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ABSTRACT 

Sherry L. Palacios 

Identifying and tracking evolving water masses  

in optically complex aquatic environments 

 

Earth’s climate is intimately associated with biogeochemical processes of the sea. 

Biological Oceanography explores mechanisms controlling carbon uptake by 

phytoplankton, carbon transfer through biogeochemical processes, and energy flow 

through ecosystems. Satellite Oceanography affords a synoptic view of the sea 

surface and reveals underlying physical, chemical, and biological processes. Since the 

advent of ocean color satellites in 1978, ocean color algorithms evolved from 

quantifying phytoplankton biomass to addressing more complex bio-optical and 

oceanographic problems: characterizing inherent optical properties of the water 

column, estimating primary productivity, and detecting water masses. Locating a 

water mass, tracking its changes, and discriminating its constituents using bio-optical 

algorithms are the three objectives of this dissertation. The first objective identifies 

the location of the Columbia River Plume (CRP) by using light absorption by 

chromophoric dissolved organic matter (aCDOM) as an optical proxy for salinity. It 

relates in situ measurements of aCDOM to salinity using linear regression analysis, then 

computes “synthetic” salinity using MODIS-Aqua satellite imagery. The algorithm is 

robust at predicting salinity of the CRP on the Oregon and Washington shelf. The 

second objective identifies sub-mesoscale features within the CRP and tracks their 
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changes in space and time. It employs k-means clustering and discriminant function 

analysis to identify water types from bio-optical and environmental input variables 

using in situ and MODIS-Aqua satellite observations. The algorithm is robust at 

identifying features in satellite and mooring data, consistent with measured and 

modeled water masses in previous work. The third objective involves development of 

an optical model (PHYDOTax) that discriminates phytoplankton taxa contained 

within an algal bloom. A hyperspectral ocean color signature-library for known 

phytoplankton (dinoflagellates, diatoms, haptophytes, cryptophytes, chlorophytes, 

cyanophytes, and phycocyanin-containing eukaryotes) was developed and then 

PHDYOTax decomposed ocean color spectra for culture mixtures and field samples 

into constituent taxa. PHYDOTax is robust at discriminating phytoplankton taxa and 

is one of the first algorithms to distinguish dinoflagellates from diatoms in ocean 

color data. These algorithms are new tools for the oceanographic community to 

constrain the location of carbon uptake and transfer through space and time in the 

CRP, and to partition energy flow through different phytoplankton-taxon dominated 

ecosystems. 
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INTRODUCTION 

 

No water, no life. No blue, no green.     --Sylvia Earle 

 

Ocean Biogeochemistry 

 The bio-optical properties of the aquatic environment are a reflection of the 

biogeochemical processes occurring within the medium. Biogeochemistry is the 

interdependence of the physical, chemical, geological, and biological realms that 

drive carbon fixation by phytoplankton, cycling of nutrients, flow of fixed carbon 

through ecosystems, and ultimate delivery of that carbon as sediment deposited on the 

sea floor. An over-arching theme in oceanography is to attempt to quantify and 

describe biogeochemical processes in order to understand carbon flow through the 

ocean biosphere. Ocean bio-optics attempts to relate the color of the sea to the 

constituents and processes in the upper water column using bio-optical algorithms so 

that observations of ocean biogeochemistry can be made over the large spatial scales 

and fine temporal scales afforded by satellites. Observations of these properties or 

processes can be used to understand the uptake of carbon through photosynthesis, the 

location of water masses, and the residence time of water masses. These types of 

observations can also be used to validate geophysical fluid dynamic models and 

ecosystem models. An understanding of the location of a water mass, its changing 

structure in space and time, and the constituents contained within it contribute to 

estimates of primary productivity in the ocean, transfer of carbon through ecosystems, 
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and transport of carbon through biogeochemical processes – all of which affect 

climate.  

Satellite and Airborne Sensors 

 The ocean is a vast, dynamic, and difficult to observe environment. As a result 

it is traditionally under-sampled in both space and time using mooring or shipboard 

measurements alone. Satellite and airborne sensors complement the incomplete 

record collected by more traditional means. The polar-orbiting satellite, MODIS-

Aqua, collects near-daily observations of the surface of the Earth at a nominal 

resolution of one kilometer per pixel at nadir. Of the 36 spectral bands of information 

collected by the sensor, eight are used for ocean color study and can be further refined 

to 250 meter per pixel resolution through a cubic-spline interpolation scheme [Franz 

et al., 2006] of three 250 m resolution bands. At either 1 km or 250 m resolution, and 

with near-daily overpasses of wide geographic swaths, MODIS is an improvement in 

temporal and spatial resolution over traditional sampling techniques. Airplane 

mounted sensors are limited temporally by research expeditions and weather 

conditions, but have greater spatial resolution than most civilian satellites at scales of 

tens of meters per pixel. Airborne sensors also often collect observations at higher 

spectral resolution than the standard ocean color satellites. The greater degrees of 

freedom afforded by more spectral bands allows for increased computational and 

statistical complexity in ocean color algorithms. As a result, airborne imaging can be 

used to validate existing satellite sensors, develop algorithms for them, and as models 

to develop satellites with higher spectral resolution. 
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 Since the launch of the Nimbus-7 satellite in 1978, with the first ocean color 

sensor – the Coastal Zone Color Scanner (CZCS) [Gordon et al., 1983], several 

generations of satellites have been used by the ocean color community. Some 

commonly used satellite sensors include the Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the 

MEdium Resolution Imaging Spectrometer (MERIS), Visible Infrared 

Imager/Radiometer Suite (VIIRS), and the Hyperion Imaging Spectrometer. These 

include multi-spectral sensors, those collecting imaging data from a few discrete 

wavebands in the visible/near infrared range (e.g. eight for MODIS), and 

hyperspectral sensors collecting imagery in the visible/near infrared range at much 

higher spectral resolution (e.g. seventy for Hyperion). The MODIS-Aqua satellite 

sensor is used for the first two chapters of this dissertation. The third chapter uses an 

airplane-mounted sensor named the Spectroscopic Aerial Mapper with On-board 

Navigation (SAMSON), which measures ocean color at 256 wavebands in the 

visible/near infrared [Davis and Bissett, 2007]. 

Ocean Bio-optics  

 Make a casual observation of the sea and the surface appears blue for most of 

the world’s ocean. The magnitude of light incident on the Earth’s surface is greatest 

in the visible range of the electromagnetic spectrum (wavelengths: 400 – 700 nm). As 

light travels from the sun, through the atmosphere, down into the water column, and 

then is backscattered upward and out of the sea surface, it interacts with scattering 

and absorbing constituents [Kirk, 1994]. Those constituents change the magnitude of 
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light distributed across the spectrum so that the fraction re-emitted from the surface 

has a different color from the light that was incident on the surface. The eye absorbs 

the light emitted from the sea and the visual perception system interprets it as a blue 

or blue-green color. 

 The human eye evolved to absorb light most effectively at 555 nm, and like 

this biological model, other biological systems have evolved to capture light in the 

visible part of the spectrum. The system with the greatest biological impact is the 

chloroplast, where photosynthesis occurs in eukaryotic phytoplankton and vascular 

plants. Photosynthesis harnesses light energy and converts it to chemical energy. The 

key photo-reactive pigment for photosynthesis is chlorophyll-a, which absorbs light 

strongly at 440 nm, 680 nm, and 700 nm. Energy yielded during the light reactions 

fuels the biosynthesis of organic carbon in the Calvin cycle of the dark reactions. 

Uptake of carbon dioxide during photosynthesis, and conversion to biologically 

available, organic forms is the primary production that fuels global ecosystems. This 

process of carbon uptake by phytoplankton is a necessary step in the carbon cycle that 

helps to balance Earth’s atmospheric carbon concentrations.  

 Almost all phytoplankton contain chlorophyll-a. The pigment has a direct 

relationship to phytoplankton biomass, and so the presence of the pigment can be 

used as a proxy for phytoplankton biomass in remote sensing imagery. Satellite 

remote sensing of chlorophyll-a can therefore be used to derive global estimates of 

phytoplankton standing stocks, and combined with sea surface temperature and 

incident solar irradiance can be used to estimate primary productivity, and thus 
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carbon export to sediments, carbon transfer within ecosystems, and other 

biogeochemical processes. By measuring this one optically active constituent of the 

sea, enormous progress has been made in quantifying and understanding the Earth’s 

carbon cycle. 

 Like the human eye, an imaging spectrometer on an airplane or satellite 

detects the water leaving radiance, or light emitted from the sea surface. Ocean color 

retrievals from these sensors can be used to estimate chlorophyll-a concentrations. 

Chlorophyll-a differentially absorbs light across the visible spectrum, which results in 

characteristic peaks and troughs in the water leaving radiance. The most commonly 

used chlorophyll-a algorithms use the ratio of two magnitudes from this spectrum as 

an optical proxy for chlorophyll-a concentration (e.g. [O'Reilly et al., 1998]). In 

empirical algorithms, chlorophyll-a estimates from satellite retrievals are matched in 

space and time to in situ measurements of chlorophyll-a and a relationship is 

computed using a linear or polynomial best fit. The equation from this fit is used to 

estimate chlorophyll-a concentration from satellite observations.  

 Sensing of chlorophyll-a using an empirical algorithm is just one example of 

how a biogeochemically important constituent can be measured using remote sensing 

imagery. Other constituents such as sediment and chromophoric dissolved organic 

matter (CDOM) can be measured using existing bio-optical algorithms. Semi-

analytical and analytical models that rely on first principals of bio-optics have been 

developed since the launch of the first satellites to estimate a variety of 

oceanographically meaningful properties such as the inherent optical properties, light 
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absorption and backscattering [Lee et al., 1994; Maritorena et al., 2002]. An 

advantage of semi-analytical and analytical algorithms over empirical models is that 

they may describe a wider range of possible outcomes than may be available in the 

observed environment used to build the empirical model. This dissertation employs 

both an empirical (Chapter 1) and semi-analytical (Chapters 2 and 3) approach to 

algorithm development [Palacios et al., 2009; Palacios et al., in prep-a; Palacios et 

al., in prep-b]. 

Unifying Bio-optical Equation 

 One fundamental, unifying equation ties together the bio-optical algorithms 

developed in this dissertation. It is the equation for remote sensing reflectance, which 

describes the relationship of inherent optical properties (IOP) of the constituents 

within the water column with the color of the light emitted from the sea surface 

[Mobley, 1994].  Using radiative transfer theory, remote sensing reflectance, Rrs, can 

be defined in terms of the inherent and apparent optical properties (AOP) of an 

optically deep and vertically homogeneous water column (Equation 1): 

 

    (1) 

 

where λ is wavelength, t is the transmittance across the air-seawater interface, n is the 

index of refraction of seawater, f is a function of the solar zenith angle, Q(λ) is the 

upwelling irradiance-to-radiance ratio, bb(λ) is the spectral backscattering coefficient, 
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and a(λ) is the total spectral absorption coefficient [Lee et al., 1994]. Equation 1 can 

be simplified to (Equation 2): 

      (2) 

 

where C is an approximation to account for transmittance across the air-sea interface, 

the index of refraction, the solar zenith angle, and the upwelling irradiance-to-

radiance ratio. 

The spectral light absorption coefficient can be further decomposed to (Equation 3): 

 

   a (λ) = aw (λ) + aNAP (λ) + aph (λ) + aCDOM (λ)  (3) 

 

where the subscripts w, NAP, ph, and CDOM refer to: water, non-algal particles 

(detritus), phytoplankton, and chromophoric dissolved organic matter. 

The optical scattering coefficient can be described by (Equation 4): 

 

   b (λ) = bfw(λ) + bfp(λ) + bbw(λ) + bbp(λ)   (4) 

 

where the subscripts f and b refer to light scattered in the forward, f, and backward, b, 

directions, w and p refer to light scattered by water and particles. For this dissertation, 

the inherent optical properties of interest include aCDOM, a, and bbp. These IOP’s are 

the dominant variables in defining river plumes as a water mass (aCDOM), 
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characterizing the sub-mesoscale features of the river plume (aCDOM), and for 

discriminating among phytoplankton taxa (IOP’s: a, bbp; AOP: Rrs). 

 

Dissertation Objectives 

 The goal of this dissertation is to develop bio-optical algorithms that address 

three general questions related to biogeochemistry: What is the location of the water 

mass? How is the water mass changing in space and time? What constituents are 

contained within the water mass? Specifically, the first objective is to develop an 

optical proxy for the low salinity water of the Columbia River Plume (CRP) in order 

to detect the plume water mass in satellite imagery of the Oregon and Washington 

shelf. Salinity cannot presently be sensed at the fine spatial and temporal scales 

needed to understand the CRP’s dynamic processes using direct satellite 

measurements, but ocean color satellites do have that resolution. The second 

objective is to develop a statistical clustering technique to identify sub-mesoscale 

features within the plume in space and over a time series of days in order to track 

changes within the CRP related to changes in biogeochemical processes such as 

mixing and phytoplankton growth. The third objective is to develop a phytoplankton 

taxon discriminator in order to partition the chlorophyll pool of an algal bloom into its 

resident algal taxa.  
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These objectives are addressed in the three chapters of this dissertation: 

Chapter 1: Development of synthetic salinity from remote sensing for the Columbia 

River Plume 

Chapter 2: Optical characterization of water masses within the Columbia River Plume 

Chapter 3: Discrimination of phytoplankton taxa in an optically complex aquatic 

environment 

Study Locations  

1. Columbia River Plume  

 The Columbia River drains a watershed of approximately 600,000 km2 of the 

northwest United States and southwest Canada. The river flows into the Pacific 

Ocean (Fig. 1) and forms a buoyant plume, which remains a coherent structure, or 

water mass, until mixing incorporates it with shelf water. The plume delivers fresh 

water, nutrients, phytoplankton, and pollutants to the Oregon and Washington shelf. It 

is an important source of silicic acid to this highly productive region that supports an 

extensive salmonid fishery. The CRP is a dynamic feature that is governed by 

physical processes nearshore, including wind forcing [Hickey, 1989]. Depending on 

the direction of wind flow, the plume tends southward and offshore during upwelling 

winds and northward during relaxation or downwelling-favorable winds. The plume 

waters can be observed in both the northward and southward direction at the same 

time because of the presence of aged plume waters on the shelf. Little of this dynamic 

nature of the plume is captured with the limited number of moorings in the area, 

which includes just three moorings in the vicinity of the plume off Oregon and 



 10 

Washington. Recently, more moorings inside the Columbia River Estuary and near 

the mouth have been installed, but the shelf continues to remain undersampled. The 

motivation for the first chapter was to develop an algorithm that could identify the 

location of the CRP over a wide spatial scale not possible with the existing moorings. 

 

 
Fig. 1. Study Location – Chapters 1 and 2. The Columbia River Plume is located on 
the Oregon and Washington shelf and can be found northward or southward from the 
mouth of the river. 
  

 Physical processes, such as mixing and winds, dominate the behavior and 

structure of the plume near to shore (< 100 km). Smaller, or sub-mesoscale, features 

within the plume water mass have been observed and modeled for the CRP. These 

features affect the retention of water on the shelf and play an important role in 
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primary productivity of the shelf and offshore regions. This includes a bulge feature 

at the river mouth that acts as a retentive bio-reactor and also as a barrier to 

southward flowing water from the Washington shelf [Horner-Devine, 2009; Kudela 

et al., 2010]. In addition, dipole eddy features have been observed and modeled for 

the shelf region and these are likely the result of bottom topography [Banas et al., 

2009]. These eddies influence retention and cross-shelf transport of material to the 

California Current System. The ability to identify and characterize these sub-

mesoscale features within the larger CRP water mass was the motivation for chapter 2 

of the dissertation. The approach taken was a statistical classifier of water types that 

has been applied in other regions of the world and for non-river water masses [Martin 

Traykovski and Sosik, 2003; Oliver et al., 2004]. The types of possible observations 

from this method could be used to validate geophysical models of the plume that 

predict the presence and location of sub-mesoscale features in both space and time. 

2. Monterey Bay – Algal Bloom  

 The Monterey Bay is an open bay on the central California coast (Fig. 2). It 

lies at the margin of the California Current System, an eastern boundary current. 

Typical of an eastern boundary current region, Monterey Bay experiences wind-

driven coastal upwelling, which fuels high levels of primary productivity. The 

upwelling season (approximately March – August) tends to be dominated by the 

diatom phytoplankton group. During extended periods of wind relaxation, the 

dinoflagellates tend to proliferate where conditions are calm and favorable for 

growth. Though there is a seasonal component to the dominance of diatoms or 
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dinoflagellates in the bay, both taxa can co-occur at the same time and location. These 

two phytoplankton groups are represented most in phytoplankton samples in the bay, 

but other taxa (e.g. haptophytes, cryptophytes, cyanophytes, and chlorophytes) can be 

present.  

 
 
 

Fig. 2. Study Location – Chapter 3. The Monterey Bay.  
 

 Like grasses supporting a bison-dominated ecosystem and forbs supporting 

elk, the phytoplankton groups of the ocean support a variety of different ecosystems 

with their representative dominant taxa (e.g. salmon, mackerel, cnidarians). 

Identifying which phytoplankton taxa are present can be useful to partition carbon 

flows to different ecosystems. Collecting whole water samples and enumerating cells 

using microscopes or imaging flow-through systems is historically the method used to 

identify phytoplankton taxa. Until the present study, it was not possible to 
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differentiate between diatoms and dinoflagellates using an ocean color algorithm with 

remotely sensed data. One motivation for this study was to develop a bio-optical 

algorithm to discriminate phytoplankton taxa using ocean color data for use in 

ecosystem models and to validate plankton functional type models. The second 

motivation was to develop an algorithm to monitor for harmful algae using airborne 

or satellite imagery. Traditional sampling techniques (e.g. collecting whole water at 

fixed stations) are episodic and often costly. Remote detection can be used to improve 

spatial sampling and guide adaptive sampling decisions during a bloom event. The 

phytoplankton discrimination algorithm developed for this dissertation may improve: 

sampling of harmful algal blooms, estimates of carbon flow through different 

phytoplankton-dominated ecosystems, and validation of existing plankton functional 

types with observations of taxon-specific biomass estimated from ocean color 

imagery. 

 



 14 

5. Literature Cited 
 

Banas, N. S., P. MacCready, and B. M. Hickey (2009), The Columbia River plume as 
cross-shelf exporter and along-coast barrier, Continental Shelf Research, 29(1), 292-
301. 
Davis, C., and W. P. Bissett (2007), Characterization of a harmful algal bloom in 
Monterey Bay, CA using airborne hyperspectral imagery, in Hyperspectral Imaging 
and Sounding of the Environment (HISE), edited, Optical Society of America (OSA), 
Santa Fe, NM. 
Franz, B. A., P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, 
and C. R. McClain (2006), MODIS land bands for ocean remote sensing applications, 
paper presented at Proc. Ocean Optics: XVIII, Montreal, Canada, 9 - 13 October 
2006. 
Gordon, H. R., J. W. Brown, O. B. Brown, R. H. Evans, and D. K. Clark (1983), 
Nimbus-7 Czcs - Reduction of Its Radiometric Sensitivity with Time, Applied Optics, 
22(24), 3929-3931. 
Hickey, B. M. (1989), Patterns and processes of circulation over the Washington 
continental shelf and slope, in Coastal oceanography of Washington and Oregon, 
edited by M. R. Landry and B. M. Hickey, pp. 41-109, Elsevier, New York. 
Horner-Devine, A. R. (2009), The bulge circulation in the Columbia River plume, 
Continental Shelf Research, 29(1), 234-251. 
Kirk, J. T. O. (1994), Light and photosynthesis in aquatic ecosystems, 509 pp., 
Cambridge University Press, New York. 
Kudela, R. M., et al. (2010), Multiple trophic levels fueled by recirculation in the 
Columbia River plume, Geophysical Research Letters, 37, 7. 
Lee, Z. P., K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis 
(1994), Model for the Interpretation of Hyperspectral Remote-Sensing Reflectance, 
Applied Optics, 33(24), 5721-5732. 
Maritorena, S., D. A. Siegel, and A. R. Peterson (2002), Optimization of a semi-
analytical ocean color model for global-scale applications, Applied Optics, 41, 2705 - 
2714. 
Martin Traykovski, L. V., and H. M. Sosik (2003), Feature-based classification of 
optical water types in the Northwest Atlantic based on satellite ocean color data, J. 
Geophys. Res., 108(C5), -. 
Mobley, C. D. (1994), Light and Water. Radiative Transfer in Natural Waters, 
Academic, New York. 
O'Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. 
Garver, M. Kahru, and C. McClain (1998), Ocean color chlorophyll algorithms for 
SeaWiFS, Journal of Geophysical Research-Oceans, 103(C11), 24937-24953. 
Oliver, M. J., S. Glenn, J. T. Kohut, A. J. Irwin, O. M. Schofield, M. A. Moline, and 
W. P. Bissett (2004), Bioinformatic approaches for objective detection of water 
masses on continental shelves, J. Geophys. Res., 109(C07S04), 
doi:10.1029/2003JC002072. 



 15 

Palacios, S. L., T. D. Peterson, and R. M. Kudela (2009), Development of synthetic 
salinity from remote sensing for the Columbia River Plume, Journal of Geophysical 
Research-Oceans, 114(C00B05). 
Palacios, S. L., T. D. Peterson, and R. M. Kudela (in prep-a), Optical characterization 
of water masses within the Columbia River Plume. 
Palacios, S. L., H. M. Sosik, K. K. Hayashi, M. Jacox, T. D. Peterson, and R. M. 
Kudela (in prep-b), Discrimination of phytoplankton taxa in an optically complex 
aquatic environment. 
 
 

 



	  16 

CHAPTER 1 

Development of Synthetic Salinity from Remote Sensing  

for the Columbia River Plume  

 

Abstract 

The Columbia River Plume (CRP) is an ecologically important source of nutrients, 

pollutants, and fresh water to the Oregon/Washington shelf. It is traditionally under-

sampled, with observations constrained to ships or moorings. High spatial and 

temporal resolution observations afforded by satellites would increase sampling if the 

plume could be quantitatively detected in the imagery. Two empirical algorithms are 

presented using data from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) to estimate sea surface salinity in the region of CRP. Salinity cannot be 

detected directly, so a proxy for fresh water is employed. Light absorption by 

chromophoric dissolved organic matter (aCDOM) is inversely proportional to salinity 

and linear due to conservative mixing of CDOM-rich terrestrial runoff with 

surrounding ocean water. To estimate synthetic salinity, simple linear (salinity vs. 

aCDOM) and multiple linear (salinity & temperature vs. aCDOM) algorithms were 

developed from in situ measurements of aCDOM collected on the Coastal Ocean 

Processes-River Influences on Shelf Ecosystems cruises. These algorithms were 

applied to MODIS 250m-resolution data layers of sea surface temperature and 

absorption by colored dissolved and detrital matter (aCDM) estimated at 350nm and 

412nm from the GSM01 algorithm. Validation of MODIS-derived synthetic salinity 
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with coincident in situ measurements revealed significant correlation during both 

downwelling (simple: b1=0.95, r2=0.89; multiple: b1=0.92, r2=0.89) and upwelling 

periods (simple: b1=1.26, r2=0.85; multiple: b1=1.10, r2=0.87) using the 412nm data 

layer. Synthetic salinity estimated using the 350 nm data layer consistently over-

estimated salinity. These algorithms, when applied to aCDM at 412nm, enable synoptic 

observations of CRP not permitted by ships or moorings alone. 

 

Key Terms: Columbia River Plume, chromophoric dissolved organic matter, CDOM, 

optics, remote sensing, MODIS 

 

1.0 Introduction 

 The Columbia River watershed spans 674,000 km2 and includes parts of the 

northwestern US and southwestern Canada. The mouth of the river lies at the border 

of the US states of Washington and Oregon (46° N, 124° W). Approximately 77% of 

the fresh water flow to the NE Pacific Ocean, from San Francisco to the Strait of Juan 

de Fuca, comes from the Columbia River (Hickey 1989). Discharge varies from 3,000 

– 17,000 m3 s-1 (averaging 7,000 m3 s-1 annually), and reaches a maximum freshet in 

the spring due to snowmelt (Hickey 1998). Flow of the Columbia River pulses tidally 

to the ocean where it becomes a buoyant plume (Hickey 1989). The forces of wind 

stress, Coriolis, and inertia influence the flow of the Columbia River Plume (CRP) as 

it exits the mouth. With southerly winds, downwelling conditions prevail and the 

plume flows northward along the Washington shelf. Northerly winds induce 
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upwelling and the plume flows southward and offshore (Hickey 1989). It was widely 

accepted that the northward flow dominates in the winter and southward flow 

dominates in the summer. However, this canonical view of flow has recently been 

challenged (Garcia Berdeal et al. 2002). Even short term (hours to days) oscillations 

in wind forcing can cause transient reversals in the typical seasonal flow patterns 

(Garcia Berdeal et al. 2002; Hickey 1998), with reversals more probable in summer 

than winter. Thomas and Weatherbee (2006) analyzed the variability of the CRP 

along the Washington and Oregon coastal margin over a period of six years (1998 – 

2003) using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) imagery. The 

analysis included a supervised classification scheme using 5 channels of normalized 

water-leaving radiance (nLw at 412, 443, 490, 510 and 555 nm). Their observations 

confirmed the bi-modal flow of the plume, but they lacked in situ measurements for a 

validation of ocean color products and could relate statistical patterns in the imagery 

but not geochemically describe those patterns. 

