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1. Introduction 

Solar thermal technologies have been successfully applied for water heating and power 

generation for several decades. While solar collectors for water heating are low cost, individual 

units that operate at less than 100°C, solar thermal power plants are utility scale investments and 

installations that operate at temperatures beyond 300°C. What is needed is a cost effective solar 

thermal collector capable of producing heat at 100-300°C.i  

When the University was established in 2004  Dr. Roland Winston came with an extensive 

background in solar energy; and had an idea about how to design a solar thermal collector that 

could achieve 100-300°C while being economically competitive with traditional fuel sources. 

To achieve this goal he began a solar thermal research group at UC Merced that attracted many 

students including myself as a freshman in the fall of 2005. The group consisted of multiple 

graduate students as well as undergraduates and together we extensively studied physics, optics, 

solar energy, etc. that allowed us to design and model solar thermal collectors. In 2007 our 

group was awarded a California Energy Commission, CEC, grant that allowed us to build and 

test our designs over two years to determine the characteristics of each design. 

What came of it was an optimal design for the collectors and an ideal application for them, a 

double effect absorption chiller. Our group chose to purse designing, building and testing this 

solar cooling system in 2009, the year I graduated with my B.S. and I chose to continue this 

research and take on the role of being the lead engineering and project manager.  

This thesis reviews the work that was done before my time as a 

graduate student so that one may understand the solar thermal 

technology and specific design, and why a double effect 

absorption chiller was chosen as the ideal application; and how 

we designed, built and tested the first ever non-tracking solar 

powered double effect absorption chiller.   

  
Figure 1: Prototype of solar thermal 

collector at Castle, in 2008. From left to 

right, Kevin Balkoski-Graduate Student, 

myself, Dr. Roland Winston. 
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2. Background 

2.1 Solar 

2.1.1 Motivation for a Solar Thermal Medium Temperature Collector  

Low temperature thermal systems primarily consist of two technologies: flat plate collectors and 

evacuated tubes, as shown in Figure 2 below. To date, flat-plate collectors for hot water 

generation serving the residential and commercial sectors have been implemented for several 

decades and have achieved a high degree of reliability, being one of the most widespread solar 

thermal technologies.ii Flat plate collectors for water heating are inherently limited due to their 

design to the low temperature region; however, well-engineered devices can achieve operating 

temperatures beyond 100°C at low pressures for water, and some degrees higher with other 

fluids.iii Flat plate collectors can effectively be used as pre-heaters to assist several processes and 

increase the overall fuel efficiency, such as the solar assisted air conditioning program (SACE) 

in Europe.iv Other collectors sharing the same principles of the flat type have been proposed for 

drop drying as well as other applications.v  

 

 

 

 

 

High temperature thermal systems with working fluid temperatures in the range of 300°C to 

1000 °C are generically known as Concentrating Solar Power, CSP, technologies. Examples of 

these technologies are parabolic and linear Fresnel mirrors, and are shown in Figure 3 . To date, 

any technology in the market today that can achieve + 300°C are tracking technologies. These 

types of systems have focused primarily on power generation and are large scale installations 

able to generate power in the tens of megawatts. The economics of these systems only make 

sense at the electrical utility scale.vi 

 

Figure 2: To the left is a standard flat plate solar collector, and to the right is a standard evacuated solar tube system. 
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Figure 3: Left is a linear Fresnel high temperature system, to the right is a parabolic high temperature system. Both tracking technologies. 

 

 

 

Medium temperature solar collectors have an operating range between 120-250°C. In contrast to 

the extensive literature and development of low and high temperature solar collectors, recent 

surveys on commercially deployed solar thermal technologies do not report any development of 

medium temperature collectors. What happens is that industry attempts to bring expensive high 

temperature tracking solar collectors down to the medium temperature range or the non-tracking 

inefficient low temperature technologies up to the medium temperature range. The result is that 

both approaches are inefficient.  

What is needed is a solar thermal collector that has a low cost design and is simple to use, and 

can effectively achieve temperatures in the medium temperature range. 

2.1.2 Non-Imaging Optics 

For most of its history, the field of optics had been devoted to the collection and concentration of 

the visible light reflected or generated by objects, onto a plane or directly transmitted to the 

human eye. The main motivation was to form a visible image of distant or minuscule objects that 

otherwise would escape the human eye’s resolution capacity. Contemporary optics however, has 

expanded its field of study and applications beyond image formation and beyond the spectrum of 

visible light.  

Image-forming optical systems are devices such as cameras, telescopes, microscopes and similar 

others. One strict requirement of these systems is that the light at the output of the optical system 

must preserve the same spatial distribution of the incoming light. In other words, using 

geometrical optics each ray originated at each single point of the object that is collected by the 

optical system, must occupy the same relative position of the input (source), at the output (image 

plane or receiver). The better the optical system can achieve this condition, the better the image 

at the output will resemble the image at the input.  
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Non-imaging optics is a relatively new field in optics that studies the collection and 

concentration of light without the requirement of transmitting the same spatial distribution of 

light radiated by the source, to the output of the optical system. Therefore, the image at the 

output of a non-imaging device won’t necessarily bear any resemblance to the image at the input. 

This relaxation in the performance requirements of the optical system also relaxes the design 

approach for non-imaging devices, as typical aberrations for image-forming optical devices are 

not necessarily important to address.  

For solar energy applications what matters is the collection, transmission or concentration of the 

incoming energy, with no interest in reproducing the precise image of the sun at the output of the 

optical system, which would be the input of the energy conversion system. Therefore, non-

imaging optical components are of great interest in the design of solar energy systems.  

The discovery and development of non-imaging optics has enabled non-tracking (fixed) 

concentrating solar collectors generating heat up to 300°C. In March 2002, Bergquam Energy 

Systems completed a project to design and optimize solar absorption chillers. This project, 

funded by PIER Renewables (contract number 500-02-035), was the first demonstration 

worldwide showing that a double effect absorption chiller can be powered by a solar thermal 

system, based on non-imaging optics for the concentration of sunlight. That specific collector is 

called an integrated compound parabolic concentrator, ICPC. Several companies overseas took 

up this technology concept and developed similar products to be commercialized. However, 

these products were, in most cases, not cost-competitive and not geared to California’s climate.  

2.1.3 The External Compound Parabolic Concentrator 

Building on the foundation of the ICPC an idea for an external parabolic concentrator, XCPC, 

was pursued at the University of California, Merced, UCM, through a CEC grant #500-05-021. 

The goal was for the XCPC to be a low-cost, medium-temperature solar thermal collector system 

ready for mass production. Table 1 outlines the pros and cons of various solar thermal 

technologies against the XCPC. Working with corporate participants Sol Focus and United 

Technologies Research Center, the research team at the UCM developed an innovative non-

tracking system consisting of a series of stationary evacuated solar thermal absorbers paired with 

external non-imaging reflectors. This system is able to operate with a solar thermal efficiency of 
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50% at a temperature of 200°C. The XCPC can be readily manufactured at a cost of $15 - $18 

per square foot meeting the economic goals for the project.  

Table 1: Comparison of the pros and cons for various solar thermal technologies. 

Technological concept Pros Cons 

Flat plate collector Stationary Limited to temperatures well 

below 100°C 

Parabolic Trough Can operate up to 315°C Tracking required 

Integrated Compound Parabolic 

Concentrator (ICPC) 

- No tracking required  

- Can operate up to 260°C 

Expensive 

External Compound Parabolic 

Concentrator (XCPC) 

[our approach] 

- No tracking required 

- Amenable to low cost mass 

production ($15 - $18 psf) 

Limited to temperatures up 

to 200°C 

 

During the course of this project, a total of seven different XCPC configurations were created 

and tested at UC Merced. After improving the reflector technology and incorporating a new 

evacuated thermal absorber design, a prototype was then constructed and tested. After further 

improvements and adjustments, a 10kW prototype was manufactured and tested at the 

NASA/Ames facility by SolFocus. This prototype has been in operation since the spring of 2008. 

Figure 4 below is a picture of this prototype. 

  

Figure 4: Roland Winston with the prototype at Nasa Ames. 
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Before getting into the specifics of the design it is important to understand the various 

components that the collector is comprised of and how the system is referred to.  

Components: 

To have a general understanding of the external compound parabolic concentrator, cross 

sectional view of the collector in Figure 5, a brief description of each component of the system 

and how they fit together and operate is provided.  

 

 

 

 

 

 

Reflector: 

The reflector is designed via non-imaging optics and is orientated for the NS or EW direction. It 

has a reflective coating so that it can reflect the solar insolation. Figure 6 shows the NS and EW 

designs to scale.  

Figure 5: Cross sectional view of XCPC with U-tube. 

Figure 6: Left is the EW reflector design with an evacuated tube shown. Right is the NS design with an evacuated 

tube shown. 
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Evacuated Tube: 

The thermal component includes an envelope (glass tube), absorber and the 

absorber-to-fluid element. Figure 7 is a model of an evacuated U-tube. 

� Envelope: 

The envelope is a hermetically sealed, evacuated glass cylinder that encloses 

the thermal absorber and the absorber-to-fluid element. This glass cylinder, 

tube, provides a transparent medium for the incoming solar radiation and is 

made of commercial grade borosilicate. The vacuum gap between the 

thermal absorber and the glass limits the thermal losses by convection.  

� Thermal Absorber 

The thermal absorber is a cylindrical surface coated with an optically 

selective thin film. The selective coating provides a high 

absorptivity of radiant energy in the visible and near UV band of 

the solar spectrum while reducing the emissivity in the thermal 

spectrum.  

� Heat Transfer from Absorber to Fluid 

This absorber then transfers the heat collected to the working fluid circulating through the 

thermal circuit pipe. The main heat transfer mechanism is by contact of the working fluid with 

the thermal absorber. 

Manifold 

There is a copper pipe that connects all of the evacuated 

tubes to one another. It has a supply pipe and a return pipe 

which is connected to the tube itself. Figure 8 is a depiction 

of what a section of manifold looks like for a single 

evacuated tube.   

Figure 7: An evacuated U-tube. Purple color is the 

thermal absorber, copper pipes are where the heat 

transfer takes place. 

Figure 8: Manifold showing where the evacuated tube 

goes. 
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Vocabulary of XCPC System 

To lay the foundation for the terminology of this paper in regards to speaking of the XCPC in 

components vs. various ‘systems’ the standard terms used in industry are the following:  

Trough:  

A single reflector with an evacuated tube 

Collector: 

A system of multiple troughs, coupled with evacuated tubes and as single manifold. 

 

Bank:  

A bank consists of multiple collectors, whether they are in series or parallel, in one row which 

gives a single input and a single output.  

System:  

Multiple banks. 

 

  

Figure 9: Left is a trough, to the right is the collector. 

Figure 10: Left is a bank, and to the right is the system. 
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The Design 

The operation of the XCPC unit is relatively simple in concept. The solar irradiance incident at 

the collector aperture is directed to the glass enclosure (tube) by means of the reflecting surfaces, 

increasing the density of radiant energy over the tube. Figure 11 shows incoming sun angles can 

vary throughout the day but are always reflected to surface area of the tube.   

 

Figure 11: Is a North-South collector showing the incoming sun rays, red lines, changing their 

incidence angle but the incoming rays are still reflected onto the surface are of the tube. 

The concentration ratio of the XCPC varies on whether the design is for the North-South, NS, 

orientation or East-West, EW. For NS it is1.2 and EW is 1.8. The solar irradiance reflected by 

the optical component to the evacuated tube is transmitted through the glass envelope and to the 

absorber element. The absorber element in turn, transfers the energy absorbed to the fluid 

circulating through the thermal circuit. The absorber element and the thermal circuit are enclosed 

by the evacuated glass envelope to avoid energy losses by convection, and the number of contact 

points between the glass envelope and all elements within are reduced in quantity and surface 

area to minimize heat losses by contact. The flow of energy from the input of the system to the 

output will be defined by the energy-matter interactions occurring at each material interface. The 

properties of all the different materials and manufacturing finishes at each one of the interfaces 

then limits the total amount of energy that be effectively transferred to the working fluid. For 

instance, the reflector will introduce some energy losses due to material defects, absorption and 

heterogeneities in the reflective coating, as well as shape distortions of reflectors from ideal 

geometry. Similarly the glass will absorb and reflect back to the atmosphere some of the 

incoming radiation. The absorber will reflect some of the incoming radiation and will become an 

energy emitter due to the temperature at which it operates. The capacity of this element to absorb 

and transfer most of the incoming energy is a very important defining factor for the XCPC 

thermal efficiency. Finally, the thermal circuit and working fluid will lose by absorption some of 
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that transferred by the absorber. In the appendix there is a top and cross sectional view of this 

design that shows where these materials are relative to the system.    

To understand how the collector designs would perform multiple designs were manufactured and 

tested. Table 2 outlines these variables.  

Table 2: Lists the variables for the XCPC design that were experimented. 

Collector Designs Reflector Material Tube Design 

East-West, EW Alanod X-tube 

North-South, NS Reflectech U-tube 

  Dewar 

  Cross Flow 

 

In analyzing all systems the following variables were chosen as an optimal collector design for 

the medium temperature application that could be readily manufactured. For the design of the 

collector both the EW and NS were competitive with each other pending on the geographic 

region’s solar insolation. This is due to the EW design having a higher concentration it can 

achieve both higher temperatures and higher efficiencies; however, it cannot collect as much 

diffuse light as the NS design. Reflectech was chosen as an optimal design for the reflector 

material and the design for a tube came down to the U-tube.  

To understand the characterization of this collector the following experimental results have been 

summarized.  
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Collector Description 

Table 3: North-South, Reflectech, U-tube collector description. 

Orientation North-South 

Concentration �� 1.15 

Effective Collector Area �� 2.076 m2 

Tube Type U-Tube 

Number of Tubes 6 

Reflector Reflectech 

(95%) 

Optical Efficiency 

The optical efficiency of the North-South U-Tube with Reflectech collector was measured on 

10/23/08 with an average inlet temperature of 30°C and an average ambient temperature of 21°C. 

