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Abstract

Signatures of the Late Time Core-Collapse Supernova Environment

by

Luke Forrest Roberts

The hot and dense proto-neutron star (PNS) born subsequent to core-collapse in

a type II supernova explosion is an intense source of neutrinos of all flavors. It

emits the 3− 5× 1053 ergs of gravitational binding energy gained during collapse

as neutrino radiation on a time scale of tens of seconds as it contracts, becomes in-

creasingly neutron-rich and cools. While the supernova explosion mechanism and

associated accretion of material is expected to influence the neutrino emission at

early time (i.e. t . 1 s post bounce) the late time neutrino signal is shaped by

the properties of the PNS, such as the nuclear equation of state (EoS), neutrino

opacities in dense matter, and other microphysical properties that affect the cool-

ing timescale by influencing either neutrino diffusion or convection. Detection of

significant numbers of late time supernova neutrinos will provide a direct window

into the properties of nuclear matter and neutron stars, if the neutrino signal

can be modeled accurately. The average emitted neutrino energies also strongly

affect nucleosynthesis in the neutrino driven wind, neutrino induced nucleosyn-

thesis further out in the star, and the patterns of neutrino oscillations outside of

the PNS.

This thesis examines a number of aspects of this environment. First, the

equations of spherically symmetric general relativistic radiation hydrodynamics

are discussed, a new code for calculating neutrino transport in PNSs is described,

and first results from this code are presented. It is found that the NDW is neu-



tron rich for at least a few seconds, in contrast to other recent work. This change

in the expected wind electron fraction is traced to the correct treatment of the

nucleon dispersion relations in an interacting medium and turns out to be influ-

enced by the sub-nuclear density symmetry energy. Late time convection in PNSs

is also studied. It is found that the density dependence of the symmetry energy

may affect the duration of convective activity, which is imprinted in the neutrino

luminosity evolution.

The second part of the thesis focuses on the neutrino driven wind (NDW)

which is blown from the surface of the PNS. Time-dependent hydrodynamic cal-

culations of the NDW are presented, which include accurate weak interaction

physics coupled to a full nuclear reaction network. Using two published models of

PNS neutrino luminosities, predictions of the contribution of the NDW to the in-

tegrated nucleosynthetic yield of the entire supernova are made. For the neutrino

luminosity histories considered, it is found no r-process occurs in the most basic

wind scenario because the NDW entropy is too low, the dynamical timescale is

too long, and the wind electron fraction is too high. It is possible that the wind

produces the N = 50 closed shell isotopes, but this depends on the neutrino lumi-

nosities employed. The effect of a secondary heating source on the wind is then

considered. The general characteristics of a secondary heating source required

to produce r-process nucleosynthesis are discussed. Then gravitoacoustic power

excited either by convection or g-mode oscillations of the PNS is considered as

a possible source of this heating. It is found that this a viable mechanism for

increasing the wind entropy and decreasing the the dynamical timescale to values

that are favorable for the r-process, when the neutrino spectra found in the first

part of the thesis are assumed.
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Chapter 1

Introduction

Recorded observations of supernovae go back almost two millennia, when Chi-

nese astronomers observed and recorded the galactic supernova SN 185 (Green

& Stephenson 2003). Modern observations of supernovae began in the late 1800s

and the rate of electromagnetic supernova detection has increased exponentially

over the late modern era, especially with the advent dedicated supernova sur-

veys (Filippenko et al. 2001). In 2010 alone, close to one thousand supernovae

were detected (Barbon et al. 2010). Supernovae are observed to shine with lumi-

nosities over 1041 erg s−1 over timescales of months and spectroscopic observations

have shown that there are two distinct classes of supernovae, type I and type II

(Minkowski 1941), which are mainly characterized by the presence or absence of

hydrogen in their spectra. Additionally, the only observed extra-solar neutrinos

were emitted from a supernova (Hirata et al. 1987, Bionta et al. 1987), making

supernovae the only observed “multi-messenger” events in the universe.

The massive release of energy associated with supernovae led Baade & Zwicky

(1934) to conjecture that supernovae are powered by the collapse of a normal
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star to a (then recently theorized and as yet unobserved) neutron star. This

supposition has held up for type II (as well as type Ib and Ic) supernovae and was

the first clue that the physics of supernovae might be intimately related to nuclear

physics. A convincing picture of the connection between supernovae, the evolution

of massive stars, nuclear physics, and the origin of the elements was described in

the seminal work of Burbidge et al. (1957) and Cameron (1957). Stars much more

massive then the sun transmute the hydrogen initially found in their interiors to

heavier and heavier elements through various stages of nuclear burning (hydrogen,

helium, carbon, neon, oxygen, and silicon burning, see Woosley et al. (2002) for a

modern detailed description of the evolution of massive stars) until nuclei around

iron are formed in the core. Nuclei near iron have close to the maximal binding

energy per nucleon and therefore cannot be burned to provide an energy source to

support the star against collapse. Rather, electron degeneracy pressure supports

the core against collapse until it reaches the effective Chandrasekhar mass. The

inner regions of the star then collapse inward until the center reaches supra-nuclear

densities, at which the infall is halted by neutron degeneracy and the repulsive

part of the nuclear interaction. The core releases most of its gravitational binding

energy (∼ 3 × 1053 erg) in the form of MeV neutrinos on a timescale of seconds.

Supersonically in falling material impacts on this newly stiffened core and creates a

shock wave which propagates out into the star and eventually serves to expel most

of the stellar mass (Colgate & White 1966). The ejected material is enriched in

elements formed through nuclear burning both during the stars quiescent life and

during the supernova explosion itself. These newly formed elements are ejected

and mixed into the interstellar medium, from whence the next generation of stars

is formed.
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This theoretical picture of core collapse supernovae has been verified in a

number of ways: supernova progenitors have been identified as massive stars in

archival data (Smartt 2009), the nucleosynthetic yields from massive stars have

had success explaining the observed abundances of most of the isotopes in our

solar system as well as the evolution of elemental abundances with metallicity

(when combined with other nucleosynthetic sources) (Timmes et al. 1995), pulsars

have been observed to be associated with supernova remnants (Large et al. 1968),

and neutrinos emitted from the inner most regions of a supernova have been

observed (Hirata et al. 1987, Bionta et al. 1987) with emission timescales and

average energies in general agreement with theoretical predictions (Lattimer &

Yahil 1989, Loredo & Lamb 2002).

Although supernovae have been detected for over a hundred years and the

general theoretical picture of core collapse supernovae has been observationally

confirmed, there a number of significant open questions concerning the innermost

regions of core collapse supernovae:

1. How is the gravitational binding energy of the compact object coupled to the

outer layers of the star? Although supernovae clearly blow up in nature, the

details of how the energy gained from binding the inner compact object gets

transmitted to the outer layers of the star and unbinds them are uncertain.

Initially, it was thought that the shock which formed after bounce would con-

tinually propagate outwards and unbind the star (Colgate & White 1966),

but dissociation of iron behind the shock saps it of energy and causes it to

stall. Therefore, for the explosion to occur, some mechanism must operate

which re-energizes the shock. The favored mechanism for this is neutrino

heating in the convectively unstable region behind the shock (Bethe & Wil-
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son 1985). Although this neutrino re-heating mechanism has been studied

for almost three decades, there is still significant uncertainty concerning the

efficacy of this mechanism (c.f. Janka 2012). This is a challenging problem

because it is inherently multi-dimensional, general relativistic, involves radi-

ation hydrodynamics, and the microphysics is uncertain. Additionally, MHD

mechanisms for exploding supernovae have also been proposed, as magnetic

fields are expected to be large in at least some fraction of supernovae (c.f.

Meier et al. 1976, Burrows et al. 2007).

2. What are the detailed properties of the emitted neutrinos? Direct detection

of supernova neutrinos is a rare event; it has only occurred once. Still, it

is quite possible that a galactic core-collapse supernova will be seen with

neutrino detectors in the lifetime of the author of this thesis, assuming

current estimates for the Type II supernova rate for the Milky Way. Given

that neutrinos have been observed from a supernova, the interesting aspect

of new neutrino observations will be what they can tell us about the details of

the inner most regions of a core-collapse supernova. There were not enough

neutrino detections from SN 1987A (∼ 24), to determine much detail of

the cooling process (Lattimer & Yahil 1989, Loredo & Lamb 2002), though

limits were placed on the properties of weakly interacting particles (Keil

et al. 1997). If a similar core collapse supernova were to occur today, modern

neutrino detectors would see thousands of events. Detailed modeling of the

neutrino emission is required if anything is to be learned about the central

engine of core collapse supernovae from the detection of neutrinos from a

nearby event.

If the shape of the neutrino spectrum is well understood, the late time core-
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collapse supernova neutrino signal will give an estimate of the neutron star

radius via Lν ∝ r2T 4
ν,eff (c.f. Hüdepohl et al. 2010), which would complement

other measurements of neutron star radii and constrain the nuclear equation

of state (Steiner et al. 2010). Additionally, the early neutrino emission may

be correlated with the structure of the progenitor star and put constraints

on models of massive stellar evolution (O’Connor & Ott 2012). The rate of

PNS cooling also has the potential to put limits on exotic physics, such as

axions (Keil et al. 1995), the presence of quark matter or a Kaon condensate

in the PNS core (Pons et al. 2001a;b), as well as possible extensions of the

standard model using data already in hand from SN 1987A.

It is also possible that current neutrino detectors with upgrades or next gen-

eration neutrino detectors will be able to observe the diffuse background of

neutrinos produced by supernovae over the lifetime of the universe (Hori-

uchi et al. 2009). Predictions for the diffuse MeV scale neutrino background

density depend significantly on the the integrated spectrum of neutrinos

emitted in core-collapse supernovae (Woosley et al. 1986, Ando 2004). The

integrated neutrino emission is dominated by PNS evolution, so that ac-

curate modeling of PNSs can also contribute to understanding the diffuse

supernova neutrino background.

Additionally, the neutrino emission from the “photosphere” of PNSs gives

the initial conditions for the study of both matter-induced and neutrino-

induced neutrino oscillations (Duan et al. 2006). The differences between

the spectra various neutrino flavors, especially ν̄e and ν̄µ,τ , can significantly

affect the impact of flavor evolution in the nearly free streaming regime (Keil

et al. 2003). The rise time of the supernova neutrino burst may be affected

5



by the neutrino mass hierarchy, so that observations of supernova neutrinos

could distinguish the heretofore unknown neutrino mass hierarchy (Serpico

et al. 2012).

The evolution of PNSs is described by the Kelvin-Helmholtz cooling of the

collapsed, shock heated remnant of a core-collapse supernova. Similarly to

the explosion mechanism itself, the cooling phase is fundamentally a ra-

diation hydrodynamics problem (although the regions important for neu-

trino emission are not very dynamic after bounce). Theoretical predictions

of post-bounce neutrinos have existed for more than 25 years (Burrows &

Lattimer 1986, Mayle et al. 1987, Keil & Janka 1995, Pons et al. 1999, Fis-

cher et al. 2010, Hüdepohl et al. 2010, Roberts et al. 2012). Over time, the

treatment of radiative transfer and neutrino microphysics in simulations has

become increasingly sophisticated, moving from the equilibrium flux lim-

ited diffusion (EFLD) and greatly simplified neutrino physics (Burrows &

Lattimer 1986) to full solutions of the Boltzmann equation (Fischer et al.

2010) with more realistic microphysics (Hüdepohl et al. 2010, Roberts 2012).

Still, there is significant physics that is not included in these models which

may affect the neutrino emission, leaving much work to be done (Roberts &

Reddy 2012).

3. What nucleosynthesis is expected from the inner most supernova ejecta?

Another important reason for studying the late time core-collapse environ-

ment is the impact neutrinos have on supernova nucleosynthesis. The site

where r-process nuclei above A=90 have been synthesized remains a ma-

jor unsolved problem in nucleosynthesis theory (e.g., Arnould et al. 2007).

Historically, many possibilities have been proposed (see Meyer 1994), but
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today, there are two principal contenders - neutron star mergers (Lattimer

et al. 1977, Freiburghaus et al. 1999, Roberts et al. 2011) and the NDW (e.g.

Woosley et al. 1994, Witti et al. 1994a, Thompson et al. 2001, Wanajo et al.

2001, Arcones et al. 2007). Observations of ultra-metal-poor stars suggest

that many r-process isotopes were already quite abundant at early times

in the galaxy (Cowan et al. 1995, Sneden et al. 1996, Frebel et al. 2007),

suggesting both a primary origin for the r-process and an association with

massive stars, both of which favor the NDW of NSNS mergers.

Charged current neutrino interactions in the wind blown from the surface

of PNSs determine the electron fraction of the ejected material and thereby

constrain its nucleosynthesis. Current uncertainties in the relative energies

of the electron neutrinos and anti-neutrinos emitted from PNSs are in fact

large enough to allow for the possibility of both neutron-rich and proton-

rich conditions in the innermost supernova ejecta, which may be favorable

for either r-process (Woosley et al. 1994) and νp-process nucleosynthesis

(Fröhlich et al. 2006, Pruet et al. 2006), respectively. Some recent work

points to the wind ejecta being proton rich at all times (Hüdepohl et al.

2010, Fischer et al. 2010), but this conclusion is far from certain (Roberts

2012, Roberts & Reddy 2012, Mart́ınez-Pinedo et al. 2012).

The neutrino driven wind (NDW) that emanates from young neutron stars

was first studied by Duncan et al. (1986), but without an eye towards possi-

ble nucleosynthesis in this environment. It was first suggested that the NDW

might be responsible for r-process nucleosynthesis in Woosley & Hoffman

(1992) and Meyer et al. (1992). The first dynamical models of the NDW

showed conditions that were very favorable for r-process nucleosynthesis
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(Woosley et al. 1994), but subsequent core-collapse supernova models that

followed the wind phase were unable to reproduce the conditions found in

that work and the r-process did not obtain (Witti et al. 1994a). Analytic

models of the wind found that in the simplest scenario the NDW was not

conducive to r-process nucleosynthesis (Qian & Woosley 1996, Hoffman et al.

1997, Thompson et al. 2001). In reality, the PNS environment is likely sig-

nificantly more complicated than is assumed in these models of the wind.

Strong magnetic fields can alter the dynamics of the wind (Metzger et al.

2007) and Alfven waves can heat the material in the wind, increasing the

entropy and making conditions more favorable for the r-process (Suzuki &

Nagataki 2005a). It is also possible that acoustic waves could provide a

similar augmentation of neutrino heating.

Additionally, the average energies of µ and τ neutrinos also significantly

affect the neutrino spallation rates that determine nucleosynthetic yields of

the ν-process (Woosley et al. 1990), which may be responsible for a number

of rare isotopes. The average energies of these are strongly affected by the

inclusion of detailed neutrino physics, so that more accurate modeling of the

neutrino emission is required to see if the ν-process is operative as imagined

(Heger et al. 2005).

This thesis focuses on understanding some of the physics that influences late

time supernova neutrino emission and on the details of how this neutrino emission

affects the nuclear composition of the inner most material ejected in the super-

nova (i.e. questions 2 and 3 above), but eschews the important question of the

supernova mechanism itself.

In Chapter 2, a spherically symmetric, general relativistic, multi-group neu-
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trino transport code for PNS evolution is described. The basic equations of general

relativistic stellar structure coupled to the equations of moment based radiative

transfer are described. A simplified method for angle and energy dependent radia-

tive transfer in a curved space-time is then discussed as a way to close the moment

equations of radiative transfer. Numerical aspects of the code are then discussed

and some test problems are described. This code is then used to model the evo-

lution of young neutron stars over a period of about one minute. The generic

features of PNS evolution are described, such as the evolution of the internal

structure and evolution of the neutrino emission. The importance of the treat-

ment of charged current neutrino interaction rates in the PNS is then discussed,

specifically in relation to the expected neutrino driven wind electron fraction. A

comparison is also made to a model of PNS evolution which uses a simplified

method for radiative transfer that has been employed in many previous studies.

The chapter concludes with a discussion of the integrated neutrino emission from

the neutron star.

In Chapter 3, the physics of the charged current response in matter at sub-

nuclear densities is discussed with an eye towards its affect on electron neutrino

and anti-neutrino transport in the outer layers of a PNS. It is found that the

nuclear symmetry energy can affect the electron fraction of the NDW when only

mean field affects are considered in the charged current response. Possible modifi-

cations of the response due to collective modes and multi-particle hole excitations

are also discussed.

In Chapter 4, neutrino emission from a PNS is modeled using equilibrium flux

limited diffusion to study its sensitivity to the nuclear equation of state, neutrino

opacities, and convective instabilities at high baryon density. It is found that
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the time period and spatial extent over which convection operates is sensitive

to the behavior of the nuclear symmetry energy at and above nuclear density.

When convection ends within the PNS, there is a break in the predicted neutrino

emission that may be clearly observable

In Chapter 5, dynamical models of NDWs including integrated nucleosynthe-

sis are described. It is found that the simplest models are incapable of producing

r-process nucleosynthesis, but it is possible that the NDW might be responsible

for the production of 87Rb, 88Sr, 89Y, and 90Zr (although this is sensitive to the

assumed neutrino luminosities).

In Chapter 6, a possible extension of the NDW model to include a source of

heating in addition to neutrinos is discussed, which allows for r-process nucleosyn-

thesis in marginally neutron rich NDWs. It is proposed that gravitoacoustic waves

emanating from the PNS could naturally provide such a heating source. There-

fore, assuming the NDW electron fractions predicted in chapter 2, it is found that

it is at least plausible (once again) that the NDW is a source of r-process nuclei,

but the uncertainties are quite large.
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Chapter 2

A New General Relativistic

Multi-Group Proto-Neutron Star

Evolution Code

This work has been published in the Astrophysical Journal as (Roberts 2012).

Abstract

A new code for following the evolution and emissions of proto-neutron stars

during the first minute of their lives is developed and tested. The code is one

dimensional, fully implicit, and general relativistic. Multi-group, multi-flavor neu-

trino transport is incorporated that makes use of variable Eddington factors ob-

tained from a formal solution of the static general relativistic Boltzmann equation

with linearized scattering terms. The timescales of neutrino emission and spec-

tral evolution obtained using the new code are broadly consistent with previous

results. Unlike other recent calculations, however, the new code predicts that the

neutrino-driven wind will be characterized, at least for part of its existence, by
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a neutron excess. This change, potentially consequential for nucleosynthesis in

the wind, is due to an improved treatment of the charged-current interactions

of electron flavored neutrinos and anti-neutrinos with nucleons. A comparison is

also made between the results obtained using either variable Eddington factors

or simple equilibrium flux-limited diffusion. The latter approximation, which has

been frequently used in previous studies of proto-neutron star cooling, accurately

describes the total neutrino luminosities (to within 10%) for most of the evolution,

until the proto-neutron star becomes optically thin.

2.1 Introduction

A proto-neutron star (PNS) is born after the core of a massive star collapses

to supra-nuclear densities, experiences core bounce due to the repulsive portion

of the nuclear interaction which launches a shock wave that may eventually serve

to disrupt the entire star in a supernova, and leaves behind a compact remnant.

The overlying star is ejected and some portion of the mass may or may not fall

back (c.f. Janka et al. 2007). In reality the mass of the PNS may increase with

time due to this accretion, but a frequent assumption that is reasonable for low

mass progenitors, and one adopted here, is that the PNS evolves in isolation

after the shock has exited. Because of the large release of gravitational binding

energy (2 − 5 × 1053 ergs), the PNS is initially hot and extended compared to a

cold neutron star but large portions of the mass are still at supra-nuclear densities.

Due to the high density and reasonably large temperature of this nuclear material,

it is opaque to neutrinos of all flavors. In the outer regions of the PNS where the

density is lower, the material is semi-transparent to neutrinos. This hot extended

object undergoes Kelvin-Helmholtz cooling by emitting neutrinos of all flavors
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over a period of up to a minute (Burrows & Lattimer 1986), at which time it

transitions to a phase of optically thin neutrino cooling.

This qualitative description was confirmed when about twenty neutrinos were

observed from SN 1987A (Bionta et al. 1987, Hirata et al. 1987). There were not

enough events, however, to determine much detail of the cooling process (Lattimer

& Yahil 1989, Loredo & Lamb 2002), though limits were placed on the properties of

weakly interacting particles (Keil et al. 1997). If a similar core collapse supernova

were to occur today, modern neutrino detectors would see thousands of events.

Detailed modeling of the neutrino emission is needed if we are to learn about the

central engine of core collapse supernovae from a nearby event.

Theoretical predictions of post-bounce neutrinos have existed for more than 25

years (Burrows & Lattimer 1986, Mayle et al. 1987, Keil & Janka 1995, Sumiyoshi

et al. 1995, Pons et al. 1999, Fischer et al. 2010, Hüdepohl et al. 2010, Roberts

et al. 2012). Since the evolution of PNSs is described by the Kelvin-Helmholtz

cooling of the collapsed, shock heated remnant of a core-collapse supernova, it

is fundamentally a radiation hydrodynamics problem (although the regions im-

portant for neutrino emission are not very dynamic after bounce). Over time,

the treatment of radiative transfer and neutrino microphysics in simulations has

become increasingly sophisticated, moving from the equilibrium flux limited diffu-

sion (EFLD) and greatly simplified neutrino physics (Burrows & Lattimer 1986)

to full solutions of the Boltzmann equation (Fischer et al. 2010) with more realistic

microphysics (Hüdepohl et al. 2010).

Here, a new fully implicit code is developed for calculating the detailed evolu-

tion of PNSs in spherically symmetric general relativity within a variable Edding-

ton factor formalism. The structure of the paper is as follows: In section 2.2, the
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equations of neutrino transport within the projected symmetric trace-free moment

formalism of Thorne (1981) are described, and generic neutrino source terms for

this formalism are derived. In section 2.3, a method for obtaining closure rela-

tions for the moment equations via a formal solution of the Boltzmann equation

are described. A fully implicit numerical implementation of neutrino transport

coupled to hydrodynamics/hydrostatics is described in section 2.4 (with code tests

described in appendix 2.8). A fiducial model of PNS cooling is detailed in section

2.5. These results are compared with the results of an EFLD calculation of PNS

cooling in section 2.6.1. The implications of these new calculations of PNS cool-

ing on the composition of the neutrino driven wind are discussed in section 2.6.2.

In section 2.6.3, the properties of the integrated neutrino emission are discussed.

The convention ~ = c = G = 1 is adopted in sections 2.2 through 2.4 to avoid a

plethora of factors. In section 2.6.2, units with ~ = c = 1 are used.

2.2 The Moment Approach to General Relativis-

tic Radiative Transfer

The equations of radiative transfer in curved space-times were first derived by

Lindquist (1966), which described the evolution of the invariant distribution func-

tion along geodesics in phase space. The general form of the general relativistic

Boltzmann (or Lindquist) equation in the absence of external forces is

df (xµ, pν(xµ))

dτ
= pβ

(

∂f

∂xβ
− Γα

βγp
γ ∂f

∂pα

)

=

(

df

dτ

)

coll

, (2.1)

where f is the invariant distribution function, pβ is the neutrino four-momentum

(which is constrained to be on mass shell), and Γα
βγ are the Christoffel symbols.

14



The collision term on the right hand side describes the destruction and produc-

tion of neutrinos on a particular phase-space trajectory by capture processes, pair

annihilation, scattering, and their inverses. In addition to describing the prop-

agation of neutrinos along trajectories in physical space, this also encodes the

evolution of the energy of neutrinos along geodesics of the spacetime. In three

spatial dimensions, this is a seven dimensional equation that needs to be solved

for each neutrino species.

A number of numerical strategies can be employed to solve the transport prob-

lem (Mihalas & Mihalas 1984). Foremost among these are discrete ordinate meth-

ods, where the Boltzmann equation is directly discretized in momentum space as

well as in physical space (e.g. Yueh & Buchler 1977, Mezzacappa & Messer 1999,

Liebendörfer et al. 2004), and moment-based approaches, where angular integra-

tions of the Boltzmann equation in momentum space are performed (e.g. Thorne

1981, Burrows et al. 2000, Rampp & Janka 2002). These two approaches give

similar results in one-dimensional models, at least in the context of core-collapse

supernovae (Liebendörfer et al. 2005). An additional technique that has only been

employed for solving static problems in the supernova context, but is perhaps the

most capable of retaining fidelity to the underlying Boltzmann equation, is Monte

Carlo neutrino transport (Janka & Hillebrandt 1989, Keil et al. 2003).

The moment approach results in an infinite hierarchy of coupled equations

which needs to be truncated at some order in practice. Generally, only the zeroth

and first order moment equations are retained and a closure relation is assumed

between the first two moments and the higher order moments that enter the first

two moment equations. Such schemes are referred to as variable Eddington factor

methods (Mihalas & Mihalas 1984). When only the first two moments are used,
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the number of equations relative to discrete ordinate methods is significantly re-

duced, easing the computational burden (especially in an implicit scheme like the

one described below). Of course, this gain in computational efficiency is useful

only if reasonable closures can be obtained. The closure relations only encode in-

formation about the angular distribution of neutrinos, so that the approximations

involved in solving a linearized Boltzmann equation do not severely impact the

fidelity of numerical calculations to the true solution (Mihalas & Mihalas 1984,

Ensman 1994).

Here a variable Eddington factor approach to radiative transfer is employed,

with the closure relations being obtained from a formal solution of the static

relativistic Boltzmann equation. This approach is similar to that used by Burrows

et al. (2000) and Rampp & Janka (2002), except for being fully general relativistic,

incorporating both inelastic scattering and pair production (in contrast to only

the former), using energy integrated groups rather than energy “pickets”, and in

the specific method of finding the closure relations. The formalism for this method

is described below.

The moments of the Boltzmann equation also most naturally give the various

forms of the diffusion approximation, which has been used in the majority of PNS

studies (Burrows & Lattimer 1986, Keil & Janka 1995, Pons et al. 1999, Roberts

et al. 2012) and in a significant fraction of studies of the early core-collapse and

bounce phases(Bruenn 1985, Wilson & Mayle 1993). The formalism is connected

to EFLD in appendix 2.9.
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2.2.1 General Relativistic Generalities

In spherical symmetry, it is simplest to work in a coordinate system that

anticipates a Lagrangian frame for the fluid. The metric for such a space-time is

given by (Misner & Sharp 1964)

ds2 = −e2φdt2 +

(

r′

Γ

)2

da2 + r2dΩ2, (2.2)

where ds is the invariant interval, t is the time measured at infinity, r is the

areal radius, Ω is the solid angle, and Γ and φ are metric potentials. Coordinate

freedom can be exploited to choose this frame to be the rest-frame of the fluid,

which demands (Liebendörfer et al. 2001a)

∂r

∂a
=

Γ

4πr2nB

. (2.3)

Here, nB is the baryon number density and

Γ =

√

1 + u2 − 2m

r
(2.4)

where u and m are defined below. With this choice, the orthonormal frame asso-

ciated with the coordinate frame is just the rest frame of the fluid and da is just

the change in enclosed baryon number with the physical volume. Therefore, this

formulation is working in the Lagrangian frame, as claimed.

The equations of spherically symmetric general relativistic hydrodynamics and

the Einstein equation are recorded for convenience (Misner & Sharp 1964). Most

of these results are nicely presented and detailed in similar form by Liebendörfer

et al. (2001a). The time evolution of the areal radius is given by,

∂r

∂t
= eφu (2.5)
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which defines u. The evolution of u is given by

∂u

∂t
= Γ2∂eφ

∂r
− eφ m + 4πr3(p + Q)

r2
, (2.6)

where Q is the viscosity and p is the pressure of the fluid. This gives the equation

of hydrostatic balance when the left hand side equals zero (i.e. the Tolman-

Oppenheimer-Volkov equation (Oppenheimer & Volkoff 1939)). The enclosed

gravitational mass, m, is defined by

∂m

∂a
= Γ

(

E

nB
+ ǫ

)

+ u
H

nB
, (2.7)

where ǫ is the internal energy per baryon, E is the total neutrino energy density in

the rest frame, and H is the net radial energy flux from neutrinos. The constraint

equation for the metric potential φ is

ǫ

eφ

∂eφ

∂a
+

1

nBeφ

∂(eφp)

∂a
+

1

r3nBeφ

∂(r3eφQ)

∂a
= 0, (2.8)

where a small time dependent term has been neglected.

The transport equations described in the next section are formulated in a

congruence corresponding to the four-velocity field of the PNS (clearly, this is

not a geodesic congruence). The behavior of this congruence is best described by

expanding the covariant derivative of the four-velocity as

Uµ;ν = −aνUµ +
Θ

3
Pµν + σµν + ωµν , (2.9)

where Uµ is the tangent four-vector field of the congruence, Pµν is the projection

tensor (which projects into the vector subspace orthogonal to Uµ) aν = UαUν
;α is

the acceleration, Θ = Uµ
;µ is the expansion, σµν is the shear, and ωµν is the rotation.

Using the continuity equation, the expansion of the congruence becomes

Θ = −Dt̂ ln(nB). (2.10)
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In spherical symmetry, the acceleration four-vector is parallel to the radial or-

thonormal basis vector, so that only the scalar acceleration is needed

a = Γ
∂φ

∂r
. (2.11)

In spherical symmetry, the shear is characterized by a single component, the scalar

shear

σ = −2u

r
− 2

3
Θ. (2.12)

Additionally, such a spherically symmetric congruence possesses no rotation, so

that ωµν = 0. The quantity

b =
Γ

r
(2.13)

will also be required, which is related to the extrinsic curvature (Thorne 1981).

The orthonormal frame temporal and radial derivative operators are

Dt̂ = e−φ ∂

∂t
(2.14)

and

Dr̂ = 4πr2nB
∂

∂a
= Γ

∂

∂r
. (2.15)

2.2.2 Variable Eddington Factor Transport Equations

Here, the evolution equations for the neutrino number density, energy density,

number flux and energy flux are derived from the zeroth and first order moments

of the relativistic Boltzmann equation. The basic results are taken from the spher-

ically symmetric version of the projected symmetric trace-free moment formalism

of Thorne (1981). This formalism reduces to an expansion of the neutrino distri-

bution function in terms of Legendre polynomials in a flat space-time.
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The moments of the distribution function are defined in spherical symmetry

as

wn =
ω3

(2π)2
Bn

∫ 1

−1

dµPn(µ)f(ω, µ) (2.16)

where

Bn =
n!(2n + 1)

(2n + 1)!!
, (2.17)

Pn are the Legendre polynomials, and ω is the neutrino energy in the fluids rest

frame. The first two moment equations in spherical symmetry can be read off

from equation 5.10 of Thorne (1981)

w0
,t̂ +

4

3
Θw0 +

3

2
σw2 + w1

,r̂

2(a + b)w1 − ∂

∂ω
ω

[

aw1 +
Θ

3
w0 +

3

2
σw2

]

= s0 (2.18)

and

w2
,r̂ + (a + 3b)w2 + w1

,t̂ +

[

4

3
Θ + σ

]

w1 +
1

3
w0

,r̂ +
4

3
aw0

− ∂

∂ω
ω

[

aw2 +

(

Θ

3
+

2

5
σ

)

w1 +
1

3
aw0 +

3

2
σw3

]

= s1, (2.19)

where sl are the neutrino source terms defined in section 2.2.3. To close this

system, define the Eddington like factors

g2 = w2/w0 (2.20)

g3 = w3/w1 (2.21)

which both go to zero in the limit f(µ) = f0 +µf1, which corresponds to the diffu-

sion regime. Note that these differ from the standard definition of the Eddington

factors (Rampp & Janka 2002), which is due to how I have chosen to calculate the

moments. For free streaming radiation in a flat background g2 = 2/3, and these
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equations reduce to the linear wave equation for h = h(r ± t) ≡ r2w0. A method

for approximating these Eddington factors is detailed in section 2.3.

For problems that are close to being static on the radiation timescale, it is

useful to switch the independent variable ω, the energy in the fluid rest frame,

of wi to the energy at infinity, ν (c.f. Schinder & Bludman 1989). In the case

of PNS cooling, the energy at infinity is much closer to being a constant of the

motion and therefore a more natural variable. Additionally, this choice simplifies

the formal solution of the Boltzmann equation. The moments of the distribution

function are then

wi = wi(r, ν(ω, r, t)) (2.22)

where the energy at infinity is defined as ν = eφ(r,t)ω. This means that the

replacement

∂wi

∂x
→ ∂wi

∂x
+

∂ν

∂x

∂wi

∂ν
(2.23)

needs to be made for all radial and time derivatives, resulting in

∂w0/nB

∂t
+

w0

nB
eφ

(

Θ

3
+ g2

3

2
σ

)

+
∂

∂a

(

4πr2eφw1
)

− eφ

nB

∂

∂ν
ν

[(

Θ

3
+ g2

3

2
σ

)

w0

]

+
ν

n

∂φ

∂t

∂w0

∂ν
= eφ s0

nB
(2.24)

and

e−φ ∂w1

∂t
+

[

4

3
Θ + σ

]

w1 + nBe−φ ∂

∂a

[

4πr2eφ

(

1

3
+ g2

)

w0

]

+

(

2

3
− g2

)

(a − b) w0 − ∂

∂ν
ν

[(

Θ

3
+

2

5
σ +

3

2
σg3

)

w1

]

+e−φ ∂φ

∂t
ν
∂w1

∂ν
= s1.