 The CRP supplies silicate, nitrate, trace metals, pollution, fresh water, and 

organic matter (both dissolved and particulate) to the Washington and Oregon shelves 

(Aguilar-Islas & Bruland 2006; Carpenter & Peterson 1989; Hill & Wheeler 2002; 

Kachel & Smith 1989; Klinkhammer et al. 2000; Landry et al. 1989; McCarthy & 

Gale 1999). Stratification caused by the fresh water lens and retention of nutrient-rich 

waters on the shelf promote phytoplankton growth in this ecologically important 

habitat for juvenile salmon (De Robertis et al. 2005; Morgan et al. 2005). Therefore, 

identifying and tracking the plume is important for understanding the physical 



	  19 

processes affecting the biology and chemistry of the region. Some constituents in the 

water clearly act as optical tracers of the plume as it flows away from the river mouth 

(Thomas and Weatherbee, 2006). Plume-stimulated phytoplankton biomass, 

suspended inorganic and organic material (e.g. sediments), and chromophoric 

dissolved organic matter (CDOM) all have optical signals that may be useful for 

detecting and tracking the plume as it migrates along the Washington shelf or is 

absorbed into the California Current.  

 Salinity presently cannot be directly detected using satellites at small regional 

scales (10’s of km), but sensors are in development to estimate global salinity from 

space at spatial scales of 10’s to 100’s of km and temporal scales of 30 days or more 

between estimates (Lagerloef et al. 2008). Despite improvements in remotely 

detecting salinity, most of the world’s river plumes are too small and temporally 

dynamic to discern in the coastal environment using these new satellites. Existing 

ocean color sensors (e.g. Moderate Resolution Imaging Spectroradiometer: MODIS) 

can detect CDOM, which can be used as an optical tracer of river plumes in coastal 

margins (Binding & Bowers 2003; Callahan et al. 2004; Hu et al. 2004; Johnson et al. 

2003; Vasilkov et al. 1999) at spatial and temporal scales relevant to their dynamic 

processes. 

 The unique optical character of CDOM in river water (Chen et al. 2004; Hernes 

& Benner 2003) can be employed as a proxy for low-salinity water near shore 

(DelVecchio & Subramaniam 2004; Johnson et al. 2003). CDOM is operationally 

defined as the substance that passes through a 0.2 µm filter and absorbs light strongly 
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from the ultraviolet to ~450 nm (Kirk 1994; Babin et al. 2003). It is a fraction of the 

total DOM pool and can be important in biogeochemical processes (Mopper & Kieber 

2002) as well as an optical tracer. CDOM contributes to the quality and quantity of 

light leaving the sea surface and its variability in natural waters can be used to 

distinguish water types (Bricaud et al. 1981; Carder et al. 1989). The bulk CDOM 

pool in river plumes is enriched in tannins and lignins which contain highly absorbing 

aromatic rings (Blough & Del Vecchio 2002). This terrestrially derived CDOM 

absorbs light strongly at 350 nm and has a different optical character than marine 

CDOM which has few, if any, aromatic rings and absorbs weakly at 350 nm. The 

sources of CDOM in river plumes can be degraded vegetative material in the 

watershed; the product of phytoplankton and bacterial metabolism in the river, 

estuary, or plume after it exits the river mouth; or leachate from soils and estuarine 

sediments (Blough & Del Vecchio 2002; Klinkhammer et al. 2000). CDOM at the 

land-sea interface is generally terrestrially derived and loses its distinguishing 

character as it mixes conservatively with the old, “dirty laundry” CDOM of the open 

ocean (Siegel et al. 2002; Stedmon & Markager 2003). It is the difference in optical 

character between terrestrial and marine derived CDOM that can be exploited to 

optically detect low salinity plumes in near shore environments (Vasilkov et al. 1999; 

Johnson et al. 2003; Conmy et al. 2004; DelVecchio & Subramaniam 2004). 

 Remote sensing in the coastal environment affords a synoptic view that would 

be costly or not possible using shipboard measurements alone. However ground-truth 

measurements are needed, particularly in an environment as dynamic as the Columbia 
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River Plume. This study measures those in situ optical properties and is the first to 

relate salinity to optical properties to identify this water mass on the Washington and 

Oregon shelf. The objectives of this study were (a) to develop empirical algorithms to 

estimate low salinity water in the region of the Columbia River Plume; and (b) to 

apply the algorithms to 250m resolution MODIS data products. The study was 

conducted during the CoOP-RISE (Coastal Ocean Processes – River Influences on 

Shelf Ecosystems) cruises in June 2004, June 2005, August 2005, and June 2006 at 

the mouth and surrounding areas of the Columbia River.  

2.0 Methods 

2.1 In Situ Sample Collection  

 Four research cruises were conducted aboard two vessels, the R/V Wecoma 

and R/V Point Sur, on the Washington and Oregon shelf in the vicinity of the CRP 

during June to July 2004, May to June 2005, August 2005, and May to June 2006. 

Hereafter the cruises will be referred to as June 2004, June 2005, August 2005, and 

June 2006. The study area was contained within a region bounded by 44.7°N and 

48.5°N latitude and 123.5°W and 125.2°W longitude (Fig. 1.1). Three of the cruises 

were scheduled to occur during maximum river discharge in the spring and one 

during reduced flow in the late summer (Fig. 1.2) (USGS, discharge at the Beaver 

Army Terminal, Quincy, OR).  
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Figure 1.1. Study area. Washington and Oregon, United States shelf. Validation 
stations for 2004 (squares) and 2005 (circles). 
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Figure 1.2. River discharge. Discharge of the Columbia River during the study period 
(5 day running averages). Measured at the Beaver Army Terminal, Quincy, Oregon, 
upstream of the Columbia River mouth. Volume reported as m3 s-1. Cruise dates 
noted by shaded area.
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 Light absorption by CDOM (aCDOM) was measured from discrete water 

samples collected near the surface from the CTD rosette and the underway water 

stream. The underway system collected water at 4 m in 2004 and at 2 m in 2005 and 	  

2006. Temperature and salinity were recorded at the time of water collection. Each 

sample was filtered through a 0.2 µm Nuclepore® polycarbonate filter, sealed in a 

polypropylene vial, and stored in the dark at 4°C until it was processed (within six 

weeks) in the lab at UC-Santa Cruz. CDOM optical properties are stable for up to 

four months if stored this way (Johannessen et al. 2003). Absorbance (A) was 

measured on a Cary UV-VIS spectrophotometer (300-800 nm with 0.5 nm resolution) 

using a 0.1 m pathlength quartz cuvette. A Millipore Q-water blank was subtracted 

from these values and spectral absorption (a) was calculated using equation (1) (Kirk 

1994) 

   
  

€ 

aCDOM λ( ) =
2.303 ∗ A λ( ) −A 750( )( )

0.1
    (1) 

The value 2.303 is the correction factor converting log (10) to natural log, A(750) is 

subtracted from all values of A to account for scattering by small particles, and 0.1 m 

is the cuvette pathlength to give units m-1 for absorption. Light absorption at 

wavelength 350 nm was used in the analysis because terrestrially-derived CDOM 

absorbs strongly at this wavelength due to tannins and lignins (Hernes & Benner 

2003). This terrestrially-derived CDOM acts as a tracer for fresh water on the shelf 

because CDOM concentration is inversely proportional to salinity and its 

conservative decrease is a result of mixing. 
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2.2 Statistical Models 

 Two empirical algorithms were developed for each cruise from the aCDOM 

measurements collected in situ. The first algorithm (“simple model”) was a simple 

linear regression testing salinity vs. aCDOM at 350 nm. The second algorithm 

(“multiple model”) was a multiple linear regression testing salinity and temperature 

vs. aCDOM at 350 nm. Temperature was included in the multiple model to account for 

the possible contrast in temperature in river water from oceanic water, particularly 

because upwelling (represented by cool temperatures) is a dominant process in this 

region. An additional reason was to tune the salinity estimate to the CRP and away 

from the “false plumes” of nearby estuaries that may have had different native 

temperatures. A critical p-value of 0.05 was used to determine significance. These 

tests were conducted for each cruise, and then a multivariate analysis of co-variance 

(MANCOVA) was used to determine differences among cruises. Statistical tests were 

computed using the MATLAB Statistics Toolkit (The MathWorks, Inc.).  

2.3 Satellite Analysis 

2.3.1 Data Collection 

During the three year study period, only five days out of a total of 95 cruise 

days were completely clear of clouds over the entire Oregon and Washington shelf. 

Of these five clear days, two days were selected that had sufficient shipboard and 

mooring data to compare in situ measurements of salinity to satellite derived 

estimates of salinity. These two days represented a period of wind driven 

oceanographic downwelling (21 July 2004) and oceanographic upwelling (25 August 
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2005) (Fig. 1.3). In addition to these two clear days used in the salinity analysis, a 

sub-set of images from partly cloudy days was used to evaluate how well the satellite-

derived estimate of light absorption by dissolved and detrital matter (aCDM) fit to in 

situ, shipboard measurements of aCDOM. Partly cloudy scenes were used when the 

region in the image matching the in situ collection location was clear of clouds or 

edge effects of clouds. Of fourteen, partially clear days in June 2004 and August 

2005, only four in 2004 and three in 2005 met the requirements for comparison 

(2004: 11, 12, 17 & 21 July; 2005: 22, 23 & 25 August). 

 

Figure 1.3. Wind vectors. Speed and direction of wind flow at the Columbia River 
mouth during the study periods in (a) 2004 and (b) 2005. Dashed lines represent date 
of satellite image capture and subsequent analysis. Note that 21 July 2004 was a 
period of downwelling-favorable winds and 25 August 2005 a period of upwelling-
favorable winds. 
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Level 0 MODIS swaths occupying the region 40° to 50° N and 128° to 123° 

W for the study days were downloaded from LAADS Web (Goddard Space Flight 

Center, Level 1 and Atmosphere Archive and Distribution System). These data were 

processed to Level 2 geophysical products using SeaDAS (version 5.1) with the 

default settings of the NASA/Goddard Ocean Biology Processing Group (OBPG) 

using a two wavelength (1240 and 2130 nm) atmospheric correction (Franz et al. 

2006). Data were projected using a sinusoidal projection at 250 m resolution and sub-

setted to the region of the Oregon and Washington shelf bounded by 44.7° to 48.5° N 

and 123.4° to 125.2° W. The data layers acquired and processed in this study included 

sea surface temperature (SST) and light absorption by colored dissolved and detrital 

matter at 412 nm (adg (l)) using the GSM01 (Maritorena et al. 2002), QAA (Lee et al. 

2002), and Carder (Carder et al. 1998) algorithms. Estimates of adg 350 nm were 

calculated using equation 2 (Twardowski et al. 2004): 

  aλ = aλ * exp(s(λ0 – λ))    (2) 

where l0 equals 412; l equals 350; and the spectral slope parameter, s, was 0.0206 for 

GSM01, 0.015 for QAA, and 0.022 for the Carder algorithm-- the standard parameter 

values used by SeaDAS.  Although the data used for these analyses (SST and adg (l)) 

are at a native resolution of 1 km (nadir), SeaDAS applies a bilinear cubic 

interpolation to create pseudo-250 m resolution data; the algorithms then use the true 

250 m resolution data at 645 nm and 500 m resolution data at 469 nm and 555 nm 

wavelengths to interpolate the 250 m resolution for the other wavelengths (Franz et 

al. 2006).  
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2.3.2 aCDOM vs. aCDM and Algorithm Comparison 

The three satellite algorithms were carefully evaluated to determine which one 

had the best fit of in situ aCDOM at 412 nm to satellite-derived adg 412 nm. Sediment 

and other colored detrital material influence the adg measurement; the goal was to 

quantify the error due to the presence of this material and to choose the algorithm 

with the best fit for aCDOM for use in the salinity estimate. Shipboard measurements of 

aCDOM were collected within one hour of the satellite over-pass on each of the seven 

days in 2004 and 2005 identified above (locations not shown). Diverse water types 

were sampled in 2004, though less so in 2005 due to the limits of available satellite 

imagery. The imagery was sub-setted to a 4 by 4 pixel box (106 m2) centered on the in 

situ sample location. The mean adg 412 nm value of this 4 by 4 pixel box was 

calculated for each scene for each of the three satellite algorithms. The in situ aCDOM 

at 412 nm was the independent variable and these adg 412 nm estimates for each 

algorithm were the dependent variables in tests of simple linear regression with 

ANOVA. The slopes from the different regression tests were compared using a 

MANCOVA. A critical p-value of 0.05 was used to determine significance.  

Careful evaluation of the GSM01, QAA, and Carder algorithms revealed that 

in June 2004 in the region of the CRP, GSM01 had greater fidelity between in situ 

aCDOM and satellite derived aCDM with respect to fit, slope, and intercept (Table 1.1). 

The slopes for GSM01 and Carder were different in 2004 (F = 2.35, DFn = 1, DFd = 

4, p = 0.04).  In August, there was the expected trend between aCDOM and adg, but no 

significant fit for any of the algorithms and so they could not be compared to each 
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other. This lack of fit may have been the result of high turbidity, but more likely a 

result of low sample size exacerbated by the narrow range of aCDOM values used in the 

comparison. We decided to restrict the salinity analysis of this study to the MODIS-

derived data layers from the GSM01 algorithm for both years with the understanding 

that the over-estimate observed was likely due to the presence of detrital and colored 

particles contributing to the adg measurement. As a result of this off-set, synthetic 

salinity estimates have the potential to be negative if the adg estimate exceeds the 

parameters in the synthetic salinity model.  

Table 1.1. Validation of in situ aCDOM (412 nm) surface measurements with MODIS-
derived adg 412 nm estimates for the three algorithms: GSM01, QAA, and Carder. (β1 
= regression coefficient ; β0 = intercept; p ≤ 0.05 is significant).  
 

    Results of Regression Analysis   
Estimate r2 n β1 β0 p 

2004      
    GSM01 0.98 4 1.4 -0.23 < 0.05 

    QAA 0.59 4 0.67 -0.05 n.s. 
    Carder 0.92 4 0.75 -0.09 < 0.05 

2005      
    GSM01 0.95 3 2.5 -0.59 n.s. 

    QAA 0.95 3 2.4 -0.59 n.s. 
    Carder 0.27 3 1.4 -0.21 n.s. 

 

2.3.3 Synthetic Salinity Estimates 

Synthetic salinity was computed by inverting the in situ linear regression 

models to solve for salinity. The MODIS-derived data layers (250 m resolution 

GSM01 adg at 350 nm and 412 nm) were used as the inputs for aCDOM and the SST 

data layer as the input for temperature (for the multiple algorithm). Both GSM01 adg 
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412 nm and the estimated values for GSM01 adg 350 nm were used to calculate 

synthetic salinity in order to determine if the adg 412 nm data layer was sufficient to 

accurately predict salinity, or if the derived data layer was needed since the 

underlying models were developed using aCDOM at 350 nm. The “simple” model 

computed synthetic salinity using equation (3): 

      (3) 

where b0 and b1 are the intercept and regression coefficients, respectively. The 

standard equation (4) for the multiple model was inverted to solve for synthetic 

salinity: 

  
( )
1

20CDOM etemperatursalinitysynthetic
β
ββ −−

=
a

   (4) 

where b2 is the second regression coefficient. The empirical algorithms developed for 

each cruise were only applied to imagery collected during the respective cruise. Four 

estimates of synthetic salinity were computed for each date: simple synthetic salinity 

using adg 350 nm and 412 nm and multiple synthetic salinity using adg 350 nm and 

412 nm.  

2.4 Validation 

In situ measurements of salinity were compared to estimates of synthetic 

salinity to validate the robustness of the underlying empirical models. Several 

independent sources of in situ salinity measurements were used in the validation: 

underway shipboard measurements from the R/V Wecoma and R/V Point Sur, M/V 

Forerunner, CoOP-RISE moorings located on the shelf, and CORIE moorings 
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immediately within the river mouth (Table 1.2). For comparison of in situ and 

remotely sensed data, the mean of four minutes of salinity data (two-minute intervals 

centered at the time of the satellite over-pass) was used as salinity data for the 

mooring and shipboard sources. Synthetic salinity from the remote sensing layers was 

selected using a 4 by 4 pixel box (106 m2) centered on the in situ site. Pixels 

influenced by land were flagged using the SST and adg 412 nm bands and removed. 

The remaining pixels were used to compute the mean synthetic salinity value in this 

106 m2 box. These mean values were used in a test of simple linear regression (in situ 

salinity vs. synthetic salinity) to determine a fit between measured and modeled 

salinity and to estimate error. A critical p-value of 0.05 was used to determine 

significance.  

Table 1.2. Date, data source, and location for in situ, ground-truth salinity 
measurements. CoOP-RISE temporary deployed moorings include RISO, RINO, and 
RICE (courtesy, E. Dever). CORIE measurements include moorings: Grays Point and 
Cathlamet Bay North Channel 3 (CBNC3); and shipboard measurements on the M/V 
Forerunner (courtesy, A. Baptista). 

Data Source Latitude (oN) Longitude (oW) Depth 
    
  21 July 2004  
R/V Wecoma 46.200 N 123.806 W 4 m 
R/V Point Sur 46.242 N 124.260 W 4 m 
RISO 46.053 N 124.101 W 1 m 
RINO 46.437 N 124.301 W 1 m 
RICE 46.167 N 124.195 W 1 m 
Grays Point 46.262 N 123.767 W 6.4 m 
CBNC3 46.210 N 123.714 W 6.5 m 
    
  25 August 2005  
R/V Wecoma 47.493 N 124.912 W 2 m 
R/V Point Sur 46.251 N 124.360 W 4 m 
M/V Forerunner 46.233 N 123.872 W 1 m 
Grays Point 46.262 N 123.767 W 6.4 m 
CBNC3 46.210 N 123.714 W 6.5 m 
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3.0 Results 

3.1 Field Setting 

River discharge varied seasonally, with a trend of relatively high flow during 

the spring and reduced flow in the late summer and autumn (Fig. 1.2). This seasonal 

pattern is typical for the Columbia River. High flows are due to runoff of snowmelt in 

the watershed and can vary in timing annually. Maximum discharge preceded the 

June 2004 and June 2005 cruises, and was concurrent with the June 2006 cruise. Peak 

discharge in June 2006 was 50% greater than peak discharge in 2004 and 2005, which 

were similar to each other. A delay in the onset of upwelling favorable winds in 2005 

resulted in a period in June with no upwelling and anomalously warm waters 

throughout the northern California Current system; however, by our August cruise 

(Fig. 1.3), strong upwelling-favorable conditions were present (Hickey et al. 2006; 

Kudela et al. 2006). Anomalously warm SST in June 2005 decreased the gradient in 

temperatures between plume and offshore water, which may have influenced mixing 

of the plume with surrounding marine waters. 

Light absorption by CDOM was linear and inversely proportional to salinity 

(Fig. 1.4). The relationship of salinity to aCDOM at 350 nm in the simple model was 

significant for discrete water samples measured for each of the cruises (Table 1.3). 

When the cruises were compared to each other using MANCOVA, the slopes were 

found to be statistically different (F = 22.41, DFn = 3, DFd = 171, p < 0.001), and 

therefore intercepts could not be compared among all of the cruises. When the June 

cruises from all years were compared to each other, the relationship between salinity 
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and aCDOM at 350 nm was similar between 2005 and 2006, but not 2004 (F = 3.64, 

DFn = 2, DFd = 140, p = 0.03). Nevertheless, June values were pooled to produce a 

“universal” statistical relationship of salinity to light absorption by CDOM for the 

spring freshet, with the understanding that natural variability exists among years. This 

universal synthetic salinity model followed the same trend as the statistically 

significant models from individual cruises and may be useful to estimate synthetic 

salinity on the shelf in future work. The relationship of salinity and temperature to 

aCDOM at 350 nm in the multiple model was significant for discrete water samples 

measured for each of the cruises (Table 1.4).  
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Figure 1.4. In situ salinity model. Relationship of salinity to light absorption at 350 
nm for discrete water samples collected during the June 2004, June 2005, August 
2005, and June 2006 Coastal Ocean Processes–River Influences on Shelf Ecosystems 
(CoOP-RISE) cruises. Light absorption at 350 nm was inversely related to salinity at 
each sample period. See Table 3 for statistics. 
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Table 1.3. The results of simple linear regression to test the relationship of salinity to 
aCDOM at 350 nm for discrete water samples collected within and outside of the 
Columbia River Plume in June 2004, June 2005, August 2005, June 2006, and all 
June cruises pooled (β1 = regression coefficient/slope; β0 = intercept; p ≤ 0.05 is 
significant). 
 

      

Results of 
Regression 
Analysis     

Cruise r2 n β1 β0 p 
Jun 2004 0.9 46 -0.06 2.27 < 0.05 
June 2005 0.85 55 -0.08 2.96 < 0.05 
August 2005 0.87 33 -0.04 1.77 < 0.05 
June 2006 0.93 45 -0.08 2.97 < 0.05 
Universal 
June 0.92 146 -0.08 2.95 < 0.05 

 

 

 

Table 1.4. The results of multiple linear regression to test the relationship of salinity 
and temperature to aCDOM at 350 nm for discrete water samples collected within and 
outside of the Columbia River Plume in June 2004, June 2005, August 2005, June 
2006, and all June cruises pooled (β1 = regression coefficient for salinity;  β2 = 
regression coefficient for temperature; β0 = intercept; p ≤ 0.05 is significant). 
 

    

  
Results of Regression Analysis 

      
Cruise r2 n β1 β2 β0 p 
Jun 2004 0.9 46 -0.06 0.01 2.09 < 0.05 
June 2005 0.85 55 -0.08 -0.13 5 < 0.05 
August 2005 0.87 33 -0.07 -0.12 4.42 < 0.05 
June 2006 0.96 45 -0.08 0.2 -0.17 < 0.05 
Universal 
June 0.92 146 -0.08 0.02 2.67 < 0.05 
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3.2 Observations During a Downwelling Period (21 July 2004) 

The CRP formed a coherent feature on the Washington shelf, north of the 

river mouth in the image dated 21 July 2004 (Fig. 1.5 and 1.6). There was a distinct 

bolus of what appeared to be fresh water west of the river mouth. The satellite 

overpass occurred 4.5 hours after maximum ebb tide during a period of very low 

spring tides. River discharge averaged 3816 m3 s-1 this day. The river plume appears 

to extend northward along the shelf, which may be remnant plume water from 

previous days during this downwelling period.  

The plume can be clearly distinguished in both the simple and multiple model 

estimates for synthetic salinity using GSM01 adg 350 nm (Fig. 1.5) and GSM01 adg 

412 nm (Fig. 1.6). The simple and multiple models corresponded closely to each 

other for each data layer (adg 350 nm: b1 = 1.006; r2 = 0.99; p ≤ 0.05; adg 412 nm: b1 = 

1.015; r2 = 0.99; p ≤ 0.05, where b1 is the slope of the regression and b0 is the 

intercept). Synthetic salinity estimates of the simple algorithm were approximately 

0.6 % less than estimates of the multiple algorithm using adg 350 nm and 1.5% less 

using adg 412 nm. In the simple algorithm and using adg 350 nm (Fig. 1.5A), synthetic 

salinity estimates ranged from -47.0 in the estuary to 36.2 offshore. The nascent 

plume at the mouth of the river had synthetic salinity that ranged from 5.2 to 13.0 and 

plume axis salinities ranging from -5.6 to 10.5. The edges of the plume were defined 

by a steep gradient in synthetic salinity from 6.3 to 22.9 over a distance less than 4 

km. In the simple algorithm and using adg 412 nm (Fig. 1.6A), synthetic salinity 
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estimates ranged from 0.6 in the estuary to 37.4 offshore. Synthetic salinity at the 

river mouth ranged from 21.8 to 31.9 and plume axis salinities ranged from 21.8 to 

27.9. The edges of the plume were defined by a fairly steep gradient in synthetic 

salinity over less than 4 km from 28.6 to 31.3. In the multiple algorithm and using adg 

350 nm (Fig. 1.5B), synthetic salinity ranged from -47.3 in the estuary to 38.0 

offshore. The mouth of the plume ranged from -7.9 to 14.1 and along the plume axis 

had a synthetic salinity of -7.3 to 9.8. The edges of the plume had a steep gradient 

from 9.9 to 22.7. In the multiple algorithm and using adg 412 nm (Fig. 1.6B), 

synthetic salinity estimates ranged from 0.7 in the estuary to 37.4 offshore. The 

mouth of the plume ranged from 20.5 to 31.0 and along the plume axis had a 

synthetic salinity of 20.7 to 27.5. The edges of the plume ranged from 24.7 to 31.9.  

