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RESEARCH ARTICLE
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Abstract

Background

Hispanic/Latino populations are a genetically admixed and heterogeneous group, with vari-

able fractions of European, Indigenous American and African ancestries. The molecular pro-

file of breast cancer has been widely described in non-Hispanic Whites but equivalent

knowledge is lacking in Hispanic/Latinas. We have previously reported that the most preva-

lent breast cancer intrinsic subtype in Colombian women was Luminal B as defined by

St. Gallen 2013 criteria. In this study we explored ancestry-associated differences in molec-

ular profiles of Luminal B tumors among these highly admixed women.

Methods

We performed whole-transcriptome RNA-seq analysis in 42 Luminal tumors (21 Luminal A

and 21 Luminal B) from Colombian women. Genetic ancestry was estimated from a panel of

80 ancestry-informative markers (AIM). We categorized patients according to Luminal sub-

type and to the proportion of European and Indigenous American ancestry and performed

differential expression analysis comparing Luminal B against Luminal A tumors according to

the assigned ancestry groups.

Results

We found 5 genes potentially modulated by genetic ancestry: ERBB2 (log2FC = 2.367,

padj<0.01), GRB7 (log2FC = 2.327, padj<0.01), GSDMB (log2FC = 1.723, padj<0.01,

MIEN1 (log2FC = 2.195, padj<0.01 and ONECUT2 (log2FC = 2.204, padj<0.01). In the
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replication set we found a statistical significant association between ERBB2 expression with

Indigenous American ancestry (p = 0.02, B = 3.11). This association was not biased by the

distribution of HER2+ tumors among the groups analyzed.

Conclusions

Our results suggest that genetic ancestry in Hispanic/Latina women might modify ERBB2

gene expression in Luminal tumors. Further analyses are needed to confirm these findings

and explore their prognostic value.

Introduction

Breast cancer is a complex-multifactorial disease, consisting of a highly heterogeneous group of

tumors with particular molecular features, prognosis and responses to therapy [1–4]. The first

gene expression-based classification of breast cancer into intrinsic subtypes was published in

2000 [5] and identified estrogen receptor (ER) positive (ER+) subtypes Luminal A and B, and

ER negative (ER-) subtypes basal-like and human epidermal growth factor receptor 2-enriched

(HER2-enriched) [1, 6]. Subsequent studies showed differences in the outcomes according to

intrinsic subtypes [7, 8]. Based on this classification, the best outcomes are observed for Luminal

A tumors while basal-like and HER2-enriched are associated with worse outcomes.

The Luminal B subtype represents 30%– 40% of breast cancers [9, 10]. Despite expressing

ERα and being amenable to endocrine therapy, they tend to be clinically more aggressive and

have worse prognosis compared to Luminal A tumors. For example, it has been observed that

survival curves for Luminal B tumors are similar to those from basal-like tumors after 10 years

of follow-up [9]. Moreover, Luminal B tumors have higher risk of de novo resistance to endo-

crine therapies [7, 11] and at the molecular level, they are characterized by increased expres-

sion of cell proliferation genes or cell cycle regulators such as MKI67 and AURKA [12–14].

Luminal B tumors more frequently receive high recurrence scores based on the Oncotype Dx

gene expression signature and are more likely to benefit from cytotoxic chemotherapy, reach-

ing higher percentages of pathologic complete response (pCR) when compared to Luminal A

tumors [13, 15]. However, results on this issue have not been consistent [16–18].

Although there is still controversy as to whether Luminal A and Luminal B represent two

different biological entities or a single entity that changes from one status to another through

the acquisition of mutations [19–21], it is well established that this group of tumors are charac-

terized by the expression of estrogen receptor α (ESR1 gene), progesterone receptor (PGR
gene) and cytokeratins characteristic of luminal cells such as cytokeratin 8 and cytokeratin 18

(KRT8, KRT18) [19]. Luminal A tumors are usually low-grade malignancies that show gains in

1q and loss in 16q. Luminal B tumors have a more complex profile of copy number variations

(CNV). Amplifications at 8p11 (FGFR1 locus), 8q21, 11q13, 17q12 (ERBB2 locus) and 20q13

have been reported [13, 22, 23]. Based on gene expression profiles, these two subtypes share

molecular patterns such as the expression of the ESR1 gene and other genes such as FOXA1
and BCL2, but their main difference is the high expression of proliferation genes such as

MKI67, the survivin gene BIRC5, and the cyclin B1 (CCNB1) gene that characterizes the Lumi-

nal B subtype [14, 24, 25].

Hispanic/Latinas is a heterogeneous group with variable proportions of European, Indige-

nous American (IA) and African ancestries [26]. The Colombian population is one of the most

diverse of Latin America [27]. Our group has previously reported that Luminal B, as defined
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by St. Gallen surrogate immunohistochemistry criteria, is the most common breast cancer

intrinsic subtype among Colombian women [28]. The objective of the present work was to

explore the molecular profile of Luminal tumors in Colombian women to assess the associa-

tion between genetic ancestry and gene expression. We performed RNA-seq analysis in 42 for-

malin-fixed paraffin embedded (FFPE) tumor blocks previously classified as Luminal subtypes

(21 Luminal A and 21 Luminal B) and with known genetic ancestry proportions [28]. We

found 5 candidate genes (ERBB2, GRB7, GSDMB, MIEN1 and ONECUT2) potentially modu-

lated by genetic ancestry in Colombian-Latina patients with Luminal tumors.