(2.25)

To easily deal with optically thick regions where the distribution function may

possess a sharp Fermi surface, energy integrated groups are used rather than
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discrete energy “pickets”. The group numbers, energies, number fluxes, energy

fluxes, and source terms in group g are defined by

Ng =

∫ ωg,U

ωg,L

dω

ω
w0, Fg =

∫ ωg,U

ωg,L

dω

ω
w1,

S0
g =

∫ ωg,U

ωg,L

dω

ω
s0, S1

g =

∫ ωg,U

ωg,L

dω

ω
s1,

Eg =

∫ ωg,U

ωg,L

dωw0, Hg =

∫ ωg,U

ωg,L

dωw1,

Q0
g =

∫ ωg,U

ωg,L

dωs0, and Q1
g =

∫ ωg,U

ωg,L

dωs1. (2.26)

Here, ωg,L is the lower energy bound of an energy group and ωg,U is the upper

bound. Integrating over energy at infinity within groups gives

Ng =

∫ νU,g

νL,g

dν

ν
w0 and Eg = e−φ

∫ νU,g

νL,g

dνw0 (2.27)

and similar expressions for Fg, Hg, and the source terms. The operators
∫

dν/ν

and
∫

dν can then be applied to the “red shifted” equations. The evolution the

neutrino group number densities are described by

∂

∂t

(

Ng

nB

)

+
∂

∂a

(

4πr2eφFg

)

− eφ

nB

(

Θ

3
+ g2

3

2
σ − e−φ ∂φ

∂t

)

w0

∣

∣

∣

∣

νU

νL

= eφ
S0

g

nB

. (2.28)

The last term on the left hand side describes the red or blue shifting of neutrinos

to other groups via compression and time variation of the metric potential φ. If

the group comprises energies from zero to infinity, the red shifting terms drop out

and one is left with the standard number transport equation given in Pons et al.
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(1999). Applying the number operator to equation 2.25 and simplifying gives

e−φ ∂Fg

∂t
+

[

Θ +

(

3

5
− 3

2
g2

)

σ

]

Fg

+
r2nB

3e3φ

∂

∂a

(

4πe3φNg

)

+
nB

r

∂

∂a

(

4πr3g2Eg

)

−
[

Θ

3
+

(

2

5
+

3

2
g2

)

σ − e−φ ∂φ

∂t

]

w1

∣

∣

∣

∣

νU

νL

= S1
g . (2.29)

This includes similar terms to equation 2.28, plus a term that includes the effects

of compression on the total number flux. The energy group evolution equations

are

∂

∂t

(

Eg

nB

)

+ eφ

(

Θ

3
+ g2

3

2
σ

)

Eg

nB
+ e−φ ∂

∂a

(

4πr2e2φHg

)

− 1

nB

(

Θ

3
+ g2

3

2
σ − e−φ ∂φ

∂t

)

(

νw0
)

∣

∣

∣

∣

νU

νL

= eφ
Q0

g

nB
.

(2.30)

Aside from the addition of a compression term and different factors of eφ, this is

identical to equation 2.28. The energy flux group evolution equations are

e−φ ∂Hg

∂t
+

[

4

3
Θ + σ

]

Hg

+
r2nB

3e4φ

∂

∂a

(

4πe4φEg

)

+
nB

reφ

∂

∂a

(

4πr3eφg2Eg

)

−
(

Θ

3
+

2

5
σ + g3

3

2
σ − e−φ ∂φ

∂t

)

(

νw1
)

∣

∣

∣

∣

νU

νL

= Q1
g. (2.31)

The numerical implementation of the red-shifting terms is described in section

2.4.6.

Additionally, neutrinos have a back-reaction on the matter they are propa-

gating through by exchanging energy, lepton number, and momentum with the

background medium. Assuming that the background possesses a thermal state,

the first law of thermodynamics for the medium can be combined with the sum
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of equations 2.30 over all groups to find an equation for the conservation of total

internal energy

∂

∂t

(

ǫ +
∑

g,s

Eg,s

n

)

+ eφΘ

(

p

n
+
∑

g,s

Eg,s

3n

)

+
3eφ

2
σ
∑

g,s

g2,g
Eg,s

n
+ e−φ ∂

∂a

(

4πr2e2φ
∑

g,s

Hg,s

)

= 0 (2.32)

where the sums are over groups and species. Obviously, the neutrino energy source

terms have exactly canceled with the source terms for the medium.

In the absence of neutrinos, the electron fraction of the background medium

is fixed, i.e. e−φẎe = 0. When neutrinos are included, interactions of electron

flavored neutrinos exchange lepton number with the background, yielding e−φẎe =

−∑g S0
g/nB. The total lepton number of the medium is given by YL = Ye +

∑

g [Ng,νe − Ng,ν̄e] /nB. Combining the evolution equation for Ye with equations

2.28 gives the lepton number evolution equation

∂

∂t

(

Ye +
∑

g

[

Ng,νe

nB

− Ng,ν̄e

nB

]

)

+
∂

∂a

(

4πr2eφ
∑

g

[Fg,νe − Fg,ν̄e]

)

= 0. (2.33)

This constitutes the full set of evolution equations for the state of the medium

including non-thermal neutrinos of all flavors, when the Eddington factors g2 and

g3 are specified.

2.2.3 Neutrino Source Terms

The collision term in equation 2.1 describes how neutrinos move from one

trajectory to another via scattering and how they are created and destroyed by the

underlying medium. For the PNS problem these processes include neutral current
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scattering off of electrons, nucleons, and nuclei (Reddy et al. 1998), neutrino

pair production via nucleon-nucleon bremsstrahlung (Hannestad & Raffelt 1998)

and electron-positron annihilation (Bruenn 1985), and charged current processes

involving electron and anti-electron flavor neutrinos and neutrons and protons,

respectively (Reddy et al. 1998).

The details of these microphysical processes are eschewed by assuming that the

differential cross-sections for these processes are known and referring the reader

to the papers cited above, as well as the review Burrows et al. (2006). The

exact details of the microphysics used in the code will be reported in a future

publication, although certain aspects are discussed in sections 2.5 and 2.6.2. Many

of the results in this section are well known (e.g. Bruenn 1985, Pons et al. 1999),

and are included here for completeness and to make clear the details of the exact

implementation within the integrated energy group formalism described above.

Explicit detailed balancing (independent of the choice of underlying scattering

kernels) is emphasized.

The source function for a particular moment is given by

sl = ω3

(2π)2
Bl

∫ 1

−1
dµ Pl(µ)

×
(

ja(1 − f) − f
λa

+ js(1 − f) − f
λs

+ jp(1 − f) − f
λp

)

, (2.34)

which includes contributions from absorption (1/λa), scattering (1/λs), pair-annihilation

(1/λp), and their inverses (ja, js, and jp). The choice of metric and reference frame

implies that the scattering kernels should be evaluated in the rest frame of the

fluid, simplifying things compared to hybrid frame approaches (Hubeny & Bur-

rows 2007).
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For the absorption part, using the standard detailed balance relations gives

ja(1 − f) − f

λa
=

1

λ∗
a

(feq(ω, T, µeq) − f(ω, µ)) , (2.35)

where λ∗−1
a = [1 + exp{−(ω − µeq)/T})]λ−1

a and feq is a Fermi-Dirac distribution.

The scattering contributions are

js =

∫

dω′

(2π)3
ω′2
∫ 1

−1

dµ′
∫ 2π

0

dφ′ Rs(ω′, ω, µ′)f(ω′, µout) (2.36)

and

λs =

∫

dω′

(2π)3
ω′2
∫ 1

−1

dµ′
∫ 2π

0

dφ′ Rs(ω, ω′, µ′)(1 − f(ω′, µout)), (2.37)

and the pair-annihilation contributions are

jp =

∫

dω′

(2π)3
ω′2
∫ 1

−1

dµ′
∫ 2π

0

dφ′ Rp
in(ω, ω′, µ′)(1 − f̄(ω′, µout)) (2.38)

and

λp =

∫

dω′

(2π)3
ω′2
∫ 1

−1

dµ′
∫ 2π

0

dφ′ Rp
out(ω, ω′, µ′)f̄(ω′, µout). (2.39)

The outgoing cosine is given by µout = µµ′ −
√

1 − µ2
√

1 − µ′2 cos φ′. The Rout

functions are related to the differential cross-section by

R(ω, ω′, µ) =
(2π)2

ω′2
1

V

dσ

dω′dµ
, (2.40)

with no phase space blocking term for the final neutrinos in the differential cross-

section. The R functions obey the detailed balance relations for scattering

Rs(ω, ω′, µ) = Rs(ω′, ω, µ)e(ω−ω′)/T . (2.41)

and annihilation

Rp
out(ω, ω′, µ) = Rp

in(ω, ω′, µ)e(ω+ω′)/T ≡ Rp(ω, ω′, µ). (2.42)
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For use in the moment formalism, R must be expanded in terms of the Legendre

polynomials as

R(ω, ω′, µ′) =

∞
∑

l=0

Rl(ω, ω′)Pl(µ
′). (2.43)

The distribution function, f , is also expanded in a similar way. In general, this

results in integrals of the form

Fklmn =
∫ 1

−1
dµ
∫ 1

−1
dµ′ ∫ 2π

0
dφ′Pk(µ

′)Pl(µ)Pm(µ)

×Pn(µµ′ −
√

1 − µ2
√

1 − µ′2 cos φ′)

= 2π δkn

2n+1
Ilmn.

(2.44)

where Ilmn =
∫ 1

−1
dµPl(µ)Pm(µ)Pn(µ). For a more detailed description of such an

expansion, see Mezzacappa & Bruenn (1993).

Using this expansion, the scattering contribution to the source term is given

by

sl
s =

4ω3

(2π)4
Bl

∫

dω′ω′2

×
{

Rs
l f

′
l

(2l + 1)2
e−(ω−ω′)/T − Rs

0fl

2l + 1

+
1

2

∞
∑

m,n=0

Rs
nf

′
nfm

Ilmn

2n + 1

(

1 − e−(ω−ω′)/T
)

}

, (2.45)

and the pair annihilation contribution is given by

sl
p =

4ω3

(2π)4
Bl

∫

dω′ω′2e−(ω+ω′)/T

×
{

Rp
0δ0l −

Rp
0fl

2l + 1
− Rp

l f̄
′
l

(2l + 1)2

+
1

2

∞
∑

m,n=0

Rp
nfmf̄ ′

n

Ilmn

2n + 1

(

1 − e(ω+ω′)/T
)

}

. (2.46)
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Clearly, all of the moments are coupled to all of the other moments by the

source terms in addition to the coupling present on the LHS of the moment equa-

tions. Practically, this series must be truncated at some finite order. It is standard

to use only the zeroth and first moment (Burrows et al. 2006). This convention is

followed, but with the caveat that this may not be a good approximation for the

annihilation terms near the free streaming regime (Pons et al. 1998).

2.2.3.1 Zeroth Order Source Function

Now the three contributions to the source functions for the number and energy

group equations are considered separately. Special attention is given to assuring

that the chosen forms for the source terms explicitly push the neutrinos towards

equilibrium, independent of the chosen opacity functions.

The absorption part of the source function is given by

S0
a,g =

〈

1

λ∗
a

〉

g

[Gg − Ng] , (2.47)

and

Q0
a,g =

〈

1

λ∗
a

〉

g

[Bg − Eg] , (2.48)

where

Bg =

∫ ωg
U

ωg
L

dω
2ω3

(2π)2

1

e(ω−µeq)/T + 1
, (2.49)

and

Gg =

∫ ωg
U

ωg
L

dω
2ω2

(2π)2

1

e(ω−µeq)/T + 1
. (2.50)

The average over the inverse absorption mean free path can be performed in a

number of ways. For small enough energy intervals for groups, the mean free

path for the central energy of the group can be taken. It can also be assumed

that the energy within a group is distributed as in a blackbody, but renormalized

28



to the total energy within the group. Then the averaged inverse mean free path

is analogous to the Planck mean opacity, but using a Fermi-Dirac distribution

instead of a Planck distribution. Independent of the averaging procedure chosen,

this term serves to push the neutrino energy density towards equilibrium with the

background medium.

To find the scattering contribution to the zero order moment equation, it

is assumed that the distribution of energy within a particular energy group is

proportional to the blackbody distribution. Using this ansatz in equation 2.45

and then averaging over group energies gives scattering term

S0
s,g =

∑

g′

Φs
0,gg′Ng′

(

Dg′

Gg′
− 1

)

(Dg − Ng)

−Φs
0,gg′Ng

(

Dg

Gg

− 1

)

(Dg′ − Ng′)

+Φs
1,gg′FgFg′

(

Dg

Gg
− Dg′

Gg′

)

, (2.51)

and

Q0
s,g =

∑

g′

Φs
0,gg′Ng′

(

Dg′

Gg′
− 1

)

(Cg − Eg)

−Φs
0,gg′Eg

(

Cg

Bg
− 1

)

(Dg′ − Ng′)

+Φs
1,gg′HgFg′

(

Cg

Bg
− Dg′

Gg′

)

, (2.52)

where

Cg =

∫ ωg
U

ωg
L

dω
2ω3

(2π)2
, and Dg =

∫ ωg
U

ωg
L

dω
2ω2

(2π)2
.

The averaged scattering kernel is defined as

Φs
l,gg′ =

〈

Rl(ω, ω′)e−(ω−µν,eq)/T
〉

∆Eg,∆Eg′
, (2.53)
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where the average is taken over the energies of the incoming and outgoing groups.

This has the useful property Φs
l,gg′ = Φs

l,g′g, which derives from the detailed balance

criterion given above. This form of the scattering source term naturally conserves

neutrino number, although it does not push the neutrino numbers toward the

expected distribution for a purely scattering process. Both source terms go to zero

when neutrinos are in both chemical and energy equilibrium with the medium.

The energy exchange expression does not go to zero when g′ = g. Although it

might be naively assumed that this corresponds to elastic scattering and therefore

not contribute to the evolution of the group energy, there are in fact contributions

from small energy transfer scatterings to this term as well. Although these will

conserve neutrino number within the group, they can result in energy exchange

with the medium. This allows the formalism to somewhat naturally deal with

energy transfer due to scattering off nucleons, which generally exchanges energy

on a scale that is smaller than the group spacing. The weighting function for the

average over the groups necessarily involves some level of approximation. The

natural incorporation of equilibrium far outweighs the small error introduced due

to the approximate weighting of the scattering kernel.

Using a similar procedure to the one used for the scattering source term, the

energy integrated pair production/annihilation source term is given by

S0
p,g =

∑

g′

Φp
0,gg′

(

D0
g′ − N̄g′

) (

D0
g − Ng

)

−Φp
0,gg′NgN̄g′

(

D0
g′/Ḡg′ − 1

) (

D0
g/Gg − 1

)

+Φp
1,gg′FgF̄g′

(

1 − e(ω+ω′)/T
)

, (2.54)

where the over bar denotes the energy density and flux of a neutrinos anti-species.

This term once again naturally goes to zero when thermal equilibrium is reached
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(i.e. when Ng = Gg and Fg = 0). Here,

Φp
i,gg′ =

〈

e−(ω+ω′)/T Rp
i (ω, ω′)

〉

∆Eg,∆Eg′

. (2.55)

The source term Q1
p can be obtained from the above equation by the replace-

ments Fg → Hg, Ng → Eg, Dg → Cg, and Gg → Bg, while leaving the g′ terms

unchanged.

2.2.3.2 First Order Source Function

For the first order source function terms, one does not need to be as careful

about getting forms that explicitly go to zero in equilibrium as all terms end up

being proportional to the first order distribution function and therefore satisfy

this constraint automatically.

The absorption contribution to the first order source function is

S1
a = −Fg

〈

1

λ∗
a

〉

g

, (2.56)

and

Q1
a = −Hg

〈

1

λ∗
a

〉

g

. (2.57)

The scattering source term in equation 2.28 is

S1
s =

∑

g′

Φs
0,gg′Fg

[

Ng′

(

Dg

Gg
− Dg′

Gg′

)

− Dg′

(

Dg

Gg
− 1

)]

+
Φs

1,gg′

3
Fg′

[

Ng

(

Dg

Gg

− Dg′

Gg′

)

+ Dg

(

Dg′

Gg′
− 1

)]

. (2.58)

The source term Q1
s can be obtained from the above equation by the replace-

ments Fg → Hg, Ng → Eg, Dg → Cg, and Gg → Bg, while leaving the g′ terms

unchanged. When scattering is iso-energetic, this reduces to

S1
s,iso−en = −Fg

2ω2

(2π)2

[

R̃s
0(ω) − R̃s

1(ω)/3
]

≡ −Hg [χs
0(ω) − χs

1(ω)/3] (2.59)
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where R̃s
l is the iso-energetic scattering kernel.

The first order moment equation pair annihilation source term is

S1
p =

∑

g′

Φp
0,gg′Fg

[

N̄g′

(

1 − eβ(ω+ω′)
)

− D0
g′

]

+
Φs

1,gg′

3
F̄g′

[

Ng

(

1 − eβ(ω+ω′)
)

− D0
g

]

, (2.60)

and Q1
p can be found the same replacement required to find S1

s from Q1
s.

2.3 Formal Solution of the Boltzmann Equation

To get the factors g2 and g3, an angle dependent version of the Boltzmann

equation needs to be solved. First, note that the outer layers of the PNS are

in tight radiative equilibrium throughout the duration of the simulation. There-

fore, all time dependence can be reasonably dropped in the equation of radiative

transfer if one is only interested in the ratios of various moments. Of course,

such an approximation breaks down in highly dynamical situations. For such cir-

cumstances, a closure scheme like the one described in Rampp & Janka (2002)

is more appropriate. This time-independent formulation of the formal solution,

which makes calculation of the Eddington factors significantly easier, is similar to

the approach advocated by Ensman (1994), except that it incorporates general

relativistic affects, such as the bending of geodesics. Schinder & Bludman (1989)

describe a similar, but time-dependent formulation.

In a spherically symmetric static spacetime, the equation of radiative transfer
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is (Lindquist 1966)

Γ

[

µ
∂

∂r
+ (1 − µ2)

{

1

r
− ∂φ

∂r

}

∂

∂µ

]

f(ν, µ, r)

=
1

λ∗
a

[feq(r) − f(ν, µ, r)]

+js[f ](1 − f(ν, µ, r)) − λ−1
s [f ]f(ν, µ, r). (2.61)

Here, the neutrino distribution function, f , has been written in terms of the

energy of the neutrinos at infinity, ν, and µ is the cosine of the angle of neutrino

propagation relative to the radial vector.

A formal solution to equation 2.61 can easily be found using the method of

characteristics. The characteristic equations are

dλ ≡ dr

Γµ
=

dµ

Γ(1 − µ2)(1/r − ∂φ
∂r

)
= df

/

(

df

dλ

)

coll

(2.62)

where λ is the physical path length. The second equality is easily integrated

to find a relationship between r and µ along a geodesic. Any geodesic can be

characterized by the radius at which µ = 0. First, define the quantity

β = rme−φm , (2.63)

where the subscript m denotes the minimum radius of propagation. This is just

the impact parameter of the trajectory. Then, for a given β and r, the angle of

propagation along a geodesic is given by

µ = ±

√

1 −
(

βeφ

r

)2

. (2.64)

The first equality in the characteristic equations can be integrated to find the

physical path length between any two radii for a particular characteristic if Γ and

φ are assumed constant over this distance, giving

∆λ ≈ ±Γ−1

[

√

r2
f − e2φβ2 −

√

r2
i − e2φβ2

]

, (2.65)
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where the plus sign is for rf > ri and the minus sign otherwise. This form is

consistent with the assumption of constant metric functions across zones (as is

used in the actual code), but it can introduce difficulties when a trajectory moves

from one zone to another near the radius of minimum propagation.

Clearly, equation 2.61 is a non-linear integro-differential equation due to the

functional dependence of the scattering terms on the local distribution function.

An approximate solution to the Lindquist equation is desired were the solutions

along characteristics are decoupled and the formal solution can be directly inte-

grated. The simplest approximation is to just to make the replacement f → feq

in the scattering terms. This approximation will only be valid at high optical

depth and is therefore suspect for use in the decoupling region. The next order

approximation is to use a distribution function inferred from our knowledge of

Eg and Hg. Assuming that the energy is distributed within a group as within a

blackbody gives

f̂0(ν, r) = feq(ν, r)
Eg

Bg

,

f̂1(ν, r) = 3feq(ν, r)
Hg

Bg

. (2.66)

Employing the Legendre expansion of the scattering kernel, integrating over out-

going neutrino angle, and only including the elastic scattering contribution gives

the scattering source and sink terms

js(ω, µ) =
2ω2

(2π)2

∞
∑

l=0

1

2l + 1
Pl(µ)R̃s

l (ω)f̂l(ω)

≈ feq(ω)

{

χs
0(ω)

Eg

Bg
+ µχs

1(ω)
Hg

Bg

}

(2.67)

and

λ−1
s (ω, µ) = χs

0(ω) − js(ω, µ). (2.68)
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Using the last characteristic equation, the solution of the linearized Boltzmann

equation is

f(ν, β, rf) = f(ν, β, ri)e
−τ(ri,rf )

+e−τ(ri,rf )

∫ rf

ri

dr

Γµ
eτ(ri,r) {js + feq/λ

∗
a} , (2.69)

where the optical depth is

τ(ri, rf) =

∫ r2

r1

dr

Γµ
(1/λ∗

a + χs
0). (2.70)

This has the appealing property that there is no coupling between different βs and

νs, so the evolution of the distribution function along each path in phase space

can be solved for independently.

2.4 Numerical Implementation

Aside from the equation of state and neutrino opacities for dense matter, PNS

evolution is described by the transport equations 2.28, 2.29, 2.30, 2.31, 2.32, and

2.33 and the structure equations 2.5, 2.6, 2.7, 2.3, and 2.8. These describe the

evolution of the dependent variables y(a, t) = {r, u, m, φ, nB, T, Ye, Fg, Ng, Eg, Hg}.

To solve these equations numerically, the variables {ai+1/2, ri+1/2, ui+1/2, mi+1/2, Fg,i+1/2, Hg,i+1/2}

are discretized on zone edges while the variables {φi, nB,i, Ti, Ye,i, Ng,i, Eg,i} are dis-

cretized on zone centers. The derivatives in the PNS evolution equations are then

finite differenced, turning them to algebraic equations for the above dependent

variables. This is the most natural choice for discretizing the above equations,

because the thermodynamic quantities, neutrino number density, and neutrino

energy density are defined on zone centers while the neutrino number and energy
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fluxes are defined across zone edges which results in internal energy and lepton

number conservation being made explicit in the discretized equations.

The general form of these algebraic equations is then

G
(

yn,n+1
i−1 , yn,n+1

i , yn,n+1
i+1

)

= T (yn
i , yn+1

i )

+(1 − θ)Y
(

yn
i−1, y

n
i , yn

i+1

)

+ θY
(

yn+1
i−1 , yn+1

i , yn+1
i+1

)

= 0, (2.71)

where n is the current time, at which the dependent variables are known, and

n + 1 is the next time step at which the dependent variables are desired. Here,

T denotes the differenced time derivatives and Y denotes the rest of the terms. I

choose to employ a fully implicit method for solving these equations, i.e. θ = 1.

This leaves a set of non-linear algebraic equations that must be solved to find the

values of the dependent variables at time step n + 1.

These equations are solved by standard high-dimensional Newton-Raphson

(NR) techniques (Press et al. 1992). This requires calculating derivatives of all

the functions g with respect to y. These derivatives are calculated analytically.

Due to the number of derivatives, such an undertaking is prone to error. Therefore,

all derivative functions are checked against numerical derivatives by automated

software before they are included in the actual evolution code. The NR updates

are given by the solution of an Nz×(6+2NgNs) -by-Nz×(6+2NgNs) matrix, where

Nz is the number of radial zones, Ng is the number of neutrino energy groups,

and Ns is the number of included neutrino species. This can rapidly become quite

large for reasonable zoning and number of energy groups, and become too slow for

dense matrix techniques. Luckily, the matrix involved is in fact block-diagonal,

as each zone is only coupled to its neighboring zones, which significantly reduces

computational time compared to solving a general dense matrix.

Although the equations are formally non-linear, they are sufficiently close to
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linear that NR iteration results in good convergence after a small number of

iterations. It is generally demanded that the average relative deviation of the

solution from zero is at least less than one part in a thousand. Often, the solution

found by NR iteration satisfies the equations to close to machine precision. This

scheme has been implemented using object-oriented FORTRAN2003. The block

diagonal matrix equations are solved using the software package LAPACK (Anderson

et al. 1999).

To save computational time, the equations are solved using only the neutrino

number equations and approximating the neutrino energy densities and fluxes us-

ing Eg ≈ 〈ω〉gNg. Once this set of equations is satisfied, a correction step is taken

using the energy groups instead of the number groups. This approximation does

not seem to introduce any significant error into the calculation. It is found that

the total neutrino energy loss calculated using the approximation Eg ≈ 〈ω〉gNg

differs from the actual neutrino energy loss by around one part in a thousand when

thirty energy groups are used. The code conserves lepton number to machine pre-

cision because lepton number conservation is explicitly enforced by equation 2.33.

Conservation of total energy is not explicitly enforced. It is found that the total

change in rest mass over the simulation agrees with the total neutrino energy lost

to within a few percent. A series of test problems are performed with the code in

Appendix 2.8.

2.4.1 Equation of State

To close the transport and structure equations described above, an equation

of state is required relating the pressure, energy density, and equilibrium neutrino

chemical potential to nB, T , and Ye. Additionally, accurate derivatives of these
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quantities are required for calculation of the Jacobian matrix for NR iteration.

Calls to the equation of state must also be computationally efficient. To meet

these requirements, the equation of state is implemented in a tabular form. The

Helmholtz free energy per baryon, F = ǫ − sT , is tabulated as a function of nB,

T , and Ye, as well as derivatives with respect to these variables up to second

order. A bi-quintic interpolation is then used to get values of the free energy and

its derivatives between grid points (Timmes & Swesty 2000). This guarantees

that the thermodynamic functions will be smooth in the independent variables,

thermodynamically consistent (Swesty 1996), and does not introduce problems in

the calculation of the NR corrections.

The differential of the Helmholtz free energy is

dF = −sdT +
p

n2
B

dnB +
∑

i

µidYi

= −sdT +
p

n2
B

dnB + (µe + µp − µn)dYe. (2.72)

From this, the required thermodynamic quantities can be read off:

p = n2
B

(

∂F

∂nB

)

T,Ye

, s = −
(

∂F

∂T

)

nB,Ye

,

andµνe,eq ≡ (µe + µp − µn) =

(

∂F

∂Ye

)

nB ,T

. (2.73)

2.4.2 Neutrino Opacities

The group averaged neutrino opacities are calculated using a ten point quadra-

ture over each group to find an effective Planck mean opacity for the absorption

terms in each group. The scattering and annihilation kernels which couple the

groups, Φg,g′ , are calculated using a five point quadrature over both the incom-

ing and outgoing energies. Detailed balance is exploited to halve the number of
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calculations required. The scattering terms are not weighted by a local thermal

neutrino distribution.

2.4.3 Integration of the Formal Solution

The formal solution to the static Boltzmann equation is calculated at the be-

ginning of every time step and the Eddington factors enter the moment transport

equations explicitly. Because time independent transport is assumed, no previ-

ous knowledge of the distribution functions is required and a new grid of impact

parameters can be chosen at any time step, without having to worry about re-

mapping old solutions as in Rampp & Janka (2002).

If all quantities are assumed to be constant across zones, the formal solution

(equation 2.69) can easily be integrated, giving

f(ν, µs, ri+1/2) = f(ν, µs, ri−1/2)e
−∆τi + ∆f0 + ∆f1 (2.74)

for the change in f across zone i.

The physical path length across the zone, ∆λi, is given by equation 2.65 and

the optical depth across the zone is

∆τi = ∆λi(1/λ
∗
a + χs

0). (2.75)

The additions to the neutrino beam from the medium and scattering from other

beams are given by

∆f0 = feq

1/λ∗
a + Eg

Bg
χs

0

1/λ∗
a + χs

0

(1 − e−∆τi), (2.76)

and

∆f1 = feqχ
s
1

Hg

Bg
e−∆τi

∫ ∆λi

0

dλµ(λ)eλ(1/λ∗
a+χs

0). (2.77)
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The integral required for ∆f1 cannot be calculated analytically because µ(λ) is a

fairly complicated function. As this is a subdominant term, an “average” µ can

be pulled out of the integral (which is allowable if µ does not change much across

the zone). This gives the approximation

∆f1 ≈ µ(ri, β)feqχ
s
1

Hg

Bg

1 − e∆τi

1/λ∗
a + 1/λ∗

s

. (2.78)

Note that µ changes most rapidly when it is close to zero, but this term contributes

the least in that region so the error from this approximation should not be too

large.

Numerically, there is a problem with this formulation as it stands. Assume

that a trajectory in zone i is close to its minimum radius of propagation, µ > 0,

and that it is close to a zone boundary. It then propagates to the zone boundary

and is considered to be in zone i+1. Because φ is increasing with radius, φi+1 > φi.

The new radius is taken to be rL,i+1, so that the new angle of propagation is

µn =

√

1 −
(

rmeφi+1−φi

rL,i+1

)2

, (2.79)

eφi+1−φi > 1, and rm ≈ rL,i+1. Since, µn must be real, it becomes ill defined. In

practice this problem is overcome setting µ to zero if it would have been imaginary.

Starting from the outer boundary of the computational grid, these equations

are solved along an inward going characteristic, through the radius of minimum

propagation, and then along the outward going characteristic for each tangent ray.

The impact parameters of the tangent ray grid are chosen to be equally spaced in

radius for the calculations described in this paper. Once the distribution function

for a particular energy at infinity has been calculated along tangent rays, moments

of the distribution function at radii ri are calculated from a weighted sum that

reduces to the correct limit if the distribution function is locally constant in angle.
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Angular resolution is reduced at larger depths in the star. Because the distribution

is extremely close to isotropy and g2 ≈ g3 ≈ 0, this does not pose a significant

problem for PNS evolution.

2.4.4 Boundary Conditions

To close the system of transport equations, boundary conditions for the surface

fluxes Hg and Fg are required. For this boundary condition, the formal solution

is used to calculate the factors

αg =

∫ 1

−1
dµµf(r, µ, νg)

∫ 1

−1
dµf(r, µ, νg)

, (2.80)

so that Fg,bound = αgNg and Hg,bound = αgEg in the final zone. At the inner edge

of the computational grid, incident fluxes are specified (for PNS evolution, they

are of course specified to be zero).

The boundary conditions for the radius, gravitational mass, velocity, and pres-

sure are implemented by including a fixed ghost zone at the inner and outer

boundaries. The boundary condition for the metric potential φ is given by match-

ing to the Schwarzschild vacuum solution to the Einstein equations at the outer

boundary. This gives φs = log(Γs).

2.4.5 Rezoning

To maintain reasonable spatial resolution, conservative post time step re-

gridding is employed. Where conservation laws do not specify the properties

of a new zone, piecewise linear interpolation is used. This generally results in

smooth radial dependence of the fluid quantities. The implementation is similar

to the method used in Kepler (Weaver et al. 1978).
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The re-gridding is driven by gradients in the density and radius. Generally,

the radius is not allowed to vary by more than 5% between zones and the density

is allowed to vary by no more than 20%. This generally results in approximately

100-150 zones being on the grid. The choice of relative density changes places

high resolution in regions where neutrino decoupling is occurring.

2.4.6 Red Shifting Terms

Due to red and blue shifting between groups, equations 2.28, 2.29, 2.30 and

2.31 contain the un-integrated moments wi. Therefore, an approximation method

for these moments is required. When integrated over all energies, these terms go to

zero. Therefore, any chosen numerical scheme must have terms balancing between

groups for energy conservation. To move forward, something must be assumed

about how energy is distributed in the groups. The simplest scheme is to assume

that it is uniform. Then within a particular group w0,1 = {Ng, Fg, Eg, Hg}/(ωg,H−

ωg,L). It could also be assumed that the internal energy is distributed as a black

body, which is consistent with the assumption used in the source terms. The

uniform distribution is chosen due to its simplicity. For the Hg evolution equation,

this results in

−ωg,U

[

(

Θ
3

+ 2
5
σ + g3

3
2
σ − e−φ ∂φ

∂t

)

(

Hg

2∆ωg
+

Hg+1

2∆ωg+1

)

]

+ωg,L

[

(

Θ
3

+ 2
5
σ + g3

3
2
σ − e−φ ∂φ

∂t

)

(

Hg−1

2∆ωg−1
+ Hg

2∆ωg

)

]

.
(2.81)

Similar expressions result for equations 2.28, 2.29, and 2.30. It is straight forward

to verify that these terms disappear when summed over groups.
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Figure 2.1: The internal structure of the PNS for selected times in the fiducial
simulation. The temperature, equilibrium electron neutrino chemical potential,
proton neutron chemical potential difference, dimensionless entropy per baryon,
electron fraction, and baryon density are plotted at times 0 s, 1 s, 5 s, 10 s, 20 s, and
30 s, from left to right and top to bottom. The horizontal axes show the enclosed
baryon number in units of the number of baryons in the sun (N⊙ ≡ 12.04× 1056).
This figure can be directly compared to figure 9 of Pons, et al. (1999), as it was
produced using the same initial model and a very similar nuclear equation of state
and neutrino opacity set.
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2.5 Proto-Neutron Star Evolution

Rather than follow the collapse of a massive stellar core through bounce, the

calculations here start from a separate calculation of the highly dynamic phase of

initial collapse. For ease of comparison with previous work, the 1.6 M⊙ baryonic

mass initial model from Pons et al. (1999) is employed and the affects of con-

vection are not considered. This will correspond to a 1.4 M⊙ gravitational mass

neutron star after it has cooled and can be thought of as representative of a stan-

dard neutron star (Kiziltan et al. 2010). The cooling and de-leptonization of this

object is followed for 55 seconds, which is shortly after the time the PNS becomes

optically thin.

2.5.1 Physical Ingredients

A relativistic mean field of equation of state consisting of only neutrons, pro-

tons, and electrons is assumed. The GM3 parameter set is used without hyperons

(Glendenning & Moszkowski 1991), which is what was used in Pons et al. (1999).

Neutrino opacities are also calculated in the relativistic mean field approximation

using the formalism of Reddy et al. (1998). The tensor polarization is also in-

cluded so that “weak magnetism” affects are included to all orders (Horowitz &

Pérez-Garćıa 2003). The electron scattering rates from Yueh & Buchler (1977) are

used for the inelastic scattering kernels. Nucleon scattering is assumed to occur

within a single group, although the opacities are calculated using the full inelas-

tic differential cross-sections. Bremsstrahlung is implemented using the structure

function given in Hannestad & Raffelt (1998). Rather than include this in the

annihilation kernels, the Bremsstrahlung mean free path has been calculated as-

suming a thermal distribution for the secondary neutrinos. Given the uncertainty

45



in the Bremsstrahlung rate itself and its large density dependence, this is a rea-

sonable approximation. Electron positron pair annihilation (Bruenn 1985) is also

included. Pure neutrino processes (i.e. νe + ν̄e → ντ + ν̄τ ) are not included. This

set of rates is fully consistent with the rate set used in Pons et al. (1999), but differs

significantly from the rate sets used in recent collapse simulations (Hüdepohl et

al. 2010, Fischer et al. 2011).