The optical efficiency based on an effective irradiance (� = 	��	
 	+ 	�������/��) was found to 
be 71.3%.  The optical efficiency based on direct normal irradiance (� = ��	
) was found to be 
88.5%. 

Collector Incident Angle Modifier (IAM) and All-Day Performance 

The IAM was measured by positioning the collector due south and tilted to be normal to the sun 

at solar noon (not tracking) and recording the instantaneous thermal collector efficiency at a 

collector inlet temperature of 140 °C over the course of the day. In this measurement the 

instantaneous efficiency was based on the direct normal insolation only that was measured with a 

Normal Incidence Pyrheliometer on a separate tracker. Figure 12 shows the relative drop in 

efficiency during the day as the sun angle varies between -51° and +59° at 90% relative to 

normal incidence.  The acceptance angle was measured as +/- 55°. The test used to determine the 

IAM chart and the acceptance angle can also be used to understand the collector’s all-day 

performance.  During the test, the collector performed within 90% of the nominal efficiency for 

roughly 7.3 hours.vii  
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Figure 12: Incidence angle modifier for the NS, Reflectech collector with the U-tube. 

 

Collector thermal efficiency 

The efficiency of the XCPC was measured from 10/23/08 – 3/19/09  using the following 

collector inlet temperatures: 80°C, 100°C, 120°C, 140°C, 160°C, 180°C, and 200°C; and at the 

following flow rates: 80 g/s, 100 g/s, 120 g/s, 140 g/s, and 160 g/s. The method for how this 

experiment was tested is in the appendix, as “Testing Method”. 

The performance characteristics are tabulated in Table 4 and the collector efficiencies are 

depicted in Figure 13. This assumed an ambient temperature of 25°C and an effective insolation 

of 1,000 W/m2 that is captured by the XCPC.  The displayed efficiency is based on the effective 

irradiance��.  
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Table 4: Performance characteristics of the NS, Reflectech, U-tube. 

NS RT UT G=GE 

Optical Efficiency �� 71.3% 

Efficiency at 100 °C  61.9% 

Efficiency at 200 °C 35.8% 

Loss coefficient (1) �� 0.664 W/m2-K 

Loss coefficient (2) �� 0.00780 W/m2-

K2 

Overall heat loss coefficient � 2.068 W/m2-K 

 

 

Figure 13: This is a numeric model of the  North-South, Reflectech, U-tube efficiency performance for various inlet 

temperatures and flow rates. 
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3. Cooling 

3.1.1 Motivation for Solar Cooling 

Buildings today are responsible for 41% of the primary energy used  in the U.S. 30% of that 

demand is for cooling, and that demand as a whole has grown 300% in the past 50 years.viii ix 

Hundreds of power plants were constructed, distribution lines were set and pricing structures 

were created to control the supply and demand of that electricity. However, it is now becoming 

difficult to supply. Spiked peak loads occur during brief periods of time, primarily in the 

summer due to air conditioning systems.x xi Areas which are densely populated are feeling this 

effect even greater due to increased air temperatures. These spikes surpass the average peak 

load by an uneconomical amount. Conventional energy fuel based generation technologies 

have reached their maturity and are leaving little to no room for significant cost 

reductions.xiiAlthough it is difficult to predict what the price of fuels will be in the future, 

forecasts have shown that crude oil will be significantly depleted within the next 40 years. 

Researchers and industries may debate about the rate at which these prices will increase, but it 

is no argument that they will.xiii  

 

It is therefore not valuable for the consumer or the owner to develop larger power plants to 

meet these rare needs. Thereby blackouts have occurred within the last two decades because 

power plants cannot provide enough electricity to its consumers during these peaked hours.xiv 

The need to develop an economical solution for cooling, not powered by electricity and to be 

most effective during the hottest months of the year is now more than ever evident by all. 

Scientists have produced results that have shown spiked demands for cooling aligns with the 

solar irradiation peak.xv  xvi  Showing, that in some ways solar energy is better suited to space 

cooling and refrigeration than to space heating. The seasonal variation of solar energy is 

extremely well suited to the space cooling requirements of buildings. The principal factors 

affecting the temperature in a building are the average quantity of radiation received and the 

environmental air temperature. Since the warmest seasons of the year correspond to periods of 

high insolation, solar energy is the most available when comfort cooling is most needed.xvii 

 

Within the past 50 years there has been a lot of research focused on solar powered cooling 

which has amounted to systems that work but are not cost competitive with traditional fuel 
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sources. What society needs is an effective cooling machine powered by solar energy that is 

simple, cheap and efficient for their needs.xviii xix 

3.1.2 Heat driven cooling technologies 

The following is an analysis that was done within the CEC grant to understand which application 

would be best to couple with the XCPC collectors. Various applications such as power 

generation, water desalination and cooling were taken into consideration, but for this report it 

will be narrowed to only the evaluation of the heat driven cooling technologies. 

There are three major types of thermally active cooling technologies that could work with solar 

thermal collectors. These include: absorption chillers, adsorption chillers and desiccant systems.  

Technology Basics 

Absorption Chillers 

Briefly, the absorption chiller uses a thermal method for compressing the refrigerant vapor 

compared to the mechanical method (compressors) used in most electric vapor compression 

(VC) chillers. The equipment typically uses a working fluid pair such as ammonia-water or 

lithium bromide-water and the amount of cooling provided can range from a few refrigerant tons 

for residential applications to more than one thousand tons for commercial applications. The 

ammonia-water pair has been in limited usage for several years due to the toxicity issues 

associated with ammonia. In current lithium bromide – water based chillers, water is the 

refrigerant and aqueous lithium bromide is the absorbent. Water in vapor phase exiting the 

evaporator is absorbed by the lithium bromide solution in the absorber and this solution is 

pumped to the generator where heat is used to remove the water from the lithium bromide 

solution which is subsequently pumped back to the absorber. Several designs use natural gas or 

other fuel driven methods to provide heat to the generator. Thermal energy obtained from 

industrial waste heat sources, solar etc. could be used as an alternative method for heating the 

generator stage and this can provide added benefits of reduced emissions and minimizing energy 

costs (less fuel consumed). The performance metric for cooling cycles is the coefficient of 

performance (COP) and enhancing the amount of water produced using the refrigerant vapor 

from a high stage generator can enhance performance of the absorption chiller. Absorption 

chillers are thereby offered as single effect, double effect and triple effect chillers with the key 
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distinction among the three technologies being the number of generators used in the chiller and 

the temperatures at which they operate. Figure 14, shows a schematic of BROAD’s double effect 

absorption chiller where the heat is generated by burning natural gas. 

 

 

 

Table 5 below summarizes the generator temperatures and associated COPs typical for the 

three types of absorption chiller technologies 

Table 5 Chiller types with their temperature and COP ranges. 

Chiller type Temperature  range COP range 

Single effect > 85°C 0.5-0.75 

Double effect > 140°C 1.1-1.4 

Triple effect > 175°C 1.5-1.8 

  

*Orange Liquid is LiBr + H2O 
*Green Liquid is H20 
 
1. High Temperature Generator 
2. Low Temperature Generator 
3. Condenser 
4. Absorber 
5. Evaporator 

Green Loop is cooling water loop (goes to 
cooling tower) 
Blue Loop is chilled water loop (goes to 
house AC system) 
Purple Loop is hot water loop (goes to 
house hot water) 

 

Figure 14 BROAD's double effect lithium bromide chiller. 
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Adsorption Chillers 

Adsorption chillers have been considered as alternatives for absorption chillers because of their 

lower operating temperatures and potential advantages such as no corrosion issues, no 

hazardous leaks etc. (primarily associated with lithium bromide solutions in absorption chillers). 

A typical working pair in the adsorption chiller is water (refrigerant) and silica gel (adsorbent). 

In this system there are two adsorbent beds that alternate between a generation stage and an 

adsorption stage. The generation stage requires heat and this heat can be provided by various 

renewable and non-renewable sources. The heat source temperatures for these systems can be in 

the 50 oC to 90 oC range and their COPs are usually lower than single effect absorption chillers 

(close to 0.6). Figure 15, shows a schematic of an adsorption chiller cycle. 

 

  

Figure 15: Is a diagram of an adsorption chiller. 
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Desiccant Cooling 

Desiccant cooling is a popular method for humidity control and the basic principle for this 

technology is the use of a sorbent material to remove moisture from an air stream. The sorbent 

material can be solid (silica gel, alumina etc.) or liquids (lithium chloride, glycol etc.). Thermal 

energy is used to regenerate the sorbent material and waste heat or solar could be one of the 

sources of this thermal energy. Several companies including Carrier, Munters, AIL Research etc. 

to name a few offer desiccant based humidity control products. Figure 16 shows the liquid and 

air desiccant systems. 

(a) (b) 

 

 

 

 

 

 

Technical feasibility and viability 

Absorption chillers have been successfully demonstrated for several integrated applications 

with waste heat. Solar driven absorption chillers were demonstrated by Carrier in the 1970s and 

additional demonstration work has been performed by Broad and other major HVAC 

companies as well. All the work done so far suggests a high degree of technical feasibility for a 

XCPC driven absorption chiller. 

Adsorption chillers are present in the Japanese market today and HIJC in the US is marketing a 

Japanese product. Integration of this device with the XCPC while feasible may not necessarily 

be the best use of the high quality heat that is obtained from the XCPC. 

Most of the desiccant systems can operate with low quality waste heat (as low as 65°C) and 

while it is technically feasible to interface this with the XCPC, this particular application may 

not be the best use of the high quality thermal energy obtained from the collectors. 

Figure 16: (a) solid and (b) liquid systems. 
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Economic Competitiveness 

Economic competitiveness for the integrated XCPC with the absorption chiller system largely 

depends upon the ability of the XCPC to hit cost targets of <$100/��.xx In doing so the 
operational expenditures for the system is comparable to absorption chillers operating on 

natural gas (~4 cents/kWh). Rising fuel costs further enhance the attractiveness of the 

absorption chiller option. 

Adsorption chillers at a COP of 0.6 could compete favorably with single effect chillers from a 

cost and reliability perspective. Double effect machines with higher COPs (more cooling 

capacity per unit of thermal energy input) are economically more competitive than current 

adsorption chillers. 

The desiccant systems can be expensive products and the economic competitiveness of an 

integrated system will primarily depend on making the collector prices competitive with the 

current method used for regenerating the sorbent material. Since the quality of heat required to 

regenerate sorbent materials in desiccant systems is quite low, there are cheaper off the shelf low 

temperature thermal collectors that may be a better choice for an integrated solution. 

3.1.3 Market potential 

Absorption chillers in the US market compete with electrically driven vapor compression 

chillers and cheap electricity prices have prevented their mass adoption in this market. The 

VC systems have COP’s in the range of: 3-4. This implies that the higher the COP of the TAT 

chiller, the greater the chance it has of capturing the market share, particularly when consumer 

electricity prices are on the rise (California especially). 

Adsorption chillers could compete well as cooling technology offered in markets where low 

grade waste heat (<95°C) is readily available. The low COP of these devices makes their ability 

to displace vapor compression chillers even more difficult than double effect absorption chillers. 

Market potential for desiccant based dehumidifiers was projected to be $300 M in North 

America in 2006xxi. The market share for solar driven desiccant dehumidifiers is not significant 

and it is unclear if the XCPC would offer any benefit in terms of penetrating into this market. 

3.1.4 Time to commercialization 

Single and double effect chillers have been available in the commercial space for several years, 
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and Kawasaki has recently introduced triple effect chillers in the Asian market. This implies 

that successful commercial development of the XCPC in two years could lead to integrated 

chiller product offerings within five years. 

Adsorption chillers are available in the market today and while an XCPC integrated 

adsorption chiller could be commercialized, the current technology with its lower 

temperature of operation is not the ideal fit for the XCPC collector. Future generation 

adsorption chillers with higher COPs and higher temperature operations could be better fits; 

however, no such device is available commercially. 

Several desiccant cooling system products exist today and it is conceivable that any potential 

solar integrated desiccant product can be developed in a span of 1-2 years. 

3.1.5 Other considerations 

Potential legal and institutional barriers for an integrated XCPC-chiller product will depend 

primarily on the type of working fluid used in the XCPC and the ability to safely install the 

collectors and transport this fluid to the chiller. Corrosion issues and refrigerant leaks are the 

main concerns for absorption chiller systems from a legal and institutional perspective and 

technology maturity coupled with market adoption dictates how these barriers are overcome. The 

chiller systems themselves are commercial products and there should be no major institutional 

barriers for single and double effect chillers. Triple effect chillers on the other hand might 

require additional qualification before they can penetrate the US market primarily because of the 

lower technology maturity of these systems 

Solid desiccant systems are the most prevalent in the market today; and, there are almost no 

legal or institutional barriers preventing the adoption of this technology. However, working 

fluid in the solar collector, and the need to pump corrosive fluids in liquid desiccant systems 

could be of concern from an institutional stand point. 

There seem to be no major legal or institutional barriers that might prevent the current water-

silica gel based adsorption chillers from entering the market. Attempts to improve the COP 

might require moving to refrigerants such as ammonia and this may introduce barriers 

primarily due to concerns about toxicity of the refrigerant. 
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3.2 Conclusions 

Based on the assessment in this report it was recommended that an ideal near term focus for a 

future project would be XCPC integration with absorption cooling. Specifically, the double 

effect absorption chiller, with it being readily manufactured, was the cooling technology 

chosen. 

4. Solar Cooling System 

The first item purchased and the foundation of the system was the 

chiller. It is a double effect lithium bromide, LiBr, 6.6 United States 

refrigeration ton, USRT system. Figure is a picture of me with the 

chiller. The chiller had the following input requirements: 21 thermal 

kilowatts, at an inlet temperature of 175°C with an outlet temperature 

of 160°C. The company would only warranty the product if a glycol 

water mixture was used, meaning that the fluid loop inlet to the chiller 

would have to be pressurized.  The following is a description of how 

the system works.  