3.3 Observations During an Upwelling Period (25 August 2005) 
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Figure 1.5. Synthetic salinity. Estimates of sea surface salinity for 21 July 2004, a 
period of downwelling oceanographic conditions. (a) Simple algorithm showing 
salinity versus aCDOM at 350 nm and (b) multiple algorithm showing salinity and 
temperature versus aCDOM at 350 nm. Satellite products used in analysis included the 
250 m MODIS data layers for sea surface temperature and GSM01 adg 350 nm.
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Figure 1.6. Synthetic salinity. Estimates of sea surface salinity for 21 July 2004, a 
period of downwelling oceanographic conditions. (a) Simple algorithm showing 
salinity versus aCDOM at 412 nm and (b) multiple algorithm showing salinity and 
temperature versus aCDOM at 412 nm. Satellite products used in analysis included the 
250 m MODIS data layers for sea surface temperature and GSM01 adg 412 nm.
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The CRP was a diffuse feature on the Oregon and Washington shelf in the 

image dated 25 August 2005 (Fig. 1.7 and 1.8). The CRP was only faintly present 

west and south of the river mouth. The satellite over-pass occurred 3.5 hours 

following maximum ebb tide during the neap tide, so the tidal range was very small. 

River discharge averaged 3852 m3 s-1 this day, similar to the flow on 21 July 2004. 

This was a period of upwelling favorable winds and the plume appeared to form a 

disjointed fan of water near and southward of the river mouth, where it was absorbed 

into what appeared to be the California Current.  

The simple and multiple algorithm estimates of synthetic salinity on the shelf 

did not closely correspond to each other in either the simple or multiple model 

estimates for synthetic salinity using GSM01 adg 350 nm (Fig. 1.7) and GSM01 adg 

412 nm (Fig. 1.8). Estimates for synthetic salinity using the simple model 

overestimated values compared to the multiple model (adg 350 nm: b1 = 0.53; r2 = 

0.89; p ≤ 0.05; adg 412 nm: b1 = 0.48; r2 = 0.54; p ≤ 0.05). Synthetic salinity estimates 

of the simple algorithm were approximately 47 % more than estimates of the multiple 

algorithm using adg 350 nm and 52% more using adg 412 nm. In the simple algorithm 

and using adg 350 nm (Fig. 1.7A), synthetic salinity estimates ranged from -52.0 in 

the estuary to 39.5 offshore. The river mouth had synthetic salinity that ranged from 

9.3 to 21.6 and plume axis salinities ranging from 16.2 to 21.3. The edges of the 

plume were not well defined and ranged in synthetic salinity from 17.7 to 24.0 over a 

distance greater than 10 km. In the simple algorithm and using adg 412 nm (Fig. 

1.8A), synthetic salinity estimates ranged from 0.6 in the estuary to 42.8 offshore. 
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Synthetic salinity at the river mouth ranged from 31.2 to 36.2 and plume axis 

salinities ranging from 29.9 to 37.5. The edges of the plume gradually transitioned 

from 36.4 to 38.5. In the multiple algorithm and using adg 350 nm (Fig. 1.7B), 

synthetic salinity estimates ranged from -53.9 in the estuary to 31.3 offshore. The 

mouth of the plume ranged from 5.22 to 15.9 and along the plume axis had a 

synthetic salinity of 14.5 to 24.8. The edges of the plume gradually decreased from 

20.6 to 26.9. In the multiple algorithm and using adg 412 nm (Fig. 1.8B), synthetic 

salinity estimates ranged from 2.9 in the estuary to 32.7 offshore. The mouth of the 

plume ranged from 24.5 to 28.6 and along the plume axis had a synthetic salinity of 

27.1 to 33.4. The edges of the plume ranged from 31.9 to 38.5 over a span of 

approximately 10 km.  
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Figure 1.7. Synthetic salinity. Estimates of sea surface salinity for 25 August 2005, a 
period of upwelling conditions. (a) Simple algorithm showing salinity versus aCDOM at 
350 nm and (b) multiple algorithm showing salinity and temperature versus aCDOM at 
350 nm. Satellite products used in analysis included the 250 m MODIS data layers for 
sea surface temperature and GSM01 adg 350 nm.
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Figure 1.8. Synthetic salinity. Estimates of sea surface salinity for 25 August 2005, a 
period of upwelling conditions. (a) Simple algorithm showing salinity versus aCDOM at 
412 nm and (b) multiple algorithm showing salinity and temperature versus aCDOM at 
412 nm. Satellite products used in analysis included the 250 m MODIS data layers for 
sea surface temperature and GSM01 adg 412 nm. 
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3.4 In Situ Salinity vs. Synthetic Salinity Validation 

Both the simple and multiple synthetic salinity estimates that used the GSM01 

adg 412 nm data layer predicted salinity in the region of the CRP with a significant fit 

of in situ salinity to synthetic salinity measurements and the slopes only moderately 

deviated from the 1:1 relationship (Table 1.5; Fig. 1.9A and 1.9B). The mean square 

prediction errors (MSPE) were less than the mean square error (MSE) and therefore 

the models were effective predictors of salinity. The model estimates using the 

GSM01 adg 350 nm data layers produced spurious salinity values for both the 2004 

and 2005 data sets (Table 1.5; Fig. 1.9C and 1.9D). Salinity estimates ranged from 

negative to unrealistically high values; the slopes and intercepts for the validation 

reveal these extremes (Table 1.5). Synthetic salinity computed using the GSM01 adg 

412 nm data layer closely approximated in situ salinity, even though the in situ 

models were developed using light absorption at 350 nm. This suggests that the 

GSM01 adg retrievals are offset (correct spatial pattern, wrong magnitude), reflecting 

some bias in the GSM01 algorithm. This offset, in addition to limitations in the range 

of magnitude of underlying data used to develop the synthetic salinity model may 

explain negative salinity values found in this study. This discrepancy was somewhat 

present in the model estimates using adg 412 nm, and extreme for estimates using adg 

350 nm. Therefore, applying the synthetic salinity models to the GSM01 adg 412 nm 

data layer instead of adg 350 nm was the preferred method, and only the validations 

using the adg 412 nm method are described. 
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Figure 1.9. Model validation. Comparison of near-simultaneous (±2 min, 106 m2 
grid) MODIS-derived estimates of synthetic salinity and in situ salinity. In situ 
measurements collected aboard the R/V Wecoma, R/V Point Sur, and M/V Forerunner 
and via the CoOP-RISE and Columbia River Estuary mooring arrays for (a) 21 July 
2004, synthetic salinity from GSM01 adg 412 nm; (b) 25 August 2005, synthetic 
salinity from GSM01 adg 412 nm; (c) 21 July 2004, synthetic salinity from GSM01 
adg 350 nm; and (d) 25 August 2005, synthetic salinity from GSM01 adg 350 nm. 
Simple algorithm (solid circles and dashed lines) and multiple algorithm (open circles 
and dashed lines). See Table 1.5 for statistics. 
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Table 1.5. Validation of MODIS-derived synthetic salinity estimates with in situ 
measurements of salinity for 21 July 2004 and 25 August 2005. Synthetic salinity 
estimates derived from MODIS data layers GSM01 adg 412 nm and GSM01 adg 350 
nm (β1 = regression coefficient ; β0 = intercept; p ≤ 0.05 is significant).  
 

    

 
Results of Regression Analysis 

   
Estimate r2 n β1 β0 MSE MSPE p 
21 July 2004        
  GSM01 adg 412 nm        
     simple model 0.89 7 0.95 -0.77 33.28 23.77 < 0.05 
     multiple model 0.89 7 0.92 -0.07 32.37 23.12 < 0.05 
  GSM01 adg 350 nm        
     simple model 0.89 7 3.42 -100.6 428.1 305.8 < 0.05 
     multiple model 0.89 7 3.39 -99.9 424.8 303.4 < 0.05 
        
25 August 2005        
  GSM01 adg 412 nm        
     simple model 0.85 5 1.26 -0.71 75.86 45.52 < 0.05 
     multiple model 0.87 5 1.1 -1.4 49.1 29.45 < 0.05 
  GSM01 adg 350 nm        
     simple model 0.85 5 4.5 -117 975.6 585.3 < 0.05 
     multiple model 0.86 5 2.95 -67.84 386.8 232.1 < 0.05 
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On 21 July 2004, the simple and multiple models underestimated salinity by 

approximately 5% and 8%, respectively (Table 1.5). The effect of temperature on the 

multiple algorithm estimate from 2004 was limited because the regression coefficient 

for temperature was very small (b2 = 0.01); for the same reason, estimates from both 

models are similar. The 25 August 2005 results show wider variability between the 

two models with the multiple algorithm more closely approximating the in situ 

salinity measurements (Table 1.5). The simple algorithm overestimated salinity by 

26%. The multiple model overestimated salinity by 10%. The effect of temperature 

on the multiple algorithm improved the accuracy of the salinity estimates, because the 

regression coefficient for temperature (b2 = - 0.12) in the 2005 multiple algorithm was 

relatively large compared to the 2004 model. Thus, temperature had a larger impact 

on the fit of modeled to measured salinity in 2005, an upwelling period. For both the 

downwelling and upwelling conditions, and despite the uncertainties inherent in this 

sort of analysis, both algorithms were robust predictors of salinity (MSPE < MSE in 

all instances). 

4.0 Discussion  

The synthetic salinity algorithms developed in this study will permit 

quantitative observations of the CRP at a higher spatial and temporal resolution than 

what is currently available by shipboard and mooring observations alone. No previous 

study has validated satellite imagery of the CRP with in situ, biogeochemically-

relevant optical properties. These validated algorithms will enable the objective 

detection of the plume so that future analyses can describe the geophysical parameters 
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of the plume and not just the location of the putative plume (Thomas & Weatherbee 

2006).  

The CRP is a dynamic mesoscale feature of the Oregon and Washington shelf. 

Applying the algorithms of this study to the relatively new 250 m resolution data 

products from MODIS (Franz et al. 2006) was a deliberate choice to spatially resolve 

fine structure within and near the plume. The gradient in salinity along fronts and the 

filament extending southwestward from the plume bolus in 2004 (Fig. 1.6) would 

have been poorly resolved in traditional 1 km resolution MODIS data. Data richness 

increases 16-fold with the new 250 m resolution data products. Although the native 

resolution is still 1 km for the SST and CDM products, future detailed studies of the 

fine structure of the plume may be possible; keeping in mind that these products are 

interpolations of lower-resolution data.   

Both empirical algorithms developed in this study generally underestimated 

salinity during downwelling and overestimated salinity during upwelling, with the 

multiple algorithm having a closer fit during upwelling. Including temperature in the 

multiple algorithm conferred an advantage to predicting salinity with more accuracy 

in 2005 and reduced the detection of “false plumes”. Existing mooring arrays in the 

region could be used for near real-time calibration of synthetic salinity computed 

using daily collections of MODIS-derived adg 412 nm and SST data layers.  

Potential sources of error to explain why synthetic salinity diverges from in 

situ salinity may be associated with natural variability of the CRP; the default spectral 

slope parameter used in the GSM01 algorithm to estimate CDM; the off-set between 
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aCDOM and adg estimates; and the quality of the underlying in situ data used to develop 

the synthetic salinity models. The CRP is a dynamic feature. In situ measurements 

used in the salinity validation were limited to a few shipboard and mooring locations. 

So, all of the variability of the plume may not be captured by these ground-truth 

measurements. Divergence from unity in slopes for both the aCDM vs. aCDOM analysis 

and the salinity comparisons may be partly explained by the decision to use the 

globally generalized spectral slope parameter, s, employed by GSM01. The global 

parameter (the default in SeaDAS) over-estimates light absorption by CDM in the 

southern California Current (Kudela & Chavez 2004). Modifying the algorithm with a 

spectral slope parameter tuned to the CRP may improve estimates of GSM01 adg 350 

nm, resulting in statistically similar slopes between modeled and measured salinity. 

However, even regional tuning of s may not substantially improve estimates of CDM 

(Kostadinov et al. 2007). Negative synthetic salinity is especially acute in regions 

where colored detrital material off-sets adg from aCDOM estimates, and is particularly 

apparent at the mouth of the Columbia River which is a region of sediment re-

suspension (Aguilar-Islas & Bruland 2006). CDM includes colloids and detrital 

material in addition to CDOM. These additional materials could contribute to higher 

absorption values at 350 nm and 412 nm resulting in specious negative salinity 

values. Derived satellite estimates for aCDOM relative to total absorption (using the 

method of Belanger et al. 2008) indicate that detrital material made up to 40% of the 

adg 412 nm estimate at the mouth, but only 10% of the estimate in the plume and even 

less off-shore in 2004 (data not shown). Finally, another source of error in the 
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validation may be the quality of data used to develop the synthetic salinity models. A 

greater number of in situ measurements across the full range of salinity and CDOM 

concentrations would have improved the models by capturing more of the natural 

variability of the region. While the relationships deviate from unity both when 

comparing the simple to multiple models and when validating the model estimates to 

in situ measurements; all of the salinity comparisons are statistically significant and 

are useful to describe salinity from ocean color on the Oregon and Washington shelf.  

Optical oceanographers have recognized the utility of exploiting the unique 

optical character of rivers to distinguish them from offshore water (Binding & 

Bowers 2003; Callahan et al. 2004; Carder et al. 1989; Hu et al. 2004; Johnson et al. 

2003; Conmy et al. 2004; DelVecchio & Subramaniam 2004) and other nearby river 

plumes (Chen & Gardner 2004). In the U.S., the Mississippi River Plume and the 

Hudson River Plume have been well characterized optically (Chang et al. 2002; 

Johnson et al. 2003). Early work in these regions has evolved into more mature 

studies that integrate physical modeling with optical measurements (Oliver et al. 

2004). Along the New Jersey shore, these models have revealed the varied and 

sometimes predictable movement of coastal jets (Chang et al. 2002) and upwelling 

(Johnson et al. 2003). Predictions of these and other coastal features have improved 

as a result of the integration of high resolution physical measurements with in situ and 

remote optical measurements (Johnson et al. 2003; Vasilkov et al. 1999). 

 The CRP supplies nitrogen, silica, and trace elements to the coastal margin 

(Carpenter & Peterson 1989; Hill & Wheeler 2002). It is an important controller of 
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biomass and primary productivity in the region (Small & Menzies 1981). Plume-

stimulated phytoplankton biomass in this region supports extensive zooplankton 

populations and juvenile salmon stocks (De Robertis et al. 2005; Morgan et al. 2005). 

Phytoplankton productivity is tightly coupled with the physical forcing of upwelling 

and plume position in this region. Even brief reversals in wind direction can alter the 

direction of river flow (Garcia Berdeal et al. 2002; Hickey 1998) and this can have an 

impact on the distribution of standing stocks of biomass. The mechanisms that control 

the direction of flow and the ultimate fate of the fresh water from the plume continue 

to be refined (Garcia Berdeal et al. 2002). The canonical flow hypothesis (Hickey 

1979) with northward flow during downwelling favorable winds, and southwest-ward 

flow during upwelling favorable winds may be an incomplete description of flow. A 

bifurcated plume or a condition of repeated return into the estuary may be a reality of 

the CRP that cannot be easily observed and verified from shipboard or drifter 

measurements alone 

 The CRP has historically been described based on salinity (Hill & Wheeler 

2002; Small & Menzies 1981). Previous studies (e.g. Thomas & Weatherbee (2006)) 

have successfully characterized the physical characteristics of the CRP using 

supervised classification of ocean color data, but were unable to directly link these 

processes to biogeochemically relevant parameters. Our approach provides a link 

between the purely statistical methods of Thomas and Weatherbee (2006) with the 

biogeochemically significant parameter: salinity. Increased frequency of observations 

over larger spatial scales utilizing remote sensing will improve our understanding of 
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CRP flow, delivery of nutrients to the shelf, and residence time of this biological 

incubator so important to ecosystem health. 
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CHAPTER 2 

Optical characterization of water masses within the Columbia River Plume 

 

Abstract: 

The Columbia River Plume (CRP) is a buoyant plume that influences the Oregon and 

Washington shelf with the delivery of freshwater, silicic acid, trace metals, and 

particulate and dissolved organic matter. The highly dynamic plume contains sub-

mesoscale features that have an impact on the chemistry, biology, and transport of 

water and material to the offshore environment. Bio-optical classification of the larger 

plume water mass has confirmed seasonal and annual flow patterns, but has not 

described the internal structure of the plume in a biogeochemically relevant way, as 

there were no in situ data to validate classification. The objectives of this study were 

to 1) statistically define water types within the CRP using in situ measurements of 

biogeochemically and bio-optically relevant variables, 2) to build a training data set 

from these water types, and 3) to apply this training dataset to 250 m resolution 

MODIS Aqua imagery from an oceanographically downwelling (2004) and upwelling 

(2006) period to predictively discriminate water masses within the plume. This 

study’s classification technique was effective at predicting water types in the CRP. 

The three-variable input matrix (temperature, salinity, and chlorophyll-a 

fluorescence) performed better than the two-variable input matrix (temperature and 

salinity) at distinguishing fine-scale structure within the plume at the river mouth. 

Retentive features such as the plume bulge and eddies were observed at the river 
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mouth and on the Washington shelf. This classification approach was limited to the 

available continuous variables measured by ship-board, mooring, and satellite 

sensors. Two new classification methods are proposed that build on the framework of 

the classifier described here. 

 

Key Terms: Columbia River Plume, water mass, statistical classifier, MODIS 

 

1.0  Introduction 

Understanding the regional variability in river plume dynamics historically has been 

confined to ship-board surveys and mooring observations, which are limited in time 

and space. The advent of new technologies, such as ocean color satellites, has 

fundamentally altered the spatial scale and temporal resolution at which we sample. 

Polar-orbiting satellites (e.g. MODIS Aqua) offer nearly daily synoptic views of 

entire coastal regions over periods of years. Ocean color data are readily available and 

can be used for a variety of purposes including identifying mesoscale features from 

space [Martin Traykovski and Sosik, 2003], understanding upper ocean dynamics 

[Oliver et al., 2004], and river plume identification and tracking [Chen et al., 2004; 

Conmy et al., 2004; Del Castillo et al., 2001; Del Vecchio and Subramaniam, 2004; 

Oliver et al., 2004; Thomas and Weatherbee, 2006]. Development of new data 

products and the application of multivariate statistical techniques to those data layers 

have extended these observations beyond predominantly physical characteristics to 
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biogeochemically relevant parameters for river plumes [Martin Traykovski and Sosik, 

2003; Oliver et al., 2004]. 

 

1.1 Resolving River Plumes from Ocean Color Observations 

The objective detection of water masses using optics signals an increasingly 

important area of oceanography where high resolution, in situ studies are costly, 

impractical, or not possible [Chang et al., 2002; Oliver et al., 2004; Vasilkov et al., 

1999]. A water mass can be defined as a coherent body of water with a defined set of 

physical or biogeochemical properties (e.g. salinity and temperature). For 

conservative properties such as temperature and salinity, the initial state of the 

property is retained until mixed with another water mass or altered through 

interactions with the atmosphere [Tomczak, 1999]. The life cycle of a water mass 

includes formation, evolution, and decay [Tomczak, 1999]. A river plume is one 

example of a water mass with highly variable and constantly changing physical and 

bio-optical properties. Changes in the plume are due to interactions with the 

environment and the biologically active communities contained within it. The low 

salinity water of river plumes can be optically distinguished from nearby marine 

waters due to the contrast in light absorption, a, by sediment particles and 

chromophoric dissolved organic matter (CDOM) present in the river water. The 

optical properties of these terrigenously sourced constituents are different from 

marine sources [Blough and Del Vecchio, 2002; Hernes and Benner, 2003]. The 

conservative relationship between salinity and aCDOM has been used as an optical 
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proxy for low salinity water in the Hudson River outflow plume [Johnson et al., 

2003], Amazon and Orinoco River system [Del Vecchio and Subramaniam, 2004], 

Columbia River Plume [Palacios et al., 2009], and the Mississippi River system 

[D'Sa and Miller, 2003].  

  

1.2 The Columbia River Plume 

The Columbia River drains a watershed approximately 660,480 km2 that includes 

parts of the northwestern US and southwestern Canada. It is the largest river on the 

North American west coast contributing 77% of the fresh water flow to the NE 

Pacific Ocean from San Francisco to the Strait of Juan de Fuca [Naik and Jay, 2005]. 

Discharge averages 6,970 m3 s-1 annually, and ranges from 3,000 – 17,000 m3 s-1. The 

spring freshet is a period of maximum flow due to snowmelt [B M Hickey, 1998]. 

Flow of the Columbia River pulses tidally to the ocean where it becomes a buoyant 

plume [B M Hickey, 1989]. The river conveys fresh water, dissolved and particulate 

organic matter, nutrients (e.g. silica), trace metals, and pollutants to the coastal shelf 

region [Aguilar-Islas and Bruland, 2006; Bruland et al., 2008; B M Hickey, 1989]. 

Delivery of nitrate to the shelf is typically minimal compared to nitrate supply from 

wind-driven upwelling (20 - 25 µM) [B M Hickey and Banas, 2008], but can be an 

important contributor when upwelling is weak (5 – 18 µM) [Bruland et al., 2008]. 

Wind stress, Coriolis, and inertia influence the flow of the Columbia River Plume 

(CRP) as it exits the river mouth. During periods of southerly winds, downwelling 

conditions prevail and the plume flows northward along the Washington shelf. 



 

 62 

Northerly winds induce upwelling and the plume flows southward and offshore [B M 

Hickey, 1989]. Even short-term (hours to days) oscillations in wind forcing can cause 

transient reversals in the typical seasonal flow patterns [Garcia Berdeal et al., 2002; 

B Hickey et al., 2005; B M Hickey, 1998; Thomas and Weatherbee, 2006], with 

reversals more common in summer than winter.  

 The CRP influences the shelf ecosystem by several important mechanisms. 

Stratification caused by the fresh water lens and retention of nutrient-rich waters on 

the shelf [B M Hickey and Banas, 2008] promote phytoplankton growth within- and 

at the margins of the plume [Kudela and Peterson, 2009]. The CRP impedes 

southward flow of recently upwelled water from the Washington shelf resulting in 

retention on the shelf and enhanced productivity [Banas et al., 2009a]. The CRP is 

not a homogeneous water mass: a bloom formed within a decaying eddy can persist 

on the shelf and may drive productivity [Banas et al., 2009a]. During favorable 

conditions, a bulge feature is established at the river mouth [Horner-Devine, 2009], 

south of the shelf retention area. This retention feature near the mouth acts as a bio-

reactor for phytoplankton and can influence productivity on the shelf [Kudela et al., 

2010] and to off-shore waters by enhanced dispersion by the plume after the bulge 

decays [Banas et al., 2009a].  The CRP is a structurally complex and dynamic system 

that is strongly influenced by wind-driven upwelling or downwelling. Within-plume 

water mass identification from satellite observations may therefore support the 

validation of models that predict the sub-mesoscale features of the plume. 
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1.3 Classification Techniques 

Classification of water types using ocean color imagery has far-reaching applications 

for ecological and biogeochemical modeling [Schofield et al., 2004]. Statistical, 

feature-based classification techniques have been successful in characterizing river 

plumes [Oliver et al., 2004; Thomas and Weatherbee, 2006] and phytoplankton 

blooms of the North Atlantic [Martin Traykovski and Sosik, 2003; T S Moore et al., 

2001]. Feature-based classification techniques use the inherent characteristics of the 

input data, for example ship-board observations of ocean color or environmental data, 

to derive clusters within a multivariate statistical space. Clusters can be related to 

water types with their respective biogeochemical and bio-optical properties. These 

water type definitions can then be employed as training data to discriminate water 

types in satellite retrievals of ocean color or derived biogeochemical data products. 

Decision rules can influence the classification success. Objective methods, such as k-

means clustering, are less biased [Chang et al., 2002; Oliver et al., 2004] as they are 

based on patterns naturally occurring in the data [Martin Traykovski and Sosik, 2003]. 

Similarly, other computational intelligence methods such as a neural-network 

approach or fuzzy-c means classification have been used to describe a migrating 

plume front [Oliver et al., 2004] and other water masses in remote sensing imagery [T 

S Moore et al., 2001; Ressom et al., 2005].  