The study here uses 30 logarithmically spaced energy groups from 2 MeV to

75 MeV plus one final group extending from 75 MeV to 1000 MeV to encompass

the tail of the thermal distribution. This final group is only populated deep in the

PNS and it is in tight thermal equilibrium due to the extremely short mean free

paths for such high energy neutrinos. Minimal differences are found in the PNS

evolution if only 20 groups are employed to cover the same energy range.

The adaptive radial gridding algorithm is set to keep approximately 130 zones

on the grid and allow for at most a 20% change in density across a zone and a 10%

change in radius across a zone. The boundary pressure is set so that the outer

edge of the model has a density around 2 × 109 g cm−3. This is a sufficiently low

density that all of the neutrinos have decoupled well within the outer boundary.

2.5.2 Structural Evolution

Qualitatively, the internal structure of the PNS evolution follows the standard

picture of Kelvin-Helmholtz PNS cooling as described by Burrows & Lattimer

(1986), Keil & Janka (1995), and Pons et al. (1999), where the gravitational bind-

ing energy of the compact object provides energy lost to neutrino emission. After

the shock produced by the supra-nuclear density bounce of the core propagates

through the outer layers of the PNS, a high entropy shocked region is left on top
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of a cold un-shocked PNS core, which has an entropy similar to the initial entropy

of the pre-supernova iron core. The outer shocked layers have de-leptonized dur-

ing the νe burst, but neutrinos in the core itself have been trapped since before

bounce (although partial deleptonization has occurred), resulting in a large non-

zero µνe,eq and Ye ≈ 0.3 (c.f. Liebendörfer et al. 2001b). This provides the initial

condition for PNS cooling.

The internal structure of the PNS simulation is shown in figure 2.1 for a number

of times (with time zero corresponding to the starting point of the simulations,

not the time of core-bounce). The models start with a core entropy of ∼ 1.2.

The entropy rises from 1.6 at an enclosed baryonic mass of ∼ 0.6 M⊙ to 7.4 at

an enclosed mass of 1.0 M⊙. This implies that the supernova shock was born at

around 0.6 M⊙, which is reasonably consistent with the core-collapse results of

Thompson et al. (2003). The shocked mantle is at low density relative to the core

and extends to large radius (material that is at a density of 10−5 fm−3 is found at

99 km), mainly due to the thermal contribution to the pressure.

From this initial state, the shock heated mantle rapidly contracts over the first

second or so of the simulation. This contraction is driven by the rapid loss of

energy and lepton number via neutrinos, which can readily escape due to the low

density of the envelope and long interaction mean free paths. The loss of lepton

number and thermal energy reduces pressure support in the mantle, and the man-

tle responds by rapidly contracting (i.e., rapid relative to the cooling timescale of

the core, not rapid compared to the dynamical timescale of the envelope). By two

seconds into the simulation, material at a density of 10−5 fm−3 is at 17 km. This is

fairly close to the cold neutron star radius for GM3 (13.5 km). The work provided

by this contraction is enough to increase the peak temperature of the mantle from
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22 MeV to 45 MeV even though the entropy of the mantle has decreased from 7

to 4 over this period.

This period of the PNS evolution is most likely to be sensitive to the initial

conditions for the simulations, as at later times the details of the initial struc-

ture should be washed out. The envelope of the PNS should also be convective,

which significantly alters the rate of energy and lepton number transport in the

PNS (c.f. Roberts et al. 2012). Additionally, there might be significant accretion

luminosity over this period (although this is approximately accounted for by the

mantle). Therefore, especially given the older provenance of the initial conditions,

the results from this period should be taken as only qualitatively correct.

While the mantle is contracting, ν̄es and νxs are being transported down the

positive radial temperature gradient into the core while the νes are being trans-

ported outwards down the large equilibrium chemical potential gradient. This

results in a net heat flux into the core and a net lepton flux out of the core. This

has been referred to as “Joule heating” of the core in previous work (Burrows &

Lattimer 1986). Additionally, the inner regions contract over this period due to

the increased boundary pressure on the un-shocked core from the cooling mantle.

This contributes to the temperature increase in the core in addition to the Joule

heating.

After the initial period of mantle contraction, the density structure of the PNS

becomes similar to that of a cold PNS. Joule heating continues to increase the

temperature of the inner most regions until the central temperature reaches its

peak value of 35 MeV at 18 s in the simulation. Then, the temperature of the

entire star falls with time. The entropy evolution exhibits a similar behavior.

Lepton number is lost from the entire PNS core over this time and the electron
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fraction evolves toward the expected value for matter in beta-equilibrium with no

net electron neutrino number. After about 15 seconds, contraction slows since

the PNS is nearly at the cold neutron star radius. After this, neutrino emission

is powered chiefly by the loss of thermal energy from the star.

It is also worth noting that the temperature gradient and the µνe,eq gradient

in the shocked layers of the PNS become increasingly shallow from 1 s onwards.

Additionally, as the density of the outer layers rises, the neutron proton chemical

potential difference µ̂ = µn −µp gets larger. The increase in µ̂ and the decrease in

µνe,eq bring µ̂ close to the electron chemical potential µe = µ̂ + µνe,eq as time goes

on. These considerations have significant consequences for the spectral evolution

of the neutrinos and which are discussed in section 2.6.2.

2.5.3 Emergent Luminosity and Spectral Evolution

The total integrated energy loss in neutrinos over the duration of the simulation

is Eν = 2.32 × 1053 erg, and the total lepton number radiated is NL = 3.2 × 1056.

The neutrino emission from the PNS is shown in figure 2.2. As is discussed above,

the first couple of seconds are dominated by the contraction of the PNS mantle.

Over the first second of the simulation, 38% of the total neutrino energy loss and

20% of the total lepton number loss occurs. During this period, the νx number

luminosity is produced mainly by the un-shocked core, as the µ and τ neutrinos

are mainly coupled to the envelope through scattering. Therefore, the luminosity

in these flavors is lower because of the smaller emitting surface (which is not offset

by the temperature of the core).

During mantle contraction, there is a high de-leptonization rate driven by

the outermost layers of the star. After the first few hundred milliseconds, de-
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Figure 2.2: Top panel: Number luminosities as a function of time for νe (solid black
line), ν̄e (dashed black line), νx (dot-dashed black line) and the de-leptonization
rate, Ṅνe − Ṅν̄e. Bottom panel: Energy luminosities as a function of time. The
black lines are the same as in the top panel, but the solid red line is the total
energy emitted in neutrinos per time.
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leptonization slows as the outer layers go towards µνe,eq ≈ 0 and de-leptonization

is driven by diffusion out of the core. The values of the de-leptonization rate before

80 ms are unrealistic, as they are determined by the relaxation of the assumed

initial conditions for the neutrinos.

Over the first two seconds, the νx luminosities are significantly lower than the

luminosities of the electron flavored neutrinos. The neutrino energy and number

luminosities as a function of radius at 500 ms after the beginning of the simulation

are shown in figure 2.3. First, this illustrates that the µ and τ neutrino number

fluxes are being set much further inside the star (at around 18 km) than the

electron neutrinos, but they exchange energy out to a significantly larger radius

via scattering. Second, there is an inward directed anti-electron, µ and τ flux near

the mantle core boundary. As cooling precedes, heat diffuses down the positive

temperature gradient (and positive equilibrium chemical potential gradient for

the anti-electron neutrinos) into the lower entropy core. This is the Joule heating

discussed above. In contrast, the large negative equilibrium chemical potential

gradient for the electron neutrinos overwhelms the positive radial temperature

gradient and the electron neutrino flux is positive everywhere.

After the PNS has contracted to close to the cold neutron star radius, the νx

luminosity has increased relative to the νe and ν̄e luminosities. In fact, the νx

luminosity is about twice the luminosity in either of the electron neutrino species.

These neutrinos decouple further inside the PNS and are therefore emitted at a

higher effective temperature, resulting in a larger number and energy luminosity.

Between thirty and forty seconds the PNS becomes transparent to neutrinos and

the luminosity drops off significantly.

The average energies of the emitted neutrinos at infinity as a function of time
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Figure 2.3: Neutrino number and energy luminosities at infinity as a function of
radius at 500 ms into the simulation. The solid lines are for electron neutrinos,
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are shown in figure 2.4. Within the integrated energy group formalism, the neu-

trino energy moments at infinity are defined as

〈ǫn〉 = enφs

∑

g〈ω〉n−1
g Hg

∑

g Fg

, (2.82)

where 〈ω〉g is a group averaged energy and φs is the surface value of the metric

potential.

During the mantle contraction phase, there is the standard hierarchy of neu-

trino average energies 〈ǫνe〉 < 〈ǫν̄e〉 < 〈ǫνx〉. After mantle contraction has ceased,

the energy decoupling radius of electron neutrinos and µ and τ neutrinos becomes

similar and for the rest of the PNS evolution 〈ǫν̄e〉 ≈ 〈ǫνx〉. This is in contrast to

the difference between the electron neutrino and anti-neutrino average energies,

which obey 〈ǫνe〉 < 〈ǫν̄e〉 for the entire calculation, although the two average en-

ergies get closer at late times. An analysis of why this is, its implications, and a

comparison to other results in the literature is given in section 2.6.2.

The emitted neutrino spectra at two representative times are shown in 2.5 for

reference. The νx neutrinos decouple further in the star than the ν̄e neutrinos at

five seconds into the simulation so that they have a larger number luminosity due

to the larger temperatures found there, but these flavors have a similar energy

sphere due to inelastic scattering which accounts for the similar value of the peak

of the luminosity as a function of neutrino energy.

2.6 Discussion

2.6.1 Comparison to EFLD

Until recently (Hüdepohl et al. 2010, Fischer et al. 2010), most studies of PNS

cooling used the EFLD approximation to describe neutrino transport (Burrows &
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Figure 2.4: Average energies of the emitted neutrinos measured at infinity.
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Figure 2.5: Neutrino spectra for all three flavors tracked in the simulation. The
top panel is at 100 ms after the start of the simulation, the bottom panel is the
spectrum at 5 seconds.
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Lattimer 1986, Keil & Janka 1995, Pons et al. 1999, Roberts et al. 2012). It is

thus a worthwhile exercise to compare the results obtained using EFLD and the

present variable Eddington factor method for transport. No detailed comparison

of the effect of different flux limiters is attempted since EFLD clearly breaks down

in the decoupling regime independent of the flux limiter used. See Messer et al.

(1998) and Pons et al. (2000) for discussions of the affect of different flux limiters.

Models using the identical microphysics and initial conditions described in

section 2.5 were calculated using the EFLD code described in Roberts et al. (2012)

with convection turned off. This code is similar to the one used in Pons et al.

(1999) and is completely different from the one used in this paper. A derivation

of EFLD in the context of this paper is included in Appendix 2.9. The EFLD

luminosities as a function of time are shown in figure 2.6, alongside the luminosities

from section 2.5. EFLD clearly does a reasonably good job of predicting the total

neutrino luminosity, but poorly predicts the luminosities of each flavor.

At early times, some deviation in the total luminosity is expected because the

mantle, which is driving most of the neutrino emission, is not particularly optically

thick. Additionally, at late times when the whole PNS becomes optically thin,

EFLD deviates from the variable Eddington factor solution. But for the bulk of

the PNS evolution the deviation between the two methods is around 10%, which

is surprisingly good agreement. Given that most predictions made using EFLD

codes have relied only on the total neutrino luminosity, it seems that previous

results can be reasonably trusted. The total luminosity emitted from the PNS is

set at the neutrino spheres of each flavor, which is the last point at which EFLD

can be considered reliable. The outermost layers of the PNS in which the neutrinos

decouple can come into radiative equilibrium on a short timescale and therefore
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rapidly adjust to the flux being pushed through them from below. As neutrinos

propagate through the outer layers in the EFLD formalism, flux may be shifted

between flavors unrealistically but the outer layers of the PNS will rapidly evolve

to carry the right total luminosity. Therefore, it is not surprising that EFLD gets

the total luminosity right but fails to predict the luminosities of specific flavors.

Of course, EFLD makes no predictions regarding the spectral properties of the

neutrinos.

2.6.2 Neutrino Spectra and The Composition of The Neu-

trino Driven Wind

The most striking difference between the present simulations and other recent

studies (Hüdepohl et al. 2010, Fischer et al. 2010) is the greater difference in the

present study of the electron neutrino and anti-neutrino average energies at late

times. There are a number of possible reasons for this difference.

One is the initial model chosen for the PNS evolution. Rather than use an

initial model from a separate calculation of core-collapse, both Hüdepohl et al.

(2010) and Fischer et al. (2010) follow the entire evolution of the supernova. In

so far as the initial models are similar, the two approaches should give the same

answer. The initial model used here is somewhat dated and was chosen mainly

to facilitate the comparison with the work of Pons et al. (1999). At early times

the initial progenitor model will certainly affect the properties of the emitted

neutrinos significantly, but after the first second Pons et al. (1999) found that the

evolution does not depend sensitively on the initial progenitor model. Of course,

the difference in the average energies of the electron and anti-electron neutrinos is

a fairly subtle effect. Therefore, the effect of the progenitor model should not be
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ruled out, but based on the argument below it seems unlikely that the progenitor

model is the dominant factor.

It is possible that the methods used for transport differ enough to give dis-

parate results. This also seems unlikely considering all three approaches come

close to directly solving the Boltzmann equation, that the formalism described in

this work is fairly similar to the formalism of Hüdepohl et al. (2010) (see Rampp

& Janka 2002), and that the approaches of Fischer et al. (2010) and Hüdepohl et

al. (2010) have been shown to yield similar results (Liebendörfer et al. 2005).

A more significant difference though may be the microphysics employed. The

difference between the electron neutrino and anti-neutrino spectral temperatures

is mainly set by the difference between their respective mean free paths to capture

on nucleons, as the scattering mean free paths for both species are nearly equal.

Due to de-leptonization, there are far more neutrons to capture electron neutrinos

than protons to capture electron anti-neutrinos. Of course, it is possible for both

of these reactions to have strong final state blocking (electron blocking for the

neutrinos and neutron blocking for the anti-neutrinos). If it is assumed that there

is no energy transfer to the nucleons, as in Fischer et al. (2011), then both reactions

will be strongly blocked, the elastic interaction rates described in Bruenn (1985)

go to the same value, and it is expected that average electron neutrino and anti-

neutrino energies will be similar at late times due to the similar charged current

mean free paths for both species.
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nucleon capture rates compared to the fiducial model described in section 2.5. No-
tice the slightly increased νe and ν̄e cooling rates at late times and the convergence
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second panel.

61



The final state blocking symmetry predicted by the charged current rates of

Bruenn (1985) does not agree with more detailed calculations of the electron neu-

trino capture rates. There is in fact a strong asymmetry between the two reac-

tions, because there is significantly more energy available in the entrance channel

for νe + n → e− + p than for ν̄e + p → e+ + n. The difference between the en-

ergy of the entrance channels is just the difference between the fermi energies of

the neutrons and protons. The Fermi energies for interacting nucleons are given

by eF,i = k2
F,i/2Mi + Ui, where Ui is an isospin dependent potential energy due

to strong interactions in the medium. For neutron rich conditions, the neutron

potential energy is larger than the proton potential energy due to the nuclear

symmetry energy. Most of the potential difference, UN − UP is transferred to the

outgoing electron in the reaction νe + n → e− + p. This effect can significantly

decrease the absorption mean free path for electron neutrinos. Due to the large

value of the nuclear symmetry energy relative to the value expected for free nu-

cleons, UN −UP accounts for a significant fraction of µ̂. Although this amount of

energy is often not enough to put the final state electron above the electron Fermi

surface, it is enough to put the final state electron in a relatively less blocked

portion of phase space. This effect is included in the relativistic formalism of

Reddy et al. (1998), which is used to calculate the neutrino interaction rates used

in the models presented in this work. The details of the importance of realistic

kinematics on charged current rates will be discussed in future work.

To illustrate how more realistic rates affect the predicted neutrino properties, a

model identical to the one described in section 2.5 was run, except that the nucleon

capture rates were replaced with the Bruenn (1985) capture rates neglecting the

nucleon potentials. The luminosities as a function of time are shown in figure 2.7.
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The changes in the luminosity are relatively small. The most obvious difference

is that the luminosities of all neutrino species asymptote to one another at late

times, which is similar to the behavior seen in Fischer et al. (2011). From one

to ten seconds, there is a significantly smaller difference between the luminosities

than in the fiducial model. Cooling via electron neutrinos and anti-neutrinos

is also increased at late times, but the νx luminosity is virtually unchanged, as

expected. Before 1 s, the electron neutrino luminosity is reduced. It is unlikely

that this is significant, as the first approximately hundred milliseconds of these

simulations are suspect for the reasons described above. The reason for the early

time decrease is less clear. It is unlikely that this is due to the effects of nuclear

interactions because the region where electron neutrinos decouple is in the mantle

which is at low density.
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Figure 2.8: Top panel: Energy moments of the outgoing neutrino flux measured
at the surface of the calculation using the Bruenn (1985) approximation for the
electron neutrino and anti-neutrino capture rates on nucleons (black lines). The
gray lines are for the fiducial model using the full capture cross-sections from
Reddy, et al. (1998). There is little variation for the ν̄e and νx energies between
the two cross-section prescriptions, but there is a significant change in the νe av-
erage energies. Bottom panel: Predicted neutrino driven wind electron fraction as
a function of time. The dotted line is from a PNS model using the Bruenn (1985)
rates, the solid line is for the Reddy, et al. (1998) rates including tensor polar-
ization corrections and the mean fields Horowitz, et al. (2003), the dot-dashed
line is a model using the Reddy, et al. (1998) rates without tensor polarization
corrections and with mean fields, and the dashed line is a model using the Reddy,
et al. (1998) rates with tensor polarization corrections but neglecting the effects of
mean fields. Note that neutron richness is predicted from about 1.5 to 10 seconds
when realistic kinematics is used in the capture rates, while the wind is predicted
to be proton rich throughout when the effects of the neutron and proton potentials
are ignored.
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The evolution of the average neutrino energies are shown in figure 3.5. There

is little change between the models in the electron anti-neutrino, µ, and τ neu-

trino average energies, but there is a significant change in the electron neutrino

average energies. At early times the average energy is reduced compared to the

fiducial model and at late times it is increased. The late-time convergence is easily

explained by the argument given in the paragraphs above and by the arguments

given in Fischer et al. (2011).

This difference is important to the composition of the neutrino driven wind.

The electron fraction of the neutrino driven wind can be estimated as (Qian &

Woosley 1996)

Ye,NDW ≈
[

1 +
Ṅν̄e〈σ(ǫ)p,ν̄e〉
Ṅνe〈σ(ǫ)n,νe〉

]−1

(2.83)

where 〈σ〉 are the energy averaged cross-sections for neutrino capture on nucleons,

which are approximately proportional to ǫ2. Smaller relative νe average energies

and lower de-leptonization rates lead to a lower electron fraction in the wind.

The evolution of the electron fraction in the neutrino driven wind calculated

using equation 3.17 for both models, as well as a model that does not include

weak magnetism corrections and a model that does not include mean field effects,

but which do include full kinematics in the structure functions, is shown in the

second panel of figure 3.5. The capture rates for low densities given in Burrows

et al. (2006), which include first order weak magnetism and recoil corrections,

have been used. This was done to put the comparison between the models on

even footing, although it is not necessarily consistent with the rates used inside

the PNS itself. The alpha effect (Fuller & Meyer 1995) has also not been taken

into account, which will push Ye closer to a half in both proton and neutron rich

conditions. Energy moments of the neutrino flux are taken using the values at
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the surface of the computational domain, not at infinity. The Ṅνe/Ṅν̄e term is

increasing with time in both models (see figure 2.7), which increases the electron

fraction in the wind. Note that once neutrinos are free streaming, this term is

invariant with radius.

With these assumptions, the fiducial model of section 2.5 actually does result in

a period of neutron richness in the wind, in contrast to the results of Hüdepohl et

al. (2010) and Fischer et al. (2011). The wind is not very neutron rich (Ye & 0.45

at all times) and this change, by itself, would not result in substantial r-process

nucleosynthesis in the standard neutrino driven wind where entropies are . 150

(Roberts et al. 2010). If for some reason the entropy were higher though, the

possibility of an r-process remains. In contrast, the model that uses the rates

of Bruenn (1985) and the model using the Reddy et al. (1998) rates without

isospin dependent nuclear potentials consistent with the underlying equation of

state results in a wind that is always proton-rich.

To emphasize that this result is mainly due to the reaction kinematics and not

the inclusion of weak magnetism, models with the tensor polarization set to zero

are also shown in the bottom panel of figure 3.5. As is expected from the first

order weak magnetism corrections given in Horowitz (2002), allowing for a tensor

portion of the response increase the difference between the electron neutrino and

anti-neutrino average energies. This results in a lower electron fraction in the case

including the tensor polarization relative to the case without. Still, the change

between these two models is only a fraction of the change in the electron fraction

when the Bruenn (1985) rates are used.

Given the sensitivity to the neutrino interaction rates, it is possible that fur-

ther improvement of the treatment of electron neutrino and anti-neutrino capture
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will alter this conclusion in one direction or the other. Because the asymmetry

between the electron neutrino capture rates depends on the value of the symmetry

energy and the symmetry energy varies with density (Fattoyev et al. 2010), it may

be that different nuclear equations of state alter the predicted neutron excess in

the NDW. Variations of the calculation of the rates, such as incorporating the ef-

fect of correlations in the nuclear medium, can significantly change the timescale

of the neutrino emission (Reddy et al. 1999) and possibly the spectral proper-

ties. Even if updated rates only change the rates at high density, this may affect

Ṅνe/Ṅν̄e and thereby change the properties of the wind. Such extensions depend

on the underlying equation of state, which is uncertain, and also on approxima-

tions inherent to many-body theories of strongly interacting systems. While this

deserves further consideration, the results presented here seem to indicate that

effects due to kinematics, degeneracy and mean fields are crucial.

It bears mentioning that the study of Hüdepohl et al. (2010) did allow for en-

ergy and momentum transfer between the nucleons and leptons (Buras et al. 2006),

but did not account for the difference between the neutron and proton mean field

potentials. Their rates were calculated within the random phase approximation

of Burrows & Sawyer (1999), which is an improvement over the mean field rates

used in this work. Additionally, weak magnetism corrections were approximately

included in this study via the prescription of Buras et al. (2006). Their average

energies were further apart than when the Bruenn (1985) rates were used, but the

difference was still not great enough to result in a wind with a neutron excess.

The average energies of the electron neutrinos and anti-neutrinos also asymptote

to one another fairly rapidly in Hüdepohl et al. (2010), in contrast to the present

study. This is all reasonably consistent with the affect of neglecting the mean
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Figure 2.9: Spectrum of integrated neutrino emission over the duration of the
simulation. Although the peak of the ν̄e spectrum corresponds to the peak of the
νx spectrum, the νx spectrum has a significantly harder tail.

field potentials in the nucleon kinematics, but it is far from certain that this is

the main source of discrepancy. Further exploration of why this work differs from

the work of Hüdepohl et al. (2010) is surely warranted.

Even given these caveats, it is tantalizing that the wind is neutron rich in the

fiducial model once again. Extensions of the standard neutrino driven wind model

which include heating from a source besides neutrinos can produce the r-process

even for such modest neutron excesses (Suzuki et al. 2006).

2.6.3 Time Integrated Spectra

In figure 2.9, the integrated neutrino luminosity as a function of neutrino

energy at infinity is shown for the model described in section 2.5. The time
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integrated average energies of the neutrinos are 〈ǫνe〉 = 8.3 MeV, 〈ǫν̄e〉 = 12.2 MeV,

and 〈ǫνx〉 = 11.1 MeV. Although the µ and τ neutrinos are as hot or hotter than

the electron anti-neutrinos at early times, the time integrated average is weighted

more strongly towards late times so that they in fact have a somewhat lower

average energy.

Time integrated neutrino spectra are interesting for both nucleosynthesis via

the ν-process (Heger et al. 2005) and for predictions of the diffuse supernova

neutrino background (Ando 2004). The neutrinos are non-thermal and are not

easily described by an effective Fermi-Dirac distribution. Given the sensitivity

of the ν-process to the energy of the emitted neutrinos (especially the energies

above threshold), it seems that calculations of neutrino-induced nucleosynthesis

needs to be done with more accurate neutrino spectra to check previous results in

the literature. These integrated spectra are only approximate however because a

substantial fraction (20%) of the neutrinos are emitted during the first second of

mantle contraction, this phase of evolution contributes the majority of the high-

energy tail, and the mantle contraction phase is most sensitive to the approximate

initial conditions used.

2.7 Conclusions

A new code for following the evolution of PNSs has been described and some

first results obtained. In section 2.2.2, a formalism for moment based neutrino

transfer with variable Eddington factors has been described, based on the work of

Thorne (1981) and Lindquist (1966). The framework is fully general relativistic

and is formulated in the rest frame of the fluid, which simplifies calculation of the

collision terms. The code employs energy integrated groups, rather than discrete
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energies, for solving the radiative transfer problem. This makes it well suited for

dealing with problems were thermodynamic equilibrium holds in large portions

of the problem domain and the distribution functions may contain sharp Fermi

surfaces. A method for finding Eddington factors from a formal solution to the

static Lindquist equation was also described. Additionally, general descriptions

of the source terms for absorption, scattering, and pair annihilation have been

provided which are consistent with the formalism, explicitly obey detailed balance,

and therefore naturally deal with the transition to equilibrium. The details of a

fully implicit numerical implementation of these transport equations alongside the

equations of general relativistic hydrodynamics were then described in section 2.4.

The results of a fiducial model of PNS cooling were presented in section 2.5.

The evolution proceeds similarly to previous results in the literature in which a

similar nuclear equation of state and neutrino opacities were used. I have focused

on the spectral properties of the emitted neutrinos, which were not well described

by the formalism of Pons et al. (1999). Similar behavior is found to other recent

results in the literature: spectral softening as a function of time and convergence

of the ν̄e and ντ,µ luminosities after about two seconds of evolution (Fischer et al.

2010, Hüdepohl et al. 2010).

In contrast to other recent studies (c.f. Fischer et al. 2011) however, the new

studies show that the average energy of the electron neutrinos does not converge

to the average energies of the other neutrino flavors at late times. Additionally,

the electron neutrinos are significantly cooler than the anti-electron neutrinos for

most of the simulation. This difference is likely due to the treatment of charged

current neutrino interactions, where a realistic treatment of the nucleon kinematics

including the nuclear potential is important (see section 2.6.2). The implications
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of this result for the electron fraction in the neutrino driven wind and possible

r-process nucleosynthesis in this environment were discussed and warrant further

exploration.

A quantitative comparison was also made between the results of an EFLD

calculation of PNS evolution and evolution with the code described in this paper

in section 2.6.1. It was found that EFLD provides a good approximation to

the total neutrino luminosity during periods in which the neutrino luminosity is

dominated by emission from optically thick regions. This approximation does

break down in the optically thin regime as expected. Additionally, it does a poor

job of predicting the luminosities of individual neutrino flavors.

The most significant improvement which could be made to this work would be

to improve the initial models. This could be done either by using a more realistic

post-core collapse initial models or updating the code to allow it to follow collapse

and bounce itself, similar to Hüdepohl et al. (2010) and Fischer et al. (2010).

Such improvements will affect the early time evolution, but are probably less

important to the evolution of the PNS after one second. Additionally, a more

realistic equation of state that includes nuclei at low densities (Shen et al. 2011)

should be employed with consistent opacities.

Of course, this work has also been limited to one dimension, which may be

a gross, although necessary, oversimplification. Convection, magnetic fields, and

rotation may be central players in the evolution of PNSs. Approximate mixing

length convection will be included in a subsequent version of the code. In the

future, this code will be applied to understanding the diffuse supernova neutrino

background, predicting the affects of different prescriptions for the nuclear equa-

tion of state on PNS cooling, and investigating black hole formation.
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2.8 Appendix: Code Tests

Here I consider static transport through an homogeneous sphere with unit

radius, and unit optical depth. A flat space-time is assumed. The first test per-

formed is for consistency between the formal solution of the Boltzmann equation

and the moment equations. In addition to the factors g2 and g3, the formal Boltz-

mann solver can also calculate g1 ≡ w1/w0 which should be equal to Hg/Eg. For

a purely absorptive atmosphere, the formal solution is exact. A comparison of

g1 and Hg/Eg is shown in figure 2.10. For this calculation, one hundred equally

spaced radially zones and a grid of 150 tangent rays with impact parameters

spaced equally in radius were used. The calculation was then evolved for ten

units of time. The differences between the two Eddington factors are negligible,

aside from in the inner most zones. This agreement does not depend strongly

on the number of tangent rays employed. The disagreement in the inner most

regions is due to the small number of tangent rays which have impact parameters

that are less than the radius at which the Eddington factor is calculated. The

distribution function is not well resolved and is therefore in error. Such problems

should not arise in the actual evolution of PNSs, as the inner most regions are

generally opaque.

As a second test, a sphere which includes a scattering contribution to the

opacity is considered. In this case, the formal Boltzmann solver no longer gives

an exact solution of the transport equation because of the approximate treatment

of the scattering terms (see section 2.3). The problem set up involves a sphere

of optical depth one with 10% of the opacity coming from absorption and 90%

coming from isotropic scattering. Using a similar numerical set up to the absorb-

ing atmosphere gives the results shown in figure 2.10. Once again the deviation
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Figure 2.10: Comparison of Hg/Eg (crosses) and g1 (solid lines) for a purely
absorbing (black lines) and an isotropic scattering sphere (red lines) with total
optical depth one and a first order scattering sphere (blue lines) with τ = 0.1.
Aside from at the center, there is excellent agreement between the formal solu-
tion and the results of the moment calculation. The dashed lines are the second
Eddington factors, g2, for the same models.
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Figure 2.11: First Panel: Eddington factors for radiation streaming from a ho-
mogenous sphere into free space. The solid lines are the Eddington factors g1

for the purely absorptive sphere (black) and the isotropic scattering sphere (red).
The crosses show Hg/Eg. The dashed lines are the second Eddington factor, g2,
for the same models. The vertical dotted lines show the radii at which the opaque
sphere ends. The horizontal dashed line shows the expected asymptotic value of
g2 for free streaming radiation. Second Panel: Properties of the radiation field as
a function of radius. The solid lines show the radiation energy density and the
dashed lines show the luminosity per steradian, r2Hg. The colors are the same
as in the top panel. Once again, the vertical dotted line denotes the end of the
opaque sphere.
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between the formal solution and the results of the moment calculation are small.

Above the two innermost zones, the maximum deviation of the two results for g1

is less than 1%. At radii greater than 8, the deviation is less than 0.1%. A second

scattering test problem was run with the isotropic scattering opacity, χs
0, set to

zero and the first order scattering opacity, χs
1, set to 90% of the total opacity. The

sphere was assumed to have an optical depth τ = 0.1. The agreement between

the moment calculation and the formal solution was found to be similar to the

isotropic scattering case.

Tests similar to the homogeneous sphere tests of Rampp & Janka (2002) have

also been performed. In these, a unit optical depth sphere of radius one is included

inside a transparent region of radius ten, with a sharp transition region from the

semi-opaque sphere to the surrounding vacuum. Such a scenario is similar to the

neutrino decoupling region of PNSs, and is therefore an important test problem for

any neutrino transport code for PNS evolution. The calculation domain is split up

into 200 zones, equally spaced in radius and 301 a grid of 301 tangent is employed.

Only the radiation density, Eg and flux, Hg, are evolved. The calculation is then

run for fifty time steps, which allows the calculation to relax to steady state and

forget the details of the initial conditions of the radiation field. Once again, one

calculation was run with a purely absorbing opacity and a second was run with

10% absorbing opacity and 90% isotropic scattering opacity.

The final Eddington factors and radiation field for these calculations are shown

in figure 2.11. For the purely absorbing calculation, the formal solution of the

Boltzmann equation is exact. In the inner most zones, the distribution function

is under resolved in angle due to the small number of tangent rays which pass

through this region. This is not a problem for PNS simulations, as the optical
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depth in the interior is always much larger than one. Therefore, the Eddington

factors are close to zero and have negligible affects on the moment transport

solution. The deviation of the moment solution, outside the inner most region,

from the formal solution is less than 1%. In the decoupling region the agreement

is excellent. Additionally both g1 and g2 asymptote to their expected values for

free streaming radiation far from the core.

2.9 Appendix: Equilibrium Flux Limited Diffu-

sion

In the diffusion approximation, the distribution function is approximated by

f(ω, µ) = f0(ω) + f1(ω)µ. This results in g2 = g3 = 0. The time dependence

is then dropped and compression terms are then dropped from the first moment

equation. Ignoring the terms containing derivatives with respect to energy (which

will drop out in the end of our analysis anyway), I find

Γ

(

∂w0

∂r
+ 4

∂φ

∂r
w0

)

= 3s1 (2.84)

If the redshifted frequency is denoted as ν = ωeφ, the redshifted source function

is

s1 = −w1D
−1(νe−φ) (2.85)

which gives the redshifted neutrino flux per energy

w1 = −Γ
D(νe−φ)

3

(

∂w0

∂r
+ 4

∂φ

∂r
w0

)

(2.86)

where D(ω) = (1/λ∗
a +χs

0 −χs
1/3)−1. This amounts to assuming that the neutrino

flux instantaneously equilibrates to the gradients in the neutrino number density.
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Because a number of terms have been dropped, this expression does not guarantee

that w1 ≤ w0, which means that it is possible for the neutrino fluxes to violate

causality (Levermore & Pomraning 1981). This problem is usually circumvented

by introducing a flux limiter, which is a correction to the diffusion coefficient which

depends on ξ = w1/w0 and serves to keep the fluxes causal. In section 2.6.1, the

flux limiter of Levermore & Pomraning (1981) has been used, but it was found in

Pons et al. (1999) that the results of EFLD calculations are reasonably insensitive

to the choice of flux limiter.