Materials and methods

Patient selection

Patient’s sample blocks were selected from a database of 252 breast cancer patients with

known genetic ancestry and with FFPE tumor specimens available. These 252 patients are part

of a database of 301 breast cancer patients from Colombia that we have previously described

[28]. For deep sequencing analysis, we selected 59 samples from the Andean region according

to breast cancer intrinsic subtype and to the predominance of the European or IA ancestral

fraction. Intrinsic subtypes were assessed using a panel of 6 immunohistochemistry (IHC)

markers that included ER, progesterone receptor (PgR), the human epidermal growth factor

receptor 2 (HER2), Ki-67, the Epidermal Growth Factor Receptor (EGFR), and Cytokeratin

5/6 (CK5/6), following the recommendations of St. Gallen 2013 consensus [29]. This study

was approved by the Colombian National Cancer Institute ethics committee. Since we worked

with de-identified FFPE tissues collected more than 3 years before the analysis done for this

work, the Colombian NCI according to the Colombian laws, considered that no informed con-

sent was required.

Ancestry estimation

DNA was extracted from normal FFPE tissues using the RecoverAll™ Total Nucleic Acid Isola-

tion Kit (Life Technologies, Carlsbad, CA) following the manufacturer’s recommendations. A

panel of 106 Single Nucleotide Polymorphisms (SNPs) previously validated as Ancestry-Infor-

mative Markers (AIMs) was used to estimate individual genetic ancestry [30]. Genotyping was

performed at the University of Minnesota Genomics Center using Sequenom technology.

SNPs with call rate<90% or that deviated from Hardy-Weinberg equilibrium were removed

from the analysis, leaving 80 SNPs for ancestry estimation. The software STRUCTURE version

2.222 [31] was used under an admixture model fixing the number of ancestral components to

k = 3 to estimate Indigenous American (IA), European and African proportions for each of

the samples. We used a burn-in period of 10,000 iterations followed by 50,000 additional itera-

tions. Parental populations that include 42 Europeans (Coriell’s North American Caucasian

panel), 37 West Africans (non-admixed Africans living in London, United Kingdom and

South Carolina) and 30 Indigenous Americans (15 Mayans and 15 Nahuas) [30] were included

to perform a supervised analysis of our samples.

RNA-Seq sample preparation and data analysis

Hematoxylin and eosin-stained slides were evaluated by a pathologist to estimate the percent-

age of tumor present in the paraffin block selected. For cases with or more than 60% of tumor

content, five 10μm sections were used for RNA extraction. For cases with less than 60% of

tumor content, areas that contained tumor were marked to obtain 5 tumor cores using a

1-mm punch needle. RNA extraction was done using the RecoverAll™ Total Nucleic Acid

Ancestry as a potential modifier of gene expression in breast tumors from Colombian women

PLOS ONE | https://doi.org/10.1371/journal.pone.0183179 August 23, 2017 3 / 21

https://doi.org/10.1371/journal.pone.0183179


Isolation Kit (Life Technologies, Carlsbad, CA) following the manufacturer’s recommenda-

tions. RNA-seq analysis was performed at the Stanley S. Scott Cancer Center’s Translational

Genomics Core at LSUHSC. RNA was quantified by NanoDrop ND1000 Spectrophotometer

(Thermo Scientific, Wilmington, USA) and its quality assessed with RNA 6000 Nano kit in the

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Even though the samples

presented some RNA degradation, they were suitable for library preparation, based on the pro-

tocols and recommendations from Illumina.

Library preparation was performed in 59 samples from 1μg of total RNA using the TruSeq

Stranded Total RNA Sample Preparation Kit (Illumina Inc., San Diego, CA). Briefly, isolated

RNA was depleted of ribosomal RNA using the rRNA Removal Mix provided by the kit. Ran-

dom hexamers were used for cDNA synthesis. Subsequently, cDNA was subjected to end

repair, adapter ligation and size selection using AMPure XP beads (Beckman Coulter Inc.,

Brea, CA). Fragmentation step was omitted due to the sample quality, as recommended by the

protocol. Libraries were quantified by Qubit dsDNA HS Assay Kit (Life Technologies, Carls-

bad, CA) and the validation of the library size was performed in an Agilent Bioanalyzer using a

DNA 1000 kit (Agilent Technologies, Santa Clara, CA) to verify the presence of a 260 base pair

fragment. From the luminal tumors selected for library preparation, 42 (21 Luminal A and 21

Luminal B) had the expected size to proceed to the sequencing.

Sequencing was performed in a Genome Analyzer IIX (Illumina Inc) in a single-read 60 + 7

run (sequence plus index). For data analysis, FASTQ files were generated using CASAVA

v1.8.1. FastQC software (Version 0.9.6) was used to evaluate the quality of the files. The trim-

ming of adapter sequences from the reads was performed using fastq-mcf utility [32] and

RSEM [33] was used to map single-end reads to reference transcriptome hg38 (Ensembl) and

to provide read counts and normalized expression values for each case analyzed. The data ana-

lyzed in this publication have been deposited in NCBI’s Gene Expression Omnibus and are

accessible through GEO Series accession number GSE101927.

