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Abstract

Following Marr’s insight, we propose a generative image representation called primal sketch,

which integrates two modeling components. The first component explains the structural

part of an image, such as object boundaries, by a hidden layer of image primitives. The

second component models the remaining textural part without distinguishable elements

by Markov random fields that interpolate the structural part of the image. We adopt

an artist’s notion by calling the two components “sketchable” and “non-sketchable” parts

respectively. A dictionary of image primitives are used for modeling structures in natural

images, and each primitive is specified by variables for its photometric, geometric, and

topological attributes. The primitives in the image representation are not independent but

organized in an sketch graph. This sketch graph is modeled by a spatial Markov model

that enforces Gestalt organizations. The inference of the sketch graph consists of two

phases. Phase I sequentially adds the most prominent image primitives in a procedure

similar to matching pursuit. Phase II edits the sketch graph by a number of graph operators

to achieve good Gestalt organizations. Experiments show that the primal sketch model

produces satisfactory results for a large number of generic images. The primal sketch model

is not only a parsimonious image representation for lossy image coding, but also provides a

meaningful mid-level generic representation for other vision tasks.

Preprint of the Department of Statistics, UCLA, 2005. Some materials in this paper have been published

in the Proceedings of the Int’l Conf. on Computer Vision, 2003, and the Workshop on Generative Model

Based Vision, 2004, organized by Arthur Pece. We thank Dr. Pece for his editorial help.



1 Introduction

1.1 Motivation: image representation in early vision

In the early stage of visual perception, an image may be divided into two components – the

structural part with noticeable elements called “textons” by Julesz [21] or “tokens” by Marr

[25], and the textural part without distinguishable elements in preattentive vision. See Figure

(1) for an illustration. The structural part are objects at near distance, such as tree trunks and

branches, whose positions and shapes can be clearly perceived. In contrast, the textural part

are objects at far distance whose structures become indistinguishable and thus yield various

texture impressions. Obviously the notion of being far or near is relative to the object sizes. As

Figure (1) illustrates, in natural scenes the two parts are not only seamlessly interweaved, but

our perception can also switch between structure and texture depending on the viewing distance

or even the change of our focus point (eye fixation) due to the non-uniform resolution of our

retina.

Figure 1: Natural image with interweaving textures and structures.

The modeling of texture and structure has been a long standing puzzle in the study of

early vision. Julesz first proposed in the 1960s a texture theory [20] and conjectured that a

texture is a set of images sharing some common statistics on some features related to human

perception. Later he switched to a texton theory [21] and identified bars, edges, terminators

as textons – the atomic elements in early vision. Marr summarized Julesz’s theories and other

experimental results and proposed a primal sketch model in his book [25] as a “symbolic” or

“token” representation in terms of image primitives. Marr argued that this symbolic represen-

tation should be parsimonious and sufficient to reconstruct the original image without much
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perceivable distortion.

Despite many inspiring observations, Marr’s description provided neither an explicit math-

ematical formulation nor a rigorous definition of the primal sketch model.

Since the 1980s, the studies of image modeling followed two distinct paths which represent

two prevailing mathematical theories for generative image modeling respectively.

The first theory is a two-layer generative model originated from computational harmonic

analysis which represents an image by a linear superposition of image bases selected from a

dictionary – often over-complete like various wavelets [8], ridgelets [4], image pyramids [30], and

sparse coding [27] [28]. Each image base is supposed to represent some image features with

hidden variables describing their locations, orientations, scales, and intensity contrasts. The

image is reconstructed with minimum error on the pixel intensities.

The second theory is the Markov random field (MRF) model originated from statistical

mechanics. It represents a visual pattern by pooling the responses of a bank of filters over all

locations into some statistical summary like the histograms that are supposed to represent our

texture impressions. On large image lattices, a Julesz ensemble [32] is defined as a perceptual

equivalence class where all images in the equivalence class share identical statistics. The statistics

or texture impressions are the macroscopic properties and the differences between microscopic

states (i.e. image instances in the Julesz ensemble) are ignored. In other words, all images in this

equivalence class are perceptually the same, replacing one by the other does not cause perceivable

distortion, although the two images may have large difference in pixel by pixel comparison. The

image patches within local windows are shown to follow some MRF models [34].

1.2 Primal sketch model and an example

Following the insights of Marr and Julesz, we propose a primal sketch model that integrates

both modeling schemes mentioned above as a mathematical formulation for Marr’s primal sketch

model. We adopt an artist’s notion by calling the image portion with distinguishable structures

as sketchable, and the remaining portion without distinguishable elements is said to be non-

sketchable. An example is shown in Figure 2. Given an input image I in (a), which is defined

on a lattice Λ, we compute a sketch graph Ssk in (b). Each vertex as well as line segment in

this graph corresponds to an image primitive shown in Figure 3. These primitives are occluding

patches with a number of landmarks (see the leftmost column of Figure 3) that are aligned to the

graph. The variables describing the primitives become the attributes of the sketch graph. Thus
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(a) input image I (b) sketch graph Ssk (c) sketchable image IΛsk

(d) texture regions SΛnsk
(e) synthesized textures IΛnsk

(f) synthesized image I
syn

Figure 2: An example of the primal sketch model. (a) An input image I. (b) The sketch graph Ssk

computed from the image I. Each vertex in the graph correspond to an image primitive shown in Figure 3.

These primitives are occluding patches rather than linear additive bases. (c) The sketchable part of the

image by aligning the primitives to the graph. (d) The remaining non-sketchable portion is segmented

into a small number of homogeneous texture regions. (e) Synthesized textures on these regions. (f) The

final synthesized image integrating seamlessly the sketchable and non-sketchable parts.

we synthesize a partial image IΛsk
in (c) for the sketchable part of the image, where Λsk collects

the sketchable pixels. Clearly this corresponds to the structural part of the image. The remaining

textural part is said to be non-sketchable and is segmented into a small number of homogeneous

texture regions. Each region is shown by a grey level in (c) and statistics (histograms of responses

from 5-7 small filters) are extracted as the statistical summary. Then we synthesize textures

on these regions by simulating the Markov random field (MRF) models which reproduce the

statistical summaries in these regions. The MRF models interpolate the sketchable part of the

image. The non-sketchable part of the image is denoted as IΛnsk
, where Λnsk collects the non-

sketchable pixels. The final synthesized image is shown in (f) which integrates seamlessly the

sketchable and non-sketchable parts.