The total energy flux is given by

H =

∫

dωw1 = −eφΓ

∫

dω
D(νe−φ)

3

[

∂w0

∂r
− e4φ ∂e−4φ

∂r
w0

]

(2.87)

The equilibrium portion of the EFLD approximation constitutes assuming that

f0(ω) = feq(ω, T, µ). Using the equilibrium expression for w0 yields

H = − Γ

6π2

∫

dωD(ω)ω3∂feq(ω)

∂r
(2.88)

The radial derivative is then given by

∂feq(νe−φ)

∂r
=

[

ω

T

∂Teφ

∂r
+ Teφ ∂η

∂r

]

feq(ω)(1 − feq(ω))

Teφ
(2.89)

So that the energy flux is given by

H = −Γe−φT 3

6π2

[

D4
∂Teφ

∂r
+ D3Teφ ∂η

∂r

]

, (2.90)

where the energy integrated diffusion coefficients are defined as

Dn =

∫ ∞

0

dxxnD(xT )feq(xT )(1 − feq(xT )). (2.91)

The number flux equation can easily be determined from the energy flux equation.

This gives

F = −Γe−φT 2

6π2

[

D3
∂Teφ

∂r
+ D2Teφ ∂η

∂r

]

. (2.92)
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These expressions agree with the results of Pons et al. (1999).

Now all that is left is to describe the evolution of the underlying medium.

Using equation 2.32, the evolution of the total internal energy of the medium

including neutrinos is found to be

∂ǫ

∂t
+ eφΘ

p

n
+ e−φ ∂

∂a





∑

s =

{νe,··· }

4πr2e2φHs



 = 0 (2.93)

Using equation 2.33, the evolution of total lepton number is found to be

∂YL

∂t
+

∂

∂a

(

4πr2eφ [Fνe − Fν̄e ]
)

= 0. (2.94)
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Chapter 3

Medium Modification of the

Charged Current Neutrino

Opacity and Its Implications

This work was performed in collaboration with Sanjay Reddy.

Abstract

Previous work on neutrino emission from proto-neutron stars which employed

full solutions of the Boltzmann equation showed that the average energies of emit-

ted electron neutrinos and antineutrinos are closer to one another than predicted

by older, more approximate work. This in turn implied that the neutrino driven

wind is proton rich during its entire life, precluding r-process nucleosynthesis and

the synthesis of Sr, Y, and Zr. This work relied on charged current neutrino in-

teraction rates that are appropriate for a free nucleon gas. Here, it is shown in

detail that the inclusion of the nucleon potential energies and collisional broad-

ening of the response significantly alters this conclusion. Iso-vector interactions,
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which give rise to the nuclear symmetry energy, produce a difference between

neutron and proton single-particle energies ∆U = Un − Up and alter the kine-

matics of the charged current reaction. In neutron-rich matter, and for a given

neutrino/antineutrino energy, the rate for νe + n → e− + p is enhanced while

ν̄e +p → n+e+ is suppressed because the Q value for these reactions is altered by

±∆U , respectively. Collisional broadening acts to enhance both νe and ν̄e cross-

sections, but mean field shifts have a larger effect. Therefore, electron neutrinos

decouple at lower temperature than when the nucleons are assumed to be free and

have lower average energies. The change is large enough to allow for a reasonable

period of time when the neutrino driven wind is predicted to be neutron rich. It

is also shown that the electron fraction in the wind is influenced by the nuclear

symmetry energy.

3.1 Introduction

The neutrino opacity of dense matter encountered in core-collapse supernova is

of paramount importance to the explosion mechanism, potential nucleosynthesis,

supernova neutrino detection and to the evolution of the compact remnant left

behind. Matter degeneracy, strong and electromagnetic correlations, and multi-

particle excitations have all been shown to be important, especially at supra-

nuclear densities (e.g. Reddy et al. 1998, Burrows & Sawyer 1998; 1999, Reddy et

al. 1999, Hannestad & Raffelt 1998, Horowitz & Pérez-Garćıa 2003, Lykasov et al.

2008, Bacca et al. 2011). Supernova and proto-neutron star (PNS) simulations

that employ some subset of these improvements to the free gas neutrino interac-

tion rates have found that these corrections play a role in shaping the temporal

and spectral aspects of neutrino emission (Pons et al. 1999, Reddy et al. 1999,
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Hüdepohl et al. 2010, Roberts et al. 2012). Still, much is uncertain, especially

because of the approximations one must make regarding weak interactions with

the dense background medium. A specific issue of importance is the difference be-

tween the average energies of electron neutrinos and electron antineutrinos. This

difference is largely determined by the charged current reactions νe + n → p + e−

and ν̄e + p → n + e+ in neutron-rich dense at a densities ρ ≃ 1012 − 1014 g/cm3.

Recently, one of the authors has shown that an accurate treatment of mean

field effects in simulations of PNS cooling changes the predicted electron fraction

in the neutrino driven wind (NDW) (Roberts 2012) relative to simulations which

do not account for mean field potentials in nuclear matter (Fischer et al. 2010,

Hüdepohl et al. 2010, Fischer et al. 2012). This difference has significant conse-

quences for the nucleosynthesis expected in the NDW (e.g. Hoffman et al. 1997,

Roberts et al. 2010, Arcones & Montes 2011) and for neutrino oscillations outside

the neutrino sphere Duan et al. (2006; 2010). In this work, we discuss generic as-

pects of strong interactions that lead to a large asymmetry in the charged current

reaction rates for electron neutrinos and antineutrinos. We also demonstrate that

this difference manifests itself in potentially observable effects on neutrino spectra

from supernovae and that the difference depends on the assumed density depen-

dence of the nuclear symmetry energy. The effect of multi-particle excitations on

the charged current response is also explored.

Neutron-rich matter at densities and temperatures relevant to the neutrino

sphere of a PNS is characterized by degenerate relativistic electrons and non-

relativistic partially degenerate neutrons and protons. Beta-equilibrium, with net

electron neutrino number Yνe = 0 is a reasonably good approximation for the

material near the neutrino sphere because, by definition, this material can effi-
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ciently lose net electron neutrino number. At these densities, effects due to strong

interactions modify the equation of state and the beta-equilibrium abundances of

neutron and protons. Simple models for the nuclear equation of state predict that

the nucleon potential energy is

Un/p ≈ Vis (nn + np) ± Viv (nn − np) , (3.1)

where Vis and Viv are the effective iso-scalar and iso-vector potentials. Empirical

properties of nuclear matter and neutron-rich matter suggest that Vis × n0 ≈

−50 MeV and Viv × n0 ≈ 20 MeV. The potential energy associated with n → p

conversion in the medium is

∆U = Un − Up ≈ 40 × (nn − np)

n0
MeV, (3.2)

where n0 = 0.16 nucleons/fm3 is the number density at saturation. It will be

shown that ∆U changes the kinematics of charge current reactions, so that the

Q-value for the reaction νe + n → e− + p is enhanced by ∆U while that for

ν̄e + p → e+ + n is reduced by the same amount. The effect is similar to the

enhancement due to the neutron-proton mass difference, but is larger when the

number density n > n0/20.

In section 3.2, charged current neutrino opacities in an interacting medium

are discussed. We consider how mean fields affect the response of the medium in

detail and how this depends on the properties of the nuclear equation of state. The

affect of nuclear correlations and multi-particle hole excitations are also discussed.

In section 3.3, the effect of variations of the charged current reaction rates on the

properties of the emitted neutrinos is studied.
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3.2 The Charged Current Response

Without medium modifications, the differential cross-section for the process

νe + n → e− + p per unit volume is given by

1

V

d2σ

d cos θdEe
=

G2
F

2π

[

(1 + cos θ) + g2
A(3 − cos θ)

]

S(q0, q)

× pe Ee [1 − fe(Ee)]. (3.3)

where the energy transfer to the nuclear medium is q0 = Eν − Ee, and the mag-

nitude of the momentum transfer to the medium is q2 = E2
ν + E2

e − 2EνEe cos θ.

The free particle response function is defined by

SF(q0, q) =
1

2π2

∫

d3p2δ(q0 + E2 − E4)f2(1 − f4), (3.4)

where the particle labeled 2 is the incoming nucleon, the particle labeled 4 is the

outgoing nucleon. When the dispersion relation for nucleons is given by E(p) =

M +p2/2M , and neglecting for simplicity the neutron-proton mass difference, the

integrals in Eq. 3.4 can be performed to obtain

SF(q0, q) =
M2T

πq (1 − e−z)
ln

{

exp [(emin − µ2) /T ] + 1

exp [(emin − µ2) /T ] + exp [−z]

}

, (3.5)

where z ≡ (q0 +µ2−µ4)/T , µ2 and µ4 are the chemical potentials of the incoming

and outgoing nucleons, M is the nucleon mass, and

emin =
M

2q2

(

q0 −
q2

2M

)2

. (3.6)

emin arises from the kinematic restrictions imposed by the energy-momentum

transfer and the energy conserving delta function. Physically, emin is the min-

imum energy of the nucleon in the initial state that can accept momentum q and

energy q0.
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3.2.1 Frustrated Kinematics

The differential cross-section of νe absorption is the product of the nucleon

response times the available electron phase space

∝ pe Ee (1 − fe(Ee)) ≈ E2
e exp

(

Ee − µe

T

)

. (3.7)

Due to the high electron degeneracy, the lepton phase space increases exponen-

tially with the electron energy. To completely overcome electron blocking requires

Ee = Eνe − q0 ≈ µe or q0 ≈ −µe when Eνe ≪ µe. However, the fermi gas response

function in Eq. 3.4 is peaked at q0 ≃ q2/2M ≈ 0 reflecting the fact that nucleons

are heavy. At large |q0| ≃ q ≈ µe the response is exponentially suppressed due to

kinematic restrictions imposed by Eq. 3.6 that implies only neutrons with energy

E2 > emin ≃ M

2q2
q2
0 ≈ M

2
, (3.8)

can participate in the reaction. For conditions in the PNS decoupling region, and

in the fermi gas approximation, the νe reaction proceeds at q0 ≈ 0 at the expense

of large electron blocking. Thus effects that can shift strength to more negative

q0 can increase the electron absorption rate exponentially.

It is well known that the neutron-proton mass difference ∆M = Mn − Mp

increases the Q value for this reaction and a more general expression for S(q0, q)

derived in Reddy et al. (1998) includes this effect. The effect of ∆M can be

understood by noting, that at leading order, it only changes the argument of

the energy delta-function in Eq. 3.4 and is subsumed by the replacements q0 →

(q0 + ∆M) and

emin → ẽmin ≈ M

2q2

(

q0 + ∆M − q2

2M

)2

. (3.9)

This shift changes the location of the peak of the response moving it to the region

where Ee is larger and confirming that it increases the Q value and the final state
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electron energy by ∆M = Mn − Mp. From Eq. 3.7 we see that the rate for νe

absorption is increased by roughly a factor (1 + ∆M/Ee)
2 exp (∆M/T ). By the

same token, the Q value for the reaction ν̄e+p → e++n is reduced by ∆M and this

acts to reduce the rate. In this case, the detailed balance factor [1 − exp (−z)]−1

in the response function S(q0, q) is the source of exponential suppression – simply

indicating a paucity of high energy protons in the plasma. For small q0 ≪ µe, the

detailed balance factor is

−1

1 − exp (−z)
≈ exp

(

q0 − µe

T

)

, (3.10)

where we have use the fact that µn − µp = µe in beta-equilibrium. Since q0 →

(q0 − ∆M) for the ν̄e process, ∆M will suppress this rate exponentially. In line

with the expectation that ∆M increases the cross-section for νe absorption and

decreases it for ν̄e absorption.

In the following we show that the mean field energy shift, driven by the nuclear

symmetry energy, has a similar but substantially larger effect in neutron-rich

matter at densities ρ ' 1012 g/cm3.

3.2.2 Mean Field Effects

Interactions in the medium alter the single particle energies, and nuclear mean

field theories predict a nucleon dispersion relation of the form

Ei(k) =
√

k2 + M∗2 + Ui ≡ K(k) + Ui , (3.11)

where M∗ is the nucleon effective mass and Ui is the mean field energy shift.

For neutron-rich conditions, the neutron potential energy is larger due the iso-

vector nature of the strong interactions. The difference ∆U = Un −Up is directly

related to the nuclear symmetry energy, which is the difference between the energy
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Figure 3.1: Top Panel: The electron chemical potential (dashed lines) and ∆U =
Un − Up (solid lines) are shown as a function of density for the two equation of
state models (IUFSU: red curves and GM3: black curves) in beta-equilibrium for
Yν = 0 and T = 8 MeV. The grey band shows an approximate range of values for
inverse spin relaxation time calculated in Bacca, et al. (2011) and is discussed in
connection with collisional broadening. Bottom Panel: The equilibrium electron
fraction as a function of density for the two equations of state shown in the top
panel.
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per nucleon in neutron matter and symmetric nuclear matter. Ab-intio methods

using Quantum Monte Carlo reported in Akmal et al. (1998) and Gandolfi et al.

(2012), and chiral effective theory calculations of neutron matter by Hebeler &

Schwenk (2010) suggest that the symmetry energy at sub-nuclear density is larger

than predicted by many mean field models currently employed in supernova and

neutron star studies (for a review see Steiner et al. (2005)). To highlight its

importance we choose two models for the dense matter equation of state: (i) the

GM3 relativistic mean field theory parameter set without hyperons (Glendenning

& Moszkowski 1991) where the symmetry energy is linear at low density; and (ii)

the IU-FSU parameter set (Fattoyev et al. 2010) where the symmetry energy is

non-linear in the density and large at sub-nuclear density.

The electron chemical potential (dashed lines) and neutron proton potential

energy difference (solid lines) for these two models are shown as a function of

density in beta-equilibrium in figure 3.1. Here Yν = 0 as a function of density

with an assumed temperature of 8 MeV. At sub-nuclear densities, the IU-FSU

∆U is always larger than the GM3 ∆U value due to the larger sub-nuclear density

symmetry energy in the former. The electron chemical potential as a function of

density, as well as the equilibrium electron fraction, is shown in figure 3.1 for both

models. In beta-equilibrium, models with a larger symmetry energy predict a

larger electron fraction for a given temperature and density and therefore a larger

electron chemical potential. Therefore, IU-FSU has a larger equilibrium µe than

GM3 and νe + n → e− + p will experience relatively more final state blocking.

However, as we show below, the inclusion of ∆U in the reaction kinematics is

needed for consistency.

To elucidate the effects of ∆U we set M∗ = M and note that this assumption

88



can easily be relaxed (Reddy et al. 1998) and it does not change the qualitative

discussion below. Because in current equation of state models the potential, Ui, is

independent of the momentum, k, this form of the dispersion relation results in a

free Fermi gas distribution function with single particle energies K(k) for nucleons

of species i, but with an effective chemical potential µ̃i ≡ µi − Ui. This fact was

emphasized in Burrows & Sawyer (1998), and used to show that it was unnecessary

to explicitly know the values of the nucleon potentials for a given nuclear equation

of state (which are often not easily available from widely used nuclear equations

of state in the core-collapse supernova community) when calculating the neutral

current response of the nuclear medium. Clearly, if both µi and µ̃i are known,

then Ui can be easily obtained. This implies that for a given temperature, density

and electron fraction, the neutral current response function is unchanged in the

presence of mean field effects, as the kinematics of the reaction are unaffected by a

constant offset in the nucleon single particle energies. In contrast, the kinematics

of the charged current reaction are affected by the difference between the neutron

and proton potential and the charged current response is altered in the presence

of mean field effects.

Inspecting the response function in Eq. 3.4 and the dispersion relation in

Eq. 3.11 it is easily seen that the mean field response

SMF(q0, q) =
M2T

πq (1 − e−z)
ln

{

exp [(ẽmin − µ̃2) /T ] + 1

exp [(ẽmin − µ̃2) /T ] + exp [−z]

}

, (3.12)

where

ẽmin =
M

2q2
(q0 + U2 − U4 − q2/2M)2 , (3.13)
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is obtained from the free gas response by the replacements

µi → µ̃i = µi − Ui

q0 → q̃0 = q0 + U2 − U4 (3.14)

and q → q. Therefore, we see that the potential difference ∆U = ±(U2 − U4)

affects reaction kinematics and cannot be subsumed in the redefinition of the

chemical potentials (to yield the same individual number densities).

Because ∆U ' ǫν for neutrino energies of interest in the decoupling region,

it introduces strong asymmetry between the electron neutrino and antineutrino

charged current interactions because the Q value for the reaction νe +n → e− + p

is increased by ∆U = Un − Up and for ν̄e + p → e+ + n it is reduced by the

same amount. Since ∆U < µe, this amount of energy is often not enough to

put the final state electron above the Fermi surface. However, it is enough to

put the final state electron in a relatively less blocked portion of phase space

resulting in an exponential enhancement of the cross-section for νe. This is shown

in figure 3.2, where the differential cross-section integrated over angle for charged

current absorption is plotted as a function of the final lepton energy. The neutrino

energy is set to 12 MeV and the conditions of the medium are T = 8 MeV, and

nB = 0.02 fm−3 and Ye = 0.027. The peak of the differential cross-section is shifted

by about ∆U up (down) in εe− (εe+) for electron (anti-)neutrino capture. This

shift significantly increases the available phase space for the final state electron in

νe + n → e− + p. The (arbitrarily scaled) phase space factor peEe(1 − fe) is also

plotted and the peak of 1/V dσ/dq0 approximately follows this relation. As was

argued in section 3.2.1, the rate of ν̄e + p → e+ + n should also be approximately

proportional to this phase space factor and be exponentially suppressed. This is

seen in the figure 3.2.
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Figure 3.2: Angle integrated differential cross sections for a 12 MeV neutrino.
The solid lines correspond to the reaction νe + n → e− + p and the dashed lines
correspond to ν̄e+p → e++n. The black lines are calculations in which mean field
effects have been included, while the red lines are calculations in which the mean
field effects have been ignored. The green dotted line corresponds to the available
electron phase space, arbitrarily scaled. The assumed background conditions are
T = 8 MeV, and nB = 0.02 fm−3. The electron fraction is 0.027, which corresponds
to beta equilibrium for the given temperature, density, and the assumed nuclear
interactions. The nucleon potential difference is Un − Up = ∆U = 9 MeV. All
cross-sections are for the same baryon density and electron fraction (i.e. all assume
the same µ̃ for the neutrons and protons).
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Figure 3.3: The top panel shows the total absorption inverse mean free path as
a function of incoming neutrino energy for electron neutrinos (solid lines) and
electron antineutrinos (dashed lines). The dot-dashed line shows the effective
bremsstrahlung inverse mean free path. In both panels the black lines include
mean field effects and the red lines assume a free gas response function. The
bottom panel shows the ratio of the total electron neutrino capture rate to the
total electron antineutrino capture rate. Beta-equilibrium has been assumed and
the temperature has been fixed at 8 MeV.
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In figure 3.3, the inverse mean free path (λ−1 = σ/V ) is shown as a function of

neutrino energy for the same conditions considered in figure 3.2. At low energies

the electron neutrino mean free path is reduced when mean fields are correctly

incorporated, but at larger neutrino energies the presence of mean fields becomes

less important and the mean free paths with and without mean fields asymptote

to each other. The electron antineutrino mean free path is reduced relative to

the free gas result and the presence of a threshold at the potential difference

∆U is evident in the mean field calculation. The effective bremsstrahlung mean

free path is also plotted. This is calculated assuming the secondary neutrinos

are in thermal equilibrium with the background, which is a good approximation

for electron antineutrino destruction. For electron antineutrinos at low energies,

bremsstrahlung dominates the capture rate. Mean field effects push the energy

region were bremsstrahlung is dominant to larger neutrino energies. This suggests

that varying the assumed bremsstrahlung rate will also affect the spectrum of the

electron antineutrinos. In the bottom panel, the ratio of the electron antineutrino

mean free path to the electron neutrino mean free path is shown as a function of

energy with and without the affect of mean fields. The large asymmetry induced

between electron neutrino and antineutrino charged current interactions when

mean fields are properly included is plainly visible.

The formalism of Reddy et al. (1998) includes this effect, and was used to calcu-

late the neutrino interaction rates employed in the models presented in (Roberts

et al. 2012) and in section 3.3 of this work. However, the formulae in Bruenn

(1985) and Burrows & Sawyer (1999) for charged current rates neglect the po-

tential energy difference in the nucleon kinematics. In Burrows & Sawyer (1999)

procedure is advocated for including mean fields in which the effective chemical

93



potential, µ̃i of each species is calculated from the given number density and tem-

perature by inverting the free Fermi gas relation, then the response is assumed

to be the free gas response but with the effective chemical potentials in place

of the actual chemical potentials. This prescription is incorrect because while it

accounts for the location of the Fermi surface of the nucleons it fails to account

for the presence of a potential energy difference between incoming and outgoing

nucleon states. This amounts to assuming µ → µ̃, so that in Eq. 3.4 q̃0 → q0

and the response becomes the non-interacting response for the given density and

electron fraction. When the potential energies of the incoming and outgoing nu-

cleons states are equal, as in symmetric matter, or for neutral current reactions

this prescription results in the correct expression, but in asymmetric matter and

for charged current reactions it is in error. To obtain the correct expression for

the mean field polarization function from the free gas results of Burrows & Sawyer

(1999) it is necessary to make both replacements given in equation 3.14.

3.2.3 Correlations and Collisional Broadening

In addition to the mean field energy shift, interactions correlate and scatter

nucleons in the medium. Effects due correlations have been investigated in the

Random Phase Approximation (RPA), where specific long-range correlations are

included by summing single-pair ”bubble” or particle-hole diagrams. This ensures

consistency between the response functions and the underlying equation of state in

the long wavelength limit. For charged currents, calculations reported in Burrows

& Sawyer (1999) and Reddy et al. (1999) indicate that the suppression is density

and temperature dependent. It can be as large as a factor of 2 at supra nuclear

density, but at densities of relevance to the neutrino sphere where ρ / 1013 g/cm3
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the corrections are ≈ 20%. More importantly, the suppression found in Burrows

& Sawyer (1999) and Reddy et al. (1999) for the charged current rate is a weak

function of reaction kinematics and can viewed as a overall shift of the response

in Fig. 3.2. The energy and momentum restrictions discussed previously apply

also to the RPA response, and the mean field energy shift is important to include

in the calculation of the particle-hole diagrams. They were included in Reddy et

al. (1999) but omitted in Burrows & Sawyer (1999).

The excitation of two or more nucleons by processes such as νe + n + n →

n+ p+ e− and νe +n+ p → p+ p+ e− alter the kinematics of the charged current

reaction. Typically, these two-particle reactions introduce modest corrections to

the single-particle response when the quasi-particle life-time is large. However,

they can dominate when: (i) energy-momentum requirements are not fulfilled by

the single particle reaction; (ii) final state Pauli blocking requires large energy and

momentum transfer; (iii) or both. Such circumstances are encountered in neutron

star cooling, where the reaction n → e− + p + ν̄e is kinematically forbidden at

the Fermi surface under extreme degeneracy unless the proton fractions xp '

10% (Lattimer et al. 1991, Pethick 1992). Instead, the two-particle reaction n +

n → e− + p + ν̄e, called the modified URCA reaction, is the main source of

neutrino production (Friman & Maxwell 1979). At temperatures encountered in

PNS energy-momentum restrictions do not forbid, but instead as discussed earlier,

frustrate the single-particle reactions due to final state blocking.

The excitation of two particle states in neutral current reactions has been

included in a unified approach described in Lykasov et al. (2008) and incorpo-

rated into the total response function by introducing a finite quasi-particle life-

time. This naturally leads to collisional broadening allowing the response to access
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multi-particle kinematics and alters both the overall shape and magnitude of the

response function (Hannestad & Raffelt 1998, Lykasov et al. 2008). Here, as a

first step, we adapt the general structure of the response function from Lykasov

et al. (2008) to show that two-particle excitations play an important role in the

charged current process.

Our ansatz for the charged current response function with collisional broad-

ening is

S(qo, q) =
T z

1 − exp (−z)

∫

d3p

(2π)3

f4(ǫp+q) − f2(ǫp)

∆ǫp+q + µ̂
I(Γ) (3.15)

I(Γ) =
1

π

Γ

(q̃0 − ∆ǫp+q)2 + Γ2
, (3.16)

where as before z = (q0 + µ̂)/T and ∆ǫp+q = ǫp+q − ǫp, and Γ = 1/τ where τ is the

neutron quasi-particle lifetime. Effectively, the response in Eq. 3.16 relaxes the

kinematic constraint for the single-nucleon excitation q0 = E2(p)−E4(|~p+~q|), and

smears the response over a width ∝ Γ. The Lorentzian form of the smearing is

obtained in the relaxation time approximation discussed in Lykasov et al. (2008)

and is valid when q0τ ≪ 1. The quasiparticle τ is a function of the quasi-particle

momentum, q, q0 and the ambient conditions. Its magnitude and functional form

at long-wavelength is constrained by conservation laws. For the vector-response,

τ → ∞ in the limit q → 0 due to vector current conservation. However, since spin

is not conserved by strong tensor and spin-orbit interactions, the nucleon spin

fluctuations occur even at q → 0 and the associated spin relaxation time τσ is

finite (Hannestad & Raffelt 1998). Further, because the spin response dominates

the charged current reaction, we shall use the form in Eq. 3.16 only to modify the

spin part of the charged current response.

Calculations in Bacca et al. (2011) of the spin relaxation time τσ in the long-
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wavelength q → 0 limit indicate it decreases rapidly with both density and tem-

perature. The typical range of values of 1/τσ obtained from Bacca et al. (2011)

but including a 50% variation over their quoted values is shown in figure 3.1 for

conditions in the neutrino sphere region. Using these values as a guide we study

the effects of collisional broadening on the νe and ν̄e cross-sections. The differen-

tial cross-section for the axial portion of the process νe + n → p + e− is shown in

figure 3.4 for T = 8 MeV, nB = 0.02 fm−3, and Ye = 0.027. The initial neutrino

energy is Eνe = 12 MeV. As before the differential cross-section is a plotted as

function of the outgoing electron energy. The result with Γ → 0 recovers the

single-particle response with the mean field energy shift included. Representative

values of Γ = 1, 2, 4 MeV where chosen to approximately reflect the findings of

Bacca et al. (2011) for these ambient conditions. The collisional broadening seen

in figure 3.4 is quite significant. It increases the the axial portion of the cross-

section by approximately 20%, 44% and 80%, for Γ = 1, 2, 4 MeV, respectively.

Together, the mean field energy shift and collisional broadening push strength

to regions where electron final state blocking is smaller resulting in an overall

increase in the electron neutrino absorption rate.

While mean field effects reduce the ν̄e cross-section, collision broadening will

tend to increase it by accessing kinematics where −q0 is larger. This is shown in

the inset of figure 3.4 where the ν̄e cross-section for the same ambient conditions

and for Eν̄e = 12 MeV is plotted as a function of the positron energy E+
e = Eν−q0

. The units are arbitrary and the plots only serve to illustrate the relative effect

of multi-pair excitations. We choose the same values of Γ as for the νe case. Here

broadening due to multi-pair excitations has a a more significant effect than for

νe absorption. However, despite this enhancement, the response that includes the
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98



mean field energy shift and the collisional broadening is still much smaller than

the free gas response.

We extend the ansatz in Eq. 3.16 to include correlations between particle-hole

excitations due to residual interactions in the spin-isospin channel using the RPA.

As a first step, we employ a simple interaction in the particle-hole channel. towards

determining the strength distribution of the charged current response function,

we refrain from making more quantitative estimates for the change in the νe and

ν̄e cross-sections. Qualitatively, its seems clear that collisional broadening will

increase both cross-sections. For νe, the mean field energy shift and collisional

broadening both act to enhance absorption rate. For ν̄e, collisional broadening is

unlikely to overcome the suppression due to the mean field energy shift.

To obtain quantitative results, we include RPA correlations by summing the

and multi-particle excitations by current process and we hope to address these

issues in a separate publication. In the following discussion of PNS evolution

and neutrino spectra, we set aside these effects due to collisional broadening and

calculate the neutrino interactions only including the mean field energy shifts

calculated as described in Reddy et al. (1998).

3.3 Proto-Neutron Star Evolution

To illustrate the affect of the correct inclusion of mean field effects in charged

current interaction rates, as well as the importance of the nuclear symmetry en-

ergy, three PNS cooling models are described here. The models have been evolved

using the multi-group, multi-flavor, general relativistic variable Eddington factor

code described in Roberts (2012) which follows the contraction and neutrino losses

of a PNS over the first ∼ 45 seconds of its life. These start from the same post
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core bounce model considered in Roberts (2012) and follow densities down to

about 109 gcm−3. Therefore, they do not simulate the NDW itself but they do

encompass the full neutrino decoupling region.

One model was run using neutrino interaction rates that ignore the presence

of mean fields, but were appropriate to the local nucleon number densities (i.e.

the re-normalized chemical potentials, µ̃i, were used but we set ∆U = 0). The

equation of state used was GM3. This model was briefly presented in Roberts

(2012). Another model was calculated that incorporated mean field effects in the

neutrino interaction rates and used the GM3 equation of state. Additionally, the

bremsstrahlung rates of Hannestad & Raffelt (1998) were reduced by a factor of 4

as suggested by Hanhart et al. (2001). A third model was run using the IU-FSU

equation of state and including mean field effects but with everything else the

same as the GM3 model. The neutrino interaction rates in all three models were

calculated using the relativistic polarization tensors given in Reddy et al. (1998)

with the weak magnetism corrections given in Horowitz & Pérez-Garćıa (2003).

In the top panel of figure 3.5, the average electron neutrino and antineutrino

energies are shown as a function of time for the three models. As was described in

Roberts (2012), including mean field effects in the charged current interaction rates

significantly reduces the average electron neutrino energies because the decreased

mean free paths (relative to the free gas case) cause the electron neutrinos to

decouple at a larger radius in the PNS and therefore at a lower temperature.

Conversely, for the electron antineutrinos the mean free path is increased, they

decouple at a smaller radius and higher temperature, and the average energies are

larger. The antineutrino energies are also slightly larger than the values reported

in Roberts (2012) because of the reduced bremsstrahlung rate.
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antineutrino as a function of time in three PNS cooling simulations. The solid
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three models shown in the top panel (solid lines), as well as two models with the
bremsstrahlung rate reduced by a factor of four (dot-dashed lines). The colors are
the same as in the top panel. 101



Additionally, there are significant differences between the two models which

include mean field effects but use different equations of state. As was described

above, the GM3 equation of state has a smaller symmetry energy than the IU-

FSU equation of state at sub-nuclear densities and therefore has a smaller ∆U

in the neutrino decoupling region. This suggests that GM3 should have slightly

larger electron neutrino average energies and slightly lower average electron an-

tineutrino energies. The results of self-consistent PNS simulations are somewhat

more complicated than this simple picture, mainly because the equilibrium elec-

tron fraction near the neutrino sphere also depends on the nuclear symmetry

energy which affects the charged current rates (see figure 3.1). Still, there is a

larger difference between the average electron neutrino and antineutrino energies

throughout the simulation (relative to GM3) when the IU-FSU equation of state

is used, as expected.

The moments of the escaping neutrino distribution along with the electron

neutrino number luminosities can be used to calculate an approximate NDW

electron fraction (Qian & Woosley 1996)

Ye,NDW ≈
[

1 +
Ṅν̄e〈σ(ǫ)p,ν̄e〉
Ṅνe〈σ(ǫ)n,νe〉

]−1

, (3.17)

where Ṅ are the neutrino number luminosities and 〈σ(ǫ)〉 are the energy averaged

charged current cross-sections in the wind region. The approximate NDW electron

fraction as a function of time for the three models is shown in the bottom panel

of figure 3.5. The low density charged current cross-sections from Burrows et al.

(2006) were used. First, it is clear from this plot that mean field effects significantly

decrease the electron fraction in the wind. This is mainly due to the increased

difference between the electron neutrino and antineutrino average energies caused

by the effective Q value induced by the mean field potentials. Second, increasing

102



the sub-nuclear density symmetry energy decreases the electron fraction in the

wind. This in turn implies that nucleosynthesis in the NDW may depend on the

nuclear symmetry energy because it is sensitive to electron fraction in the wind

(e.g. Hoffman et al. 1997). Still, this affect is not particularly strong because

the increase in the electron neutrino cross section for increased ∆U is partially

mitigated by the larger equilibrium electron fraction predicted for models with a

larger nuclear symmetry energy.

3.4 Conclusions

In this work, we have discussed the physics of charged current neutrino inter-

actions in interacting nuclear matter at densities and temperatures characteristic

of the neutrino decoupling region in PNS cooling. Additionally, models of PNS

cooling have been run to assess the importance of changes in the charged current

rates to the properties of the emitted neutrinos. Our main findings are:

• The mean-field shift of the nucleon energies alters the kinematics of the

charged current reactions. Under neutron-rich conditions it increases the Q-value

for νe absorption and decreases it for ν̄e. Due to final state blocking (electron

blocking for electron neutrino capture and neutron blocking for electron antineu-

trino capture), the increase in the Q value leads to an exponential (exp (∆U/T ))

increase in the νe cross-section absorption and reduces the ν̄e absorption cross-

section by exp (−∆U/T ).

• The formulae for the charged rates developed in Burrows & Sawyer (1999)

and Bruenn (1985) neglect these effects and the prescription for incorporating

mean field energy shifts outlined in Burrows & Sawyer (1999) is inconsistent.

• The nuclear symmetry energy at sub-nuclear density plays a crucial role in
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determining the magnitude of the difference between the mean field neutron and

proton potential energies, and through its effect on the Q-values increases the

difference between the mean free paths of νe and ν̄e.

• Our preliminary work indicates that multi-pair excitations favor kinemat-

ics where final state electron blocking is small because the energy/momentum

constraints present when only single particle-hole excitations are considered are

relaxed. This is analogous to the importance of the modified URCA process in

neutron star cooling. In contrast to mean field effects, multi-pair excitations de-

crease the mean free paths of both electron neutrinos and electron antineutrinos.

Although it is difficult to determine from the limited and approximate calculations

performed for this work, it seems most likely that multi-pair excitations will bring

the average electron neutrino and antineutrino energies closer to one another.