 A six year survey of SeaWiFS multispectral satellite imagery was used to 

characterize the seasonal and interannual variability of the Columbia River Plume 

[Thomas and Weatherbee, 2006]. The study used a maximum likelihood classifier 
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based on the spectral properties of normalized water leaving radiance to identify the 

plume and to describe its behavior. The authors identified the location of four 

spectrally defined water masses that were subjectively labeled “plume core”, “plume 

and inner-shelf water”, “offshore water”, and “other shelf water.” The classifier 

depended exclusively on satellite data with no in situ measurements to relate the 

remotely sensed signatures to in situ environmental parameters such as temperature, 

salinity, or chlorophyll-a biomass. Because the study lacked in situ validation, these 

labels could not be confirmed. Use of biogeochemical data in classification extends 

the validity of labels applied to the water masses. Despite these limitations, the study 

described well the canonical flow patterns of the CRP that are consistent with model 

predictions [B Hickey et al., 2005; B M Hickey, 1998] and ship-board and mooring 

observations. Trends found in Thomas and Weatherbee [2006] were also observed in 

the present study and guided the decision to observe the system separately during 

downwelling or upwelling conditions. 

 Water mass classification within the larger mesoscale feature of the plume may 

elucidate finer-scale physical, chemical, and biological processes occurring in what 

may otherwise appear to be a homogeneous feature. Development of 250 m 

resolution algorithms [Franz et al., 2006] for MODIS ocean color has allowed the 

analysis of fine structures within mesoscale features. The objectives of this study 

were 1) to statistically define water types within the Columbia River Plume using in 

situ measurements of biogeochemically and bio-optically relevant variables, 2) to 

build a training data set from these water types, and 3) to apply this training data set 
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to 250 m resolution MODIS imagery from oceanographically downwelling (17 – 22 

July 2004) and upwelling (22 – 26 June 2006) periods to predictively discriminate 

water masses within the plume.  

2.0 Methods 

 

 Fig. 2.1. Study Location. Coastal-shelf region offshore of Oregon and  
 Washington, USA and under the influence of the Columbia River   
 Plume. 
 
2.1 Field Study 

Field data collection occurred within the Columbia River, its estuary, and along the 

coastal margin of Washington and Oregon, USA as part of the Coastal Ocean 
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Program – River Influences on Shelf Ecosystems (CoOP RISE) project [B M Hickey 

et al., 2010] (Fig. 2.1). The RISE project was designed to observe the Columbia River 

Plume at three high river discharge periods during the spring and early summer of 

2004, 2005, and 2006, and one low discharge period in late summer 2005. A suite of 

physical, chemical, biological, and bio-optical measurements was collected during 

cruises aboard the R/V Wecoma and R/V Point Sur. The measurements of interest for 

this study included temperature, salinity, and chlorophyll-a fluorescence from 4 m 

depth. Only data from the R/V Wecoma were used in the present study. Three 

moorings were also deployed at locations bounding and contained within the putative 

flow regions of the CRP during downwelling, transition, and upwelling conditions. 

These locations varied between the years of this study – 2004: RISO 46.053°N 

124.100°W, RICE 46.167°N 124.195°W, RINO 46.437°N 124.301°W and 2006: 

RISO 45.500°N 124.102°W, RICE 46.167°N 124.195°W, RINO 47.016°N 

124.492°W. The moorings collected temperature, salinity, and chlorophyll-a 

fluorescence (in 2004 only) at three depths – surface, 5 m, and 20 m. Only the surface 

and 5 m measurements were used in this study. Observations of temperature, salinity, 

and chlorophyll-a fluorescence from the underway flow through system on the R/V 

Wecoma and from the moorings were used to build the training and validation data 

sets. Environmental measurements of winds, tides, and river discharge during the 

study period were obtained from the National Oceanographic and Atmospheric 

Administration (NOAA) website. Offshore winds were collected from NOAA 

National Data Buoy Center mooring # 46029. Tides were collected from NOAA 



 

 67 

Tides and Currents station # 9439040 from Astoria, OR. River discharge was 

collected from the United States Geological Survey (USGS) river gauge station 

located in the Columbia River at the Beaver Army Terminal station # 14246900 near 

Quincy, OR. Periods of oceanographic downwelling and upwelling for the region 

were inferred from the wind vectors (Fig. 2.2A & B) and confirmed with the 

upwelling index obtained from NOAA Pacific Fisheries Environmental Laboratory. 

The period 17 to 21 July 2004 was used to represent an oceanographic downwelling 

period as underway, mooring, and imagery could be merged into one data set for the 

analysis. The period 22 to 26 June 2006 was used to represent an oceanographic 

upwelling period. 

 

Fig. 2.2. Environmental Conditions – Winds and River Discharge. Prevailing wind 
direction and magnitude for 2004 (A) and 2006 (B) at National Data Buoy 46029 
(46.144°N 124.51°W) located just offshore of the Columbia River mouth. River 
discharge for 2004 (C) and 2006 (D) measured at the Beaver substation. Vertical lines 
correspond with the satellite imagery capture dates used in this study (Table 2.1). 
Dates are Greenwich Mean Time (GMT). 
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2.2 Satellite Observations 

Of the ninety-five cumulative research cruise days from 2004 to 2006, only five were 

completely clear of clouds in the region bounded by 44.7°N to 48°N and 123.8°W to 

125.2°W. Of those five completely clear days, four were during periods of 

oceanographic upwelling. The one downwelling day (21 July 2004) was selected 

together with an additional, nearly-clear day on 22 July 2004 to determine if the water 

mass predictions could be tracked in time (Table 2.1). This latter date represented a 

period of transition from downwelling to upwelling and was characterized by poor 

ocean color retrieval near shore. The upwelling period used in this study did not 

exactly coincide with the cruise dates, as the region was completely covered in clouds 

during the cruise, but it did occur immediately after the end of the final research 

cruise. This period of relatively clear days spanned 22 to 26 June 2006 (Table 2.1). 

 
 

Table 2.1. MODIS Satellite overpasses corresponding to the dates of this study. 
 

 
 

        

Year Date 
Time 

(GMT) Satellite 
Oceanographic 

Condition 
2004 21-Jul 21:25 MODIS-Aqua downwelling 

 22-Jul 20:30 MODIS-Aqua transition 
     

2006 22-Jun 19:10 MODIS-Terra upwelling 
 23-Jun 21:35 MODIS-Aqua upwelling 
 24-Jun 20:40 MODIS-Aqua upwelling 
 25-Jun 21:25 MODIS-Aqua upwelling 
  26-Jun 20:30 MODIS-Aqua upwelling 



 

 69 

2.2.1 Image Collection and Processing 

Level 0 MODIS-Aqua and –Terra swaths contained within the region of 40°N to 

50°N and 123°W to 128°W were downloaded from the LAADS Web (Goddard Space 

Flight Center, Level 1 and Atmospheric Archive and Distribution System) for 21 and 

22 July 2004, and 22, 23, 24, 25, 26 June 2006 (Table 2.1). The data were processed 

to Level 2 geophysical data products using SeaDAS (v. 5.2). Data were interpolated 

to 250 m resolution using a two wavelength atmospheric correction (1240 nm and 

2130 nm) [Franz et al., 2006]. Data were projected using a cylindrical projection at 

250 m resolution. This higher resolution imagery was preferred as it allows for 

detection of finer spatial-scale, geophysical features not otherwise evident in the 

original 1 km resolution imagery. The data layers included sea surface temperature 

(SST), light absorption by detritus and CDOM at 412 nm (adg412) computed using 

GSM01 [Maritorena et al., 2002], and fluorescence line height (FLH) [Abbott and 

Letelier, 2006] which provides an estimate of chlorophyll-a biomass without the 

optically contaminating influence of CDOM inherent in the standard chlorophyll data 

products. The FLH and adg412 estimates also use separate wavelengths, making the 

two data sets independent (in contrast to most chlorophyll algorithms). Data were 

exported from SeaDAS and then imported into MATLAB (The Mathworks, Inc.) for 

analysis. Synthetic salinity was computed from adg412 using the previously 

determined relationship between salinity and aCDOM for the CRP [Palacios et al., 

2009]. The relationship for July 2004 is shown in equation 1: 
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€ 

S'2004 =
adg412−2.27

−0.06
   (1) 

 

where S’2004 is synthetic salinity for 2004. The relationship for June 2006 is shown in 

equation 2: 

 

  

€ 

S'2006 =
adg412−2.97

−0.08
   (2) 

 

The SST, S’year, and FLH data layers were used in the analysis.  

 

2.3 Classification of Water Types 

This study used a multivariate statistical approach to classify water types within the 

Columbia River Plume. It was a three-part approach that used in situ data to 

objectively create a training data set of water types from biogeochemical 

measurements using k-means clustering, then applied the training data set to satellite 

imagery to predict water type using discriminant function analysis, and finally 

validated the projected water masses in the satellite imagery with pixel match-ups of 

water masses predicted from the mooring measurements. The term “water type” 

refers to the classification of water in statistical space. The term “water mass” refers 

to the projection of that water type into geospatial space.  

 

2.3.1 Quality Control and Data Standardization  
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Quality control and data standardization were the first set of three procedures 

executed as a part of the water mass classification technique. This was to account for 

outliers in the data, to mask for particular time periods or conditions (e.g. cloud 

cover), to re-range the input data from zero to one to account for differences in sensor 

type (e.g. ship-board chlorophyll-a fluorescence vs. satellite derived FLH) and 

differences in magnitude among variables (e.g. 25 to 30 range for salinity vs. 0 to 

0.07 range for FLH) which would bias the clustering algorithm to the variable with 

the higher magnitude, and to account for temporal autocorrelation in the ship-board 

measurements used to build the training data set with the k-means classifier. 

 Ship-board, mooring, and satellite data layers were inspected for outliers, with 

only extreme instances removed (determined subjectively). These were generally 

attributed to bubbles in the flow-through system. Data were filtered to remove the 

estuaries from both underway and satellite data. The underway data were then filtered 

to include only a downwelling time period (15 to 16 and 17 to 21 July 2004) or an 

upwelling time period (12 to 17, 18 to 22 May 2006, and 5 to 12 June 2006). The data 

were also filtered to include only plume waters (salinity ≤ 32 [Huyer et al., 2005]) in 

the underway, mooring, and satellite imagery, the exception being the satellite 

imagery from 23, 25, and 26 June 2006 when unrealistically high synthetic salinity 

magnitudes were predicted, presumably due to poor atmospheric correction of the 

remote sensing data. The plume was masked at salinity of 33 for those images. This 

salinity was selected after careful consideration of in-water salinity measured by the 

moorings at the time of satellite overpass. Data were standardized to a zero to one 
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range by dividing the value of an element in a variable by the maximum magnitude 

for that variable in a particular data set for underway, mooring, or satellite data. 

Assuming a linear trend in the relationship between chlorophyll-a concentration and 

fluorescence, re-ranging the fluorescence signal from the ship, mooring, or satellite 

observations obviated the need to first convert fluorescence to chlorophyll-a prior to 

re-ranging. Standardization to the range was used instead of normalization to the 

mean for two reasons: 1) while normalization would have accounted for the variance, 

the orders-of-magnitude difference between ship-board fluorescence and satellite 

FLH prevented one data set (ship-board fluorescence) from being used as a training 

data set for the other data set (FLH) in the discriminant function analysis step of the 

algorithm, 2) the range-standardized method produced the same results as the mean-

normalized method in those cases in which chlorophyll fluorescence was not used 

(data not shown). Finally, temporal autocorrelation in the underway ship-board data 

was determined, using the temperature observations collected each minute, to 

eliminate the effect of persistence and estimate the effective sample size, n’, of data to 

be used in building the training data set and grouping variables with the k-means 

classifier [Wilks, 1995]. The original, plume-masked data from 2004 (n = 3609) were 

reduced to n’ = 46 or a lag of 1.3 hours. The underway data from 2006 (n= 5904) 

were reduced to n’ = 28 for 2006 for a time lag of 3.5 hours. These smaller data sets 

were used to build the training data and grouping variables with the k-means 

classifier. 
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2.3.2 Building the Training Data 

Following data quality control and standardization, a k-means clustering analysis was 

applied to the underway data to identify water types. For each year, two input 

matrices were analyzed and included either a two-variable matrix (temperature and 

salinity) or a three-variable matrix (temperature, salinity, and fluorescence). The k-

means test was performed iteratively on each input matrix to generate three, four, or 

five cluster grouping outputs (hereafter labeled “cluster groupings”). As a result, 

twelve training groups were generated from the data (2 years x 2 input matrices x 3 

cluster groupings).  

 The k-means clustering method is based on principal components analysis 

(PCA). PCA is a data reduction technique that performs an orthogonal transformation 

of the data and re-assigns the sample data into a new set of uncorrelated variables. 

Each principal component describes some portion of the variance, with the first PC 

having the highest variance, the second having the next highest, etc. For the k-means 

test, the number of cluster groupings is selected a priori. The number of clusters 

defines the number of centroids. The position of the centroids within PC-space is 

assigned by a weighting factor. The distance of the point’s position relative to the 

nearest centroid defines membership of a sample point in a cluster, plotted in PC-

space. Since selection of the number of clusters can be subjective, it is necessary to 

evaluate if the choice is appropriate for the amount of variability in the data. The k-

means analysis in this study was performed in MATLAB using the MATLAB 

“kmeans.m” function. The random seed was re-set to 1 prior to each iteration of the 
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k-means test to assure continuity in clustering. The k-means test was followed by the 

MATLAB “silhouette.m” function to determine if an appropriate number of clusters 

was chosen (critical s-value ≥ 0.6). These k-means classifications became the 

grouping variables for the training data set used in the discriminant function analysis 

(DFA) to predict water types in the satellite and mooring data. 

 

2.3.3 Predicting Water Types 

 Discriminant function analysis was used to classify water types in the satellite and 

mooring data using the training data derived from ship-board measurements. DFA is 

a classification technique that discriminates categories (or groups) from a set of 

independent and continuous predictor variables [Quinn and Keough, 2002]. The DFA 

was performed using the MATLAB “classify.m” function applied to the satellite and 

mooring data after data quality control and standardization as described above. The 

satellite data were grouped into two-variable (SST and synthetic salinity) and three-

variable (SST, synthetic salinity, and FLH) input matrices. The mooring data for the 

year 2004 were grouped into two-variable (surface temperature and salinity) and 

three-variable (surface temperature, salinity, and fluorescence) matrices. Because no 

fluorescence data were available in 2006, only the two-variable input matrix was used 

that year for the moorings. The predicted classifications for the satellite imagery were 

projected geospatially to identify and map water masses of the Columbia River 

Plume. The mooring predictions were used in validation. 
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2.4 Validation 

In situ classification of water mass using the mooring data was compared to 

predictions for the satellite imagery to evaluate whether the statistical classification 

was robust with two independent data sets. Comparisons were made by matching 

mooring and satellite data in space and time. For the mooring data, a time window of 

1.5 hours before and after the satellite overpass (Table 2.1) was collected and the 

median of the water masses from that time period was used for validation. For the 

satellite match-ups, one 4 by 4-pixel box (106 m2), co-located with the moorings, was 

obtained from the imagery. The median of the water mass for each 1 km box was 

used in the validation. Occasionally, clouds or atmospheric effects resulted in loss of 

satellite matchup data, or filtering of non-plume water resulted in the loss of both 

mooring and satellite data. Those match-ups were excluded from the analysis 

resulting in n = 36 match-ups for 2004 and n = 33 match-ups for 2006. These match-

ups were used in the validation. To test the null hypothesis that there was no 

difference in water type prediction in satellite imagery or mooring data, a Wilcoxon 

Rank-Sum test was used (critical p-value = 0.05).  

 

3.0 Results 

3.1 Environmental Conditions 

This study focused on two periods during the CoOP-RISE study that corresponded to 

oceanographic downwelling (2004) and upwelling (2006). Downwelling favorable 

conditions occurred 15-16 and 17-21 July 2004 (Fig. 2.2A). Upwelling favorable 
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conditions occurred between 12-17 and 18-22 May 2006, and 5-12 June 2006 (Fig. 

2.2B). Columbia River discharge in 2006 was double the discharge in 2004 (Fig. 2.2C 

& D) during the study period. The annual discharge pattern (data not shown) also 

differed between the years. Mean daily river discharge in 2004 exhibited two distinct 

peak periods of flow, one in early February at 11,330 m3 s-1 which was followed by a 

period of very low flow until another peak in early June at 9710 m3 s-1. Discharge 

during the study period was approximately 3900 m3 s-1 (Fig. 2.2C). River discharge in 

2006 reflected a more typical annual flow pattern, with mid-winter peak flow at 

12,000 – 14,000 m3 s-1, gradually declining to 4190 m3 s-1 in late March. The spring 

freshet commenced on 10 April 2006 and ranged from 7580 to 13,220 m3 s-1 through 

the end of June 2006 (Fig. 2.2D). 

 The tides during the period of satellite data acquisition are presented in Fig. 

2.3. The tidal cycle was at maximum flood on 21 July 2004, and at the end of ebb on 

22 July 2004. This was a period of neap tides; the semi-diurnal tides were 

approximately equal in magnitude during this time of the month. So, while the 

satellite images were captured two hours apart in tidal phase, the difference in tide 

height was less than one meter. Image capture in 2006 occurred during spring tide 

and was coincident with the slack flood tide in four of the five images – 22 to 25 June 

2006. The exception was 26 June 2006, which was captured during maximum flood. 

The tidal height was within 0.12 m for 22 to 25 June, ranging from 1.80 to 1.92 m 

MLLW, and measured 1.25 m above MLLW on 26 June 2006.  
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Fig. 2.3. Environmental Conditions - Tides. Tide height measurements at the Astoria 
tide station (ID #9439040) for 2004 (A) and 2006 (B). Data markers (•) correspond 
with the satellite imagery capture dates used in this study (Table 1). Dates are GMT. 
 

3.2 In situ Measurements and Model Building 

The results of the k-means cluster analysis for the in situ measurements are presented 

in Table 2.2 and Table 2.3. MATLAB arbitrarily assigns a cluster number to the 

groups. To preserve continuity across clustering methods, the cluster numbers were 

re-ordered by ascending salinity. Re-ordering resulted in assignment of cluster 1, 2, 

and 5 for the three cluster grouping k-means analysis, 1, 2, 3, 5 for the four cluster 

grouping analysis, and 1, 2, 3, 4, 5 for the five cluster grouping analysis. 

 Mean temperature, salinity, and chlorophyll-a fluorescence for each of the 

water type assignments in 2004 are presented in Table 2.2. For the two-variable 

(temperature and salinity) k-means clustering, the three, four, and five cluster 

groupings exhibited a similar pattern. The water type with the lowest mean salinity 

(22.48, 18.67, and 17.94) was also the one with the highest mean temperature. The 

location of water type 1 was near the river mouth. Ascending levels of salinity and 
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decreasing water temperature were the pattern for subsequent water types in the three, 

four, and five cluster groupings, with the exception of water type 5 which had 

elevated salinity and elevated temperature. For the three-variable input matrix 

(temperature, salinity, and fluorescence) k-means clustering, the pattern was less 

distinct. Salinity increased with increasing water type number (after ranking), 

however trends in temperature were less well-defined because fluorescence 

contributed to the division of the water types. Chlorophyll-a fluorescence was higher 

in the mid-salinity region of the plume than in the lowest and highest salinity regions 

in all of the cluster groupings. Mean temperature, salinity, and chlorophyll-a 

fluorescence for each of the water type assignments in 2006 are presented in Table 

2.3. Despite higher river discharge, the salinity range and water type patterns in 2006 

were consistent with those in 2004. Overall, temperature was lower in 2006 than in 

2004. In the three-variable classification, chlorophyll-a fluorescence was dominant in 

the mid-salinity water types. The three, four, and five cluster groupings for both years 

were all valid (s ≥ 0.6) and did not artificially subdivide the statistical space. 
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 Mean temperature, salinity, and chlorophyll-a fluorescence for each of the 

water type predictions in the mooring data are presented for 2004 in Table 2.4 and for 

2006 in Table 2.5. These mean values fall within the training data ranges as expected 

from the DFA for the three and four cluster groupings in 2004 and all of the cluster 

groupings for 2006. As with the training data, chlorophyll-a fluorescence is higher in 

the mid-salinity plume waters (water types 2, 3, and 4 in the 5 cluster grouping). 

Overall, the range of salinity, temperature, and chlorophyll-a fluorescence values 

measured by the moorings over the downwelling or upwelling periods was almost as 

wide as those measurements collected from the ship, which covered a larger spatial 

scale.  
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3.3 Satellite Observations 

Satellite derived variables for sea surface temperature, synthetic salinity, and 

fluorescence line height (FLH) from 21 July 2004 are presented in Fig. 2.4. The 

imagery in Fig. 2.4 includes all of the pixels in the scene, but only those belonging to 

the plume (salinity ≤ 32) were used in the water mass classification. The sea surface 

temperature imagery (Fig. 2.4A) reveals warm flow from the Columbia River mouth, 

which extended westward as a warm core (17 to 18º C) that bifurcated along the 

boundary of the bulge-like feature evident in the synthetic salinity (Fig. 2.4B). Non-

plume sea surface temperature located near shore, south of the mouth was cooler (15 

to 16º C) relative to the warmer plume and the offshore surface waters. The 

northward trending plume, emergent from the Columbia River mouth (Fig. 2.4B), 

was consistent with the inertial forcing of the plume under downwelling conditions. 

Estimates of low salinity water near shore and south of the Columbia River mouth 

(45. 530º N, 124.0º W) or north of Grey’s Harbor (46.930º N, 124.20º W) were likely 

due to the influence of CDOM from nearby estuaries on the synthetic salinity proxy. 

Fluorescence line height was elevated at the forward edge of the bulge-like feature 

(Fig. 2.4C). FLH was also elevated on the Washington shelf in the remnant plume. 

Prior to 21 July 2004, when this image was captured, downwelling favorable 

conditions had prevailed for four days (Fig. 2.2), resulting in the transport of low 

salinity water as far north as 47.90º N. The retention of this plume feature on the shelf 

likely resulted in the elevated FLH signal.
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Fig. 2.4. Satellite Imagery – 21 July 2004. MODIS-Aqua satellite data layers from a 
period of oceanographic downwelling. Sea-surface temperature (A), synthetic salinity 
computed from Palacios et al. (2009) (B), and Fluorescence Line Height (C). Salinity 
of 32 demarcated by solid white line (—). 
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 Satellite observations of the region of the CRP during oceanographic 

upwelling (24 June 2006) are presented in Fig. 2.5. Sea surface temperature was low 

near the Oregon coast, north of the river mouth, and in the far north of the 

Washington shelf during this period of intense upwelling (Fig. 2.5A). A warm core of 

water was extruded from the river mouth, as in 2004, and joined the warmer offshore 

waters. The magnitude of synthetic salinity was similar to 2004, but the distribution 

of low salinity water on the shelf was more widespread. The synthetic salinity field 

appears to resemble the bifurcated flow described elsewhere [Garcia Berdeal et al., 

2002; B Hickey et al., 2005], and included features typically found during both 

downwelling and upwelling periods, such as the dipole eddy that forms just offshore 

and south of the Columbia River mouth [Banas et al., 2009a], low salinity water on 

the Washington shelf near to the coast, and the south-west trending low salinity 

plume [B Hickey et al., 2005]. The onset of upwelling winds occurred 2.5 days prior 

to image capture (Fig. 2.2) and so it is possible the decaying plume on the 

Washington shelf was still evident in the imagery.  
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Fig. 2.5. Satellite Imagery – 24 June 2006. MODIS-Aqua satellite data layers from a 
period of oceanographic upwelling. Sea-surface temperature (A), synthetic salinity 
computed from Palacios et al. (2009) (B), and Fluorescence Line Height (C). Salinity 
of 32 demarcated by solid white line (—). Missing data appear as white voids in the 
figure, primarily located near 47ºN, 125.0ºW and scattered at 45.0ºN, 124.8ºW. These 
are due to clouds or atmospheric effects on image processing. 
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Fig	  2.6.	  Plume	  Water-‐mass	  Classification	  –	  21	  July	  2004.	  Statistically	  defined	  
water	  masses	  in	  the	  Columbia	  River	  Plume	  determined	  using	  discriminant	  
function	  analysis	  and	  a	  training	  data	  set	  from	  underway,	  ship-‐board	  
measurements	  collected	  from	  the	  R/V	  Wecoma	  in	  2004.	  Panels	  A	  –	  C	  represent	  
classifications	  based	  on	  only	  temperature	  and	  synthetic	  salinity	  as	  the	  input	  
matrix,	  computed	  for	  three	  (A),	  four	  (B),	  and	  five	  (C),	  possible	  cluster	  goupings.	  
Panels	  D	  -‐	  F	  represent	  classifications	  based	  on	  temperature,	  synthetic	  salinity,	  
and	  fluorescence	  line	  height	  as	  the	  input	  matrix,	  computed	  for	  three	  (D),	  four	  
(E),	  and	  five	  (F),	  possible	  cluster	  groupings.	  Voids	  in	  the	  imagery	  are	  from	  
regions	  of	  salinity	  greater	  than	  32	  or	  due	  to	  clouds.	  	  
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3.4 Statistical Classification of Plume Water Masses 

Statistical classification of plume water-masses from 21 July 2004 is presented in Fig. 