Differential gene expression analysis

To identify ancestry-associated differentially expressed genes in Luminal tumors, we catego-

rized patients according to the average European or IA ancestry fractions and compared Lumi-

nal B tumors vs. Luminal A tumors. We used Luminal A tumors as a reference group as they

represent the most biologically similar but less aggressive breast cancer subtype compared to

Luminal B. We used DESeq2 package [34] in R-studio (http://www.rstudio.com/) to perform

differential expression analysis. This analysis applies a general linear model to estimate log2

fold changes (log2FC) to test if differences between groups are equal to zero. Pre-filtering was

applied to the data matrix to analyze transcripts with at least 1 read count. Genes with Benja-

mini-Hochberg adjusted < 0.05 (padj < 0.05) were reported as significantly different between

groups. Signaling pathway analysis was done in Metacore (Thomson Reuters) and DAVID

annotation tool (http://david.abcc.ncifcrf.gov/) [35]. Venn diagrams were done using Venny

2.1 online tool (http://bioinfogp.cnb.csic.es/tools/venny/).

Real time-PCR validation

cDNA was synthesized from 100ng of total RNA using SuperScript III First-Strand Synthesis

SuperMix Kit (Invitrogen) in 166 samples from Luminal tumors (42 analyzed by RNA-seq and

124 new samples), according to the manufacturer’s instructions. TaqMan probes were used to

quantify the levels of mRNA expression of candidate genes: ERBB2 (Hs01001580_m1), GRB7
(Hs00917999_g1), ONECUT2 (Hs00191477_m1). The reaction was amplified in a QuantStu-

dio 12 K plex Real-Time PCR machine (ThermoScientific). The 2-ΔΔCT method was used to
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estimate the fold changes and GAPDH (Hs03929097_g1) was used as an internal calibrator.

Water was used as a negative control.

Statistical analysis

All statistical analyses were performed using R project (www.r-project.org) and SPSS Inc.

(Released 2007; SPSS for Windows, Version 16.0. Chicago, IL, USA). Differences in the char-

acteristics of the patients according to intrinsic subtype were analyzed using X2 test and differ-

ences in the mean of the ancestry fractions, age at diagnosis and tumor size were analyzed

using analysis of variance test (ANOVA). p values less than 0.05 were considered statistical sig-

nificant. Logistic regression model was used to test the association between gene expression of

TOP2A and CYP19A1 and presence of recurrences.

Pearson correlation was used to determine the correlation between the expression level of

ERα, PgR, HER2 and Ki-67 obtained by IHC and RNA-seq. For gene expression, we used nor-

malized values of the read counts from each gene. The expression by IHC was assessed by per-

centage of expression for ERα, PgR and Ki-67. HER2 measurement was semi-quantitative

according to the recommendations of the American Society of Clinical Oncology (ASCO)/

College of American Pathologists (CAP) guideline [36]. According to these criteria, negative

cases are those with no membrane staining or weak staining for less than 10% of tumor cells

(score 0), or incomplete and weak staining for more than 10% of tumor cells (score 1+). Cases

with weak to moderate staining in more than 10% of tumor cells are assigned at score of 2+.

Finally, HER2 positive cases have a complete and intense membrane staining in more than

10% of tumor cells and are assigned a score of 3+. We used HER2 scores by IHC to performed

Pearson correlation.

We used Spearman correlation to test the correlation between the expression levels of the

candidate genes obtained by RNA-seq and the fold changes calculated from the qRT-PCR. Lin-

ear regression analysis was used to test the association between expression levels of candidate

genes and the intrinsic subtypes of breast cancer (Luminal A or Luminal B), and/or the genetic

ancestry.

Results

Characteristics of patients

Twenty one (21) of these patients were classified as Luminal A and 21 as Luminal B (Table 1)

according to the recommendations of the St. Gallen 2013 panel [29].

The mean age at diagnosis was 59.4 years and the average of the tumor size was 39 millime-

ters (mm). The average of European, IA and African ancestry fractions were 0.58, 0.36 and

0.06, respectively. We did not find statistical significant differences in the aforementioned

characteristics between Luminal intrinsic subtypes. All patients were positive for expression of

ER, meanwhile, PgR was positive in all Luminal A tumors and in 81% of Luminal B tumors.

Other clinicopathological variables such as node status and the clinical stage at diagnosis, as

defined by the American Joint Committee (AJCC) stage, and recurrences did not differ by

Luminal intrinsic subtype.

We found statistical significant differences in HER2 expression by IHC (p< 0.01). All

Luminal A tumors were negative for HER2 expression while for Luminal B tumors, 61.9%

were positive and 38.1% were negative. We also found statistical significant differences in the

tumor grade. Tumor grade 3 was found only for Luminal B intrinsic subtype when compared

to Luminal A (28.6% vs. 0%, respectively). The administration of adjuvant therapy differed

between the two luminal subtypes (p = 0.032). Patients with Luminal A tumors were more

likely to receive hormonotherapy than patients with luminal B subtype (38.1% vs 4.8%); while
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Table 1. Characteristic of patients analyzed by RNA-seq.

Luminal A (n = 21) Luminal B (n = 21) p

Age, Yrs. 57.7 ± 13.9 61.1 ± 11.3 0.391

Tumor Size (mm) 78.9 ± 186.6 39.5 ± 20.07 0.871

Mean European ancestry 0.57 ± 0.13 0.58 ± 0.18 0.78

Mean IA ancestry 0.37 ± 0.13 0.36 ± 0.17 0.853

Mean African ancestry 0.06 ± 0.07 0.06 ± 0.06 0.802

PgR expression, N (%) 0.11

Positive 21 (100) 17 (81)

Negative 0 4 (19)

HER2 expression, N (%) < 0.01

Positive 0 13 (61.9)

Negative 21 (100) 8 (38.1)

Tumor Grade, N (%) 0.008

I 3 (14.3) 0

II 16 (76.2) 12 (57.1)