• As was shown in Roberts (2012), the changes to the charged current mean

free paths induced by the correct inclusion of mean fields decreases the average en-

ergy of the electron neutrinos and increases the average energy of the anti-electron

neutrinos emitted during PNS cooling. The difference is relatively large, it signifi-

cantly alters the predicted electron fraction in the NDW, and may have observable

effects. This result has recently been independently confirmed by Mart́ınez-Pinedo

et al. (2012).

• We have also have directly shown that increasing the value of the nuclear

symmetry energy at sub-nuclear densities decreases the electron fraction in the

neutrino driven wind. Therefore, NDW nucleosynthesis may put some constraint

on the poorly known density dependence of the nuclear symmetry energy, or vice

versa. This potential astrophysical constraint is in addition those discussed in

Lattimer & Lim (2012). We emphasize that it may be hard to disentangle this
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from the effects of multi-particle excitations, both on the charged current reactions

themselves and on the (related) bremsstrahlung rate. This effect is also partially

compensated by the symmetry energy dependence of the beta-equilibrium electron

fraction.

• The reduced mean free path of νe is also likely to affect the de-leptonization

time of the proto-neutron star and may account for differences in time-scales ob-

served in simulations performed using equations of state with different symmetry

energies.

The largest uncertainty in the work presented here is the role of multi-particle

excitations in the charged current response. This warrants further study before

we can make reliable predictions for the supernova neutrino spectra, especially

since the difference between νe and ν̄e spectra affects nucleosynthesis, collective

neutrino oscillations and direct detection of supernova neutrinos. The sensitivity

to the symmetry energy is potentially exciting since supernova neutrino detection

and nucleosynthetic yields may be able to provide useful constraints.
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Chapter 4

Proto-Neutron Star Cooling with

Convection: The Effect of the

Symmetry Energy

This work was performed in collaboration with Gang Shen, Vincenzo Cirigliano,

Jose Pons, Sanjay Reddy, and Stan Woosley. It was published in Physical Review

Letters as Roberts et al. (2012).

Abstract

We model neutrino emission from a newly born neutron star subsequent to

a supernova explosion to study its sensitivity to the equation of state, neutrino

opacities, and convective instabilities at high baryon density. We find the time pe-

riod and spatial extent over which convection operates is sensitive to the behavior

of the nuclear symmetry energy at and above nuclear density. When convection

ends within the proto-neutron star, there is a break in the predicted neutrino

emission that may be clearly observable.
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4.1 Introduction

The hot and dense proto-neutron star (PNS) born subsequent to core-collapse

in a type II supernova explosion is an intense source of neutrinos of all flavors. It

emits the 3− 5× 1053 ergs of gravitational binding energy gained during collapse

as neutrino radiation on a time scale of tens of seconds as it contracts, becomes

increasingly neutron-rich and cools. Cooling of the PNS and the concomitant

neutrino emission are driven by neutrino diffusion and convection along the lepton

number and entropy gradients left behind within the PNS after core-bounce, where

the matter density and temperature are in the range ρ = 2 − 6 × 1014 g/cm3 and

T = 5 − 40 MeV, respectively (Burrows & Lattimer 1986, Wilson & Mayle 1988,

Keil & Janka 1995, Pons et al. 1999, Fischer et al. 2010, Hüdepohl et al. 2010).

While the supernova explosion mechanism and associated fall back of material

are expected to influence the neutrino emission at early time (i.e. t . 1 s post

bounce) the late time neutrino signal is shaped by the properties of the PNS,

such as the nuclear equation of state (EoS), neutrino opacities in dense matter,

and other microphysical properties that affect the cooling timescale by influencing

either neutrino diffusion or convection (Keil et al. 1995, Pons et al. 1999, Pons et

al. 2001a;b).

Here, we present one-dimensional hydrostatic models of PNS evolution includ-

ing convection out to late times for two EoSs. We include approximate convective

transport via mixing length theory along with diffusive gray neutrino transport,

both consistent with the underlying EoS. This allows us to gauge the importance

of convection and the effect of medium modifications to the neutrino opacities in

dense matter to the temporal characteristics of the neutrino signal. The basic

framework for PNS evolution is similar to that described in Pons et al. (1999),
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except that a treatment of convection is included. We find that the behavior of

the nuclear symmetry energy (which is a measure of the energy difference between

dense neutron matter and symmetric nuclear matter) at high density significantly

influences convection and thereby affects the observable neutrino signal.

Large scale convective overturn of material will directly transport energy and

lepton number in the PNS and alters the gradients along which neutrinos diffuse,

thereby strongly affecting the neutrino signal accompanying PNS formation. It

has long been recognized that the outer PNS mantle is unstable to convection

soon after the passage of the supernova shock, due to negative entropy gradients

(Epstein 1979). This early period of instability beneath the neutrino spheres has

been studied extensively in both one and two dimensions, with the hope that it

could increase the neutrino luminosities enough to lead to a successful explosion

(Burrows 1987, Wilson & Mayle 1988, Keil et al. 1996, Mezzacappa et al. 1998,

Dessart et al. 2006, Buras et al. 2006). Although the role of convection at late

times was studied in Refs. (Burrows 1987, Wilson & Mayle 1988), this work is

the first attempt at exploring its connection to the underlying microphysics and

the interplay between modified opacities and convection in shaping the observable

neutrino signal.

The early one-dimensional work of Wilson & Mayle (1988) seemed to imply

that neutron fingering instabilities and convection enhanced the neutrino luminos-

ity to successfully power a neutrino driven explosion, but this result was subject

to tuning of the neutron finger diffusion coefficients. Keil et al. (1996) modeled

convection in two-dimensions coupled to EFLD neutrino transport along radial

rays. Convective motions extended up to the neutrino sphere, which resulted in

a significant increase (a factor of 2) in the total luminosity compared to a one-
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dimensional model without a prescription for convection. This work followed the

evolution of the PNS out to the latest time with convection included (1.2 sec-

onds). By the end of their simulation, the convective region encompasses almost

the entire star. Additionally, there are significant regions of convective under- and

over-shoot from the regions that are formally Ledoux unstable. This led them to

state that “it is hardly possible to describe the convective activity with a mixing-

length treatment in a one-dimensional simulation”. Mezzacappa et al. (1998)

performed similar two-dimensional simulations, but with a different treatment of

neutrino transport. They assumed transport was the same along all polar angles.

They found convection was significantly suppressed compared to Keil et al. (1996).

The two most recent multi-dimensional studies of PNS convection are Dessart et

al. (2006) and Buras et al. (2006). They both found modest enhancements in the

neutrino luminosity at early times (15-20%) and see no evidence for doubly diffu-

sive instabilities. Both groups only follow convection for the first 300 ms of PNS

evolution. During this time, the convective region does not expand significantly,

in contrast to Keil et al. (1996).

4.2 Mixing Length Theory in Nuclear Matter

We model convection as a diffusive process described by standard time depen-

dent mixing length theory Wilson & Mayle (1988). In Ref. Buras et al. (2006) it

was shown that hydrodynamic simulations in two-dimensions were well reproduced

by a simple mixing scheme in one-dimension, suggesting that this is a reasonable

approximation. Further, since convection proceeds efficiently throughout our sim-

ulations, our results are not particularly sensitive to the chosen mixing length.

The linear growth rates are obtained from the standard Ledoux stability analysis
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as

ω2 = − g

γnB

(γs∇ ln(s) + γYL
∇ ln(YL)) , (4.1)

where

γnB
=

(

∂ ln P

∂ ln nB

)

s,YL

γs =

(

∂ ln P

∂ ln s

)

nB ,YL

γYL
=

(

∂ ln P

∂ ln YL

)

nB,s

and g, P , s, nB, and YL are the local acceleration due to gravity, the pressure,

entropy per baryon, baryon number density and the fraction of leptons in dense

matter, respectively. Convective instability sets in for ω2 > 0. The form of

the growth rate clearly implies that there will be a strong interplay between the

nuclear EoS and the patterns of convection within the PNS.

This follows Thorne (1977) fairly closely for the GR corrections. First it is

useful to write the acceleration due to gravity and the pressure scale height as

(which can be easily read off from the TOV equations)

g =
GN

r2

(

m + 4πr3P/c2
L

)

(4.2)

Hp =
P

g(ρ + P )/c2
L

(4.3)

If we assume that the motions of the convective blobs are sub-luminal and the

local acceleration due to gravity does not change much, the average acceleration

due to buoyancy over a mixing length is given by

f =
gl

2nB

(

dnB

dr
− dP

dr

(

∂nB

∂P

)

s,Ye,Yν

)

(4.4)
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which implies an average convective velocity of

ǫC ≈ 1

2
fl =

1

2
v2

C (4.5)

vC ≈ l

√

√

√

√

g

2nB

(

dnB

dr
− dP

dr

(

∂nB

∂P

)

s,Ye,Yν

)

(4.6)

ω =

√

√

√

√

g

2nB

(

dnB

dr
− dP

dr

(

∂nB

∂P

)

s,Ye,Yν

)

(4.7)

Clearly, ω is just the growth rate of the linear Ledoux instability given above. If the

convective element travels a pressure scale height, then comes in to equilibrium

with the surrounding medium, we can model this as a diffusive process with a

convective “diffusion” coefficient

DC =
Vcl

3
=

ωl2

3
(4.8)

(4.9)

which gives the convective fluxes as

Hc = −Λ2
hDCnB

de

dr
(4.10)

Fe,c = −Λ2
eDCnB

dYe

dr
(4.11)

Fν,c = −Λ2
νDCnB

dYν

dr
(4.12)

where the Λs are multipliers on the pressure scale height that determine the mixing

length. The EFLD energy, neutrino, and electron fraction transport equations are

then

dYν

dt
+

∂
(

4πr2eφ [Fν + Fν,c]
)

∂a
= eφSn (4.13)

dYe

dt
+

∂
(

4πr2eφFe,c

)

∂a
= −eφSn (4.14)

dE

dt
− p

n2
b

dnb

dt
+ e−φ ∂

(

4πr2e2φ [Hν + Hc]
)

∂a
= 0. (4.15)
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Figure 4.1: Effect of mixing length and convective suppression variation on the
neutrino emission from a 1.6M⊙ PNS. The gray line is the base model which
neglects convection. The black and red lines show models including convection
where the mixing length parameter Λ is varied. The red line shows a model where
the convergence parameter α (= λ in the plot) has been varied.
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For numerical implementation, these convective quantities must be finite dif-

ferenced. The zone boundary values will be given by

ṽi+1/2 =

√

∆nBgi+1/2

∆r(ni+1 + ni)

(

1 − ∆P

2∆nB

[(

∂nB

∂P

)

i+1

+

(

∂nB

∂P

)

i

])

× exp (−λ/α)

=

√

− ∆nBgi+1/2

∆r(ni+1 + ni)

√
α exp (−λ/α) (4.16)

α = −1 +
∆P

2∆nB

[(

∂nB

∂P

)

i+1

+

(

∂nB

∂P

)

i

]

(4.17)

= −1 +
∆P

2∆nB

[

ni+1

Pi+1

Γ−1
i+1 +

ni

Pi

Γ−1
i

]

(4.18)

In the second equation for ṽ, the first square root is constant during the transport

solve. The adiabatic exponent is defined as Γ =

(

∂ ln P
∂ lnnB

)

s,Y

. We have added

an exponential to suppress convection near the edges of convective regions. The

parameter λ determines how strong this suppression is. For implementation in the

implicit code, derivatives of the fluxes are required (after the fluxes have been finite

differenced), which in turn require derivatives of Hp, vC , etc. with respect to Ye, Yν ,

and T . In the adiabatic convection picture these can be obtained analytically.

In figure 4.1, we show the effect of varying the mixing length and the parameter

λ. The luminosity seems to be fairly insensitive to the variations in these parame-

ters, implying that convection is efficient and giving us hope that our approximate

mixing length theory might be fairly parameter independent. The variations in Λ

correspond to a difference of two orders of magnitude in the diffusion coefficients.

We also note that the energy and number conservation properties of the code are

not altered altered when convection is added. Energy conservation can be tuned to

be better than the percent level, depending on the time stepping criteria. Number

conservation is generally two orders of magnitude better.
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In addition to the Ledoux instability, the PNS may be subject to doubly dif-

fusive instabilities due to the lateral transport of composition and energy by neu-

trinos (Wilson & Mayle 1988, Bruenn & Dineva 1996, Miralles et al. 2000). Early

one-dimensional work (Wilson & Mayle 1988) suggested that neutron fingering

instabilities and convection significantly enhanced the neutrino luminosity, which

powered a successful neutrino driven explosion. It is also possible to extend this

MLT for adiabatic convection to doubly diffusive instabilities by just replacing the

Ledoux growth rate with the growth rate predicted for the doubly diffusive insta-

bility. This would be a more general form of what Wilson & Mayle (1988) did to

model neutron fingers. Because the form of the growth rates is more complicated

in the doubly diffusive regime (see Miralles et al. (2000)), their derivatives cannot

be easily taken analytically. This makes it challenging to put in an implicit code.

This has been tried, but for models to run successfully the instability growth rate

had to be suppressed when it was smaller than the dynamical timescale. This

may not be so inaccurate ,but the models were still numerically unstable after

a few seconds of evolution. Accounting for diffusive effects suppressed mantle

convection early on slightly when the neutrino mean free path is large due to the

low densities, as one would expect. At later times, the convective extent was

similar to the Ledoux case. However, more recent two dimensional studies found

no evidence of these doubly diffusive instabilities (Buras et al. 2006, Dessart et

al. 2006). Because of this and the increased complexity of treating the doubly

diffusive instabilities, we do not include them explicitly in our study.
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Figure 4.2: The symmetry energy as function of density for the IU-FSU and GM3
EoSs. Inset: n0E

′
sym versus Esym at nuclear saturation density, for IU-FSU (circle),

GM3 (square), and QMC (diamonds). The shaded regions correspond to various
experimental constraints taken from Ref. Tsang et al. (2011).

4.3 Microphysics and the Nuclear Symmetry En-

ergy

The EoS and neutrino interaction rates are modeled using a relativistic mean

field (RMF) model of nuclear interactions. We adopt a non-linear generaliza-

tion of the original Walecka model described in Fattoyev et al. (2010). Here, the

nucleon-nucleon interaction energy is calculated in the mean field approximation

using effective interactions, which are tuned to reproduce gross observed proper-
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ties of nuclei and empirical properties of symmetric nuclear matter at saturation

density. Although these empirical constraints provide valuable guidance to con-

strain aspects of the symmetric nuclear EoS at nuclear densities, the experimental

constraints on the properties of neutron-rich matter are relatively weak. The dif-

ference between the energy of symmetric matter (equal numbers of neutrons and

protons) and pure neutron matter is called the symmetry energy, Esym(nB), and

is defined by E(nB, xp) = E(nB, xp = 1/2)+Esym(nB)δ2+ · · · . Here, δ = (1−2xp)

and E(nB, xp) is the energy per particle of uniform matter composed of neutrons

and protons with total baryon density nB and proton fraction xp. In charge neu-

tral matter xp = Ye where Ye is the electron fraction. Various experimental probes

of the nuclear symmetry energy and its density dependence in nuclei and heavy-

ion collisions are actively being pursued in terrestrial experiments, but are yet to

yield strong constraints. These constraints are shown in the inset in Fig. 4.2 and

are discussed in Refs. Fattoyev et al. (2010), Tsang et al. (2011). Quantum Monte

Carlo (QMC) results are also shown in the inset in Fig. 4.2. The linear correlation

between Esym and E ′
sym in the QMC results is obtained by varying values of the

poorly known three-neutron interaction Gandolfi et al. (2011).

Recent work has shown that the derivative of the symmetry energy with re-

spect to density, denoted as E ′
sym = ∂Esym/∂nB, plays a crucial role both in the

terrestrial context where it affects the neutron density distribution in neutron-rich

nuclei and in astrophysics where it affects the structure and thermal evolution of

neutron stars (for a recent review see Ref. Steiner et al. (2005)). The pressure of

neutron matter at saturation density, Pneutron(n0) = n2
0E

′
sym, influences the radii

of cold neutron stars Lattimer & Prakash (2001). In neutron-rich nuclei, the

neutron-skin thickness is also sensitive to E ′
sym(ρ0), so that there exists a linear
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correlation between the neutron-skin thickness and neutron star radius Horowitz

& Piekarewicz (2001).

To study the sensitivity of PNS evolution to the nuclear symmetry energy we

employ two RMF models with different predictions for E ′
sym(ρ0). The first EoS is

the IU-FSU EoS taken from Fattoyev et al. (2010), which includes a non-linear

coupling between the vector and iso-vector mesons that allows the symmetry en-

ergy to be tuned at high density. The second EoS employed is the GM3 parameter

set, where non-linear coupling of the vector meson fields is neglected (Glendenning

& Moszkowski 1991). The symmetry energy as a function of density is shown in

Fig. 4.2 for the two EoS. The inset in Fig. 4.2 shows current theoretical estimates

and experimental constraints on Esym and n0E
′
sym at nuclear density.

In the rest of this letter, we demonstrate that E ′
sym(ρ0) plays a role in stabi-

lizing PNS convection at late times and thereby directly affects the PNS neutrino

signal. The logarithmic derivatives γs and γnB
are always positive, so that nega-

tive entropy gradients always provide a destabilizing influence. For given entropy

and lepton gradients, stability is then determined by the ratio γYL
/γs. The sign

and magnitude of γYL
is strongly influenced by the density dependence of the

nuclear asymmetry energy, so that negative gradients in lepton number can be ei-

ther stabilizing or destabilizing and the degree to which they are stabilizing varies

from EoS to EoS. To clarify this we note that at T = 0 and when the neutrino

contribution to the pressure is small

(

∂P

∂YL

)

nB

≃ n
4/3
B Y 1/3

e − 4n2
BE ′

sym(1 − 2Ye), (4.19)

which is a reasonable approximation to the finite temperature result. The first

term comes from the electron contribution to the pressure, while the second term

is due to nucleons and is negative since both the Fermi and interaction energies
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favor a symmetric state. For high densities and low electron fractions, for realistic

values of E ′
sym, this leads to negative γYL

. Therefore, a larger E ′
sym leads to

negative lepton gradients in the PNS providing a larger stabilizing influence. E ′
sym

also partially determines the equilibrium value of Ye, which can alter the value of

γYL
, but this is a smaller effect.

To demonstrate this simply we note that in the vicinity of nuclear saturation

density at T=0 and Yν = 0 the electron fraction in beta-equilibrium

Ye ≃ 0.05 S3
30

(

1 +
5

9

L50

S30

nB − n0

n0

)

where S30 = Esym(n0)/(30MeV) and L50 = 3n0 E ′
sym(n0)/(50MeV) (Steiner et

al. 2005). Plugging this in to our approximate zero temperature expression for

∂P/∂YL and expanding in L50, we can write

(

∂P

∂YL

)

nB

≈ 0.026 fm−4 u2

[

1.25u−2/3S30 +
{

0.23(u1/3 − u−2/3) + 0.21S3
30 − 2.1

}

L50

+

{

0.12S2
30(u − 1) − 0.042

(u − 1)2

S30u2/3

}

L2
50 + O(L3

50)

]

where u = nB/n0. We have confirmed numerically that terms of higher than first

order in L50 provide only a small contribution for L50 < 3 and for reasonable

densities. The equation above indicates the smaller size of the corrections arising

from the E ′
sym dependence of Ye. The first two terms in the coefficient of the first

order term represent this correction, while the third term comes from the explicit

dependence on E ′
sym. In our numerical PNS simulations this effect is accounted

for. In contrast, the properties of zero temperature nuclear matter should have

significantly less effect on the behavior of γs. We find the variation of γs to

be significantly less than that of γYL
in the two EoSs considered here, which is

consistent with expectations.
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Medium modifications of the neutrino interaction rates also influence PNS

evolution. These effects have been investigated in earlier work where neutrino

scattering and absorption rates on nucleons and leptons were calculated within

the relativistic random phase approximation (RPA) (Reddy et al. 1999). Here,

the effects due to strong and electromagnetic correlations, degeneracy, and rela-

tivistic currents are included in a similar way. Further, the effective interactions

we employ in the RPA are obtained from the underlying model for the EoS to en-

sure that the correlation functions which determine the neutrino scattering kernels

satisfy the generalized compressibility sum-rules consistent with the EoS. Because

the axial portion of the response accounts for the majority of the neutrino scat-

tering cross-section, the presence of an axial interaction can strongly affect the

total neutrino mean free path. To take this into account, we introduce an effec-

tive short-range interaction in the spin channel through the Migdal parameter, g′

(Kim et al. 1995). The strength of this interaction is tuned to reproduce the spin-

susceptibility of neutron matter obtained from microscopic calculations Fantoni

et al. (2001). For densities above nuclear saturation, the RPA causes a significant

enhancement of the mean free path relative to the mean field approximation due

to the repulsive nature of the nuclear interaction at high density.

4.4 PNS Evolution

We now consider the evolution of the internal structure of the PNS with con-

vection and varying prescriptions for the opacities. In Fig. 4.3, the evolutions of

the entropy and lepton fraction for the two equations of state are shown. Over the

first second in both models, convection smoothes the entropy and lepton gradi-

ents in the outer regions to a state close to neutral buoyancy. GM3 has a slightly
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steeper entropy gradient, in part due to its larger E ′
sym, than IU-FSU. This par-

tially accounts for the slightly larger neutrino luminosity at early times for GM3.

As time progresses, convection steadily digs deeper into the core of the PNS. For

both EoSs, convection proceeds all the way to the core by 15 seconds into the

simulation, but it lasts in the interior regions for a much longer period of time for

IU-FSU resulting in more rapid lepton depletion in the core. The exact details

of how convection proceeds depend on the initial conditions of the PNS and the

behavior of γs and γYL
for a given EoS. For the conditions encountered in the

PNS, the variation in γYL
between the two EoSs we employ is significantly larger

than the variation of γs. More important to the neutrino signal accompanying

PNS formation, in GM3 convection ceases in the mantle by ∼ 5 seconds, whereas

convection in the mantle proceeds until ∼ 12 seconds in IU-FSU. This difference

is mainly driven by the difference in E ′
sym between the two EoSs. As the man-

tle contracts, the second term in Eq.(4.19) becomes increasingly dominant and is

eventually able to stabilize convection. Qualitatively, increasing E ′
sym will shut-off

convection at an earlier time.

The depth to which convection penetrates in the core and how long convection

proceeds in the core are dependent upon the opacities as well as the EoS. When

only mean field effects on the opacities are considered (i.e. when the neutrino

mean free path is shorter), convection does not proceed all the way to the center

of the PNS in the GM3 models. When RPA effects are included, convection does

proceed to the central regions of the core. An increased diffusion rate allows the

core to heat up and deleptonize more rapidly, thereby decreasing the stabilizing

lepton gradients and increasing the de-stabilizing entropy gradients.

Of course, variations in the convective evolution of the PNS are only interesting
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to the extent they are potentially observable in the neutrino emission from a

nearby supernova. In Fig. 4.4 the expected neutrino count rates for a detector

similar to Super Kamiokande-III are shown for a number of PNS cooling models.

To determine the expected detector signal, we assume the signal is dominated

by the interaction ν̄e + p → e− + n Ikeda et al. (2007) and that the detector is

composed of pure water. The detector count rate is then given by

dN

dt
= 47.8

(

Lν

1051erg s−1

)(

D

10kpc

)−2

(4.20)

×
(

Tν

5MeV

)(

Mdet

50kt

)

G(Tν , Eth)

20
s−1,

where

G(Tν , Eth) = (4.21)

∫∞
Eth/Tν

dx
x(x + ∆/Tν)

2
√

x2 − m2
e/T

2
ν

exp(x + ∆/Tν) + 1
W (xT ),

Lν is the total neutrino luminosity, Tν is the neutrino spectral temperature (as-

suming a zero chemical potential), D is the distance from earth to the supernova,

Mdet is the detector mass, W (E) is the detector efficiency at energy E, and Eth is

the detector energy threshold. We have assumed a threshold energy of 7.5 MeV,

a detector mass of 50 kt, a detector efficiency above threshold of unity Ikeda et

al. (2007), and a distance of 10 kpc to the supernova. Equipartition has been as-

sumed between neutrino flavors and the spectral temperatures are calculated from

the average radius of neutrino decoupling in the PNS. The neutrino luminosities

and average energies for two models are included as supplemental data.

Both the GM3 and IU-FSU EoSs show enhanced luminosities at early times

relative to the models not including convection. There is only a small difference

between the two equations of state at low (sub-nuclear) density, so differences
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prior to one second are small. The neutrino count rate is increased by about

30% relative to the models that do not include convection. This is reasonably

consistent with the early time enhancement seen in multi-dimensional models

Buras et al. (2006). After a second, the count rates between the two EoSs begin

to diverge. The most obvious feature in the count rate for GM3 appears at

∼ 3 seconds, which is coincident with the end of convection in the mantle. For

the IU-FSU EoS, the break is also at the time at which mantle convection ends

(∼ 10 seconds), although it is hard to distinguish from the point at which the

PNS becomes optically thin. As was argued previously, the position of this break

reflects the density dependence of the nuclear symmetry energy at nB > n0 and

therefore provides a direct observable of the properties of nuclear matter in the

PNS neutrino signal. Although core convection does not seem to affect the break,

it may impact the subsequent cooling timescale.

In the inset in Fig. 4.4, integrated neutrino counts over two time windows

are shown for a number of PNS masses. There is a clear separation between the

two EoSs independent of mass. The time of the convective break creates this

separation. This illustrates that this diagnostic of the symmetry energy does not

require an accurate determination of the PNS mass.

4.5 Conclusions

The inclusion of nucleon correlations through the RPA begins to significantly

affect the neutrino emission after about three seconds. Initially, the luminosities

are increased as energy and lepton number are able to more rapidly diffuse out of

the core, but at later times the neutrino signal is significantly reduced and drops

below the detectable threshold at an earlier time.

124



In summary, using a self-consistent model for the PNS core physics, we find

that the late time neutrino signal from a core collapse supernova is likely to contain

a direct diagnostic of the nuclear symmetry energy at high density. With current

neutrino detectors, these effects should be readily discernible in the neutrino light

curve of a single nearby supernova.
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Chapter 5

Integrated Nucleosynthesis from

Neutrino Driven Winds

This work was performed in collaboration with Stan Woosley and Rob Hoffman.

It was published in the Astrophysical Journal as Roberts et al. (2010).

Abstract

Although they are but a small fraction of the mass ejected in core-collapse su-

pernovae, neutrino-driven winds (NDWs) from nascent proto-neutron stars (PNSs)

have the potential to contribute significantly to supernova nucleosynthesis. In pre-

vious works, the NDW has been implicated as a possible source of r-process and

light p-process isotopes. In this paper we present time-dependent hydrodynamic

calculations of nucleosynthesis in the NDW which include accurate weak inter-

action physics coupled to a full nuclear reaction network. Using two published

models of PNS neutrino luminosities, we predict the contribution of the NDW to

the integrated nucleosynthetic yield of the entire supernova. For the neutrino lu-

minosity histories considered, no true r-process occurs in the most basic scenario.
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The wind driven from an older 1.4M⊙ model for a PNS is moderately neutron-

rich at late times however, and produces 87Rb, 88Sr, 89Y, and 90Zr in near solar

proportions relative to oxygen. The wind from a more recently studied 1.27M⊙

PNS is proton-rich throughout its entire evolution and does not contribute sig-

nificantly to the abundance of any element. It thus seems very unlikely that the

simplest model of the NDW can produce the r-process. At most, it contributes

to the production of the N = 50 closed shell elements and some light p-nuclei. In

doing so, it may have left a distinctive signature on the abundances in metal poor

stars, but the results are sensitive to both uncertain models for the explosion and

the masses of the neutron stars involved.

5.1 Introduction

The site where r-process nuclei above A=90 have been synthesized remains

a major unsolved problem in nucleosynthesis theory (e.g., Arnould et al. 2007).

Historically, many possibilities have been proposed (see Meyer 1994), but today,

there are two principal contenders - neutron star mergers (Lattimer et al. 1977,

Freiburghaus et al. 1999) and the NDW (e.g. Woosley et al. 1994, Witti et al.

1994a, Thompson et al. 2001, Wanajo et al. 2001, Arcones et al. 2007). Observa-

tions of ultra-metal-poor stars suggest that many r-process isotopes were already

quite abundant at early times in the galaxy (Cowan et al. 1995, Sneden et al.

1996, Frebel et al. 2007), suggesting both a primary origin for the r-process and

an association with massive stars. NDWs would have accompanied the first su-

pernovae that made neutron stars and, depending upon what is assumed about

their birth rate and orbital parameters, the first merging neutron stars could also

have occurred quite early.
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Both the merging neutron star model and the NDW have problems though. In

the simplest version of galactic chemical evolution, merging neutron stars might

be capable of providing the necessary integrated yield of the r-process in the sun,

but they make it too rarely in large doses and possibly too late to be consistent

with observations (Argast et al. 2004). On the other hand, making the r-process

in NDWs requires higher entropies, shorter time-scales, or lower electron mole

numbers, Ye, than have been demonstrated in any realistic, modern model for a

supernova explosion (though see Burrows et al. 2006).

Many previous papers and models of the neutrino driven wind have either

focused on the production of nuclei heavier than iron using either greatly simplified

dynamics (Beun et al. 2008, Farouqi et al. 2009) or focused on the dynamics while

not including detailed nuclear physics (Qian & Woosley 1996, Otsuki et al. 2000,

Arcones et al. 2007, Fischer et al. 2010, Hüdepohl et al. 2010). Post processing

nuclear network calculations have been performed using thermal histories from

accurate models of the dynamics, but the calculations sampled only a limited set

of trajectories in the ejecta (Witti et al. 1994a, Woosley et al. 1994, Hoffman et al.

1997, Thompson et al. 2001) or did not include detailed weak interaction physics

that sets the electron fraction in the ejecta (Wanajo et al. 2001, Wanajo 2006). No

one has yet calculated the complete synthesis of a realistic NDW and combined

it with the yields from the rest of the supernova.

To address this situation, and to develop a framework for testing the nucle-

osynthesis of future explosion models, we have calculated nucleosynthesis using

neutrino luminosity histories taken from two PNS calculations found in the litera-

ture (Woosley et al. 1994, Hüdepohl et al. 2010). This was done using a modified

version of the implicit one-dimensional hydrodynamics code Kepler, which in-
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cludes an adaptive nuclear network of arbitrary size. This network allows for

the production of both r-process nuclei during neutron-rich phases of the wind

and production of light p-elements during proton-rich phases. Since the results

of wind nucleosynthesis depend sensitively on the neutrino luminosities and inter-

action rates (Qian & Woosley 1996, Horowitz 2002), we have included accurate

neutrino interaction rates that contain both general relativistic and weak mag-

netism corrections.

The synthesis of all nuclei from carbon through lead is integrated over the

history of the NDW and combined with the yield from the rest of the supernova,

and the result is compared with a solar distribution. If a nucleus produced in

the NDW is greatly overproduced relative to the yields of abundant elements in

the rest of the supernova, there is a problem. If it is greatly underproduced, its

synthesis in the NDW is unimportant. If it is co-produced, the NDW may be

responsible for the galactic inventory of this element. An important outcome of

this study are the yields expected from a “plain vanilla” model for the NDW.

Are there any elements that are robustly produced and thus might be used as

diagnostics of the wind in an early generation of stars?

In §5.2, we discuss the general physics of neutrino driven winds and analyt-

ically delineate the regions in neutrino temperature space were different modes

of nucleosynthesis occur. We then discuss our numerical model in §5.3. In §5.4,

the results of the time dependent models are presented. We conclude with a dis-

cussion of how the NDW might affect galactic chemical evolution and consider if

this allows the strontium abundance in low metallicity halo stars to be used as a

tracer of supernova fallback at low metallicity. Finally, we discuss some possible

modifications of the basic model that might improve the r-process production.
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These ideas will be explored more thoroughly in a subsequent paper.

5.2 General Concepts and Relevant Physics

After collapse and bounce in a core collapse supernova, a condition of near

hydrostatic equilibrium exists in the vicinity of the neutrinospheres. The temper-

ature of the outer layers is changing on a time scale determined by the Kelvin-

Helmholtz time of the PNS, τKH ≈ 10s (Burrows & Lattimer 1986, Pons et al.

1999). Heating and cooling in this atmosphere are dominated by the charged

current processes (νe + n) ⇋ (e− + p) and (ν̄e + p) ⇋ (e+ + n) (Qian & Woosley

1996). Equating these rates, while neglecting the neutron-proton mass difference

and weak magnetism corrections and assuming the geometry can be approximated

as close to plane-parallel gives the temperature structure of the neutron star atmo-

sphere as a function of radius, Tatm ≈ 1.01 MeV R
−1/3
ν,6 L

1/6
ν,51ǫ

1/3
ν,MeV (yν/y)1/3, where

Lν,51 and ǫν,MeV are the electron neutrino luminosity and average neutrino energy

at the neutrino sphere in units of 1051 ergs s−1 and MeV, respectively. The grav-

itational redshift factor is y =
√

1 − 2GMNS/rc2 which, when evaluated at the

neutrino sphere, Rν , is yν . Notice that the only dependence on radius is carried

in the redshift factor, so that the atmosphere is close to isothermal.

At the radius, rc, where the pressure in the envelope becomes radiation dom-

inated, the material becomes unstable to outflow (Duncan et al. 1986). The

density at which this wind begins can be found approximately by equating the

radiation pressure to the baryonic pressure. This results in a critical density,

ρc ≈ 8.3 × 107 g cm−3 R−1
ν,6L

1/2
ν,51ǫν,MeV (yν/y) , at which significant outflow begins

and the kinetic equilibrium of weak interactions ceases to hold. Under these con-

ditions, nuclear statistical equilibrium is maintained on a time scale much shorter
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than the dynamical time scale and, for these temperatures and densities, there

will be no bound nuclei present. Since the electron fraction is set by kinetic equi-

librium, the composition of the wind does not depend on any previous nuclear

processing, so any nucleosynthesis from the wind will be primary.

Assuming that most neutrino heating occurs near rc, the entropy is constant

once the temperature cools to the nucleon recombination temperature, kT ≈ 0.5

MeV. Therefore, the final nuclear abundances in the wind depend mainly on the

wind entropy, electron fraction, and the dynamical timescale at the radius where

alpha combination occurs (Qian & Woosley 1996). To determine the contribution

of the wind to the nucleosynthesis of the entire supernova, the mass loss rate must

also be known. Estimates for these quantities are given in the Appendix along

with a discussion of the effect of general relativistic corrections.

