore.exe. For each application, the mean session lengths of

users differ by more than two orders of magnitude.

These observations help explain why users have different session lengths (Sec-

tion 2.2.2). They prefer different applications and those application sessions tend

to have different lengths. Further analysis confirms this phenomenon. For in-

stance, if we divide users into two classes based on their mean session lengths,

the popularity of games is twice as high in the class with high session lengths.

2.4 Traffic

In this section, we investigate traffic generated by smartphones. Unlike interac-

tion events and application use, network traffic is not an intentional user action

but a side-effect of those actions. Most users are likely oblivious to how much

traffic they generate. We show that the diversity and diurnal patterns of this

41

0 20 40 60 80 100

User percentile

0

1

10

100

1000

10000

T
r
a
f
f
i
c

p
e
r

d
a
y

(
M
B
) Receive

Send

Figure 2.19: The mean and the upper end of the standard deviation of the traffic

sent and received per day by users in Dataset1. The amount of sent and received

traffic per day varies across users by about three orders of magnitude.

side-effect match those of user actions themselves.

The analysis in this section is based on Dataset1 and Dataset3; we do not

have traffic information for Dataset2. In Dataset1, we record all of the data

sent (or received) by the phone except for that exchanged over the USB link,

i.e., the traffic herein includes data over the 3G radio and the 802.11 wireless

link. Dataset3 consists of packet level traces from 10 smartphone users across

two different platforms.

2.4.1 Traffic per day

Figure 2.19 shows that the amount of traffic sent and received per day differs

across users by almost three orders of magnitude. The traffic received ranges

from 1 to 1000 MB, and the traffic sent ranges from 0.3 to 100 MB. The median

42

Dataset1

P
er

ce
nt

ag
e

0

20

40

60

80

co
m

m
.

br
ow

si
ng

ga
m

es

m
ed

ia

m
ap

s

pr
od

.

sy
st

em

ot
he

r

High
Low

Figure 2.20: The mean and 95% CI of relative popularity of each application

category among high and low traffic consumers. Communication applications are

more popular among users that consume more traffic.

values are 30 MB sent and 5 MB received.

Our results indicate that traffic generated in a day by smartphone users is

comparable to traffic generated by PCs a few years ago. A study of a campus

WiFi network revealed that on average users were generating 27 MB of traffic

in 2001 and 71 MB in 2003 [KE05]. A study of Japanese residential broadband

users in 2006 revealed that on average users generate 1000 MB of traffic per

day [FCE05]. This high level of traffic has major implications for the provisioning

of wireless carrier networks as smartphone adoption increases.

Relationship to application types: To investigate if certain types of

applications are favored more by users that generate more traffice, we divide

the users into two equal classes based on their sum of sent and received traffic

43

per day. Figure 2.20 shows mean and 95% CI of relative popularity of each

application category for each user class. Expectedly, it shows that communication

applications are more popular among users that consume more traffic.

2.4.2 “Interactive” traffic

We next estimate what fraction of the total traffic is “interactive,” that is, has

timeliness constraints. Approaches to reduce power consumption of data transfers

often advocate rescheduling network transfers, for instance, by delaying some

transfers so that multiple of them may be bundled [BBV09, SNR09]. Such policies

are difficult to implement for interactive traffic without hurting user response

time, and thus are likely to be less valuable if the bulk of the traffic is interactive.

We classify traffic as interactive if it was generated when the screen is on. This

classification method might classify some background traffic as interactive. We

expect the error to be low because the screen is on for a small fraction of the time

for most users. Because certain user interactions with the phone begin right after

traffic exchange (e.g., a new email is received), we also consider traffic received

in a small time window (1 minute) before the screen is turned on as having

timeliness constraints. The results are robust to the exact choice of time window.

Indeed some of the traffic that we classify as interactive might be delay tolerant,

e.g., a new email to be sent might be deferred for a little while. However, the

volume of traffic received by the phone, which users would rather see immediately,

dominates by one order of magnitude the volume that is sent and delay-tolerant

messaging applications such as email contribute only a small chunk of all traffic.

Figure 2.21 shows the fraction of interactive traffic for each user. We see

that for about 90% of the users, over 50% of the traffic is interactive but for

the rest almost none of their traffic is interactive. Stated differently, for differ-

44

0 20 40 60 80 100

User percentile

0.0

0.2

0.4

0.6

0.8

1.0

I
n
t
e
r
a
c
t
i
v
e

f
r
a
c
t
i
o
n

Figure 2.21: The fraction of interactive traffic. For about 90% of the users of 50%

of the traffic is interactive. We also observe significant diversity among users in

terms of interactive traffic.

45

0 5 10 15 20

Hour of day

0

5

10

15

T
r
a
f
f
i
c

p
e
r

h
o
u
r

(
M
B
)

Receive

Send

(a)

0 20 40 60 80 100

User percentile

2

4

6

8

10

12

D
i
u
r
n
a
l

r
a
t
i
o

Receive

Send

(b)

Figure 2.22: (a) The mean and 95% CI for traffic generated per hour by an

example user. (b) The diurnal ratio of traffic per hour for all users. We find that

diurnal ratio varies across users but most users have a strong diurnal behavior.

ent smartphone users, almost all to almost none of the traffic is generated by

applications in the background. The extremes represent disparate ways in which

people use smartphones and which applications on the smartphone generate most

traffic. Our results imply that the energy savings that can be had by rescheduling

network activity will vary across users.

2.4.3 Diurnal patterns

Figure 2.22(a) shows the diurnal pattern for an example user, with a sharp decline

at night. Figure 2.22(b) shows the strength of the diurnal pattern for individual

users by plotting the diurnal ratio of traffic. As defined in §2.2.3, the diurnal

ratio reflects how much higher the mean during the peak hour is to the overall

mean.

We see that the diurnal ratio varies across users but most have a strong diurnal

46

1 10 100

(a) MB per day

0

20

40

60

80

100

%

u
s
e
r
s

(
C
D
F
)

Dataset3

Dataset1

0.0 0.2 0.4 0.6 0.8 1.0

(b) Ratio of WiFi traffic

0

20

40

60

80

100

%

u
s
e
r
s

(
C
D
F
)

Dataset1

Figure 2.23: (a) Smartphone traffic per day is one order of magnitude smaller

than residential broadband traffic. (b) Ratio of traffic sent on the WiFi interface

varies widely across users. The median is almost 0.5.

behavior. 80% of them generate over twice their average amount of traffic in

their peak hour. This behavior is likely a direct result of the high proportion

of interactive traffic for most users and that user interactions themselves have a

diurnal pattern.

2.4.4 Traffic composition

In this section, we study the basic makeup of smartphone traffic, starting with

volume per user. Figure 2.23(a) shows how much traffic is exchanged per day

by users. This amount is 2-20 MB in Dataset3 and 1-500 MB in Dataset1.

Compared to residential broadband traffic this is roughly one order of magnitude

smaller [cho09].

Two factors may explain the differences in the two datasets. One is that

Dataset3 is dominated by Windows Mobile, while Dataset1 is exclusively An-

47

droid. It is likely that the Android OS and users generate more traffic. The

heaviest user in Dataset3 is in fact an Android user. In earlier work, we found

that Android users interact with their devices more heavily than Windows Mobile

users [FMK10]. For instance, the median session length of Android users is more

than twice that of Windows Mobile users.

The second factor, not unrelated to the first, is that many users in Dataset1

use WiFi heavily. Dataset3 does not provide direct information on the inter-

face (WiFi or cellular) used by individual packets. But by observing interface

addresses and path delays—cellular delays are much higher—we conclude that

WiFi usage was minimal among those users. In Dataset1, we can reliably identify

the share of WiFi traffic using information about interface state.

Figure 2.23(b) shows the ratio of WiFi traffic in Dataset1. We see that the

median ratio is almost 0.5 but it varies widely across users. While the bottom 20%

do not use WiFi at all, the top 20% use it for more than 80% of their traffic. These

results also imply that depending on the user population smartphone studies

based on only cellular traffic [TRK09] or only WiFi traffic [MSF10] can miss a

significant fraction of device traffic.

We now study the composition of smartphone traffic from other perspectives.

Downlink vs. uplink Figure 2.24 shows the ratio of downlink (from the

network to the smartphone) to uplink traffic. There is a wide variation among

users, caused likely by diversity in application usage, from downlink traffic equal-

ing uplink traffic to it being over 10 times the uplink traffic. The average across

all users for downlink to uplink ratio is 6:1. This high asymmetry, indicating a

strong bias towards downloads, has implications for provisioning access technolo-

gies for smartphones. It is comparable to asymmetry in residential broadband

48

0 5 10

Downlink/Uplink ratio

0

20

40

60

80

100

%

u
s
e
r
s

(
C
D
F
)

Dataset3

Dataset1

Figure 2.24: Ratio of downlink to uplink traffic. There is a wide variation among

users, caused by diversity in application usage. The average across all users for

downlink to uplink traffic is 6:1.

traffic in Europe [MFP09] and Japan [FCE05] but is well above the subset of

“peer-type heavy-hitters”[FCE05] whose ratio is close to 1:1.

Despite differences in total traffic exchanged the downlink to uplink ratios in

the two datasets are similar. This suggests that the mix of activities that generate

network traffic may not be disparate for the two cases. We study these next.

Common ports [Dataset3] Ports provide insight into user activities on

smartphones. Identifying applications using ports may be inaccurate in some

cases (e.g., peer-to-peer), but it is a simple indicator that works well over-

all [MFP09].

Table 2.2 shows for Dataset3 all ports that carry over 0.1% of the bytes. We

49

Table 2.2: Ports (in parenthesis) used by IP packets in Dataset1 that carry

over 0.1% of the bytes. HTTPS, HTTP and IMAP4S are the dominant ports

suggesting that main traffic generators on smartphones are email, browsing and

other web-based applications.

see that the dominant ports correspond to HTTPS, HTTP, and IMAP4S. These

results suggest that the main traffic generators on smartphones of these users

are browsing and email. HTTPS is used by secure Web sites and email servers

(including Exchange). HTTP of course is used heavily as part of browsing and

for downloading data of various kinds. IMAP4S is the secure version of the

IMAP protocol for email. While IMAP4S has the most packets, it is third with

respect to the number of bytes. This implies a bias towards small packets, likely

generated as part of frequently polling for (often non-existent) new email. Many

Dataset3 users had two configured email accounts—a push-based work account

and a polling-based personal account. Increased adoption of push-based email,

by which clients are notified when new email arrives, will change the nature of

email traffic.

The 37% share of HTTP traffic that we find is roughly half of that observed for

mobile handheld devices in homes [MSF10] and 50% less than that in residential

broadband traffic [MFP09].

The large volume of traffic that uses HTTP or HTTPS perhaps indicates the

trend among smartphone applications to tunnel their data through these proto-

cols, even when such data would not normally be considered HTTP payload (e.g.,

50

Table 2.3: Traffic generated by applications in Dataset1. Browsing dominates

smartphone traffic and media and maps are other major contributors in addition

to messaging.

music, video and, social apps).

Applications [Dataset1] Our second dataset lets us directly observe what

applications are generating smartphone traffic. We partition applications into

several categories that are shown in Table 2.3. “System” includes applications

that are part of the OS (e.g., package manager, backup), and “Productivity”

includes applications for calendars, alarms, and document handling (e.g., Office,

PDF reader). The meanings of the other application categories are what their

names suggest.

We see in the table that browsing dominates smartphone traffic. As in

Dataset3, messaging is also a significant contributor. Media and maps are other

major contributors. These applications tend to use HTTP and HTTPS for trans-

port, but the application-level view lets us quantify their contribution indepen-

dently.

2.4.5 Transfer sizes

In this section, we study the sizes of individual data transfers, which impact

throughput as well as power consumption [BBV09]. We identify individual trans-

fers using TCP flows. A TCP flow is identified using IP addresses and ports.

51

0 1 10 100 1000

(a) Transfer size in KB

0

20

40

60

80

100

%

o
f

t
r
a
n
s
f
e
r
s

(
C
D
F
)

Uplink

Downlink

1 10 100 1000

(b) Transfer size in Pkts.

0

20

40

60

80

100

%

o
f

t
r
a
n
s
f
e
r
s

(
C
D
F
)

Uplink

Downlink

Figure 2.25: Transfer sizes in Dataset3. The x- axes are log scale. While the mean

transfer size is 273 KB sent and 57 KB received, most transfers are extremely

small and 30% of transferes contain fewer than 1K bytes and 10 packets.

Packets of a flow without an extended idle period (1 minute), are considered as

part of one transfer; flows with long idle periods are considered separate trans-

fers [Cla94]. Long idle periods can arise within a TCP flow if the client (e.g.,

email application) maintains an open connection to the server, to avoid the TCP

connection setup overhead for each transfer.

Figure 2.25 shows the CDF of transfer sizes in bytes and packets across all

users in Dataset3. The size in bytes includes the bytes contributed by TCP

and IP headers. While the mean transfer size is 273 KB sent and 57 KB re-

ceived, most transfers are extremely small. When considering both directions

cumulatively, 30% of them have fewer than 1K bytes and 10 packets. These re-

sults are consistent with those of Maier et al. for HTTP traffic from handheld

devices [MSF10].

Figure 2.26 shows that Dataset1 is dominated by small transfers as well. We

define a transfer size differently in this case. Dataset1 has bytes sent and received

52

0 1 10 100 100010000

Transfer size in KB

0

20

40

60

80

100

%

o
f

t
r
a
n
s
f
e
r
s

(
C
D
F
)

Uplink

Downlink

Figure 2.26: Transfer sizes in Dataset1. The x-axis is log scale. Transfer sizes

are dominated by small transfers as well.

by individual applications in 2-minute long intervals. For each application, we

combine contiguous intervals with non-zero data exchanged as one transfer. If an

application exchanges data over multiple TCP connections, this definition aggre-

gates data across those connections into one transfer. Despite this aggregation,

the graph shows that most transfers are small.

The small transfer sizes that we observe have many implications. Given the

high amount of energy consumed by the 3G radio to go from sleep to ready state

and from idle to sleep state, there can be a high energy overhead associated with

them. Another implication is that a scheme like Catnap [DS10] is unlikely to

reduce radio power consumption. Catnap puts the radio to sleep during transfers

but is effective only for long transfers.

53

0 20 40 60 80 100

(a) Bytes (%)

0

20

40

60

80

100

%

o
f

t
r
a
n
s
f
e
r
s

(
C
D
F
)

TCP+

SSL+

0 20 40 60 80 100

(b) Time (%)

0

20

40

60

80

100

%

o
f

t
r
a
n
s
f
e
r
s

(
C
D
F
)

TCP+

SSL+

Figure 2.27: The overhead of layers below TCP and SSL (inclusive) in Dataset3.

“TCP+” captures overhead of TCP and all layers bellow it. The median TCP+

overhad at byte-level is 12%. “SSL+” captures overhead of SSL and all layers

bellow it for SSL-based transfers. The median SSL+ overhad is 40%.

Yet another implication of small transfers is that the already high overhead of

lower-layer protocols can dominate. This overhead manifests as extra bytes that

must be transmitted as headers as well as extra time that it takes to complete

handshakes.

We quantify these overheads at the transport (TCP) and transport security

(SSL) layers. According to our analysis 96% of smartphone traffic is TCP-based

and more than half uses SSL (through HTTPS and IMAP4S). In Figure 2.27,

“TCP+” captures overhead of TCP and all layers below it. “SSL+” captures

overhead of SSL and all layers below it, and it is computed only for SSL-based

transfers.

Figure 2.27(a) shows that the median TCP+ overhead at byte-level is 12%,

i.e., more than one in ten bytes is devoted to TCP or lower layer headers. SSL

further increases overhead. The median SSL+ overhead is 40%, and 20% of the

54

transfers have an overhead that is twice that amount.

Figure 2.27(b) shows the time overhead. TCP+ is measured as the time

between the first SYN and the first packet that contains non-TCP bytes. If

the radio is asleep when the SYN is sent, this measure will include the time to

wake up the radio. In the next section, we quantify the radio waking overhead

separately. SSL+ is measured as the time between the first TCP SYN and the

first packet that contains non-TCP, non-SSL bytes. Thus, in addition to the TCP

handshake, it includes any time needed for SSL key exchange.

We see that the time overhead too is significant. The median overhead of TCP

is 20%, i.e., a fifth of the total transfer time is spent waiting for TCP handshake

to complete.

Surprisingly, SSL does not add much to the time overhead beyond TCP, which

points to the effectiveness of SSL session key caching for smartphone workloads.

Smartphones frequently talk using SSL to the same server (e.g., email server).

Cached session keys enable quick connection establishment without the overhead

of full key exchange. Most of the additional overhead due to SSL appears to

be due to their larger headers. In Figure 2.27(b), the SSL+ overhead appears

slightly lower than TCP+ in some cases because the two curves are computed

over different sets of transfers.

In summary, we find that most smartphone transfers are small. Such transfers

have a high energy cost and amplify the overhead of lower-layer protocols. One

way to avoid this overhead, which we will investigate in the future, is to aggregate

transfers across applications and across time. Using a proxy in the cloud can

facilitate such aggregation.

55

2.4.6 Performance

We now investigate the performance of TCP transfers. We study observed round

trip time, throughput, and retransmission rate as well as estimate what limits

the transfer throughput. We use only Dataset3 because Dataset1 does not have

the granularity of information needed for this analysis. As almost all of Dataset3

traffic is 3G-based (§2.4.4), our analysis sheds light on the performance that is

seen by smartphones when using the 3G interface in real operating conditions.

2.4.6.1 Round trip time

We estimate the RTT of a transfer as the difference between the SYN and SYN-

ACK packets. Accurate inference of RTT using data and acknowledgment packets

is complicated by delayed acknowledgments. If multiple SYN packets are trans-

mitted for a transfer, we use the last SYN packet. In some cases, the SYN-ACK

packet may be sent by a proxy in carrier network instead of the contacted server.

Even in these cases, we get a good estimate if the dominant component of the

RTT is the wireless delay [HXM10].

We explicitly correct for a source of error that would otherwise significantly

overestimate network RTT. If the radio is asleep when the transfer is initiated,

it includes the times it takes for the radio to wake up and synchronize with the

tower. To weed out this impact, we focus on transfers that are initiated when the

radio is in full power mode. We identify such transfers as those that are initiated

within 3 seconds of the previous transmission or reception. The idle period after

which the radios go into a lower power mode is well above this threshold.

The “Trailing” curve in Figure 2.28(a) shows the RTTs observed by such

transfers. We see that the median is 125 ms but 10% of the transfers observe an

56

10 100 1000

(a) RTT (ms)

0

20

40

60

80

100

%

o
f

S
Y
N
/
A
C
K

p
a
i
r
s

(
C
D
F
)

All

Trailing

0 10 20 30

(b) Retransmission rate (%)

0

20

40

60

80

100

%

o
f

t
r
a
n
s
f
e
r
s

(
C
D
F
)

Uplink

Downlink

0 0 1 10 100 1000

(c) Throughput (kbps)

0

20

40

60

80

100

%

o
f

t
r
a
n
s
f
e
r
s

(
C
D
F
)

Uplink

Downlink

Limit Uplink

(%)

Downlink

(%)

Packet loss 81.0 61.5

Sender window 4.1 27.4

Receiver window 6.8 3.4

Bandwidth 5.1 2.9

Transport 0.7 0.0

Application 0.0 0.0

Unknown 2.4 4.8

(d) Throughput limits

Figure 2.28: Performance of TCP transfers in Dataset3. (a) median RTT is

125 ms for transfers that happen when the radio is already awake and 10% of

transfers observe an RTT of more than 0.5 seconds. (b) Retransmission rate for

transfers that transfer send more than 10 data packets in a given direction. 60%

of connections observe no retransmissions but 25% of them retransmit 5% of the

packets. (c) Throughput of TCP transfers with at least 10 packets in a given

direction. Most transfers have very low throughput — the median is 0.8 Kbps

for uplink and 3.5 Kbps for downlink. (d) Performance bottleneck analysis based

on [ZBP02].