A set of image primitives are constructed for modeling the structures in natural images.
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Some examples are shown in Figure 3. They are sorted in increasing order of connectivity degree.

These primitives are described in a parametric form with topological (degree of connectivity),

geometric (positions, orientations and scales) and photometric (contrast and blurring) attributes.

The probability distributions of these attributes can be learned from a given image data set in

supervised learning.

Figure 3: Samples from the visual primitive dictionary, consisting of eight types: blobs, end points,

edges, ridges, multi-ridges, corners, junctions and crosses of different degrees. (a) The landmarks on the

patches for topological and geometric attributes. (b) The photometric representation of the patches.

Table 1 counts the number of parameters for describing the primal sketch model presented

in Figure 2. The input image is of 300 × 240 pixels, of which 18, 185 pixels (around 25%) are

considered by our model as sketchable. The sketch graph has 152 vertices and 275 edges/ridges

or strokes (primitives with degree 2) and the attributes are coded by 1, 421 bytes. Then the

non-sketchable pixels are represented by 455 parameters or less. The parameters are 5 filters

for 7 texture regions and each pools a 1D histogram of filter responses into 13 bins. Together

with the codes for the region boundaries, total coding length for the textures is 1, 628 bytes.
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The total coding length for the synthesized image in Figure 2.(f) is 3, 049 bytes or 0.04 byte

per pixel. This is about 1 : 25 compression ratio to JPG2000. It should be noted that the

coding length is roughly computed here by treating the primitives as being independent. If one

accounts for the dependence in the graph and applies some arithmetic compression schemes, a

higher compression rate can be achieved. Similar results have been obtained for a large set of

generic images.

coding description coding length (bits)

Sketch graph

vertices 152 152*2*9=2,736

strokes (275) 275*2*4.7=2,585

Sketch image profiles (275) 275*(2.4*8+1.4*2)=6,050

Total for sketchable 18,185 pixels 11,371 bits=1,421 bytes

Region boundaries 3659 pixels 3659*3 = 10,977

MRF parameters texture regions (7) 7*5*13*4.5 = 2,048

Total for non-sketchable 41,815 pixels 13,025 bits = 1,628 bytes

Total for whole image 72,000 pixels 3,049 bytes, 0.04 byte/pixel

Table 1: The approximate coding length by the primal sketch model for the example in Figure 2.

We propose a sketch pursuit algorithm to compute the hidden variables – the attributed

sketch graph. The algorithm consists of two phases. Phase I sequentially adds the most promi-

nent strokes (edges/ridges) using a procedure similar to matching pursuit based on local fitness.

Phase II edits the sketch graph by a number of graph operators to achieve good Gestalt orga-

nizations and resolve local ambiguities. Table 2 shows 10 pairs of reversible graph operators

used in the graph editing process. It is observed in our experiments that the long edges in the

graph can often be computed reliably. However the images around the vertices are often blurred

and confusing, and thus the editing process uses global graph properties to fix ambiguities at

vertices. Currently we adopt a greedy method, which accepts the graph operation if the coding

length is decreased for that operator or a series (3 to 5) of operators.

We show a number of results for image sketching and reconstruction in Figures 15, 16 and

17.
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1.3 Relations with previous work and contributions

The primal sketch model presented in this paper is related to many other generative models in

the literature. In the following, we summarize the main contributions of our work in relation to

previous work.

First, many image elements have been pursued in the generative models. These generative

elements are mostly linear additive models, such as wavelets [8], image pyramid [30], sparse

coding [27][28], various type of component analysis (PCA/ICA/TCA) [1][14], and textons [33]. In

contrast, the image primitives in our primal sketch model are occluding patches with landmarks

for topological and geometric alignment, and are far sparser than the linear additive models. In

order words, the primal sketch model has a much more over-complete dictionary of primitives,

and needs smaller (sparser) number of primitives to reconstruct an image. These primitives have

landmarks that resemble the AAM (apparent active model) for face modeling using landmarks

[9]. In comparison, the primitives are more generic and sufficient to construct any graphs and

images for early vision tasks.

Second, the primal sketch model integrates two levels of Markov random fields within a

generative model. This is a direct extension to the authors’ previous work [18] on modeling

texture patterns by integrating descriptive and generative models. The primal sketch model has

a seamless integration while our previous work may have artifacts along the two textons/texture

layers. The current model is generally applicable to all natural images and thus is broader in

scope than previous work on textures.

Third, Gestalt field model on the sketch graph is what Mumford and Fridman called the

mixed random field [15]. It is different from conventional MRF because of its two properties.

(1) The vertices in the graph are inhomogeneous primitives. Each may have different degrees

of connectivity, such as isolated point, terminators, bars, three-way junctions etc. (2) The

neighborhood of each vertex has to be inferred from images as hidden variables in contrast to

the fixed 4-nearest-neighbor system on lattices.

Fourth, the primal sketch model is not only a parsimonious image representation, but also

provides a meaningful and generic representation for middle level vision– similar to the token

representation conjectured by Marr [25]. Such representation can be used effectively for later

vision tasks. We can study shape-from-X, such as stereo, shading and motion, based on the two

level representation instead of working on the image lattices. Also by grouping subgraphs in the
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sketch, we can represent a large range of objects for recognition.

The computed sketches could be used in a number of applications, such as low bit lossy

image coding, automatic cartoon generation, non-photorealistic image rendering.

1.4 Organization of the rest of the paper

The rest of the paper is organized as follows. We first introduce the two generative modeling

schemes for the structural and textural parts in Section 2. Section 3 presents the primal sketch

model. Section 4 discusses the sketch pursuit algorithm. Section 5 shows the results of the

experiments. Then we conclude the paper in Section 6.