III 0 6 (28.6)

Unknown 2 (9.5) 3 (14.3)

Nodes, N (%) 0.354

Positive 9 (42.9) 13 (61.9)

Negative 12 (57.1) 8 (38.1)

AJCC Stage, N (%) 0.328

I 3 (14.3) 1 (4.8)

IIA/IIB 9 (42.9) 7 (33.3)

IIIA/IIIB/IIIC 8 (38.1) 13 (61.9)

IV 1 (4.8) 0

Adjuvant Therapy, N (%) 0.032

Chemotherapy 1 (4.8) 0

Hormonotherapy 8 (38.1) 1 (4.8)

Combined* 11 (52.3) 19 (90.4)

Not administered 1 (4.8) 0

Unknown 0 1 (4.8)

Cytotoxic regimen, N (%) 0.003

Anthracyclines 4 (19) 5 (23.8)

Anthracyclines + Taxanes 2 (9.5) 1 (4.8)

Anthracyclines + Taxanes + Trastuzumab 0 1 (4.8)

Anthracyclines + Trastuzumab 0 1 (4.8)

CMF regimen 0 1 (4.8)

Taxanes 6 (28.6) 2 (9.5)

Taxanes + Trastuzumab 0 6 (28.6)

TC regimen 0 1 (4.8)

Trastuzumab alone 0 1 (4.8)

Not administered 9 (42.9) 1 (4.8)

Unknown 0 1 (4.8)

Hormonotherapy, N (%) 0.001

Anastrazole 2 (9.5) 1 (4.8)

Letrozole 1 (4.8) 2 (9.5)

Not administered 2 (9.5) 0

Unknown 0 1 (4.8)

(Continued )
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patients with Luminal B tumors were more likely to receive combined therapy compared to

luminal A tumors (90.4% vs. 52.3%, respectively). The cytotoxic regimens were also different

between the luminal subtypes (p = 0.003). Patients with luminal B subtype more frequently

received cytotoxic treatments with anthracyclines (23.8%) and taxanes plus trastuzumab

(28.6%) compared to 42.9% of patients with luminal A tumors who did not received cytotoxic

chemotherapy. Finally, we also found statistically significant differences in the administration

of hormonotherapy (p = 0.001). Patients with luminal A tumors typically received Tamoxifen

(71.4%) while patients with luminal B tumors were more likely to switch to an aromatase

inhibitor (52.3%).

Correlation analysis between immunohistochemistry and gene

expression levels

As mentioned above, we used IHC surrogates from St. Gallen 2013 consensus to classify breast

cancers into intrinsic subtypes. We performed Pearson correlations to determine whether the

immunohistochemical expression of ERα, PgR, HER2 and Ki67 was associated with their gene

expression profiles. We found statistically significant correlations between IHC and mRNA

expression levels measured by RNA-seq for PgR (R2 = 0.737, p< 0.01), ERα (R2 = 0.505,

p = 0.02), Ki67 (R2 = 0.629, p< 0.01) and HER2 (R2 = 0.485, p = 0.001) (S1A–S1D Fig). These

results suggest that the approximation to Luminal subtypes by IHC is reasonable given the

high correlation between protein expression and the gene expression of four of the markers

used.

Gene expression profile of Luminal B tumors in Colombian women

classified by St Gallen 2013 surrogates

We have previously reported that according to the St. Gallen 2013 panel surrogates, Luminal B

is the most common intrinsic subtype of breast cancer in Colombian-Latinas [28]. In order to

analyze the underlying molecular profile of Luminal B tumors in our population we compared

tumors classified by IHC as Luminal B versus Luminal A. We found 67 differentially expressed

genes (padj < 0.05) from which 39 were up-regulated and 28 down-regulated in the Luminal B

subtype (Table 2).

Unsupervised hierarchical clustering showed that using these genes, most Luminal B

tumors (15) clustered together and diverge from Luminal A tumors (Fig 1A). Interestingly, 6

Luminal B tumors clustered with the Luminal A group. We analyzed the expression levels of

ESR1, PGR, MKI67 and ERBB2 at the gene expression level as these codify for the markers that

we used in the IHC to distinguish Luminal B from Luminal A tumors following St. Gallen sur-

rogates. We observed that although these 6 tumors have lower expression of ESR1 when

Table 1. (Continued)

Luminal A (n = 21) Luminal B (n = 21) p

Switch Aromatase Inhibitor 1 (4.8) 11 (52.3)

Tamoxifen 15 (71.4) 6 (28.6)

Recurrence, N (%) 0.439

Systemic 3 (14.3) 4 (19)

No recurrences 18 (85.7) 16 (76.2)

Unknown 0 1 (4.8)

* Hormonotherapy and chemotherapy

https://doi.org/10.1371/journal.pone.0183179.t001
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compared to all other luminal A tumors, their expression for the other three markers (PGR,

MKI67, and ERBB2) was similar to the luminal A cluster (Table 3). This result suggests that

from the molecular profile, these 6 tumors behave more similarly to luminal A tumors than to

luminal B although at the protein level they are classified as luminal B. It remains to be deter-

mined whether these tumors have better outcomes than the other Luminal B cases. However,

Table 2. Differentially expressed genes between Luminal B and Luminal A tumors classified by St. Gallen 2013 surrogates.