RTT of over 0.5 seconds. Such high variance in RTT is consistent with controlled

experiments [HXM10]. A TCP flow that experiences high variance in RTT will

suffer from delayed response to congestion among other things. Such variance

57

can stem from a host of factors including link layer retransmissions (that are not

visible to us), network congestion, and overloaded equipment inside the carrier

network.

The “All” curve in the graph represents RTTs computed for all transfers, not

just those initiated when the radio is awake. The difference in the two curves

quantifies the overhead of radio wake-ups. The difference is 400 ms at the median

and 1.7 seconds at 90th percentile. The variation stems from the variable amount

of time the radio takes to fully synchronize with the tower and a wake-up may

already be in progress because of another transfer.

2.4.6.2 Retransmission rate

We now study how frequently packets are retransmitted in TCP transfers. Re-

transmissions are identified using sequence numbers and provide a good estimate

of path loss rate. Their rate can differ slightly from loss rate due to TCP dynamics

such as spurious timeouts.

Across all transfers, the uplink retransmission rate is 3.7% and the downlink

rate is 3.3%. These loss rates are much higher than those for wired paths. The

median average loss rate seen from the SLAC laboratory during 2008 was less than

0.1% for North America and less than 1% for most of the world [CK09]. How-

ever, our observed wireless loss rate is similar to those inferred using controlled

experiments [HXM10]. We show below that packet loss is the main bottleneck

for TCP throughput.

Figure 2.28(b) shows the retransmission rates for individual transfers. This

graph is based only on connections that send more than 10 data packets in a

given direction. We see that roughly 60% of the connections experience no re-

transmissions. But 25% of them retransmit 5% of the packets and 10% of them

58

retransmit more than 10% of the packets.

2.4.6.3 Throughput

As a final measure of smartphone traffic performance, we focus on the throughput

observed by TCP connections in our data. Connection throughput is a function

of not only path RTT and loss rate but also of application-level factors such as

the amount of data.

Figure 2.28(c) shows the throughput of TCP transfers with at least 10 data

packets in a given direction. We see that most transfers have very low throughput.

The median is 0.8 Kbps for uplink and 3.5 Kbps for downlink. The 90th percentile

values are 3 and 15 Kbps respectively.

Given that half the transfers in the analysis above have over 25 data packets,

the lack of application data or slow TCP dynamics alone cannot explain the low

throughputs that we observe. To understand the bottlenecks, we conduct the

analysis of Zhang et al. [ZBP02]. This analysis estimates the factor that limits

the throughput of a given TCP transfer, based on the timing and sequence of

packets. We refer the reader to the original paper for details. The accuracy of this

analysis has been evaluated in the wired case but not in a wireless setting. Manual

inspection of several cases shows that it provides accurate answers for our data.

This gives us confidence that it can yield an accurate aggregate characterization

of the type that we present below. We will conduct a more rigorous evaluation

in the future.

Figure 2.28(d) shows the results for transfers that have more than 100 data

packets in the given direction. We find that with this threshold the analysis yields

reliable, consistent estimates. Similar results are obtained with a threshold of 50.

We see that packet loss is the primary limiting factor in both directions,

59

and the large transfers that we focus on are rarely bottlenecked by transport or

application dynamics.

Interestingly, sender window limits over a quarter of the downlink transfers.

This suggests that increasing the size of this window (which holds unacknowl-

edged data) at servers will increase the throughput of downlink TCP transfers to

smartphones. It is likely that the current buffer sizes are tuned to wired clients

which tend to have much lower path delays. In future work, we plan to investigate

this issue in detail.

2.5 Energy Consumption

The final aspect of smartphone usage that we investigate is energy consumption.

Energy drain depends on two factors: i) user interactions and applications; and

ii) platform hardware and software. If the second factor dominates, the energy

drain of various users with the identical smartphone will be similar. Otherwise,

the energy drain will be as diverse as user behaviors.

We estimate the amount of energy drain based on the remaining battery

indicator which varies between 0 and 100%. If the battery indicator has gone

down by X% in a time period for a battery with capacity Y mAh, we compute the

energy drain in that period to be X ·Y mAh 1. Given that batteries are complex

electro-chemical devices [LDP02, RVR03], this computation is approximate. It

assumes that the battery level indicator is linear with respect to energy drain.

Controlled experiments suggest that the linearity assumption holds to a first

order. We run a benchmark load that drains the battery at a fixed rate in room

1mAh is technically a unit of charge, yet is commonly used to indicate energy drain because
battery voltage during normal operations is typically constant. For phones in our dataset, this
is 4V, so multiplying a mAh reading by 4 would yield an accurate energy reading in milli-watt-
hours.

60

0
20

40
60

80
10

0

0 4 8 12 16 20
Time (hour)

B
at

te
ry

 le
ve

l (
%

) Benchmark1
Benchmark2

Figure 2.29: Timelapse of the remaining battery level indicator in controlled ex-

periments with two different workloads at room temperature. Benchmark1 turns

the screen on and off periodically. Benchmark2 computes and idles periodically.

This graph suggests that the level indicator can be used to estimate energy drain.

61

1
10

10
0

10
00

0 20 40 60 80 100
User percentile

B
at

te
ry

 D
ra

in
 (

m
A

h)

Figure 2.30: The mean and the upper end of the standard deviation of one hour

energy drain for Dataset1 users during discharge periods. Battery level indicator

decreases roughly linearly for two different benchmarks. We conclude that the

level indicator can be used to estimate energy drain.

temperature. Under this benchmark, if the battery level indicator decreases lin-

early with time, it must be linear with respect to energy drain. Figure 2.29 shows

that the level indicator decreases roughly linearly for two different benchmarks.

Benchmark1 turns the screen on and off periodically. Benchmark2 computes

and idles periodically. We conclude thus that the level indicator can be used to

estimate energy drain.

Figure 2.30 shows the mean and standard deviation of energy that users drain

in an hour. This graph is computed using only periods in which the battery is

not charging because energy drain in those periods are of primary interest. We

see a two orders of magnitude difference among users. While heaviest users drain

62

20
60

10
0

14
0

0 4 8 12 16 20
Hour of the day

B
at

te
ry

 D
ra

in
 (

m
A

h)

(a)

0 20 40 60 80 100

1
2

3
4

5
6

7

User percentile

D
iu

rn
al

 r
at

io

(b)

Figure 2.31: (a) The mean and 95% CI of energy drain of an example Dataset1

user. (b) Diurnal ratio of all users in Dataset1. We find two orders of magnitude

difference among users. While heaviest users drain 250 mAh, the lightest of the

users drain only 10 mAh.

close to 250 mAh the lightest of users drain only 10 mAh. If the battery capacity

is 1200 mAh, this leads to a lifetime variation from about 4 to 120 hours.

Figure 2.31(a) shows for an example user that the drain is not the same

throughout the day but has diurnal variations in which more energy is consumed

during the day than during the night. For this user, the level of energy consumed

changes by roughly a factor of five. Figure 2.31(b) plots the diurnal ratio of

energy use for all users. It shows that diurnal variations occur, with different

strengths, for all users.

Our results show that user activities contribute heavily towards energy drain;

users in Dataset1, who have identical smartphones, drain energy at different rates,

and energy drain has diurnal patterns. In the future, we will develop methods

to accurately quantify the energy consumption of the platform from that due to

63

user-induced workload.

We uncover a surprising level of diversity among smartphone users. For almost

every aspect of usage that we study, we find one or more orders of magnitude

difference between users. Our findings strongly motivate the need for customizing

smartphones to their users. We believe that this need is greater than that for

customizing ordinary cellphones or laptops. Ordinary cellphones do not have

as rich an application environment. Laptops are not as portable and are more

resource rich. For example, many users plug-in their laptops while using them.

Customization can help at all levels. Consider something as low-level as the

battery. Suppose we want batteries to be both lightweight and last for at least a

day with a high probability. Meeting the latter goal for all users of a given plat-

form will require catering to the heaviest users. But that will lead to unnecessarily

heavy batteries for many users. (Higher capacity batteries are heavier.) Offering

multiple types of batteries with different lifetime-weight tradeoffs provides a way

out of this bind.

At levels where intelligent mechanisms to improve user experience or reduce

energy consumption reside, user diversity motivates adapting to the smartphone

user. Driving these mechanisms based on average case behaviors may not be

effective for a large fraction of the users.

The ease and utility of customization depends on two properties of user behav-

ior. First, despite quantitative differences, there must be qualitative similarities

among users. For instance, we should be able to describe the behavior of all

users with the same model. Different users may have different parameters of this

model, which will then lead to quantitative differences among them. The pres-

ence of qualitative similarities imply that users are not arbitrary points in space,

and it significantly simplifies the task of learning user behavior. Second, user be-

64

havior in the past must also be predictive of the future. Otherwise, customization

based on past behaviors will be of little value in the future.

In the next two sections, we present evidence that these properties hold for

several key aspects of smartphone usage. In Section 2.6, we show that user

sessions and relative application popularity can be described using simple models.

2.6 Smartphone Usage Models

In this section, we develop simple models that describe three aspects of smart-

phone usage – session lengths, inter-arrival time between sessions, and application

popularity. The models are common across users but have different parameters

for different users. While they do not completely describe user behavior, they

capture first order factors and represent a first step towards more complete mod-

eling of smartphone usage. More importantly, along with the results of the next

section, they show that qualitative similarities do exist among users.

2.6.1 Session Lengths

We first consider the statistical properties of session length distributions of users.

We find that session length values tend to stationary. With the KPSS test for

level stationarity [KPS92], 90% of the users have a p-value greater than 0.1. The

presence of stationarity is appealing because it suggests that past behavior is

capable of predicting the future.

We also find that session lengths are independent, that is, the current value

does not have a strong correlation with the values seen in the recent past. With

the Ljung-Box test for independence [LB78], 96% of the users have a p-value that

is greater than 0.1.

65

Dataset1 example user

0.
00

0
0.

01
0

0.
02

0
0.

03
0

0 100 200 300 400
Session length (s)

D
en

si
ty

Dataset2 example user

0.
00

0.
05

0.
10

0.
15

0.
20

0 20 40 60 80 100
Session length (s)

D
en

si
ty

Figure 2.32: The histogram of session length for sample users of each dataset.

Most interaction sessions are very short and the frequency drops as the length

increases. However, inconsistent with exponential behavior there are some very

long sessions. In addition, there is a spike in frequency of session length for each

user.

Stationarity and independence, considered together, suggest that session length

values can be modeled as i.i.d samples from a distribution. Choosing an appro-

priate distribution, however, is complicated by the nature of the session lengths.

Most sessions are very short and the frequency drops exponentially as the length

increases. However, inconsistent with exponential behavior, there are some very

long sessions in the tail for each user.

We find that a mixture of exponential and Pareto distributions can model

both ends of the spectrum. The former captures short sessions and the latter

captures long sessions. That is, session lengths can be described by the following

mixture model:

r · Exp(λ) + (1− r) · Pareto(xm, α) (2.1)

In this equation, r is the relative mix of the two distributions, λ is the rate of the

66

0
10

00
20

00
30

00

0 1000 2000 3000
Observed quantiles

M
od

el
 q

ua
nt

ile
s

Figure 2.33: QQ plot of session lengths model for a sample user. The linearity

of the fitted line graphically indicates that the mixture model is a good fit for

session length values.

exponential, and xm and α are the location and shape parameters of the Pareto

distribution.

The location for a Pareto distribution represents the minimum possible value

of the random variable. The location value that offers the best fit is the screen

timeout value of the user, because the session length PDF has a spike at this

value. The spike corresponds to short sessions that are ended by the timeout

(when the user forgets to switch the screen off); we confirm this using controlled

experiments with different timeout values. Figure 2.32 shows this spike, at 60 and

15 seconds, for example users from each dataset. The timeout provides a natural

division between the two component distributions. We automatically infer its

approximate value using a simple spike detection algorithm.

67

We use the EM algorithm to infer the maximum likelihood estimation (MLE)

of the remaining three parameters [DLR77]. Figure 2.33 shows the quality of this

fit for an example user using the QQ plot [BCW88]. Almost all quantiles are

along the y = x line, indicating a good fit.

Figure 2.34 shows the four inferred parameters for various users. While users

can be modeled using the same mixture model, the parameters of this model vary

widely across users. Because of the way we construct our model, the distribution

of the parameter r and xm also provide insight into how frequently users’ screen is

switched off by the timeout and the relative popularity of different timeout values.

60 seconds is the most popular value, likely because it is the most common default

timeout and many users never change the default.

2.6.2 Time between Sessions

We find that the Weibull distribution can explain the screen off times. This

distribution has two parameters referred to as its scale and shape. We find the

MLE for these parameters for each user. From the QQ-plot in Figure 2.35, we

notice that the model predicts a greater probability of seeing some very large

offtimes than are observed in the datasets. However, the probability of seeing

these large offtimes is small; there are 2.7% data points that have a y-value

greater than 8000 in that graph. Hence, we believe that Weibull provides a good

fit for the length of intervals between interactions.

Figure 2.36 shows the distribution of the estimated shape and scale of the

fitted Weibull distributions. Interestingly, the shape is consistently less than one.

Weibull shape values less than one indicate that the longer the screen has been off,

the less likely it is for it to be turned on by the user. This behavior has interesting

implications for power saving policies. For instance, periodic activities such as

68

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100
User percentile

E
st

im
at

ed
 m

ix

(a) Relative mix (r)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100
User percentile

E
st

im
at

ed
 r

at
e

(b) Exponential rate (λ)

0
20

40
60

0 20 40 60 80 100
User percentile

T
im

eo
ut

 (
s)

(c) Pareto location (xm)

−
1.

0
−

0.
4

0.
2

0.
6

1.
0

0 20 40 60 80 100
User percentile

E
st

im
at

ed
 s

ha
pe

(d) Pareto shape (α)

Figure 2.34: Distribution of inferred model parameters that describe session

length values of users in both datasets. While the users can be modeled us-

ing the same mixture model, the parameters of this model vary widely across

users. The distribution of the Pareto location parameter indicates that most

users never change the default timeout of the screen.

checking for email when the screen has been off for a while may be deferred or

rescheduled if needed without hurting user experience.

69

0
40

00
80

00

0 4000 8000
Observed quantiles

M
od

el
 q

ua
nt

ile
s

Figure 2.35: QQ plot of session offtime model for a sample user. The linear

relation between model quantiles and observed quantiles graphically suggests

that the model fits the data well.

2.6.3 Application Popularity

We find that for each user the relative popularity of applications can be well de-

scribed by a simple exponential distribution. This qualitative invariant is useful,

for instance, to predict how many applications account for a given fraction of

user attention. For the example users in Figure 2.11, this facet can be seen in the

inset plots; the semi-log of the popularity distribution is very close to a straight

line.

Figure 2.37(a) shows that this exponential drop in application popularity is

true for almost all users; the mean square error between modeled exponential and

actual popularity distribution is less than 5% for 95% of the users.

70

0
50

0
10

00
15

00

0 20 40 60 80 100
User percentile

E
st

im
at

ed
 s

ca
le

(a) Weibull scale

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100
User percentile

E
st

im
at

ed
 s

ha
pe

(b) Weibull shape

Figure 2.36: Distribution of inferred model parameters that describe the distribu-

tion of time between sessions for users in both datasets. The shape is consistently

less than one which indicates that the longer the screen has been off, the less likely

it is to be turned on again by the user.

Figure 2.37(b) shows the inferred rate parameter of the application popularity

distribution for various users. We see that the rate varies by an order of magni-

tude, from 0.1 to almost 1. The value of the rate essentially captures the pace

of the drop in application popularity. Lower values describe users that use more

applications on a regular basis. One implication of the wide range is that it may

be feasible to retain all popular applications in memory for some users and not

for others.

2.7 Summary

By studying 255 users of two different smartphone platforms, we comprehen-

sively characterized user activities and their impact on network and battery. We

quantify many hitherto unknown aspects of smartphone usage. User diversity

71

0
20

40
60

80
10

0

0 20 40 60 80 100
User percentile

M
S

E
 (

%
)

(a) MSE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100
User percentile

E
st

im
at

ed
 r

at
e

(b) Rate parameter

Figure 2.37: (a) The mean square error (MSE) when application popularity dis-

tribution is modeled using an exponential. MSE is less than 5% for 95% of the

suers which indicates that the exponential drop in application popularity is true

for almost all users. (b) The inferred rate parameter of the exponential distribu-

tion for different users. The rate varies by an order of magnitude among users.

is an overarching theme in our findings. For instance, different users interact

with their phones 10-200 times a day on average; the mean interaction length of

different users is 10-250 seconds; and users receive 1-1000 MB of data per day,

where 10-90% is received as part of active use.

This extent of user diversity implies that mechanisms that work for the average

case may be ineffective for a large fraction of the users. Instead, learning and

adapting to user behaviors is likely to be more effective, as demonstrated by our

personalized energy drain predictor. We show that qualitative similarities exist

among users to facilitate the development of such mechanisms. For instance, the

longer the user has not interacted with the phone, the less likely it is for her to

start interacting with it; and application popularity for a user follows a simple

exponential distribution.

72

Our study points to ways in which smartphone platforms should be enhanced.

Effective adaptation will require future platforms to support light-weight tools

that monitor and learn user behaviors in situ. It will also require them to expose

appropriate knobs to control the behavior of lower-level components (e.g., CPU

or radio).

73

CHAPTER 3

Automating Battery Management

Our user studies revealed that users run a wide range of applications in addition to

voice calling on modern smartphones. We also learned that significant diversity in

usage habits combined with the diversity in hardware and battery specifications,

makes battery life of smartphones unpredictable. If batteries lasted long enough,

unpredictability would not have been a serious concern. However, the linear

improvements in battery capacities as discussed in Chapter 1 are no match for

the rate of new power consuming features and applications that are offered on

smartphones. As a result, the average battery life time gets shorter with the

introduction of each new generation of smartphones to the market.

Many pervasive computing applications and increasing number of other ap-

plications, such as email clients and cloud sync services, have components that

continuously run in the background. Such applications are particularly power

consuming 1. Unlike traditional fully interactive applications, users do not have

direct control over the resource consumption of background tasks. Therefore, the

onus is on developers of such applications to select “optimal” duty cycling con-

figurations. Due to significant diversity among users and variable usage patterns

of individuals, as presented in Chapter 2, no single static configuration can be

optimal for all users. As a result, there are always some users whom application

1Modern smartphones rely on long user idle times to switch the phone hardware off and
save battery power. Background processes invalidate this assumption.

74

developers cannot satisfy when it comes to battery life time.