2.6. The plume was present near the coast along the Washington shelf. A tidal lens 

near the river mouth was clearly evident in all iterations of the DFA using the two 

input matrices and all cluster groupings. Patterns in the location of the two lowest 

salinity water masses were consistent for all cluster groupings in the two-variable 

input matrix analysis (Fig. 2.6A – C). Additional water masses (Fig. 2.6B & C) 

subdivided the salinity field between intermediate (water mass 3) and more marine 

(water mass 5) salinity. In the three-variable input matrix analysis, the lowest salinity 

water mass was confined to a smaller tongue of water within the larger tidal lens 

feature (Fig. 2.6D-F). The tidal lens feature was well defined in these estimates as the 

second freshest salinity- water mass 2 (Fig. 2.6D-F). Including FLH in the three-

variable matrix had two effects on the classification of the plume in 2004: the 

refinement of this tongue feature in the tidal lens at the river mouth and a constraint in 

the number of water masses that characterized the shelf water.  

 Statistical classification of plume water-masses from 24 June 2006 is 

presented in Fig. 2.7. Because only the two-variable input matrix could be validated, 

only the imagery results from the two-variable input matrix are shown (Fig. 2.7). The 

image was captured during a period of upwelling, which followed an extended period 

of oceanographic downwelling (Fig. 2.2). As a result, both the remnant northward 

trending plume and the southward trending plume are present in the imagery (Fig. 

2.5B). The lowest salinity water mass is found at and just north of the river mouth 
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(Fig. 2.7A-C) in all cluster-grouping predictions. The southward trending plume is 

evident in all three cluster-groupings (Fig. 2.7A – C), with an incremental division of 

the intermediate salinities among the different grouping methods. Of note for all 

cluster-grouping methods are the fine scale features within the plume. One of these 

features, located south of the tidal lens of the river mouth, may be the remnant eddy 

structure from the dipole eddy that is periodically established at this location [Banas 

et al., 2009a].   

 

 
 
Fig 2.7. Plume Water-mass Classification – 24 June 2006. Statistically defined water 
masses in the Columbia River Plume determined using discriminant function analysis 
and a training data set from underway, ship-board measurements collected from the 
R/V Wecoma in 2006. Panels A – C represent classifications based on  temperature 
and synthetic salinity as the input matrix, computed for three (A), four (B), and five 
(C), possible cluster groupings. Voids in the imagery are from regions of salinity 
greater than 32 or due to clouds. 
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 The results from the two-variable input matrix with predictions for the 4 

cluster groupings for the time series from 22 to 26 June 2006 are presented in Fig. 

2.8. Patterns in the estimated water masses indicate a southward flowing plume on 22 

June 2006 (Fig. 2.8A) with a relatively low salinity water mass (water mass 3) found 

offshore of the putative plume. Water mass 5 is a persistent feature along the outer 

Washington shelf from 22 – 25 June. In 2006, this water mass was characterized by 

high salinity and low temperature and could be indicative of either a well-mixed, 

older, plume, or recently upwelled water. If due to wind-driven, coastal upwelling, 

the enhanced FLH signal in Fig. 2.5C may indicate injection of nutrients to the 

surface layer with subsequent biological response. Water mass patterns shift on 23 

June 2006 to a less defined plume (Fig. 2.8B). On 24 June 2006 (Fig. 2.8C), the low-

salinity bolus of plume water is evident near the river mouth and remains a relatively 

intact and coherent structure within the larger plume. Intermediate salinity waters 

persist on the shelf. On 25 and 26 June 2006 (Fig. 2.8D&E), the fine-scale features of 

the river plume are less evident on the shelf. These dissipated plume water mass 

predictions may be partly due to masking the plume at unrealistically high salinity 

levels. Despite this, the shelf waters exhibit a constantly changing suite of water 

masses during a period of upwelling.  
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Fig 2.8. Plume Water-mass Classification – Time Series. Statistically defined water 
masses in the Columbia River Plume from 22 to 26 June 2006. Input matrix included 
temparature and salinity, and the four cluster grouping result is shown: 22 June (A), 
23 June (B), 24 June (C), 25 June (D), 26 June 2006 (E). 
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3.5 Validation 

The simultaneous water mass predictions for both the moorings and satellite images 

are presented in Table 2.6. These results were used for the validation to test the null 

hypothesis that there was no difference between the DFA predictions for the 

moorings or the satellite imagery. The results of the validation are presented in Table 

2.7. There was no difference between mooring and satellite predictions for the three 

cluster grouping method in 2004. In 2004, there was a difference between mooring 

and satellite for the 4- and 5-cluster grouping method using the two-variable input 

matrix. The difference for the 4- and 5-cluster grouping method was solely due to the 

influence of the results from 22 July 2004. When the analysis was performed on only 

21 July 2004, there was no difference between mooring and satellite for any of the 

cluster grouping methods in 2004 for either of the input matrices (p > 0.05 for both 

input matrices and all cluster groupings). Validation confirmed that there was no 

difference between mooring and satellite predictions for all cluster grouping methods 

in 2006 (Table 2.7). The fit between mooring and satellite predictions was better in 

2006 than in 2004.  
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4.0 Discussion 

4.1 Classifier Reveals Plume Structure 

The Columbia River Plume water mass identified in this analysis forms a coherent 

structure on the Oregon and Washington shelf during both downwelling (Fig. 2.4B) 

and upwelling (Fig. 2.5B), consistent with published observations or model 

predictions [Banas et al., 2009a; Garcia Berdeal et al., 2002; B M Hickey, 1989; B M 

Hickey and Banas, 2008; B M Hickey et al., 2010; Thomas and Weatherbee, 2006]. 

Patterns in distribution of low salinity water differ during downwelling and 

upwelling. The downwelling plume forms a compressed water mass near shore with a 

bulge-like feature at the river mouth [Horner-Devine, 2009]. The enhanced 

chlorophyll-a signal observed at the southwest edge of the plume was likely fueled by 

non-linear mixing of nutrient rich waters to the surface [Jay et al., 2009]. During 

upwelling the plume is more diffuse and extends offshore and to the south, with some 

low salinity water near shore.  

 Water mass classification revealed a complex structure of surface water 

masses not readily apparent in the satellite-derived salinity or temperature images. 

During 2006 a bi-directional plume was evident [B Hickey et al., 2005], which was 

likely acting as a retentive feature for the water upwelled along the Washington shelf 

[Banas et al., 2009a]. Thus our water mass classification approach has revealed 

physically and biogeochemically relevant patterns within the plume that are 

consistent with previous observations. If salinity is a proxy for time since the plume 

departed the river mouth [W S Moore and Krest, 2004], then water masses 
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representing the putative “new” plume water and intermediate-age plume are evident, 

as well as recently upwelled water and other shelf water. For example, the low-

salinity, moderate chlorophyll-a signal water mass, identified as water mass 2, was 

repeatedly present in the near-field region of the plume (Fig. 2.7) or in the tidal lens 

when that feature was present (Fig. 2.6). This water mass is ecologically important as 

a region of enhanced primary productivity [Kudela and Peterson, 2009] but lacks the 

grazing pressure [Peterson and Peterson, 2009] associated with older (higher salinity) 

regions of the plume. While water mass 2 could be distinguished with temperature 

and salinity alone, the addition of FLH helped to refine the boundaries of the water 

masses (Fig. 2.6) and contributed to a better fit of the cluster predictions in the 

validation. This demonstrates that the classifier is not simply defining gradients in 

salinity. 

 Increased spatial resolution afforded by 250 m MODIS ocean data products 

enables the analysis of fine scale structure in mesoscale features. Because this study 

examined ephemeral features of a dynamic system, daily images were needed; 

compositing over several days was not an option. Therefore, cloud cover impeded the 

analysis and limited the number of available days that could be examined. 

Nonetheless, n-dimensional analysis on 250 m MODIS data products is possible for 

the Columbia River Plume and smaller plume systems of the US west coast with the 

understanding that imagery may be scant due to atmospheric effects, and may thus be 

biased to those periods when clear satellite imagery is available. Water mass 

classification techniques have been applied to describe patterns in space [Martin 
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Traykovski and Sosik, 2003; T S Moore et al., 2001], and have been used to describe 

the migration of salinity fronts in time [Oliver et al., 2004]. Daily satellite overpasses 

make this a possibility in many regions of the world, especially locations where cloud 

cover is less persistent, and could be applied to time-averaged imagery for regions 

that evolve over longer time periods. The Pacific Northwest of the US west coast is 

not the ideal location for a satellite-derived time series that depends on daily satellite 

imagery to track the formation, evolution, and decay of a river plume. Problems 

related to atmospheric correction interfered with estimates of light absorption by 

colored dissolved and particulate matter at 412 nm (adg412), resulting in 

unrealistically high salinity. This problem was partially alleviated during data 

standardization, but may have contributed to the ambiguous results of the time series, 

especially on 25 and 26 June 2006. Further work is needed to perform this sort of 

time series analysis using daily images. A region with episodic storms and periods of 

clear sky between storms may be better suited for testing a time series approach using 

water mass classification based on observations. One suitable region on the US west 

coast would be the Santa Barbara Channel during the winter storm season. 

 One limitation of the statistical approach used in this study was related to the 

low number of continuous variables used to develop the training data set from 

underway measurements, and hence the satellite and mooring variables used in the 

discriminant function analysis. This choice was deliberate as the measurements used 

to create the training data set needed to match the mooring observations used for 

validation. Both ship-board measurements and derived satellite products had a greater 
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diversity of independent variables than did the moorings. Possible additional 

classifiers could include backscattering, attenuation, and particulate light absorption. 

Despite this limitation in building the training data, the DFA approach effectively 

predicted water type for all cluster groupings. An alternative validation approach 

would involve randomly sub-setting the ship-board observations prior to model 

building, and then validating using those data. This approach was rejected because the 

test and validation data sets could not be considered independent of each other. While 

the moorings provide truly independent data from the satellite observations, the 

number of moorings and physical spacing among those moorings provides another 

hindrance. The three moorings were located near the river mouth. Though they 

encountered all of the water mass predictions in the three, four, and five cluster 

grouping analyses, the lowest, intermediate, and highest salinity predictions (water 

masses 1, 2, and 5) were most common due to the proximity to the river mouth. 

Wider geographic distribution of validation data from moorings may have increased 

the water masses encountered. 

 

4.2 Performance of Classification Predictions 

The discriminant function analysis approach to water type classification was 

successful for both the two-variable and three-variable input matrices and for all 

cluster groupings for both the satellite and mooring predictions (Table 2.6), when 

excluding 22 July 2004 from the analysis. When evaluating the performance for the 

two-variable relative to the three-variable approach in 2004, the addition of 
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chlorophyll-a fluorescence doubled the number of correct match-ups between satellite 

and mooring predictions. There was no bias for a particular cluster grouping in either 

2004 or 2006. More widely spaced moorings or even measurements from an 

autonomous underwater vehicle would improve statistical power of the validation.  

 

4.3 Future Directions 

This study demonstrates the feasibility of using an unsupervised, statistical approach 

to classifying water types within the CRP with only a cursory regard to 

biogeochemical differences among the water types. As a first approximation, salinity 

can be qualitatively used as a proxy for time since exiting the river mouth. Assigning 

labels to the water types (e.g. “new plume”, “old plume”, etc.) is risky as that 

information is not present in the data used to build the training set. Using “low-

salinity” is more appropriate as no time estimate was independently measured [W S 

Moore and Krest, 2004].  

 We propose two directions for future development of feature-based water type 

classification for the Columbia River Plume – an empirical, spatial approach 

incorporating more biogeochemical variables and a theoretical, model approach to 

estimate residence time. The new approaches would modify the development of the 

training data set from a purely statistical, unsupervised approach to one that includes 

a priori knowledge of the environment and biology of the system. The k-means 

approach used in this study was an unbiased method to distinguish water types using 

natural tendencies in the data to aggregate around the centroids in statistical space; as 



 

 105 

such, the clusters do not necessarily have any direct correspondence to 

biogeochemical properties of the ocean. By adding a limited degree of subjectivity to 

the decision rules governing the training set, the new techniques may produce more 

ecologically and biogeochemically meaningful results. Specifically, we propose 

development of modified spatial and residence-time statistical models. 

 The proposed spatial approach differs from the one in the present study as it 

would incorporate more data variables into the training data set and DFA. Group 

membership and ranges in magnitude of the training data would be established 

subjectively based on published data [Bruland et al., 2008]. The chemical properties 

of the river, estuary, near-field plume, non-plume coastal water, and offshore end-

member water masses are well defined for the Columbia River region [Aguilar-Islas 

and Bruland, 2006; Bruland et al., 2008]. The nutrients nitrate, silicic acid, dissolved 

iron, and dissolved manganese are related to temperature and salinity in these regions 

[Bruland et al., 2008; B Hickey et al., 2005; B M Hickey and Banas, 2008] and 

therefore could be modeled using multiple linear regression. This proposed 

classification approach would build a training data set from the ranges of in situ, 

measured salinity, temperature, and nutrients expected for each water mass during 

upwelling or downwelling conditions. These best-fit equations from the linear 

regression could be used with the satellite estimates of sea surface temperature and 

salinity to compute data layers representing nutrient concentrations. These image 

layers then would be used in the DFA to predict the location of the water masses 

spatially using the ecologically and biogeochemically relevant training parameters. 
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Validation could be performed using ship-board observations. While the propagation 

of error would magnify through each step of the proposed technique, this method 

could provide useful information to better understand the physical and chemical 

mechanisms leading to changes in the distribution of phytoplankton biomass and 

productivity. This method would increase the statistical power of the DFA, as the 

number of input variables (salinity, temperature, nitrate, silicic acid, dissolved iron, 

etc.) would exceed the number of groups being classified. 

 The proposed residence time approach differs from the classifier in the present 

study as it would use model estimates for a suite of biogeochemical variables 

evolving through time as the training data set. Instead of water types being defined 

statistically based on similar patterns in the observations, these groupings would be 

defined by the range of properties modeled for each time-step in the model output. 

Predicted properties at a time increment, instead of similarity by water type, would 

describe these new “time types”. The data types generated from the model would 

need to be physical or bio-optical with analogues in the suite of data products 

available from ocean color imagery. These could include FLH for a chlorophyll-a 

biomass estimate, bio-volume to partition the chlorophyll pool into size classes 

[Kostadinov et al., 2009], synthetic salinity, and modeled nutrients. For example, the 

method could be applied to imagery of the plume region using model estimates for 

phytoplankton growth and grazing for the CRP [Banas et al., 2009b]. The DFA, 

performed on an image from a single day, could produce age estimates for water 

masses within the plume. This hybrid, model-observation approach creates the 
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possibility of estimating water age from even a single static image of the plume 

region. A limitation of this approach would be the quality of the model used to 

generate the age-clusters, the problems inherent in error propagation, and the 

difficulty of validating the predictions. 

 

5.0 Conclusions 

The water mass classifier developed in this study is the first to statistically 

differentiate the sub-mesoscale features of the CRP in a biogeochmically relevant 

way using 250 m MODIS ocean color imagery. In contrast to previous work [Thomas 

and Weatherbee, 2006] this classifier describes the water mass features in the plume 

and on the shelf in the same units used by observational and theoretical studies. These 

results are therefore viable as a data source to validate circulation and productivity 

models. Limitations included few data variables available from the various sensor 

platforms to use in building and testing the classifier, the sensitivity of the classifier 

to atmospheric correction artifacts, and the persistent cloud cover in the region where 

the classifier was developed. Despite the limitations, the classifier was effective at 

distinguishing sub-mesoscale features within the plume and the shelf waters including 

remnants of eddies, bulge-like structure, and recently upwelled filaments of water 

along the coast. These features were distinguished solely based on unsupervised, 

multivariate statistics with no manipulation of decision rules, a priori. Two alternate 

approaches were proposed that do subjectively group the training data in a classifier 

based on prior knowledge of the environment. These two techniques may better 



 

 108 

inform our understanding of the mechanisms driving productivity within the plume or 

contribute to our ability to accurately estimate the age of the plume using ocean color 

satellite imagery. 
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CHAPTER 3 

Discrimination of phytoplankton taxa in an optically complex aquatic environment 

  

Abstract 

A new hyperspectral bio-optical algorithm has been developed to discriminate 

phytoplankton taxa in optically complex, case 2 waters. The semi-analytical, 

phytoplankton detection with optics (PHYDOTax) algorithm is based on first 

principles of bio-optics with possible applications to biogeochemical modeling, 

testing of plankton functional type (PFT) models, and detection and monitoring of 

harmful algal blooms. A signature library of remote sensing reflectance (Rrs) spectra 

for seven major phytoplankton groups (diatoms, dinoflagellates, haptophytes, 

chlorophytes, cryptophytes, cyanophytes, and unspecified phycocyanin-containing 

picoeukaryotes – UPCE) was developed using measured and modeled inherent optical 

properties as inputs to the radiative transfer equations. Normalized Rrs spectra were 

sub-setted to10 nm resolution from 455 nm to 675 nm to create the signature library. 

This library and the inverse-matrix-based decomposition algorithm, PHYDOTax, 

were used to discriminate taxon-specific biomass in both synthetic phytoplankton 

mixtures and field samples from Monterey Bay, CA in 2006, 2008, 2009, and 2010. 

Validation with the synthetic mixtures showed strong correlation between algorithm 

predictions and known mixture proportions for all taxa but one, Emiliana huxleyi. 

Field validation demonstrated a strong correlation between measured and modeled 

taxon-specific biomass for diatoms, dinoflagellates, haptophytes, chlorophytes, and 
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UPCE (but not cryptophytes). Cyanophytes could not be field validated. PHYDOTax 

was applied to hyperspectral imagery for the Monterey Bay in 2006 and the algorithm 

predicted a dominant dinoflagellate bloom (> 60% of chlorophyll-a biomass) with 

relatively high diatom biomass within the bloom (~ 20% of chlorophyll-a biomass) 

and at the periphery of the bloom; a pattern confirmed with in situ cell counts. 

PHYDOTax is unique in that it can discriminate between dinoflagellates and diatoms, 

a distinction historically considered challenging using chlorophyll-a, pigments, or 

light absorption spectra alone. With increased availability of hyperspectral remote 

sensing imagery on existing satellites, and the launch of new satellites, PHYDOTax 

holds promise for validating plankton functional type models, modeling 

biogeochemical cycles, and monitoring harmful algae in optically complex coastal 

waters.  

 

Key Terms: PHYDOTax, hyperspectral, phytoplankton discriminator, harmful algal 

bloom (HAB), plankton functional type (PFT) 

 

1. Introduction 

1.1 Ocean Color Remote Sensing 

The age of ocean color remote sensing began in 1978 with the deployment of the 

Nimbus-7 satellite and Coastal Zone Color Scanner (CZCS) ocean color imager 

[Gordon et al., 1983]. The initial goal of ocean color remote sensing was to estimate 

global chlorophyll- a biomass [O'Reilly et al., 1998]. Early work focused on open-
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ocean, case 1 waters where phytoplankton dominates ocean color compared with the 

contribution by inorganic particles [Morel and Prieur, 1977]. More sophisticated 

algorithms were developed to estimate chlorophyll-a in optically complex, case 2 

waters [Carder et al., 1989], where chlorophyll-a contributes less than inorganic 

particles to ocean color. Chromophoric dissolved organic matter (CDOM) is present 

in both case 1 and case 2 water, but generally does not co-vary with chlorophyll-a in 

case 2 waters. With credible chlorophyll-a biomass estimates for both case 1 and case 

2 waters, we have a more thorough understanding of global ecosystem dynamics, 

climate processes, and ocean circulation. Ocean color algorithms have expanded in 

scope and number, beyond just bulk chlorophyll-a estimates, to include the 

determination of inherent optical properties (IOPs) [Lee et al., 2002], primary 

productivity [Behrenfeld and Falkowski, 1997], water mass detection [Martin 

Traykovski and Sosik, 2003], cell bio-volume [Kostadinov et al., 2009], and red-tide 

indices [Ahn and Shanmugam, 2006]. As the study of ocean color moves to the next 

generation, even more complex questions are being asked. We know the 

phytoplankton community is there, now we wish to know who the occupants are. 

Ocean color algal discriminators can be used to resolve this question. 

 

1.2 Algal Discriminators 

 Algal discrimination has a rich and varied history that pre-dates ocean color 

satellite observations and has expanded substantially in recent years [Nair et al., 

2008]. Many algorithms exist and this is a product of their development – usually 
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empirically, for a specific geographic region in order to answer specific questions. 

Algal discriminator algorithms can be grouped into two major types: Those that 

distinguish size-class-- pico-, nano-, and micro-plankton, and those that distinguish 

taxon abundance [Nair et al., 2008]. The reason for the dichotomy stems from the 

application of the algorithms. Phytoplankton size-class corresponds to ecological 

functional type, and these algorithms are applied primarily to biogeochemical 

modeling questions [Nair et al., 2008]. Algorithms that discriminate taxon abundance 

are used for ecological modeling, but also in harmful algal bloom detection and 

monitoring. Some examples of both types of algal discriminator algorithms include: 

patterns in chlorophyll-a anomaly over time [Hu et al., 2005], pigment ratios in whole 

water samples (i.e. CHEMTAX) [Mackey et al., 1996], light absorption spectral shape 

[Ciotti et al., 2002; Sathyendranath et al., 2004a; Sathyendranath et al., 2004b], the 

relationship of backscattering to chlorophyll-a to detect the toxic dinoflagellate 

Karenia brevis [Cannizzaro et al., 2009], the relationship of remote sensing 

reflectance (Rrs) to chlorophyll-a to detect red-tides in optically complex waters [Ahn 

and Shanmugam, 2006], the spectral shape of Rrs [Craig et al., 2006], and the 

relationship between the spectral shape of water leaving radiance (Lw) to diagnostic 

pigment bio-markers [Alvain et al., 2005]. In addition to size-class or taxon 

algorithms, other algorithms, not detailed in this study, classify water masses with 

characteristics of particular algal taxa as well as other optical properties (e.g. high 

turbidity or CDOM) [Hommersom et al., 2011; Martin Traykovski and Sosik, 2003; 

Moore et al., 2001].  
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 The types of questions that can be asked with algal discriminators are varied. 

Can observations of phytoplankton taxa from remote sensing data validate plankton 

functional (PFT) type models? Can carbon flow through different ecological 

pathways be quantified starting with observations of phytoplankton taxa in remote 

sensing imagery? Can carbon export estimates be better constrained, and how might 

this influence climate models? Can remote observations of phytoplankton taxa be 

used to identify and track harmful algal blooms (HABs)?  

 To illustrate, size-class can be modeled from ocean color remote sensing data. 

These size-class algorithms generally are based upon the spectral shape of a particular 

inherent optical property (IOP), such as light absorption or backscattering, or on the 

concentration of chlorophyll-a and other bio-marker pigments of particular 

phytoplankton taxa [Claustre, 1994; Devred et al., 2011; Uitz et al., 2006]. The 

spectral shape of light absorption [Ciotti et al., 2002] or the composition of pigment 

bio-markers [Ciotti et al., 1999; Sathyendranath et al., 2001; Uitz et al., 2006] are 

used to infer phytoplankton size-class based on trends found in empirical data. 

Though there are limitations (e.g. package effect or overlap of pigments among taxa), 

these methods do differentiate pico-, nano-, and micro- plankton in natural samples 

collected either in situ or from ocean color imagery. These algorithms are suitable for 

biogeochemical modeling, or for validating plankton functional type models that 

require no more than three phytoplankton size-classes. However, for more complex 

treatment of the phytoplankton, observations of more than these three size-classes are 

needed. 



	  

	   118	  

 In comparison, taxon-specific biomass can be discriminated from ocean color 

remote sensing data. These estimates are useful for biogeochemical modeling, 

validation of plankton functional type models, and to monitor for harmful algae. 

Similar to size-class algorithms, taxon-specific composition of natural waters can be 

inferred from ocean color in several ways: by the spectral shape of IOPs such as light 

absorption [Sathyendranath et al., 2004b; Subramaniam et al., 2002] and 

backscattering [Cannizzaro et al., 2008] and by the relationship of spectral shape of 

the surface Lw or Rrs  to accessory pigment concentration  [Alvain et al., 2005]. This 

last classification algorithm, PHYSAT, is based on empirical methods and can 

discriminate among five major phytoplankton groups: haptophytes, Prochlorococcus, 

Synechococcus-like, diatoms, and Phaeocystis-like [Alvain et al., 2005; Alvain et al., 

2008].  Algorithms such as PHYSAT attempt to refute the accusation that ecological 

modelers are “running before they can walk” [T R Anderson, 2005] by identifying 

plankton functional types through satellite observations that can be used to validate 

those models. PHYSAT is limited to case 1 waters, was built using empirical 

relationships, and at present only distinguishes between two major taxa in the larger 

size-class (haptophytes and diatoms). These limitations prevent it from being applied 

convincingly to case 2 waters of the coastal ocean where higher nutrient 

concentrations support diverse populations of phytoplankton in the microplankton 

size-class. These phytoplankton include diatoms, dinoflagellates, some haptophytes 

and cryptophytes. These larger, coastal taxa are inherently difficult to discriminate 

from each other because of similarities in light absorption spectra or in the overlap of 
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pigments among groups due to shared evolutionary ancestors [Dierssen et al., 2006; 

Falkowski et al., 2004; Keeling, 2004; Lewitus et al., 2005]. 