4.1 Chiller 

4.1.1 How it works  

Refer to Figure 14 for a schematic of the chiller, and the numbers go along with this process.   

 

1. Solution Pump – A dilute lithium bromide solution is collected in the bottom of the absorber 

shell. From here, a hermetic solution pump moves the solution through a shell and tube heat 

exchanger for preheating. 

2. Generator – After exiting the heat exchanger, the dilute solution moves into the upper shell. 

The solution surrounds a bundle of tubes which carries either steam or hot water. The steam or 

hot water transfers heat into the pool of dilute lithium bromide solution. The solution boils, 

sending refrigerant vapor upward into the condenser and leaving behind concentrated lithium 

bromide. The concentrated lithium bromide solution moves down to the heat exchanger, where it 

is cooled by the weak solution being pumped up to the generator. 

Figure 17: BROADS double effect 6.6 

Lithium Bromide absorption chiller, and 

me. Circa 2009. 
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3. Condenser – The refrigerant vapor migrates through mist eliminators to the condenser tube 

bundle. The refrigerant vapor condenses on the tubes. The heat is removed by the cooling water 

which moves through the inside of the tubes. As the refrigerant condenses, it collects in a trough 

at the bottom of the condenser. 

4. Evaporator – The refrigerant liquid moves from the condenser in the upper shell down to the 

evaporator in the lower shell and is sprayed over the evaporator tube bundle. Due to the extreme 

vacuum of the lower shell [6 mm Hg (0.8 kPa) absolute pressure], the refrigerant liquid boils at 

approximately 3.9°C, creating the refrigerant effect. (This vacuum is created by hygroscopic 

action - the strong affinity lithium bromide has for water - in the Absorber directly below.) 

5. Absorber – As the refrigerant vapor migrates to the absorber from the evaporator, the strong 

lithium bromide solution from the generator is sprayed over the top of the absorber tube bundle. 

The strong lithium bromide solution actually pulls the refrigerant vapor into solution, creating 

the extreme vacuum in the evaporator. The absorption of the refrigerant vapor into the lithium 

bromide solution also generates heat which is removed by the cooling water. The now dilute 

lithium bromide solution collects in the bottom of the lower shell, where it flows down to the 

solution pump. The chilling cycle is now completed and the process begins once again. 
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4.1.2 Control Logic 

The high temperature generator, HTG, is in the structure described 

as the following: The upper part of the HTG is a coiled pipe in 

which the solar thermal medium is circulated. The LiBr solution is 

sprayed onto the coiled pipes.  Right beneath are the smoke pipes 

of the natural gas burner, in which the 1100°C hot air from natural 

gas burner is run through. Figure 18 is a depiction of what the 

HTG looks like, and how it is set up. At the bottom of the HTG is 

a thermo sensor for the HTG. The highest temperature of HTG is 

155°C, and can be manually set to be lower. Temperatures above 

this however, will make the LiBr in the HTG start to crystalize. 

The normal operational temperature for the HTG to start working 

is 140°C. 

 

If the temperature of the solar thermal medium is below 145°C, 

then there is really no reason for turning on the natural gas, 

because the 1100° C of natural gas burner is way above the solar 

heat source, and the natural gas will be used to heat up the solar loop. 

 

If, the temperature of the solar loop is above 145°C, it means that we can entrust the solar heat 

source to heat up the HTG. If the HTG is too big of a load for the solar loop, the inlet 

temperature of the solar loop will drop, and the system will start to switch back to natural gas. 

 

If the solar loop is so powerful that the HTG begins to go above 155°C, then the machine will 

turn down the solar valve to lower percentages, such as 75%(stage 3), 50%(stage 2) etc. 

 

To conclude, the chiller does not go back and forth between using natural gas and using solar 

thermal energy. There is a solar valve that limits the solar heat source from overheating the HTG.  

The temperature range for HTG is too narrow, and the distance between solar pipes and burner is 

too close to each other. It is difficult to design it in a way to use the solar heat source to first 

elevate the HTG for a small temperature and then to use natural gas to lift the temperature to 

Figure 18: Is a depiction of what the HTG looks like, 

with a natural gas burner below the tank and 

wrapped coils that have the hot solar thermal fluid 

flowing through, represented by the red arrow. 
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meet the HTG requirement. Therefore, the system is either programmed to run on natural gas or 

on solar thermal energy before it will switch pending on the temperature range. Table 6 

demonstrates this algorithm. T1 will be the HTG temperature, T2 will be the solar inlet 

temperature to the chiller. In the appendix is a more detailed table. 

 

Table 6: Temperature algorithm for the BROAD chiller. 

HTG Temperature (T1) Condition to Open Solar Valve and 

turn off Natural Gas 

Condition to close the solar valve 

and switch to Natural Gas 145 ≤ °� !2 > !1 + 2°� !2 ≤ !1 + 1°� 130°� ≤ !1 < 145°� !2 > !1 + 4°� !2 ≤ !1 + 2°� 
 

4.2 Collector 

4.2.1 Design 

EW vs. NS from an Energy Perspective 

When designing non-tracking compound parabolic concentrators, CPC, solar thermal systems the 

first decision to be made is whether you want your collectors to be aligned in the North-south or 

East-West direction. The physical difference being in which direction the evacuated tubes are 

aligned, and the optical difference being that the EW design allows for a higher concentration 

while the NS accepts more diffuse light.  

There are multiple factors that directly impact the two designs at a strictly technical level, such 

as: The concentration of the collectors, operational temperature, ambient temperature, and the 

percentage of diffuse irradiation specific to the geographic region.   

For lower temperatures the NS design has a higher efficiency than that of the EW. The primary 

reason for the NS being more efficient at lower temperatures is due to its optical efficiency being 

greater than that of the EW. Analyzing the efficiency equation, Equation 1, one can observe that 

at lower temperatures the loss term in the efficiency equation are low, and since the optical 

efficiency is higher for the NS the NS’s overall efficiency is greater. Thereby, at lower 

temperatures, regardless of the diffuse, the NS design is more efficient.  

      Table 7 shows the experimental results compared for both the NS and EW design, with 

Reflectech and the U-tube. 
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For higher temperatures, the EW is the more efficient design, depending on your level of diffuse 

irradiation. The primary reason for this is the surface area of the absorber area. At higher 

temperatures the absorber will want to radiate heat back into the environment; however, since the 

EW has less surface area than the NS, and the EW has a higher concentration than the NS, the 

ratio of heat gained vs. heat loss is higher for EW than that of NS. The question then becomes, 

what is considered to be a low and high temperature?

Methodology 

On a strictly fundamental level, we want to know which design will provide us with the most 

energy.  To do this, one can calculate a breakeven analysis of the power for the EW vs. NS. This 

is done by taking into account the power and efficiencies of both designs, as seen below:xxii 

'() ∗ +() = ',- ∗ +,-	   Equation 1 
Power is calculated by: 

� Assuming that the area is	1m� 
� Z is a variable for the total solar irradiation 

/ = 0 1233∗456)+ 78									Equation 2 +9:;< = / ∗ =<;> ∗ '			Equation 3 
Efficiency is calculated by: 

 

(' = '9 − >1 ∗ @∗ − >A ∗ / ∗ @∗A)	Equation 4 
Reduced Temperature1: 

@∗ = @BC2@>DE/ 				Equation 5 
The inputs are: 

� Ambient temperatures 

� Concentrations  

                                                           

 

 

1 This is not actually a temperature, it has units of 0FGHI 8 
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� Efficiencies 

 

      Table 7: NS vs EW characterization. 

 NS RT 

UT 

EW RT 

UT �� 71.30% 64.40% �4100℃) 61.90% 58.10% �4200℃) 
 

35.80% 41.70% 

�_1 0.664 0.488 �_2 0.0078 0.00463 � 2.068 1.321 

 

The out-put will be the breakeven point at every diffuse level, and at any inlet temperature.  

Solving for its zeros determines the breakeven point.  

Equation to analyze '() ∗ +() = ',- ∗ +,-						Equation 6: 
'() ∗ +() = ',- ∗ +,-						Equation 6 

 

'() ∗ 0123()3() ∗ 56 + 1LLL8 = ',- ∗ 0123,-3,- ∗ 56 + 1LLL8Equation 7 
 

M'9	() − >1() ∗ @B − @>DE1LLL − >A() ∗ N1 − 3()3() ∗ 56 + 1LLLO ∗ N@B − @>DE1LLL OAP
∗ N1 − 3()3() ∗ 56 + 1LLLO
= M'9	,- − 	>1,- ∗ N@B − @>DE1LLL O	− >A,- ∗ N1 − 3,-3,- ∗ 56 + 1LLLO ∗ N@B − @>DE1LLL OAP	
∗ N1 − 3,-3,- ∗ 56 + 1LLLO 
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Results 

The results show that for any temperature one can evaluate what their given ambient and inlet 

temperatures are, coupled with the percent diffuse, i.e.: 10% diffuse is 100 watts on these graphs 

(Based off of 1000 IGH), and determine whether they are below, above or at the breakeven point. 

The following three graphs were produced using the breakeven analysis Matlab codes outlined in 

the appendix. The analysis was done for three different ambient temperatures: 25, 35 and 45° C. 

 

Figure 19 represents the 35°� value. The 25 and 45°� were extremely similar to the 35°�. 
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Figure 19: Break even analysis for the NS collector, with Reflectech and the U-tube, with an ambient temperature of 

35°C. 
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Discussion 

At any inlet temperature, relatively low inlet temperatures, where the diffuse level shown is 

negative, unreal, the design is automatically NS. If below the breakeven point, that means that 

either design will suffice for the given conditions; thereby, EW would be the chosen design since 

has a higher concentration. If above the breakeven point this means that the system will need to 

capture more diffuse and NS is the optimal design. If right at, or near the breakeven point then 

from an energy perspective, the designs are even.  

For the UCM Solar Cooling Project, the diffuse level for Merced, CA is approximately 10%, 

with an inlet temperature of 180℃, and ambient temperature, during the summer, of 

approximately 35℃. According to the breakeven analysis we were right at the breakeven point. 

This can be seen from  Figure 19. From an energy perspective, both designs are even. In order to 

choose which design would be optimal, further analysis taking in other variables is necessary in 

order to truly conclude the holistic optimal design.   

EW vs. NS Beyond Energy 

Manufacturability: 

In terms of physical structure and manufacturing the biggest difference between the EW and the 

NS is the orientation of the manifolds.  For the EW the manifolds are aligned in a vertical 

position, while the NS manifolds are aligned horizontally.  Having a solar thermal system 

connecting multiple manifolds proves to be very difficult when trying to connect the EW 

manifolds due to their angles. There would be a lot of elbows and it would be difficult not only 

to design, but also to construct. On the other hand, the NS manifold connections are easy since 

they are all on the same plane.  

Maintenance  

Weather and the environment are the largest issues at hand in dealing with the differences 

between the NS and EW. Rain is a large issue in terms of CPC. The EW design being aligned 

horizontally captures water and it is then difficult to remove from the collectors. This also goes 

for dirt, leaves and other particulates in the air. Since the NS is aligned vertically, one can drill 

holes at the bottom of the collector to allow rain and debris to drain at the bottom . 
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Finances 

In comparing the EW vs. NS, the same amount of power per system, the EW has fewer tubes 

than that of the NS; thereby, in terms of tubes, the EW is cheaper than that of NS. When doing a 

financial comparison of both systems overall, then  one must consider the different options for 

producing the collectors themselves, and the cost of their respective materials.   

Choice Table 

In choosing what the optimal design choice is, it is critical to understand the priorities associated 

with the different factors that influence which design is best for you. Below is a table, filled out 

with the UCM Solar Cooling Project data, and this table interprets the priorities vs. what the 

design is capable of. 

The first step is to associate your priorities levels. For the UCM Solar cooling project, being a 

University finances are our highest priority is research, therefore, energy was allotted the top 

priority. Following is our ability to manufacture and construct the system, then the energy of the 

system and lastly is the maintenance of the system. (Since we are a University, our priorities will 

be different than that of a business. Whereas we will always have students to clean the system 

and help maintain the system, a business may not; therefore, different priority levels would be 

assigned.) Lastly are finances, which, for both systems, a raw cost may be equivalent, but further 

analysis would need to be conducted. (For now, an equivalent score has been given.) 

Next, is scoring each category: Energy, Manufacturing, Maintenance and Finances of the EW vs. 

NS. For the UCM Solar Thermal, the EW vs. NS in terms of energy was a break-even. 

Therefore, each design received a score of 1. In terms of manufacturing, the manifold issue did 

present a problem to us whereas the NS structure and manifolds are feasible, therefore, NS 

receives 1 and EW receives 0. In terms of maintenance, the NS is preferred every time; and, 

financially both the EW and NS received an equivalent score. This is due partly to the fact that 

although there would be fewer tubes, the cost for the collectors may have been more for the EW 

vs. the NS; therefore, financially the designs were scored as equivalent. 

The score is calculated by the following equation: 

∑+B9<BST4(C;<UT) ∗ -V9<;4(C;<UT) + +<B9<BST4W>CXY>VSX<BCU) ∗ -V9<;4W>CXY>VSX<BCU) +⋯Equation 8 
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Table 8: Priority and scores for the EW and NS collector designs. 

Factor Priority

Energy 40%

Manufacturing 30%

Maintenance 10%

Finances 20%

Energy Manufacturing Maintenance Finances Score

EW 1 0 0 1 0.6

NS 1 1 1 1 1  

For the UCM Solar Cooling Project the final score shown is that the NS design, after considering 

all factors associated with the realistic system, outperforms the EW design. 