Personalization can be the solution to these problems. But so far with no

systematic way to do it, personalization has been yet another challenge for app

developers. Most developers expose one or more parameters to the users to enable

them to manually change the power consumption configuration. For example, a

mobility tracking application developed at the Center for Embedded Networked

Sensing allows users to change GPS and Accelerometer sampling intervals. Even if

users understood the relation between these configuration parameters and battery

consumption rate, they would rarely change them because it is cumbersome. For

instance, in our user studies on different platforms we found that majority of

users never change the default screen timeout value of their smartphone.

In this chapter we introduce PowerLeash, a system that gives users control

over their phone’s battery life time and automates personalization of background

applications for developers. PowerLeash monitors the user’s interaction with the

phone and battery drain. It learns the impact of background applications on

battery drain rate. With a simple user interface, PowerLeash receives the user’s

desired battery life in terms of a single metric that users can understand —

battery lifetime goal. With this information PowerLeash dynamically changes

the power consumption configuration of background applications to meet the

user’s battery expectation each day.

3.1 System Design

The design of PowerLeash can be best explained in the context of the typical

use case. Consider a smartphone user, Alice, who wants to run an application,

Actigraphy, that estimates her mobility and calorie expenditure by continuously

75

recording GPS and accelerometer information in the background. But she is

reluctant to do so because when Actigraphy runs, her battery lasts only 12 hours

on average, which means that on many days it will run out before she gets an

opportunity to charge her phone in the evening. With existing smartphones, she

thus faces the undesirable trade-off between not running Actigraphy or actively

managing its power use.

We want to give Alice the following ability: she tells her phone how long she

would like the battery to last every day or for all days through her calendar, and

with this information the power consumed by Actigraphy and other background

applications is automatically managed to meet the deadline, adapting as needed

to her use of other (interactive) applications.

If PowerLeash detects that the battery goal is unlikely to be met (e.g., be-

cause of abnormally high interactive usage), it sends an early warning to Alice.

This warning signal can help her take appropriate actions such as avoiding lower

priority usage [RSH08] or planing to charge her phone at a convenient time.

In principle, Actigraphy itself can be written in a way to meet user-defined

battery goals. But we advocate a system-wide solution. It is harder for an

application to engineer this functionality because it does not have a global view

(e.g., other background applications and their future power consumption).

Further, automatic, adaptive control that is enabled by PowerLeash is prefer-

able to static configuration options (e.g., sampling interval) that some applica-

tions provide to users today. Users have little understanding how these options

translate to power use, and any static configuration can be too aggressive on

some days and too conservative on others.

76

3.1.1 Design principles

The design of PowerLeash is guided by three principles. Here, we introduce these

principles and our justifications.

1. Easy to deploy We want to build a system that can be easily deployed.

This desire has two implications. First, it requires us to leverage information

sources that are already available on commodity smartphones. This will enable

us to immediately start gaining field experience from Battery Drain Management

(BDM) systems towards refining their design, rather than waiting for future gen-

erations of hardware or software that may be able to provide more accurate or

granular information.

Second, it requires us to handle the high degree of diversity that exists for

devices, users, or background applications. This in turn means that we should

not require any offline customization or parametrization for individual devices or

users. Any personalization of system operation should occur online and in-situ.

2. Easy to use for application developers The developers of background

applications will be more likely to adopt our proposed APIs if they are easy to

use. For this reason, PowerLeash expects applications to implement only two

simple functions–one that enables it to poll how much work they have done since

start and another that enables it to communicate the maximum amount of work

they can do in the next interval. Further, the units of work are application-level

(e.g., number of times location was polled), rather than absolute level of energy

which is harder to use and varies with the platform.

3. Easy to use for users Finally, to have any chance of acceptance, the

system should be easy to use for users themselves. For this reason, the only

77

UI Applications

PowerLeash
UI

Interactive
Application

#1

Interactive
Application

#2

Background Applications

PowerLeash
Service

Background
Application A

Background
Application B

B
a
tt

e
ry

 G
o
a
l U

ser W
arn

in
g

getWork()
setBudget()

Figure 3.1: General architecture of PowerLeash. PowerLeash consists of a user

interface, application interfaces, and a background service.

input we ask of users is to specify a battery lifetime goal. We believe that users

are capable of specifying this goal because they know when the next charging

opportunity will arise (e.g., at night, after the flight).2

3.1.2 Design Overview

Figure 3.1 shows an overview of PowerLeash. PowerLeash consists of a user

interface, application interfaces, and a background service.

User interface Users configure their desired battery goal using a simple

interface (Figure 3.2). This interface appears automatically when the phone is

unplugged from the charger, to remind the user to set the goal. It can also be

recalled later to change the goal.

2In future work, we will explore the extent to which we can free users from providing even
this input by learning their daily patterns.

78

Figure 3.2: User interface of PowerLeash that prompts user to set a battery goal

after every charging instance.

Application interface Background applications register with PowerLeash along

with a desired planning interval that we refer to as the horizon. A short horizon

is for applications that can modulate their energy use at short time frames (e.g.,

by changing the location sampling interval). Longer horizons is for applications

with uneven energy usage. For instance, an application that needs to periodically

upload data to a server consumes a burst of energy when the data is uploaded.

This application is not in a position to promise that it will not consume over x

units of energy every minute, but it can promise to conusme less than 30x units

over 30 minutes.

Background applications implement an interface with two functions. The

nature of this interface is inspired by MS Manners [DB00]. The two functions

are:

• getWork(): This function should return a vector indicating progress or

79

amount of work done since the application started. The application counts

its main energy consuming operations (e.g., location polling, data upload-

ing) and returns the cumulative values in a vector. PowerLeash does not

need to know what the individual entries in the vector represent. It only

expects that their order is consistent. The counts can be fractional values,

e.g., (126.0, 1763.5)

• setBudget(): This function is called by PowerLeash to signal the amount

of work that the application can perform within its next horizon. It is called

with two vectors. The first vectors contains the amount of work of each type

and the second contains their relative impact on power consumption. The

second vector enables the the application to do more of one type of work

and less of another, while keeping power footprint the same if it decides to

and is possible.

Background service PowerLeash constantly monitors resource usage (e.g.,

CPU, screen), the work done by background applications along with the battery

level. This information is used to build and update a model that estimates the

impact of resource usage and background work on power consumption. It is also

used to learn statistical measures of resources consumed by interactive usage.

Based on the power model and this measure, PowerLeash periodically decides

how much energy can be allocated to background applications such that the

battery will likely not run out before the specified deadline. It then divides this

energy among individual background applications. An application’s budget is

communicated to it, after translating it to its units of works using the power

model.

80

Battery level [1..100]

Time the screen is ON seconds

CPU utilization [1..100]

Memory usage bytes

Cellular data usage bytes

WiFi data usage bytes

Voice call duration seconds

of disconnections count

Signal strength [1..5]

Work by background apps app-specific

Table 3.1: Quantities monitored by PowerLeash to build the power profile and

their units.

3.2 Power Consumption Model

PowerLeash learns the power profile of the smartphone while it is being used,

therefore it does not require any off-line power profiling or any external measure-

ment setup. We use the power profile to compute the impact of a) user interaction

with the phone, and b) work done by background applications on battery drain.

We use a modified version of SystemSens (introduced in Appendix A) to track

resource consumption and other events of interest that have an impact on power

(e.g., network disconnections). Table 3.1 lists the quantities that we currently

track. Each of these are easy to monitor on Android phones with minimal impact

on phone battery as discussed in Chapter A. Some of these quantities are event-

driven (e.g., disconnections); those that need polling (e.g., CPU usage) are polled

every two minutes. When the phone is plugged to the charger, data since the last

upload is uploaded to the PowerLeash server.

81

To build the power profile, we assume that power consumption has a linear

relationship with battery level and a linear, additive relationship with resources

used. In other words, the change in battery level in a given time period is:

∆BatteryLevel = β0 + Σi(βi × ri) + Σj∈BgAppsΣk(αjk × wjk) (3.1)

where ri represents the phone-level quantities (the first group of quantities in

Table 3.1), BgApps is the set of background applications, and wjk is the k-th

element of the work vector reported by Application j. βi and αjk represent the

impact on power of their corresponding factor and the model parameters that we

need to learn. β0 represents baseline power consumption. While accounting for

phone resources, we subtract what is used by background applications, that is,

rCPU is measured total CPU usage minus what is used by background applica-

tions. (Android provides resource usage information for individual applications.)

Resource use of background applications is accounted for as part of their work.

To learn model parameters, we construct one such row for each 10-minute

interval (we will refer to the resulting matrix as usage matrix) and then run

robust regression [RLW87] on the usage matrix.

We run the model building process at the server once per day and separately

for each user. That is, the model is personalized to the user and is updated daily.

Each time a maximum of the last two weeks of data is used for the user. New

models are communicated to the phone when it connects to the server next.

3.2.1 Discussion

The model as built above is low-fidelity due to several reasons. First, battery

level is a coarse measure of power consumption. Figure 3.3(a) shows the sampled

battery level of an example user. We can see that it varies unevenly, instead of

82

0 2 4 6 8 10 12

0
25

50
75

10
0

Time (hour)

B
at

te
ry

 L
ev

el
 (

%
)

(a)

0 2 4 6 8 10 12

3.
5

3.
7

3.
9

4.
1

Time (hour)

V
ol

ta
ge

 (
v)

(b)

Figure 3.3: Sampled battery level (a) and voltage (b) for an example user. Battery

information on Android is broadcast event based, therefore the sampling interval

varies. Both battery level and voltage vary unevenly, but battery voltage is much

more noisy. Therefore we decided to use battery level.

a smooth monotonic decrease. Such behavior is part of the reason we use a 10-

minute interval to build the power profile, so that local effects can be smoothed

out. Using current instead of battery level would permit more accurate estimate

of power draw [DZ11b] but only a few commodity phones provide that information

today. We consider using battery voltage as well (which like battery level is easily

obtained) but found it to be even more noisy than battery level due to recovery

and rate effects [RVR03]. Figure 3.3(b) shows an example.

Second, the measures we use for resource consumption correspond only ap-

proximately to power consumption. For instance, because of DVFS (dynamic

voltage and frequency scaling) [PS01] the power consumed by CPU depends on

its operating mode in addition to how much it was used. Similarly, power con-

sumed by the radio depends not only on the total amount of data transferred

but also on the sizes of individual transfers [BBV09]. We work instead with ap-

proximate quantities because they can be obtained easily, universally and with

83

minimal overhead.

Finally, recent work shows that total power consumed may not be a linear,

additive function of power consumed by individual resources [PHZ11]. We note

that prior works on power modeling [DZ11b], even those that build high-fidelity

models, make this linearity assumption as well because linear models are simpler

to build and use. Despite these sources of errors, we find that our model is good

enough for our purposes of managing background applications. In that sense,

what we have a wrong but useful model [Geo79].

3.2.2 Evaluation

In this section we use data from 20 users that were running PowerLeash without

any adaptation for 5-8 weeks (see Section 2.1.1 for more details) to evaluate the

performance of our modeling.

Figure 3.4 shows actual and predicted battery level for two example discharge

cycles. A discharge cycle begins when the phone is disconnected from a charging

source and ends when it is charged again or runs out of battery. Lengths of

discharge cycles vary, and they do not necessarily start when the battery is com-

pletely charged. Figure 3.4(a) is a case where the model very accurately predicts

changes in battery level based on resource consumption. In contrast, the model

fails to accurately predict battery level changes in Figure 3.4(b).

Figure 3.5 quantifies the error of our model when used to predict battery

level change across a complete discharge cycle. Figure 3.5(a) shows the CDF

of absolute error in predicting battery level at the end of a discharge cycle. It

plots the absolute difference between the predicted and actual levels. Figure

3.5(b) shows the CDF of relative error ratio, that is, absolute error divided by

the actual level. We see that the error, while noticeable, is low. The median of

84

0 1 2 3 4 5 6 7 8 9

0
25

50
75

10
0

Time (hour)

B
at

te
ry

 le
ve

l (
%

)

Actual
Model

(a)

0 2 4 6 8 10

0
25

50
75

10
0

Time (hour)

B
at

te
ry

 le
ve

l (
%

)

Actual
Model

(b)

Figure 3.4: Actual and predicted battery level for two example discharge cycles

of a user. (a) A case where the model very accurately predicts changes in battery

level based on resource consumption. (b) Example of a case where the model

fails to accurately predict battery level.

85

0 10 20 30 40 50 60

0.
00

0.
25

0.
50

0.
75

1.
00

Battery level (%)

C
D

F

Full model
Rate model

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Error ratio

C
D

F

Full model
Rate model

(b)

Figure 3.5: Absolute and relative error of two models when predicting battery

level at the end of a discharge cycle. The error, while noticeable, is low. The

median of relative error is 0.11 and the mean is 0.14.

relative error is 0.11 and the mean is 0.14. Though not shown in the figure, we

find that the model is unbiased, that under prediction is just as likely as over

prediction. Predictions for a given day are made based on the model built the

previous day using at most two weeks of data.

To put the accuracy of our model in context, we compare it against another

low-fidelity model built using easily obtained information. Oliver et al. use drain

rate for each user and clusters of similar users to predict battery level [OK11].

Figure 3.5 shows that the error of this model is higher. The median of rela-

tive error is 0.22 and the mean is 0.30— about twice that of our model. The

higher accuracy of our model stems from separating out the power consumed by

individual resources.

We also find that personalizing of the model to each user and updating the

model every day helps increase accuracy. Technically, the model should not

86

0 10 20 30 40 50 60

0.
00

0.
25

0.
50

0.
75

1.
00

Battery level (%)

C
D

F

Personalized
Generic

(a)

0 10 20 30 40 50 60

0.
00

0.
25

0.
50

0.
75

1.
00

Battery level (%)

C
D

F

Recent model
Old model

(b)

Figure 3.6: Absolute error of a (a) generic battery model and (b) old battery

model compared to personalized recent models for each user when predicting

battery level at the end of a discharge cycle. We conclude that model accuracy is

lower when an old or stale model is used or when the model is not personalized.

change with time and should be identical for users that use the same smartphone.

(High-fidelity models assume that this is the case.) But this does not hold for

our low-fidelity model. Figure 3.6 shows that the model accuracy is lower when

an old model is used to predict the battery level for the current day or when the

model is built using information from all users.

We conclude that personalization and recency help combat some of error

sources mentioned above due to low-fidelity information. Our results also sug-

gest that building a universal (across users and time) model with low fidelity

information is a more challenging task than building a personalized model that

is updated periodically. Dong et al. [DZ11b] also pointed out the value of per-

sonalization.

87

0 4 8 12 16 20

−
20

5
30

55

Hour of day

S
cr

ee
n

us
ag

e
(M

in
ut

e) Mean
Standard deviation
Sample day

(a)

0 4 8 12 16 20

−
30

13
57

10
0

Hour of day

Tr
af

fic
 (

K
B

)

Mean
Standard deviation
Sample day

(b)

Figure 3.7: Mean and standard deviation and sample of one day of screen and

traffic usage for an example user as a function of time of day. Variations in

mean values are much smaller than the standard deviation across each mean.

Throughout the day each parameter is on average statistically similar, that is,

the error bars are overlapping.

3.3 Estimating Interactive Usage

To accurately estimate energy that can be safely assigned to adaptive background

applications, PowerLeash needs to estimate expected future interactive usage.

This estimation is challenging because we find that interactive usage is highly

variable. But we show that reasonable accuracy can be achieved by basing the

estimate on recent history.

3.3.1 Highly Variable Usage

By analyzing interactive usage of data collected from real users, we found that

the usage of every resource (e.g., CPU, screen, radio) is highly variable. For an

example user, Figure 3.7 shows for every hour of the day the mean and standard

deviation of two interactive usage parameters. Figure 3.7(a) shows mean and

88

standard deviation of the duration for which the screen was on, and Figure 3.7(b)

is the same graph for cellular network traffic. These graphs are based on 83 days

worth of data. The graphs show that throughout the day each parameter is on

average statistically similar (that is, the error bars are overlapping).

More importantly, we see that during the day time when the phone is being

discharged (and controlling background applications is most needed), the variance

both parameters are significant, roughly 2-4 times their mean. This property

holds for other resources as well. Because of this high variance, we find that

estimates of interactive usage based on previous days’ data have poor accuracy.

Our analysis also revealed that the variance of interactive usage within a day

(as opposed to across multiple days) is much lower. Figure 3.7 also includes the

resource usage within a single discharge cycle. We see that the variance is much

lower. If a user is having a low-usage day, she is likely to continue to have a

low-usage day. On the other hand, when her usage is high, it is likely to continue

above average.

3.3.2 Short-term Memory in Usage

We find that every usage parameter exhibits significant autocorrelation in rela-

tively short time lags. For example, the total time that a user keeps the screen

on during a 10 minute interval is strongly correlated with that parameter during

the previous 10 minutes. Figure 3.8 shows the autocorrelation coefficient of two

example parameters during 10 minute intervals at different time lags for a sample

user. Ignoring Lag = 0, that corresponds to self correlation, Lag = 1 shows the

highest correlation.

These observations imply that smartphone interaction parameters have short-

term memory. To test this hypothesis we use the k-means algorithm [Mac67]

89

0 5 10 15 20 25

0.
00

0.
25

0.
50

0.
75

1.
00 Screen Usage Time

Lag (10 minutes)

A
ut

oc
or

re
la

tio
n

(a)

0 5 10 15 20 25

0.
00

0.
25

0.
50

0.
75

1.
00 Traffic

Lag (10 minutes)

A
ut

oc
or

re
la

tio
n

(b)

Figure 3.8: Autocorrelation of screen time (a) and cellular traffic (b) across 10

minute intervals at different time lags. There is significant correlation at lag = 1

implying that smartphone interaction parameters have short-term memory.

to partition the usage matrix to two clusters. Considering the highly skewed

distribution of usage parameters as presented in Chapter 2 we expect one cluster

to represent inactive times and the other cluster active intervals. We later explore

partitioning the usage matrix to more than two clusters.

Figure 3.9(a) shows a 3D scatter plot of the usage matrix values when con-

sidering screen usage, CPU usage and network usage 3. Similarly Figure 3.9(b)

shows a bivariate CLUSPLOT of the usage matrix based on the two principal

components for the same two users. We can see that the shapes of active and in-

active clusters are different for these two users, but in both cases they are distinct

from each other. We observed the same pattern on all other users.

Assuming that transitions between these two states are based on a first or-

3We find these three parameters to be the most important usage parameters both in terms
of their coefficients in the power model and in terms of their impact on clustering

90

 0 5 10 15 20 25

0
1

2
3

4
5

6

 0
20

40
60

80

Screen (Minute)

C
P

U
 (

%
)

N
et

w
or

k
(K

B
)

 0 5 10 15 20

0
1

2
3

4
5

6
7

 0
 20

 40
 60

 80
100

Screen (Minute)

C
P

U
 (

%
)

N
et

w
or

k
(K

B
)

(a)

−8 −6 −4 −2 0

−
8

−
6

−
4

−
2

0
2

4
6

CLUSPLOT

Component 1

C
om

po
ne

nt
 2

1

2

0 2 4 6 8 10 12

−
10

−
5

0
5

10

CLUSPLOT

Component 1

C
om

po
ne

nt
 2

1

2

(b)

inactive active

inactive 0.89 0.11

active 0.65 0.35

inactive active

inactive 0.96 0.04

active 0.62 0.38

(c)

Figure 3.9: (a) 3-dimensional scatter plots of screen, CPU and network usage

for two example users. Blue points belong to the inactive cluster and red points

belong to the active cluster. (b) bivariate clusplot of usage matrix. The cluster

labeled as number 2 represents inactive times. (c) transition probabilities assum-

ing a first-order Markov chain. We see that both of these example users are very

likely to stay in the inactive state. This observation matches with the skewed

distribution of usage parameters.