 Taxon-specific algal discriminators are promising tools to synoptically 

monitor for harmful algae with remote sensing imagery. Harmful algal blooms 

(HABs) are algal blooms that have deleterious effects on human or commercial 

activities [D M Anderson et al., 2000] and are monitored to mitigate negative impacts. 

Because of costs and time delays, new methods have evolved to monitor HABs at 

larger spatial scales or higher temporal resolution in near real-time as a complement 

to existing agency and volunteer monitoring networks. Some of these new methods 

include instrumented mooring arrays that collect data relevant to HAB detection [C 

Scholin et al., 2009], ocean color remote sensing imagery [Stumpf, 2001], and data 

assimilation techniques to aid HAB prediction [Stumpf et al., 2003].  

 In situ moorings and satellite imagery provide high-resolution temporal and 

spatial data useful for monitoring HABs [C Scholin et al., 2009; Stumpf et al., 2003]. 

Several satellite algorithms have been developed to detect and monitor for the neuro-

toxic dinoflagellate Karenia brevis, which forms dense blooms on the West Florida 

Shelf (WFS), a case 1 body of water. These algorithms include a chlorophyll-a 

anomaly [Hu et al., 2005], spectral light absorption similarity index [Millie et al., 

1997], backscattering relationship to chlorophyll-a [Cannizzaro et al., 2008; 

Cannizzaro et al., 2009], and a red-tide index from an ocean color band-ratio method 

[Shanmugam, 2011].  The K. brevis work on the WFS has borne a group of bio-

optical models that provide a robust test of algal discrimination in a relatively simple 
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optical environment. In more optically complex, case 2 waters, with multiple 

phytoplankton taxa, some of these methods would be less successful. One study [Ahn 

and Shanmugam, 2006] found good agreement with the red-tide index developed for 

the eutrophic waters in the region of the Yellow Sea of northeast Asia. This algorithm 

successfully discriminates a red-tide upon a background of detritus, CDOM, and 

chlorophyll-a. A second iteration of this algorithm was tested in both eutrophic and 

oligotrophic waters and it also successfully identified the red-tide despite some 

limitations due to errors in satellite-derived chl-a estimates [Shanmugam, 2011].  

 These red-tide indices are effective at defining one dominant bloom taxon, but 

they are insensitive to distinguishing more than one taxon that may compose the HAB 

at one time. A real need exists for an algorithm that simultaneous solves for multiple 

phytoplankton taxa in coastal waters. A semi-analytical phytoplankton discriminator 

algorithm may be a better approach to answering a wider range of questions in a 

flexible and credible way because it combines the generality afforded by using first 

principles of bio-optics, with the specificity of taxon-specific measurements of 

inherent optical properties. 

 

1.3 Optics 

 In order to build an algorithm to detect phytoplankton taxa using first 

principles of bio-optics, it is important to first understand some basic concepts. 

Remote sensing reflectance, Rrs(λ), is the quantity of ocean color detected at the sea 

surface by the imaging sensor aboard a ship, an airborne, or satellite platform. It is 
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defined as the ratio of water leaving radiance, Lw(λ,0+) to downwelling irradiance, 

Ed(λ,0+), just above the air-sea interface (Equation 1): 

 

    

€ 

Rrs λ( ) =
Lw λ, 0+( )
Ed λ, 0

+( )
    (1) 

 

Remote sensing reflectance is also defined in terms of the inherent and apparent 

optical properties of an optically deep and vertically homogeneous water column 

using radiative transfer theory (Equation 2): 

 

   

€ 

Rrs λ( )=
t 2

n2
f

Q λ( )
bb λ( )

a λ( )+bb λ( )
   (2) 

 

where t is the transmittance across the air-seawater interface, n is the index of 

refraction of seawater, f is a function of the solar zenith angle, Q(λ) is the upwelling 

irradiance-to-radiance ratio, bb(λ) is the spectral backscattering coefficient, and a(λ) 

is the total spectral absorption coefficient (Lee et al. 1994). Equation 2 can be 

simplified to (Equation 3): 

   

€ 

Rrs λ( ) = C bb λ( )
a λ( )+bb λ( )

   (3) 

 



	  

	   122	  

where C is a constant to account for transmittance across the air-sea interface, the 

index of refraction, the solar zenith angle, and the upwelling irradiance-to-radiance 

ratio. The total spectral absorption coefficient can be further decomposed to 

(Equation 4): 

 

  a (λ) = aw (λ) + aNAP (λ) + aph (λ) + aCDOM (λ)  (4) 

 

where the subscripts w, NAP, ph, and CDOM refer to: water, non-algal particles 

(detritus), phytoplankton, and chromophoric dissolved organic matter. The 

backscattering coefficient can be further defined (Equation 5): 

 

    bb (λ) = bbw (λ) + bbp (λ)   (5) 

 

where the subscripts w and p refer to water and particles. The radiative transfer 

equations (RTE) can be solved using measured inputs for the absorbing and scattering 

properties of the water body (e.g. aNAP(λ), aph, aCDOM(λ),bbp(λ), and the scattering 

phase function; with bbw(λ) and aw(λ) supplied from published values [Pope and Fry, 

1997]), the nature of the wind-blown sea surface, the reflectance properties of the 

bottom of the water column, and the incident sun- and sky-radiance [C.D. Mobley, 

1994; C. D. Mobley and Sundman, 2008]. 
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 The radiative transfer equations are used to solve for the spectral radiance 

distribution within some defined column of water. The magnitude of a(λ) is generally 

much larger than bb(λ) in natural, open-ocean and coastal waters. Early algal 

discriminators rely only on variability in a(λ) [Craig et al., 2006; Millie et al., 1997; 

Sathyendranath et al., 2004a]. However, despite its relatively low magnitude, bb(λ) is 

an important variable in conferring brightness and quality to the remote sensing 

reflectance, and should not be ignored [Dierssen et al., 2006]. Phytoplankton groups 

containing similar pigments and therefore having similar absorption properties could 

differ greatly in backscattering due to differences in size (bio-volume) or composition 

of the cell wall [Kirk, 1994]. Remote sensing reflectance, or alternatively normalized 

water leaving radiance, incorporates both the a(λ) and bb(λ) components of light and 

therefore may be a better variable to use instead of light absorption when 

discriminating among similar algal taxa. This is especially true when differentiating 

among members of the “brown” algal taxa defined by Beutler et al. [Beutler et al., 

2002]. These taxa coexist in mixed assemblages in the case 2 waters of Monterey 

Bay, CA where the present study is located. 
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Fig. 3.1. Study Location. The Monterey Bay is a semi-enclosed bay along the central 
coast of California, USA.
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1.4 Monterey Bay 

 The Monterey Bay, CA is an open bay located on the west coast of the USA, 

at the eastern fringe of the Northern California Current System (CCS), an eastern 

boundary current (Fig. 3.1). Its wind-driven circulation has been extensively 

described elsewhere [Breaker and Broenkow, 1994; Pennington and Chavez, 2000], 

but generally follows three oceanic seasons: upwelling (April – August), oceanic 

(September – October), and Davidson (November – March). This seasonal cycle is 

the climatological trend, though dates can vary and seasons can be interrupted with 

circulation consistent with other seasons. Typically during the upwelling season, 

recently upwelled water from just north of the bay is entrained into the bay where it 

bifurcates into a languid, northward flowing, cyclonic surface current and a 

southward flowing, anti-cyclonic surface current. The oceanic period is characterized 

by a relaxation of upwelling favorable winds, warming, and stratification of the 

surface ocean. The northern part of the bay, near Santa Cruz, lies in the wind shadow 

of the Santa Cruz Mountains [J. P. Ryan et al., 2009] and water temperatures here 

tend to be warmer than other regions of the bay. The Davidson period generally 

experiences downwelling favorable winds with episodic winter storm systems. 

 Patterns in phytoplankton ecology correspond to changes in physical and 

chemical conditions [Smayda and Reynolds, 2001] during these seasons. Diatoms 

tend to dominate during upwelling with its high nutrient flux and strong sheer-stress 

associated with vigorous mixing [Smayda, 1997]. During this period, some toxic 
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species of the diatom genus Pseudonitszchia produce domoic acid-- a neurotoxin that 

causes amnesiac shellfish poisoning and has caused extensive die-offs of marine 

mammals [C A Scholin et al., 2000]. Dinoflagellates are sensitive to vigorous mixing 

and generally are not as abundant in Monterey Bay during the spring and summer. 

This slow growing group thrives in the nutrient-poor, stratified warm waters 

[Smayda, 1997] of the oceanic period. Dinoflagellates form extensive blooms in the 

northern Monterey Bay in a region termed the “red-tide incubator” [J. P. Ryan et al., 

2008]. Winds and prevailing water entrainment patterns concentrate dinoflagellates 

into this incubator [J. P. Ryan et al., 2009]. Episodic wind reversals can result in 

mixed assemblages of diatoms and dinoflagellates [Fawcett et al., 2007]. In the 

Monterey Bay, it is not uncommon to find two co-dominant taxa either comingled 

within a surface bloom or in vertical layers with dinoflagellates in the nutrient-poor 

surface and a subsurface diatom bloom (personal observation).  

 The frequency and duration of these red-tide events have increased in recent 

years [Jester et al., 2009]. The red-tide incubator of the northern part of the bay 

provides an excellent opportunity to study the physics supporting the blooms [J.P. 

Ryan et al., 2005], the physiology of the various species that compose the blooms 

each year [Kudela et al., 2008], the ecological succession of those species and their 

parasites [Mazzillo et al., 2011], and the optics of the blooms. Some of these red-tide 

events have proved to be harmful to wildlife [Jessup et al., 2009] and human health 

[Honner et al., 2010] and are closely monitored.  
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 One approach to monitoring is to identify and track algal taxa using optical 

signatures of the phytoplankton. Monitoring for HABs in Monterey Bay was one of 

the motivations for the algorithm developed in this study, though the algorithm has 

wider possible applications for modeling carbon flow in ecosystems and validating 

plankton functional type models. The objectives of this study were 1) to develop an 

optical signature library of phytoplankton taxa found in Monterey Bay, CA, 2) to 

develop a phytoplankton discrimination algorithm using the signature library, 3) to 

apply the algorithm to hyperspectral remote sensing reflectance spectra collected 

from a ship-board spectroradiometer and an airborne imager, and 4) to validate the 

algorithm using “synthetic” phytoplankton mixtures and field measurements of 

natural waters. 

 

2.0 Methods 

Nine large-scale cultures (Table 3.1) were grown for this study. The inherent optical 

properties of these cultures were measured and modeled. Because only six taxonomic 

groups were represented by the measured cultures, IOPs from other studies were also 

used [Dierssen et al., 2006; Stramski and Kiefer, 1991]. The radiative transfer 

equations (RTE) (HydroLight™ V. 4.2; Sequoia Scientific, Inc.) computed remote 

sensing reflectance using the phytoplankton culture IOPs. These culture Rrs spectra 

formed the signature library. Unknown, natural water Rrs spectra from Monterey Bay 

were decomposed into constituent library components using the phytoplankton 

discriminator algorithm developed in this study. Biomass for each constituent was 
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computed and the model was validated using “synthetic” phytoplankton mixtures and 

independent species quantification measurements from the field. The study design is 

depicted schematically in Fig. 3.2.  

 

 

Fig. 3.2. Study Design. Schematic representation of the development, application, and 
validation of the phytoplankton discriminator, PHYDOTax. 
 

2.1 Large-Scale Cultures 

Nine phytoplankton cultures were grown to either 20 L or 200 L volumes. Genera 

selected included ones representative of the major color groups and those that could 

be cultured to a large volume. The nine phytoplankton genera included Akashiwo, 

Amphidinium, Dunaliella, Isochrysis, Pseudonitszchia, Heterosigma, Skeletonema, 

Synechococcus, and Thalassiosira (Table 3.1).  
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Table 3.1. Phytoplankton cultures used in the study. 

Culture Family Group Sample Date 
Akashiwo sanguinea Gymnodiniaceae dinoflagellate June 2, 2009 
Amphidinium carterae Gymnodiniaceae dinoflagellate February 16, 2007 
Dunaliella tertiolecta Chlorophyceae chlorophyte May 1, 2009 
Isochrysis galbana Isochrysidaceae haptophyte April 23, 2009 
Pseudo-nitzschia sp. Bacillariaceae diatom May 1, 2007 
Heterosigma Heterosigmataceae raphidophyte October 24, 2007 
Skeletonema sp. Skeletonemaceae diatom December 3, 2008 
Synnechococcus Synechococcaeceae cyanobacteria May 1, 2007 
Thalassiosira 
pseudonana Thalassiosiraceae diatom March 24, 2009 
Phycocyanin-rich Pico-
eukaryotes  UPCE Stramski et al. 2001 
Emiliana huxleyi Noëlaerhabdaceae haptophyte Stramski et al. 2001 
Rhodomonas salina Pyrenomonadaceae cryptophyte unpub. data 
Prymnesium parvum Prymnesiophyceae haptophyte Stramski et al. 2001 
Pavlova lutheri Pavlovaceae haptophyte Stramski et al. 2001 
Porphyridium cruentum Porphyridiaceae rhodophyte Stramski et al. 2001 
Chroomonas 
fragarioides Chroomonadaceae cryptophyte Stramski et al. 2001 
Alexandrium catenella Goniodomataceae dinoflagellate unpub. data 
Ceratium sp. Ceratiaceae dinoflagellate unpub. data 

 

The 200 L volume cultures included Amphidinium, Pseudonitszchia, Heterosigma, 

Skeletonema, and Synechococcus. The 20 L volume cultures consisted of Akashiwo, 

Dunaliella, Isochrysis, and Thalassiosira, grown in polycarbonate carboys. The 200 

L culture chamber was a hard-bodied, translucent, cylindrical vessel measuring 

approximately 0.60 m in diameter and 1.0 m in height, lined with a translucent culture 

bag, aerated constantly with an aquarium bubbler, and loosely covered with a 

translucent lid to limit viral or bacterial contamination from the air circulation system 

in the environmental growth room. The seawater matrix for both the 20 L and 200 L 
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cultures was composed of InstantOcean™ artificial seawater amended with Guillard’s 

f/2 culture media (Sigma-Aldrich Co.).  The environmental growth room was 

maintained at 15°C ambient temperature and a 12:12 light cycle at ~ 100 µmol 

photons m-2 s-1 (Sylvania “soft white” fluorescent lights). Growth rate was monitored 

with daily chlorophyll-a biomass measurements. 

 

2.2 Sampling of Algal Cultures  

Optical sampling commenced during late log-phase of algal growth. Discrete water 

samples were collected and filtered to measure chlorophyll-a, particulate light 

absorption (ap), and light absorption by CDOM. A two-liter volume of the unfiltered 

culture sample was passed through a WETLabs, Inc. Spectral Absorption and 

Attenuation (ACS) light meter. The cultures grown to 200L were also sampled with a 

HOBILabs HydroScat-6 backscattering sensor suspended directly into the growth 

chamber. 

 

2.2.1 Filtered Culture Samples 

Chlorophyll-a was measured fluorometrically following the EPA Method 445.0 [Arar 

and Collins, 1997] on a Turner Designs TD-700 fluorometer and concentration was 

calculated using the calibration coefficient for the particular fluorometer (calibrated 

annually). Optical density (OD) of particles and CDOM was measured on a Cary UV-

Vis Spectrophotometer (300 – 800 nm, with 0.5 nm resolution).  Light absorption by 

algal and non-algal particles was measured by filtering an aliquot of sample (in 
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triplicate) onto a glass fiber filter (GF/F; Whatman®) using a low pressure vacuum. 

Sample and MilliQ-water blank filters were immediately scanned on the 

spectrophotometer for OD of total particles, then bleached with a 1.52 M NaClO 

solution, and re-run on the spectrophotometer to derive the algal- and non-algal 

particle contributions to total particulate absorption. The MilliQ blank was subtracted 

from the sample OD. The particulate absorption coefficient was calculated using 

Equation 6: 

 

   

€ 

ap λ( ) =
2.303*OD λ − λ750( )

V Apad

    (6) 

 

Where 2.303 is the correction factor for the natural log transform, V is volume 

filtered, and Apad is the area of the filter-pad. The multiple scattering effects of the 

glass fiber filters were subtracted following the protocol of Cleveland and 

Weidemann [Cleveland and Weidemann, 1993]. The absorption coefficient of non-

algal particles, aNAP(λ), the bleached scan, was subtracted from the total absorption 

coefficient, ap(λ), to obtain the absorption coefficient for phytoplankton, aph(λ). 

Biomass normalized light absorption was calculated by dividing aph(λ) by the 

chlorophyll-a concentration of the culture sample. The absorption coefficient of 

CDOM was measured by filtering a volume of culture through a 0.2 µm Nuclepore® 

polycarbonate filter and then scanning the filtrate immediately on the 

spectrophotometer using a 0.1m pathlength quartz cuvette. A MilliQ-water blank was 
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subtracted from these values and the absorption coefficient was calculated using 

Equation 7: 

    

€ 

aCDOM =
2.303∗OD λ− λ750( )

0.1
   (7) 

 

The total absorption coefficient was determined by adding the absorption coefficients 

for particles, CDOM, and published values for pure water (Pope and Fry 1997). 

 

2.2.2 Optical Instrument Sampling 

2.2.2.1 Spectral absorption and attenuation data collection and processing 

The total absorption and attenuation coefficients of the cultures were measured using 

a hyper-spectral absorption and attenuation (ACS) meter manufactured by WETLabs, 

Inc. The ACS features two rigid flow-through tubes through which water is pulled, 

with the pump upstream of the sensor. Light emitting and detecting sensors measure 

total absorption and attenuation. For the benchtop set-up for this study, the flow 

configuration was altered from the standard field set-up to assure bubble-free 

sampling. Instead of the field deployed Seabird T5 pump, a large volume peristaltic 

pump (ColeParmer, Inc.) was placed upstream of the flow tubes and water was drawn 

successively through each rigid tube via flexible tubing for approximately one 

minute. Data were captured every 250 ms on a nearby PC-laptop running WetView 

7.1 (WETLabs, Inc.). Care was taken to collect at least 10 consecutive seconds of 

bubble-free spectra. Clean-water calibrations were collected prior to each culture 
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sampling to evaluate instrument drift over the course of the study. Drift was 

negligible.  

 The culture biomass for Amphidinium, Synechococcus, and Thalassiosira 

exceeded the sensitivity of the attenuation sensor. Attenuation values for these 

cultures were modeled by fitting a sixth order polynomial to the known attenuation 

spectra for cultures that were within the sensor range. A least-squares fit was applied 

to the roots of the polynomial to absorption at 673 nm (the chlorophyll-a peak). New 

attenuation spectra were reconstructed for the three cultures. Attenuation was 

estimated for these cultures by modeling chlorophyll-specific attenuation for the other 

cultures and deriving spectral attenuation for the unknown samples by using the linear 

relationship of the known samples at each sensor wavelength (C. Mobley, pers. 

comm.).  

 

2.2.2.2 Backscattering data collection and processing 

The HydroScat-6, HS6, (HOBILabs, Inc.) is a field deployable instrument that 

measures optical backscattering at six independent wavelengths and one acceptance 

angle (140º). It also measures fluorescence at two wavelengths, one of which is for 

chlorophyll-a biomass. The measurement is converted to volume scattering function 

at 140º and that value is converted to backscattering. A sigma correction is applied to 

account for light lost due to attenuation between the sample material and the sensor 

(HS6 Manual). These sigma-corrected values were used in this study to obtain optical 

backscattering over the visible range.  
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 The particular instrument used during this study measured backscattering at 

the wavelengths; 442 nm, 488 nm, 532 nm, 589 nm, 620 nm, and 671 nm prior to 

2008, and then was refurbished and new diodes and sensors were installed which 

measured backscattering at 420 nm, 442 nm, 470 nm, 510 nm, 590 nm, and 700 nm. 

The magnitude and spectral shape for each culture were of interest, not a single 

measurement at a particular wavelength, so this change in detection wavelengths was 

not problematic. 

 Because of the geometry of the optical diodes and sensors, sampling small 

culture volumes (< 200 L) was not recommended due to optical contamination by the 

sides and bottom of the culture container, and backscattering was measured directly 

in the culture chamber for the 200 L cultures only. The aquarium bubbler was turned 

off at least 10 minutes before sampling. The lid was removed and the bag liner 

adjusted so it was directly against the container walls. The culture was gently 

“stirred” with a MilliQ-rinsed plastic paddle. The instrument was powered and the 

face was carefully lowered into the culture at a 45º angle and then positioned 

horizontally to face downward in the culture; this reduced the likelihood of bubbles 

adhering to the sensor windows. The instrument face was positioned 15 cm below the 

surface of the culture and 45 cm above the bottom of the culture chamber. Care was 

taken to keep the instrument centered in the culture chamber to prevent optical 

contamination from the sides of the container. Data were collected each second for a 

minimum of three minutes, stored to internal memory and then uploaded, with 

calibrations and corrections applied, using HydroSoft (HOBILabs, Inc.). Suspect data 
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were flagged and deleted. Reliable spectra were loaded into MATLAB (The 

Mathworks, Inc) and converted to text files formatted for HydroLight™. These data, 

and the total absorption and attenuation data from the whole water samples and ACS, 

were used as inputs to compute remote sensing reflectance. Backscattering for the 

other cultures grown only to 20 L was modeled using HydroLight™.  

 Particulate backscattering was modeled for the published phytoplankton 

cultures and the smaller volume cultures grown for this study. Backscattering values 

were modeled with HydroLight™ using the case 2 method where IOPs were obtained 

from a 4-component model for case 2 waters. Minerals and CDOM were held at zero 

and only the contribution to backscattering due to phytoplankton was estimated. 

Output wavelengths corresponded with the HS6 wavelengths. Initially, this method 

was performed on the absorption and attenuation properties of the five large volume 

cultures as a test to see if HydroLight™ could approximate the correct bbp. The 

method was repeated six times for each culture to test six scattering phase functions 

in order to find the best fit between modeled and measured bbp. The FFbb016 

discretized phase function had the best fit (data not shown). So bbp was modeled for 

the other library taxa using this input parameter in HydroLight™. 

 

2.3 Modeling Rrs(λ)  

Remote sensing reflectance for the phytoplankton cultures was computed using the 

radiative transfer equations (RTE) to estimate the radiance distribution within an 

idealized, mono-specific water column. HydroLight™ solves the RTE with user-
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supplied data and sub-routines. Table 3.2 summarizes the HydroLight™ simulation 

input parameters used for each culture. Generally, user supplied inputs included light 

absorption by phytoplankton and CDOM; total absorption and attenuation measured 

with the ACS; published values for absorption and backscattering by water [Pope and 

Fry, 1997]; and particulate backscattering. In some instances the inputs for 

absorption, attenuation, or bbp were modeled from complimentary measurements and 

then applied to the RTE as ‘user-supplied’ inputs to HydroLight™. Seven 

combinations of sun angle, wind speed, and cloud cover were modeled for each 

culture to approximate the conditions most likely encountered in the field. The air-

water surface boundary conditions were set to 0 or 5 m s-1 wind speed and a semi-

empirical sky model based on RADTRAN. Sky conditions were set to 0, 20, 30, or 

45° sun angle and either 0 or 20% cloud cover. The angular pattern for sky radiance 

was modeled with the hcnrad function within HydroLight™. An infinitely deep 

bottom-boundary condition was established and the RTE were solved at 1 nm 

resolution for the upper 1.5 m of the idealized water column. Biomass-normalized Rrs 

(Rrs norm) was computed by dividing Rrs by its value at 673 nm. Rrs norm was binned 

to 5 nm resolution for use in the signature library. Only the surface Rrs norm spectra 

were used for the signature library. 
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2.4 Field Study  

The field study was conducted in the Monterey Bay (Fig. 3.1), an open bay along the 

central California, USA coast. Data collection occurred during four cruises aboard the 

R/V John H. Martin in September 2006, October 2008, October 2009, and October 

2010. In situ optical and whole water sampling occurred inside and outside of red-tide 

patches, primarily in the central and north-east sections of the bay. The underway 

data acquisition system on the boat recorded temperature, salinity, and chlorophyll-a 

fluorescence. For the 2006, 2008, and 2010 cruises, a mini-rosette, equipped with a 

Seabird SBE 19plus CTD, WetStar fluorometer (WETLabs, Inc), and ten 1.5 L  

Niskin bottles sampled from the water column at each station. A 5 L Niskin bottle 

deployed to 5 m and a bucket sample from the surface were used to collect water 

samples in 2009. Discrete water samples were collected to measure chlorophyll-a, 

particulate light absorption, light absorption by CDOM, pigments (2006), and a suite 

of other biologically relevant data not used in this study. Following water collection, 

hyper-spectral absorption and attenuation (ACS, WETLabs, Inc) and optical 

backscattering (HS6, HOBILabs, Inc.) were collected. At the same time, hyper-

spectral downwelling irradiance (Ed) and upwelling radiance (Lu) (350 – 800 nm; 0.3 

nm resolution) were measured with the Satlantic HyperPro II profiling spectral 

radiometer in “floater” mode (HyperTSRB-Profiler II, Satlantic, Inc). Surface and 

profiling measurements were collected with the instrument in both floater and 

profiling mode.  The HyperTSRB-Profiler II data were processed using ProSoft 

7.7.12 to Level 3 and then remote sensing reflectance was computed from Lu and Ed 
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using MATLAB. Surface Rrs was normalized to the passive-fluorescence peak at a 

wavelength higher than 673 nm to derive a biomass normalized, remote sensing 

reflectance spectrum. Only surface Rrs norm was used in this study.  