4.2.2 Size  

The chiller requires 21 thermal kilowatts at an inlet temperature of 175°C. According to Figure 

13  the collectors should be operating at an approximate efficiency of 40%. Considering that 

each individual collector produces approximately 150 watts, and expecting a 10% loss from the 

collectors to the chiller, the collectors would need to produce 23 kilowatts of thermal energy. 

This would be approximately 160 individual units.  

4.2.3 Configuration 

Tilt Angle of Collectors 

Since the solar thermal system will be in high demand during the summer, we want to favor the 

summer insolation. This can be done by orientating the collectors 14° West of South, to be in the 

direction of true North-South, not magnetic; and by calculating the declination angle for a hot 

summer day and using that data to derive the proper tilt angle for the collectors.  

Day Chosen: July 23rd, 2009 

Location: Merced, Ca 

[ = \]^_`a�b`ca	�ad_] 
a = \�e	cf	e]�g	ah�i]g 
jk = l]a`bℎ	�ad_]	i]bn]]a	bℎ]	oha	�ap	^c__]^bcg	q_�a] 
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j = l]a`bℎ	�ad_]	i]bn]]a	dgchap	�ap	^c__]^bcg	q_�a] 
rstuv = Aw. xy z{| }0w~Lw~y8 4C − �1)� => 4C = ALx) = AL°Equation 9 �C = �L − � − � = �L° − w�° − AL° = �w°Equation 10 @B�S	=CU�; = �L° − �| = �L° − �w° = 1�°Equation 11 

For practical purposes the collectors will be placed at a 20° tilt from the ground.  

 

Layout of Collector System 

There are two questions to be answered at this time, how many troughs per collector and in 

which configuration should they be placed in? 

To answer these questions a thorough pressure drop analysis is needed. There are many factors 

that are to be considered for the system, such as fluid type, size of the piping, material selections 

for the plumbing, the flow rate of the fluid and all of these amounts to a pressure drop in the 

system which defines not only a pump size but also a configuration. To account for these factors 

a matlab program was developed which has the following structure, where the black lettering is 

the title of the m-file in the appendix. 

 

The pressure drop analysis begins with the input file where the user inputs the environmental 

conditions of their geographic region, operational temperature, etc. and also the system size, ie: 

how many individual troughs, how many in parallel vs. series, and all of the properties of each 

trough. Then it begins to process the next file, Section. Because the plumbing was going to be 

complicated and there was going to be various elements to the structure of the system it was 
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decided best to split the system into different sections so as to simplify the calculations for the 

pressure. Another benefit of splitting the system into different sections is that it would allow the 

reconfiguration of the system easily so to analyze multiple configurations and see how the 

pressure drops would change.  The basic sections were: pipe, manifold, tube. These variables 

were inputs to the material selection which held all of the properties for any fluid that would be 

used in the solar cooling system, all pipe material and all insulation material. These were then 

inputs to the pipe pressure drop which calculated the pipe pressure drop due to elevation, major 

and minor losses. The Material properties were also input to the temperature file which 

calculated the output temperature of the section and this was then used as the input temperature 

to the next file, and the pressure drops were added from each section to amount to the total 

pressure drop and final temperature of the system.  

This code was used to analyze various configurations and to which design would be optimal for 

our system. The following section is the results of that analysis followed by a detailed analysis of 

the function files for the pressure drop code so as to understand how the calculations were 

formulated. 

The Configuration 

The following configurations were plausible designs for our system that we tested.  

1. Tubes per collector (# of Collectors) 

a. 5   (32) 

b. 10 (16) 

c. 16 (10) 

d. 40 (4) 

2. Collector Configuration 

a. All in series (1X) 

b. 2 banks in parallel (2X) 
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c. 4 banks in parallel (4X) 

The critical factors are the mass flow rate through each tube, pressure drop for the whole system 

and the volumetric flow rate for the system. Figure 21and Figure 22 shows the mass flow 

through each tube and the pressure drop of the collector systems for each of the top four 

configurations.   

The initial goal for the mass flow rate through each tube was 11-14 g/s. This value came from 

previous research that has shown that for the U-tube, NS, system this is an optimal mass flow 

rate through the tube. There are three configurations that met that goal, the 40(4x1) at a delta 

T=15, the 10(4x4) at delta T=10, and the 40(2x2) at delta T=10.Looking at the pressure drops of 

the systems for the plausible mass flow rate conditions for all pressure drops were plausible for a 

pump that could be found on the market. 

Figure 20: The diagram to the left is a depiction of 2 banks in parallel, each bank is a collector of 80 tubes in parallel. The diagram to the 

right is two banks in parallel, each with two collectors that run in parallel as well, with 40 tubes per collector. 
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Figure 21: Mass flow through each tube for various configurations. 
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Two very important variables that then came into play were the amount of material as well as the 

delta T. From previous experiments it was best to look for a Δ! of approximately 6°C per tube 

which results in the 40(2x2) configuration and the 10(4x4) configuration. The amount of material 

needed and installation costs, land area, etc. for the 40(2x2) was less than the 10(4x4) and thus, 

the 40(2x2 configuration was chosen.  
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Figure 23: The selected collector system. 
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Pressure Dropxxiii 

A typical pipe system usually consists of various lengths of straight pipe interspersed with 

various types of components (valves, elbows, etc.). The pressure drop, Δ� for the pipe system 

consists of the elevation change, termed Δ�� ,	head loss due to viscous effects in the straight 
pipes, termed major loss, and denoted Δ�G����, and the head loss in the various pipe components 

termed the minor loss  denoted Δ�Gk��, 
�+ = �+; + �+D>�9< + �+DBC9<	    Equation 12 

Elevation Losses 

To begin, I took the energy equation for incompressible, steady flow between 

two locations: 

�1�U+ �1 0�1AAU8 + 71 = �A�U+ �A 0�AAAU8 + 7A + �Y      Equation 13 
�+; = 4�A − �1) = �U0��1�1A2�A�AA�AU + 471 − 7A) − �Y8					Equation 14 

 

Where � is the density of the fluid,   is the kinetic energy coefficients, and was taken as 1 for a 
fully develop flow and 2 for turbulent; V is velocity, g is gravity, z represents the height from 

ground, and ℎ� is the head loss of the pipe. The following calculation is for the head loss.  
�Y = Y0�¡8 0�AAU8				Equation 15 

L represents the length of the pipe, D is the diameter, V is the velocity, g gravity and f is the 

friction factor. To calculate the friction factor one must first determine if the flow is laminar, 

having only one component of velocity, or turbulent, random components of velocity normal to 

flow. To determine whether the flow is laminar or turbulent one calculates the Reynolds Number 

below and if the number is below 2100 it is laminar, above 4000 turbulent, and if it’s in-between 

that is transitional and I chose those properties to be turbulent. ¢]� Represents the Reynolds 
number for a pipe of diameter D, and is calculated by the following equation, where £	is the 
dynamic viscosity. This is a dimensionless number.  

¤;¡ = ��¡¥ 					Equation 16 
  

p1 

p2 

Z 1 Z 2 

V 

Figure 24: Vertical pipe flow to show 

elevation losses. 
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The functions for the friction factor are listed below for both laminar and turbulent flows.  

Y�>DBC>< = ~x¤;¡      Equation 17 

YSX<EX�;CS = ¦−1. � u§¨¦0 ~.�¤;¡8 + N ©6w.�O1.11ªª
2A

Equation 18 

Major Losses 

To begin, I took the energy equation for incompressible, steady flow between 

two locations: 

�1�U+ �1 0�1AAU8 + 71 = �A�U+ �A 0�AAAU8 + 7A + �Y						Equation 19 
With the assumption of a constant diameter thereby a constant velocity, «� = «� =«, and horizontal ¬� = ¬�, fully developed flow,  � =  �, the equation for the 
pressure difference due to major losses is: 

�+D>�9< = �Y = Y0�¡8 0�AAU8					Equation 20 
Minor Losses 

Losses due to pipe system components are given in terms of loss coefficients. 

The loss coefficients, are represented by ® and each component has it’s own 

value, ie: a 90° flanged bend, as shown in figure 13, has a ® = 0.3. The 
pressure drop due to minor losses can then be calculated as: 

�+DBC9< = ¯� 0�AAU8						Equation 21 
  

L 

p2 p1 

V 
D

 ©	
�¥	

Figure 25: Horizontal pipe 

flow. 

Figure 26: Pipe flow through a 

90° bend, showing minor losses. 

p2 

p1 
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Temperature 

It is important to understand the temperature of the system, that is divided into two parts:  an 

insulated pipe and the evacuated tube. The following details 

are how formulations were developed. 

Insulated Pipe: 

Figure 27 shows an insulated pipe with a fluid flowing 

through. It has an inner radius of g� and an outer radius of  g�, 
with a length of L. !� represents the inlet fluid temperature, !� 
is the surface temperature of the insulated pipe, and Ta is the 

ambient temperature. !� Is the outlet temperature of the fluid 

which is the unknown to be solved. For this analysis 

conduction and convection are the primary source of heat loss 

and so the energy analysis will be limited to these.   

Conduction 

Fourier’s law of heat conduction, which states that in a homogenous substance, the local heat 

flux is proportional to the negative of the local temperature gradient: 

°�= = ±V9C6XVSB9C	  ±V9C6XVSB9C	�		 6@6²										Equation 22 
Where   is the heat flux, or heat flow per unit area perpendicular to the flow direction}IGH�, T is 
the local temperature³°�´, and x is the coordinate in the flow direction ³�´. When 

�µ�� is negative, 
the minus sign gives a q in the positive x direction. Introducing a constant of proportionality k,  

±V9C6XVSB9C = −¶06@6²8  °� V9C6XVSB9C = −¶=06@6²8  Equation 23 
Where k is the thermal conductivity of the substance and, by inspection of the equation, must 

have units} IGH°��. The thermal conductivity varies for each material and can vary with 

temperature. 

  

Figure 27: A cylindrical shell showing an elemental 

control volume for application of energy conservation 

principle. 

g� 
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By taking Fourier’s law and integrating across a wall: 

0°�=8 · 6²�L = −· 6@@A@1 					Equation 24 
°� V9C6XVSB9C = @12@A�¶= 						Equation 25 

Steady one-dimensional conduction in cylinders requires that temperature be a function of only 

the radial coordinate r. For a cylindrical shell of length L, the area for heat flow is  A = 2πrL; A 
increases with increasing r. Figure 14 shows a cylindrical shell of length, L, with inner radius r�and outer radius of r�. The inner surface is maintained at temperature T�and the outer 
temperature surface is maintained at temperatureT�. An elemental control volume is located 

between radii r and	r + Δr. If temperatures are unchanging in time and Q¾� = 0, the energy 
conservation principle requires that the heat flow across the face at r equal that at face  r + Δr. 
Since Q�  is independent of r, we can use Fourier’s law in the following form: 

¿À§|ÁtÀÂÃ§|	� = ÄÅ = AÆÇÈN−É 0ÁÊÁÇ8O					Equation 26 
Assuming that the conductivity k is independent of temperature, and dividing by 2πkL, 

0 ¿AÆÉÈ8 = −Ç 0ÁÊÁÇ8 = Ì§|zÂÍ|Â = Ì1				Equation 27 
This is a first-order ordinary differential equation for T(r) and can be integrated easily: 

0ÁÊÁÇ8 = − Ì1Ç => Ê = −Ì1 u|4Ç) + ÌA			Equation 28 
Two boundary conditions are required to evaluate the two constants; these are: 

r = r�; 			T = T�   r = r�; 					T = T� 
Taking the temperature equation with the boundary equations, two equations were yield: 

T� = −C� ln4r�) + C�;   T� = −C� ln4r�) + C� 
Which are two algebraic equations for the unknowns C�  and C�. Subtracting the second equation 
from the first: 

T� − T� = −C� ln4r�) + C� ln4r�) = C� ln 0ÒHÒÓ8   or,  C� = ÔÓ2ÔHÕÖ0×H×Ó8 
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Using either of the two equations then gives 

C� = T� + T� − T�ln 0r�r�8 ln4r�) 
Substituting back into the temperature equation then gives 

T� − TT� − T� = ¦
ln 0 rr�8ln 0r�r�8ª 

The heat flow, for conduction through a cylinder is found by: 

Q� ØÙÖÚÛØÜÝÙÖ = 2πkLC� = ¦2πkL4T� − T�)ln 0r�r�8 ª 
Convection 

Convection is used to describe heat transfer from a surface to a moving fluid, i.e.: to air. In an 

external forced flow, the rate of heat transfer is approximately proportional to the difference 

between the surface temperature !� and the temperature of the free stream fluid !�. The constant 
of proportionality is called the convective heat transfer coefficient ℎ� .  

±Þ = �Vß@							Equation 29 
Where à�is the heat flux from the surface into the fluid, }IGH� and ℎ� has units } IGH°�� and á! = !� − !�. For the convective heat transfer of insulation, the properties of each material were 

given and are included as a value in the material selection file of the pressure code program.  