91

0.
00

0.
50

1.
00

1 3 5 7 9 12 15 18 21

P
ro

ba
bi

lit
y

User ID

Observed
Simulated

Figure 3.10: Probability of being in inactive state computed from real traces and

simulated state sequence based on a first order Markov Chain. The close match

between simulated and observed marginal probabilities for all users confirms that

smartphone interactive usage behaves based on a first-order Makrov Chain with

two states.

der Markov Chain model, meaning that the probability of being at each state

only depends on one past state, Figure 3.9(c) shows the transition matrix of

such a hypothetical Makrov Chain for the two example users. We see that both

users, are very likely to stay in the inactive state which matches with the skewed

distributions of usage parameters.

To verify the Markov Chain process assumption, we build the transition ma-

trix for all the users and use it to simulate a large sequence of states. We then

compare the marginal probability of being in the inactive (or active) state using

both observed and simulated data. Figure 3.10 compares these two values for 22

92

1 2 3 4 5 6 7 8 9−
24

10
−

21
60

−
19

20
−

16
70

Number of clusters

B
IC

1 2 3 4 5 6 7 8 9−
26

20
−

22
10

−
18

10
−

14
00

Number of clusters

B
IC

Figure 3.11: BIC of different number of clusters for two sample users. We find

that for all other users, similar to these two example users, BIC increases with

the number of clusters and the rate of its growth is much faster for 1-5 clusters.

users from a real user study. The close match between simulated and observed

probabilities for all users confirm that smartphone interactive usage behaves like

a first order Markov Chain consisting of two states.

Optimal number of clusters One method to find the optimal number of

clusters in unsupervised learning is using the Bayesian Information Criteria (BIC)

[PB04]. When clustering, if BIC is maximized at any specific number of clusters

that number can be considered to be the optimal model. We evaluated BIC for

models consisting of 1 to 10 different clusters for all the users. Figure 3.11 shows

the BIC graph for two sample users. We find that for all users, BIC increases

with number of clusters. The rate of its growth is much faster for 1-5 clusters.

A different method to identify the optimal number of clusters is considering

within-groups sum of squares (WSS). WSS monotonically decreases as the num-

ber clusters increase but if there is an optimal number of clusters, the rate of

decrease of WSS flattens. Statistical “folklore” has it that the location of such a

93

1 2 3 4 5 6 7 8 9

30
0

81
0

13
00

18
00

24
00

Number of clusters

W
S

S

1 2 3 4 5 6 7 8 9

73
0

22
00

38
00

53
00

68
00

Number of clusters

W
S

S

Figure 3.12: WSS of different number of clusters for the two sample users. WSS

monotonically decreases as the number of clusters increases but if there is an

optimal number of clusters, the rate of WSS decrease would flatten beyond that

point.

“elbow.” Figure 3.12 shows the values of WSS at different number of clusters for

the same two sample users.

Tibshirani et al.[TWH01] formalized this heuristic for identifying the optimal

number of clusters by introducing the GAP statistic. This method standardizes

the graph of WSS (in logarithm scale) by comparing it with its expectation under

an null reference distribution. We also evaluated the gap statistic [TWH01] on all

the users. Figure 3.13 shows the gap statistic for the two sample users. For these

two users K = 2 maximizes the GAP statistic. We come to the same conclusion

when looking at the GAP statistic for most other users. This finding matches

our anecdotal understanding of smartphone usage.

94

1 2 3 4 5 6 7 8 9

0.
50

0.
88

1.
20

1.
60

2.
00

Number of clusters

G
A

P
 s

ta
tis

tic

1 2 3 4 5 6 7 8 9

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Number of clusters

G
A

P
 s

ta
tis

tic

Figure 3.13: The GAP statistic for the two sample users. For these two users

K = 2 maximizes the GAP statistic.

3.3.3 Estimation Algorithm

Building on this insight, we can estimate new future interactive usage based on

recent past usage. Figure 3.14 shows the CDF of error when estimating traffic

and screen interaction time for all users. Recent mean is an estimation based on

the method above, and past mean uses the mean of the parameter at the same

time of day during past days. Table 3.2 compares the mean absolute error for

these two algorithms.

We use the recent estimator to estimate the usage of each resource. To esti-

mate the total energy needed for interactive usage, we aggregate results across

resources using the coefficients of the power model.

3.4 Adaptation Policy

In this section we describe how PowerLeash allocates energy to adaptive back-

ground applications such that the battery lifetime goal is met and interactive

95

Absolute Error

0.0 2.5 5.0 7.5 10.0

0.
00

0.
25

0.
50

0.
75

1.
00

Screen time (minutes)

C
D

F

Recent
Past

Absolute Error

0.0 6.2 12.0 19.0 25.0

0.
00

0.
25

0.
50

0.
75

1.
00

Screen events

C
D

F
Recent
Past

Absolute Error

0.0 0.5 1.0 1.5 2.0

0.
00

0.
25

0.
50

0.
75

1.
00

Cellular traffic (KB)

C
D

F

Recent
Past

Absolute Error

0.0 0.5 1.0 1.5 2.0

0.
00

0.
25

0.
50

0.
75

1.
00

WiFi traffic (KB)

C
D

F

Recent
Past

Absolute Error

0 12 25 38 50

0.
00

0.
25

0.
50

0.
75

1.
00

CPU Usage (%)

C
D

F

Recent
Past

Absolute Error

0 130 260 380 510

0.
00

0.
25

0.
50

0.
75

1.
00

Memory usage (KB)

C
D

F
Recent
Past

Figure 3.14: CDF of the error when estimating usage parameters for next 10

minutes using past and recent usage for all users. For all usage parameters recent

mean is a better estimator of future compared to passed mean. The difference

in error of these two approaches is more significant for traffic, CPU and memory

usage.

96

Recent Past

Screen 0.69 Min 0.78 Min

Events 0.87 0.9

Cell. Traffic 0.08 KB 0.13 KB

WiFi Traffic 0.07 KB 0.17 KB

CPU 4.7% 11%

Memory 3.9 KB 52.7 KB

Disconnections 0.84 0.98

Call 5.57 Sec 5.67 Sec

Table 3.2: Mean of absolute error of estimating usage parameters for next 10

minutes for Recent and Past algorithms.

usage is not curtailed. To motivate our eventual policy, we first describe two

policies that represent extremes with respect to how energy to background ap-

plications can be controlled. We call these policies ShortLeash and LongLeash.

3.4.1 ShortLeash Policy

As the name suggests, the ShortLeash policy maintains a tight control over the

energy used by background applications. We assume that the desirable battery

drain rate from the beginning of the discharge cycle to the end (lifetime goal) is

linear. This policy can be easily modified to follow a different drain rate curves

if needed.

Given the desired drain rate curve, we can compute if the current battery

level is higher or lower than what is desirable. If it is higher, we can increase the

energy allocation for background applications. Otherwise, we should decrease it.

97

δ ← IdealLevel− Level

σ ←
∑

ji∈BgApps αjk

for j ∈ BgApps do

for k ∈ BgAppj do

if δ > 1 then

tjk ←
wjk(i−1)

δ

else if δ < −1 then

γ ←
αjk

σ

tjk ← wjk(i− 1) + γ

else

tjk ← wjk(i− 1)

end if

bjk(i)← 2×
(

tjk × horizonj

)

−Bjk

end for

end for

Figure 3.15: Pseudocode of ShortLeash policy. ShortLeash maintains a tight con-

trol over the energy used by background applications. To avoid rapid changes in

assigned budgets ShortLeash uses additive increases and multiplicative decrease

(AIMD).

98

This policy is not identical to but is inspired by Odyssey [FS99]. Figure 3.15

shows the pseudocode for the ShortLeash policy. It uses additive increase and

multiplicative decrease (AIMD), which leads to a slow increase in budget but a

rapid decrease along with quickly reaching fairness [Jac88]. The control algorithm

in Figure 3.15 is run every two minutes, and new allocations are computed and

communicated to the background applications.

In all the algorithms in this section Bjk is the total amount kth element

of reported work vector by the jth adaptive application during the past horizon

interval and bjk is the amount of budget for the kth resource of the jth application

within its specified horizon, horizonj . Assigned budgets have memory within one

past horizon, meaning that if an application does not consume all its assigned

budget, its budget within the next horizon will include the unused budget and

vise versa.

3.4.2 LongLeash Policy

In this policy, applications are given a lot more freedom. Their budget is decided

not on the basis of the current battery level alone but based on what they can

safely consume until the battery deadline. Given the current battery level and an

estimate of how much energy will be consumed through interactive usage until

the deadline, the LongLeash policy computes how much energy can be safely

allocated for background work. Thus, unlike the ShortLeash policy that allocates

energy with the aim of aligning the battery level to the desirable drain rate curve

at all times, it simply aims to meet the deadline from this point onwards.

Figure 3.16 shows the pseudocode for the LongLeash policy. Periodically, it

evaluates the total budget available to all adaptive applications by subtracting

the expected power needed by interactive usage from available battery capacity.

99

Left← Deadline− CurrentT ime

Interactive←
∑

i∈Resources Ei(Deadline)× βi

Available← Level− Interactive

for j ∈ BgApps do

for k ∈ BgAppj do

if Available < 0 then

bjk(i)← 0

else

ρjk ←
Available
αjk×Left

bjk(i)← 2× ρjk × horizonj −Bjk

end if

end for

end for

Figure 3.16: Pseudocode for LongLeash policy. LongLeash gives background ap-

plications significant freedom because the budget is not decided based on current

level alone.

In this algorithm Ei(t) gives the estimated usage of the ith resource between now

and a future time t.

3.4.3 PowerLeash Policy

While we present detailed empirical results in the next section, the nature of in-

teractive usage limits the effectiveness of the ShortLeash and LongLeash policies.

Because interactive workload is highly bursty, at any given time battery level can

be significantly higher or lower than what is desirable. The ShortLeash policy

reacts to these short-term variations, as a result of which assigned application

budgets become highly variable, which creates a hostile environment for the ap-

plications. On the other hand, interactive workloads are highly unpredictable as

well. This property means that the LongLeash policy can significantly underesti-

mate or overestimate interactive workloads, which can lead to battery underflows

100

window ← CurrentT ime+W

Interactive←
∑

i∈Resources Ei(window) × βi

Available← Level− IL(window) − Interactive

for j ∈ BgApps do

for k ∈ BgAppj do

if Available < 0 then

bjk(i)← 0

else

ρjk ←
Available
αjk×W

bjk(i)← 2× ρjk × horizonj −Bjk

end if

end for

end for

Figure 3.17: Pseudocode for PowerLeash policy. PowerLeash can be controlled by

adjusting the size of planning window (W) to emulate ShortLeash or PowerLeash.

and overflows.

We wanted a policy that combines the stable control of LongLeash and the

accuracy of ShortLeash. Towards that goal, we use a hybrid policy in PowerLeash.

In this policy, we use a planning window of size W and aim to align the battery

level to the desirable curve at the end of that window. ShortLeash and LongLeash

can be seen as special cases of this policy, with W=0 for ShortLeash and W=time

until the battery goal for LongLeash. In our experiments with PowerLeash, we

use W=30 minutes. It builds on the insight from the previous section that the

interactive workload for the near future can be estimated with some accuracy.

Figure 3.17 shows the PowerLeash policy. In this algorithm IL(t) gives the

ideal battery level in given future time, t and Ei(t) gives the estimated usage of

the ith resource between now and a given future time, t.

101

3.5 Simulation

To guide the design of our system and evaluate its performance we conducted

two separate user studies. We used the traces from the first study to compare

the performance of different policies in simulation. We then used our findings to

implement and deploy PowerLeash in the field to evalute its performance on real

users. In this section we present the simulation results.

During the summer of 2011 we deployed SystemSens on 20 users along with

a simple location tracking application, called LocationTracker. This application

turned on the GPS every minute and recorded the current location of the user.

The users were given Samsung Galaxy S smartphones with unlimitted data min-

utes and text plans. The deployment lasted between 5 and 8 weeks. We used this

data as input to a trace-based simulation of the PowerLeash system to compare

the performance of the policies introduced in Section 3.4.

3.5.1 Simulation Procedure

Table 3.3 lists the parameters used in our simulation and the corresponding defi-

nition. For each user the simulator builds the battery model using the algorithm

in Section 3.2. Using this model it calculates the battery level at the end of each

discharge cycle if the adaptive application did not run (Lb). Battery goal for

simulation (Lg) is defined as Lg =
Lb+La

2
.

The simulator replays the traces in each discharge cycle and uses an adapta-

tion policy to assign budget to the background application. At the end of each

cycle battery deficit is calculated as Lg − Ls. A positive deficit indicates that

the system did not meet the battery goal and a negative value for deficit indi-

cates that the algorithm was too conservative in assigning budget to the adaptive

102

Parameter Definition

La Battery level at the end of discharge cycle

Lb Calcualted battery level with no background app

Lg Battery goal for simulation (La+Lb

2
)

Ls Simulated battery level at the end of discharge cycle

deficit Lg − Ls

Table 3.3: Definition of simulation parameters. Each parameter is computed at

the end of a discharge cycle. We used deficit as the performance metric of the

simulation.

background application.

Figure 3.18(a) shows the actual and simulated battery level during a sample

discharge cycle. The figure also includes the best possible battery level, if the

background application did not run. Figure 3.18(b) shows the actual background

work and the budget assigned by the adaptation policy for the same discharge

cycle.

3.5.2 Comparing Policies

We designed the trace-based simulation procedure to compare the three policies of

Section 3.4 Figure 3.19 is CDF of battery deficit of ShortLeash, with LongLeash

and PowerLeash. It also includes an Oracle policy. The Oracle policy is the

LongLeash, but it knows future battery drain. From this plot we can see that

The deficit of ShortLeash and PowerLeash policies are distributed between -5%

and +5% with with PowerLeash being slightly closer to Oracle. The deficit of

LongLeash policy is not as good as the other two and LongLeash misses the

deadline in 75% of the cases. This result confirms that PowerLeash, as designed,

103

0 2 4 6 8

0
20

40
60

80
10

0

Time (hour)

Le
ve

l

Actual
Best
Simulated

(a) Battery Level

0 2 4 6 8
0

1
2

3
4

5
6

Time (hour)

B
ud

ge
t

Actual
Assigned

(b) Assigned Budget

Figure 3.18: (a) Actual, best possible, and simulated battery level during a sample

discharge cycle. In this example the simulated battery level ends the discharge

cycle very close to the battery goal. (b) Actual and assigned budget for the

same discharge cycle. PowerLeash is capable of meeting the battery goal by

effectively turning off the background application between 4 and 7 hours into the

experiment.

104

−10 −5 0 5 10
0.

00
0.

25
0.

50
0.

75
1.

00
Battery deficit (%)

C
D

F

ShortLeash
LongLeash
PowerLeash
Oracle

Figure 3.19: CDF of battery deficit of ShortLeash, LongLeash, PowerLeash and

an Oracle policy that knows the future. The deficit of ShortLeash and PowerLeash

policies are distributed between -5% and +5% with PowerLeash being slightly

closer to Oracle. The performance of LongLeash is not as good as the other too

and it misses the battery goal more often.

performs better than both LongLeash and ShortLeash.

To investigate why PowerLeash performs better we look at the sensitivity of

each policy to sources or error. We identified three contributers to battery deficit.

Model Error Both LongLeash and PowerLeash use the battery drain model

to convert expected future interactive usage to changes in battery level. They

also rely on the model to translate available battery capacity to background

applications’ budget. Therefore, we expect correlation between model error and

deficit for these two policies. The ShortLeash policy, on the other hand, does not

use the model in either stages. Therefore, we do not expect the battery deficit of

the ShortLeash policy to have any correlation with model error.

Figure 3.20 shows the scatter plots of battery deficit vs. model error (actual

105

Correlation = 0.05

−1.0 −0.5 0.0 0.5 1.0

−
5.

0
−

1.
5

2.
0

5.
5

9.
0

Model Error

D
ef

ic
it

(a) ShortLeash

Correlation = −0.57

−1.0 −0.5 0.0 0.5 1.0

−
5.

0
−

1.
5

2.
0

5.
5

9.
0

Model Error

D
ef

ic
it

(b) LongLeash

Correlation = −0.24

−1.0 −0.5 0.0 0.5 1.0

−
5.

0
−

1.
5

2.
0

5.
5

9.
0

Model Error

D
ef

ic
it

(c) PowerLeash

Figure 3.20: Scatter plot of battery deficit vs. model error during each discharge

cycle for ShortLeash, LongLeash, and PowerLeash policies and the least square

fit. ShortLeash battery deficit is not significantly correlated with model error.

LongLeash deficit is strongly correlated and PowerLeash stands in between.

- estimated) for the three policies. Each plot also includes the least square fit-

ted line and the correlation coefficient between battery deficit and model error.

As we expected ShortLeash battery deficit is not significantly correlated with

model error. LongLeash battery deficit is strongly correlated with model error.

PowerLeash stands in between and is not as strongly affected by model error as

LongLeash.

Non-Linear Discharge The natural question to ask is that if ShrotLeash

is not affected by model error, what is the source of its battery deficit? The

answer lies in the core assumption behind the design of the ShortLeash policy.

ShortLeash assumes that the battery discharge rate is linear. We hypothesize

that when battery level values during a discharge cycle deviate from a straight

line ShortLeash cannot perform well.

To test our hypothesis we define a measure of nonlinear battery discharge for

each discharge cycle as follows:

106

0.0 3.3 6.7 10.0 13.0
0

25
50

75
10

0
Time (hour)

B
at

te
ry

 L
ev

el
 (

%
)

Battery Level
Least Square Fit
Linear Error

Figure 3.21: Battery levels and Least square fitted line during an example dis-

charge cycle. The red arrow shows the Linear Error during this cycle.

Definition Linear Error is defined as the last residual of the least square line

fitted to battery level values during each discharge cycle.

Figure 3.21 shows the Linear Error for a sample discharge cycle. In this

example, battery level values deviate from a straight line, therefore the Linear

Error is relatively large. The advantage of defining the Linear Error the way we

did is that it can distinguish between cases where battery levels are below or

above the straight line.

Figure 3.22 shows the scatter plots of battery deficit vs. Linear Error for

the three policies. Each plot also includes the least squared fitted line and the

correlation coefficient between battery deficit and Linear Error. We see significant

correlations for ShortLeash and PowerLeash. The correlation coefficient is not as

significant for LongLeash, but it is not negligible.

We see that LongLeash is not significantly affected by usage estimation error.

We hypothesis that the PowerLeash deficit, even when future usage is known

107

Correlation = −0.8

−15.0 −7.5 0.0 7.5 15.0

−
5.

0
−

1.
5

2.
0

5.
5

9.
0

Linear Level Residual

D
ef

ic
it

(a) ShortLeash

Correlation = −0.44

−15.0 −7.5 0.0 7.5 15.0

−
5.

0
−

1.
5

2.
0

5.
5

9.
0

Linear Level Residual

D
ef

ic
it

(b) LongLeash

Correlation = −0.75

−15.0 −7.5 0.0 7.5 15.0

−
5.