2 Background: two generative modeling schemes

In this section, we review two popular schemes for generative modeling– image coding theory

and Markov random field as the background for studying the primal sketch model.

2.1 Image coding theories: harmonic analysis, wavelets, and sparse coding

The modern image coding theories can be traced back to Fourier and harmonic analysis. Let I

be an image defined on a lattice Λ, the image coding theory assumes that I is the weighted sum

of a number of image bases Bk indexed by k for its position, scale, orientation etc. Thus one

obtains a “generative model”,

I =
K∑

k=1

ckBk + ǫ, Bk ∈ ∆B, C = {ck} ∼ p(C), (1)

where Bk are selected from a dictionary ∆B, ck are the coefficients, and ǫ is the residual error

modeled by Gaussian white noise. When ∆B consists of the orthonormal sine waves, the model

reduces to Fourier analysis. In the literature, people often adopt over-complete basis (i.e. |∆| ≥

|Λ|) with elements localized in space and frequency, so that I can be approximated by a small

number of elements (i.e. K ≪ |Λ|). In other words, only a fraction of elements in ∆B is active

in representing I – sparsity. Many dictionaries have been proposed in the literature and they

can be used in combination, including various wavelets and wavelet packets [10] [8] [11]. For

over-complete ∆B, the coefficients C = (c1, ..., cK) are no longer the inner products. They are

computed by algorithms such as matching pursuit [24] and basis pursuit [7].
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One influential piece of work [27] in sparse coding is to learn the dictionary of over-complete

bases ∆B from natural images. A crucial factor in obtaining a good dictionary is the prior model

on the coefficients ck, which has to follow a “super-Gaussian” distribution (long tails with peak

at zero) [28], for instance,

p(C) =
∏
k

p(ck), p(ck) ∝ e−α|ck|. (2)

(a) dictionary ∆B (b) input image (c) reconstructed K = 300

Figure 4: A sparse coding example.

Figure 4 shows an example of sparse coding. Figure 4.(a) is the dictionary ∆B with Gabor

and Laplacian of Gaussian (LoG) bases, (b) is an observed image of 128 × 128 pixels, and (c)

the image reconstructed by K = 300 bases selected from ∆B. Figure 5 shows a second example

with a symbolic representation in which a bar and a circle is used for a Gabor and LoG base

respectively.

(a) input image (b) reconstructed K = 300 (c) symbolic sketch

Figure 5: A sparse coding example computed by matching pursuit. (c) is a symbolic representation where

each base Bk is represented by a bar at the same location, with the same elongation and orientation. The

isotropic LOG bases are represented by a circle.

The two examples show that the localized bases generally capture the image structures where
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the intensity contrasts are high. However there are three obvious shortcomings.

Problem 1. The object boundaries are blurred. This indicates that we need to search for

better dictionaries that is hyper-sparse. Currently each pixel in the image is explained by a

small number of bases, but in a hyper-sparse representation, a pixel with high contrast should

be represented by a single primitive.

Problem 2. The textures are not well represented. One may continue to add more bases

in the matching pursuit process to code texture, but then the representation will not be very

sparse (K is very large).

Problem 3. The bases (sketches) in Figure 5.(c) do not line up very well. In the wavelet

literature, there are Markov tree models [29] for characterizing the relations between wavelet

coefficients. But we need stronger model for regulating the spatial organization. In comparison,

the symbolic sketch graph in Figure 2.(b) is much more meaningful than the sketches in Figure

5.(c).

The proposed primal sketch model shall resolve all of the above three problems.

2.2 Texture theories: MRF, FRAME, and statistical physics

In this paper, the term “texture” refers to image areas without distinguishable elements, i.e.

what people called stochastic textures. Modern texture theories have become powerful enough

to synthesize textures with structures for graphics purpose [12]. But the objective of the primal

sketch is to represent the original image without noticeable perceptual distortion. Therefore,

our texture corresponds to image areas where the wavelet coefficients are smaller than certain

threshold, and their locations, orientations, and sizes are not perceivable. For example, there

are very few image bases for the texture areas in Figure 5.(c). In such areas, human perception

is said to capture some important statistics as a summary. It is long observed in psychophysics

that preattentive vision cannot distinguish two texture regions if they share certain statistics

measured by the neurons in early processing stage [3].

Let ∆F be a set of filters, which can be Gabor or LoG (Laplacian of Gaussian) functions as

in image coding (see Figure 4.(a)). For Fi ∈ ∆F , let Fi ∗I(x, y) be a filter response at (x, y) ∈ Λ.

By pooling the filter responses over the lattice, one obtains a number of 1D histograms

hi(I) = hi(z; I) =
1

|Λ|

∑
(x,y)∈Λ

δ(z − Fi ∗ I(x, y)), i = 1, 2, ..., n, (3)

where δ() is a Dirac delta function and z is the index of the histogram bins in discrete form. The
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histograms may vary for small image areas even for the same texture. But in the limit when

the image domain Λ→ Z2, the statistical fluctuations diminish, and one arrives at the so-called

Julesz ensemble studied by [32], which defines a texture pattern as an equivalence class,

A texture = Ω(h) = {I : hi(I) = hi, i = 1, 2, ..., n,Λ→ Z2}, (4)

where h = (h1, ..., hn) are the 1D densities (statistics) characterizing the macroscopic properties

of a texture pattern. As a principle used by Gibbs in 1902, all microscopic states I ∈ Ω(h)

are equally likely. This assumes a uniform density q(I; h) residing on the ensemble Ω(h) with

q(I; h) = 0 for I /∈ Ω(h).

If a large image I follows a Julesz ensemble Ω(h), then the image on any local patch Λ0 ⊂ Λ

follows a Markov random field model conditioned on its local neighborhood ∂Λ0,

IΛ0
∼ p(IΛ0

|I∂Λ0
; β) =

1

Z
exp{−

n∑
i=1

〈βi, hi(IΛ0
)〉}, (5)

where β = (β1, ..., βn) are the potential functions, and Z is the normalizing constant. The Gibbs

model in Equation (5) is called the FRAME model [34]. β are the Lagrange parameters learned

from input images by maximum likelihood.