The convection equation can be re-written for heat flux as: 

°� V9Câ;VSB9C = ß@1�V= = @Þ2@11�V∗Aã<A�∗¶
     Equation 30 

Thermal Resistance 

Thermal resistance can be analogous to electrical resistance, and then the resistance R for 

thermal is: 
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¢��k����ä� ≅ ®æ� ¢��kä����k = �çè� 
If there are composite walls for two slabs of material, the heat flow through each layer is: 

é = !� − !�ê�ë�� = !� − !ìê�ë��  

Rearranging,  

é� 0 ®íæí�8 = !� − !�      é� 0 ®îæî�8 = !� − !ì 
Adding eliminates the interface temperature and the heat flux becomes: 

°� = 4@1 − @w¤>ï¤E)			Equation 31 
 

 

Useful Heat of Solar Collector 

Useful heat Q delivered by solar collector is related to the flow rate, m, specific heat Cð, and the 
inlet and outlet temperatures, T1 and T2 by: 

¿� 	 = ñ� Ìò�Ê = ñ� Ìò4ÊA − Ê1)  Equation 32  
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Insulated Pipe Outlet Temperature 

The first step is to understand the temperature of the pipe outside of the insulation, Tó. 
1. Energy Equation:  

é� = ��4!� − !�) = !� − !�1��  

2. Summing the resistances in the thermal network: 

!�~�caõ]^b`ca~öaoh_�b`ca~÷øb]ga�_	�caõ]^b`ca~!� 
¢�4�caõ]^b`ca) = 12ùg�êℎ�, 
¢�4Insulation) = ¦ln 0g�g�82ùêë�ª 

¢ì4÷øb]ga�_	�caõ]^b`ca) = 12πr�êℎ�,� 
3. Overall heat transfer coefficient and area: 

1�� = ¢� + ¢� + ¢ì = 12ùg�êℎ�, + ¦
ln 0g�g�82ùêë�ª + 12πr�êℎ�,� 

4. Outlet temperature of the pipe: é� = �� ��4!� − !�) 
!� = !� − é��� �� 

!� = !� −
�¦ 12ùg�êℎ�, + ¦ln 0

g�g�82ùêë�ª + 12πr�êℎ�,�ª ∗ 4!� − !�)�
�� ��  
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Evacuated Tube 

To evaluate the outlet temperature of the evacuated tube we start with the energy equation from equation 

33: 

é����� = Φ���� − �� ��Δ! Φ���� = �� ��4!� − !�) 
��í�	G� �� + !� = !�  
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Oil Glycol Water

4.3 Balance of System 

Now that the solar thermal collector system has been designed to power the chiller we have to 

design the balance of the system, as shown in Figure 28. 

 

 

 

 

 

  

  

To begin with there are three separate closed loops in the system, which are shown in Figure 29.  

The oil loop consists of the solar thermal collector with a mineral oil, Duratherm 600, as the 

working medium. The heat is exchanged to the glycol loop which is a small loop used as a heat 

exchanger from the collectors to the chiller. It contains ethylene glycol and water with a 40% 

ethylene glycol ratio. The glycol loop was incorporated within this system for the chiller. The 

chiller company did not want mineral oil going through the collector, and we did not want 

glycol/water mix going through the solar collectors; therefore, it was decided to integrate a small 

glycol loop in-between the collectors and the chiller. It should be noted however, that a glycol 

water mix could have gone through the collectors, however, it would have to be pressurized 

which can be dangerous. Considering that multiple students would be working on this project it 

was decided to use the mineral oil instead. For the chiller, it could accept mineral oil as the input 

for the thermal input; however, there is a risk that if the oil leaked in the chiller then it could 

potentially ruin the machine. It was therefore decided that it would be best to integrate the glycol 

loop for both systems. 

The following sections will give detailed descriptions about each closed loop. 

  

Solar 

Collectors 
Chiller Balance of System 

Figure 29: The three closed loops are what the solar cooling system is comprised of.  

Figure 28: Balance of system. 
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4.3.1 The Loops 

Oil Loop 

The oil loop consists of the solar collectors and a heat exchanger. It will require a pump for fluid 

flow, an expansion tank due to the density of the fluid changing with respect to the increase in 

temperature, and insulation for minimal heat loss .Our group also made the decision to integrate 

a storage tank so as to buffer the incoming solar power to the glycol loop so as not to shock the 

chiller. Figure 30 shows the process flow diagram of the oil loop.    

 

For the configuration of the oil loop it was decided to put the pump just before the collectors and 

the storage tank immediately after the collectors. This would allow the storage tank to buffer the 

outlet power of the collectors directly. Immediately after the collector system is the heat 

exchanger that is thermal transfer unit between the oil and glycol loop. The oil then goes back to 

the pump to complete a full cycle.  

 

Integrated directly before the pump is the expansion tank. This tank serves a dual purpose in the 

oil loop. One is for the density decrease of the oil and the second is to put consistent pressure on 

the line so as not to cavitate the pump. A filter is also placed before the pump to prevent clogs in 

the line. The last component that is part of the oil loop is a heat dump. In case there was a time 

where we would want to work on the system or would need to cool down the system we chose to 

have a heat dump in the system that would allow us that option. 

  

  

Figure 30: Oil loop process flow diagram. 
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Glycol Loop 

The glycol loop consists of the heat exchanger and the chiller. It will require a pump for fluid 

flow and an expansion tank due to the density of the fluid changing with respect to the increase 

in temperature, and insulation for minimal heat loss. Since the glycol loop will undergo a phase 

change at our operational temperature of 180	°� we are required to pressurize the loop with 
nitrogen to ensure that does not happen. The glycol/water vapor pressure vs. temperature graph 

can be seen in Figure 58. At this temperature the loop needed to be pressurized by 7.8 atm.  to be 

to ensure no phase change. The heat goes directly from the exchanger to the chiller, and all other 

components proceed after the chiller to the exchanger.  

 

 

 

 

 

 

 

 

Water Loop 

The chilled water loop consists of the chiller and its load, an office trailer, cold dump and a 

storage tank. These loads will be explained later in detail. The chiller has its own pump within it 

and a natural gas feed in line.   

Figure 31: Process flow diagram of glycol loop. 
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Designing Water Loop 

The chiller produces  23 kW[6.6 U.S.R.T] of cooling. Our plan was to buy an office trailer and 

use the chilled water as a means of cooling the building; however, we could not afford an office 

large enough for a 6.6 U.S.R.T. So, a more affordable building was purchased  a 12 x 56 building 

and decided to create loads in addition to that building to satisfy the chillers capacity.  

The following is the calculations for the buildings load.  

Table 9: Building Characteristics of office trailer. 

Building Characteristics Values Units 

Roof     

Type of Roof Flat, slight tilt   

Area 158 m^2 

Walls     

Size, NS 3.35'x17' (two)   

Size, EW 3.35'x3.6'(two)   

Area, NS 1.16 m^2 

Area, EW 1.16 m^2 

Absorptance, white paint 0.12   

Windows     

Size, NS 3.6 (four) m^2 

Size, EW 3.6 (four) m^2 

Shading Factor 0.1   

Insolation Transmittance 0.6   

Location and Latitude Merced, CA 33°   

Date July 23rd, 2009   

Time and Local solar hour 
angle Hs Noon, Hs=0   

Solar Declination Angle 20°   

Wall sruface tilt from horizontal 90°   

Temperature outside 72°   

Insolation Transmittance 70°   

U factor for walls 0.061   

Infiltration NA   

Ventilation NA   

Internal loads NA   

Latent heat load, percent 0.3   

Table 9 shows all of the properties of our geographic area plus the buildings characteristics 

which will be used in the following equations.   
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Cooling loads are determined using the following equations:
2
 

For un-shaded or partially shaded windows, the load is: 

é�� = ��³��ç ∗ �,�	öç,�	 ∗ N^co	`o`a O + �̅,�öç,� + �̅,�ö� + �� ∗ 4!� − !) 
For shaded windows, the load (neglecting sky diffuse and reflected radiation) is: 

é��,�ç = ��,�ç ∗ ��4!� − !) 
For un-shaded walls, the load is: 

é��� = ��� ∗ � ��,�� Mö� + öç.� + öç,� ∗ N^co`o`a OP + ���4!� − !)� 
For shaded walls, the load (neglecting sky diffuse and reflected radiation) is: 

é���,�ç = ���,�ç����4!� − !)� 
For the roof, the load is: 

é��� = ��� ∗ � ��,�� Möç,� + öç,� ∗ N^co`o`a OP + ���4!� − !)� 
Latent load due to infiltration and ventilation is:  

é�� = �� �4�� −�)� 
Total cooling load is calculated as follows: 

é��� = é�� + é��,�ç + é��� + é���,�ç + é��� + é�� 
  

                                                           

 

 

2 Goswami, D. Yogi., Frank Kreith, Jan F. Kreider, and Frank Kreith. "Solar Cooling."Principles of Solar 

Engineering. Philadelphia, PA: Taylor & Francis, 2000. Print. 
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Table 10 below doesn’t add up properly due to rounding errors, but matlab accounts for this.  

Table 10: Load of building. 

Load Magnitude of Load (Btu/hr except last row) 

South facing window  1759 

Shaded windows 0 

South Facing Wall 19834 

Shaded Wall 0 

Roof Load 11126 

Latent Heat  2327 

Total Load 35046 

Total Load, USRT 2.9 

 

The office building was going to take 3.8 kW of cooling, so we decided to purchase a Carrier 

radiator and put it outside that would be another 3 tons of cooling. We also added a 500 gallon 

storage tank that would be another load but could also be used as storage.  

4.3.2 Process Flow Diagram of System: 

The final process flow diagram for the whole system is Figure 32. 

Figure 32: Process flow diagram for entire system. 
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4.3.3 Pumps 

Finding a pump that was high temperature, small horsepower was very difficult. Small pumps 

are readily available but not for high temperatures; and high temperature pumps are readily 

available, but not in small sizes. The difficulty with a higher temperature is that the fluid comes 

into contact with the bearings and the materials used for those components to be made for high 

temperatures are not cheap. A way around this is to use magnetic pumps, which do not have 

bearing and can handle high temperatures, but the smallest size we found available in the market 

was 3 hp, at a cost of $8,000.    

The power requirement is: 

�epg�h_`^	�cgo]qcn]g = «��������Δ� ∗ N 712000O 
The pressure head for the calculation is taken as 4 times the amount due to us wanting to be able 

to turn on the pump initially at times when the oil may be cold, viscosity is higher thereby the 

pressure head increases.  

Oil & Glycol Pump 

The sizing requirements for our pump for the oil loop are: 

� High Temperature, ie: 200 °� operational with occasional spikes 
� Pressure head of 40 psi to overcome collectors and additional components 

� Minimal amount of horsepower to reduce energy demand to pump the working fluid 

� Volumetric flow rate of 16 gpm 

The calculated horsepower of the pump is 1.5hp. Grundfos had a pump called the vertical 

centrifugal pump that has an air vent that separates the working medium from the bearings. This 

allows the fluid to temperatures up to 200°�, with a low flow rate at 1.5 hp. Figure 33 shows the 
performance curves of this specific pump. Considering the size of this system, it is estimated that 

this pump would circulate oil through the loop at 3 minutes. 

For the glycol loop similar calculations were performed and the pump size needed was half the 

size of the oil loop, ¾ hp. We bought the same Grundfos pump at half the size. Performance 

ratings were very similar.   
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Figure 33: Oil pump performance graphs showing pressure head, volumetric flow rate, power and efficiency. 
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4.3.4 Tanks 

Oil Storage Tank 

The Hot Oil Storage Tank was sized based on the amount of time we wanted the oil to mix in the 

tank. The original purpose of this was to buffer any temperature fluctuations coming out of the 

collectors, thereby providing controlled power to the heat exchanger. However, another variable 

that came into play was the pump. We wanted the pump to have a minimal amount of pressure 

head to overcome and the mineral oil increases it’s viscosity with the decrease in temperature. 

Therefore, our new goal became to design a tank that would retain a temperature above 100°� 
with a retention time of approximately 3 minutes.  

The mineral oil’s kinematic viscosity, in Appendix 8.4.3, and at approximately 100°� there is a 
turning point for the viscosity of the oil which became our starting point for choosing that size 

storage tank.  The three minutes was calculated as the approximate time that it would take the oil 

to flow through the loop at one full cycle.  

Based of these initial goals the following calculations were used as the foundation to determine 

the size of the storage tank.  

 

Heat flux for an insulated body: 

°� = �@¤ 				Equation 33 
The é�  is the heat flux of the insulated tank to the ambient environment. The Δ! is the difference 
in temperature between the oil at night when the system is being turned off and the system in the 

morning just before we turn it on. The R value is thermal resistance of the insulation. It is related 

to the thermal conductivity as expressed in the conduction section, by  

¤ = ¶�   Equation 34 
Insulation companies typically give R-values for their insulation to characterize its performance. 

So for this section I will be using equation 33 to study the heat loss in the system, and equation 

29 from the convection section. The V is the volume of the tank, the T is the temperature of 

either the initial temperature of the oil entering the tank and the retention temperature is that of 

the oil as its about to exit the tank.  

D = �4@) ∗ �     Equation 35 
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!����k��k = !k��� − é�����ℎ�4!k���) 
 

To calculate the size a matlab program  Oil Tank Sizing, which can be found in the appendix, 

was designed in the following fashion: 

Since there were so many variables that were unknown to us we developed a program that would 

start with initial values, such as: 

� R-value, which means specifying an insulation and thickness 

o Thickness were varied but the insulation was the same because it was standard 

fiberglass 

� Temperature 

o Ambient temperatures varied at night from 10-20°�,	and in the morning from 30-

40°�. 
� Volume of Tank 

o Chose a volume of 85 gallons to begin with 

The program calculates the initial heat loss and then the retention temperature and if it is not 

within a given tolerance the program chooses another volume to evaluate given the same 

parameters. This program was run numerous times for various cases which can be seen in Figure 

34 before the final size was chosen.  
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Figure 34: Storage tank retention temperature for various volume tanks. 
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Looking at Figure 34 we were able to determine that the size of the tank did not have a large 

effect on the retention temperature, as did the insulation. When considering the expense of the 

insulation, oil and available tank sizes it was decided to be either the 34 or 50 gallon tank. In 

analyzing the retention times it was calculated that it would take approximately 3 minutes for the 

oil to go through the loop once, therefore the 50 gallon tank size was chosen.  

Oil Expansion Tank 

The storage tank has a direct impact on the size of the expansion tank due to the volume of oil in 

the system that will be undergoing expansion.   