Up-regulated genes between Luminal B and Luminal A Down-regulated genes between Luminal B and Luminal A

Gene logFC padj Gene logFC padj

CDK1 1.432 0.004 RALBP1 -0.443 0.048

RP11-510N19.5 1.412 0.016 RNU5B-1 -0.713 0.029

AIF1L 1.400 0.001 TTC39C -0.721 0.042

CYP19A1 1.325 0.030 RCAN3 -0.760 0.042

TOP2A 1.309 0.011 KDM4B -0.762 0.018

KIF14 1.287 0.010 INO80E -0.768 0.034

DSCAM-AS1 1.275 0.042 SNORA54 -0.798 0.024

LAD1 1.249 0.040 STARD13 -0.845 0.030

CD24 1.228 0.024 HIPK2 -0.894 0.034

CENPF 1.210 0.001 ZNF213 -0.913 0.018

IQGAP3 1.180 0.021 ABAT -0.922 0.024

PGAP3 1.157 0.033 RP4-734G22.3 -0.980 0.037

CDC6 1.148 0.048 JMJD8 -1.002 0.023

SLC4A8 1.143 0.006 ELOVL5 -1.030 0.018

BCAS1 1.135 0.024 TMEM177 -1.046 0.018

ORMDL3 1.135 0.015 SNHG8 -1.059 0.018

CRABP2 1.123 0.004 PAIP2B -1.062 0.029

ASPM 1.119 0.018 SNORA76C -1.095 0.049

STARD3 1.113 0.029 FGD3 -1.096 0.026

BUB1 1.087 0.016 RPS16P5 -1.117 0.048

CCNA2 1.080 0.034 FCGBP -1.222 0.048

IGFBP5 1.062 0.027 RBBP8 -1.226 0.013

MKI67 1.054 0.021 KCND3 -1.228 0.024

ANLN 1.048 0.048 RNU6-36P -1.232 0.042

CCNB2 1.026 0.043 BAI2 -1.372 0.013

ELF3 1.018 0.018 ABCA3 -1.383 0.001

EXOC2 0.982 0.018 SERPINA1 -1.449 0.013

CENPE 0.976 0.033 NTRK2 -1.497 0.008

NT5E 0.941 0.014

SIX4 0.918 0.048

CLDN4 0.913 0.038

ARF6 0.810 0.019

CDK12 0.808 0.030

RHOC 0.639 0.049

RBM39 0.568 0.045

CAMSAP2 0.545 0.034

UTP20 0.543 0.043

U2SURP 0.387 0.034

CAND1 0.361 0.034

https://doi.org/10.1371/journal.pone.0183179.t002
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Kaplan-Meier analysis did not show any statistically significant difference between the groups

(data not shown).

Pathway analysis showed that the top up-regulated genes participate in biological processes

such as mitosis and cell cycle regulation (e.g., CDK1, CDC6,CCNB2,BUB1, CENPF, ANLN,

CENPE, CCNA2, ASPM, MKI67) and down-regulated genes encode mostly phosphoproteins

Fig 1. Gene expression profile of 42 Luminal breast cancer samples. (A) Unsupervised hierarchical clustering with 67 differentially expressed genes

between IHC defined Luminal B and Luminal A tumors. (B) Most relevant signaling pathways associated with 67 differentially expressed genes in

Luminal B tumors from Colombian women. (C) Diseases associated with differentially expressed genes in Luminal B.

https://doi.org/10.1371/journal.pone.0183179.g001

Table 3. Expression of ESR1, PGR, MKI67 and ERBB2 in clusters identified in the unsupervised hierarchical clustering.

ESR1 PGR MKI67 ERBB2

Luminal A 9.98 ± 1.25 8.47 ± 2.22 5.73 ± 0.63 203.44 ± 116.68

Luminal A.1* 9.18 ± 1.65 8.04 ± 2.26 5.24 ± 1.32 134.88 ± 65.27

Luminal B 9.82 ± 1.65 7.08 ± 1.87 7.10 ± 0.62 789.49 ± 1244.61

*This group corresponds to the tumors classified as luminal B by immunohistochemistry but that clustered together with luminal A tumors

https://doi.org/10.1371/journal.pone.0183179.t003
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(e.g., KCND3, RALBP1,RCAN3, ABCA3,RBBP8, PAIP2B, STARD13, ELOVL5, HIPK2,

NTRK2,KDM4B, BAI2, FGD3) (Fig 1B). The diseases associated with these differentially

expressed genes include ductal carcinoma and breast neoplasms (Fig 1C), which was consis-

tent with the origin of the tissue specimens.

Interestingly, two of the genes that we found upregulated were TOP2A (log2FC = 1.309,

padj = 0.011) and CYP19A1, which codify for the aromatase gene (log2FC = 1.325, padj =

0.030). As TOP2A has been associated with response to anthracycline-based chemotherapy

and aromatase inhibitors are widely used for breast cancer treatment, we explored if the

expression of these genes and the intrinsic subtype of breast cancer could be associated with

the development of recurrences. We did not find any statistical significant association (S1

Table)

Ancestry-associated differentially expressed genes in Luminal tumors

Stratified analysis by European ancestry fraction. To identify ancestry-associated differ-

entially expressed genes in Luminal tumors, we categorized patients according to Luminal sub-

type (Luminal A and Luminal B) and to the proportion of European ancestry into low

European ancestry group (European ancestry proportion below the average 0.58); and high

European ancestry group (European ancestry proportion above the average 0.58). The aver-

ages for European, IA and African ancestry fractions according to the assigned groups are

shown in the S2 Table. We then compared Luminal B against Luminal A tumors according to

the assigned ancestry groups and found 27 ancestry-modulated genes in the low European

ancestry group and 3 in the high European ancestry group (Fig 2).