 In 2006, phytoplankton identification and cell enumeration were performed on 

water samples using the Flow CytoBot [Olson and Sosik, 2007; Sosik and Olson, 

2007]. Cell area per milliliter (µm mL-1) was measured for every chlorophyll-a 

containing cell and then grouped into genus or photosynthetic group. A total of nine 

major groups were observed: dinoflagellates, diatoms, haptophytes, chlorophytes, 

unspecified chlorophyll-containing, cryptophytes, chrysophytes, silicoflagellates, and 

“round cell” which was a mixture of chlorophytes, cryptophytes, and haptophytes. 

The “round cell” group was divided into thirds and each third was applied to 

chlorophytes, cryptophytes, and haptophytes. The total area of cells was computed for 

the taxonomic groups (dinoflagellates, diatoms, haptophytes, chlorophytes, 

cryptophytes, unspecified picoeukaryotes, chrysophytes, and silicoflagellates) and the 

proportion of each was computed by dividing the group area by the total area. The 

proportion was then multiplied times the total chlorophyll-a concentration to derive 

the measured taxon-specific biomass used in validation (Equation 8).  

 

    

€ 

Btaxon =
Ataxon

Ataxon∑
* chl − a[ ]    (8) 
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Where Btaxon is taxon-specific biomass from measured samples, Ataxon is the area per 

mL measured for a particular taxon, and [chl-a] is measured chlorophyll-a 

concentration.  Chrysophytes and silicoflagellates were not used in the validation 

because the algal discriminator did not include those taxa in the signature library. 

Cyanophytes were not detected with the Flow CytoBot. Instead, the ratio of the 

pigment zeaxanthin to chlorophyll-a was used as a marker for the cyanobacterium 

Synechococcus [Kana et al., 1988]. 

 

2.5 Hyperspectral Imagery  

Details of image collection can be found elsewhere [Davis and Bissett, 2007], but the 

salient points are summarized here. Hyper-spectral overflight imagery was collected 

as a part of the Coastal Ocean Applications and Science Team (COAST) cruise from 

September 3 – 15, 2006 in Monterey Bay, CA. COAST was formed by the National 

Oceanographic and Atmospheric Administration (NOAA) to develop ocean color 

algorithms for the next Geo-stationary Operational Environmental Satellite (GOES-

R). Imagery was collected on four days during this period using the Spectroscopic 

Aerial Mapper with On-board Navigation (SAMSON, Florida Environmental 

Research Institute). SAMSON was mounted inside of a Twin Otter aircraft and 

collected hyper-spectral imagery covering 256 bands in the UV to NIR range (3.5 nm 

resolution over 380 to 970 nm) with 5 m spatial resolution. Overflights covered a grid 

in the north-east part of the bay in a region that could be completed in 30 minutes, 

and then re-sampled for a five-hour duration. The time series was intended to capture 



	  

	   141	  

the surface expression of vertically migrating dinoflagellates present in an extensive 

red-tide that coincided with the research cruise. Imagery data were calibrated, 

geolocated, and atmospherically corrected. The best image available (10 am local 

time; September 12, 2006) was downloaded from the server, imported into ENVI 

(ITT, Inc.) where a land and kelp forest mask was applied to the scene and a 

correction factor (1 x 10 -6) was applied to obtain the accurate scale for remote 

sensing reflectance (D. Kohler, pers. comm.). The imagery had a spectral resolution 

of 5 nm at 10 m spatial resolution. Data were then exported to ASCII and imported 

into MATLAB to estimate chlorophyll-a biomass and for further analysis with the 

phytoplankton discriminator algorithm. 

 Chlorophyll-a biomass was estimated from fluorescence line height (FLH) 

[Abbott and Letelier, 2006]. A linear regression of ship-board measured FLH was fit 

to chlorophyll-a measurements from water samples for the 2006 research cruise. This 

relationship (y = 6.65 * 104 (FLH) -37.7; r2 = 0.94, p < 0.05) was then used to 

compute chlorophyll-a concentration from imagery FLH. 

 

2.6 Phytoplankton Discriminator Algorithm  

The phytoplankton taxon discrimination algorithm employs similar techniques as 

CHEMTAX [Mackey et al., 1996], an algal discriminator based on phytoplankton 

pigment absorption. The algorithm uses phytoplankton detection with optics to 

discriminate to algal taxon, hence its name: PHYDOTax. The algorithm is composed 

of three steps. The first step uses matrix algebra to decompose a measured, or 
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unknown, Rrs norm spectrum into its constituent parts represented in a signature library, 

developed from phytoplankton culture measurements. The signature library matrix, S, 

is a subset of the culture library Rrs norm at 10 nm increments from 455 nm to 675 nm. 

The unknown vector, u, is a subset of Rrs norm at 10nm increments from 455 nm to 675 

nm for each unknown sample (i.e. culture mixtures, in situ Rrs measurements from 

shipboard instruments, or Rrs norm spectra from imagery). The algorithm can be 

described as the solution for a vector of coefficients, m, in the following equation 

(Equation 9): 

    u = S • m     (9) 

 

Which, when re-arranged to solve for m is the solution to the dot product of the 

inverse-matrix of the signature library, S, and the unknown spectrum, u: 

 

     m = S-1  •  u    (10) 

Because S is a non-square matrix (i.e. more Rrs norm measurements than taxon 

categories being solved), the pseudo-inverse of S is used instead. The solution is a 

best-fit approach using a least squares minimization technique. Using the pseudo-

inverse of S, a more accurate representation of Equation 10 is (Equation 11): 

 

     m = S+  •  u    (11) 
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where + represents the pseudo-inverse (note: + is not to be mistaken for ‘T’). As this 

is an over-determined solution, the number of wavelengths used in the signature 

library must exceed the number of taxa being resolved.  

For the second step, the result of the dot product is used to compute the proportion of 

each signature taxon within the unknown (Equation 12): 

 

        

€ 

Proportion = Xunknown

Xunknown∑
   (12) 

 

In the third step, this proportion is then multiplied times the total chlorophyll-a 

biomass to arrive at taxon-specific biomass present within the unknown sample.  

  

2.7 Validation 

PHYDOTax was first validated using “synthetic” mixtures of the culture library. 

These synthetic mixtures were simply the mathematical addition of library Rrs norm 

spectra that were then re-normalized by the biomass peak. Two-, three-, five-, six-, 

and seven- taxon combinations were computed using this method for a total of 158 

possible synthetic mixtures. A Wilcoxon rank-sum test was used to evaluate if the 

model predictions for phytoplankton proportion computed from PHYDOTax fit the 

expected proportions. The non-parametric Wilcoxon rank sum test was selected 

instead of the Chi-square goodness-of-fit because proportions were being compared, 

and because the expected proportions were would not have met the assumption of a 
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normal distribution of values [Zar, 1996]. A critical p-value of 0.05 was used to 

evaluate significance. 

 The second validation was conducted on field measurements collected in 2006 

and 2010. Validation tested the null hypothesis that there was no difference in taxon-

specific biomass between measured and modeled estimates. A paired t-test (critical p-

value = 0.05) was used to test the hypothesis. Thirteen surface stations from 2006 and 

five from 2010 had both model predictions and cell enumeration data. Additionally, a 

test of linear regression was performed on these biomass estimates to determine the 

goodness-of-fit. Of these thirteen validation stations in 2006, only eleven had pigment 

measurements. Zeaxanthin concentrations ranged between 0 and 0.26 mg m-3 for all 

stations. Zeaxanthin to chlorophyll-a ratios were essentially 0 mg m-3 for seven of 

those stations, 0.01 mg m-3 for three stations, and 0.03 mg m-3 for one station. These 

ratios were so low as to be considered evidence of no cyanophytes in the samples 

[Kana et al., 1988]. PHYDOTax predicted zero biomass for cyanophytes in all but 

one station (M006 at 1.18 mg m-3). Because of these numerous zero-values, it was 

not possible to perform statistics comparing measured and modeled taxon-specific 

biomass, other than to note a 91% agreement in zero biomass. 

 

3.0 Results 

3.1 Library Development 

The total light absorption coefficient of algal cultures used in this study, both 

measured and from published values, is presented in Figure 3.3. The absorption 
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spectra of dinoflagellates, diatoms, raphidophyte, cryptophytes, and haptophytes 

share similar shape due to pigment composition (Fig. 3.3A & 3.3B). Cyanophytes and 

chlorophytes share a similar shape with cyanophytes having a distinct peak at 620 nm 

(Fig. 3.3C). Rhodophytes and UPCE (Fig. 3.3D) share similar pigments and also 

spectral shape. Of the algal cultures, five reside in the “brown” color group defined 

by Beutler et al. 2002 [Beutler et al., 2002]. Therefore, distinguishing among them 

solely on the basis of absorption properties is inconclusive. Of note are the absorption 

spectra of the cyanophyte, rhodophyte, and unidentified pycocyanin-rich 

picoeukaryotes (UPCE). These taxa have distinguishing absorption peaks at 550 nm 

and at 625 nm (Fig 3.1B) related to the phycobili-protein pigments present. These 

taxa can be resolved from the brown group based on absorption properties (analysis 

not shown).  
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Fig. 3.3. Absorption Coefficient – cultures. Total absorption coefficient of 
phytoplankton cultures. Spectra measured using the WetLabs, Inc. ACS and 
processed according to Methods, spectra normalized to peak value at 673 nm. (A) 
dinoflagellates, diatoms, and raphidophytes, (B) haptophytes and cryptophytes, (C) 
chlorophytes and cyanophytes, (D) rhodophytes and unspecified phycocyanin 
containing pico-eukaroyotes – UPCE.  
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 Figure 3.4 presents the backscattering coefficient of some representative algal 

cultures used in this study. Variation in bio-volume, cell wall material, and cell 

concentration can result in differences in backscattering magnitude and shape. For 

example, chlorophytes (green) and UPCE (blue dashed) had higher backscattering 

than the diatoms (red) and dinoflagellates (blue solid), which have a larger bio-

volume. This is a pattern consistent with observations and optical principles. 

 

 

 
 
Fig. 3.4. Backscattering Coefficient – cultures. Total backscattering coefficient, 
measured and modeled, for some representative algal taxa. 
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 The mean normalized Rrs spectra for the library taxa are presented in Figure 

3.5. Dinoflagellates, diatoms, raphidophytes, and haptophytes shared similar spectral 

shape and magnitude (Fig. 3.5A). Dinoflagellates and diatom spectra varied slightly 

in the peak wavelength and complexity in spectral shape at the shoulder from 550 nm 

to 650 nm. A large spectral peak between 500 nm and 600 nm, relative to biomass, 

characterized haptophytes (Fig. 3.5B). Cryptophytes had no dominant peak, but 

instead had multiple smaller peaks (Fig. 3.5B). The spectral shape of chlorophytes 

followed a relatively simple shape, as expected from its pigment composition, and 

had a peak between 525 nm and 600 nm that was approximately equal in magnitude 

to the biomass peak (Fig. 3.5C). Cyanophytes had a distinctively low peak height in 

the 525 nm to 575 nm range relative to the biomass peak (Fig. 3.5C). Rhodophytes 

differed from all other taxa with a prominent peak shifted further into the red (600 

nm) with several lesser peaks between 490 nm and 540 nm (Fig. 3.5D). Because 

rhodophytes and raphidophytes compose such a small portion of the species 

assemblage in the Monterey Bay, they were eliminated from the spectral library for 

this study. 
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Fig. 3.5. Modeled Remote Sensing Reflectance (Rrs) - cultures. Rrs spectra of algal 
cultures, computed using radiative transfer equations, according to Methods, spectra 
normalized to peak value greater than 680 nm to derive ‘biomass’ normalized Rrs. 
(A) dinoflagellates, diatoms, and raphidophytes, (B) haptophytes and cryptophytes, 
(C) chlorophytes and cyanophytes, (D) rhodophytes and UPCE. 
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3.2 In situ Field Predictions 

The field stations from each of the four research cruises are presented in Fig. 3.6. 

Station location was selected to sample both red-tide bloom and non-bloom waters in 

all years. Stations were distributed throughout the northern part of Monterey Bay in 

2006. Sampling in 2008 was mostly in the northern part of the bay with some 

sampling just south of Moss Landing, CA in order to collect spectra from a filament 

of red-tide water in that region. The cluster of stations near Moss Landing is from an 

eight-hour time series within a dinoflagellate –dominated red-tide (~ 30 mg chl m-3). 

Sampling in 2009 and 2010 was also distributed throughout the northern part of the 

bay. Only a subset of stations are represented in the figure in which both whole water 

and optical measurements were available. 

 Normalized remote sensing reflectance spectra for each station represented in 

Fig. 3.6, is presented in Fig. 3.7. The spectral shape and magnitude vary among 

stations within and among years as would be expected from the diverse water masses 

sampled (red-tide patch, river plume, non-bloom waters). Generally, there is a 

prominent peak between 550 nm and 620 nm. In some spectra, the magnitude of Rrs 

norm was high from 400 nm to 550 nm, relative to the peak. This was likely due to the 

contribution of small scattering particles. These spectra in Fig. 3.7 were the ship-

board measurements of hyperspectral Rrsnorm used to model taxon-specific biomass 

with PHYDOTax.  
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Fig. 3.6. Study Stations. Study stations for each research cruise during the four-year 
program. (A) COAST - 2006, (B) MB08 – 2008, (C) MB09 – 2009, (D) MB10 – 
2010. 
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Fig. 3.7. In situ Rrs – field samples. Measured surface remote sensing reflectance, 
normalized by the maximum peak value greater than 673 nm, from the four research 
cruises (A) COAST - 2006, (B) MB08 - 2008, (C) MB09 - 2009, and (D) MB10 - 
2010.  Rrs was measured in situ using a Satlantic HyperPro Profiler II. Only surface 
samples were used in this study.  
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 PHYDOTax predictions for taxon-specific biomass in 2006 are presented in 

Table 3.3. Measured chlorophyll-a concentration was higher than the typical 

concentration (5 mg m-3) found during September in the Monterey Bay [Pennington 

and Chavez, 2000]. In fact, chlorophyll-a concentration was above typical levels at all 

stations in the bay ranging from 5.7 to 332 mg m-3. PHYDOTax predicted that 

dinoflagellates dominated the biomass at several stations, sometimes reaching 70% of 

the total in 2006. At other stations, however, PHYDOTax predicted fairly evenly 

mixed assemblages of dinoflagellates and diatoms. Within the red-tide, PHYDOTax 

predicted relatively high concentrations of diatom biomass ranging from 0 to 101 mg 

m-3. Haptophytes were predicted to have relatively low biomass, possibly due to the 

season. Chlorophytes, UPCE, and cryptophytes were predicted to be present in low 

concentrations. Trace levels of cyanophytes were predicted for all shipboard 

measurements, with the exception of the offshore M1 station where cyanophytes were 

predicted to occupy 15% of the taxon assemblage. Dinoflagellates were predicted to 

have had high chlorophyll-a concentrations in the northern part of the bay, 

intermingled with diatoms. The stations with the predicted concentrations of high 

diatom biomass were isolated to one part of the bay, inshore of the usual location of 

the red tide incubator, near Aptos, CA. 
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 Monterey Bay experienced a less intense and patchier red-tide in 2008 than in 

2006 (Table 3.4). Measured chlorophyll-a concentrations ranged from 3.8 to 30 mg 

m-3. PHYDOTax predicted that the bloom was dominated by dinoflagellates, but only 

slightly more than diatoms in most cases at 30 to 50% of the biomass. One exception 

was a station at the Salinas River mouth south of Moss Landing where diatoms 

represented 52% of the taxon assemblage. Predicted concentrations of all other 

phytoplankton taxa were very low for 2008. The red-tide existed in sparse filaments 

oriented north to south from the northern part of the bay off of Aptos, CA towards 

Moss Landing, CA and then southward to Marina, CA. One of these patches located 

just offshore of Moss Landing, CA was intensively sampled for an 8-hour time series 

beginning at 10 am and ending at 6 pm local time on October 17, 2008. Only five 

hours of data were used in which sun angle produced reliable Rrs measurements. The 

sample “station” was defined by the location of a drifter that was deployed to the 

densest part of the red-tide. The station migrated slightly due to tides. The percentage 

of dinoflagellates gradually increased for the first two hours from 70% to 75% of the 

total chlorophyll-a pool, decreased at noon to 31%, and then rose again in the early 

afternoon to 67%. This pattern may represent vertical migration of these motile 

organisms. Diatoms were predicted to be present in the bay, near the time series and 

at the mouth of the Salinas River, south of Moss Landing, CA. Cyanophytes were 

also predicted for the mouth of the Salinas River. Taxon-specific biomass predictions 

for the other library taxa were negligible. 
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 Measured chlorophyll-a concentrations were the highest of the four years of 

the study in 2009 (Table 3.5). Concentrations ranged from 31 to 525 mg m-3. One 

station not reported in the table exceeded 2000 mg m-3 chlorophyll-a. PHYDOTax 

predicted that dinoflagellates and diatoms were approximately evenly represented in 

the bloom, the  exception being a station at the Old Salinas River mouth immediately 

south of Moss Landing. Chlorophyll-a concentrations were relatively lower here than 

at other stations in 2009, but dinoflagellates made up 74% of the assemblage 

according to PHYDOTax. Unfortunately, radiometric measurements for the northern 

part of the bay were corrupted and could not be used in the analysis, hence the lack of 

stations in the red-tide incubator.  

 Measured chlorophyll-a concentrations were much lower in 2010 than in 

2009, ranging from 1.2 to 74.2 mg m-3 (Table 3.6). Higher concentrations were found 

in the northern part of the bay, just offshore of Santa Cruz. PHYDOTax predicted that 

dinoflagellates dominated the assemblage only slightly more than diatoms (~ 40 vs. 

30 %) at all but one station in the bay where diatoms were predicted to occupy 45% 

of the taxon assemblage. This station was located just south of the Santa Cruz Wharf 

next to the Environmental Sample Processor deployed by researchers from the 

Monterey Bay Aquarium Research Institute to study the red-tide. Coincidentally, this 

location was also where a distinctive subsurface diatom bloom was observed just 

beneath the surface aggregation of dinoflagellates (M. Peacock, pers. comm.). 
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3.3 Validation   

Validation of the model using the synthetic mixtures demonstrated that PHYDOTax 

accurately predicted taxonomic composition for the mixtures (Table 3.7). The null 

hypothesis: no difference between predicted and expected proportion, was accepted 

for all of the taxa (p > 0.05).  

 
Table 3.7. Validation of Model - Synthetic Mixtures. Mann-Whitney test results 
comparing expected phytoplankton proportions to PHYDOTax predictions. A critical 
p-value of 0.05 was used. > 0.05 indicates PHYDOTax prediction and hypothetical 
proportion were not statistically different. 
 

Taxon rank sum z-value p-value H0 
Dinoflagellate 25187 0.19 0.85 0 

Diatom 24682 -0.47 0.64 0 
Haptophyte 25188 0.20 0.84 0 
Chlorophyte 24774 -0.43 0.67 0 
Cyanophyte 25197 0.26 0.80 0 

UPCE 24779 -0.42 0.68 0 
Cryptophyte 24623 -0.66 0.51 0 

 

In the two-taxa mixtures, PHYDOTax accurately predicted dinoflagellates, diatoms, 

chlorophytes, cyanophytes, cryptophytes, and UPCE in all instances. When 

haptophytes were a part of the mixture, PHYDOTax erroneously applied between 1 

and 3 % of the mixture to diatoms, applied the remaining 47 - 49% of the mixture to 

haptophytes, and then 50% to whichever taxon was a part of the mixture. A similar 

pattern occurred in the three-, five-, and six- taxon mixtures, with negligible mis-

apportioning to diatoms when one of the haptophyte taxa was present in the mixture. 

The predictions for the seven-taxon mixture were an exact match to the expected 



	  

	   160	  

proportions. Despite this small failure, the modeled predictions were still statistically 

the same as the expected proportions. The exception was when the mixture included 

the spectra for Emiliana huxleyi. When E. huxleyi was included, PHYDOTax 

erroneously attributed 50% of the population to diatoms, 30% to cryptophytes, and 

15% to haptophytes. This only occurred with E. huxleyi in the three-taxon mixtures 

and not in the two-taxon mixtures and could be due to the unique bio-optics of E. 

huxleyi as a coccolithophorid. Future iterations of PHYDOTax may need to separate 

E. huxleyi from the main haptophyte group in the spectral library.  

 Field measurements of taxon-specific biomass are reported in Table 3.8 for 

the cell counts that were measured using the Flow CytoBot in 2006 and by 

microscope enumeration in 2010. Chlorophyll-a concentrations in Table 3.8 match 

those from Table 3.3 (2006) and Table 3.6 (2010) as both measurements were 

collected from the same water mass at the same time. Measured dinoflagellate 

chlorophyll-a concentration ranged from 0.32 to 103.4 mg m-3. Dinoflagellates 

represented between 21 and 90% of the taxon assemblage. Diatoms had chlorophyll-a 

concentrations ranging from 1.65 to 160.4 mg m-3, with representation between 2 and 

75% of the community. Other taxa were present, but generally no greater than 5 to 

10% of the total. Curiously, what was considered to be an overwhelmingly massive 

dinoflagellate-dominated bloom, was actually fairly evenly mixed between 

dinoflagellates and diatoms at many stations. One exception was the extremely high 

concentration of dinoflagellates found at a station just south of the Santa Cruz Wharf. 

This station did not have the highest total chlorophyll-a concentration (35 mg m-3), 
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but it did have the highest concentration of dinoflagellates at 90% of the assemblage. 

The other exception was the intense diatom bloom located near the beach in Aptos, 

CA. Diatoms were nearly 53% of the assemblage at 160.4 mg m-3 chlorophyll-a. The 

patterns of mixed diatom-dinoflagellate assemblages and of the intense diatom bloom 

at the fringe of the red-tide were found in the PHYDOTax predictions for the Rrs 

measurements from both the ship and imagery. 
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 Results of the test of linear regression are plotted in Fig. 3.8 where a trend 

between measured and modeled taxon-specific biomass is evident for dinoflagellates, 

diatoms, haptophytes, chlorophytes, and UPCE. The results of the paired t-test 

indicate that the model successfully predicted dinoflagellates, diatoms, haptophytes, 

UPCE, and cryptophytes, but not chlorophytes (Table 3.9). The low biomass of 

chlorophytes and cryptophytes during the period of the cruise may have contributed 

to the failure to see a trend (cryptophytes) or for the null hypothesis to be rejected 

(chlorophytes). Cyanophytes could not be validated with field measurements, as there 

were too few non-zero data-points to make the comparison. 

 

 
 
Fig. 3.8. Validation – field samples. Comparison of measured taxon-specific biomass 
and model estimates from PHYDOTax. Dinoflagellates (2006 and 2010) (A), diatoms 
(2006 and 2010) (B), haptophytes (C), chlorophytes (D), UPCE (E), and cryptophytes 
(F) are shown. 
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3.4 Imagery 
 
 Chlorophyll-a biomass was estimated to be very high in the red-tide incubator 

of the northern Monterey Bay in the 2006 imagery (Fig. 3.9). The bloom was 

concentrated in two patches, one close to shore near Aptos, CA and another just 

offshore, parallel to the shore and the prevailing internal wave fronts that are 

commonly present at that location [J. P. Ryan et al., 2009]. Surface concentrations of 

chlorophyll-a ranged from near zero offshore to more than 400 mg m-3 in the densest 

part of the bloom, as confirmed by water samples collected during the research cruise.  