Integrating the mass loss rate (equation 5.20) for a typical neutrino luminosity

history implies that the wind will eject approximately 10−3 M⊙ of material. This

in turn means that for the wind to contribute to the integrated yields of the

supernova for a particular isotope, that isotope needs to overproduced relative

to its solar mass fraction by a factor of at least 105 in the wind, assuming the

rest of the supernova ejects ∼ 10 M⊙ and has over production factors of its most

abundant metals of order 10.

Using the analytic results for the wind dynamics and nucleosynthesis given in

the Appendix (equations 5.15, 5.17, 5.20, 5.25,5.32, 5.35, 5.41, and using the neu-

trino interaction rates given in §5.3.1 to fix the thermodynamic state at rc), one can

easily explore the neutrino temperature parameter space to determine the neutrino

temperatures and fluxes that are most conducive to the r-process or the production

of the light p-process. Figure 5.1 is a neutrino two-color plot where it is assumed
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Figure 5.1: Neutrino two-color plot produced using the analytic relations in the
Appendix. A neutron star with gravitational mass 1.4 M⊙ has been assumed
with a neutrinosphere radius of 10 km. The total neutrino luminosity is assumed
to scale as Lνe,tot = 1051(〈Tν〉/3.5 MeV)4 ergs−1. This luminosity is split between
neutrinos and anti-neutrinos so as to ensure that the net deleptonization rate
of the PNS is zero. The thick black line corresponds to an electron fraction of
Ye = 0.5. Above this line, neutron-rich conditions obtain and below it the matter
is proton-rich. The white region is where there no free neutrons remain after
charged particle reactions cease. The N = 50 (tan) region corresponds to final
neutron-to-seed ratios between 0.01 and 15. The “first peak” (yellow) region
corresponds to a neutron-to-seed ratio between 15 and 70, and the “second peak”
(orange) region is where the neutron-to-seed ratio is greater than 70. The dashed
lines correspond to the base ten logarithm of the mass loss rate in solar masses
per second.
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that the deleptonization rate is zero and that the neutrino luminosity scales with

the temperature to the fourth power (Lνe,tot = 1051(〈Tν〉/3.5 MeV)4 ergs−1). The

different nucleosynthetic regions are delineated by the final calculated neutron to

seed ratio. To give a feeling for how a particular point in parameter space might

contribute to the integrated nucleosynthesis of the wind, the mass loss rate is

also shown. The analytic models results are compared with those of our detailed

numerical calculations in figures 5.4 & 5.11.

For a significant amount of material to move past the N = 50 closed shell dur-

ing neutron-rich conditions, the anti-neutrino temperature must be approximately

60% higher than the neutrino temperature. For second peak r-process nucleosyn-

thesis to occur, the asymmetry must be greater than 100%. Modern PNS cooling

calculations do not give such large asymmetries (Pons et al. 1999, Hüdepohl et al.

2010).

Under proton-rich conditions, only a small region of the parameter space at

high neutrino and low anti-neutrino temperature is favorable for the νp-process.

There will be a small amount of neutron production in the white region, but it

is unlikely that significant production of the light p-process elements 74Se, 78Kr,

84Sr, and 92Mo will occur. The region in neutrino temperature space where there

is significant neutron production is unlikely to be reached. This region is small due

to the short dynamical time scale of the wind, which reduces the time over which

anti-neutrinos can capture on free neutrons. One should note that, very soon after

shock formation in the supernova, a wind solution may not be appropriate and

material will be entrained closer to the PNS for a longer period of time. This

scenario would be similar to the the conditions used in Pruet et al. (2006).

Therefore, based upon simple principles, it seems unlikely that the standard
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wind scenario will produce r-process or light p-process isotopes in solar ratios, as

is required by observations of metal poor halo stars (Sneden et al. 1996). This

same conclusion has been reached by other authors (Witti et al. 1994a, Hoffman

et al. 1997, Thompson et al. 2001), but is repeated here in simple terms. We

will find that our numerical calculations give similar results and that there is no

significant r-process nucleosynthesis associated with the wind. Still, the wind can

produce some isotopes that may have an observable signature. For standard PNS

luminosities, the wind will spend a significant amount of time in the region of

parameter space were N = 50 closed shell nucleosynthesis occurs.

5.3 Computational Method

To more accurately investigate the integrated nucleosynthesis of the NDW,

we have updated the implicit Lagrangian hydrodynamics code Kepler (Weaver

et al. 1978, Woosley et al. 2002) to carry out time-dependent simulations of the

wind dynamics and nucleosynthesis. Kepler has been used previously to study

time-independent winds(Qian & Woosley 1996), but the weak and nuclear physics

employed there was rudimentary and nucleosynthesis was not tracked. Trajecto-

ries from Kepler were used for post-processing calculations of nucleosynthesis in

Hoffman et al. (1997).

Kepler solves the non-relativistic hydrodynamic equations in Lagrangian coor-

dinates assuming spherical symmetry. First order general relativistic corrections

are included in the gravitational force law (cf. Shapiro & Teukolsky (1983)). All

order v/c effects are neglected. This is justified since the maximum wind speeds

encountered are, at most, a few percent of the speed of light. The momentum
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equation is then

dvr

dt
= −4πr2 ∂P

∂m
− Gm

r2

(

1 +
P

ρc2
+

4πPr3

mc2

)(

1 − 2Gm

rc2

)−1

(5.1)

where the symbols have their standard meanings. As has been shown by previous

studies (Qian & Woosley 1996, Cardall & Fuller 1997, Otsuki et al. 2000, Thomp-

son et al. 2001), general relativistic corrections to the gravitational force can have

an appreciable effect on the entropy and dynamical time scale of the wind. The

equation of state includes a Boltzmann gas of nucleons and nuclei, an arbitrarily

relativistic and degenerate ideal electron gas, and photons.

5.3.1 Weak Interaction Physics

Energy deposition from electron neutrino capture on nucleons, neutrino anni-

hilation of all neutrino flavors, and neutrino scattering of all flavors on electrons

is included in the total neutrino heating rate. Neutrino “transport” is calculated

in the light-bulb approximation. The energy deposition rate is dominated by neu-

trino captures on nucleons. The neutrino annihilation rates given in Janka (1991)

are employed. For the scattering rates, the rates given in Qian & Woosley (1996)

are used, but we include general relativistic corrections. Standard neutrino cap-

ture rates are employed in the limit of infinitely heavy nucleons with first order

corrections. In this limit, the cross section is (Y.Z. Qian, private communication)

σ νn
ν̄p

=
G2

F cos2(θC)

π(~c)4

[

g2
V + 3g2

A

]

(ǫν ± ∆)2
(

1 ± WM, ν
ν̄
ǫν

)

(5.2)

Here, GF is the Fermi coupling constant, θC is the Cabibo angle, gV and gA are the

dimensionless vector and axial-vector coupling constants for nucleons, ∆ is the pro-

ton neutron mass difference, ǫν is the neutrino energy, and WM, ν
ν̄

accounts for the
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weak magnetism and recoil corrections to the neutrino-nucleon cross section when

the base cross section is derived in the limit of infinitely heavy nucleons (Horowitz

2002). This correction reduces the anti-neutrino cross section and increases the

neutrino cross section (by about a total of 10% at the energies encountered in

NDWs), which, for a given incident neutrino spectrum, significantly increases

the asymptotic electron fraction. Assuming a thermal distribution, these cross

sections result in the neutrino energy deposition rate for anti-electron neutrino

capture

q̇ν̄p = 4.2 × 1018ergs s−1g−1 YpLν̄,51

〈µ〉r2
6

×
[

−W ν̄p
M

〈ǫ4ν̄〉
〈ǫν̄〉 + (1 + 2W ν̄p

M ∆) 〈ǫ
3
ν̄〉

〈ǫν̄〉

−(2∆ + W ν̄p
M ∆2) 〈ǫ

2
ν̄〉

〈ǫν̄〉 + ∆2

]

(5.3)

and a similar expression for electron neutrino capture. The neutrino energy dis-

tributions are parameterized by assuming a Fermi-Dirac spectrum. The neutrino

energy averages, 〈ǫn
ν 〉, are evaluated using this distribution. The neutrino energy

moments and luminosity are evaluated in the rest frame of the fluid. With gen-

eral relativistic corrections for the bending of null geodesics, the average neutrino

angle is given by

〈µ〉 =
1

2
+

1

2

√

1 −
(

Rνyν

ry

)2

. (5.4)

Special relativistic corrections are negligible in the regions where neutrino inter-

actions are important.

The lepton capture rates used are calculated in the limit of infinitely heavy

nucleons. This results in a positron capture energy loss rate

q̇e+n = 6.9 × 1015 ergs g−1 s−1 YnT 6
10

×
∫∞
0

dufe(u,−η) (u5 + 3δu4 + 3δ2u3 + δ3u2)
(5.5)
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here fe(u, η) = (exp(u−η)+1)−1, η is the electron degeneracy parameter, δ is the

proton neutron mass difference divided by kbT , and Yn is the neutron fraction. A

similar rate is employed for electron capture.

For the neutrino losses, we include electron and positron capture on nucleons

and include thermal losses as tabulated in Itoh et al. (1996). The energy loss rate

in the wind is dominated by the electron captures.

5.3.2 Nuclear Physics

During a hydrodynamic time step in Kepler, the nuclear energy generation

rate and the changing nuclear composition are calculated using a modified version

of the 19-isotope network described in Weaver et al. (1978). Neutrino and elec-

tron capture rates on nucleons are coupled to the network, which are calculated

under the same assumptions as the charged current energy deposition/loss rates

described above. Therefore, non-equilibrium evolution of the electron fraction is

accurately tracked.

Although this network is appropriate for calculating energy generation through-

out the entire wind, it is not large enough to accurately track the nucleosynthesis

once alpha recombination begins at T ≈ 0.5 MeV. Therefore, for temperatures

below 20GK an adaptive network is run alongside the hydrodynamics calculation.

The details of this network can be found in Woosley et al. (2004) and Rauscher

et al. (2002). As a fluid element passes the temperature threshold, the composi-

tion from the 19-isotope network is mapped into the adaptive network. Typically,

the network contains approximately 2000 isotopes. Where available, experimental

nuclear reaction rates are employed, but the vast majority of the rates employed

in the network come from the statistical model calculations of Rauscher & Thiele-
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mann (2000). In general, the nuclear physics employed in these calculations is the

same as that used in Rauscher et al. (2002). The nucleon weak interaction rates

employed in the 19-isotope network are also used in the adaptive network.

5.3.3 Problem Setup and Boundary Conditions

To start the neutrino driven wind problem, an atmosphere of mass 0.01 M⊙

is allowed to relax to hydrostatic equilibrium on top of a fixed inner boundary at

the neutron stars radius. The mass enclosed by the inner boundary is the neutron

star’s mass. The photon luminosity from the neutron star is assumed to be nearly

Eddington, but we have found that the properties of the wind are insensitive to

the the luminosity boundary condition. Once hydrostatic equilibrium is achieved,

the neutrino flux is turned on and a thermal wind forms. This wind is allowed to

relax to a quasi-steady state, and then the 19 isotope network is turned on and

the wind is, once again, allowed to reach a quasi-steady state. After this point,

the neutrino flux is allowed to vary with time, and the adaptive network is turned

on.

As the calculation proceeds, the mass of the envelope being followed decreases

and could eventually all be blown away. To prevent this, mass is added back to

the innermost mass elements at a rate equal to the mass loss rate in the wind.

The mass added to a fluid element at each time step is a small fraction of its total

mass. We find that mass recycling has no effect on the properties of the wind. It

is simply a way of treating a problem that is essentially Eulerian in a Lagrangian

code.

For most runs, a zero outer boundary pressure and temperature are assumed.

To investigate the effect of a wind termination shock, a time dependent outer
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boundary condition is included in some of the simulations detailed below. The

pressure of the radiation dominated region behind the supernova shock is approx-

imately given by (Woosley et al. 2002)

Pps ≈
Esn

4π(vsnt)3
(5.6)

where Esn is the explosion energy of the supernova, vsn is the supernova shock

velocity, and t is the time elapsed since the shock was launched. As was discussed

in Arcones et al. (2007), this results in a wind termination shock at a radius where

the condition ρwv2
w + Pw ≈ Pps obtains, where vw is the wind velocity and ρw is

the wind density. To avoid an accumulation of too many zones, mass elements

are removed from the calculation once they exceed a radius of 10, 000 km. This is

well outside the sonic point and nuclear burning has ceased by this radius in all

calculations .

5.4 Numerical Results

To survey both low and intermediate mass core collapse supernovae, neutrino

emission histories were taken from two core collapse calculations, one from a

20M⊙ (Woosley et al. 1994) supernova calculation and the other from a 8.8M⊙

(Hüdepohl et al. 2010) supernova calculation. Since the PNSs studied have sig-

nificantly different masses and neutrino emission characteristics, one is able to

get a rough picture of how integrated nucleosynthesis in the NDW varies with

progenitor mass.
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Figure 5.2: Neutrino luminosities and temperatures taken from the model of
Woosley et al. (1994). The top panel is the neutrino luminosities. The bot-
tom panel is the average neutrino energies. The solid line corresponds to νe, the
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5.4.1 Neutrino Driven Wind from a 20M⊙ Supernova

The first set of neutrino luminosities and temperatures are taken from Woosley

et al. (1994). This calculation began with a 20M⊙ progenitor meant to model the

progenitor of 1987A (Woosley et al. 1988). The resulting neutron star had a

gravitational mass of 1.4M⊙ and the neutrino sphere was taken to be at 10 km.

The neutrino luminosities and average energies as a function of time from this

model are shown in figure 5.2. After about 4 seconds, the neutrino energies become

constant and the large difference between the electron neutrino and anti-neutrino

energies implies that the wind will be neutron rich. This supernova model had

some numerical deficiencies (Sam Dalhed, Private Communication). We also note

that, unlike more modern 1-D supernova models of ∼ 20M⊙ stars (e.g. Fischer et

al. 2010), this model resulted in a successful explosion when a mixing length

theory prescription for convection was included. The entropy calculated for the

wind in Woosley et al. (1994) (S/NAk ≈ 400) were unrealistically large due to

some problems with the equation of state. Here, that is not so important because

the NDW is being calculated separately, but this study did rely on older neutrino

interaction rates and did not include weak magnetism corrections (see §5.3.1).

Therefore, the results obtained using these neutrino histories are only suggestive

of what might happen in a more massive star. If weak magnetism were taken into

account, the calculated electron and anti-electron neutrino temperatures would

probably be somewhat further apart.

The calculation was run for a total of 18 seconds. During this time, the mass

loss rate decreased by almost three orders of magnitude while a total mass of

2 × 10−3M⊙ was lost in the wind. A snapshot of the wind structure two seconds

after bounce is shown in figure 5.3. Note that the wind velocity stays very sub-
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Figure 5.3: Wind structure after two seconds in the model using the neutrino
luminosities from Woosley et al. (1984). The top panel shows the density in units
of 108 g cm−3 (solid line) and the radial velocity in units of 103 km s−1 (dot-dashed
line). The middle panel shows the net energy deposition rate from weak and
strong interactions in units of 1020 erg g−1 s−1 (dot-dashed line) and the entropy
(solid line). The bottom panel shows the temperature in units of 5 × 1010 K
(solid line), the electron fraction (dot-dahsed line), and the fraction of material
contained in nuclei (dotted line).
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luminal throughout the calculation. Therefore, the neglect of special relativistic

effects is reasonable. The secondary bump in the energy deposition rate occurs at

the same radius where nucleons and alpha-particles assemble into heavy nuclei.

This increases the entropy by about 10 units. Clearly, the electron fraction is set

interior to were nuclei form. The radius where nuclei form is at a large enough

value that the alpha effect (Fuller & Meyer 1995) is not significant at early times

in the wind. However, as the neutrino luminosity decreases with time, nucleon

recombination occurs at a smaller radius, and the alpha effect becomes increasingly

important.

The time evolution of the wind as calculated by Kepler is shown in figure 5.4.

The increase in asymptotic entropy is mainly driven by the decrease in neutrino

luminosity, since the average neutrino energies do not vary greatly. The analytic

approximation (calculated using equation 5.17 and the neutrino interaction rates

given in §5.3.1) to the entropy tracks the entropy calculated in Kepler fairly well.

This implies that the variation in the neutrino luminosity with time does not

significantly alter the dynamics from a steady state wind. In contrast to the

high entropies reported in Woosley et al. (1994), the entropy here never exceeds

130. For the time scales and electron fractions also obtained, such a low value of

entropy is not sufficient to give a strong r-process (see below).

The electron neutrino and anti-neutrino energies do move further apart as

a function of time though, which causes the wind to evolve from proton-rich

conditions at early times to neutron-rich conditions later. A transition occurs

from the synthesis of proton-rich isotopes via the νp-process at early times to

the α−process mediated by the reaction sequence α(αn,γ)9Be(α,n)12C later. The

slight difference between the analytic approximation and the Kepler calculation
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of Ye is due to the alpha effect (Fuller & Meyer 1995).

Integrated production factors for the wind are shown in figure 5.5. The pro-

duction factor for the species i is defined as

Pi =
Xi,wMw

Xi,⊙(Mw + Msn)
, (5.7)

where Xi,w is the mass fraction of species i in the wind after all material has

decayed to stable isotopes, Mw is the mass ejected in the wind, and Msn is the

amount of mass ejected by the entire supernova. Xi,⊙ is the mass fraction of

isotope i in the sun for which the values of Lodders (2003) were used. The only

isotopes that are co-produced in the wind alone are 87Rb, 88Sr, 89Y, and 90Zr,

with production factor of 88Sr about a factor of 3 higher than the other two N

= 50 closed shell isotopes. If neutrons are exhausted at high temperatures when

charged particle reactions are occurring, the wind will mainly produce the isotopes

88Sr, 89Y, and 90Zr (Hoffman et al. 1997). This happens when the condition

Z̄

Ā
≈ 0.42 − 0.49 =

Yefα

2Ye(fα − 1) + 1
(5.8)

is met. Here, fα ≈ 14Ys/Yα,i is the fraction of the initial helium abundance that

gets processed into heavy nuclei.

Before eight seconds, the production factors had been much closer. After eight

seconds though, the wind is dominated by 88Sr because Ye ∼ 0.45 and only 53%

of alpha particles are free after freeze out which puts Z̄
Ā
≈ 0.41 for heavy nuclei

just below the range given in equation 5.8. There are not enough free neutrons

to make any significant amount of heavier nuclei, and this results in significant

production of the stable N = 50 closed shell isotope with the lowest Z̄
Ā
.

During the first four seconds, the wind is proton rich and the isotopes 69Ga,

70,72Ge, 74,76Se, and 78,80,82Kr are produced by proton captures on seed nuclei
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Figure 5.5: Isotopic production factors from the NDW model when the neutrino
luminosities from Woosley et al. (1994) are used. The production factors are cal-
culated assuming that 18.4 M⊙ of material was ejected in the supernova in addition
to the wind. The top dashed line corresponds to the greatest production factor
in the wind, the solid line is a factor of two below that, and the bottom dashed
line is a factor of two below the solid line. These lines specify an approximate
coproduction band for the wind alone.

146



produced by the triple-alpha reaction and subsequent (α,p) reactions. Although

the mass loss rate is much higher when the wind is proton rich, the alpha-fraction

freezes out at 98% of its initial value, which results in significantly decreased

production of heavy nuclei. The difference in final alpha fraction between the

neutron- and proton-rich phases of the wind is due mainly to the difference in

speed of the reaction chains α(2α,γ)12C and α(αn,γ)9Be(α,n)12C, but also to the

decreased entropy at early times.

We can compare this with the analytic predictions for nucleosynthesis by plot-

ting the neutrino temperature evolution from this model on a neutrino “two-color

plot” (figure 5.6). Here we have set Lν̄e = 1.2Lν which is approximately correct

at late times in the calculation of Woosley et al. (1994). The wind never reaches

a region in which r-process nucleosynthesis is expected, but spends a significant

amount of time making nuclei in the N = 50 closed shell isotones.

5.4.1.1 Variations in Neutrino Properties

Since the neutrino temperatures from the original model were uncertain, sev-

eral other models were calculated. One had a reduced (by 15%) electron antineu-

trino temperature; another had the weak magnetism corrections to the neutrino

interaction rates turned off. A smaller antineutrino temperature is more in line

with recent calculations of PNS cooling (Pons et al. 1999, Keil et al. 2003). Because

the model of Woosley et al. (1994) did not include weak magnetism corrections,

our model with weak magnetism corrections turned off is more consistent with

the original supernova model.

The production factors for the model with a reduced electron antineutrino

temperature are shown in figure 5.7. The yield of 88Sr is reduced by almost a
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Figure 5.7: Isotopic production factors from the NDW model employing the neu-
trino luminosities from Woosley et al. (1994) with the anti-electron neutrino
temperature reduced by 15%. The production factors are calculated assuming
that 18.4 M⊙ of material was ejected in the supernova in addition to the wind.
The horizontal lines are similar to those in figure 5.5.

149



Figure 5.8: Isotopic production factors from the NDW model employing the neu-
trino luminosities from Woosley et al. (1994) with weak magnetism corrections
turned off. The production factors are calculated assuming that 18.4 M⊙ of ma-
terial was ejected in the supernova in addition to the wind. The horizontal lines
are similar to those in figure 5.5.
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factor of ten from the base case, while the production factors of 89Y and 90Zr are

reduced by a factor of three. In this case, the wind also produces the proton-

rich isotopes 74Se, 78Kr, and 84Sr. The coproduction line for lighter elements

like oxygen in a 20M⊙ supernova at solar metallicity is around 18, so the wind

could contribute to the total nucleosynthesis if the antineutrino temperature was

reduced, but its contribution would be small.

The yields when weak magnetism corrections are ignored are shown in figure

5.8. Without weak magnetism, the electron fraction drops below 0.4 at late times

when the entropy is fairly high. Equation 5.8 is no longer satisfied and material

moves past the N = 50 closed shell towards A ≈ 110. Some r-process isotopes

are produced, such as 96Zr and 100Mo, but not anywhere near solar ratios, and no

material reaches the first r-process peak.

5.4.1.2 Effect of a Wind Termination Shock

To investigate the possible effect of a wind termination shock on nucleosynthe-

sis, another model was run with a boundary pressure and temperature determined

by equation 5.6. An explosion energy of 1051 erg was assumed and the shock ve-

locity was taken as 2×109 cm s−1. This resulted in a wind termination shock that

was always at a radius greater than 103 km. Similar to the simulation without

a wind termination shock, the N=50 closed shell elements dominate the wind’s

nucleosynthesis.

The main difference between the case with and without a wind termination

shock is a shift in the mass of isotopes produced during the proton-rich phase.

During this phase, the post shock temperature varied from 2.5 GK down to 0.8

GK and the density varied from 5×104 g cm−3 to 5×102 g cm−3. These conditions
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Figure 5.9: Combined isotopic production factors of the neutrino driven wind
with unaltered neutrino temperatures and including weak magnetism corrections
added to those of a 20M⊙ stellar model from Woosley et al. (1995). The solid
black line is the coproduction line with 16O. The dashed lines are a factor of two
above and below the coproduction line. The neutrino driven wind is responsible
for the production of 88Sr, 89Y, and 90Zr.

are very favorable for continued proton capture once the long lived waiting point

isotopes 56Ni and 64Ge are bypassed by (n,p) reactions. Because these conditions

persist for at least a second after a fluid element passes through the wind ter-

mination shock, significantly more proton captures can occur on seed nuclei that

have moved past mass ∼ 64 relative to the case with no termination shock. Still,

not many more neutrons are produced per seed nucleus relative to the base run.

Therefore, the net number of seeds that get past the long lived waiting points

remains small and the proton-rich wind does not contribute to the integrated nu-

cleosynthesis. It should also be noted that a different treatment of the wind’s

interaction with the supernova shock might result in a breeze solution which may

supply more favorable conditions for νp-process nucleosynthesis (Wanajo 2006).
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5.4.1.3 Total Supernova Yields

In figure 5.9, the production factors from a 20M⊙ supernova model from

Woosley & Weaver (1995) have been combined with the production factors we

calculated in the NDW with the unaltered neutrino histories of (Woosley et al.

1994) with weak magnetism corrections included. The wind could be responsible

for synthesizing the isotopes 87Rb, 88Sr, 89Y, and 90Zr. 88Sr production is above

the co-production band, but the rest are in agreement with the stellar yields. This

overproduction of 88Sr is similar to the result of Hoffman et al. (1997).

For the model with a reduced anti-electron neutrino temperature combined

with the yields from the 20M⊙ supernova model, the wind contributes 28%, 42%,

35%, 75%, 75%, and 80% of the total 74Se, 78Kr, 84Sr, 88Sr, 89Y, and 90Zr abun-

dances in the supernova model, respectively. This wind model does not result in

any isotopes being overproduced relative to the rest of the yields of the supernova.

For the case with weak magnetism turned off, the nuclei produced by the wind

are overproduced relative to those made in the rest of the star by factor of nearly

100, hence this would need to be a very rare event if this model were realistic.

Since the progenitor model used in Woosley et al. (1994) was a model for

SN 1987A, we have also combined the abundances calculated in the wind those

predicted by Woosley et al. (1988). 88Sr, produced by the NDW, dominates the

elemental strontium yield. For the base NDW model, [Sr/Fe]= 0.8, if weak mag-

netism corrections are neglected, [Sr/Fe]= 1.6; and if the anti-neutrino tempera-

ture is reduced in the base model by 15%, [Sr/Fe]= 0.2.

Clearly, weak magnetism corrections and variations in the neutrino tempera-

tures have a very significant effect on nucleosynthesis in the wind. Aside from the

effects of an extra source of energy (5.5.2), the neutrino spectra are the largest
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current theoretical uncertainty in models of the NDW.

5.4.2 Neutrino Driven Wind from a 8.8M⊙ Supernova

The second PNS model is a more modern one-dimensional calculation of an

electron-capture supernova (Hüdepohl et al. 2010) that started from an 8.8M⊙

progenitor model (Nomoto 1984). This resulted in a PNS with a gravitational

mass of 1.27M⊙ and a radius of 15 km. Together the lower mass and increased

radius imply a lower gravitational potential at the neutrinosphere. This work

employed neutrino interaction rates which took weak magnetism and “in-medium”

effects into account. The neutrino luminosities and average energies as a function

of time are shown in figure 5.10. The maximum difference between the electron

and anti-electron neutrino average energies is significantly less than in the model of

Woosley et al. (1994). This is likely due in part to both the decreased gravitational

potential of the PNS and the more accurate neutrino interaction rates in the newer

model.

The calculation was run for a total of nine seconds, at which point the mass loss

rate had dropped by two orders of magnitude. The total amount of mass ejected in

the wind was 3.8×10−4 M⊙. In figure 5.11, the properties of the NDW calculated

using Kepler are plotted as a function of time. Notice that the entropy never

reaches above 100 in this model, which diminishes the likelihood of significant

nucleosynthesis. For comparison, we also include the analytic estimates detailed

above. There is reasonable agreement between the analytic and the numerical

calculations, but not nearly as good as in the 20M⊙ model.

In contrast to the simulation run with the neutrino luminosities of Woosley

et al. (1994), the electron fraction continues to increase with time. The difference
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Figure 5.10: Neutrino luminosities and temperatures taken from the model of
Huedepohl et al. (2010). The line styles are the same as in figure 5.2.
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between the average electron neutrino energy and electron anti-neutrino energy is,

at most, about 3 MeV, compared to a maximum of 8 MeV in the Woosley et al.

(1994) calculations. Also, the difference between the average neutrino energies

decreases as a function of time, compared to an increase with time in Woosley et al.

(1994). Finally, the energies of all kinds of neutrinos are lower in the Hüdepohl et

al. (2010) calculation, so that the proton-neutron rest mass difference significantly

suppresses the anti-neutrino capture rate relative to the neutrino capture rate.

These differences are presumably due to both the different neutron star masses

and neutrino interaction rates employed.

The conditions in this model thus preclude any r-process nucleosynthesis, but

they are potentially favorable for production of some low mass p-process isotopes

by the νp-process. The integrated isotopic production factors are shown in figure

5.12. The total ejected mass was take as 7.4 M⊙, as 1.4 M⊙ neutron star is

left behind in the calculation of Hüdepohl et al. (2010). During the calculation a

maximum network size of 988 isotopes is reached. The p-process elements 74Se and

78Kr are co-produced with 63Cu, 67Zn, and 69Ga, but the maximum production

factor for any isotope is 1 when weighted with the total mass ejected in the

supernova. Therefore, in this simple model, the proton-rich wind from low mass

neutron stars will not contribute significantly to galactic chemical evolution.

The entropies encountered when the mass loss rate is high are low (∼ 50), so

that there is more production of 56Ni by triple-alpha and a subsequent αp-process.

As the neutron abundance available for the νp-process is given by

Yn ≈ λνYp

ρNA

∑

i Yi〈σv〉i(n,p)j

, (5.9)

increased seed production reduces the available neutron abundance and therefore

hinders production of the p-process elements 74Se, 78Kr, 84Sr, and 92Mo. Addi-
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Figure 5.12: Isotopic production factors from the NDW model employing the
neutrino luminosities from Huedepohl et al. (2010). The production factors are
calculated assuming that 7.4 M⊙ of material was ejected in the supernova in ad-
dition to the wind. The horizontal lines are similar to those in figure 5.5. Notice
that none of the production factors are significantly greater than one.
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tionally, at early times, the dynamical time scale is short which implies a smaller

integrated neutron to seed ratio, ∆n (see the appendix).

The yields of from this model cannot be combined with the yields from the rest

of the supernova because they are not published. As Nomoto (1984) has discussed,

the mass inside the helium burning shell was close to the mass of the neutron star

that was left after the explosion. Therefore the ejecta of the supernova is expected

to have small production factors. This implies that, even when the yields of the

NDW are combined with the rest of the supernova, it is unlikely that these low

mass core collapse supernovae will contribute significantly to galactic chemical

evolution.

5.4.2.1 Effect of a Wind Termination Shock

As was mentioned above, it is very possible that a transonic wind solution may

not be appropriate this early in the supernovas evolution. Fischer et al. (2010)

have found that a wind termination shock is not present in a one-dimensional

supernova model using the progenitor from Nomoto (1984). Still, it is interesting

to consider the effect of a reverse shock on the wind nucleosynthesis.

A second simulation was run with a time dependent boundary pressure given

by equation 5.6, with Esn = 1050 erg and vsn = 2 × 109 cm s−1. This results in a

wind termination shock at a radius of approximately 3 × 108 cm throughout the

simulation. Inside the wind termination shock the wind dynamics are very similar

to those in the run with no boundary pressure. There is almost no difference in

the nucleosynthesis in the runs with and without a wind termination shock.

After 0.75 s, the post shock temperature drops below 1 GK and the wind

termination shock has little effect on subsequent nucleosynthesis. Because the
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post shock temperature is high for less than one second, the wind termination

shock has very little effect on the integrated nucleosynthesis. A larger explosion

energy would likely result in a larger effect on the nucleosynthesis, but there are

still very few neutrons available to bypass the long lived waiting points and it

seems unlikely that the production factors would be increased by more than a

factor of a few.

5.5 Discussion

5.5.1 Strontium and Yttrium in Halo Stars

Since strontium and yttrium are abundantly produced in our models, it may

be that the NDW has contributed to their production throughout cosmic history.

An interesting possibility is that the abundances of these elements might trace the

birth rate of neutron stars at an early time. Taking a standard r-process abun-

dance pattern from metal poor stars with strong r-process enhancments, Travaglio

et al. (2004) find that 8% and 18% of solar strontium and yttrium, respectively,

are not produced by either the “standard” r-process or any component of the s-

process. It therefore seems plausible that charged particle reactions in the NDW

could make up this “missing” component.

Any nucleosynthesis that happens in the NDW will be primary, i.e. pro-

vided that the mass function of neutron stars at birth does not itself scale with

metallicity, similar nucleosynthesis will occur for stars of any population. Below

[Fe/H]∼ −1.5, no component of the s-process contributes to the abundances of

N = 50 closed shell isotopes (Serminato et al. 2009). If the NDW escapes the

potential well of the PNS, and contributes to the galactic budget of N = 50 closed
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shell isotopes, it should provide a floor to [Sr/Fe] and [Y/Fe]. Based upon the

arguments of Travaglio et al. (2004), this floor would be at [Sr/Fe]≈ −0.18 and

[Y/Fe]≈ −0.16. These numbers assume that when the main r-process source con-

tributes in addition to the NDW, [Sr/Fe] and [Y/Fe] approach their solar values

even though the s-process has yet to contribute. This is consistent with observa-

tions.

In defining this floor, one must assume that the abundances in a particular star

sample a large number of individual supernovae. This is because the production

of N=50 closed shell elements likely depends on the PNS mass and therefore

the progenitor mass. As we have found, [Sr/Fe]= 0.8 in the 20M⊙ model with

reduced anti-neutrino temperatures, but the 8.8M⊙ model produces no strontium.

Observations show that below [Fe/H]∼ −3, the spreads in [Sr/Fe] and [Y/Fe]

increase significantly and the mean values falloff some (François et al. 2007, Cohen

et al. 2008, Lai et al. 2008). Single stars have values of [Sr/Fe] below the predicted

floor. This could be because, at this metallicity, the metals in a particular star

come from only a handful of supernovae.

Another possible explanation of this variation is that supernova fall back varies

with metallicity. Since the NDW is the innermost portion of the supernova ejecta,

it will be the most susceptible to fallback. It has been found that the amount of

supernova fallback depends strongly on the metallicity of the progenitor, especially

going between zero and low metallicity (Zhang et al. 2008). Additionally, mixing

is also greatly reduced in zero metallicity stars compared to solar metallicity stars

due to the formers compact structure (Joggerst et al. 2009).

The current understanding of supernova fallback suggests that the nucleosyn-

thetic contribution of the NDW will be suppressed at very low metallicity. Of
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course, the ejection of iron by the supernova is also very susceptible to fallback,

so the effect of fallback on the evolution of [Sr,Y/Fe] is complicated and may re-

quire fine tuning to give the observed decrease. A somewhat different explanation

was offered by Qian & Wasserburg (2008) who attributed the fall off of [Sr/Fe]

at low metallicity to the evolution of the “hypernova” rate with metallicity. For

their purposes, hypernovae were stellar explosions that contributed iron without

making much strontium.