(a) (b) (c) (d)

Figure 6: Filter histograms: (a) and (c) are observed images. (b) and (d) are “reconstructed” by

matching filter histograms.

Experiments showed that this model is quite effective in representing stochastic textures. See

Figure (6). But it has two problems complementary to the sparse coding models, as indicated

by Figure (7).

Problem 1. The FRAME model is ineffective in representing large image structures.

Problem 2. The model is built on pixels without introducing hidden (latent) variables (such

as the bases and coefficients) which usually can drastically reduce the dimension of the image.
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(a) (b) (c) (d)

Figure 7: Filter histograms: (a) and (c) are observed images. (b) and (d) are “reconstructed” by

matching filter histograms.

In this paper, we limit the filters to small window sizes which are sufficient for stochastic

texture. Also these filters have small responses and thus it is computationally less expensive to

simulate the textures.

3 The primal sketch representation

In this section, we introduce the primal sketch representation which integrates the two generative

modeling schemes reviewed in the previous section. In the following, we present the primal sketch

model and discuss the image primitives. Then in the next section, we shall present the sketch

pursuit algorithm for computing the representation.

3.1 The primal sketch model

The image lattice Λ is divided into the sketchable and non-sketchable parts for the structural

and textural parts respectively.

Λ = Λsk ∪ Λnsk, Λsk ∩ Λnsk = ∅. (6)

The sketchable part is further divided into a number of disjoint patches with each patch being

fitted by an image primitive.

Λsk = ∪K
k=1Λsk,k, Λsk,k1

∩ Λsk,k2
= ∅, k1 6= k2. (7)

Some examples of the image primitives are shown in Figure 3. These primitives are aligned

through their landmarks to form a sketch graph Ssk. We index the selected image primitives by
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k = 1, ..., K,

k = (θtopological, θgeometric, θphotometric), (8)

where θtopological is the type (degree of arms) of the primitive (blob, terminator, corner, junctions

etc), θgeometric collects the locations of the landmarks of the primitive, and θphotometric collects the

intensity profiles of the arms of the primitive. The sketch graph is a layer of hidden representation

which has to be inferred from the image,

Ssk = (K, (Λsk,k, Bk, ak), k = 1, 2, ..., K),

where Ssk decides the sketchable part of the image, Bk is the image patch for primitive k, and

ak is the address variable pointing to the neighbors of the vertex Ssk,k = (Λsk,k, Bk). We adopt

the following generative image model on Λsk

IΛsk,k = Bk + n, k = 1, 2, ..., K. (9)

We shall discuss the representation of the primitives Bk, k = 1, 2, ..., K in next subsection.

The non-sketchable part is divided into a small number M = 3 ∼ 7 disjoint homogeneous

texture regions by clustering the filter responses,

Λnsk = ∪M
m=1Λnsk,m, Λnsk,m1

∩ Λnsk,m2
= ∅, m1 6= m2. (10)

hmi, m = 1, 2, ..., M, i = 1, 2, ..., n are the texture statistics in each texture region,

hi(IΛnsk,m
) = hmi, m = 1, 2, ..., M. (11)

This yields the FRAME model in equation (5) for small window size. The model learns the

Lagrange parameters βmi for the statistics hmi. We denote the texture region labeling by

Snsk = (M, (Λnsk,m, hmi ↔ βmi), m = 1, 2, ...M, i = 1, 2, ..., n). (12)

In summary, we have the following probability model for the primal sketch representation,

p(IΛ, Ssk, Snsk)

=
1

Z
exp{−

1

2σ2
o

K∑
k=1

∑
(u,v)∈Λsk,k

(I(u, v)−Bk(u, v))2 −
M∑

m=1

n∑
i=1

〈βmi, hi(IΛnsk,m
)〉

−E(Ssk)− E(Snsk)}, (13)
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where E(Ssk) and E(Snsk) are prior energy functions defined on the sketch graph Ssk and texture

regions Snsk.

In the following two sections, we shall introduce the primitive dictionary ∆sk and the prior

energy for the sketches Ssk – the mixed random field for the Gestalt organization of the sketch

graph and a simple energy on Snsk for texture clustering.

3.2 The dictionary of image primitives

As shown in Figure 3, the dictionary of image primitives designed for the sketch graph Ssk

consists of eight types of primitives in increasing degree of connection – blob, terminators,

edge/ridge/multi-ridge, corner, junction and cross. These primitives have a center landmark and

l = 0 ∼ 4 axes (arms) for connecting with other primitives. These primitives are represented

by geometric parameters θgeometric and photometric parameters θphotometric. There is no arm

for blobs. Terminators have only one arm, while edge/ridge/multi-ridge and corners have two.

Junctions and crosses have three and four arms respectively. For arms, the photometric property

is represented by the intensity profiles.

(a) Edge profile (b) Ridge profile

Figure 8: (a) The edge profile is represented by 5 parameters. The illustration of the computing of the

scale for a blurred edge. The blurring scale is measured by the distance between the extremes of the

second derivative. (b) The representation of a ridge profile with 8 parameters.

We model the intensity of the arm profile in a parametric way, following [13]. For the edge

profiles, as shown in Figure 8.(a), we use five parameters (u1, u2, w1, w12, w2), which denotes

the left intensity, the right intensity, the width of the left intensity (from the leftmost to the

14



left extreme of the second derivative), the blurring scale, and the width of the right intensity,

respectively. The total width of the edge is W = w1 + w12 + w2. The intensity in between is

modeled by the Gaussian cumulative density function model, and a look-up table is built for

computational efficiency.

For the ridge (bar) profile, we use eight parameters: (u1, u2, u3, w1, w12, w2, w23, w3) as

shown in Figure 8.(b). A segment with constant intensity value (e.g. u1, u2, u3) is called one

flat segment. Such photometric representation can be extended to multi-ridges which have more

than three flat segments.