We compared the differentially expressed genes found in the global profile of Luminal B

tumors (Table 2) against the ancestry-modulated genes and we observed that 15 genes were in

common with the low European ancestry group (AIF1L, CYP19A1,CENPF, PGAP3, SLC4A8,

ORMDL3, CRABP2, STARD3, BUB1, CDK12, SNORA54,HIPK2, FCGBP, RBBP8, NTRK2). On

the other hand, 12 genes were unique for this ancestry group and included ERBB2, GRB7,

MIEN1, ONECUT2,GSDMB, NUFIP2, TNFSF13, LRRC1, PSMD3, SLC23A3, ARHGAP33 and

HES1. The high European ancestry group did not show common genes with the global profile

or with the low European ancestry group and had 3 unique differentially expressed genes

(ATP8B3, FDXACB1, and RAB26) (Fig 2 and Table 4).

Stratified analysis by Indigenous American ancestry fraction. We repeated the differen-

tial expression analysis stratifying by the IA average fraction into low IA ancestry group (IA

ancestry fraction below 0.36), and high IA ancestry group (IA ancestry fraction above 0.36).

The averages for the European, IA and African ancestry fractions according to assigned groups

are in the S3 Table. Compared to the global profile of Luminal B tumors (Table 2), we found 5

genes in common with the high IA ancestry group (ORMDL3, STARD3, SLC4A8, CDK12,

HIPK2) and 3 with the low IA ancestry group (NT5E, SNORA76C,ABCA3) (Fig 3).

In the low IA ancestry group, 6 genes were unique (PCSK1, GABRA2,HTR1F, CNKSR3,

PLCB1 y RNU5A-1). On the other hand, the unique genes found in the high IA ancestry group

were ERBB2, GRB7, GSDMB, MIEN1 and ONECUT2. These 5 genes were also found in the low

European Ancestry group and the direction of the change was the same as that of the high IA

ancestry group (Table 5).

Confirmatory analysis of candidate genes by RT-PCR

We selected ERBB2, GRB7 and ONECUT2 for validation due to their importance in the biology

of breast cancer, the magnitude of the change found in the RNA-seq data analysis and the con-

sistency between the European and IA ancestry analyses. Confirmatory analysis was
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performed by semi-quantitative RT-PCR in 166 samples from Luminal tumors (42 analyzed

by RNA-seq and 124 new samples). The characteristics of the 124 additional patients from the

confirmatory analysis are in the S4 Table. Spearman correlation analysis showed statistically

significant correlations in gene expression levels between RNA-seq and RT-PCR analysis for

Fig 2. Differentially expressed genes according to European ancestry in IHC defined Luminal B vs.

Luminal A tumors. Venn diagram shows the number of differentially expressed genes (padj < 0.05) between

Luminal B and Luminal A tumors with low European ancestry and high European ancestry. “Global” refers to

differentially expressed genes between Luminal tumors without stratification by ancestry.

https://doi.org/10.1371/journal.pone.0183179.g002

Table 4. Differentially expressed genes for Luminal B vs. Luminal A tumors according to European ancestry group.

Differentially expressed genes unique for Luminal B tumors from the low

European ancestry group

Differentially expressed genes unique for Luminal B tumors from the

high European ancestry group

Genes logFC padj Genes logFC padj

ERBB2 2.367 1.48E-06 ATP8B3 -1.70 0.007

GRB7 2.327 3.15E-04 FDXACB1 -1.62 0.049

ONECUT2 2.204 1.28E-03 RAB26 -1.72 0.049

MIEN1 2.195 3.15E-04

GSDMB 1.723 1.92E-03

PSMD3 1.386 4.33E-02

HES1 1.092 4.69E-02

LRRC1 1.079 4.33E-02

NUFIP2 1.071 6.27E-03

ARHGAP33 -1.263 4.53E-02

TNFSF13 -1.523 3.83E-02

SLC23A3 -1.589 4.33E-02

https://doi.org/10.1371/journal.pone.0183179.t004
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ERBB2 (p< 0.01, R2 = 0.62), ONECUT2 (p = 0.014, R2 = 0.62), and GRB7 (p = 0.0131, R2 =

0.40) (S2A–S2C Fig).

We used a linear regression model to test if changes in expression levels of ERBB2, ONE-
CUT2 and GRB7 were explained by genetic ancestry in Luminal subtypes. For this analysis we

used log2FC values from the qRT-PCR. We tested the association of the expression levels of

the candidate genes with an interaction variable between intrinsic subtype and genetic ancestry

(European or IA). We found a statistically significant association between ERBB2 expression

and the IA fraction (p = 0.02, B = 3.11, CI 95% 0.43, 5.79), but not for the interaction (Table 6).

Concordantly, when we tested the association between ERBB2 expression and the IA ances-

try fraction stratified by Luminal subtype, we found an association of ERBB2 expression and

Fig 3. Differentially expressed genes according to IA ancestry in Luminal B vs. Luminal A tumors.

Venn diagram shows the number of differentially expressed genes (padj < 0.05) between Luminal B and

Luminal A tumors with low IA ancestry and high IA ancestry. “Global” refers to differentially expressed genes

between Luminal tumors without stratification by ancestry.

https://doi.org/10.1371/journal.pone.0183179.g003

Table 5. Differentially expressed genes in Luminal B tumors according to the Indigenous American ancestry groups.