0
−

1.
5

2.
0

5.
5

9.
0

Linear Level Residual

D
ef

ic
it

(c) PowerLeash

Figure 3.22: Scatter plot of battery deficit vs. linear error during each discharge

cycle for ShortLeash, LongLeash, and PowerLeash policies and least square fitted

line. Battery deficit of ShortLeash and PowerLeash have significant correlation

with linear error.

is so high that the additional error from usage estimation does not make a big

difference. On the other hand, PowerLeash performs better when it knows future

usage.

Usage Estimation Both PowerLeash and LongLeash estimate future inter-

active usage based on recent past usage. LongLeash needs to estimate usage for

long intervals into the future, but PowerLeash relies on short-term estimations.

To evaluate the impact of usage estimation on these two algorithms, we run the

simulations again but instead of estimating usage, read future values from the

traces.

To evaluate the impact of error of future usage estimation on PowerLeash we

run the simulation and instead of estimating future usage, we read future values

from traces. We call this the Oracle version of PowerLeash. Figure 3.23(a) shows

the CDF of battery deficit for PowerLeash and Oracle PowerLeash. We repeat

this experiment with LongLeash and Figure 3.23(b) compares the CDF of battery

108

−10 −5 0 5 10

0.
00

0.
25

0.
50

0.
75

1.
00

Battery deficit (%)

C
D

F

Oracle
Estimation

(a) PowerLeash

−10 −5 0 5 10

0.
00

0.
25

0.
50

0.
75

1.
00

Battery deficit (%)

C
D

F

Oracle
Estimation

(b) LongLeash

Figure 3.23: CDF of battery deficit of PowerLeash and LongLeash when com-

pared to the Oracle versions of those policies. The Oracle algorithms know the

future. The slight difference between the two version quantify the error caused

by usage estimation error.

deficit of LongLeash and Oracle LongLeash.

You can see that as expected PowerLeash performs best compared to the both

ShortLeash and LongLeash.

3.6 User Deployment

Based on the simulation results we decided to use the PowerLeash policy as the

most effective algorithm for our system and used the recent past usage to estimate

future interactive usage. During November and December of 2011 we recruited

22 users who owned Android smartphones. These users ran PowerLeash along

with an adaptive background application (Mobility or Acoustic) for two weeks

without setting battery goals. Then we enabled them to set battery goals for

109

another two weeks (some users continued this phase for more than two weeks).

11 users ran a mobility tracking application (Mobility) and 6 others ran an audio

recording application (Acoustic) and 4 users ran both. We will provide more

details about these applications bellow.

Mobility Application The Center for Embedded Networked Sensing devel-

oped a mobility classification application to help health researchers and practi-

tioners [RLR09]. A person’s range and type of mobility have numerous health

related implications. For example, after some types of treatment a patient’s level

of ambulation is a direct indicator of recovery [HRF11]. Our mobility classifica-

tion application, referred to as Mobility, uses GPS speed and one-second windows

of accelerometer data sampled at 20-30 Hz every minute 4 to classify the user’s

state as one of still, walking, running, biking, and driving.

To conserve battery power the Mobility uses the list of visible WiFi access

poitns to detect when the user is not mobile and turns off the the GPS receiver.

It reports both GPS usage and Accelerometer usage to PowerLeash.

Acoustic Application Several physiological, social and health related metrics

can be assessed based on continuous audio samples [RAC11, RMM11, WBC08].

At the Center for Embedded Networked Sensing we developed an application,

called Acoustic that samples a few seconds of audio every minute and extracts

features from the recorded sound. Length of recording and sampling interval of

the application are configurable. Computed features are then uploaded to a server

for visualization and processing when the phone is plugged for charging. This

application reports the total time that it keeps the microphone on to PowerLeash.

4The interval is configurable

110

Length of discharge cycle (hour)

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
10

20
30

40

(a)

Length of battery goal (hour)

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
10

20
30

40
50

60
70

(b)

Figure 3.24: Histogram of (a) battery discharge cycles and (b) the length of

battery goals submitted by users with bin size of one hour.

3.6.1 Evaluation

During the deployment the battery goals that each user selected were uploaded

to the PowerLeash server in addition to all the SystemSens traces. After the

deployment we analyzed users’ data automatically and manually using the Sys-

temSens visualization web interface. We identified the discharge cycles during

which the user had selected a battery goal. Figure 3.24(a) shows the histogram

of the length of discharge cycles for all users.

Although users were asked to specify a battery goal every day, some of them

did not select goals on some days. In addition, in some cases a user would choose a

battery goal and submit it, but shortly after would change it and submit again. In

these cases we only consider the second battery goal, which guided the behavior of

PowerLeash for most of the discharge cycle. Figure 3.24(b) shows the histogram

of the length of battery goals submitted by the users.

111

0.
0

18
.0

35
.0

1 3 5 7 9 11 13 15 17 19 21N
um

be
r

of
 c

yc
le

s

User ID

13
15

9

14

2525

5

11
13

20
17

14

26

11

18
15

5

30

2322

14

9

Figure 3.25: Number of discharge cycles that included battery goals for all the

deployment users. On average each user submitted 16 effective battery goals. A

few users (users 5, 6, 10, 13, 18, 19, 20) continued using PowerLeash for a few

days after the end of the user study.

112

Figure 3.25 shows the number of discharge cycles that were accompanied

by a battery goal by each of the users. On average each user submitted 16

effective battery goals. A few users (users 5, 6, 10, 13, 18, 19, 20) continued

using PowerLeash for a few days after the end of the user study.

To evaluate the performance of PowerLeash we categorized discharge cycles

to the following types:

1. Trivial: if the selected battery goal was so short that PowerLeash did not

need to throttle the background application. Figure 3.26(a) is an example.

2. Success: if PowerLeash successfully meets the battery goal within 30 min-

utes, such as the example in Figure 3.26(b).

3. Failure: if PowerLeash fails to meet the battery goal through throttling

the background application. Figure 3.26(c) shows an example.

Figure 3.27 shows the number of discharge cycles of each type for each of the

users. For two users, 1 and 5, all the discharge cycles are trivial. For most users,

majority of the recorded discharge cycles are trivial. This means that in most

cases our users chose a battery goal that did not trigger the PowerLeash budget

scheduling policy to take any action. In all these case we find that PowerLeash

detects that the user’s battery would last longer than the selected goal and does

not throttle the background application. We asked some of the users about

this and found that the term battery goal has been confusing to some of them.

Although we trained the users at the beginning of the study, and explained what

this term means, it seems some users did not have a clear understanding of the

battery goal concept. We revisit this problem in Chapter 4 in further details.

Figure 3.28(a) shows the break-down of discharge cycles across all users. We

see that more than half of the total cases are trivial. When ignoring the trivial

113

(a) Trivial

(b) Success

(c) Failure

Figure 3.26: Examples of different battery discharge cycles from the deployment.

In each case the red dotted line is a straight line that connects the beginning and

end of the battery goal. These graphs are generated by the PowerLeash server

visualization. (a) Selected battery goal is too short. (b) PowerLeash successfully

meets battery goal. (c) PowerLeash fails to meet the battery goal.

114

0.
0

18
.0

35
.0

1 3 5 7 9 11 13 15 17 19 21N
um

be
r

of
 c

yc
le

s

User ID

13
15

9

14

2525

5

11
13

20
17

14

26

11

18
15

5

30

2322

14

9

Failure
Success
Trivial

Figure 3.27: Number of discharge cycles of each type for all the deployment

users. For two users, 1 and 5, all the discharge cycles are trivial. For most users,

majority of the recorded discharge cycles are trivial. This means that in most

cases our users chose a battery goal that did not trigger the PowerLeash budget

scheduling policy to take any action.

115

0.
00

0.
25

0.
50

0.
75

1.
00

Trivial Success Failure

P
ro

ba
bi

lit
y

Category

0.55

0.28

0.18

(a)

0.
00

0.
25

0.
50

0.
75

1.
00

Success Failure

P
ro

ba
bi

lit
y

Meeting battery goal

0.61

0.39

(b)

0.
00

0.
25

0.
50

0.
75

1.
00

Goal Usage Model

P
ro

ba
bi

lit
y

Failure Cause

0.34

0.55

0.11

(c)

Figure 3.28: (a) Break-down of total battery discharge cycles (b) success vs.

failure probability, and (c) different failure types. More than half of the total

cases are trivial. When ignoring the trivial cases, in about 60% of the remaining

cases PowerLeash succeeds in throttling background applications just enough to

meet the battery goal.

cases, we see that in about 60% of the remaining cases PowerLeash succeeds in

throttling background applications just enough to meet the battery goal as shown

in Figure 3.28(b).

To better diagnose the failure cases that happened in 40% of the cases we

inspected the traces and categorized the root cause of the failure cases. We

found the following causes:

1. Goal: The battery goal was set too long. In many cases users set battery

goals that spanned several normal discharge cycles such as the one in Figure

3.29(a).

2. Usage: Battery drain rate is on track, until an unexpected usage spike

happens and PowerLeash ends up missing the goal. Figure 3.29(b) shows

one such example.

116

(a) Goal

(b) Usage

(c) Model

Figure 3.29: Examples of different failure cases from deployment. In each case

the red dotted line is a straight line that connects the beginning and end of the

battery goal. (a) The battery goal was set too long. (b) PowerLeash misses the

goal because of unexpected interactive usage. (c) Due to model error PowerLeash

assigns too much budget to background applications.

117

3. Model: Due to model error, PowerLeash assigns too much budget and ends

up missing the goal. Figure 3.29(c) is one such example.

We recognize that distinguishing between failure cases that were caused by

unexpected usage and wrong model is challenging. When inspecting the traces

we gave usage the benefit of doubt, meaning that we did not categorize a case as

a model induced problem unless we were 100% confident.

Figure 3.28(c) shows the break-down of the failure cases. We see that about

35% of the failures result from the same problem that rendered 55% of the cycles

trivial. But the most important cause of missing battery goal is unexpected inter-

active usage (55%). And inaccurate model caused failure cases which contributed

11% of the total cases.

3.6.2 Discussion

We find that in most cases our users specified trivial battery goals or goals that

were not feasible for PowerLeash. When ignoring both too long and too short

battery goals, we find that PowerLeash meets the goals in 64% of the cases. We

argue that the performance of PowerLeash based on the user deployment findings

complies with the simulation results in Section 3.5.

Our simulation setup automatically selected feasible goals. The simulation

performance metric is battery deficit which is the number of percent points of

battery capacity that PowerLeash is missing at the end of each discharge cycle.

When considering any non-zero battery deficit a failure, the probability of success

for PowerLeash would be less than 2%. When considering any non-negative

battery deficit a failure, then the probability of success for PowerLeash would

be 50%. But when considering the granularity of the PowerLeash user interface,

118

Average lifetime of 1% battery (minutes)

D
en

si
ty

2 4 6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 3.30: Histogram of expected lifetime of 1% battery capacity in minutes.

For each discharge cycle, we get this value by dividing the length of the cycle

in minutes by the change in battery level from the beginning to the end of the

cycle. The man value for all users is about 6 minutes.

119

−10 −5 0 5 10
0.

0
0.

5
1.

0
Battery deficit (%)

C
D

F
−2.5 2.5

0.07

0.7

Figure 3.31: CDF of battery deficit of PowerLeash based on simulations. The

probability of the deficit being inside the ±2.5 band is 63%.

which is 15 minutes, we argue that any deficit less than +2.5% and greater than

−2.5% can be classified as success.

Figure 3.30 is the histogram of the average lifetime of one percent battery

capacity. For each discharge cycle, we get this value by dividing the length of the

cycle in minutes by the change in battery level from the beginning to the end of

the cycle. The man value for all users is about 6 minutes. To count discharge

cycles that end within 15 minutes before or after their corresponding battery

goals as success, we should consider any battery deficit less than +2.5 and more

than −2.5 success. Figure 3.31 shows the CDF of the deficit of PowerLeash from

Section 3.5 and highlights the ±2.5 deficit range. We see that the probability of

the PowerLeash deficit being in this range is 63% which matches the deployment

findings. This gives us confidence regarding the validity of our simulation-based

inference when studying PowerLeash.

120

3.7 Conclusion

We designed PowerLeash to give users control over their battery lifetime when

running background applications. We optimized the building blocks of Power-

Leash — power model, usage model, and scheduling policy — using traces from

real users. After integrating the system and developing the battery adaptation

interface into two existing health applications of the Center for Embedded Net-

worked Sensing, we deployed the end-to-end system on the smartphone of 22

volunteers for one month.

Our deployment results show that PowerLeash effectively enables users to

control battery consumption of background applications in a way that is much

easier for them to understand than traditional ways. When users selected feasible

battery goals, the system could meet the battery goal in 64% of the cases. But

we found that our user interface did not effectively engage the users. Our findings

from the user deployment identified the user interface of PowerLeash as a critical

bottle-neck for the end-to-end performance of our system. In the next chapter

we discuss the shortcomings of PowerLeash and our solutions to improve them.

121

CHAPTER 4

Lessons

We learned several valuable lessons from our deployment of PowerLeash on real

users’ smartphones. In this chapter we present these lessons. Several of these

findings can help us improve future iterations of PowerLeash and design and im-

plementation of similar systems. We use traces from the deployment to evaluate

the impacts of potential improvements. We also try to generalize our findings

into guidelines that can be used by other researchers.

We have categorized these lessons and guidelines based on subsystems of Pow-

erLeash. In Section 4.1 we present the future user interface of PowerLeash, in

Section 4.2 improvements to battery model, and in Section 4.3 improvements to

the adaptation policy.

4.1 User Interface

When evaluating our users submitted battery goals we found that in about 55%

of the cases users selected battery goals that were trivial. In other words, these

goals were significantly shorter than the expected battery lifetime of the users’

smartphones, even when the background application is working at its highest

fidelity. Therefore, more than half of the discharge cycles of our users could not

be used to evaluate the performance of PowerLeash.

One might argue that the short battery goals were users’ genuine desired

122

0 5 10 15 20 25 30
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lifetime (hour)

C
D

F
Battery lifetime
Battery deadline

Figure 4.1: CDF of length of battery goals and actual battery lifetime of discharge

cycles that start with more than 90%. The probability of lasting less than 5 hours

is less than 5%, but about 40% of the submitted battery goals are less than five

hours.

battery lifetime. We argue otherwise. Figure 4.1 shows the CDF of the length

discharge cycles that start with more than 90% and end with less than 20% of

battery capacity. We have also included the CDF of the length of submitted

battery goals for these cycles. We see that the probability of lasting less than 5

hours is less than 5%, but about 40% of the submitted battery goals are less than

five hours. The high proportion of submitted goals of five hours is likely due to

the fact that mid way through the study we found that sometimes users submit

very short battery goals. Therefore we pushed an update of the PowerLeash

package that had the minimum possible goal set to five hours.

Based on this, and other anecdotal evidence from our users, we believe these

very short battery goals were the product of our ineffective user interface and con-

123

fusion of our users. Therefore, we expect that improved user interface combined

with direct feedback to users can dramatically improve the users’ understand-

ing of and interaction with PowerLeash. More details of these modifications to

PowerLeash follow.

4.1.1 Battery Goal Setting UI

Figure 4.2(a) shows our current user interface. Based on our findings we are

going to change this interfaces and how it works in several ways. Figure 4.2(b)

will be the new user interface for PowerLeash. This new UI is different from the

previous one in several ways.

Wording The current PowerLeash user interface asks the user to “specify

a battery deadline.” Based on interviews with a few users we know that most

users found this question confusing — the term battery deadline was not clear for

non-tech savvy users. The next generation of the PowerLeash user interface will

ask a more understandable question with fewer technical terms: “When do you

plan to charge your phone?”

In addition, we assumed that users are interested to know more details about

the current state of their smartphone, therefore we included a summery of battery

and system resource usage on the UI. We have confirmed that few uses under-

stand this information. In fact, instead of giving users a better understanding of

their phone, the additional system-level information further confused the users.

Therefore, the new user interface will not include any such information and there

is smaller chance of confusing the user and the UI is less cluttered and cleaner.

Input method The current PowerLeash user interface presents the user

with a scrolling bar to select the desired battery goal. Scrolling the bar to the

124

(a) Current (b) Future

Figure 4.2: Current and Future user interfaces of PowerLeash to get the user’s

desired battery goal. The new UI is different from the old one in three major

ways. It asks a different question, has a different input method, and always

presents the user with reasonable default value.

right increases the selected value and at any time the selected value is displayed

to the user. The granularity of the movement of the scrolling bar was set 15

minutes to ease the selection process. We found that this setup encouraged users

to randomly select a point and click on submit. Our future user interface will

require the user to select the hour and minute for when they plan to charge their

battery (battery goal).

Default value In order to encourage the users to select a battery gaol, every

time they finish charging their phone the current UI resets the selection to zero.

125

Therefore, when the PowerLeash UI is presented to the user its default selection

is always zero. This default selection changed to five hours when we increased the

minimum possible battery goal to five hours. We found that this approach did

not work as we intended. In fact, instead of encouraging the users to select valid

values, our UI encouraged selecting very short battery gaols and hence we ended

up with many trivial battery goals in our dataset. Therefore, we have decided to

use reasonable default values for the battery goal.

As a first step we will start by using the previously selected value as the

default when the user is presented with the PowerLeash UI. We understand that

more effort needs to be spent on developing algorithms to effectively infer user’s

desired battery goals. We believe that in this case “the best UI is no UI,” and

if inference of desired battery lifetime becomes accurate enough, the PowerLeash

interface does not need to ask the user every time.

4.1.2 Feedback to Users

When categorizing failure cases of PowerLeash based on their cause we found sev-

eral cases where the users selected very long battery goals. Anecdotally we know

that users want their smartphone batteries to last as long as possible. Despite

this desire, some users select to run power consuming background applications,

because they value the utility or benefit of such applications more than they de-

sire long battery life. Through PowerLeash we give these users control over their

battery lifetime. But users should be given clear feedback about the implications

of using PowerLeash.

Knowing that users desire longest possible battery lifetimes, some might be

inclined to always select the longest possible battery goal not understanding

that this will effectively stop the background application from doing what it is

126

Figure 4.3: Temporal summary of Mobility classification data. The gap between

6pm and 9pm marked by the error color is caused by the Mobility application

stopping as a result of running out of budget.

expected to do. We believe the solution is closing the feedback loop to the user.

For example, if user is interested in tracking her mobility, based on her specified

battery goal the Mobility application may run out of budget and stop working

for extended intervals during the day. If this user gets to see a visual implication

of the additional error that is incurred as a result of her choice of battery goal,

she will have a better understanding of the implications of her choices. Figure

4.3 shows an example of visualizing the output from the Mobility application. 1

During our deployment of PowerLeash this feedback mechanism was not ready

to be used. Therefore, our users could not see the utility of the background

applications and the impact of the battery goals they set on the background

applications. We understand that merely offering such a feedback, does not mean

all users will engage with it, unless they are truly interested in the utility of the

background applications.

4.2 Battery Lifetime Estimation

The user interface that was deployed along with PowerLeash, limited the maxi-

mum possible values of the battery goal. We used the power consumption model

1This visualization is developed as part of the Ohmage platform.