Around the center of a primitive, the arms may overlap with each other. The intensities on

the overlapping area interpolate the intensities of the arms. Specifically, for a pixel p, suppose it

is covered by L arms, and the intensity functions for the arms are A1, A2, ..., AL. If we denote

the intensities of the profiles at this pixel p as Ap
1, Ap

2, ..., Ap
L, and the distances from the point

p to the center lines of these arms as d1, d2, ..., dL, the interpolated intensity is a weighted sum:

Bk(p) =
1

D

L∑
l=1

Ap
l

dl + 1
, (14)

where D =
∑L

l=1
1

dl+1 .

Figure 9 shows an example of a T-junction where three strokes meet. For a pixel p, each

stroke contributes the intensity of Ap
1, Ap

2 and Ap
3 respectively. Then the interpolated intensity

for pixel p will be the weighted sum of the three as in Equation (14) (in this example d1 = 0).

Figure 9: The illustration of the mixed intensity model at vertices.
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3.3 The mixed random field for the sketch graph

Now we specify the Gestalt field for the sketch graph Ssk = (K, (Λsk,k, Bk, ak), k = 1, ..., K),

which follows a so-called mixed random field [15]. The address variables ak’s represent dynamic

linking of the primitives V = (Ssk,k, k = 1, ..., K). It differs from conventional Markov random

field in two aspects.

1. The vertices are inhomogeneous with different degrees of connections and are inferred from

the images.

2. The neighborhood of each vertex is no longer fixed but inferred as address variables, which

yields the graph structure.

The sketch graph follows some Gestalt organizations which are enforced by our explicit

description of vertex types. We use a simple energy function which penalizes different vertices

with different weights.

We divide the set of vertices V into 5 subsets according to their degrees of connection,

V = V0 ∪ V1 ∪ V2 ∪ V3 ∪ V4, (15)

where Vi is the set of vertices with degree i. Then we have

E(Ssk) =
4∑

d=0

λd|Vd|, (16)

where |Vd| is the cardinality of the set Vd, and λd can be interpreted as the coding length

associated with each types of vertices. In our experiments we choose λ0 = 1.0, λ1 = 5.0,

λ2 = 2.0, λ3 = 3.0,λ4 = 4.0. The reason that we choose λ1 = 5.0 for terminators is that from

Gestalt laws, the closure and continuity are preferred in the perceptual organization.

The energy for the texture regions are also very simple. We choose the Potts model for

E(Snsk) in equation (13),

E(Snsk) = −
∑

p1∼p2,p1∈Λnsk,i,p2∈Λnsk,j

λnskδ(i, j), (17)

where p1 ∼ p2 means that p1 and p2 are two pixels that are neighbors of each other. λnsk(≥ 0)

is the parameter for the Potts model which favorites identical labelling for neighboring pixels.

δ(i, j) = 0, if i = j. Otherwise δ(i, j) = 1.
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4 The Sketch Pursuit Algorithm

The primal sketch algorithm includes three parts. (i) Deterministic pursuit of the sketch graph

Ssk in a procedure similar to matching pursuit. It sequentially add new strokes (primitives of

edges/ridges) that are most prominent. (ii) Refine the sketch graph Ssk to achieve better Gestalt

organization by reversible graph operators, in a process of maximizing a posterior probability

(MAP). (iii) A simple texture clustering algorithm computing the texture regions Snsk.

4.1 The sketch pursuit phase I

To speed up the computation, in our sketch pursuit process, we first adopt a procedure similar

to matching pursuit [24], which adds new strokes sequentially from a proposal map. In this

phase, we use a simplified primal sketch model,

pI(IΛ, Ssk, Snsk; ∆sk) ≈
1

Z
exp{−

1

2σ2
o

(
K∑

k=1

∑
(u,v)∈Λsk,k

(I(u, v)−Bk(u, v))2

+
∑

(u,v)∈Λnsk

(I(u, v)− µ(u, v))2)}, (18)

in which only image coding for the sketchable part Λsk is kept, the prior models on Ssk and Snsk

are ignored, and a simple Gaussian model is applied to the pixels in the texture regions Λnsk.

µ(u, v) is the local intensity mean around pixel (u, v). From the simplified model (18), when

we add a stroke Ssk,K+1 into Ssk, then S′
sk = Ssk ∪ Ssk,K+1, Λ′

nsk = Λnsk − Λsk,K+1, and the

probability changes to

pI(IΛ, S′
sk, S

′
nsk; ∆sk) ≈

1

Z
exp{−

1

2σ2
o

(
K+1∑
k=1

∑
(u,v)∈Λsk,k

(I(u, v)−Bk(u, v))2

+
∑

(u,v)∈Λ′

nsk

(I(u, v)− µ(u, v))2)}, (19)

Comparing (19) and (18), define

∆L = log
p(IΛ, S′

sk, S
′
nsk; ∆sk)

p(IΛ, Ssk, Snsk; ∆sk)

=
1

2σ2
o

{
∑

(u,v)∈Λsk,K+1

(I(u, v)− µ(u, v))2 − (I(u, v)−B(K+1)(u, v))2}, (20)

which is called image coding length gain by adding a new stroke.

At the beginning of the computation, we only have the input image I
obs, and the sketch

graph is empty Ssk = ∅. We propose a method called blob-edge-ridge detection which provides a
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proposal map S∞
sk for the strokes. From the proposal map, strokes are pursued sequentially by

maximizing the probability (18), or equivalently obtaining highest image coding length gain of

(20) by adding strokes one by one.

Blob-Edge-Ridge (BER) Detector Since the desired primal sketches are mostly blobs,

edges, and ridges, we adopt a step called blob-edge-ridge (BER) detection to provide the proposal

(denoted by S∞
sk ) for the sketch pursuit process. For an input image I

obs, the blob-edge-ridge

(BER) detection algorithm works as follows.