 
 

 
 
Fig. 3.9. Derived Chlorophyll-a Biomass – imagery. Chlorophyll-a was derived from 
fluorescence line height (FLH) using the relationship between in situ chorophyll-a 
measurements and FLH computed from in situ Rrs measurements. Relationship was 
applied to imagery FLH to derive chorophyll-a biomass. Image collected September 
12, 2006 using SAMSOM Hyper-spectral airborne sensor. 
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Fig. 3.10. Predicted taxon-specific biomass – 2006 Imagery. Estimates of the 
chlorophyll-a concentration represented by phytoplankton taxon; (A) dinoflagellates, 
(B) diatoms, (C) cyanobacteria, (D) haptophytes. Image collected September 12, 2006 
using SAMSOM Hyper-spectral airborne sensor. 
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Water measurements indicate that the bloom was dominated by the dinoflagellate 

Akashiwo sanguinea. PHYDOTax predicted that dinoflagellates were the primary 

taxon present in the bloom region with 40 to 90% of the taxon-assemblage composed 

of this group (Fig. 3.10A). Dinoflagellate-specific chlorophyll-a biomass reached 182 

mg m-3 in some regions and ranged between 15 and 117 mg m-3 in most parts of the 

bloom. PHYDOTax predicted the presence of diatoms within the dinoflagellate 

bloom (~20%), but at lower concentrations (3.9 to 61 mg m-3), and at the periphery of 

the bloom at concentrations as high as 179 mg m-3 (Fig. 3.10B). This pattern is borne 

out in the water measurements collected at stations within the bloom during the 

research cruise, though only two stations coincided with the time of image capture 

and at locations outside of the image boundary. The presence of all other taxa in the 

library was negligible (Fig. 3.10C & 3.15D). Haptophytes, chlorophytes, UPCE, and 

cryptophytes were predicted to have median chlorophyll-a concentrations of 6.6, 0, 0, 

and 8.3 mg m-3 respectively. Cyanophytes were predicted to have a median 

chlorophyll-a concentration of 9.7 mg m-3, mostly co-located with the intense 

dinoflagellate bloom. 

 

4.0 Discussion  

In this paper we have presented a bio-optical model to simultaneously discriminate 

multiple phytoplankton taxa from hyperspectral remote sensing reflectance spectra. 

This phytoplankton discriminator algorithm is a robust tool for quantifying taxon-

specific biomass in optically complex, case 2 waters. Validation confirms that 



	  

	   168	  

PHYDOTax can distinguish among diatoms, dinoflagellates, haptophytes, 

cryptophytes, chlorophytes, cyanophytes, and UPCE. PHYDOTax is the first ocean 

color algorithm to discriminate between diatoms and dinoflagellates. The generally 

accepted paradigm has been that these two taxa cannot be differentiated from each 

other because of the overlap in pigment composition or similarities in light absorption 

spectra [Dierssen et al., 2006]. This novel algorithm is a promising tool to partition 

the phytoplankton biomass in the coastal environment where diatoms and 

dinoflagellates occur together and may support different ecosystems or occupy 

different niches within a harmful algal bloom. 

 In addition to developing a new algorithm to distinguish algae from ocean 

color data, this is the first published study demonstrating the feasibility of measuring 

backscattering directly from large-volume phytoplankton cultures. Backscattering 

measurements were collected to more accurately model Rrs of the pure cultures. These 

measurements are important for the ocean color community to better characterize 

IOPs of taxonomically pure end-members [Nair et al., 2008].  

   

4.1 Comparison with existing algorithms 

When compared to existing algorithms, PHYDOTax has several advantages over its 

predecessors. PHYDOTax’s conceptual ancestor, CHEMTAX, is limited in spatial 

resolution as it is implemented on pigment data collected in situ. CHEMTAX 

credibly estimates taxon-assemblage. However, its input requirements are onerous: 

water must first be collected in situ; the pigments extracted and measured using high-



	  

	   169	  

performance liquid chromatography by a trained technician; then the expected library 

taxa and pigment ratios tuned to a particular habitat or region; followed by execution 

of the algorithm [Mackey et al., 1996]. Assignment to an incorrect algal taxon is 

possible simply by choosing pigment ratios tuned to a different geographic region or 

the wrong suite of expected algal taxa [Lewitus et al., 2005; Mackey et al., 1996]. 

Compared to PHYDOTax, application of this model is limited in spatial and temporal 

scale as it was designed to validate taxon-composition from whole water samples, and 

not from remote observations from moorings or satellites. 

 An active and successful research campaign has been the detection of the 

toxic dinoflagellate Karenia brevis on the west Florida shelf using remote ocean color 

observations from moorings [Stumpf et al., 2003], autonomous underwater vehicles 

[Robbins et al., 2006], airborne sensors [Cannizzaro et al., 2008], and satellites [Hu et 

al., 2005; Shanmugam, 2011; Stumpf et al., 2003; Tomlinson et al., 2009]. Bio-optical 

algorithm development has been prolific. An early model was a two-dimensional 

spectral analysis technique to determine similarity [Millie et al., 1997]. Karenia 

brevis contains the pigment bio-marker gyroxanthin-diester, which has distinctive 

absorption properties. At only 5% of the magnitude of the spectrum [Millie et al., 

1995], it is a relatively weak signal and is overwhelmed by chlorophyll-c and 

fucoxanthin. Historically, this algorithm has been used with in situ water samples, but 

with recent advances in decomposing IOPs from hyperspectral ocean color imagery 

[Lee and Carder, 2004] these comparisons can be made over much larger spatial 

scales. Another algorithm that exploits the contrast of the unique properties of K. 
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brevis against an optically different background is that developed by Cannizzaro and 

collaborators [Cannizzaro et al., 2008; Cannizzaro et al., 2009]. This model 

distinguishes K. brevis by its distinctively low chlorophyll-specific particulate 

backscattering coefficient at 550 nm (≤ 0.0045 m2 mg-1) [Cannizzaro et al., 2009]. 

This differs dramatically from the type of phytoplankton that may be present in the 

case 1 waters where K. brevis is typically found. Using a large hyperspectral dataset 

for the WFS as a test, this model accurately discriminated K. brevis blooms from non-

blooms 99% of the time [Cannizzaro et al., 2009]. Both of these K. brevis-specific 

algorithms were developed with hyperspectral data to discriminate just one 

phytoplankton species, albeit a noxious one, from a background of non-bloom waters. 

These, and other remote sensing algorithms for the WFS, have been successful and a 

necessary “proof-of-concept” that ocean color can be used to identify harmful algae 

in case 1 waters. A logical next step addressed in the present is to detect algae in more 

optically complex, case 2 waters, or in waters with a plurality of algal taxa 

influencing the ecosystem and bio-optics. 

 Two bio-optical algorithms that distinguish red-tides in optically complex 

waters have been applied to northeast-Asia coastal waters [Ahn and Shanmugam, 

2006], the Arabian Sea and Gulf of Oman, and the West Florida Shelf as a test of case 

1 waters [Shanmugam, 2011]. These two algorithms, the red-tide index (RI) and the 

algal bloom index (ABI) use an empirical relationship between chlorophyll-a 

concentration and band-ratios of ocean color to detect red-tides. They were developed 

to differentiate dinoflagellate blooms upon a background of turbid water and other 
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phytoplankton species using existing multispectral satellite imagery from SeaWiFS or 

MODIS [Ahn and Shanmugam, 2006; Shanmugam, 2011]. These algorithms 

successfully identify the presence of a red-tide in both the case 1 and case 2 water 

types. Both band-ratio methods fail with incorrect chlorophyll-a estimates. So, the 

choice of chlorophyll-a algorithm or the atmospheric correction parameters used in 

processing the imagery can affect algorithm performance [Shanmugam, 2011]. This is 

particularly a concern in near-shore environments where the atmospheric composition 

can differ greatly from near-shore to offshore. Despite these caveats, the algorithms 

are effective at distinguishing red-tides in optically complex waters and can do so 

with existing satellites. However, they are limited to a bulk estimate of the red-tide 

and do not distinguish among other coincident phytoplankton taxa that may 

contribute to the deleterious effects of a bloom. 

 The phytoplankton classification algorithm PHYSAT does simultaneously 

solve for multiple phytoplankton taxa using multispectral ocean color imagery 

[Alvain et al., 2005]. It is effective at characterizing the taxonomic composition in 

case 1 waters of the global ocean [Alvain et al., 2008; d'Ovidio et al., 2010] and could 

be a valuable algorithm for describing the partitioning of carbon flow [Masotti et al., 

2011] in several biogeochemical provinces including the north Atlantic and the 

Southern Ocean [Alvain et al., 2008]. PHYSAT and PHYDOTax are similar in that 

they solve for multiple taxa in one iteration of the algorithm. They differ in the 

taxonomic composition of the signature library; the approach to development – 

PHYSAT is empirical and PHYDOTax is semi-analytical; and the water types where 
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they can be applied. PHYSAT will be technically challenged to distinguish among 

some taxa traditionally grouped in the brown color group [Beutler et al., 2002] which 

includes diatoms and dinoflagellates. PHYSAT uses the relationship between 

diagnostic pigment bio-markers and water-leaving radiance to classify groups: 

Pigment overlap in dinoflagellates and diatoms discourages delimiting the two groups 

[Dierssen et al., 2006]. Because PHYDOTax uses Rrs, which incorporates 

backscattering, it does not suffer from the pigment overlap problem. Pigment 

composition must be unequivocal among the phytoplankton taxa in order to clearly 

characterize the different groups using PHYSAT. Further increases in algal groups 

may be limited by vague pigment distinctions in the remaining taxa not yet 

characterized. Another limitation is extending PHYSAT to optically complex waters 

where higher turbidity, CDOM, and phytoplankton are conflated in one water-leaving 

radiance spectrum. A semi-analytical approach that includes a range of concentrations 

of non-algal particles or CDOM in the library building spectra may more closely 

approximate the bio-optics of a phytoplankton bloom in case 2 waters. In its current 

state, PHYDOTax has non-varying aNAP and aCDOM in its signature library; however, 

it has the potential to include such variability because of its semi-analytical approach 

to modeling library spectra. Even without including variability in non-algal particles 

and CDOM, PHYDOTax can predict the composition of phytoplankton taxa in the 

optically complex waters of Monterey Bay, CA. 

 

4.2 Implications for PFT Modeling and HAB Monitoring 
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PHYDOTax successfully discriminates phytoplankton taxa in coastal waters. It may 

be possible to apply the algorithm to case 1 waters with future enhancements to the 

signature library to include Prochlorococcus, Trichodesmium, and other 

phytoplankton more typical of the open ocean. Plankton functional type models vary 

in complexity from relatively simple NPZD models with one to three phytoplankton 

size-classes to a more complex 78 phytoplankton-type model (i.e. DARWIN) 

[Follows et al., 2007]. High-complexity models are alluring as they promise to 

explain the ecosystem more thoroughly. Validating these models is problematic 

without an equal number of independent validation observations as there are input 

variables [T R Anderson, 2005]. Satellite observations have historically provided 

relatively few of the independent observations needed to validate models.  Recent 

work by Alvain et al. [Alvain et al., 2005; Alvain et al., 2008; Alvain et al., 2006] has 

made it possible to observe some plankton functional types in the open ocean. 

PHYDOTax may do the same for the coastal ocean. While PHYDOTax will never 

meet the 78 input parameter threshold for independent validation, it does predict more 

phytoplankton groups than existing algorithms, and more signature library taxa could 

be added to the model in the future. For implementations of DARWIN, or 

simplifications of DARWIN, in the CCS [Goebel et al., 2010], PHYDOTax could be 

a viable tool to produce validation observations. Ultimately, one goal of PFTs is to 

constrain estimates of carbon flow. It may soon be possible to validate those 

predictions in the CCS with increased availability of hyperspectral imagery along the 
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CA coast using the Hyperspectral Imager for the Coastal Ocean (HICO) imaging 

spectrometer on the International Space Station. 

 Taxonomically, PHYDOTax discriminates to the family level or higher. 

Because of shared pigments, morphology, and cell wall material within taxa, it is 

unlikely that the algorithm will ever differentiate within the existing taxa-- the 

exception being haptophytes and dinoflagellates. These two phylogenetically and bio-

optically diverse groups [Falkowski et al., 2004; Keeling, 2004; Lewitus et al., 2005] 

may be separated to improve performance of the algorithm. PHYDOTax does not 

resolve to the species level, so it cannot be used to directly detect and monitor a HAB. 

However, it can be used to identify the dominant taxon within a bloom. As evidenced 

in this study (Fig. 3.10), PHYDOTax described a mixed dinoflagellate-diatom bloom 

in 2006. The ability of the model to simultaneously resolve dinoflagellates and 

diatoms could aid in describing taxon patchiness within a larger bloom. In situ 

measurements confirmed the small diatom bloom found at the periphery of the larger 

red-tide (Fig. 3.10B). Prior to PHYDOTax; chlorophyll-a, light absorption, and 

particulate backscattering could be discerned from the hyperspectral Rrs imagery [Lee 

and Carder, 2004]. Conclusions could be drawn as to the likelihood of taxa within the 

bloom, but no further predictions could be made. Using PHYDOTax, knowledge of 

the taxonomic composition of the HAB could improve decision making and adaptive 

sampling of the bloom. 
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4.3 Limitations and Future Work 

PHYDOTax has its limitations, and like its conceptual predecessor, CHEMTAX, 

should not be treated like a “black box.” Like CHEMTAX, PHYDOTax is an over 

determined solution and therefore the number of independent variables retrieved (i.e. 

expected library taxa) cannot exceed the number of wavelengths used in the algorithm 

(twenty-three wavebands). In addition, some a priori knowledge of the expected 

taxonomic composition is needed to select the signature library taxa to use in the 

model-runs. In the future, the hope is to add more library taxa to the signature library 

to extend the utility of PHYDOTax beyond the seven taxa currently in it. The existing 

library is composed of taxa found mostly in the coastal ocean of Monterey Bay. A 

next step is to include Prochlorococcus and Trichodesmium, and a wider diversity of 

eukaryotes including chrysophytes and silicoflagellates. Additionally, to include more 

species within the haptophyte and dinoflagellate groups (beyond the three in each) to 

more adequately represent the wide range of bio-optical subtypes in those two groups 

[Falkowski et al., 2004; Keeling, 2004; Lewitus et al., 2005]. A third limitation is that 

the algorithm uses hyperspectral data. One sensor, the Hyperion Imager aboard 

NASA’s EO-1 satellite, has the spectral and spatial resolution needed to 

accommodate PHYDOTax. Imagery from this sensor is captured by on-demand 

requests from approved research projects for both terrestrial and aquatic systems. 

Demand by the many stakeholders limits the availability of imagery from the coastal 

ocean. Until recently, Hyperion images were very costly. With the launch of HICO, 

repeated satellite retrievals over the coastal ocean are now available to ask relevant 
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scientific questions using PHYDOTax. The limited availability of hyperspectral 

imagery does not preclude the implementation of PHYDOTax on data-sets from 

mooring arrays that measure surface remote sensing reflectance. So, while HICO data 

may be limited in its coverage or temporal resolution, taxon-specific discrimination is 

currently possible with existing instrumented moorings. 

 The future of ocean color remote sensing is gradually moving towards 

hyperspectral imagers with the temporal and spatial resolution found on MODIS. 

Hyperspectral sensors are expensive to develop and the anticipated computing and 

data-storage needs are very costly. Not surprisingly, government entities equivocate 

in embracing missions to launch hyperspectral imagers into space. With little 

commitment to launch hyperspectral imagers, the research community is reluctant to 

develop and test hyperspectrally-based algorithms. However, within the last five 

years the impasse has broken; the number of algorithms has increased [Cannizzaro et 

al., 2008; Craig et al., 2006; Torrecilla et al., 2011]. PHYDOTax is an example of 

one, and also provides a valuable lesson: The need for “hyperspectral” may not 

require 1 nm resolution with sub-nanometer bandwidth. PHYDOTax operates at 10 

nm resolution with a ~2 nm bandwidth and can discriminate among taxa previously 

thought indivisible. If other bio-optical algorithms can perform at similar spectral 

resolution, then it may be possible to launch a lower resolution sensor that still 

affords the computational skill needed for spectral analysis, but at a resolution that is 

affordable to develop and maintain. 
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CONCLUSIONS 

 

The bio-optical algorithms developed in this dissertation addressed three 

oceanographic objectives: to identify where the water mass is, how the water mass is 

changing in space and time, and what is contained within the water mass. The first 

chapter demonstrated that light absorption by chromophoric dissolved organic matter, 

aCDOM, is a reliable proxy for salinity in the brackish environment of the Columbia 

River Plume (CRP) on the Oregon and Washington shelf. The second chapter 

described how to identify sub-mesoscale water masses in the larger CRP, consistent 

with other observational and modeling studies. The third chapter introduced an algal 

discriminator algorithm that was able to differentiate several phytoplankton taxa 

(including diatoms, dinoflagellates, haptophytes, cryptophytes, chlorophytes, 

cyanophytes, and unspecified phycocyanin-containing picoeukaryotes) in case 2 

waters. The remainder of this section summarizes each chapter’s results, impact and 

implications, and future work. 

 

Chapter 1 

 An optical proxy for salinity was developed for the CRP by relating salinity to 

aCDOM for 2004, 2005, and 2006 [Palacios et al., 2009]. A generalized algorithm was 

also developed that can be applied to imagery in other years- though only during 

spring-summer periods. The algorithm was robust at estimating the salinity of the 

CRP and is the first to relate ocean color to in situ measurements of salinity for the 
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CRP. As a result, it is now possible to estimate salinity for the Oregon and 

Washington shelf where the plume resides – a vast improvement in spatial resolution 

over the limited observations possible with existing mooring instrumentation. In 

addition to a dramatic increase in the spatial scale over which salinity now can be 

observed, these observations can be made at near-daily frequency, so long as weather 

conditions permit cloud-free observations of the sea. These types of satellite 

observations of “synthetic” salinity will be useful to the scientific community to 

validate physical models describing the location of the plume on the shelf.  

 One limitation of the algorithm is that it was developed primarily during the 

spring and summer flow periods, and only for a few years. The bio-optics of the river 

water may vary according to season as well as inter-annually, but because of 

limitations in the research schedule, it was not possible to develop a generalized 

proxy for year-round flow or for longer term changes in bio-optical signatures. Future 

work could improve on the model by including year-round measurements of aCDOM 

and salinity to extend the proxy to other seasons. 

 

Chapter 2 

 A statistical clustering technique was developed to classify water masses 

based on characteristic bio-optical and environmental properties [Palacios et al., in 

prep-a]. The algorithm relied on in situ measurements of salinity, temperature, and 

chlorophyll-a magnitude to group water masses into biogeochemically-based clusters. 

This is the first study to statistically define water masses within the plume based on 
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the biogeochemical properties of the water and not solely on the optical properties. 

This study also validated the water mass estimates with in situ measurements. This 

new, biogeochemically-based algorithm captured sub-mesoscale features within the 

plume that may be useful for validating other geophysical models of the CRP.  

 The time series analysis component of this study was less conclusive in 

tracking a water mass in time. The method can define these features spatially; it may 

be necessary to perform this type of analysis in a region with more consistent cloud-

free days to adequately address temporal dynamics. This was not the case for this 

study: the region of the CRP experienced five completely cloud-free days during the 

cumulative 95-days of research cruise time used for model building and validation. 

Conducting this type of study in a region with more clear days would prove a better 

test of the time series analysis component of the study. Santa Barbara, CA channel 

would be an excellent candidate with its episodic winter storms interspersed with 

nearly cloud-free days for image capture. 

 

Chapter 3 

 A semi-analytical, phytoplankton taxon discrimination algorithm (named 

“PHYDOTax”) was developed for this study [Palacios et al., in prep-b]. The 

algorithm was based on first principles of bio-optics and was applied to synthetic 

culture mixtures and to field observations of remote sensing reflectance. Validation 

demonstrated that PHYDOTax was a robust tool for discriminating algal taxa using 

hyperspectral ocean color data. Unique to PHYDOTax is its ability to discriminate 
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between dinoflagellates and diatoms using ocean color data. As a result, PHYDOTax 

may be a valuable tool for the Oceanography community to partition the chlorophyll 

pool into its constituent parts—especially in the coastal zone of the California Current 

System where diatoms alternate with dinoflagellates as the dominant taxon present. In 

addition, PHYDOTax is a new and important tool for the validation of ecosystem 

models, tracking carbon flow through different phytoplankton taxon-dominated 

systems, and the detection of harmful algae. 

 One of the biggest limitations of PHYDOTax may also be considered a 

feature- the representative phytoplankton taxa in the signature library. The efficacy of 

PHYDOTax is limited by which taxa are present in the signature library. Like its 

conceptual predecessor, CHEMTAX [Mackey et al., 1996], PHYDOTax can only 

predict estimates of phytoplankton taxa in a natural sample from the member taxa in 

the library. Consequently, if PHYDOTax is applied to a region with considerably 

different taxa than in the existing library, the estimates will not be credible. However, 

what may appear to be a flaw—the limitation of the signature library—is also the 

algorithm’s strength. PHYDOTax is flexible. The library can be changed with user-

supplied pure culture estimates of remote sensing reflectance, Rrs. These Rrs estimates 

for phytoplankton can be derived from the radiative transfer equations and taxon-

specific inputs for light absorption, backscattering, and attenuation. With the 

appropriate signature library, PHYDOTax can be applied to many different regions of 

the surface ocean. 
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 The second limitation of PHYDOTax is that it does not presently allow for an 

‘other’ classification for estimates that do not belong to any library taxa. If the library 

is not representative of the environment, it is possible to mis-classify a natural sample 

into a library taxon that is not correct. A solution to this problem could be achieved in 

future iterations of the algorithm by including a null set in the computation. 

 Another limitation of the algorithm is that it can only be used for surface 

samples and does not account for the range of spectral shapes that may be expected 

for algae growing under varying light and nutrient concentrations. Both of these 

limitations are related to the effect of depth, biomass concentration, and biomass 

composition on the flattening of the peaks in the Rrs spectrum. Flattening of the Rrs 

spectrum has a direct effect on the results of the algorithm. One approach to address 

this limitation is to increase the number of Rrs spectra for each taxon in the signature 

library. These additional spectra would represent the range of Rrs spectra expected 

from varied light and nutrient growth conditions, the “package effect” due to 

chloroplast arrangement under high biomass conditions, and the effect of depth on the 

ambient light field. If it is possible to resolve the issue of the flattened Rrs spectrum, 

the utility of PHYDOTax can be expanded to estimate taxon-specific biomass in 

depth profiles collected during research cruises or instrumented moorings such as 

MBARI’s M1 mooring. The algorithm could also be applied to glider-based 

observations of the underwater light field to estimate taxon-specific biomass in three-

dimensions, a data-set that could be used to validate three-dimensional models of 

ecosystems. 
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 It is worth noting that this algorithm may address a number of questions 

important to Biological Oceanography. It may be a valuable tool in observing the 

total phytoplankton biomass pool partitioned into its constituent taxa. This has 

applications for the sub-disciplines of ecosystem modeling and harmful bloom 

detection. Another area where it could have an important impact is on validating 

Plankton Functional Type (PFT) models. PHYDOTax was developed to discriminate 

among actual taxa, not just phytoplankton size-class, which may afford the specificity 

needed to validate models with a large number of phytoplankton groups. Finally, the 

ability of PHYDOTax to discriminate between diatoms and dinoflagellates using 

ocean color data is especially useful in the coastal environment where these two taxa 

dominate and frequently co-occur. 

 Interestingly, two unexpected potential impacts of PHYDOTax were observed 

after the model was developed. The first is related to future satellite development. 

PHYDOTax uses hyperspectral data but at a resolution broader than what may be 

considered “hyperspectral” by the Ocean Optics community (10 nm vs. 1 – 2 nm). 

PHYDOTax demonstrates that it is possible to make robust algorithm predictions 

with lower-resolution optical data. When agencies weigh the advantages of 

developing hyperspectral remote sensing satellites, the cost of developing a high 

resolution sensor with its incumbent data acquisition and storage requirements can 

halt projects early in the development cycle. PHYDOTax, and algorithms with 

similarly less demanding spectral resolution requirements, are evidence that lower 

resolution satellites may be sufficient to ask Oceanographically relevant questions. 
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 The second impact is related to applying the conceptual framework of 

PHYDOTax to existing multi-spectral satellite data. If it is possible to build an 

algorithm like PHYDOTax for multi-spectral data, then there is great potential to 

mine the historical data of multi-spectral sensors to characterize phytoplankton taxon 

distribution and abundance over time. This could provide insight into ecological 

succession over time, comparisons of El Niño and La Niña periods, anomalously 

large storm events, and the incidence of harmful algal bloom events. An algorithm 

such as this (revised for a multi-spectral sensor, tuned with a spectral library of 

phytoplankton appropriate for a region, with the number of taxa not exceeding the 

number of sensor wavebands) could be a valuable forensic tool for shedding new 

light on existing long-term data sets, possibly revealing hidden patterns with 

revelations of historical ecosystem development and climate change. 
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