When the oil is at its coldest, 20° C, the expansion tank will be �ì full. This provides an extra 
amount of oil that can be used in case of leaks, and also allows one to check the amount of oil in 

the system. When the oil is at its operating temperature, 220° C as a maximum, the expansion 

tank will be ¾ full. This provides extra headroom in the case of higher temperatures to prevent 

overflow. Equation 36 and 37 show the volume of the cold oil is related to the volume of the hot 

oil and can be used to calculate what the volume expansion would be taking into consideration 

the initial volume in the system, «�����G.  
�V9�6 ∗ �V9�6 = ��9S ∗ �V9�6    Equation 36 
�;²�>CÞB9C = ��9S2�ÞTÞS;D��9S 				   Equation 37 

The tank size that was calculated was 40 gallons.  

Glycol Expansion Tank 

Table X shows the calculations for sizing our expansion tank for our glycol loop which holds 

approximately 15 gallons of the glycol/water mix and shows the design as super charged, super-

c, or not charged. Charged is when you take a tank and pressurize it from the start, ie: with 

Nitrogen. If we did not super charge the tank it, the expansion tank would be almost 5 times the 

size and it would phase change. Super charging not only prevents boiling but it has reduced our 

necessary tank size down to ~4 gallons. Due to costs of tanks and available sizes, a 10 gallon 

expansion tank was used.  
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Table 11: Glycol expansion tank calculations 

40% Ethylene 

Glycol       

  no super-c super-c   

System Vol. .04 .04 �ì 
        

Low Temp 16 16 °� 
High Temp 185 185 °� 
        

Exp. Fctr. 0.13200 0.13200   

        

Expanded .005 .005 �ì 
        

Low Press. 344 344 kPa 

High Press. 1034 1034 kPa 

        

Accept. Fctr. 0.138 0.60716   

        

Tank Vol. .05 .013 �ì 
 

4.3.5 Heat Exchangers 

Oil to Glycol 

The heat exchanger between the oil and glycol loop was going to have very specific 

requirements. Our solar collector had very specific requirements, as did the chiller, which can be 

found in Table 12. Given that we would be dealing with two fluids that would not undergo a 

phase change, it was decided it would be best to use a flat plate heat exchanger. Properties of 

which can be found in the appendix, under Heat Exchanger. 

Table 12: Heat exchanger requirements. 

 

Design Duty : 21.9 kW 

Side 1 Side 2 

Fluid Name  : Dowtherm 4000 
40% 

Duratherm 600 

Inlet Temperature °C : 161 180 

Outlet Temperature °C : 170.34 168 

Mass Flow Rate GPM : 9.16 16 

Pressure bar : - - 
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Heat Dump 

A heat dump was needed in case there is a time where our system overheats. Overheating is 

based not only on the in-put of the chiller, but also on the boundary conditions for the specific 

components of the system. Since we do not want to turn on and off the collectors, or rather, 

cover them and un-cover them, we need a means cooling off the fluid, keeping in mind that there 

will still be energy being put into the system at the same time; therefore, what is needed to be 

able to dump a full load of 23kw worth of energy. This sizing was taken into consideration and 

purchased the following radiator. It is comprised of a pin radiator, along with one fan.  

 

Specs Requested: 

To dump 1620 Btu/min from hot oil to the air. 

Liquid Name: Duratherm 600  

Max Temperature: 220° C 
Connector Type: NPT 

Oil Inlet Temperature: 180° C 
Oil Outlet Temperature: 168°C 
Oil Flow Rate: 16 GPM 

Air Inlet Temperature: 115 °F  
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4.3.6  Insulation 

 To determine which type of insulation and the thickness for each section of the system we broke 

it down by component first. Each component has different requirements for insulation which 

means different insulation types would needed to be analyzed in choosing which is best for that 

component.  

The components are broken down by the following list.  

Manifold to Tube Junction 

� Material: Various 

� Size: ~.25in diameter, by 3 inches in length 

� Priority: Very High 

Manifolds 

� Material: Copper 

� Diameter: ~.75 inches 

� Priority: Very High 

Piping 

� Material: Galvanized steel 

� Diameter: 1.5 inches 

� Priority: High 

Tanks 

� Material: Galvanized steel 

� Sizes: Various 

� Priority: High 

Balance of System  

� Material: Various 

� Size: Various 

� Priority: Medium 

The priorities for these components were chosen by concluding from the CEC grant that the 

majority of the heat loss in the collectors was within the manifolds and manifold to tube junction. 

This is very important that we lose a minimal amount of heat here. The piping will be the next 

target of heat loss due to the amount of area available, and the balance of system is of concern 

but does have the lowest heat loss of these components.  

Figure 35: Manifold, and junction. 

Figure 36: Galvanized steel pipe 
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For insulation there are many different kinds of insulation on the market today and after a vast 

research of high temperature insulations, the following types were analyzed: 

Fiberglass 

� Description: 

o Fiber reinforced polymer made enforced by glass 

o Lightweight and strong 

� Installation: Easy for pipes 

o Can come molded to your pipe diameter and becomes easy to install 

o Hydrophobic: No,  

� Will require weatherization 

 

Fiberfrax 

� Description: 

o Is like fiberglass, but with ceramics. Great insulator. 

� Installation: Easy for complex geometrical objects 

o Fiberfrax comes in layers, and appears like cotton. It can be great 

to stuff boxes, wrap around abstract objects, etc. 

o Hydrophobic: No 

� Will require weatherization 

 

Microtherm 

� What is it:  

o Micro porous insulation core is covered in a woven glass cloth 

outer layer and then stitched into a square matrix. 

� Installation: Thought it would be easy for manifolds 

o Comes in a quilt that we were told was malleable and easy to 

wrap around pipes 

o Hydrophobic: Yes 

� Will not require weatherization against water 

 

 

Figure 37: Fiberglass pipe 

insulation. 

Figure 38: Fiberfrax layer rolled up. 

Figure 39: Microtherm quilt. 
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There are two decisions to be made: 

1. Which type of insulation should go with each component? 

2. How much insulation will be required for that component, ie: thickness? 

Manifold Tube to Junction 

There is a 2" gap of exposed pipe between the insulated manifolds and the vacuum tube 

receivers. Solely based on the geometry on the object it was best to go with FiberFrax or 

Microtherm. Using the same calculations for heat loss and temperature loss within an insulated 

pipe, in the temperature section earlier, it was calculated, as seen in Table 13,  that Microtherm 

would have cost $5 a piece ($800 total) for a total loss of ~ 140 watts. 

FiberFrax when wrapped to a thickness of 2" would cost approximately $17 and would lose a 

total of ~ 155 watts, for the summation of all of these components. This would a heat loss of 

~0.5% of the system. There is very little difference between the amounts of heat loss between the 

two products, but Microtherm is 47 times the price of FiberFrax, therefore, we chose FiberFrax. 

 

Table 13: Microtherm vs. FiberFrax for Junction. 

Manifold to Tube Junction Microtherm FiberFrax 

Thickness (in) 0.5 2 
Price ($) $5.00 $1.20 
Conductive Resistance (m-K/W) 49.9 47.9 
Convective Resistance (m-K/W) 5.2 1.7 
Overall Heat Transfer Coefficient 
(W/K) 0.9 1 

Heat Loss (Watts) 138 154 

Total Price ($) $800.00 $16.80 

 

The total heat loss for the tube to manifold junction would be ~155 watts. 

Manifold: 

Since the manifold has an awkward shape and it is so important to have a minimal heat loss, we 

chose to use Microtherm. In the appendix is a sheet that characterizes its performance. The total 

heat loss for all manifolds of the system would be 1kW.   
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Piping 

Oil & Glycol 

For the geometry of the piping and our experience with FiberFrax we decided it would be best to 

use pre-molded fiberglass. Table 14 shows the calculations for a thickness of 1 and 2 inches for 

both the 1.5 and 
ì� inch diameter piping.  

Table 14: Thickness comparison of fiberglass for piping sections. 

1½” Diameter Pipe   

Thickness(mm) 25.4 50.8 
Heat Loss (Watts) 2809 1959 
Total Price ($) $352.23 $715.08 

¾” Diameter Pipe   

Thickness(mm) 25.4 50.8 
Heat Loss (Watts) 1867 1391 
Total Price ($) $345.15 $699.15 
    
Combined Heat Loss (Watts) 4677 3351 
Combined Price ($) $697.38 $1,414.23 

 

The heat loss and price difference for 1 or 2 inches of fiberglass is very big. Considering the final 

difference between heat losses is 1.3 kilowatts is too big of a difference for us. Therefore, we 

chose for all piping that 2 inch fiberglass pre-molded pieces would be used. This calculated to a 

total heat loss of 3,351 watts; however, it should be noted here that this does take into 

consideration the piping used in the glycol loop! 

Water 

For the water loop a standard pvc pipe insulation foam pre-molded for pipes was used. It wasn’t 

necessary to conserve energy in the water loop; therefore, no energy analysis was needed.  

Tanks 

The tanks are very critical to insulate because if not they are large heat bodies that can be heat 

dumps. For the structure it was decided that it would be best for us to FiberFrax, both for ease of 

installation and financially. To determine the thickness of insulation for each tank, the following 

tables are shown.  
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Oil Tanks 
Table 15: Oil storage tank calculations for FiberFrax insulation. 

Thickness (in) 1 2 3 4 
Heat Loss (Watts) 535 300 212 166 
Total Price ($) $29.43 $62.26 $98.59 $138.54 

 

Table 13 shows the FiberFrax insulation of 1 to 4 inches and their respective heat losses for the 

oil expansion tank. Given the price of the insulation and the heat loss we chose 4 inches for a 

heat loss of 166 watts.  

Table 16: Oil expansion tank calculations for FiberFrax insulation. 

Thickness (in) 1 2 3 4 
Heat Loss (Watts) 516 294 211 168 
Total Price ($) $31.43 $67.26 $107.59 $152.52 

 

Table 14 shows the FiberFrax insulation of 1 to 4 inches and their respective heat losses for the 

oil expansion tank. Given the price of the insulation and the heat loss we chose 2 inches for a 

heat loss of 168 watts but when we went to go insulate, due to the site glass being too close we 

could only fit 1 inch of insulation, for a heat loss of 516 watts.  

Glycol Tank 
Table 17: Glycol expansion tank calculations for FiberFrax insulation 

Thickness (in) 1 2 3 4 

Heat Loss (Watts) 198 115 84 68 

Total Price ($) $12.25 $27.07 $44.56 $64.82 

 

The glycol expansion tank was insulated with the amount of leftover FiberFrax we had. This was 

based on priority of system insulation at the time of assembly; therefore we only wrapped it with 

1 inch of insulation for a heat loss of 198 watts.  

Balance of System 

Due to the balance of system being the nooks and crannies of each loop, it was decided to use 

FiberFrax for this insulation.   
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Heat Loss from Collectors to Chiller 

Although a designed heat loss from the collectors to the chiller was10%, ~2.3 kW, the final 

result was 5.8 kW, which is a 25% loss. Meaning, on a great day of solar insolation, at 

operational temperatures we would hope to see 17.2 kW. The breakdown of where this heat went 

to is shown in Figure 40.  

The majority of the heat loss is within the tanks. If we were able to use our original design 

thickness calculations this number would have been significantly reduced. The next largest 

number is the manifolds. We knew this would be a large heat loss. Next is the piping and balance 

of system, which includes the heat exchanger. Together they are about 1.5 kW. The junction 

takes a minimal heat loss. These results are for steady state. 
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Figure 40: Heat loss in thermal watts from the collectors to the chiller. 
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5. Manufacturing 

Now that the system was designed it was up to our team to manufacture two very important 

components of the solar thermal system: the reflector, and the collector. The following are 

descriptions of how we manufactured these components.  

5.1 Reflectors 

Mold 

For the reflectors there were two materials that could have been used: metal or plastic. Although 

it would have been ideal for the reflectors to be made of metal, the cost just for the tooling, let 

alone for the materials was out of our budget. Therefore, a plastic mold that would have a 

reflective adhesive attached to it was used. The optics design was inverted in SolidWorks and a 

mold was made out of it as shown in Figure 41. This mold, made of wood composite, was taken 

to a vacuum molding plastic company in town and had them create troughs.   

  

Figure 41: Reflector 3-d renderings for the mold. 
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The first decision to be made was whether the molds should be for a single trough or for an 

entire collector. A test was done for a design of a mold for two troughs that were only 20% of the 

length and test out how the forming would work.  

During the test it was observed that the space in-between the collectors were not enough for the 

plastic to be able to get into the groove and there were holes and extremely thin plastic around 

those regions. The only option to solve this problem was to have more space in-between the 

troughs but our manifold was already designed to a specific spacing and we could therefore not 

change the spacing in-between the troughs. It was by default now that we went with single 

troughs.  

Another problem was also observed during the pilot run. The mold was designed in SolidWorks 

and did not take into consideration that 90° bends in the mold would be difficult to form the 

plastic around and to get the plastic off. This posed a large problem; therefore the design was 

changed for the mold to have an angle to it, as seen in Figure 42.   

Now that the spacing issue was solved full length mold was made out of the composite wood for 

the single trough. Later another problem occurred because a single trough was being used. The 

mold began to come apart. Originally it was thought that there would be a small amount of molds 

due to a double trough. Perhaps having groups of 6, but when we did single troughs, then it 

became pulling at least 160 molds. After ~10 molds were pulled, the mold began to come apart. 

Luckily the vendor working put in a lot more time and effort and was able to pull off our 160 

troughs.  

 

Figure 42: Slight angle added to mold for reflector 

manufacturing. 
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Reflective Adhesive 

The reflective adhesive chosen is Reflectech. This is the material that was tested in the CEC 

grant. 