First the input image is convolved with a set of filters which include Laplacian of Gaussian

(LoG), elongated filters of first derivative of Gaussian (DG) and second derivative of Gaussian

(D2G). The filters are similar to the set of bases for the sparse coding as shown in Figure

4.(a). Filters of DG and D2G are chosen at several scales (e.g. three to five) and a number

of orientations (e.g. 18) to detect edges and ridges. Several scales of LoG are used to detect

blobs. For each pixel, we compute the combined response which is the sum of the squares of DG

and D2G responses. The maximum of the combined responses is considered as the edge/ridge

strength at that pixel (see Figure 10.(b)). The local orientation (Figure 10.(c)) is decided by

the orientation of the maximum response filter. Second, the non-maxima suppression method in

Canny edge detector [5] is used to compute the maxima as the proposed sketch S∞
sk (see Figure

10.(d)). The blob strength is measured by the maximum responses of the LoG filters and is

shown in Figure 10.(e). We apply a local maxima searching to get the proposed blobs shown in

Figure 10.(f).

Sequential Sketch Pursuit From the proposal map S∞
sk , we can find the highest strength

position (x0, y0). From (x0, y0) the connected points in S∞
sk are collected in two directions until

a straight line segment (linelet) is formed within a pre-specified average fitting error per pixel

(e.g. 1.0 /pixel). The profile model A0 is computed from the averaged profile perpendicular to

the linelet. Then an edge/ridge primitive is generated as Ssk,0. The image coding length gain

∆L (equation (20)) by introducing a new stroke Ssk,0 can be evaluated. If ∆L < ǫ, where ǫ

is a pre-specified threshold, then the proposed Ssk,0 is not accepted. Otherwise we accept the

proposed Ssk,0 and set Ssk ← Ssk ∪Ssk,0. Also Ssk,0 is removed from the proposal S∞
sk by setting

S∞
sk ← S∞

sk − Ssk,0, which means Ssk,0 is not in the proposal set anymore.

The above operation is called creation and defined as graph operator O1 as shown in Ta-

ble 2. The reverse operation O′
1 proposes to remove one stroke. More graph operators will be

introduced for the sketch pursuit phase II.
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(a) original image (b) edge/ridge strength

(c) local orientation (d) proposed sketches

(e) blob strength (f) proposed blobs

Figure 10: The blob-edge-ridge detector. For the original image (a) a set of filters are applied to get

the edge/ridge strength (b) and the local orientation (c). The proposal sketch (d) is computed by non-

maxima suppression. (e) shows the blob strength and (f) shows the proposed blobs after non-maxima

suppression and thresholding.
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From each end of the accepted stroke Ssk,K , we search the connected points in S∞
sk until a

linelet is formed within a pre-specified average fitting error per pixel. We denote it as a new

proposed stroke Ssk,K+1. Similar to the proposal of Ssk,0, the image coding length gain ∆L can

be computed. We decide whether to accept the proposed Ssk,K+1 or not by testing whether

∆L > ǫ. This operation is called growing and defined as graph operator O2. This operator can

be applied iteratively until no proposal is accepted. Then a curve (with one or several strokes,

two terminators and possible corners) is obtained. The reverse operation which removes a stroke

from the end of a curve is called shrinking and will be denoted as O′
2.

The sketch pursuit phase I applies operators O1 and O2 iteratively until no more strokes are

accepted. Figure 11 shows the results of the sketch pursuit phase I on the horse-riding image.

The sketch graphs are obtained after 1, 10, 20, 50, 100, and 180 iterations. The image coding

length gain ∆L for each iteration is plotted in Figure 12. Phase I provides an initialization state

for sketch pursuit phase II.

(a) iteration 1 (b) iteration 10 (c) iteration 20

(d) iteration 50 (e) iteration 100 (f) iteration 180

Figure 11: The process of applying operators O1 and O2 iteratively for the horse-riding image at

iterations of 1, 10, 20, 50, 100, and 180.
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Figure 12: The image coding length gain ∆L by applying operators O1 and O2 verses the iteration.

4.2 The sketch pursuit phase II

From the initialization result of the sketch pursuit phase I, by applying a set of graph operators,

the sketch pursuit phase II maximizes a simplified version of the joint probability (13).

pII(IΛ, Ssk, Snsk; ∆sk) ≈
1

Z
exp{−

1

2σ2
o

(
K∑

k=1

∑
(u,v)∈Λsk,k

(I(u, v)−Bk(u, v))2

+
∑

(u,v)∈Λnsk

(I(u, v)− µ(u, v))2)− E(Ssk)}, (21)

in which the image coding for the sketchable part Λsk and the prior model on Ssk are kept.

The prior model on Snsk is ignored, and a simple Gaussian model is applied to the pixels in the

texture regions Λnsk as in phase I.

Reversible Graph Operators Two pairs of reversible graph operators O1 & O′
1 and O2 &

O′
2 have been introduced in sketch pursuit phase I. An additional eight pairs of graph operators

are proposed and utilized in the sketch pursuit phase II. These operators are summarized in

Table 2 and explained below. These graph operators facilitate the sketch pursuit process to

transverse the sketch graph space.

The third graph operator O3 is called connection, which proposes to connect two vertices by

a new stroke. A set of nearest neighbors for each vertex Ssk,k are found. The operator proposes

to connect each of them to Ssk,k by introducing a new stroke. The operator O3 are repeatedly
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checked for all possible connections. The reverse operation O′
3 is to disconnect two vertices by

removing the connecting stroke.

The fourth and fifth graph operators O4 and O5 are called extension and cross, which propose

to extend one (O4) or two (O5) existing strokes and check if they are crossed with other strokes

and form junctions (O4) or corners (O5). In this situation, one new vertex and one or two more

new strokes may be proposed. The reverse operators O′
4 and O′

5 are to disconnect vertices by

removing one or two strokes.

Graph operators O6 and O7 are called combination, which combines two connected strokes

(O6) or parallel strokes (O7) into one. The reverse operators O′
6 and O′

7 are to break or split

one stroke into two.