127

Get model building interval: I

Get current battery level: L

for i ∈ Resources do

L← L− r̃i × βi

end for

N = L
β0

Return N × I

Figure 4.4: Initial algorithm for estimating maximum feasible battery lifetime. r̃i

is the estimated usage of the ith resource during each day — median of daily usage

within past two weeks. This algorithm sets all adaptive applications work vectors

to zero and estimates the needed to consume the remaining battery capacity.

to estimate this maximum value. One week into the deployment we found that

our model-based estimation of maximum feasible battery lifetime was not accu-

rate. In this section we present the problem, a diagnosis of the root cause of the

estimation error and our solution for future systems.

4.2.1 Problem statement

When a user is presented with the PowerLeash UI, he/she can only select a

battery goal that is less than the maximum feasible value. The deployed version

of PowerLeash estimated the maximum possible value for battery goals based on

the simple algorithm in Figure 4.4. In this algorithm r̃i is the estimated usage

of the ith resource during each day. We used median of daily usage within past

two weeks as r̃i. This algorithm essentially sets all adaptive applications work

vectors to zero and estimates the amount of time that it takes to consume the

remaining battery capacity.

128

We expected that this algorithm would overestimate the maximum possible

battery lifetime, because it ignores long sessions of interactive usage. Since we

assumed users will diligently select their desired battery goals, and to make sure

that PowerLeash does not limit users’ input range, we multiplied the output of

the algorithm by a factor of 2.

About one week through the study we found that for some users the maximum

battery range was too small. As a quick fix we replaced this estimation with

a fixed 36 hour maximum for a 100% battery. Later we performed controlled

experiments in the lab to diagnose this problem. Our experiments confirmed

that the algorithm in Figure 4.4 significantly underestimates the true maximum

battery lifetime for most users.

Based on the user deployment results we know that in many cases users who

desire long battery lifetime would select the maximum possible value as their

battery goal. Therefore, having an accurate maximum feasible battery goal esti-

mation algorithm is critical. This implies that we need to improve our estimation

of maximum feasible battery lifetime to avoid giving users false expectations, or

excessively limiting their choices when using PowerLeash.

4.2.2 Diagnosis

When looking at traces from several users we observed that β0 overestimates

base battery drain rate. In other words, although our model is unbiased when

estimating battery drain, the model intercept is not an unbiased estimator of

base power consumption.

We performed a small controlled experiment on two users to confirm our

hypothesis. We asked two volunteers to run PowerLeash without any adaptive

background applications. After one week we asked them to install the Mobility

129

W/ Adaptive App W/O Adaptive App

User A 1.03 0.51

User B 0.61 0.10

Table 4.1: Intercepts for battery drain model of two users with and without

any background applications. the intercept of the model built while Mobility

was running is significantly larger than the model with no background applica-

tion confirming that the intercept is not an unbiased estimator of base power

consumption.

application and continue running PowerLeash for another week. We then used the

data from each of these two weeks independently to build a battery drain model

as presented in Section 3.2. When comparing the intercept of these two models

for each user we see that the intercept of the model built while Mobility was

running is significantly larger than the model with no background application.

Table 4.1 shows the estimated intercept values of the models in each case for

these two users. This confirms our hypothesis that the model intercept is not an

unbiased estimator for base battery consumption rate.

4.2.3 Solution

Our solution to improve the estimation algorithm is building a separate model

for when the user is not running background applications. This model will be

used solely to estimate the maximum feasible battery goal. We will refer to this

model as the base model. Since the base model is not used in the adaptation

algorithm, it does not need to be updated over time. This reduces the additional

cost of our proposed change, because it means we need to build the base model

for each user only once.

130

This modification of PowerLeash usage scenario is practical and does not incur

additional cost. Based on our experiments with model building from Section 3.2

we know that the linear model converges after two days. Therefore, the new

usage scenario of PowerLeash would be installing PowerLeash first and running

it for three days first. Then installing adaptive background applications.

4.3 Improving Adaptation Policy

We evaluated PowerLeash using both simulation and user deployment and found

that simulation results agree with the results from the deployment. This finding

gives us extra confidence in validity of our simulation procedure and enables us

to more confidently use trace-based simulation to investigate PowerLeash.

We dedicated the first two weeks of our user deployment to data collection.

During these two weeks users were running a version of PowerLeash that did not

support battery goal setting, and did not throttle background applications. In

this section we use the traces from from the 22 deployment users during the first

two weeks to propose improvements to the PowerLeash adaptation policy.

Figure 4.5 shows the CDF of PowerLeash battery deficit when using deploy-

ment traces for simulation. Considering the same 30 minutes margin for success

we see that the probability of is 60% which closely matches deployment results.

In Section 3.5 we found that PowerLeash error can be partially explained by both

model error and linear error. Linear error is a metric that we developed to mea-

sure nonlinearity of battery drain rate. Analysis of variance (ANOVA) [IN87] on

user deployment results in Table 4.2 formally confirms that both factors play a

role in explaining battery deficit.

We experimented with using this information to improve the performance of

131

−10 −5 0 5 10

0.
00

0.
25

0.
50

0.
75

1.
00

Battery deficit (%)

C
D

F

−2.5 2.5

0.6

Figure 4.5: CDF of battery deficit of PowerLeash based on simulation results

using deployment data. Considering the same 30 minutes margin for success we

see that the probability of is 60% which closely matches deployment results.

Df Sum Sq Mean Sq F value Pr(>F)

Model Error 1 43.31 43.31 17.652 3.887e-05

Linear Error 1 447.63 447.63 182.442 < 2.2e-16

Residuals 215 527.52 2.45

Table 4.2: Analysis of variance indicates that PowerLeash battery deficit can be

explained by both model error and linear error.

132

window ← CurrentT ime+W

LineF it← LE(Levelsvs.T ime)

LinearError ← Last(Resid(LineF it))

Interactive←
∑

i∈Resources Ei(window) × βi

Available← Level− IL(window) − Interactive− LinearError

for j ∈ BgApps do

for k ∈ BgAppj do

if Available < 0 then

bjk(i)← 0

else

ρjk ←
Available
αjk×W

bjk(i)← 2× ρjk × horizonj −Bjk

end if

end for

end for

Figure 4.6: Pseudocode for new PowerLeash policy. LinearError is last residual

of the least square fitted line to battery level readings. This algorithm subtracts

the LinearError from available battery capacity to get the new available battery

capacity that can be assigned to background applications.

PowerLeash. Linear Error can be calculated on-line, that is at any time during a

discharge cycle we know the value of linear error so far. Simulation experiments

show when the value of the Linear Error is large throughout a discharge cycle,

PowerLeash battery deficit can be reduced by making it more conservative and

vise versa. We implemented this idea by subtracting the running value of Linear

Error from the current battery level during each interval as presented in the

algorithm in Figure 4.6.

Figure 4.7 shows the CDF of battery deficit when using this technique. We

see that the probability of success increases by 10% when accounting for Linear

Error based on the new algorithm.

We performed similar experiments to account for model error. But we could

133

−10 −5 0 5 10
0.

00
0.

25
0.

50
0.

75
1.

00
Battery deficit (%)

C
D

F

Default
LE Fix

−2.5 2.5

0.17

0.88

Figure 4.7: CDF of battery deficit of PowerLeash with and without the linear

error offset. When offsetting linear error success probability increases by 10%.

not use model error in a similar way for two reasons. First, no accurate on-

line measure of model error could be found. Second, when using heuristics or

estimates of model error in a similar algorithm as the one in Figure 4.6 we observe

that probability of success does not increase.

4.4 Summary

A closer look at results and traces from the PowerLeash user deployment revealed

three areas where performance of PowerLeash can be improved.

First, we can improve users interactions with PowerLeash by simplifying the

user interface. In addition to removing unnecessary information from the UI,

changing the input method, and including reasonable default values can reduce

user confusion. We also found that offering feedback on the utility of background

applications to users can help users make better choices.

134

Second, we found that we can reduce the errors of the maximum battery

lifetime estimation algorithm through building a separate battery model. We

build this model when PowerLeash is running without any other background

applications, therefore it can ore accurately estimate base power consumption of

the smartphone.

Finally, by incorporating the linear error into the adaptation algorithm, the

probability of meeting user battery goals will increase.

135

CHAPTER 5

Conclusions

5.1 Summary of the Thesis

The key hypothesis of this dissertation is whether resource management on smart-

phones can be improved by adapting to usage patterns of individuals. We tested

this theory in two ways. First, we built SystemSens, a robust tool for measur-

ing smartphone usage in the field. We used SystemSens in several user studies

to study and characterize smartphone usage. We discovered significant diversity

in smartphone usage. Along all aspects that we studied, users differ by one or

more orders of magnitude. This finding suggests that resource management poli-

cies and algorithms on smartphones can become more effective if they learn and

adapt to user behavior.

Second, based on our findings regarding smartphone usage, we built Pow-

erLeash, a prototype system that adapts to interactive usage to manage bat-

tery consumption of background applications. Therefore, PowerLeash gives users

control over their battery lifetime when they run background applications. Pow-

erLeash continuously monitors the phone’s battery level, the user’s interactions

with the phone, and progress of background applications. It builds a personalized

model to estimate battery consumption based on usage and background applica-

tions progress. Using this model and other information, PowerLeash dynamically

adjusts the power consumption of background applications to meet the user’s

136

desired battery lifetime. We evaluated the performance of PowerLeash with real

users. In this section we summarize the contributions of this thesis.

5.1.1 Charachterizing Smartphone Usage

We analyzed detailed usage traces from 255 users of two different smartphone

platforms, with 7-28 weeks of data per user. Our traces consisted of two datasets.

For the first dataset we deployed SystemSens on the phones of 33 Android users.

SystemSen, and the second dataset was from 222 Windows Mobile users across

different demographics and geographic locations. This data was collected by

a third party. We characterized smartphone usage along four key dimensions:

i) user interactions; ii) application use; iii) network traffic; and iv) energy drain.

The first two represent intentional user activities, and the last two represent the

impact of user activities on network and battery consumption. Instead of only

exploring average case behaviors, explored the range of usage across users and

over time. A recurring theme in our findings was the diversity across users. Along

all dimensions that we studied, users varied by one or more orders of magnitude.

We also found that users are along a continuum between the extremes, rather

than being clustered into a small number of groups.

The diversity among users that we found stems from the fact that users use

their smartphones for different purposes and with different frequencies. For in-

stance, users that use games and maps applications more often tend to have

longer interactions. Our study also showed that demographic information can be

an unreliable predictor of user behavior, and usage diversity exists even when the

underlying device is identical, as is the case for one of our datasets.

Among the many implications of our findings, an overriding one was that

mechanisms to improve resource management should not follow a one-size-fits-all

137

mindset. They should instead adapt by learning relevant user behaviors; other-

wise, they would likely be only marginally useful or benefit only a small proportion

of users. We showed that despite quantitative differences qualitative similarities

exist among users, which can facilitate the task of learning user behavior. For

several key aspects of smartphone usage, the same model can describe all users;

different users have different model parameters.

5.1.2 Managing Battery Lifetime

As an example of a system that automatically adapts to usage patterns of in-

dividuals to improve resource management, we built and evaluated PowerLeash.

PowerLeash is a system that gives users control over their phone’s battery life-

time and automates personalization of background applications for developers.

It monitors the user’s interactions with the phone and battery drain, and learns

the impact of background applications on battery drain rate. With a simple

user interface, PowerLeash receives the user’s desired battery life as input. With

this information PowerLeash dynamically changes the power consumption con-

figuration of background applications to meet the user’s battery expectation. In

addition to trying to evaluate the effectiveness of learning and adapting to user

patterns, we designed PowerLeash to have the following key features:

1. Easy to deploy: Designing PowerLeash to be easily deployable had two

implications. First, we could only leverage information sources that were

already available on commodity smartphones. This enabled us to immedi-

ately start gaining field experience from Battery Drain Management sys-

tems towards refining their design, rather than waiting for future genera-

tions of hardware or software that may be able to provide more accurate

or granular information. Second, it required us to handle the high de-

138

gree of diversity that exists among devices, users, or background applica-

tions. As a result, PowerLeash does not require any off-line customization or

parametrization for individual devices or users. All personalization occurs

on-line and in-situ.

2. Easy to use for application developers: The developers of background

applications are more likely to adopt our proposed APIs if they are easy

to use. For this reason, we designed PowerLeash to expect applications to

implement only two simple functions that enable it to poll how much work

they have done since start and communicate the maximum amount of work

they can do in the next interval. Further, the units of work are application-

level (e.g., number of times location was polled), rather than absolute level

of energy which is harder to use and varies with the platform.

3. Easy to use for users: The only input we ask of users is to specify a

battery lifetime goal. We believe that users are capable of specifying this

goal because they know when the next charging opportunity will arise.

We evaluated PowerLeash using both simulation (based on real usage traces)

and user deployment. We found that PowerLeash enables users to control battery

consumption of background applications in a way that is much easier for them

to understand, but PowerLeash’s control over battery lifetime is not perfect.

When users selected feasible battery goals, the system could meet the battery

goal in 64% of the cases. In addition, our findings from the user deployment

identified the user interface of PowerLeash as a critical bottleneck for the end-

to-end performance of our system. We investigated several ways of alleviating

this bottleneck and improving the interfaces of PowerLeash and systems like

PowerLeash. We also improved the adaptation policy of PowerLeash to reduce

its error.

139

5.2 Comments on Design of PowerLeash

We built PowerLeash as a prototype system to evaluate the effectiveness of a new

idea in battery management systems. In this section we first summarize the prin-

cipals behind the design of PowerLeash. We then highlight why we implemented

those ideas the way we did.

5.2.1 Design Choices

Several battery drain management systems have been proposed in the past that

control and manage power consumption of all applications. Such systems have

great control over the battery and can effectively meet user or systems specified

battery goals. But they have not been adopted yet due to their strict require-

ments. Considering expanding diversity and fast rate of change in mobile hard-

ware platforms, building fine-grained power consumption models is challenging.

In addition, neither developers nor platform owners are willing to compromise

users’ interaction experience for battery, therefore the idea of limiting interactive

applications has not gained popularity. In addition to relaxing requirements, we

paid special attention to factors that can accelerate adoption of PowerLeash.

When designing PowerLeash we decided to relax both these requirements.

First, we do not require off-line and fine-grained power consumption models for

each hardware model. PowerLeash will learn a coarse-grained model and update

it over time as it is being used. Second, we do not limit interactive applica-

tions. This makes meeting user specified battery goals more challenging, because

PowerLeash has to deal with highly variable user interaction.

Based on our experience with building several power consuming background

applications we believe that application developers are in the best place to de-

140

cide how to trade off fidelity and power consumption. Therefore, we designed

PowerLeash to give application developers control over how and when they con-

sume their assigned budget. When applications register with PowerLeash they

can decide their budget planning interval (horizon). A long horizon allows the

application to consume its budget in bursts. Also, PowerLeash allows application

developers to define the unit of their budget. This relieves them from having to

deal with units of energy or power that are difficult to measure and track.

Finally, PowerLeash is an application itself and interacts with users. We

designed it to be simple. The PowerLeash user interface is launched automatically

right after a user unplugs the phone from a charging source to remind the user

to set desired battery goal. The user needs to input only one value and it will be

used for managing all adaptive background applications. If PowerLeash detects

that the user’s desired battery goal will not be met, it shows an early warning to

the user. The user can either change the battery goal or avoid unnecessary use.

5.2.2 Implementation Choices

When building the PowerLeash prototype we made three key decisions. We

consider these as implementation decisions that were made based on the context

of the project and other limitations. We highlight these and the reason behind

them. Future incarnations of PowerLeash or similar systems may be implemented

differently.

We implemented PowerLeash on the Android platform as a user-level appli-

cation. An alternative decision would have been modifying the Android platform

and including PowerLeash inside the platform. This would have given Power-

Leash much more control over background applications. We chose not to modify

the Android platform to increase the potential user base of PowerLeash. Re-

141

cruiting volunteers and deploying PowerLeash on their smartphones would have

been much more difficult, if we had to flash their phones with a custom ROM.

In essence, we prioritized broader user base and user studies to the advantages

of being part of the platform or kernel.

PowerLeash was a first prototype of our proposed design. For this first pro-

totype we chose to use simple and understandable algorithms. This had two

advantages. First, it allowed us to easily diagnose performance problems. Sec-

ond, it allowed us to deploy and experiment with the end-to-end system, identify

the bottlenecks and spending more effort in tuning components and algorithms

that significantly affected the end-to-end performance.

Several parts of PowerLeash that require inference and model building were

implemented inside the PowerLeash back-end server. For example, the Power-

Leash client uploads all battery and usage traces to the server where the power

consumption model is built and updated. This client-server design has several

privacy implications. But we decided to rely on a server because it allowed us to

retain all usage traces. use them to evaluate the performance of PowerLeash off-

line, and experiment with new algorithms and models. Future implementations of

PowerLeash or similar systems may choose to implement the entire functionality

on the phone. Based on our experience this is possible and may be necessary for

commercial or very large deployments — we expect that the server can become

a scalability bottleneck in large deployments.

5.3 Future Work

We highlight potential future work in two directions. First, ways to improve

PowerLeash and personalized battery management systems. Second, extending

142

the idea of automated personalization to management of other resources such as

network or memory traffic.

5.3.1 Improving PowerLeash

One area for future research would be exploring the extent to which PowerLeash,

and battery drain management systems in general, can relieve users from pro-

viding battery goals every day through learning their daily patterns. We did not

explore this, and instead focused on building the mechanisms that are needed to

meet a battery goal once it is given to the system. However, based on related re-

search and anecdotal evidence from the usage traces collected during our studies,

we believe there is significant opportunity for inferring users’ intentions. Several

context hints can be used by such algorithms including time, location, and recent

usage patterns.

A second important area that needs further investigation is considering multi-

ple adaptive applications. We focused on the case when there is only one primary

background application. We did, however, include users with two adaptive appli-

cations in our deployment of PowerLeash and found that PowerLeash can manage

more than one applications. But we overlooked several key questions that would

arise when there are multiple background applications including prioritizing ap-

plications based on user’s preference or other metrics. Also, we expect additional

modeling considerations must be made when two or more background applica-

tions contend on a single resource (such as GPS).

To extend PowerLeash’s reach and facilitate experimentation with our pro-

totype we decided to implement PowerLeash entirely in user space. One conse-

quence of this choice was that PowerLeash can manage only those applications

that implement its public interfaces and cannot control other applications. Also

143

PowerLeash is not able to enforce the assigned budgets on the background ap-

plications — it relies on cooperation of background applications. Therefore, a

malicious application can cause PowerLeash to miss the battery goals or to starve

other applications. A future implementation of PowerLeash may choose to reside

inside the mobile platform, instead of user space. If so, applications would not

need to directly report their work to PowerLeash and PowerLeash can enforce

the budget assignments. Since the set of distinct types of resources on a smart-

phone are limited, the mobile platform can accurately track their usage by each

application.

Finally, we made several key decisions regarding the design and implementa-

tion of PowerLeash based on its usage context inside a research environment. A

commercial implementation of such a system may need to be designed differently.

For example, we used a client-server architecture that keeps all usage and battery

consumption traces on the server, because this enabled us to explore different al-

gorithms and evaluate their performance off-line. Commercial systems can be

built entirely on the smartphone without relying on any servers.