Differentially expressed genes unique for Luminal B tumors from low

IA ancestry group

Differentially expressed genes unique for Luminal B tumors from high

IA ancestry group

Genes logFC padj Genes logFC padj

PCSK1 -3.34 3.5E-10 GSDMB 1.98 0.000

GABRA2 -2.27 1.7E-03 MIEN1 1.97 0.013

HTR1F -2.23 1.8E-03 ERBB2 1.92 0.012

CNKSR3 -1.52 7.0E-03 GRB7 1.87 0.033

PLCB1 1.75 1.4E-02 ONECUT2 1.83 0.047

RNU5A-1 -1.07 4.0E-02

https://doi.org/10.1371/journal.pone.0183179.t005

Ancestry as a potential modifier of gene expression in breast tumors from Colombian women

PLOS ONE | https://doi.org/10.1371/journal.pone.0183179 August 23, 2017 12 / 21

https://doi.org/10.1371/journal.pone.0183179.g003
https://doi.org/10.1371/journal.pone.0183179.t005
https://doi.org/10.1371/journal.pone.0183179


IA ancestry in the Luminal A group (p = 0.009, B = 3.111, CI 95% 0.821, 5.4), and the same

trend was observed for the Luminal B group, in which patients with higher IA ancestry showed

higher expression of ERBB2 (Fig 4).

When we conducted the analysis by HER2 status we saw that the association between

ERBB2 expression and ancestry was also independent of immunohistochemical HER2 type

(Fig 5).

All together these results suggest that ERBB2 is a gene positively correlated with IA ancestry

in Luminal breast cancer.

Discussion

Our group has previously shown that Luminal B is the most common intrinsic subtype of

breast cancer in Colombian women [28]. Based on that finding we wanted to explore the

underlying molecular characteristics of Luminal B tumors in Colombian-Latina women. We

found 67 differentially expressed genes between Luminal B and Luminal A tumors. Genes that

were up-regulated in luminal B tumors included, CDK1, BUB1, CENPF and MKI67, which par-

ticipate in cell proliferation pathways consistent to what has been reported for the molecular

profile in luminal B tumors in other population groups [7, 13, 14, 37–39].

Another up-regulated gene in luminal B tumors was CYP19A1 that encodes aromatase, the

enzyme that catalyzes the rate-limiting step in estrogen biosynthesis, aromatization of andro-

stenedione and testosterone to estrone and estradiol, respectively [40, 41]. Aromatases are

highly expressed in breast cancer tissue when compared to normal breast tissue [42] thus it has

been suggested that the CYP19A1 gene participates in the development and progression of

breast cancer [41]. Aromatase inhibitors (AIs) that selectively inhibit aromatase activity in

peripheral tissues have become a successful therapy for postmenopausal women with hor-

mone-sensitive breast cancer [43, 44]. To the best of our knowledge, this is the first report to

show differential expression of CYP19A1 by luminal intrinsic subtype of breast cancer. The

overexpression of this gene in Luminal B tumors in Colombian patients suggests that this sub-

type may be more sensitive to aromatase inhibitors compared to Luminal A tumors.

DNA topoisomerase IIA (TOP2A) is an isoform of TOP2 enzyme that exerts catalytic activ-

ity to induce breaks in double-stranded DNA to release torsional stress. These breaks are sub-

sequently resealed [45]. Sparano et al. [46] suggested that in breast cancer patients with

Table 6. Association between candidate genes expression and the interaction between Indigenous American ancestry and intrinsic subtype.

ERBB2 GRB7 ONECUT2

B p IC 95% B p IC 95% B p IC 95%

IA ancestry fraction 3.11 0.02 0.43 5.79 0.42 0.80 -2.82 3.65 -2.98 0.47 -11.22 5.26

Intrinsic subtype 0.84 0.27 -.065 2.34 -0.75 0.44 -2.68 1.18 -1.87 0.40 -6.38 2.63

Interaction -1.60 0.36 -5.07 1.86 3.12 0.17 -1.37 7.61 6.60 0.18 -3.31 16.52

The association with the European ancestry fraction was not significant (Table 7).

https://doi.org/10.1371/journal.pone.0183179.t006

Table 7. Association between candidate genes expression and the interaction between European ancestry and intrinsic subtype.

ERBB2 GRB7 ONECUT2

B p IC 95% B p IC 95% B p IC 95%

European ancestry fraction 1.00 0.44 -1.56 3.55 -0.08 0.96 -3.16 2.99 -5.69 0.13 -13.11 1.74

Intrinsic subtype 0.89 0.32 -0.89 2.68 1.10 0.35 -1.20 3.39 0.37 0.87 -4.09 4.84

Interaction -1.43 0.40 -4.80 1.93 -1.10 0.62 -5.44 3.24 1.91 0.67 -6.99 10.80

https://doi.org/10.1371/journal.pone.0183179.t007
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hormone receptor positive and HER2-normal expression, high levels of TOP2A could be asso-

ciated with resistance to antracycline-based chemotherapy. This suggestion came from the

finding that higher expression of TOP2A correlated with poor tumor grade and high recur-

rence score based on the Oncotype Dx signature. Romero et al. [45] found higher expression

of TOP2A in Luminal B, HER2-enriched and basal-like when compared to Luminal A subtype,

which is consistent with our finding.

As Hispanic/Latinas represent a heterogeneous population group with variation in the

European, IA and African ancestry fractions [47], we explored the role of genetic ancestry as a

modifier of the molecular characteristics of Luminal tumors in Colombian women. We found

5 genes potentially modulated by genetic ancestry and differentially expressed between Lumi-

nal B and Luminal A tumors (ERBB2, GRB7, ONECUT2,MIEN1 and GSDMB). These genes

were ancestry-modulated in the analysis based on the European ancestry categories as well as

the IA categories.