Graph operator O8 works on graph vertices and called merging, which merges two nearby

vertices into one. This proposal will remove one stroke and one vertex. The neighborhood of

related strokes will also be changed as shown in Table 2. The reverse operator O′
8 is to split one

vertex into two.

The last two graph operators O9 and O10 are for blobs, which propose to create a blob or

change one stroke or several strokes into one blob. The reverse operations O′
9 and O′

10 are to

remove a blob and change a blob into a stroke.

An example of applying graph operators is show in Figure 14. The ten pairs of reversible

graph operators change the topological property of the sketch graph.

We modify the geometric and photometric properties of the sketch graph by a graph operation

called diffusion, which proposes to change the geometric and photometric properties such as the

vertex position, and the stroke profiles. For example, to defuse the positions of the vertices, we

perturb the position (x, y) in an area of [x± dx, y± dy] and select the position with the highest

coding length gain.

Figure 13 shows an example of the sketch pursuit process. Figure 13.(a) is an input image.

Figure 13.(b) and (c) is the sketch graph after the sketch pursuit phase I and phase II respectively.

Figure 13.(d) is the reconstructed image from the primal sketch model. From the sketch graphs

in Figure 13.(b) and (c), it can be seen that some of the corners/junctions are missed in phase

I due to the weak edge/ridge strength, while they are recovered in phase II.

Sketch Pursuit by Reversible Graph Operators In the sketch pursuit phase II, the

sketch graph Ssk is refined to achieve better Gestalt organization by the ten pairs of the reversible

graph operators discussed above, in a process of maximizing a posterior (MAP).
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operators graph change illustration

O1, O
′
1 create / remove a stroke

O2, O
′
2 grow / shrink a stroke

O3, O
′
3 connect / disconnect vertices

O4, O
′
4

extend one stroke and cross /

disconnect and combine

O5, O
′
5

extend two strokes and cross /

disconnect and combine

O6, O
′
6

combine two connected strokes

/ break a stroke

O7, O
′
7

combine two parallel strokes /

split one into two parallel

O8, O
′
8

merge two vertices / split a

vertex

O9, O
′
9 create / remove a blob

O10, O
′
10

switch between a stroke(s) and

a blob

Table 2: The 10 pairs of reversible graph operators used in the sketch pursuit process.
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(a) (b) (c) (d)

Figure 13: One result of the primal sketch model. (a) input image; (b) raw sketch graph after sketch

pursuit phase I; (c) final sketch graph after sketch pursuit phase II; (d) reconstructed image from our

primal sketch model.

(Ssk, Snsk)
∗ = arg max pII(Ssk, Snsk|IΛ; ∆sk) (22)

= arg max pII(IΛ, Ssk, Snsk; ∆sk) (23)

= arg min
1

2σ2
o

(
K∑

k=1

∑
(u,v)∈Λsk,k

(I(u, v)−Bk(u, v))2

+
∑

(u,v)∈Λnsk

(I(u, v)− µ(u, v))2) + E(Ssk)

= arg minLA + LS

= arg minL(Ssk, Snsk) (24)

where LA = 1
2σ2

o
(
∑K

k=1

∑
(u,v)∈Λsk,k

(I(u, v)−Bk(u, v))2 +
∑

(u,v)∈Λnsk
(I(u, v)−µ(u, v))2) is called

image coding length, LS = E(Ssk) is called sketch coding length, L(Ssk, Snsk) = LA + LS is

called total coding length.

As illustrated in Figure 14, from a current sketch graph Ssk, a local subgraph is examined.

All of the ten pairs of graph operators are checked for that local graph. We exam all the new

subgraphs after three to five operations. All possible graph change candidates (S′
sk, S

′
nsk) in

these three to five operations (usually around 5 to 20) are evaluated in terms of total coding

length gain ∆L = L(Ssk, Snsk) − L(S′
sk, S

′
nsk). Currently we adopt a greedy method, by which

if the best ∆L > δ, where δ is pre-specified threshold, the local graph will be modified. This

process is repeated until no modification can be accepted.
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Figure 14: An example of applying graph operators. (a) a local image patch from the horse-riding

image; (b) the sketch graph after sketch pursuit phase I; (c) the sketch graph after sketch pursuit phase

II; (d) the zoom-in view of the upper rectangle in (b); (e) applying graph operator O3 – connecting

two vertices to (d); (f) applying graph operator O5 – extending two strokes and cross; (g) the zoom-in

view of the lower rectangle in (b); (h) applying graph operator O4 – extending one stroke and cross; (i)

applying graph operator O4 to a second stroke; (j) combining (h) and (i); (k) applying graph operator

O4 – extending one stroke and O′

1 – removing one stroke.
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4.3 The texture clustering process

In the sketch pursuit process, we use a simplified model for the texture regions, which is a

Gaussian model with a local mean of µ(u, v) and variance σ2
0. After the sketch pursuit process is

finished, we have the lattice Λnsk for the textures. We use a texture clustering method to divide

them into regions. The feature h(u, v) which is chosen for clustering is the histogram of a set of

pre-selected filters within a local window (e.g. 7x7). For example, if we use seven filters and if

7 bins are used for each of the filter response histogram, then totally we have a 49-Dimensional

feature h(u, v) for each pixel (u, v) in Λnsk. The clustering process is also maximizing a posterior,

S∗
nsk = arg max p(Snsk|IΛnsk

)

= arg max p(IΛnsk
|Snsk)p(Snsk)

= arg min
M∑

m=1

E(IΛnsk,m
|Snsk,m) + E(Snsk), (25)

E(IΛnsk,m
|Snsk,m) = −

1

2
log |Σm| −

1

2

∑
(u,v)∈Λnsk,m

(h(u, v)− hm)T Σ−1
m (h(u, v)− hm), (26)

where E(Snsk) follows the Potts model (17). The texture regions are modeled by multivariate

Gaussian with the mean hm and the covariance Σm for region Λnsk,m. After the texture regions

are obtained, we have a FRAME model for each region and draw samples from the FRAME

models to synthesize textures for the final sketch pursuit results.