 

Two main reasons for using Reflectech: 

1. It has superb reflective properties.  

2. Cost 

 

 Originally it was proposed to make the collectors out of plastic, and then apply Reflectech onto 

them. In theory, this process would have been effective and cheap; however, in practice it seems 

to be everything but both of these. Reflectech is made to be applied to flat surfaces where one 

can apply a good amount of pressure to the Reflectech and its surface and have a good bond 

between them. (The adhesive properties of Reflectech work with pressure) However, when 

trying to apply Reflectech to our curved surfaces there have been bubbles, and were not able to 

apply the material on smoothly. Because of this, when the collector is left outside, the entire 

assembly comes apart. The following is a summary of the experimental process in trying to 

understand how to best apply Reflectech to the troughs: 

Brainstorming Reflectech Assembly 

1. Why don't we have Reflectech put on during the vacuum mold processing so that the plastic 

mold already comes with Reflectech on it? 

     Reflectech would not be able to withstand the temperature, and pressure. Vacuum seal 

molding is run at a very high temperature, and with the processing procedure used for this type 

of manufacturing, it would stretch the material and most likely tear holes and come apart.  

 2.  Besides pressure, is Reflectech's adhesive reactive to any other methods? 

     One idea the team thought of is heat. If Reflectech is reactive to heat, then when we apply the 

material to the plastic, and we are left with bubbles we could use a  heat gun to help with the 

adhesion and get the air to escape; however, when we used a heat gun on Reflectech we observed 

that the material would shrink. This means, if we were to use a heat gun on the Reflectech during 
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the process of applying it, it would create unwanted tension on the material and it would 

ultimately begin peeling away from the plastic.  

3. Are there different methods of applying Reflectech to our curved surface that look promising? 

     We did contact Reflectech multiple times to ask them how to apply their produce to a curved 

surface, their response is that they have never worked with applying it to a curved surface before. 

Their advice is to make sure that we have no bubbles and can apply a lot of pressure evenly on 

the material to create a strong bond.  

 4. What is the main problem that we are having in applying Reflectech to the mold, and what 

have we tried to correct it? 

We cannot apply pressure evenly. We have used paint rollers, both hand size and larger. We also 

have a roller that is almost the length of the collector, but it has a feathery material on the 

outside. It would be better if it was a solid with some absorption, like rubber.  

The adhesive that comes with Reflectech is extremely strong, and once the Reflectech touches 

the mold it stays. There is no play with being able to move it, and so in applying it on a collector 

that is over five feet long, with a curved surface, there is plenty of room for error! 

So we tried to use water in-between the material and the collector because it would allow a 

'slippery surface' to be able to have some flexibility when applying the Reflectech on the mold so 

that the bond wasn't made instantaneously which allowed us to move the material a bit. Although 

for the process of applying it worked nicely, the result was that once it dried there were a lot of 

bubbles and the water process came apart easily. Therefore, we have ruled out making water part 

of the process.  

The strongest points for error is wherever there is an opening for air or weathering to occur that 

could break the bond. To account for a nicely sealed application, there are a few different 

methods we are trying: 

� Reflectech Tape: This is slightly reflective and is to be used on all edges of Reflectech to 

prevent degradation, we can use it as a seal 
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� Superglue: This is to ensure that we have a strong bond that is sealed, and can also be 

used to prevent degradation 

� Calking: To ensure a tight bond at the edges and can be used for degradation 

The middle of the trough where there is a peak is usually the first place where the bond breaks. 

Instead of cutting Reflectech in half and applying it to both sides of the collector, we can fold it 

down the center and make sure that the Reflectech is centered on the collector and then apply it 

as once piece; thereby eliminating the most likely area for it to come apart. 

Reflectech assembly experiments 

The final question became: Is there a solution for using Reflectech on our molds?  

In taking all of our analysis and trials and error into consideration we decided to run an 

experiment where we would apply our best ideas of bonding Reflectech onto our collectors, and 

then place the collectors outside for a few weeks and see which solution prevailed. The 

experiments were: 

1. Whole piece of Reflectech with a crease down the center. We used 3m adhesive, and left 

the backing on the Reflectech. We applied it with our long roller, and used the small paint 

roller after to help apply pressure. Then we cut the edges with a razor and used tape curled 

at the top to seal the edges. Superglue was used at the ends for a seal.  

a. When we were applying the Reflectech we realized that side 2, we did one side at a 

time, not only was the pressure not evenly applied on this one, but it began coming up 

at the sides. This happened for two reasons: 

i. When we applied Reflectech on the first side, everything was relatively smooth, 

however, we noticed when we applied the second side the tension of it pulling 

from the first side and the second side was creating bubbles on the second side, 

right at the valley at the bottom. 

ii. At the very lip at the top of the collector, we didn't cut flesh with the top, there 

was a little overhang, and so when we applied the tape at the top we stretched 

the Reflectech over the lip a bit and it created a tension. Within minutes we 

could already see tiny bubbles occurring.  

iii. 4 people 
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2. Whole piece of Reflectech with a crease down the center. We used 3m adhesive, and left 

the backing on the Reflectech. We applied it with our long roller and used the small paint 

roller after to help apply pressure. Then we cut edges with a razor and used tape at the top 

and calking on the sides. We were also really careful with applying pressure evenly. This 

essentially the same experiment as 1 except better. 

a. 4 people 

3. Whole piece of Reflectech, sprayed 3m glue on the entire trough and then applied 

Reflectech as a whole on the trough. Cute the top with a razor and applied calking on the 

top and sides. 

a. 3 people  

4. Same as 3, except this time we only applied 3m spray down the center of the trough so that 

way we could get the bottoms and the climax of the trough all at once preventing there 

from being any tension on the center of the trough. Then we applied 3m to one side at a 

time and used our hands to smooth it out. Then we went for a final run with the small paint 

rollers. We then cut down the tops with a razor down below the curve of the trough and 

applied calking around all edges for a good seal. 

a. 3 people 

  

All four collectors were left outside.  

Results of Reflectech Assembly Experiments: 

We left the experiments out for approximately 3 weeks. The time was from December 22nd to the 

second week of Jan, 2010. The weather was very cold, extremely wind and very rainy. When we 

took the collectors off the frame and brought them inside we observed that all of them had 

diagonal bubbles all along the sides of the collectors. In order to understand where these bubbles 

came from, we took a razor and carefully cut open the bubbles. The possibilities that we were 

considering happening were that the Reflectech either separated from its own backing or there 

were stresses that were separating the Reflectech from the plastic.  

 

One of the troughs with 3M appeared to have in some areas. We were therefore not able to spray 

the 3M evenly. Then we continued to cut open bubbles on two more troughs, to discover that 
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they had all not separated from their own backing, but had separated due to stresses and the 3M 

glue not being able to adhere to both surfaces.  

Fortunately, all three methods of securing the edges: caulking, tape and super-glue worked very 

well. Since Reflectech sold us the tape and aesthetically looks most pleasing, we have decided to 

use Reflectech tape at the edges on the top. Since tape will be difficult at the front and back of 

the trough where the *face* is, we have decided to use caulking, with a finger smooth finish. 

  

Interesting result is that we only cut open 3 of the troughs and then depressingly left them inside 

while we thought of other solutions. We went back 1 week later to find that all of the troughs 

appeared to be smooth. Especially Number 2, it looked perfect, and luckily that was the one we 

did not cut, and it had the Reflectech tape with a smooth bond of glue at the edges. 

 

How did it go from having bubbles and not looking good, to being smooth and looking perfect?  

 

Our hypothesis is that the plastic is actually deforming in the weather, due to temperature, and 

causing stresses on the collector and thus the bond between the plastic and the Reflectech! This 

made us realize that due to all the stresses in the trough between the plastic and the adhesive it 

would be best for us to apply the Reflectech in small portions.  

  

The final result for us to assemble the Reflectech to the plastic is: Cut the Reflectech down the 

center, and partition it into three segments, a total of six pieces per trough. Use their adhesive 

and their tape to seal edges.  
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5.2 Collector 

There are many factors that go into designing the collector. The following are descriptions of 

how we designed the collector, which contains the reflectors, manifold and frame.  

5.2.1 Frame 

Design Problem 

The frame is a critical component of the collector. It has to provide support for the troughs and 

hold up against varying weather conditions.  The constraints of this design came down to: 

� Budget, being as little as possible 

� Feasibility to construct 

o We are dealing with a very limited amount of tools and access to shops, so it had to 

be easy to manufacture 

To design a frame that can meet our needs we used Pro Engineering and Pro Mechanica to model 

our designs against varying loads and constraints.  

Design Parameters 

• All force and moment loads were applied with a safety factor of 2 

• All welded joints were modeled as a solid connection  

• All materials were assumed to be homogenous  

• The temperature domain was that of Merced  

• All design was done using Pro Engineering  

• All analysis was done in Pro  Mechanica 

• Polynomial Order min1 , max 9 

• Percent Convergence was set to 5% 

The foundation of the frame was designed and can be seen in Figure 43. This structure was 

modeled as 6061 Aluminum in Pro Engineering and Pro Mechanica. The constraints would be at 

the foot of each aluminum vertical post and the load would be evenly distributed along the 

horizontal frame. 



82 

 

  

Figure 43: Is the foundational base of the frame. Top picture is the loads and constraints, bottom is the stress contours. 
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Analysis 1 

Loads: 

� Collector Tubes: 6 lbs. 

� Reflector Troughs: 4 lbs. 

� Manifold: 8 lbs. 

Total weight load, with a safety factor of 2 is: 216 pounds.  

Constraints: 

The four supporting poles were held static in all directions. 

The results show that the deflection caused by this load is nominal and this design is structurally 

sound, and will experience minimal deflections.  

Analysis 2 

Took the frame in Figure 43 and applied a wind loading of 150 mph to test the analyze contours 

of the frame. They load was placed in the direction of the back of the collectors which would 

cause the troughs to pull away from the frame.  

The analysis showed that there were stresses throughout the frame but they were very minimal 

proofing that this design will hold up against the weather. 

Analysis 3 

Considering that the base of the frame was done it was now time to design the portion of the 

frame that would allow for the 20° tilt for the troughs. 
20° wedges will be used to align a 20 in long section of square tubing aluminum at the proper 

angle.  This 20 in long section will act as a receptacle to insert the longer sections of tubing that 

will support the through, as well as provide suitable spacing between the manifolds.  An 

additional wedge as well as a nut will then be placed on top to hold it all together. This can be 

seen in Figure 44.  
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Figure 44: Final frame design. 
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For the analysis on the final design a load of 216 lbs. was applied as shown in as a distributed 

load across the section that will be supporting the collectors and troughs. The constraints were 

held at the ends where the aluminum pole would be attached to the support poles.  

 

Based on these results, most notably the max displacement in the x direction, a confident 

conclusion can be drawn that we are well within specified criteria, regarding the bending of the 

support structure.  This design was chosen as our final design. 

  

Figure 45: Top figure is the final frame design with load and constraints applied. Bottom picture is the stress contour. 
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5.2.2 Attaching Manifold to Collector Frame 

 

Design Problem 

The collector frame holds 10 troughs at a 20 degree incline. Because of this incline, the vacuum 

tubes in each trough and the manifold they are attached to will slide out of the bottom of the 

frame. Therefore, we need some method for holding the tubes and manifold in place to prevent 

them from falling and breaking. In the experiment for the CEC the manifolds were attached to 

the collector frame using an aluminum strip. This resulted in a heat loss via conduction from the 

manifolds to the aluminum strip and a resulting loss in efficiency.  

In the current setup, the collector frame will be made of aluminum and thus the problem will be 

magnified if there is a pathway for conduction to the aluminum frame. Therefore, we must 

insulate the connection between the tubes and manifolds and the aluminum frame. The pieces 

that hold the tubes and manifolds will be part of the collector frames. These collector frames are 

a secondary component of the system and as such should not contribute significantly to the cost. 

The insulation surrounding the manifolds should be weatherproofed to ensure the maximum 

lifetime of the insulating material. Lastly, the solution to this problem should be simple to 

implement and allow for maintenance along the manifolds and tubes. 

Design Constraints 

1. Must be able to hold weight of 10 tubes (including oil) and manifold from sliding off of 

the collector stand. 

2. Must provide thermal barrier between hot tubes and manifold and the aluminum frame. 

3. Must be economical 

4. Must provide weatherproofing for manifolds 

5. Should provide easy access to tubes and manifolds, for removal, installation and 

maintenance. 
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Figure 46: Design of tube, frame and attachment. 

Figure 46 shows the design parameters that we are dealing with to 

scale. 

� Black 

o  Aluminum frame 

� Red 

o  Manifold 

� Orange  

o Heat transfer pipes 

� Blue and Purple 

o  An evacuated tube, the purple is the absorber portion. 

� Gray 

o Attachment design for the manifold to the frame, which 

will be referred to as the ‘claw’.  Figure 47: Real picture of manifold attachment. 
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Solutions 

After many designs and materials we chose to go with our design called the ‘claw’ which is 

featured in Figure 46 and the material we chose it to made of was fiberglass. The following 

reasons led us to choose this design:  

� The fiberglass “claw” will support the weight of the manifolds + 10 tubes. 

� It will also provide a thermal barrier between the hot manifold tubes and the aluminum 

collector frame.  

� Relatively cheap ($10 added cost / collector stand). 

Now we must design the weatherproofing and maintenance access to the manifolds. It was 

decided that the weatherproofing should cover all sides of the manifolds. It does not have to be 

airtight, but it should provide general cover from rain, splashing, and restrict wind flow over the 

manifolds. Based on design constraint #2 above, any piece of weatherproofing that is actually 

touching the manifolds or vacuum tubes must be an insulating material (probably fiberglass). We 

also want to be able to have access to the manifold tubes and vacuum tube connection points to 

allow for easy installation and maintenance on the system. 

5.2.3 Manifold Expansion 

To account for the manifolds undergoing expansion it was critical that we understood by how 

much the copper manifold was going to expand and design a component that would allow for 

that expansion.  

Table 18 shows the input data used for this calculation, and Table 19 shows the results of the 

calculation.  It is shown that each manifold should expand by just over an inch. To account for 

this expansion we added steel braided flex hoses in-between for each manifold to manifold 

connection. Figure 48 is a picture of this type of connection installed. 