Fig 4. ERBB2 expression according to intrinsic subtype and Indigenous American ancestry group.

https://doi.org/10.1371/journal.pone.0183179.g004

Fig 5. ERBB2 expression according to HER2 status by immunohistochemistry and Indigenous

American ancestry group.

https://doi.org/10.1371/journal.pone.0183179.g005
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The ERBB2,GRB7 and MIEN1 genes, which are located on chromosome 17 in relative prox-

imity within a region including approximately 60,000 base pairs, have been reported co-ampli-

fied and associated with poor prognosis in breast cancer [48, 49]. ERBB2 is located in locus

17q12 and encodes a 185 KDa transmembrane glycoprotein receptor that belongs to the family

of the epidermal growth factor receptor (EGFR) [50–52]. It has been reported over-expressed

or amplified in 30% of breast tumors and also in ovarian, gastric, and uterine tumors [53].

GRB7 gene is located in locus 17q11–21 and encodes for an adapter protein present in the cel-

lular cytoplasm and interacts with multiple proteins including tyrosine kinase receptors such

as EGFR and ERBB2 (HER2) through its SH2 domains [54, 55]. GRB7 has been found to regu-

late migration [56–58] and recently Nadler et al. [54] found that HER2/GRB7 co-expression

conferred worse prognosis than HER2 amplification alone, and that high expression of GRB7

at the protein level is associated with shorter survival times. Finally, MIEN1, located in the

chromosomal region 17q12-21, was recently discovered [49, 59] and has been associated with

enhanced migration in several types of cancer [48, 60]. To the best of our knowledge, this

report is the first to show differential expression of MIEN1 by breast cancer intrinsic subtype

and genetic ancestry and to show differential expression of ERBB2 and GRB7 by genetic ances-

try in breast cancer patients.

After assessing the correlation between RNA-seq and RT-PCR assays, we were able to vali-

date our observation of effect modification of Luminal B vs. Luminal A tumors differentially

expressed genes by genetic ancestry for three of the five genes (ERBB2, GRB7 and ONECUT2).
In the validation set we analyzed a higher number of patients with Luminal tumors (124 addi-

tional luminal tumors) and found a significant statistical association between ERBB2 expres-

sion levels and IA ancestry fraction, which seem to be independent of Luminal subtype and

immunohistochemical HER2 characterization. This finding suggests that Hispanic/Latina

women with higher IA ancestry are more likely to develop Luminal tumors with higher expres-

sion of ERBB2 compared to women with higher European ancestry. However, the relationship

between expression of ERBB2 and HER2 IHC classification needs to be better understood,

given that the association between ancestry and ERBB2 was not paralleled by the association

between genetic ancestry and Luminal subtype based on IHC classification. More patients, not

only with Luminal tumors but all different subtypes, will be needed to replicate this finding

and explore the prognostic value of the association and relevance for the use of trastuzumab

treatment in this population. Future studies should confirm if these three genes (ERBB2, GRB7
and MIEN1) as they have been reported co-amplified, are also ancestry-modulated together or

if the modulation is independent of their co-amplification.

This is the first study, to the best of our knowledge, to explore differences in the molecular

profile of an intrinsic subtype of breast cancer according to genetic ancestry in a highly

admixed Latin American population. Some studies have compared the molecular profiles of

breast cancer between Caucasian and African American women [61–65] in order to seek

mechanistic explanations for the differences in disease biology and outcomes observed

between these two populations. However, only few studies have included Hispanic/Latina

women. Chavez-MacGregor et al. [66] explored differences in the transcriptome and protein

expression according to race/ethnicity and intrinsic subtype in 376 women (46 African-Ameri-

can, 47 Hispanic/Latinas and 147 Non- Hispanic white women). They did not find any statisti-

cally significant differences in the molecular profiles or at the protein level between the groups

they analyzed. However, they did not include genetic ancestry in their analyses, and therefore

were unable to assess more subtle differences in expression based on the ancestral genetic

architecture of the admixed genomes of African Americans and Hispanic/Latinas.

We are aware of the limitations of our study. First, the approximation of intrinsic subtypes

based on IHC and not gene expression could lead to misclassification of tumors. However,
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when we compared the percent expression of ER/PR/HER2/Ki67 based on IHC and gene

expression, we found relatively strong correlations. We are also aware that to find differentially

expressed genes by genetic ancestry it would have been more informative to analyze patients

with higher variations in their European, IA and African fractions. Nevertheless, by analyzing

patients from only one Colombian region (Andean), we aimed at reducing possible differences

in expression due to variation in environmental exposures. One significant advantage of the

present study was the fact that we analyzed gene expression differences in an admixed group of

patients according to their genetic ancestry and not by their self-identification. Finally, it is

important to highlight that all the RNA-seq and RT-PCR data shown in this study were obtained

from FFPE samples, which confirms their value as a source of information for future work.

Conclusions

Our results suggest that the expression of ERBB2, a crucial gene in breast cancer tumor subtype

classification associated with poor prognosis, might be associated with genetic ancestry in breast

tumor samples from Colombian women. Women with higher IA ancestry express higher levels

of ERBB2. Further analyses are necessary to further confirm this association, assess the impact

that this association has on HER2 IHC classification, and explore its prognostic value.
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Writing – review & editing: Silvia J. Serrano-Gómez, Marı́a Carolina Sanabria-Salas, Lucio
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