5 Experiments

5.1 Sketch pursuit results

We run our algorithm on hundreds of images. Figures 15, 16, and 17 show some results of the

sketch pursuit process. From these results, it can be seen that the sketch graphs capture the

main structures in the images while the leftover textures are modeled perceptually well by MRF

models.

5.2 Comparison with edge detection

Canny edge detector can be considered as a special case of the proposal for the primal sketch

pursuit, where the filters used in the canny edge detector can be incorporated as a subset of the

filters used in the proposal for the primal sketch pursuit. From the proposal, the sketch pursuit
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(a) (b) (c)

Figure 15: More results of the primal sketch model. (a) ) input image; (b) sketch graph; (c) reconstructed

image from our primal sketch model.

process uses a generative model and prior model to construct the sketch graph, which consists

of visual primitives such as corners and junctions. The sketch graph representation is not pixel

level representation any more. It is far sparser than the edge map, which has no concepts such

as corners, junctions, and line segments.

There are three parameters for the Canny edge detection [5]: the Gaussian blur scale σ, the

low threshold θl and high threshold θh. Some researchers set θl = 0.4 ∗ θh and reduce them to

two parameters. Figure 18 shows the Canny edge maps for the horse riding image with three
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(a) (b) (c)

Figure 16: More results of the primal sketch model. (a) ) input image; (b) sketch graph; (c) reconstructed

image from our primal sketch model.

Gaussian blur scales σ = 0.6, 1.2, 1.8. For each scale, we choose the best thresholds such that

the edge map looks the best (not too many noisy edges on textures, but the main structures are

kept.) We also set θl = 0.4 ∗ θh.

Some results are shown in Figure 18. We can see: (1) For the eye of the horse (marked 1),

it is represented as a blob in the primal sketch, while a set of edges are detected by Canny edge

detector; (2) For the ridge (marked 2), it is represented by one sketch with a ridge profile in

the primal sketch, while double Canny edges are detected; (3) For the corners and junctions

(marked 3, 4 and 5), the primal sketch explicitly captures them more accurately than the Canny

edges since a generative model and a spatial MRF model are adopted.
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(a) (b) (c)

Figure 17: More results of the primal sketch model. (a) ) input image; (b) sketch graph; (c) reconstructed

image from our primal sketch model.

5.3 Applications

As a low-level image representation, the primal sketch model provides a common platform for

image coding, processing, and high level tasks.

Our primal sketch model directly leads to a lossy image coding scheme. Since we use the

FRAME model for the non-skechable texture regions, those regions are coded semantically

(perceptually) by the histograms of the filter responses. The coding error per pixel might be
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(a) σ = 0.6, θh = 0.80 (b) σ = 1.2, θh = 0.75 (c) σ = 1.8, θh = 0.70

(d) primal sketch graph

Figure 18: Comparison between Canny edges and the primal sketch. Canny edges for the horse riding

image with different parameters. For the eye of the horse (marked 1), it is represented as a blob in the

primal sketch, while a set of edges from the Canny edge detection are produced. For the ridge (marked

2), it is represented by one sketch with a ridge profile in the primal sketch, while double Canny edges are

detected. For the corners and junctions (marked 3, 4 and 5), the primal sketch explicitly captures them

more accurately than the Canny edges.
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(a) original image (b) sketch image

(c) interpolation (d) residue

(e) with 800 bases (f) residue

(g) with 1600 bases (h) residue

Figure 19: One example of the lossless image coding from the primal sketch model.

very high. However,the perception of textures is kept and very high compression ratio (more

than 1 : 25 are achieved.) We explain this coding scheme by an example in Figure 2. Table 1

shows the approximate coding length for each step.

For the sketch graph, it is more efficient to code the junctions first, then code the corner

vertices since the junctions are less randomly/independently distributed in the image, while the
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corner vertices can be coded relatively to the junctions.

From the primal sketch model, we propose a lossless coding scheme as follows. For both

the sketchable and non-sketchable parts, sparse coding are used. We use the constructed visual

primitive dictionary for the sketchable portion and use Gabor wavelets for the non-sketchable

portion. As shown in Figure 19, from the reconstructed sketchable part of the image, we run the

linear interpolation to fill-in the non-sketchable portion with the sketchable part as boundary

conditions. The interpolation result is shown in Figure 19.(c). We run the matching pursuit

process on the residual image after interpolation (shown in Figure 19.(d)). As more and more

bases are used, the residual image approaches Gasssian noise as shown in Figure 19.(e) to (j).

6 Discussion

In this paper, we present a primal sketch model that integrates three components: a texture

model (Julesz ensemble), a generative model with image primitives (textons), and a mixed

random field for the sketch graph.

Our model can be traced back to the line process or weak membrane models used in (Mumford

and Shah, 89, Blake and Zisserman, 87). They employed a set of edges B that breaks the

smoothness energy,

p(J, B) ∝ exp{−
∫
Λ/B
||∇J(x, y)||2dxdy − λ||B||}.

The sketch graph Ssk can be viewed as an extension of the edges B, and the texture model is

an extension of the smoothness term by both the filters and potentials. Along this vein, our

work is interestingly related to the inpainting work (Chan and Shen, 01 and others), which

adopts a PDE for filling in scratched pictures. The inpainting work is a variational method for

minimizing the smoothness term. Our method is much more general in the potential formulation

and simulates the texture by sampling, instead of maximization.

Our model also have some implications for the roles of neurons in V1. It is well known that

V1 cells in primate visual cortex have Gabor like functions, but it is puzzling what roles the

cells play in visual representation, because a Gabor function can be used as filters for pooling

information to form the texture perception or be used as a linear base for representing the

image primitive. We believe that the V1 cells can switch between the two roles when a critical

sketchability condition occurs.
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The primal sketch is a generic token representation of natural images. As Marr predicted,

many middle level vision tasks can be built on this representation. Some most recent work in

our lab have demonstrated that the primal sketch representation provides a representation for

shape from shading, stereo, motion etc., which is more effective than the MRF on pixels, because

of its power of knowledge representation and effective inference.
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