Finally, for privacy considerations PowerLeash does not take advantage of

two important sources of context information: location and contents of applica-

tions such as calendar and email, to predict future interactive. It is possible that

including these sources of information, can improve the performance of Power-

Leash. The privacy concerns can be alleviated if future systems avoid transferring

data to a central server for model building, and instead build usage and battery

models on the phone.

144

5.3.2 Extending Automated Personalization

After identifying the potential for effectiveness of personalization in improving

resource management on smartphones, we focused on building a system to im-

prove battery management by adapting to usage patterns. But this approach

can be applied to several other aspects of smartphones. Effective management

of other resources on smartphones such as memory, CPU, and network interfaces

will improve both usability and power consumption.

We observed recurring patterns in application usage of individuals. While each

user has her own favorite set of applications and diurnal patterns in application

execution, no two users are identical in these terms. This provides a unique

opportunity to improve memory management on smartphones. By observing

past application usage, smartphone operating systems can predict the application

that is most likely to be called in the near future. Based on this prediction, the

operating system can allocate memory to that application in advance. Therefore,

when the user invokes an application he/she will not have to wait for it to load.

Similar systems have been tested on desktops [Esf06], but because memory is

much more limited on mobile phones the resulting gain is likely to be higher on

smartphones.

Current smartphones are equipped with several network interfaces, including:

cellular, Wi-Fi, and bluetooth. These network interface have complementary fea-

tures. Cellular networks are available more ubiquitously but they have lower bit

rates and higher power consumption per byte. On the other hand, Wi-Fi networks

offer higher bit rate and consume less energy per byte. Therefore, opportunistic

communication over Wi-Fi access points is favorable. Strong repeating patterns

in human mobility imply that the Wi-Fi management subsystem of a smartphone

can improve its performance by adapting to the individuals usage patterns and

145

habits.

It has also been shown that delaying network transmissions can result in

significant energy saving [BBV09, SNR09]. But in our traffic characterization

of smartphone users we found that for different users the ratio of interactive to

total traffic is widely different among users. Therefore, interface management

policies that are based on delaying transmission may be personalized to avoid

significantly inhibiting user experience.

146

APPENDIX A

Measuring Smartphone Usage with SystemSens

To capture usage context and battery information in the wild we have developed

a tool called SystemSens. It collects and logs smartphone usage parameters in the

wild in an unobtrusive, and expandable way. SystemSens consists of an Android

logging client and a visualization web service. This tool has been used in several

deployments, where it has helped us better understand users’ interactions with

research applications [BEH06, HRK10]. In this chapter we describe its design

and our experience with it. We will present the findings from data collected by

SystemSens in next chapters.

During the past three years SystemSens evolved through three phases. Ini-

tially (v0) it was a simple battery and screen status logging tool that kept the

traces on the SD card. The next major version of SystemSens (v1) recorded rich

operating system and network information such as packet headers, and uploaded

data in XML format to SensorBase [CYH06]. This version used low-level An-

droid libraries and could thus run only on developer phones, which proved to

be a significant limitation because recruiting users became harder. In the next

version of SystemSens (v2), we dropped some of the low-level logging capabilities

to be able to run on stock Android phones. From this version we also started

uploading data in JSON format to a collection and visualization server. The

current version of SystemSens (v3) allows other (third-party) applications to log

additional sensors through SystemSens, thus offering an extensible platform for

147

monitoring smartphones. It also allows third party applications on the phone

that are interested in context information to receive real-time information from

SystemSens.

SystemSens is designed to be unobtrusive—it has no user interface to mini-

mize impact on usage, and it has a small footprint in terms of memory, CPU,

and energy consumption. When having to choose between getting rich, low-level

information and portability, we chose portability to run on any Android smart-

phone. Based on our experiments, we find that event-based data logging is more

efficient than periodic polling. We also find that the primary energy cost of log-

ging relates to how often the device is woken up, and the marginal cost of reading

and storing additional sensory information is not significant. Thus, the designer

of tools like SystemSens should optimize for maximizing sleeping and worry less

about the amount of information being collected and logged.

A.1 Architecture & Design

In this section we introduce the architecture of SystemSens. We highlight our

design decisions and the reasons behind them. The principal goal that derives

most of our design and implementation decisions of SystemSens is to keep a low

profile in terms of resource consumption on the smartphone. Therefore we have

designed SystemSens to minimize the amount of work on the client and delegate

complexity to the server and (offline) analysis. We will refer to this choice as the

thin client principle.

A second goal behind many design choices of SystemSens is to keep the user-

base as broad as possible. Most importantly we abandoned some of the features

of version 1 to be able to to run SystemSens on stock Android smartphones.

148

SystemSens

Service
/Proc info Screen Sensor

Event-based SensorsPolling Sensors

Memory info

SQLite
DB

SystemSens

DB Adaptor

SystemSens

Uploader

SystemSens

Server

HTTPS Post/JSON

Battery Sensor

Call Sensor

Message Sensor

.

.

.

Network info

WiFi Scan info

.

.

.

Android Smartphone

Figure A.1: The architecture of the SystemSens client application. Event-based

sensors generate a log record whenever the corresponding state changes. Polling

sensors record the corresponding information at regular intervals. The main

thread is responsible for recording both event-based and polling sensors.

A.1.1 SystemSens Client

Figure A.1 shows the architecture of the SystemSens client application. The

SystemSens client continuously runs as a background Android service. We chose

not to implement any user interfaces to minimize impact on usage. The client

records and uploads a range of operating system events. Each group of related

OS information is recorded by a virtual “sensor.” SystemSens supports two types

of sensors. Event-based sensors generate a log record whenever the corresponding

state changes. For example, the screen sensor records the state of the screen every

time it turns on or off. Polling sensors record the corresponding information at

149

regular intervals. For example, every two minutes the average CPU and memory

usage are recorded. Table A.1 is the list of all the sensors currently supported

by SystemSens. To minimize energy consumption of SystemSens we prefer an

event-based sensor to a polling sensor to record the same information.

The main SystemSens thread is responsible for recording both event-based

and polling sensors. All polling sensors are queried at fixed intervals (currently

set to two minutes — we found this value good enough). In previous versions we

polled the sensors more aggressively when the user was interacting with the phone.

We found that variable intervals make visualization and analysis of traces more

difficult. To improve the performance of the recording operation, all generated

records are kept in a memory buffer that is flushed to an SQLite database table

on the phone regularly in a separate thread.

The most energy and resource consuming task of the SystemSens client is

uploading the records to the server because of high energy consumption associated

with network transmission. Since none of our research studies require real-time

data analysis, we designed the upload mechanism to upload only when the phone

is being charged. Most smartphone users charge their phones overnight, which

offers SystemSens enough opportunity to upload all the data. In addition, with

this policy upload happens at a time when users tend to have zero interaction

with their phones. This scheme would fail if a user charges her phone while it

is turned off, or at a location with no network connectivity, or for users with

multiple batteries who charge them outside the phone.

When the upload thread starts, it reads the local database in batches of

200 records, URL encodes them and posts them to the SystemSens server over

HTTPS. If the post request succeeds, the records are deleted from the database

with a single range query. We decided not to authenticate clients when uploading

150

Name Type Information

battery Event Battery level, voltage, temperature, health and charging status

callstate Event State of dialer application

dataconnection Event State of connection to data networks

servicestate Event Operator information

gpsstate Event State of Android GPS provider

callforwarding Event State of call forwarding

netlocation Event Course (network based) location

systemsens Event Start time of the SystemSens application

message Event State of pending unread text messages

screen Event State of the screen

celllocation Event ID of the connected cell tower

call Event Voice call state

servicelog Polling Start and end time of background services

activitylog Polling Start and end time of applications

cpu Polling Contents of /proc/cpuinfo

meminfo Polling Contents of /proc/meminfo

memory Polling Android reported memory information

netlog Polling Contents of /proc/net/dev

network Polling Traffic statistics per interface

wifiscan Polling Signal strength of visible WiFi APs

appresource Polling Memory and CPU usage of running apps

netiflog Polling Traffic statistics per applications

Table A.1: List of default SystemSens virtual sensors, their type, and meaning.

151

to be able to support users who are not registered on the server and keep the

potential user base broad.

If for any reason, such as network disconnection, the server does not confirm

receiving a batch of data, they will not be deleted. This approach further sim-

plifies the logic of the client, but may result in duplicate records in the database.

However, filtering duplicate records during analysis is trivial.

A.1.2 Data format

We chose the JSON format [jso] for SystemSens data both on the server and the

client. In both client and server databases JSON objects are stored as strings.

This gives us the flexibility to add new types of sensors and data record types

without the need to change database schema. In addition, handling JSON objects

on Android is slightly more efficient than XML [Sha09].

Each record contains the IMEI1 or ESN2 of the phone to identify the user,

the timestamp in milliseconds in UTC, the human readable date in phone local

time zone, and the version number of SystemSens. Each record contains a record

type field. The type value is used to parse the contents of the data field which is

itself a JSON object. Figure A.2 is an example of the JSON object generated by

the screen sensor.

A.1.3 SystemSens Server

Our server configuration consists of a MySQL database on a Linux machine

running Apache. All server functionality is implemented in Python.

When the server receives a post request from a client it parses the JSON

1International Mobile Equipment Identity
2Electronic Serial Number — equivalent to IMEI for CDMA phones.

152

{’date’: ’2011-2-22 0:42:56’,

’time_stamp’: 1298364176416,

’type’: ’screen’,

’user’: ’355060041008892’,

’ver’: ’3.2’,

’data’: {’status’:’off’}}

Figure A.2: Example of a SystemSens data record. Every SystemSens record

contains time stamp, local time, user ID, version number and type name. The

content of the data field is another JSON object and its structure depends on the

type field.

object and inserts the type, user, and date records along with the original JSON

string in a database table. This table is indexed on time, user and date fields to

facilitate fast search queries on the records.

To preserve privacy all server functionalities that read the data require au-

thentication. Each login is paired with an IMEI or ESN, therefore each user can

only access her data. The data is presented as a number of time graphs such as

those in Figures A.6 and A.8. Each graph has time as the X axis and the user can

control the range of the X axis using time controls. Graphs can be generated for

each data type or combinations. Adding a new graph to the visualization service

is as simple as adding a new function.

A.1.4 External Sensors

Other applications can act as virtual sensors for SystemSens, and log information

through SystemSens by implementing a simple AIDL 3 interface. SystemSens will

3Android Interface Definition Language

153

treat the application as another virtual sensor and poll its values.

Several research applications developed at CENS use this feature to closely

monitor their resource consumption. Other research applications can use the

SystemSens framework to upload and monitor their data. For example, a sleep

survey application that uses accelerometer to detect when the user wakes up and

asks questions regarding quality of sleep logs its accelerometer usage through

SystemSens.

A.2 Evaluation

In this section we present basic evaluation of the performance of the SystemSens

client. We summarize statistics regarding the amount of data that SystemSens

generates. Next we evaluate the impact of running SystemSens on the battery

life of Android phones. CPU and memory usage of SystemSens is insignificant.

On a Samsung Galaxy S smartphone SystemSens on average consumes about 3%

and 2.5% of CPU time in user and kernel mode, respectively. It occupies about

4% and 3% of memory pages in private and shared mode, respectively.

A.2.1 Data Size

The amount of data that SystemSens generates for each user varies widely de-

pending on usage and version of Android. When there is more interaction, more

event based records are generated and on older versions of Android some of the

virtual sensors are not accessible. Figure A.3 is the CDF of the number of records

per hour for two example users both with high-end phones running Android 2.2.

The median for the first user is 408 and for the second user is 445.

The length of records primarily depends on their type. Table A.2 contains the

154

0.
0

0.
3

0.
6

0.
9

0 500 1000 1500 2000 2500

Number of records

C
D

F

User 1
User 2

Figure A.3: CDF of the number of records generated per hour for two example

users. The median for the first user is 408 and for the second user is 445.

median length of records of each type in the SystemSens database. The median

length of all records is 159 characters and the mean is 362.

Based on these statistics and further inspection of a subset (more than 10

million records) of the records in the database , we find that SystemSens on

average generates about 2.5 MB of data for each user per day. On the high end

this value is 5.5 MB and on the low end 0.75 MB.

A.2.2 Energy Consumption

To evaluate the energy consumption of SystemSens we report the results of two

types of experiments. First, we directly measure power consumption of a phone

when running SystemSens. Second, we measure the reduction in battery life time

of a phone when running our tool. Both of these tests are common in the mobile

computing community.

We placed a high frequency digital voltmeter in parallel and a current meter

155

24

43
41 39

36

ph
on

e

sy
ste

m
se

ns

w/o
 D

B

w/o
 /p

ro
c

w/o
 P

oll
ing

0
10

20
30

40
50

P
ow

er
 (

m
W

)

Figure A.4: Average power consumption of a Galaxy S smartphone with different

versions of SystemSens. When the phone is woken up the marginal cost of polling

additional sensors is insignificant. In addition, writing data into the persistent

storage is not expensive in terms of power. Therefore, the most effective way of

reducing energy consumption of SystemSens is increasing the polling interval.

156

Type Length Type Length

activitylog 133 battery 224

callforwarding 153 call 145

celllocation 159 callstate 150

dataconnection 181 cpu 324

gpsstate 192 meminfo 459

message 146 memory 128

netiflog 314 netlog 2871

servicelog 449 screen 143

servicestate 235 network 149

appresource 4132 netlocation 223

systemsens 190 wifiscan 154

Table A.2: Median length of different record types of SystemSens. The median

length of all records is 159 characters and the mean is 362.

in serial with the battery of a new Samsung Galaxy S Android smartphone. We

measured the current and voltage across the battery with a frequency of 50 Hz.

For each experiment we measured power consumption for 10 minutes and report

the mean power consumption in Figure A.4. No other third-party application

was running on the phone during these tests. We start measuring power a few

minutes after the screen turns off.

The average power consumption of the phone when no background application

is running is about 24 mW. When SystemSens is running the phone consumes

about 43 mW. To put these numbers in perspective note that this device consumes

about 500 mW when the screen is on, and about 1500 mW when it rings to an

incoming call.

When there is no interaction with the phone, SystemSens consumes about 19

mW just for recording the polling sensors. Each polling cycle consists of waking

157

the phone up, reading three files from /proc, querying some Android libraries

for other polling sensors, and finally writing the results, along with event-based

sensor data received during the past polling interval, in the local database. To

measure the power consumption associated with each of these steps we performed

three additional experiments. The results are summarized in Figure A.4. Reading

three files from /proc consumes about 4 mW. Reading the other polling sensors

consumes an additional 3 mW, and writing the data into the database consumes

about 2 mW on average. These results suggest that when the phone is woken up

the marginal cost of polling additional sensors is insignificant. In addition, writing

data into the persistent storage is not expensive in terms of power. Therefore, the

most effective way of reducing energy consumption of SystemSens is increasing

the polling interval.

Calculating battery lifetime using the declared battery capacity and measured

power is inaccurate because it cannot account for many external factors such as

variations in battery voltage [RVR03] and user interactions. To get a realistic

estimation of impact on battery life we performed our second experiment. We

implemented a simple application that continuously records battery levels. We

installed this application on a Nexus One with a full battery. We left the phone

on a shelf until its battery died. We repeated this experiment with SystemSens

and placed the phone in the exact same location. Figure A.5 shows the recorded

battery levels and the least squared fitted lines for both cases. It shows that

SystemSens reduced the battery lifetime of this phone by about two hours when

there is no user interaction. Note that the impact is different on different hard-

ware platforms. We chose the used Nexus One rather than the new Galaxy S,

because its shorter battery life made our experiments shorter.

Both these experiments capture worst case scenarios, because when a phone is

158

0
25

50
75

10
0

0 4 8 12 16 20 24
Time (hour)

B
at

te
ry

 L
ev

el
 (

%
)

Default
SystemSens

Figure A.5: Lines fitted to battery level readings show the impact of running

SystemSens on battery life of an old Nexus One phone. SystemSens reduced the

battery lifetime of this phone by about two hours.

actively used some of the polling events occur when the phone is already powered

up by usage. By investigating SystemSens logs from many users, we find that

when the phone is not being charged, between 8% to 20% of polling events hap-

pen when the screen is on or within 30 seconds (sleep timeout) after the screen is

turned off. We found the distribution of this ratio robust to the exact choice of

sleep timeout value. Furthermore, based on anecdotal evidence from our deploy-

ments, the impact of SystemSens on battery life of actively used smartphones

does not disturb normal day to day usage of the phone.

A.3 Monitoring Smartphone Research Deployments

We built SystemSens to log usage and battery data from real users’ Android

smartphones. But SystemSens found applications in other research projects at

the Center for Embedded Networked Sensing. In this section we outline its appli-

159

cation as a smartphone monitoring tool for other projects that use smartphones.

Using smartphones as a research platform is challenging [KCC07]. Several

engineering barriers such as closed and fragmented platforms [Oli09] make it

hard to develop software that works robustly on a range of devices. In addition,

the diversity of usage patterns across users [FMK10], makes it difficult to debug

unexpected behavior, interpret results, and draw general conclusions.

Through deploying and supporting several research applications on smart-

phones, we found that capturing the broader usage context greatly simplifies

some of the challenges. That is, research applications should not only capture

information of direct interest (e.g., location for an application interested in user

mobility) but also other information on how the smartphone is being used by the

user (e.g., CPU, memory, battery, etc.) By doing so, researchers can better un-

derstand the environment their application operates in and interpret and qualify

the results more accurately. For instance, if an application interested in location

information also captures CPU and screen activity, it can better distinguish be-

tween users that are sedentary versus those that leave their smartphones on the

desk for long periods.

In this section, we motivate the need for capturing broader usage context

when deploying research applications. During the past two years, SystemSens

was used in several deployments. During the summers of 2009 and 2010 it was

used by about 30 high school students who ran a range of participatory sens-

ing applications [BEH06]. Within the past year, three pilot deployments of the

Andwellness project [HRK10] had SystemSens running on the smartphones of

their users. The Mobilize project [mob12] is using SystemSens to gauge high

school students’ engagement with their smartphone data collection tool. These

were in addition to several internal studies. In all these cases we found that

160

data from SystemSens provided valuable insight into the usage context, helped

us optimize our applications to consume less energy, and pointed us to external

factors that were affecting our studies, but we were not aware of. We present a

few examples.

A.3.1 Unexpected User Behavior

When using smartphones as a research platform, it is convenient to assume that

the research application is the only one on the subjects’ smartphones, because it

is the only application that researchers can control. This assumption works most

of the time, but when it does not, it is difficult to identify the culprit.

For example, on a memory constrained device, seemingly irrelevant issues

may cause problems for a research application. In Android, if a new application

is launched when there is not enough free memory, the system automatically re-

claims memory from other applications, even if that leads to stopping some of

the background services. In one incident, we had a location tracking application

that was supposed to continuously reside in memory and run. When testing

it in the lab, it presented the right behavior, and worked as expected for most

users. We experienced problems with a few of our users, which we could not

explain initially. But after looking at memory and interaction traces from their

SystemSens logs, we found that those were active users with high memory usage.

In another deployment, some of our users reported repeated phone reboots. In-

spection of memory usage information from SystemSens showed that these were

heavy phone users, who continuously invoked different applications, and there-

fore Android was under memory pressure on those phones, and that version of

Android on that hardware platform resorts to rebooting the phone when memory

is scarce.

161

Figure A.6: Snapshot of SystemSens battery graph of a user who used a backup

battery.