Given the sensitivity of strontium and yttrium yields to uncertain NDW char-

acteristics, especially neutrino fluxes and temperatures, it may be some time be-

fore the complex history of these elements is even qualitatively understood. It

is likely though that their abundances in halo stars will ultimately be powerful

constraints upon the evolution of supernova physics as a function of metallicity.

5.5.2 Possible Modifications of the Basic Model

As is clear from figures 5.5 and 5.12, the simplest case of a non-magnetic non-

rotating NDW from a neutron star without additional energy deposition does not

produce r-process nuclei in significant abundances. Are there extensions to this

simple scenario that could make the wind a site of the r-process?

As was pointed out by Metzger et al. (2007), the combination of rotation and

magnetic fields can decrease the dynamical time scale by magnetic “flinging”.

This is not particularly effective. Adding a non-thermal source of kinetic energy

means that less thermal energy must be put into the wind for it to escape the

potential well. Therefore, lower entropies are achieved. It seems unlikely that

this mechanism, by itself, will salvage the NDW as a site for the full r-process.

If there were a way to make the rotation rate of the PNS high enough, it might
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be possible that there would be a centrifugally driven outflow. Then the electron

fraction would be determined by kinetic equilibrium much deeper in the PNS

envelope, and the material in the outflow would have an electron fraction much

lower than that seen in the wind.

To test this possibility, we ran calculations with a centrifugal force term added

and corotation with the PNS enforced out to 103 km. Unfortunately, for rea-

sonable PNS spin rates (20 ms period), we found this had little effect on the

nucleosynthesis. These calculations were in a regime were the electron fraction

was still set by neutrino interactions.

Many authors have discussed the possible effects of both matter-enhanced(Qian

& Fuller 1995, Sigl 1995) and collective neutrino (Pastor & Raffelt 2002, Duan

et al. 2006) oscillations on NDW nucleosynthesis. If electron antineutrinos could

undergo a collective oscillation near the launch radius while the electron neutrinos

did not, this would increase the average energy of the antineutrinos if the µ and τ

neutrinos have a significantly higher temperature, facilitating a reduction in the

electron fraction. For a normal mass hierarchy however, matter enhanced neutrino

oscillations would probably cause electron neutrino flavor conversion, which would

increase the electron fraction and decrease the probability of significant r-process

nucleosynthesis (Qian & Fuller 1995).

Collective neutrino oscillations can cause antineutrino oscillations in the region

were the electron fraction is set, and thereby decrease the electron fraction where

pure MSW oscillations would have predicted an increased electron fraction(Duan

et al. 2006). Clearly, the main effect of oscillations would be on the composition

of the wind, not the dynamics. As can be seen in the neutrino two color plots,

oscillations would have to change the effective temperature of the anti-neutrinos by
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a very large amount to move from a region where N=50 close shell nucleosynthesis

occurs to a region where the second r-process peak can be produced.

These effects are based upon the assumption that µ- and τ -neutrinos are signif-

icantly more energetic than the electron neutrinos. In the calculation of Woosley

et al. (1994), this is the case, as can be seen in figure 5.2. Interestingly, the µ and

τ temperatures are almost the same as the electron anti-neutrino temperature in

the Hüdepohl et al. (2010) calculation, which can be seen in figure 5.10. It is not

clear wether this difference obtains because of the difference in the PNS masses

or the significantly different neutrino physics employed in the calculations. A

detailed study of neutrino transport in static backgrounds showed that the inclu-

sion of all relevant neutrino interactions brings the average energies of the µ- and

τ - neutrinos closer to the temperature of the anti-electron neutrinos (Keil et al.

2003). Therefore it is uncertain wether or not neutrino oscillations could effect

nucleosynthesis significantly. Clearly, the uncertainties here are not in the wind

itself but in the formation of the spectra in the PNS and the details of neutrino

transport with neutrino oscillations.

Finally, it has been suggested (Takahashi et al. 1994a, Qian & Woosley 1996,

Suzuki & Nagataki 2005b) that adding a secondary source of volumetric energy

deposition can significantly increase the entropy of the wind, which results in a

more alpha-rich freeze out and conditions that would be more favorable for r-

process nucleosynthesis. The addition of energy to the wind also decreases the

dynamical timescale. Since the important quantity to consider for the r-process is

s3/τd (Hoffman et al. 1997), both effects increase the chance of having a significant

neutron to seed ratio after freeze out. If the NDW model is to be salvaged, this

seems to us the minimal necessary extension. Of course, the physical process
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contributing this extra energy is very uncertain. One possibility is that oscillations

of the PNS power sound waves which produce shocks and deposit energy in the

wind, similar to the supernova mechanism of Burrows et al. (2006), but smaller in

magnitude. We will explore this possibility in some detail in a subsequent paper.

5.6 Conclusions

We have performed calculations of the dynamics and nucleosynthesis in time

dependent neutrino driven winds. This was done for two sets of neutrino spectra

calculated in one-dimensional supernova models taken from the literature. The

nucleosynthesis in these models was compared with supernova yields to determine

if these models were consistent with observations. Additionally, we compared the

results of these numerical models to analytic models of the neutrino driven wind

and found good agreement.

Similar to most of the work on the NDW after Woosley et al. (1994), we find

that it is unlikely that the r-process occurs in the neutrino driven wind unless

there is something that causes significant deviation from a purely neutrino driven

wind. Additionally, in the simplest case, there is little production of p-process

elements at early times in the wind. In our calculation that used spectra from a

more massive neutron star, the wind only produces the N=50 closed shell elements

87Rb, 88Sr, 89Y, and 90Zr.

This result is sensitive to small changes in the neutrino interaction rates (i.e.

the inclusion of weak magnetism) and changes to the neutrino temperature of

order 10%. We also find that the effect of a wind termination shock on the wind

nucleosynthesis is small.

Using neutrino spectra from an 8.8M⊙ supernova that drives a wind which
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is proton rich throughout its duration (Hüdepohl et al. 2010), we find that no

significant νp-process occurs and the wind does not contribute to the yields of

the supernova. The neutrino spectra from this model are probably more accurate

than the spectra from the model of Woosley et al. (1994). We also investigated

the effect of an outer boundary pressure which resulted in a wind termination

shock. This had a negligible effect on the nucleosynthesis.

However, one also expects that the nucleosynthesis in the NDW will vary con-

siderably from event to event, especially with the mass and possibly the rotation

rate of the PNS. The winds from more massive PNS have greater entropy and

might, in general, be expected to produce heavier elements and more of them.

The neutrino spectral histories of PNS as a function of mass have yet to be deter-

mined over a wide range of parameter space. Currently, the neutrino luminosities

and temperatures are the largest uncertainties in models of the NDW.

5.7 Appendix: Analytic Wind Dynamics

To understand the wind dynamics, we follow arguments similar to those of

Qian & Woosley (1996) and Cardall & Fuller (1997). Conservation of the stress-

energy tensor and number flux in a Schwarzschild geometry in steady state leads

to the wind equations in critical form

Ṁ = 4πr2mbnγyv (5.10)

γyv
d

dr
ln(γyhr) =

q̇mb

c2hr

(5.11)

γ2
(

v2 − c2
s

) dv

dr
=

v

r

[

2c2
s −

GM

ry2

(

1 − c2
s

c2

)]

− q̇mb

3γyhr
(5.12)

here Ṁ is the rest mass loss rate, mb is the baryon mass, n is the baryon number

density, v is the velocity measured by an observer at rest in the Schwarzschild
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frame, γ = (1 − v2/c2)
−1/2

, q̇ is the neutrino heating rate per mass, cs is the

sound speed, M is the neutron star mass, hr = 1 + ǫ/(mbc
2) + P/(nmbc

2), P

is the pressure, and ǫ is the energy per baryon not including the rest mass. To

fully describe the wind, these equations must be supplemented by a set of nuclear

rate equations and an equation of state. For our analytic calculations we used

a radiation-dominated non-degenerate equation of state comprised of relativistic

electrons, positrons, and photons.

First, we estimate where the critical radius (i.e. the radius where radiation

pressure equals the nucleon gas pressure) sits in relation to the neutrino sphere.

Neglecting the temperature gradient in the equation of hydrostatic balance gives

the density structure of the atmosphere,

log(n(r)/nc) ≈ −
∫ r

rl

dr
GMmb

r2y2T (r)
(5.13)

The optical depth of this atmosphere for neutrinos is

τ = σν(ǫν)

∫ ∞

r

n

y
≈ σν(ǫν)nc

∫ ∞

r

dr

y
exp

(

−
∫ r

rl

dr′
GMmb

r′2y′2T (r′)

)

(5.14)

Taking the neutrinosphere to be at an optical depth of 2/3, the gas pressure

equal to the radiation pressure at the critical radius, and approximating gravity

as constant throughout the envelope, we arrive at an equation for the critical

radius

rc ≈ Rν

[

1 +
Tc

gmbRν

ln

(

2

3τ0

yν

)]

(5.15)

where τ0 = σν(ǫν)ncTc/gmb. For characteristic values of Lν , ǫν , Rν , and M , rc is

only a few percent larger than Rν . This implies that the GR corrections to the

neutrino interaction rates at rc will be at most a few percent. For characteristic

values, the GR correction to gravity will be y(rl)
−2 ≈ y−2

ν ≈ 1.5. This agrees
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with the observation made by previous authors that GR corrections to gravity

dominate over corrections to the neutrino interaction rates (Cardall & Fuller 1997,

Thompson et al. 2001).

Assuming that most neutrino heating occurs near rc, the entropy can be con-

sidered constant once the temperature cools to the nucleon recombination temper-

ature (T ≈ 0.5 MeV). Therefore, the final nuclear abundances in the wind depend

mainly on the wind entropy, electron fraction, and the timescale for outflow (Qian

& Woosley 1996, Hoffman et al. 1997). To determine the contribution of the wind

to the nucleosynthesis of the entire supernova, the mass loss rate must also be

known. We now find estimates for these quantities and for the transonic radius of

the wind.

To determine the asymptotic entropy, the total energy deposition per baryon

needs to be estimated. Using equation 5.11 and assuming the asymptotic velocity

is small, the total energy deposited per baryon is

ln(γf) − ln(ychc) ≈ − ln(ychc) ≈
∫ ∞

rν

dr
q̇mb

γyvc2hr
≈
∫ ∞

rc

dr
q̇νmb

γyvc2hr
= Q/(mbc

2)

(5.16)

Considering that most of the neutrino energy is deposited near the hydrostatic

atmosphere, the final entropy per baryon is approximately

sf =

∫ ∞

rν

dr
q̇mb

γyvT
≈
∫ ∞

rc

dr
q̇νmb

γyvT
+ sc ≈ −mbc

2 ln(hcyc)hr,c

Tc
+ sc (5.17)

Assuming that the neutron-proton rest mass difference is negligible, the entropy

of the envelope is negligible, and taking the relativistic enthalpy outside the log-

arithm to be one results in the scaling relation

sf ≈ 464 ln
(

y−2
c

)

R
1/3
ν,6 L

−1/6
ν,51 ǫ

−1/3
ν,MeV

(

yc

yν

)1/3

. (5.18)
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Notice that all the general relativistic corrections, both due to gravity and to

the neutrino interaction rates, increase the entropy from the non-relativistic case

(Cardall & Fuller 1997, Otsuki et al. 2000). As was discussed above, the dominant

correction to the newtonian case is from the GR correction to gravity.

To fix the mass loss rate, we must estimate the velocity at the critical radius.

Taking the momentum equation in critical form and assuming approximate hy-

drostatic equilibrium and subsonic velocities gives c2
sdv/dr ≈ q̇

3γy
. Assuming that

acceleration has occurred over a scale height, we have

yvc ≈
heff q̇(rc)

6c2
s

(5.19)

where the heating rate at the critical radius is divided by two to account for the fact

that beneath the critical radius the net heating goes to zero over approximately a

scale height so that a characteristic value of the heating rate is one half the heating

rate at the critical radius. The scale height is given by h−1
eff = (ρ+P )GM/Pr2y2.

Combining these with equation 5.10 results in a mass loss rate of

Ṁ ≈ 4πr4
c

P

ρ + P
y2

c

mbncq̇ν(rc)

3GMc2
s,c

(5.20)

Using our result for the entropy gives a scaling relation for the mass loss rate,

Ṁ ≈ 7.4 × 10−11 M⊙ s−1
r4
l,6L

5/3
ν,51ǫ

10/3
ν,MeV

R
10/3
ν,6 (M/M⊙) ln

(

y−2
l

)
y2

l

(

yν

yl

)10/3

. (5.21)

Notice that GR corrections reduce the mass loss rate significantly, by about a

factor of 2. Only including GR effects on neutrino propagation and energies

decreases the mass loss rate by about 10%. The reduced mass loss rate due to GR

corrections does effect the integrated nucleosynthetic yields, although the effect is

not as great as the effect of the GR corrections on the entropy.
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Given the entropy and the mass loss rate, we can solve for the evolution of

temperature with radius outside of the heating region where the velocity is still

small using the relation ln(hry) = ln(ychr,c) + Q ≈ 0, which gives

r ≈ 2GM

c2

[

1 − (1 + Tsf/mb)
−2]−1

(5.22)

The dynamical timescale of the wind is defined by τ−1
d = vγy/n |dn/dr|. Steady

state baryon number conservation yields

1

n

∣

∣

∣

∣

dn

dr

∣

∣

∣

∣

=
2

r
+

γ2

v

dv

dr
+

GM

r2y2
(5.23)

Neutrino energy deposition will no longer dominate the momentum equation when

nucleons reform, but the velocity will be subsonic. In this limit, the momentum

equation yields

γ2

v

dv

dr
=

GM

r2y2c2
s

(

1 − c2
s

)

− 2

r
(5.24)

which results in an estimate for the dynamical timescale far inside the sonic point,

τ−1
d ≈ GṀM

4πr4nmby2c2
s

(5.25)

For seed formation we are interested in the dynamical timescale around 2 MeV.

Combining with our result for the temperature structure of the atmosphere we

have

τd,2 ≈ 16π(GMmb)
3mbK

9s4
fṀ

y2 (5.26)

≈ 8.2 ms

(

M

1.4M⊙

)3
( sf

100

)−4
(

Ṁ

10−5M⊙ s−1

)−1

y2 (5.27)

To agree with the definition of the dynamical timescale given in Qian & Woosley

(1996), this should be multiplied by three as our definition of τd differs slightly from

the one used in Qian & Woosley (1996). We note that all of the scaling relations
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above are equivalent to those of Qian & Woosley (1996) in the non-relativistic

limit.

From this discussion, it is unclear if a transsonic wind will obtain. A reasonable

criteria for transsonic solutions is that ρv2+P at the sonic point is greater than the

pressure behind the supernova shock, which is approximately given by equation

5.6. Equation 5.12 along with equation of state for the wind can be combined to

give the temperature and sound speed at the sonic radius in terms of the sonic

radius and known quantities

Ts =
3GMNSmb

2rssfy2
s

(

1 + GMNS

2rsy2
sc2

) (5.28)

This results in an implicit equation for the sonic radius

Ṁ ≈ r−3/2
s

16πm
1/2
b K

33/2s
1/2
f

ysγs





3GMNSmb

2sfy2
s

(

1 + GMNS

2rsy2
sc2

)





7/2

(5.29)

where K is the radiation constant for photons and leptons combined. In the

non-relativistic limit, the sonic radius reduces to

rs ≈ 860 km
( sf

100

)−8/3
(

MNS

1.4M⊙

)7/3
(

Ṁ

10−5M⊙ s−1

)−2/3

. (5.30)

The wind termination shock position is approximately given by (Arcones et al.

2007)

Rrs ≈ 1.3×103 km

(

Ṁ

10−5M⊙ s−1

)1/2
(

Rs

109 cm

)3/2(
Esn

1051 erg

)−1/2
( vw

109 cm s−1

)1/2

(5.31)

where Esn is the supernova explosion energy, Rs is the radius of the supernova

shock, and vw is the wind velocity just inside the wind termination shock.
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5.8 Appendix: Analytic Wind Nucleosynthesis

The electron fraction in the wind is given by kinetic equilibrium of neutrino

interaction rates at the critical radius, as the temperature has decreased enough

that lepton capture is unimportant (Qian & Woosley 1996)

Ye,f ≈ λνe

λνe + λν̄e

(5.32)

where λνe is the neutrino capture rate per baryon and λν̄e is the anti-neutrino

capture rate per baryon. After weak interactions cease and the temperature has

decreased about 0.5 MeV, alpha particles form in the wind. The initial alpha

number fraction is Yα,i ≈ Ye/2 for neutron-rich conditions and Yα,i ≈ 1/2 − Ye/2

for proton-rich conditions.

In both proton and neutron-rich winds, the nucleosynthesis will be character-

ized by the neutron to seed ratio in the wind. For winds with Ye >≈ 0.5, alpha

particles recombine into 12C by the standard triple alpha reaction and then expe-

rience alpha particle captures up to approximately mass 56 (Woosley & Hoffman

1992). The slowest reaction in this sequence is 4He(2α,γ)12C, so the total number

of seed nuclei produced is equal to the number of 12C nuclei produced. The rate

of alpha destruction is given by

dYα

dτ
≈ −14ρ2

0Y
3
α λ3α (5.33)

where ρ0 = mbn is the rest mass density and λ3α is the rate of triple alpha, which

includes double counting factors. The factor of 14 comes from assuming alpha

captures stop at 56Ni. In general, we define an abundance by ni = nYi, where ni

is the number density of species i and n is the baryon density. Using our definition

of the dynamical timescale, we have dτ ≈ − τd

3T
dT . Transforming Yα to a function
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of temperature makes the integral given above trivial to solve. Using a rate for

triple-alpha from Caughlan & Fowler (1988) and assuming the reaction flow stops

at 56Ni results in a seed abundance at the end of the α-process given by

Ys ≈
1 − Ye

28

(

1 −
[

1 + 1.4 × 105τds
−2
f (1 − Ye)

2
]−1/2

)

(5.34)

where s−2
f enters because ρ0 ∝ T 3/sf for a radiation dominated equation of state

and the density enters to the second power.

Under proton-rich conditions, the νp-process has the potential to occur. This

process is similar to the rp-process, except that long lived beta-decays are by-

passed by (n,p) reactions. An estimate for the integrated number of free neutrons

produced is τdλν̄e(T9 ≈ 2), so that the neutron to seed ratio is

∆n ≈ τdλν̄e(T9 ≈ 2)
Yp

Ys
. (5.35)

Here, λν̄e(T9 ≈ 2) is the neutrino capture rate at the seed formation radius. A

similar relation is found in Pruet et al. (2006). Although it is hard to estimate its

effect, we note that the presence of a reverse shock can significantly affect the νp-

process nucleosynthesis, as passage through the reverse shock slows the outward

flow and rarefaction of the wind. Additionally, it increases the temperature to

close to the post supernova shock temperature. At early times for characteristic

explosion energies, the wind is shock heated to a temperature of a few GK. This

all combines to give a longer period of time over which proton capture on heavy

nuclei is efficient and allows the νp-process to continue to higher mass than it

would if no wind termination shock were present.

In the neutron-rich case, seed nuclei are produced by the slightly different

reaction sequence 4He(αn,γ)9Be(α,n)12C (Woosley & Hoffman 1992). For the

conditions encountered in the wind, neutron catalyzed triple-alpha proceeds about
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ten times as quickly as 4He(2α,γ)12C. This implies that there will be a larger seed

number than in proton-rich conditions. The rate of helium destruction is given

by the equations (Hoffman et al. 1997)

dYα

dτ
≈ −Z̄

2
ρ0YαY9λα,n(9Be) (5.36)

dYn

dYα

≈ 2(Ā − 2Z̄)

Z̄
(5.37)

Y9 =
27

32
N2

a

(

2π~
2

mb

)3

YnY
2
α ρ2

0T
−3 exp((B9 − 2Bα)/T ) (5.38)

where Z̄ is the average proton number of the seed nuclei, Ā is the average nucleon

number of the seed nuclei, Na is Avogadro’s number, Yα is the alpha particle

abundance, Yn is the neutron abundance, Y9 is the 9Be abundance, λα,n(9Be) is

the rate of 9Be destruction by (α, n), and Bα and B9 are the binding energies of

4He and 9Be, respectively. For λα,n(9Be), we employ the rate given in Wrean et al.

(1994). This set of equations can be solved analytically by once again transforming

from proper time to temperature using the dynamical timescale. The resulting

implicit expression for the final alpha fraction is somewhat cumbersome, so we do

not reproduce it here. The seed abundance in terms of the initial and final alpha

fraction is

Ys = 2
Yα,i − Yα,f

Z̄
(5.39)

the final neutron fraction is given by

Yn,f = (1 − 2Ye) − 2
Ā − 2Z̄

Z̄
(Yα,i − Yα,f) (5.40)

so that the neutron to seed ratio is

∆n =
Z̄(1/2 − Ye)

Ye/2 − Yα,f

+ 2Z̄ − Ā. (5.41)
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The seed abundance at the end of charged particle reactions can be estimated by

(Hoffman et al. 1997)

Ys ≈
1 − 2Ye

10

(

1 − exp
[

−8 × 108τds
−3
f Y 3

e

])

(5.42)

where it has been assumed that the neutron abundance is what limits the reaction.

Notice that the seed abundance in the proton-rich case depends on the entropy

squared because it is mediated by an effective three body reaction, but in the

neutron-rich case the entropy enters to the third power because of the effective

four body interaction that mediates seed production.
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Chapter 6

Secondary Heating in Neutrino

Driven Winds

This work was performed in collaboration with Stan Woosley.

Abstract

The neutrino driven wind (NDW) produced in core-collapse supernovae has

long been considered a potential site for r-process nucleosynthesis, but there are

problems with the scenario. First, the entropies found in realistic simulation of

the wind are not large enough to result in an r-process. Second, recent work has

shown that the wind may in fact be proton rich. One possible solution to the

first problem is the inclusion of a secondary volumetric heating source. Here we

explore the necessary conditions for a r-process to occur for assumed values of

the electron mole number by post-processing hydrodynamic calculations with a

full r-process nuclear network. We find that the secondary heating source must

supply approximately the same amount of power to the wind as neutrino energy

deposition to successfully produce an r-process. The conclusion is insensitive to
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the electron mole fraction of the material, as long as the material is neutron rich.

Acoustic power is explored as a possible source of this secondary heating. We

find that acoustic power from a vibrating neutron star naturally deposits at a

radius that can highly leverage the entropy in the wind. The additional heating

not only raises the entropy but shortens the expansion time scale, both of which

are favorable for the r-process.

6.1 Introduction

Soon after the neutrino driven wind (NDW) was suggested as a site for r-

process nucleosynthesis (Woosley et al. 1994), it was realized that the entropy

in the wind was too low for significant r-process nucleosynthesis to occur when

only neutrino heating was included (Witti et al. 1994b, Qian & Woosley 1996,

Hoffman et al. 1997). Calculations using realistic neutrino luminosities suggest

that the standard NDW is, at most, responsible for producing a few isotopes near

the N = 50 closed shell (e.g. Roberts et al. 2010). Previous studies that successfully

created the r-process in neutrino driven outflows have either artificially increased

the entropy, without considering how this increase in entropy would affect the

dynamical timescale, or decreased the electron fraction to unrealistic levels (e.g.

Takahashi et al. 1994b).

On the other hand, the NDW is an appealing site for the r-process from the

standpoint of galactic chemical evolution. Elements generally attributed to the

r-process are seen in metal poor stars, suggesting that massive stars are the site

for the r-process (Sneden et al. 2008). The current galactic inventory of r-process

material could be explained if only ∼ 10−5 M⊙ of r-process material was ejected

by a typical supernova. The NDW ejects ∼ 10−4 M⊙ of neutron-rich material,
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meaning that if all the neutron rich material were rich in r-process nuclei only a

fraction of core-collapse supernovae would need to have the correct conditions for

the r-process to occur to account for the galactic inventory.

A second, more recent problem with the NDW as an r-process site concerns the

electron fractions encountered in the wind. With the inclusion of more accurate

transport and neutrino physics, several groups have concluded that the wind is

actually proton-rich throughout its evolution (Fischer et al. 2009, Huedepohl et al.

2009). But other recent work, including that presented in Chapter 2 of this thesis,

suggests that the wind may be neutron rich (Roberts et al. 2012, Mart́ınez-Pinedo

et al. 2012). Given the uncertainty in the spectra of the neutrinos emitted from

proto-neutron stars, it is unclear if the NDW even has a period of neutron richness.

This is mostly a separate problem than the entropy and dynamical timescale of

the wind. Therefore, in this work, we assume electrons fractions less than one

half.

The total energy released in a core-collapse supernova is approximately equal

to the binding energy of the neutron star remnant, GM2
NS/RNS ∼ 3× 1053. This

energy is released over 10 to 20 s. A much smaller amount is required to drive

mass loss rate Ṁ during the cooling phase, ∼ 1049 ergs−1 over ∼ 10 seconds.

Based upon this observation, secondary sources of energy input in the wind have

been considered (Qian & Woosley 1996, Suzuki & Nagataki 2005a, Metzger et al.

2007). Qian & Woosley (1996), assumed an unspecified volumetric heating source

and showed that it had the effect of significantly increasing the entropy and de-

creasing the dynamical timescale, creating conditions more favorable for r-process

nucleosynthesis (Hoffman et al. 1997).

Suzuki & Nagataki (2005a) considered a magnetic mechanism for the sec-
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ondary heating source - Alfven waves launched into magnetar winds and damping

via non-linear processes. This mechanism requires magnetar strength magnetic

fields. Metzger et al. (2007) considered this model, but also including rotation.

The entropy increase both found was sensitive to the damping length param-

eter employed in their models. Neither calculated the detailed nucleosynthesis

expected in such winds. Suzuki et al. (2006) did a preliminary study of nucle-

osynthesis in these Alfven wave heated winds.

Here, we explore the parameter space of extra energy deposition in the NDW to

determine what conditions (energy deposition rate, damping length, and electron

fraction) result in successful r-process nucleosynthesis by post-processing hydro-

dynamic models of the NDW with a full r-process network. Then we explore a

purely hydrodynamic secondary wind heating source - acoustic energy, as sug-

gested by (Qian & Woosley 1996). Proto-neutron star convection and oscillations

(Burrows et al. 2006) are likely to excite gravito-acoustic waves that propogate

outward through the envelope and into the wind. These eventually steepen into

shocks and deposit their energy in the wind. We find in section 6.3.3 that these

shocks naturally deposit energy at the correct radius for r-process synthesis and

potentially revive the NDW as a viable site for the r-process as long as the wind

is neutron rich.

6.2 General Characteristics of a Successful Sec-

ondary Heating Source

In this section we explore the necessary properties of a secondary energy source

that would lead to a strong r-process, in particular the production of a second
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Figure 6.1: Wind properties for various secondary heating rates. ld = 10 km has
been assumed. The heating rate and entropy of the wind as a function of radius
are shown. The circles correspond to the radius at which the temperature is 2 GK
and the triangles correspond to the sonic point.

180



100

150

200

250

S
α (

k B
 b

ar
yo

n-1
)

1

10

τ d (
m

s)

10
47

10
48

10
49

L
w

 (erg s
-1

)

2×10
-5

4×10
-5

6×10
-5

8×10
-5

dM
/d

t (
M

su
n s

-1
)

10
48

10
49

L
w

 (erg s
-1

)

10
5

10
6

S3 /τ
d

Y
e
 = 0.49

0.45
0.40

Figure 6.2: Wind properties for various secondary heating rates. ld = 10 km has
been assumed. The entropy and dynamical timescale at T = 2GK, the mass
loss rate, and the nucleosynthesis condition s3/τd are shown as a function of the
assumed Lw. The dashed lines in the lower right plot show the threshold for r-
process nucleosynthesis given by Hoffman et al. (1997) for a number of electron
fractions.
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r-process peak at A ∼ 190. We first calculate the hydrodynamic structure of the

wind in the presence of a secondary heating source, which is similar to the work

done by Suzuki & Nagataki (2005a) and Metzger et al. (2007). We then use a full

nuclear network to predict the nucleosynthetic results of these winds for a range of

electron fractions to accurately assess the regions of parameter space which result

in a successful r-process.

For conditions that are neutron-rich, the number of seed nuclei produced in

the wind decreases with increasing s3/τd, where s is the entropy where alpha re-

combination occurs and τd is the dynamical timescale. If the only energy source is

neutrinos, the entropy at recombination is solely determined by the proto-neutron

star atmospheric temperature (which depends on the properties of neutrinos emit-

ted from the proto-neutron star) and the depth of the gravitational potential well.

This results in the entropy of the wind decreasing with increasing neutrino lu-

minosity and average energy. The dynamical timescale increases with luminosity

and average neutrino energy, so that in a standard NDW the significant nucle-

osynthesis is most likely in the slow, high entropy wind, similar to the conditions

found at late time in Woosley et al. (1994). These observations are mainly due

to the fact that the neutrino heating rate is proportional to density, so that as

the density in the wind decreases and the temperature decreases so does the net

neutrino heating rate. Therefore, the bulk of the heating occurs near the radius

where the wind is launched and the final entropy is just given by the amount of

energy required to get out of the NS potential well divided by the temperature of

the neutron star atmosphere.

Clearly, including a secondary heating source that is proportional to the den-

sity and falls off as r−2 will only augment the neutrino heating rate, which will
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decrease the final entropy of the wind. Another option is a secondary heating

source that is depends weakly on the density. It is then possible that in the

high density envelope the heating rate of the secondary source per baryon will

be small compared to the neutrino heating rate and it will not affect the atmo-

spheric temperature. After the radius at which the wind is launched by neutrinos,

the density falls off very sharply. At this point it is possible for the secondary

heating source to dominate the heating rate per baryon. The secondary source

may then increases the entropy and accelerate the flow (i.e. decrease the dy-

namical timescale). In tandem with neutron-rich material, this gives conditions

much more favorable for r-process nucleosynthesis. In Woosley et al. (1994), it

was suggested that neutrino/anti-neutrino annihilation provides such a density

independent heating rate, but subsequent work has shown the net power input

from neutrino annihilation to be small and not have a strong impact on the wind

(c.f. Qian & Woosley 1996).

For a density independent heating rate, a simple way to parameterize the

energy flux is

F (r) =
Lw

4πr2
exp[(r0 − r)/ld]. (6.1)

Here, ld takes into account the dissipation of the flux into the wind and sets the

length scale over which this dissipation occurs. The specific energy deposition

rate then becomes

q̇ext =
Lw

4πρldr2
exp[(r0 − r)/ld]. (6.2)

Realistically, the dissipation length should be a function of the the properties of

the wind material, as these determine the coupling of the the unspecified energy

source to the material. We will argue what this should be for weak shocks in a

subsequent section. This form is very similar to the form found for MHD wave
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heating by Suzuki & Nagataki (2005a), which was subsequently used by Metzger

et al. (2007), aside a term vr/(vr + va) which accounts for the affects of a moving

background on wave propagation (vr is the radial velocity and va is the local

Alfven velocity).

The mass loss rate due to secondary heating can be estimated as be

Ṁw ≈ LwRns

GMns

≈ 2.7 × 10−7 M⊙s−1

×Lw,47R6

(

M
1.4M⊙

)−1

. (6.3)

The mass outflow rate due to neutrino heating can be linearly combined with this

heating rate, as neutrino heating occurs interior to where the secondary heating

mechanism becomes important. The neutrino heating induced mass flux is given

by (Qian & Woosley 1996)

Ṁν ≈ 2.5 × 10−7 M⊙s−1

×L
5/3
νe,51ǫ

10/3
νe,10MeVR

5/3
6 M2

1.4, (6.4)

where Lν,51 and ǫν,10 MeV are the electron neutrino luminosity and average neutrino

energy at the neutrino sphere in units of 1051 ergs s−1 and ten MeV, respectively,

and M1.4 is the neutron star mass in units of 1.4 solar masses. The total mass loss

rate for a fixed neutron star mass and radius is just proportional to the energy

input into the wind, so that setting Ṁw ≈ Ṁν gives an approximate condition for

dynamical heating to significantly affect the properties of the wind. This gives

Lw,c ≈ 1047 erg s−1L
5/3
νe,51ǫ

10/3
νe,10MeVR

2/3
6 M3

1.4. (6.5)

This is similar to the critical value found in Metzger et al. (2007). Given that Lνe

and ǫνe decrease as cooling continues and the critical secondary heating luminosity
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depends on these strongly, secondary heating is likely to be more important at

later times in the NDW.

The entropy in the wind at the radius of alpha particle combination, rα, is

given by

sα =
∫ rα

Rns

dr
vT

(q̇ν + q̇w)

≈ GMns

R

{

fν

Teff,ν
+ fw

Teff,w

}

, (6.6)

where fw = Ṁw/(Ṁw + Ṁν), fν = 1− fw, and Teff,ν ≈ 1.01 MeV R
−1/3
ν,6 L

1/6
ν,51ǫ

1/3
ν,MeV

is the temperature at which most of the neutrino energy is deposited (see Qian

& Woosley (1996)). With the assumed heating rate given above, the effective

temperature at energy is put into the wind via a secondary heating mechanism is

Teff,w =

∫ rα

Rns
dre−r/ld

∫ rα

Rns
drT−1e−r/ld

. (6.7)

Assuming that T ∝ r−1 (which is true when there is no heating of the wind) and

rα ≫ ld gives Teff,w ≈ Teff,ν/(ld/R + 1). Therefore, the entropy in the wind will

be

s ≈ 110 L
−1/6
νe,51ǫ

−1/3
νe,10MeV R

−2/3
6 M1.4

×
{

fν + fw
R + ld

R

}

. (6.8)

The derivation of this approximate relation has not taken into account the fact

that there is a finite radius at which α recombination occurs. When ld becomes

greater than rα, the wind entropy may be increased, but this entropy increase

does not help to make the freeze out more α rich. Therefore, the optimal damping

length for a secondary heating mechanism is Rns ∼ 106 cm < ld < rα ∼ 107 cm.

Given the approximate nature of these relations, it is useful to note that there is

an upper limit that can be put on the α recombination energy. If all the energy
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required to remove the material from the proto-neutron stars potential well is put

in at the α recombination temperature T ≈ 0.3 MeV, the maximum entropy is

smax ≈ 650R−1
6 M1.4.

The argument for finding the dynamical timescale given by Qian & Woosley

(1996) should still hold when secondary heating is present. This gives

τd ≡ r

v

∣

∣

∣

∣

T≈0.5MeV

≈ 2.5 s s−4
α,2M

3
1.4Ṁ

−1
−7 , (6.9)

where sα,2 is the entropy at α recombination in units of 100 and Ṁ−7 is the mass

loss rate in units of 10−7M⊙s−1. It is clear from this expression that the affect of

secondary heating on the dynamical timescale will be significantly larger than its

affect on the the entropy and the change in the dynamical timescale will affect

the nucleosynthesis criterion s3/τd even more than the change in entropy.

6.2.1 Numerical Steady State Wind Models

To explore the parameter space with more accuracy, we have calculated the

hydrodynamics of the wind with an extra heating source given by equation 6.2

included in the numerical NDW models described in Roberts et al. (2010). The

results presented in this sub-section are similar to those found in Metzger et al.

(2007) and Suzuki & Nagataki (2005a), although we focus on the total energy

deposited in the wind rather than the variation with proto-neutron star magnetic

field strength in their Alfven wave heating models and use a somewhat different

form for the heating rate. A total neutrino luminosity of 1 × 1052 ergs−1 has

been assumed for all models. Two thirds of the total luminosity is assumed to be

released as µ and τ neutrinos while the remaining third is assumed to be emitted as

electron neutrinos and anti-neutrinos. The average neutrino energies are assumed

186



10
6

10
7

10
8

10
14

10
16

10
18

10
20

10
22

10
24

Radius (cm)

H
ea

tin
g 

R
at

e 
(e

rg
/s

)

 

 

log
10

(l
d
)

5 6 7 8

10
6

10
7

10
8

10
1

10
2

10
3

Radius (cm)

E
nt

ro
py

 

 

log
10

(l
d
)

5 6 7 8

Figure 6.3: Wind properties for various energy deposition lengths. Lext = 5.2 ×
1048 km has been assumed. The heating rate and entropy of the wind as a function
of radius is shown. The circles correspond to the radius at which the temperature
is 2 GK and the triangles correspond to the sonic point.
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Figure 6.4: Wind properties for various energy deposition lengths. Lext = 5.2 ×
1048 km has been assumed. The entropy and dynamical timescale at T = 2GK,
the mass loss rate, and the nucleosynthesis condition s3/τd are shown as a function
of the assumed ld. The dashed lines in the lower right plot show the threshold for
r-process nucleosynthesis given by Hoffman et al. (1997) for a number of electron
fractions. The peak in the entropy and minima in the dynamical timescale at
ld ∼ 50km obviously are most likely to produce r-process nucleosynthesis.
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to be 〈ǫνe〉 = 11 MeV, 〈ǫν̄e〉 = 14 MeV, and 〈ǫνx〉 = 19 MeV. Because we impose

the electron fraction in subsequent calculations of the wind nucleosynthesis, the

relative energies of the electron neutrinos and anti-neutrinos have a very small

effect on our results. The neutron star is assumed to have a mass of 1.4M⊙ and

a radius of 10 km. With these steady state parameters for the wind imposed,

the numerical wind models are allowed to relax to a steady state over numerous

dynamical timescales. When no secondary source of heating is present, the total

net neutrino energy deposited in the wind is 8.6 × 1048 ergs−1. Clearly, this is of

order the amount of energy required from a secondary heating source for it to

significantly affect the properties of the wind.

In figure 6.2, the specific heating rate and entropy of the wind are shown for

various total secondary heating rates. The entropy begins to increase significantly

for energy deposition rates >∼ 1048 ergs−1 as expected. The radius at which

T = 2 GK stays fairly constant as the energy deposition rate is increased, while the

sonic radius moves steadily inward with increased extra energy deposition. Over

the range of energy inputs shown, the entropy at alpha recombination increases by

a factor of two, while the dynamical timescale decreases by an order of magnitude.

Given that a successful r-process depends on s3/τ , the increase in entropy and

decrease in dynamical timescale contribute equally to making conditions more

favorable to r-process nucleosynthesis. This is in contradiction to most studies

of r-process nucleosynthesis in the wind (c.f. Takahashi et al. 1994b, Arcones &

Martinez-Pinedo 2010), where only the entropy has been artificially increased but

the dynamics of the wind have been left the same. Additionally, the mass loss rate

is increased meaning that secondary heating would have to persist for a shorter

amount of time to provide the necessary total mass of r-process elements.
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For an extra energy deposition rate of 5.2 × 1048 ergs−1, the variation of the

properties of the wind with ld is shown in figure 6.4. There is an optimal energy

deposition length at 50− 100 km. This confirms the results of Suzuki & Nagataki

(2005a) and Metzger et al. (2007). When ld is less than this length, the extra

energy is deposited closer to the atmosphere (i.e. at higher density and tempera-

ture). The higher temperature reduces the amount of entropy gained by the wind

per unit energy input. Additionally, the higher density and temperature allow for

increased cooling from lepton capture so that the net energy gained by the wind

relative to the case of no extra heating is less than the total amount of energy de-

posited by the secondary heating source. For longer ld, the energy is deposited at

lower temperatures resulting in higher asymptotic energies. The problem becomes

that a significant fraction of the energy is input outside the radius at which alpha

recombination occurs and does not contribute to creating an alpha-rich freezeout.

6.2.2 Nucleosynthesis With Secondary Heating

Given that the entropy is changing over the region in which alpha particles are

combining to form 12C and the dynamical timescale is also changing significantly,

the analytic estimates of the conditions necessary for r-process nucleosynthesis

found in Hoffman et al. (1997) are very approximate. Therefore, to more accu-

rately assess what heating is necessary for a successful r-process, it is necessary

to use a full nuclear network. Here, the affect of a secondary heating source on

wind nucleosynthesis is discussed without reference to a particular mechanism for

this secondary heating. One possible mechanism for this heating is discussed in

subsequent sections.

The thermodynamic trajectories described in the previous section have been
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post-processed using the 6312 isotope r-process nuclear network described in

Roberts et al. (2011) for various values of Ye. The charged particle and neu-

tron capture rates in the network up to At (Z = 85) are taken from Rauscher

& Thielemann (2000). Past At, the neutron capture rates of Panov et al. (2010)

are employed. The network terminates at Z = 102. Experimental values are

taken for nuclear masses where available, elsewhere theoretical masses are taken

from Möller et al. (2003). Neutron induced fission rates are taken from Panov

et al. (2010) and the simple approximation of Frankel & Metropolis (1947) is used

to calculate spontaneous fission rates. Fission barriers are taken from Mamdouh

et al. (2001). For our fission fragment distributions, we employ the empirical fits

of Wahl (2002).

In figure 6.5, the neutron to seed ratio as a function of L0 and Ye is shown.

The damping length has been taken to be ld = 106 cm. This figure was cal-

culated assuming a total neutrino luminosity of 1052 erg s−1. Clearly, there is a

transition to a neutron to seed ratio favorable for r-process nucleosynthesis at

around 7 × 1048 erg s−1. There is some dependence on initial electron fraction,

with lower electron fractions giving a higher neutron to seed ratio. Analyti-

cally, the neutron to seed ratio is expected to decrease as Y 3
e (Hoffman et al.

1997). The analytic result for the neutron to seed ratio when 12C is produced by

4He(αn,γ)9Be(α,n) found in Roberts et al. (2010) is followed reasonably closely

below about 1049 ergs−1. For very high entropies, 12C also has significant produc-

tion provided by 4He(2α,γ). For this reaction the neutron to seed ratio decreases

as Ye increases, which explains the behavior of the neutron to seed ratio with Ye

at very high entropies.

In figure 6.6, the final abundances versus mass number for various heating
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rates and electron fractions are shown. There is a critical heating rate above

7 × 1048 erg s−1 for which the r-process occurs with only a small dependence on

Ye. This critical heating rate is two orders of magnitude less than the neutrino

luminosity, but is similar to the total amount of energy deposited in the wind

by neutrinos. For extra energy inputs where the r-process is produced, the r-

process pattern is fairly invariant. Rather, increasing the energy input past the

minimum value required to produce the r-process just reduces the total number

of seed nuclei and shifts the r-process pattern down in total abundance. Although

it is not shown in the plots, we have also run a series of models with Ye = 0.5.

As would be expected, these produce no r-process nucleosynthesis. Interestingly,

r-process nucleosynthesis seems to occur when the 2 GK point occurs outside of

the sonic radius.

Using the thermodynamic histories described in the preceding section, the

variation of nucleosynthesis with ld can be explored for an extra energy deposition

rate just below the critical value for ld = 1 found in the preceding paragraph. The

final abundances for various ld can be found in figure 6.7. Above Ye = 0.47, there

are no trajectories which produce the second r-process peak. Below this electron

fraction, only the trajectories close to the optimal ld described above produce an

r-process.

6.3 Acoustic Wave Heating

Here, two mechanisms for production of acoustic waves in the wind are con-

sidered and their propagation and eventual damping in the wind is discussed.
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6.3.1 Gravity Wave Excitation and Propagation from Proto-

Neutron Star Convection

It is also possible that convection in the proto-neutron star may be a sig-

nificant source of wave heating (see chapter 4 for a discussion of proto-neutron

star convection). This region can be crudely modeled as an isentropic region that

comprises the convective region of the star connected to an isothermal atmosphere

from which the wind is launched. This allows us to follow the analysis of Goldre-

ich & Kumar (1990). Vigorous turbulent convection below the neutrino sphere

will excite waves that potentially propagate from the convective region, through

the isothermal atmosphere, and into the wind where they can steepen into shocks

and deposit their energy. Both gravity wave modes and acoustic modes will be

excited, in addition to non-propagating modes. Due to the mach number depen-

dence of the wave excitation, the energy flux will be dominated by gravity waves.

The total luminosity in gravity waves excited by convection is approximately

Lg ≈ McLc ≈ 1050 ergs−1
(

rc

106cm

)2
(

ρc

1014 g/cc

)

×
(

vc

108cms−1

)4 ( cs

109cms−1

)−1
(6.10)

which have frequencies of approximately ωg ∼ vc/HP ∼ 102 − 103s−1. Gravity

waves of this character have been observed in two-dimensional simulations of

proto-neutron star convection (Dessart et al. 2006).

In the outer layers of the atmosphere where the temperature has decreased

(thereby increasing the pressure scale height and decreasing the acoustic cutoff

frequency), gravity waves in this frequency range become evanescent. This will

only persist for a few pressure scale heights until the radius were the wind is

launched and the acoustic cutoff is decreased further so that the waves move into

the frequency range of acoustic waves. In other words, the gravity waves will tun-
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nel through the evanescent region, emerging into the wind in the acoustic branch.

Although they are significantly attenuated relative to their initial amplitude, the

emergent waves can still carry a significant amount of energy compared to the to-

tal amount of neutrino energy deposited in the wind, potentially affecting eventual

nucleosynthesis in the wind.

In figure 6.8, the Brunt-Vaisala and Lamb frequencies are shown for the inner

regions of a NDW model. The frequencies are much larger than the characteristic

frequency v/r throughout this region, so it is reasonable to neglect the presence

of a background velocity field. The increase in the Lamb frequency near 10 km

corresponds to the region in which the envelope becomes radiation dominated,

the wind is launched, and the sound speed increases rapidly. After the launching

region, it the Lamb frequency falls off ∝ r−2 because there is small variation of

the sound speed in the wind as the wind is radiation dominated. The Brunt-

Vaisala frequency also increases rapidly in the region where the wind is launched

due to the large gradient in the entropy, which cannot be seen in figure 6.8, but

as the wind moves further from the launch region the entropy gradient decreases

rapidly. Combining this with the ∝ r−2 fall off in the local acceleration due to

gravity results in the Brunt-Vaisala frequency falling off more rapidly that the

Lamb frequency.

Gravity waves are characterized by σ < Ll and σ < N , where σ is the wave

frequency. In the limit in which the WKB approximation applies, the dispersion

relation for gravito-acoustic waves is

k2
r =

(σ2 − L2
l )(σ

2 − N2)

c2
sσ

2
, (6.11)

where kr is the radial wave vector. Gravity waves emitted by the convection

zone of the proto-neutron star eventually reach a radius at which N2 < σ2 < L2
l ,
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k2
r < 0, and the waves become evanescent. At some radius after this σ2 = L2

l

and the evanescent wave will emerge in the acoustic branch. Convection will

excite waves with angular frequencies around 103 s−1. So, by inspecting figure 6.8,

gravity waves should transition to the acoustic branch close to the wind launch

radius. Unno et al. (1989) show that, in the WKB approximation, the wave energy

transmitted through the evanescent region which emerges in the acoustic branch

is given by

Lw,f/Lw,i ≈ exp

(

−2

∫ rb

ra

√

−k2
rdr

)

, (6.12)

where ra is the radius at which the waves become evanescent, rb is the radius at

which they emerge in the acoustic branch, and Lw,i and Lw,f are the radii are

the incident and transmitted wave energy flux, respectively. When σ ≪ Ll and

N ≪ σ, k2
r ≈ l(l+1)/r2 and Lw,f/Lw,i ∼ (ra/rb)

2
√

l(l+1). Therefore, it is expected

that modes of lower angular order will be transmitted more effectively through

the evanescent region.

In figure 6.9, equation 6.12 has been evaluated using the wave speeds shown

in figure 6.8 for a variety of wave modes. For l = 1 modes, the transmission

efficiency is > 40% while for l = 2 modes the transmission efficiency is closer

to 10%. The transmission efficiency falls off rapidly for higher wave numbers,

as expected from the analysis above. Dessart et al. (2006) find that the gravity

waves emitted by the proto-neutron star convection zone are dominated by the

l = 1 and 2 modes, so that a reasonable (somewhat conservative) estimate of the

wave power transmitted through the evanescent region is ∼ 10%. Even if the

convective energy flux in the proto-neutron star is only 10% of the total energy

flux, this implies that Lw ∼ 10−4 to 10−3 Lν,tot. Comparing this with equation 6.5,

it is clear that the wave energy input from convective likely exceeds the critical

199



1×10
3

1×10
4

σ (s
-1

)

10
-4

10
-3

10
-2

10
-1

10
0

L
ou

t/L
in

l=1

l=2

l=3

l=4

l=5

l=6

l=7

Figure 6.9: Fraction of gravito-acoustic wave energy that escapes the proto-
neutron star and propagates into the NDW in the acoustic branch as a function
of angular wave number l and wave frequency.

200



wave energy at total neutrino luminosities . 1053erg s−1 which corresponds to

times greater than about one second after core bounce. This is the time that the

wind is expected to be most neutron rich (Roberts 2012). Therefore, the wave

energy excited by proto-neutron star convection is likely large enough to affect

the dynamics of the wind at times that have electron fractions most favorable to

the r-process, if this power can be efficiently coupled to the wind.

6.3.2 Wave Excitation by G-Mode Oscillations

Core g-mode oscillations have also been suggested as a significant source of

power during core-collapse supernovae (Burrows et al. 2006). In the numerical

simulations of Burrows et al. (2006), accretion streams impacting the core excited

low order g-modes of the inner proto-neutron star core, which in turn excited

propagating acoustic waves that heated the region below the supernova shock

and powered a successful, asymmetric core-collapse supernova explosion. The

core effectively acted as a transducer for accretion power into acoustic power.

Such acoustic power driven explosions have not been observed in the numerical

simulations of other groups (e.g. Marek & Janka 2009). Additionally, Weinberg &

Quataert (2008) pointed out that these lower order modes would couple effectively

to higher order modes which could damp effectively by neutrino emission. These

considerations seem to make it unlikely that core-collapse supernovae are powered

mainly by acoustic power. Still, only a very small fraction of the neutrino energy

required to power a supernova is required to significantly change the dynamics of

the neutrino driven wind.

Assuming a characteristic amount of energy stored in the l = 1 g-mode taken

from Weinberg & Quataert (2008) and taking the result for the power emitted

201



from a sphere oscillating in a medium from Landau & Lifshitz (1959), the energy

acoustic energy emitted from g-mode oscillations should approximately be

Lw ∼ 4 × 1047 erg s−1

×
(

E1

1048 erg

)(

1.4M⊙

Mns

)(

ρ
1012 gcm−3

)

×
(

109 cm s−1

cs

)3
(

Rns

106 cm

)6 ( ω
103 hz

)4

× 1
1+(ωR/cs)4/4

, (6.13)

where E1 is the equilibrium energy stored in the l = 1 mode for a steady accretion

rate, ρ is the density just outside the proto-neutron star core, and ω is the fre-

quency of the g-mode oscillations. This mode has an angular frequency of around

2 × 103 s−1 (Burrows et al. 2006). This is close to the amount of energy required

to affect the dynamics of the neutrino driven wind.

There are at least one aspect that makes this mechanism less appealing than

the wave production mechanism discussed in the previous section. Note that the

neutrino damping is quite efficient. Weinberg & Quataert (2008) find that for

modes to have equilibrium energies of ∼ 1048 erg, the neutrino damping rate is of

order or larger than the rate that accretion power is being dumped into the mode.

This suggests that the mode will have a Q < 1 and continuos accretion would be

required to power the acoustic emission. Therefore, simultaneous accretion and

wind outflow from the proto-neutron star would be required for this mechanism

to operate.

6.3.3 Acoustic Wave Propagation and Damping in the Wind

When acoustic waves emerge into the wind region, they will propagate outward

in the background flow of the wind and eventually turn in to weak shocks as the
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wave peaks catch the troughs. These weak shocks will damp as they propagate

through the wind and deposit their energy in the flow. Here, the region where

this dissipation likely occurs in the wind is discussed using a framework similar

to Stein & Schwartz (1972; 1973) and Suzuki (2002).

In a moving background the wave energy is not conserved, but the wave action

is. The wave action is given by

S = ǫ
ω

ω − kv
(6.14)

and the evolution of the wave action is given by (Jacques 1977)

∂tS + r−2∂r(r
2vgS) = rest frame dissipation rate (6.15)

where vg = v + cs is the group velocity of the wave, as the dispersion relation in

the WKB limit is ω = (v + cs)k . This is just a statement that wave quanta are

conserved (or that energy is conserved in the fluids rest frame) in the absence of

dissipation.

In an isothermal atmosphere, the shock formation distance is given by (Mihalas

& Mihalas 1984)

∆rs = 2heff ln

[

csλ

2(γ + 1)u0heff

+ 1

]

, (6.16)

where λ is the wavelength, u0 is the initial amplitude of the velocity disturbance,

the pressure scale height is given by

heff ≈ 5.4 × 103 cm r2
6c

2
s,9M

−1
1.4 . (6.17)

This is significantly less than the distance over which the properties of the wind

vary so that once the wave frequency is above the acoustic cutoff frequency shock

will form. The acoustic cutoff frequency is given by

ωac =
cs

2heff
≈ 105 s−1 r−2

6 c−1
s,9M1.4, (6.18)
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so that shocks are expected to form at a radius of approximately 106 − 107 cm.

From weak shock theory, the entropy change across the shock front per gram

is

∆s =
2γ(γ − 1)cv

3(γ + 1)2
m3 (6.19)

where m = M2 − 1. In the weak shock limit, the propagation velocity is given by

vs ≈ cs(1+m/2). This implies the shock energy evolution is governed by (Mihalas

& Mihalas 1984)

∇ · (vsǫs) = −m

π
ǫs, (6.20)

where ǫs is the energy density of the simple wave averaged over a wavelength. This

energy deposition rate is in the rest frame of the fluid the shock is propagating

through. As is well known, in a static homogenous background the propagation

of a weak shock can be described by a simple wave. In the case of a spherical

shock in an inhomogenous background, the propagation of finite amplitude distur-

bances becomes significantly more complicated. Solutions exist for plane parallel

geometry with an exponential density gradient and no velocity.

Where dissipation occurs due to shock formation, another equation is required.

In regions were the initial wave will have steepened into a weak shock, we can take

the energy dissipation rate for a weak shock averaged over a wavelength as the

rest frame dissipation rate. For a saw tooth wave, the energy per unit volume

contained in a single wave period averaged over the wavelength is

ǫs =
γPm2

3(γ + 1)2
(6.21)

We take this energy as equal to the wave action, as both these quantities are

defined in the rest frame and are equal to one another in the limit of an infinitely

weak shock. This gives a relation between m and the wave action which closes
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the set of equation with dissipation

m = (γ + 1)

√

3S

γP
(6.22)

In steady state, the equation describing the wave action to lowest order is

∂tS + r−2∂r(r
2vgS) ≈ −γ + 1

π
ω

√

3S

γP
S. (6.23)

In the limit of a static medium, this reduces to the results of Suzuki (2004). Stein

& Schwartz (1973) find that this is reasonable approximation in the static limit

as long as the frequency is larger than the acoustic cutoff frequency.

This results in a local dissipation length that can be estimated as assuming a

radiation dominated equation of state (in the limit of M ≪ 1)

ld ≈ 2.6 × 106 cm
cs,9

ω3

(

E

10S

)1/2

, (6.24)

where E is the local energy density and ω3 is the wave frequency in units of 103 s−1.

Including the background velocity results in an increase in the dissipation length

by a factor (v+cs)/cs. Clearly, smaller wave amplitudes result in longer dissipation

lengths. We emphasize that this length scale is close to the optimal dissipation

length found above. The radius at which shock formation occurs is also important,

but this is within the optimal radius of ∼ 107 cm found above. Of course, these

results rely on the WKB approximation which is only marginally valid for the

wavelengths considered here. Still, this should give at least some guidance to

how waves will propagate and dissipate in the wind. Therefore, it seems at least

plausible that heating by weak shocks powered by gravito-acoustic energy from

the proto-neutron star core could provide the secondary source of energy needed

required to make the r-process in the neutrino driven wind.
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6.3.4 Numerical Models with Wave Heating

In the steady state case, the wave action equation is of the form of Bernoulli’s

equation. Therefore, the wave action as a function of radius is given by

S = S0
vg,0

vg

(

r0

r

)2

×
[

1 + γ+1
2π

√
γ

√

3S0vg,0ω
∫ r

r0

dr
r

θ(r−rs)

P 1/2v
3/2
g

]−2

.
(6.25)

This equation is solved, given a NDW background model, to find the local heating

rate as a function of radius from weak shock energy deposition per gram,

q̇w = −(γ + 1)ω

πρ

√

3S3

γP
. (6.26)

This heating rate is then fed back into the wind model. This process is iterated

until a steady state wind models with secondary heating are obtained. It is as-

sumed that the radius at which shocks are formed, rs, is given by the radius at

which ω < ωac. Because the θ function is discontinuous, wave heating is switched

on exponentially to make the code stable. This just involves the replacement

θ(r− rs) → Min(1, exp[α(r− rs)/rs]). Given the sensitivity of the nucleosynthesis

to the radius at which energy is input, the choice of α will likely affect nucleosyn-

thesis in the wind. The parameter α is chosen equal to four for the simulations

described below.

The structure of one of these NDW models including wave heating is shown

in 6.10. A wave frequency of ω = 2 × 103 s−1 was assumed and the total wave

energy input was 2.5 × 1048 erg s−1. The final asymptotic entropy in the model

was 400, but a significant amount of energy is deposited around the region where

α recombination occurs. Therefore, the entropy at recombination is somewhat

lower than this characteristic value.

206



10 100

Radius (10
6
 cm)

0.01

0.1

1

10

100

N
or

m
al

iz
ed

 U
ni

ts

s
100

T
9

ρ
5

M
q

21
ω

ac,3

Figure 6.10: Properties of a neutrino driven outflow with a total neutrino lu-
minosity of 7.8 × 1051 erg s−1 (Lνe = 8.1 × 1050 erg s−1, Lν̄e = 1.1 × 1051 erg s−1,
ǫνe = 9 MeV, and ǫν̄e = 16 MeV). Acoustic wave heating provided a total heating
rate Lw = 2.5× 1048 erg s−1 and a wave frequency ω = 2× 103 s−1. Various quan-
tities characterizing the wind as a function of radius are shown: the entropy s100

in units of 100 kb/baryon, the temperature in GK, density in units of 105 g cm−3,
Mach number, the total heating rate in units of 1021 erg s−1 g−1, and the acoustic
cutoff frequency in units of 103 s−1.
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Figure 6.11: Final abundances as a function of nuclear mass number for four
NDW models including wave heating. The neutrino properties assumed for the
models are the same as in figure 6.10. The solid lines all assume ω = 103 s−1, while
the dashed line assumes ω = 2 × 103 s−1. The green, blue and, red lines assume
Lw = {1×1048, 2.5×1048, 5×1058} erg s−1, respectively. The squares are the solar
r-process abundances obtained in Arlandini et al. (1999). The electron fraction
in the wind has been assumed to be Ye = 0.45 in all models. The production
of r-process nuclei is sensitive to the energy input in to the wind as well as the
frequency of the waves, which affects the damping length and the point at which
the wave frequency rises above the acoustic cutoff frequency.
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In figure 6.11, temperature and density trajectories have been post-processed

using the nuclear network described in section 6.2.2 with an assumed electron

fraction of 0.45. As expected from the parameterized studies of secondary wind

heating described above, winds including wave heating are capable of producing r-

process nucleosynthesis. The nuclei produced are sensitive to the energy input and

the wave frequency. It can be seen that, for an energy input of 2.5 × 1048 erg s−1,

doubling the frequency of the waves can result in going from only making the

first r-process peak to producing the third r-process peak. A similar result is

found when the energy input is doubled. The final abundance patterns match the

Arlandini et al. (1999) results for the solar r-process reasonably well.

6.4 Conclusions

In this chapter, it has been shown that secondary heating in NDWs is a plau-

sible way of producing r-process nuclei in winds with marginal neutron excesses.

In addition to possible heating by magnetosonic waves which has been considered

in past work (Suzuki & Nagataki 2005a, Metzger et al. 2007), we have shown that

purely acoustic power can also potentially provide the heating required to make

NDW conditions favorable for an r-process.

First, the generic properties of a secondary heating source required to make the

NDW a viable site for r-process nucleosynthesis were considered. For a secondary

heating mechanism to significantly affect the entropy and dynamical timescale of

the NDW – and therefore the wind nucleosynthesis – it was found that the power

input into the NDW must be comparable to the power input from neutrino heating

but not contribute significantly to the heating rate in the PNS atmosphere were

the initial temperature of the wind is set. The second condition is easily met by
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heating sources which do not strongly depend on the density because the specific

heating rate due to the secondary source is then negligible in the proto-neutron

star atmosphere. This power must also be deposited inside the α recombination

radius, which requires that the deposition occur on a length scale of 10–100 km.

Even within this range, the properties of the wind are sensitive to the characteristic

radius of energy deposition. Secondary heating serves to both increase the effective

entropy of the wind and decreases the dynamical timescale of the wind, both of

which increase the likelihood of an alpha-rich freeze out.

Because the dynamics of the wind are significantly different from the param-

eterized constant entropy models considered in Hoffman et al. (1997) and many

subsequent works, the wind trajectories including secondary heating were post-

processed with a full r-process nuclear network to determine what nucleosynthesis

is expected for a range of models. Production of r-process nuclei is found for even

very small neutron excesses, as long as the energy input is sufficiently large. For

realistic energy inputs, the required neutron excesses are consistent with the NDW

wind neutron excesses predicted in chapter 3.

Second, two new mechanisms for secondary heating were considered. In the

first, power is provided by weak shock heating from gravitoacoustic waves excited

by proto-neutron star convection. Gravity waves excited by convection propagate

into the proto-neutron star atmosphere, where they become evanescent and de-

crease in amplitude until they emerge in the acoustic branch in the wind. The

second mechanism involves acoustic wave production by low order g-mode oscilla-

tions of the proto-neutron star. This is similar to the supernova explosion mech-

anism envisaged by Burrows et al. (2007), except that a much smaller amount of

wave energy is required. In both cases, the acoustic waves that propagate into
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the wind rapidly turn into weak shocks over a few pressure scale heights and effi-

ciently deposit their energy. It is found that the length scale for energy deposition

by weak shocks is consistent with the optimal range of length scales for energy

deposition found in the first part of the study.

Both mechanisms can likely provide enough energy to significantly affect the

dynamics of the wind and wind nucleosynthesis. Still, wave excitation by con-

vection is the more promising secondary heating scenario. Because the g-mode

oscillations of the proto-neutron star are powered by accretion, a non-spherical

geometry where accretion and a wind occur concurrently must be imagined. Ad-

ditionally, this mechanism is likely to only be operative for a short period of

time after a successful supernova explosion occurs. In contrast, proto-neutron

star convection proceeds for a few seconds after core bounce (see chapter 4) and

the gravitoacoustic wave luminosity is correlated with the neutrino luminosity.

Because the neutrino energy deposition rate scales weakly with the neutrino lu-

minosity, the relative energy input from gravitoacoustic waves increases with time,

and r-process nucleosynthesis becomes increasingly likely as time progresses.

There is still significant work required to determine if this is a truly viable

mechanism for reviving the NDW r-process scenario. Although multi-dimensional

simulations have shown gravity waves excited are excited by proto-neutron star

convection, the amount of power emitted has not been quantitatively addressed

(Dessart et al. 2006) and the estimates presented here have large uncertainties.

Additionally, the effective entropy of the wind depends on the radius of weak

shock formation which was treated in an approximate way in this work.
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rizzi, A. 2012, Phys. Rev. D, 85(8), 085031

Shapiro, S. L. & Teukolsky, S. A. 1983, Black holes, white dwarfs, and neutron

stars: The physics of compact objects

Shen, G., Horowitz, C. J., & Teige, S. 2011, Phys. Rev. C, 83(3), 035802

Sigl, G. 1995, Phys. Rev. D, 51, 4035

Smartt, S. J. 2009, ARA&A, 47, 63

222



Sneden, C., Cowan, J. J., & Gallino, R. 2008, ARA&A, 46, 241

Sneden, C., McWilliam, A., Preston, G. W., Cowan, J. J., Burris, D. L., & Ar-

mosky, B. J. 1996, ApJ, 467, 819

Stein, R. F. & Schwartz, R. A. 1972, ApJ, 177, 807

Stein, R. F. & Schwartz, R. A. 1973, ApJ, 186, 1083

Steiner, A. W., Lattimer, J. M., & Brown, E. F. 2010, ApJ, 722, 33

Steiner et al., A. W. 2005, Phys. Rep., 411, 325

Sumiyoshi, K., Suzuki, H., & Toki, H. 1995, A&A, 303, 475

Suzuki, T., Nagataki, S., & Wanajo, S. 2006, in International Symposium on

Nuclear Astrophysics - Nuclei in the Cosmos

Suzuki, T. K. 2002, ApJ, 578, 598

Suzuki, T. K. 2004, MNRAS, 349, 1227

Suzuki, T. K. & Nagataki, S. 2005a, ApJ, 628, 914

Suzuki, T. K. & Nagataki, S. 2005b, ApJ, 628, 914

Swesty, F. 1996, Journal of Computational Physics, 127, 118

Takahashi, K., Witti, J., & Janka, H. 1994a, A&A, 286, 857

Takahashi, K., Witti, J., & Janka, H. 1994b, A&A, 286, 857

Thompson, T. A., Burrows, A., & Meyer, B. S. 2001, ApJ, 562, 887

Thompson, T. A., Burrows, A., & Pinto, P. A. 2003, ApJ, 592, 434

223



Thorne, K. S. 1977, ApJ, 212, 825

Thorne, K. S. 1981, MNRAS, 194, 439

Timmes, F. X. & Swesty, F. D. 2000, ApJS, 126, 501

Timmes, F. X., Woosley, S. E., & Weaver, T. A. 1995, ApJS, 98, 617

Travaglio, C., Gallino, R., Arnone, E., Cowan, J., Jordan, F., & Sneden, C. 2004,

ApJ, 601, 864

Tsang et al., M. B. 2011, Prog. Part. Nucl. Phys., 66, 400

Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonradial

oscillations of stars

Wahl, A. C. 2002, Systematics of Fission-Product Yields, Technical Report LA-

13928, Los Alamos National Laboratory, Los Alamos, N.M.

Wanajo, S. 2006, ApJ, 647, 1323

Wanajo, S., Kajino, T., Mathews, G. J., & Otsuki, K. 2001, ApJ, 554, 578

Weaver, T. A., Zimmerman, G. B., & Woosley, S. E. 1978, ApJ, 225, 1021

Weinberg, N. N. & Quataert, E. 2008, MNRAS, 387, L64

Wilson, J. R. & Mayle, R. W. 1988, Phys. Rep., 163, 63

Wilson, J. R. & Mayle, R. W. 1993, Phys. Rep., 227, 97

Witti, J., Janka, H., & Takahashi, K. 1994a, A&A, 286, 841

Witti, J., Janka, H., & Takahashi, K. 1994b, A&A, 286, 841

224



Woosley, S. E., Hartmann, D. H., Hoffman, R. D., & Haxton, W. C. 1990, ApJ,

356, 272

Woosley, S. E., Heger, A., Cumming, A., Hoffman, R. D., Pruet, J., Rauscher,

T., Fisker, J. L., Schatz, H., Brown, B. A., & Wiescher, M. 2004, ApJS, 151,

75

Woosley, S. E., Heger, A., & Weaver, T. A. 2002, Reviews of Modern Physics,

74, 1015

Woosley, S. E. & Hoffman, R. D. 1992, ApJ, 395, 202

Woosley, S. E., Pinto, P. A., & Weaver, T. A. 1988, Proceedings of the Astronom-

ical Society of Australia, 7, 355

Woosley, S. E. & Weaver, T. A. 1995, ApJS, 101, 181

Woosley, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D., & Meyer, B. S.

1994, ApJ, 433, 229

Woosley, S. E., Wilson, J. R., & Mayle, R. 1986, ApJ, 302, 19

Wrean, P. R., Brune, C. R., & Kavanagh, R. W. 1994, Phys. Rev. C, 49, 1205

Yueh, W. R. & Buchler, J. R. 1977, ApJ, 217, 565

Zhang, W., Woosley, S. E., & Heger, A. 2008, ApJ, 679, 639

225