In every deployment of research software we have encountered a few users with

other forms of unexpected behavior that impacts the research applications. As

an example, consider the graph in Figure A.6. It is a snapshot of the SystemSens

battery level graph over 24 hours for a user who used two batteries. The sudden

jump to 100% at about 9pm, indicates switching batteries. We never considered

this behavior when developing and testing our log upload mechanism that kicks in

only when the phone is being charged. If battery swap behavior were dominant,

no data would get uploaded (and we wouldn’t be able to distinguish between the

application not working and upload failures). Fortunately, this user sometimes

also charged her phone, which led only to delayed uploads and not no uploads.

A.3.2 Debugging Battery Consumption

Using SystemSens in our deployments helped us better understand the impact

of our research applications on the battery experience of our users. To do this,

just monitoring battery information is not enough. Very often when trying to

explain short battery life of the users we identified problems in our software and

fixed it, but in many cases other information from SystemSens helped us identify

162

Figure A.7: Snapshot of a SystemSens graph showing average CPU usage during

one day for a user. Colors represent CPU frequency.

external factors that were contributing to high battery drain.

For a few users, when inspecting SystemSens graphs we encountered unusual

CPU activity as shown in Figure A.7. We traced the problem to a bug in the GPS

driver of that phone model. Under specific conditions, the GPS driver consumed

100% of CPU time at the highest frequency until no juice was left in the battery

and the phone died.

For some other users we found an unusually high number of network discon-

nection events. Figure A.8 is a snapshot of the SystemSens graph for the number

of cellular disconnections for one such user who worked in a building with very

poor wireless reception. SystemSens reported repeated disconnection events dur-

ing day hours. When this happened the cellular interface consumed significantly

more power, which resulted in much shorter battery life time.

In some other cases, we discovered that some of our users had ruptured bat-

teries. Their SystemSens battery graphs showed that the batteries could not

hold charge more than two hours — an unusually short life for that phone model.

When we inspected the phones we found the batteries had been ruptured.

In each of these instances, without access to the information from SystemSens,

163

Figure A.8: Snapshot of a SystemSens graph showing the number of cellular

disconnection events per hour during one day for a user with poor connectivity

at work.

we could not have identified the real culprits. That would have led to unsatisfied

users who would have blamed our application for the drain and likely uninstalled

it.

A.4 Summary

We have been developing and using SystemSens as a tool to capture usage and

context related parameters in our research for the past two years. SystemSens has

become a robust logging tool with a portable visualization server implementation.

It is now an integral part of our research deployments. We released the source

code 4 for other interested researchers.

In future we will continue improving SystemSens. Specifically we will address

the potential upload problems by including checks to trigger opportunistic up-

loads when the default scheme fails repeatedly. We will also include mechanisms

for third-party applications to log information in an event driven manner.

4Available at http://systemsens.cens.ucla.edu/

164

References

[Aho10] Tomi Ahonen. Mobile Telecoms Industry Review.
www.tomiahonen.com, 2010.

[ATS11] B. Anand, K. Thirugnanam, J. Sebastian, P.G. Kannan, A.L. Ananda,
M.C. Chan, and R.K. Balan. “Adaptive display power management
for mobile games.” In ACM MobiSys, 2011.

[BBV09] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani.
“Energy consumption in mobile phones: A measurement study and
implications for network applications.” In IMC, 2009.

[BCW88] R.A. Becker, J.M. Chambers, and A.R. Wilks. The new S language.
Chapman & Hall/CRC, 1988.

[BEH06] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,
and M.B. Srivastava. “Participatory sensing.” In World Sensor Web
Workshop, 2006.

[BGM05] L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, and
L. Zhao. “Statistical Analysis of a Telephone Call Center.” Journal
of the American Statistical Association, 100(469), 2005.

[BMV04] P. Benko, G. Malicsko, and A. Veres. “A large-scale, passive analysis
of end-to-end TCP performance over GPRS.” In INFOCOM, 2004.

[BRC07] N. Banerjee, A. Rahmati, M.D. Corner, S. Rollins, and L. Zhong.
“Users and batteries: Interactions and adaptive energy management
in mobile systems.” LNCS, 4717:217, 2007.

[can12] “Smart phones overtake client PCs in 2011.” http://www.canalys.

com/newsroom/smart-phones-overtake-client-pcs-2011, 2012.

[CBR04] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, and
I. Pratt. “Performance optimizations for wireless wide-area networks:
Comparative study and experimental evaluation.” InMobiCom, 2004.

[CCC04] J. Chesterfield, R. Chakravorty, J. Crowcroft, P. Rodriguez, and
S. Banerjee. “Experiences with multimedia streaming over 2.5 G and
3G Networks.” In BORADNETS, 2004.

[cho09] “Trends in Japanese Residential Traffic.” http://www.isoc.org/

isoc/conferences/bwpanel/docs/20091111_bandwidth_cho.pdf,
2009.

165

[CK09] L. Cottrell and S. Khan. “ICFA SCIC network mon-
itoring report.” http://www.slac.stanford.edu/xorg/icfa/

icfa-net-paper-jan09/report-jan09.doc, 2009.

[Cla94] K.C. Claffy. Internet traffic characterization. PhD thesis, University
of California at San Diego, 1994.

[CS08] K. Church and B. Smyth. “Understanding mobile information needs.”
In MobileHCI, 2008.

[CTZ10] AR Clayton Shepard, C. Tossell, L. Zhong, and P.K. LiveLab. “Mea-
suring Wireless Networks and Smartphone Users in the Field.” Hot-
Metrics, 2010.

[CYH06] K. Chang, N. Yau, M. Hansen, and D. Estrin. “SensorBase.org – A
Centralized Repository to Slog Sensor Network Data.” In Technical
Report. Center for Embedded Network Sensing, 2006.

[DB00] John R. Douceur and William J. Bolosky. “Process-based regulation
of low-importance processes.” SIGOPS Operating Systems Review,
34:26–27, April 2000.

[DKV01] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
and M.J. Irwin. “DRAM energy management using sofware and hard-
ware directed power mode control.” In hpca, 2001.

[DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin. “Maximum likelihood
from incomplete data via the EM algorithm.” Journal of the Royal
Statistical Society. Series B (Methodological), 39(1), 1977.

[DS10] F.R. Dogar and P. Steenkiste. “Catnap: Exploiting High Bandwidth
Wireless Interfaces to Save Energy for Mobile Devices.” In MobiSys,
2010.

[DZ11a] M. Dong and L. Zhong. “Chameleon: a color-adaptive web browser
for mobile OLED displays.” In ACM MobiSys, 2011.

[DZ11b] M. Dong and L. Zhong. “Self-constructive high-rate system energy
modeling for battery-powered mobile systems.” In ACM MobiSys,
2011.

[Esf06] B. Esfahbod. “Preload: An Adaptive Prefetching Daemon.”. Master’s
thesis, University of Toronto, 2006.

166

[FCC07] J. Froehlich, M.Y. Chen, S. Consolvo, B. Harrison, and J.A. Landay.
“MyExperience: a system for in situ tracing and capturing of user
feedback on mobile phones.” In MobiSys, 2007.

[FCE05] K. Fukuda, K. Cho, and H. Esaki. “The impact of residential broad-
band traffic on Japanese ISP backbones.” SIGCOMM CCR, 35(1),
2005.

[FGE09] H. Falaki, R. Govindan, and D. Estrin. “Smart Screen Management
on Mobile Phones.” Center for Embedded Network Sensing Technical
Reports 74, 2009.

[FLM10] Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth
Kandula, and Deborah Estrin. “A First Look at Traffic on Smart-
phone.” In IMC, 2010.

[FMK10] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lym-
beropoulos, Ramesh Govindan, and Deborah Estrin. “Diversity in
Smartphone Usage.” In ACM MobisSys, 2010.

[FRM02] K. Flautner, S. Reinhardt, and T. Mudge. “Automatic performance
setting for dynamic voltage scaling.” Wireless networks, 8(5):507–520,
2002.

[FS99] Jason Flinn and M. Satyanarayanan. “Energy-aware adaptation for
mobile applications.” In SOSP, 1999.

[GCW95] K. Govil, E. Chan, and H. Wasserman. “Comparing algorithm for
dynamic speed-setting of a low-power CPU.” In ACM MobiCom,
1995.

[Geo79] B. George. “Robustness in the strategy of scientific model building.”
Robustness in Statistics. Academic Press, New York, 1979.

[GML00] D. Grunwald, C.B. Morrey III, P. Levis, M. Neufeld, and K.I. Farkas.
“Policies for dynamic clock scheduling.” In SOSP, 2000.

[HPS03] H. Huang, P. Pillai, and K.G. Shin. “Design and implementation of
power-aware virtual memory.” In USENIX Annual Technical Confer-
ence, 2003.

[HRF11] J. Hicks, N. Ramanathan, H. Falaki, B. Longstaff, K. Parameswaran,
M. Monibi, D.H. Kim, J. Selsky, J. Jenkins, H. Tangmunarunkit, et al.
“ohmage: An Open Mobile System for Activity and Experience Sam-
pling.” CENS Technical Reports No. 100, 2011.

167

[HRK10] J. Hicks, N. Ramanathan, D. Kim, M. Monibi, J. Selsky, M. Hansen,
and D. Estrin. “Andwellness: An open mobile system for activity and
experience sampling.” In Wireless Health 2010, 2010.

[HXM10] J. Huang, Q. Xu, Z.M. Mao, M. Zhang, and P. Bahl. “Anatomizing
Application Performance Differences on Smartphones.” In MobiSys,
2010.

[IN87] G.R. Iversen and H. Norpoth. Analysis of variance, volume 1. Sage
Publications, Inc, 1987.

[Jac88] V. Jacobson. “Congestion avoidance and control.” In ACM SIG-
COMM CCR, volume 18, pp. 314–329, 1988.

[jso] “JavaScript Object Notation.” http://www.json.org/.

[KCC07] S. Keshav, Y. Chawathe, M. Chen, Y. Zhang, and A. Wolman. “Cell
phones as a research platform.” In MobiSys Panel, 2007.

[KE05] David Kotz and Kobby Essien. “Analysis of a Campus-wide Wireless
Network.” Wireless Networks, 11(1–2), 2005.

[KK98] R. Kravets and P. Krishnan. “Power management techniques for mo-
bile communication.” In ACM MobiCom, 1998.

[KPS92] D. Kwiatkowski, P.C.B. Phillips, P. Schmidt, and Y. Shin. “Testing
the null hypothesis of stationarity against the alternative of a unit
root.” Journal of Econometrics, 54(1-3), 1992.

[KVM11] M. Kennedy, H. Venkataraman, and G.M. Muntean. “Dynamic
stream control for energy efficient video streaming.” In BMSB, 2011.

[LB78] GM Ljung and GEP Box. “On a measure of lack of fit in time series
models.” Biometrika, 65(2), 1978.

[LDP02] K. Lahiri, S. Dey, D. Panigrahi, and A. Raghunathan. “Battery-
driven system design: A new frontier in low power design.” In Asia
South Pacific design automation/VLSI Design, 2002.

[Lee06] Y. Lee. “Measured TCP Performance in CDMA 1xEV-DO Network.”
In PAM, 2006.

[LFZ00] A.R. Lebeck, X. Fan, H. Zeng, and C. Ellis. “Power aware page
allocation.” ACM SIGOPS Operating Systems Review, 34(5):105–
116, 2000.

168

[Mac67] J. MacQueen et al. “Some methods for classification and analysis of
multivariate observations.” In Proceedings of the fifth Berkeley sym-
posium on mathematical statistics and probability, volume 1, p. 14.
California, USA, 1967.

[MC11] J. Manweiler and R.R. Choudhury. “Avoiding the rush hours: WiFi
energy management via traffic isolation.” In ACM MobiSys, 2011.

[MFP09] G. Maier, A. Feldmann, V. Paxson, and M. Allman. “On dominant
characteristics of residential broadband internet traffic.” In IMC,
2009.

[mob12] “Mobilize: Computational Thinking, Data for Social Awareness &
Civic Engagement.” http://www.mobilizingcs.org/, 2012.

[MSF10] G. Maier, F. Schneider, and A. Feldmann. “A First Look at Mobile
Hand-Held Device Traffic.” In PAM, 2010.

[MSZ07] K. Mattar, A. Sridharan, H. Zang, I. Matta, and A. Bestavros. “TCP
over CDMA2000 networks: A cross-layer measurement study.” In
PAM, 2007.

[Neu04] Y. Neuvo. “Cellular phones as embedded systems.” In ISSCC, pp.
32–37, 2004.

[Nie98] J. Nielsen. “Nielsens law of internet bandwidth.” Online at
http://www. useit. com/alertbox/980405. html, 1998.

[nie11] “State of the Media: Mobile Media Report Q3 2011.” http:

//www.nielsen.com/us/en/insights/reports-downloads/2011/

state-of-the-media--mobile-media-report-q3-2011.html,
2011.

[OK11] E.A. Oliver and S. Keshav. “An empirical approach to smartphone
energy level prediction.” In Ubicomp, 2011.

[Oli09] E. Oliver. “A survey of platforms for mobile networks research.” ACM
MCCR, 12(4), 2009.

[PB04] D. Posada and T.R. Buckley. “Model selection and model averag-
ing in phylogenetics: advantages of Akaike information criterion and
Bayesian approaches over likelihood ratio tests.” Systematic Biology,
53(5):793–808, 2004.

169

[PHZ11] A. Pathak, Y.C. Hu, M. Zhang, P. Bahl, and Y.M. Wang. “Fine-
grained power modeling for smartphones using system call tracing.”
In EuroSys, 2011.

[PLS01] J. Pouwelse, K. Langendoen, and H. Sips. “Dynamic voltage scaling
on a low-power microprocessor.” In SOSP, 2001.

[Pow95] RA Powers. “Batteries for low power electronics.” Proceedings of the
IEEE, 83(4):687–693, 1995.

[PS01] P. Pillai and K.G. Shin. “Real-time dynamic voltage scaling for low-
power embedded operating systems.” In SOSP, 2001.

[RAC11] M. Rabbi, S. Ali, T. Choudhury, and E. Berke. “Passive and In-situ
Assessment of Mental and Physical Well-being using Mobile Sensors.”
In Ubicomp, 2011.

[RLR09] J. Ryder, B. Longstaff, S. Reddy, and D. Estrin. “Ambulation: A tool
for monitoring mobility patterns over time using mobile phones.” In
Computational Science and Engineering, 2009. CSE’09. International
Conference on, volume 4, pp. 927–931. IEEE, 2009.

[RLW87] P.J. Rousseeuw, A.M. Leroy, and J. Wiley. Robust regression and
outlier detection, volume 3. Wiley Online Library, 1987.

[RMM11] K.K. Rachuri, C. Mascolo, M. Musolesi, and P.J. Rentfrow. “Sociable-
Sense: exploring the trade-offs of adaptive sampling and computation
offloading for social sensing.” In ACM MobiCom, 2011.

[RQZ07] Ahmad Rahmati, Angela Qian, and Lin Zhong. “Understanding
human-battery interaction on mobile phones.” In MobileHCI, 2007.

[RRS11] A. Roy, S.M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zel-
dovich. “Energy management in mobile devices with the Cinder op-
erating system.” In EuroSys, 2011.

[RSH08] N. Ravi, J. Scott, L. Han, and L. Iftode. “Context-aware Battery
Management for Mobile Phones.” In PerCom, 2008.

[RVR03] R. Rao, S. Vrudhula, and DN Rakhmatov. “Battery modeling for
energy aware system design.” Computer, 36(12):77–87, 2003.

[RZ09a] A. Rahmati and L. Zhong. “Human–battery interaction on mobile
phones.” Pervasive and Mobile Computing, 5(5), 2009.

170

[RZ09b] Ahmad Rahmati and Lin Zhong. “A longitudinal study of non-voice
mobile phone usage by teens from an underserved urban community.”
Technical Report 0515-09, Rice University, 2009.

[Sch97] R.R. Schaller. “Moore’s law: past, present and future.” Spectrum,
IEEE, 34(6):52–59, 1997.

[Sha09] J. Sharkey. “Coding for Life – Battery Life, That Is.” Google IO
Developer Conference, 2009.

[SK97] M. Stemm and R.H. Katz. “Measuring and reducing energy consump-
tion of network interfaces in hand-held devices.” IEICE Transactions
on Communications, 80(8):1125–1131, 1997.

[SLG08] T. Sohn, K.A. Li, W.G. Griswold, and J.D. Hollan. “A diary study
of mobile information needs.” In SIGCHI, 2008.

[SNR09] A. Sharma, V. Navda, R. Ramjee, V.N. Padmanabhan, and E.M.
Belding. “Cool-Tether: Energy efficient on-the-fly WiFi hot-spots
using mobile phones.” In CoNEXT, 2009.

[SRH06] P. Svoboda, F. Ricciato, E. Hasenleithner, and R. Pilz. “Composition
of GPRS/UMTS traffic: Snapshots from a live network.” IPS MoMe
2006, 4, 2006.

[SSG09] A. Shye, B. Sholbrock, and Memic. G. “Into the Wild: Studying
Real User Activity Patterns to Guide Power Optimization for Mobile
Architectures.” In IEEE Micro, 2009.

[TRK09] Ionut Trestian, Supranamaya Ranjan, Aleksandar Kuzmanovic, and
Antonio Nucci. “Measuring serendipity: Connecting people, locations
and interests in a mobile 3G network.” In IMC, 2009.

[TWH01] R. Tibshirani, G. Walther, and T. Hastie. “Estimating the number
of clusters in a data set via the gap statistic.” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 63(2):411–423,
2001.

[WBC08] D. Wyatt, J. Bilmes, T. Choudhury, and J.A. Kitts. “Towards the
automated social analysis of situated speech data.” In Ubicomp, 2008.

[WHS05] Carey Williamson, Emir Halepovic, Hongxia Sun, and Yujing Wu.
“Characterization of CDMA2000 Cellular Data Network Traffic.” In
Local Computer Networks, 2005.

171

[WMB08] D. Willkomm, S. Machiraju, J. Bolot, and A. Wolisz. “Primary users
in cellular networks: A large-scale measurement study.” In DySPAN,
2008.

[WPH07] Y. Won, B.C. Park, S.C. Hong, K. Jung, H.T. Ju, and J. Hong. “Mea-
surement Analysis of Mobile Data Networks.” PAM, 2007.

[WWD96] M. Weiser, B. Welch, A. Demers, and S. Shenker. “Scheduling for
Reduced CPU Energy.” Kluwer International Series in Engineering
and Computer Science, pp. 449–472, 1996.

[YDS02] F. Yao, A. Demers, and S. Shenker. “A scheduling model for reduced
CPU energy.” In FOCS, pp. 374–382. IEEE, 2002.

[ZBP02] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. “On the character-
istics and origins of Internet flow rates.” In SIGCOMM, 2002.

[ZEL02] H. Zeng, C.S. Ellis, A.R. Lebeck, and A. Vahdat. “ECOSystem: man-
aging energy as a first class operating system resource.” ACM SIG-
PLAN Notices, 37(10):123–132, 2002.

[ZEL03] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. “Cur-
rentcy: A Unifying Abstraction for Expressing Energy.” In Usenix
Annual Technical Conference, 2003.

[ZWS06] L. Zhong, B. Wei, and M.J. Sinclair. “SMERT: energy-efficient design
of a multimedia messaging system for mobile devices.” In DAC, 2006.

172