  

Figure 48: Picture of our manifold to manifold connection with flex hoses. 
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Table 18: Input data for the expansion analysis of the manifold. 

Input Data     

Lo = length of pipe (in) 89   

a= linear expansion coefficient(1/C) 1.70E-05 (Copper) 

δt  = temperature difference (C) 170 (~30C->200) 

      

Calculated Data     

δl = thermal expansion (in) 0.25   
Table 19: The expansion results of the manifold for the temperature increase. 

Number of 
Manifolds: In 
Series 1 2 3 4 5 6 7 8 

δl = thermal 

expansion (m) 

Length of 
pipe (in)               

Temp.diff. 
(degC) 89.01574794 178.0314959 267.0472 356.063 445.0787 534.0945 623.1102 712.126 

30 0.04540 0.09080 0.13619 0.18159 0.22699 0.27239 0.31779 0.36318 

40 0.06053 0.12106 0.18159 0.24212 0.30265 0.36318 0.42371 0.48425 

50 0.07566 0.15133 0.22699 0.30265 0.37832 0.45398 0.52964 0.60531 

60 0.09080 0.18159 0.27239 0.36318 0.45398 0.54478 0.63557 0.72637 

70 0.10593 0.21186 0.31779 0.42371 0.52964 0.63557 0.74150 0.84743 

80 0.12106 0.24212 0.36318 0.48425 0.60531 0.72637 0.84743 0.96849 

90 0.13619 0.27239 0.40858 0.54478 0.68097 0.81716 0.95336 1.08955 

100 0.15133 0.30265 0.45398 0.60531 0.75663 0.90796 1.05929 1.21061 

110 0.16646 0.33292 0.49938 0.66584 0.83230 0.99876 1.16522 1.33168 

120 0.18159 0.36318 0.54478 0.72637 0.90796 1.08955 1.27114 1.45274 

130 0.19672 0.39345 0.59017 0.78690 0.98362 1.18035 1.37707 1.57380 

140 0.21186 0.42371 0.63557 0.84743 1.05929 1.27114 1.48300 1.69486 

150 0.22699 0.45398 0.68097 0.90796 1.13495 1.36194 1.58893 1.81592 

160 0.24212 0.48425 0.72637 0.96849 1.21061 1.45274 1.69486 1.93698 

170 0.25726 0.51451 0.77177 1.02902 1.28628 1.54353 1.80079 2.05804 

180 0.27239 0.54478 0.81716 1.08955 1.36194 1.63433 1.90672 2.17911 

190 0.28752 0.57504 0.86256 1.15008 1.43760 1.72513 2.01265 2.30017 

200 0.30265 0.60531 0.90796 1.21061 1.51327 1.81592 2.11857 2.42123 
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6. Experimental Results 

6.1 Solar Collector Performance 

The instantaneous solar thermal collector output power is calculated by: 

°� ÞV = D� 9B�3�9B��@ÞV Equation 38 
The mass flow rate through the solar collectors was measured by a Coriolis flow meter, and the 

temperature difference is taken with two thermocouples placed at the input and output of the 

solar collectors.  The available solar energy to the solar thermal collector system was calculated 

by: 

°� =�ÞV = / ∗ ÄÍò  Equation 39 
There was a precision spectral pyronameter on the collector plane which measures

�����������	���� . 
Knowing this and the aperture area the available power to the solar thermal collector was 

calculated. Dividing equations 38 by 39  yields the efficiency of the solar collector thermal 

efficiency.  

  

6.2 Chiller Performance 

Conventionally a chiller’s effectiveness is characterized by its coefficient of performance, COP.  

The COP is calculated by the following equation: 

��� = �cc_`ad	�cn]g	�hbqhb�cn]g	öaqhb = �cc_`ad	�cn]g	�hbqhb	cf	�ℎ`__]g�c_�g	!ℎ]g��_	öaqhb	bc	�ℎ`__]g  

In our case the power input is the power provided directly by the collectors.  This slightly de-

rated the chiller performance by lumping in heat losses due to the glycol loop and heat 

exchanger.   

The power input to the chiller by solar energy is calculated above.  

In the natural gas mode the thermal input to the chiller is calculated by metering the natural gas 

consumption.  
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7. Results and Discussion 

7.1 The Collectors 

At the beginning of the summer it was noticed that the collectors were not performing very well. 

The efficiency of the system was in the twenties when it is projected to be in the thirties. These 

numbers were determined in the following manner: From Figure 13  we can see that the rated 

efficiency for the XCPC at an operational temperature of 170°C is 45%, with a direct normal 

incidence power of 800 W/m^2 and 20% diffuse; however, with this experiment we are 

conducting we are basing our available solar power off of the global radiance on the plane of the 

collector, which should yield, according to this model, roughly 35%.To diagnose why this was 

occurring we ran a test on July 18th that would tell us whether the performance loss was due to 

optical properties or heat loss.  

The experiment consisted of running the system at ambient temperature and then seeing if the 

temperature difference between the inlet and outlet of the collectors was high [Δ! ≥ 15°�] or 
low[Δ! < 15°�´. If the temperature difference across the collectors was low that would mean 

that there was some sort of optical loss. If the temperature difference across the collectors was 

high this would mean that there was a heat loss within the collectors that was preventing the 

energy from being conserved to the output.  

Figure 49 shows the temperature difference of the collectors during our experiment. From the 

beginning of the day until 2:20pm the original experiment was run and the system was up to 

temperature, then at that time we began to cool down the experiment to ambient temperature. 

From about 2:45pm to 3:45 pm the experiment was running at ambient temperature producing a 

temperature difference of approximately 18°C which is more than double what it had been 

during operational temperatures of 180°C. This meant that our performance loss was due to heat 

loss. 

Heat loss within the collectors is primarily due to the manifolds. Originally our team chose a new 

brand of insulation that comes in the form of a quilt. It was advised to us by the company that we 

could wrap it around a pipe; however, we would later find out that the company themselves had 

never done this before. When the insulation arrived at our lab it was already falling apart at the 

seams and when we tried to wrap it around the pipe the tension and stress it caused within the 

material caused most of the insulation to come undone and spill out at the seams. Therefore, we 
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already had an idea that the insulation we purchased was not going to work perfectly, but we did 

not see it performing this bad. Due to time constraints we decided to keep this insulation and on 

cover the old insulation with an extra inch of insulation using FiberFrax, which is a fiber 

ceramic.  

 

Figure 49: Delta T of the solar collectors during an efficiency experiment. 

Figure 50 shows the results of the additional insulation on the manifolds by comparing the 

efficiencies of the collector before and after the insulation was added. The difference on average 

throughout the operational period of the experiment is an additional 3% putting our collectors 

averaging somewhere between 30-35% during operation, as compared to 26-31% before. Both of 

the graphs also show the efficiencies of the collector starting at the lower range and growing 

linearly with time towards the higher range. The reason for this being that the system is reaching 

steady state for its heat exchange. Meaning that the frame, insulation, etc. is warming up with the 

system and thereby taking away less heat from the working medium which increases the 

collector’s efficiency.  
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Figure 50: Collector efficiency comparison of extra insulation. 

The collectors continued to perform with an average efficiency of 33% until early September. It 

was quickly observed that the collectors were quite dirty due to the farmers working on their 

land, which is within a 10 yards of our collectors, with very large tractors. Lots of dirt had settled 

on our collectors and they needed to be cleaned. Figure 51 shows the comparative difference of 

the collectors’ efficiency before and after they were thoroughly cleaned. The average difference 

is about 5%, this is fairly large difference. This concludes that when the collectors are very dirty, 

ie: have so much dust on them it’s difficult to tell the color of the tube, they must be cleaned. 

However, had it not been for the tractors these collectors would have performed fine as they had 

been, and we would have continued to clean them on a quarterly basis.  
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Figure 51: Collector efficiency comparison of the collectors dirty vs. 

clean. 
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7.2 The Chiller: 

There are two critical variables to the chiller: The coefficient of performance, COP, and the 

outlet temperature of the chilled water. The double effect absorption chiller is designed to 

produce 7°C water at a rated COP of 1.1. COP is calculated by taking the outgoing cooling 

power of the machine divided by the incoming power of the machine; however, due to our glycol 

loop not producing reasonable answers we calculated our COP by dividing cooling power 

produced by collector power produced. This COP should be slightly less than what it’s rated for 

at maximum capacity, approximately. .9. 

It was observed through our experimentation that the chiller was neither producing water below 

15°C nor maintaining a COP of .9. After running various experiments, we have concluded why 

our chiller was not performing well. 

First, is that the chiller had a poor vacuum. Absorption chillers are directly dependent on how 

well the condensers are vacuumed, without a good vacuum the water being used in the absorber 

will be warm and the evaporative cooling will happen at a higher temperature; thereby, 

producing warmer water. Second, was that the load that was being put onto the chiller was too 

low. If there is too low of a load onto the chiller then the amount of heat the chiller can extract is 

less, and the COP will be low. Third, all of the filters within the chiller needed to be cleaned. 

Without the filters being cleaned the proper amount of water will not flow through the system 

and the rate at which the machine can cool will slow down and also produce warmer water. The 

final factor was that the city water line that was incoming to the chiller was 20	°� hotter than it 
should have been. This water is used in the condenser and if it is ~10°� warmer than the 

requirement it will not be able to condense the vapor which will prevent the condensation from 

entering into the evaporator.  

All of these factors were fixed between the dates of the September 7, 2011 and September 22nd, 

2011, and the results are in figures 4 and 5. The average COP went from .7 to .9, and the average 

outlet temperature of the chilled water went from 15°C to 7°C.  

Figure 53 shows that for September 23rd the average COP of the chiller is .9 which is what we 

designed the system for. When the system is maintained, for example, chiller is vacuumed well 

and the collectors are clean, the average COP is .9 and it is stable.   
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7.2.1  

 

Figure 52: COP comparison on maintenance of chiller. 
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7.3 The System: 

Figure 54 shows that the non-tracking XCPC evacuated solar collector array at Castle Air Force 

Base provides enough energy for the double effect chiller to run on in order for the natural gas to 

turn off. Through all of our experiments it has been observed that once the solar collectors 

provide enough energy to run the system the natural gas does not need to be turned on again until 

approximately four hours after solar noon. It has also been shown that despite fluctuations with 

the solar insolation the COP of the chiller is fairly constant. This is primarily due to the chiller 

having a large high temperature generator which stores a lot of energy and does not fluctuate its 

performance with spikes in it incoming power. The fluctuations in the chiller towards the end of 

the day were caused by an  inconsistent use of the radiator in the building. There were times 

when the original air conditioner in the building would kick on towards the end of the day and 

cause the temperature to fluctuate within the water loop of the chilled water. 
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8. Conclusion 

 

There were a lot of lessons learned throughout the design, building and testing of this project.  

 

A big lesson that was learned for designing the XCPC for the NS orientation was that it would 

be best if there was an alternative solution for cleaning the troughs. With the collectors having a 

plastic mold the static attracted dust and it was entirely enclosed so the dirt and debris would 

often get stuck at the bottom of the trough. Also the frame is fairly robust for such a design. At 

the time of designing it the team wanted to ensure that it wouldn’t break and it would be sturdy; 

however, it cost a lot of money and took far more time to install that it should have. Looking at 

what is available for standard thermal systems and pv systems there is an opportunity for the 

frame cost to be reduced and become simpler.  

 

Storage capacity was far too great for this system. There was a 50 gallon storage tank along with 

a 40 gallon expansion tank, that could have been the same 40 gallon tank and the entire system 

including these tanks only held 110 gallons of fluid. The original intention was to store the heat 

overnight to not cause the pump problems in the morning to turn on du to the viscosity of the 

fluid; however, what was observed was the fluid warmed up easily in the morning and there was 

no need to have the storage we had in place. Instead the storage caused the system hours of 

warm up time in the morning. In the future, try to combine the storage tank with the expansion 

tank and make it as small as possible.  

 

Insulation is a key factor that should be more thoroughly evaluated. There was a 25% heat loss 

in the system that was primarily caused by bad insulation. For the manifolds there were 

responsible for majority of the heat losses. This was due to the insulation chosen, how it was 

installed and how it was weatherized. After many experiments it has been concluded that there 

are better insulation materials such as aerogel insulation that would be a better fit for the 

manifolds and there are off the shelf manifold boxes that enclose the insulation that do a 

remarkable job at weatherizing the insulation. Both of these are highly recommended to be 

looked into.  
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The glycol loop was incredibly difficult to design, install, find parts for and even maintain. 

Since this loop was pressurized it was difficult to find parts that could operate at a high 

temperature, high pressure and have a low power rating while being efficient. It was dangerous 

to have a 1 MPa pressurized loop with ethylene glycol. After many conversations with the 

chiller vendor, BROAD, it was decided that the glycol loop would be unnecessary and that the 

mineral oil in the collectors could be run through chiller. In the future it is advised that 

experiments be run without the glycol loop and for the oil to go from the collectors to the 

chiller.  

 

A huge factor that prohibited research on a daily basis was all of the leaks from the tubes to the 

manifolds. The manifolds and tubes are connected by a threaded connection. As the system goes 

through a Δ!~160°� the metals contract and expand, the working medium becomes less 

viscous and there were many leaks that came of this. To help prevent this in the future one 

should house the manifolds atop of the collectors and look into compression fittings rather than 

threaded fittings for the connection of tube to manifold.  

 

To be done in the future, with this research project specifically: 

On a tight budget: 

1. Take out the storage tank on the oil loop. 

2. Take out the glycol loop, run mineral oil from collector directly to the chiller.  

1. Be very careful to get out all water of chiller so as not to have steam! 

3. Get the wind meter, ambient temperature thermometer and NIP to work on site so as 

to take more accurate data.  

On a larger budget: 

4. Redo all of the insulation on the manifolds and put in a manifold box.  

On an even larger budget: 

5. Manufacture new collectors out of aluminum  

6. Orient collectors with manifolds on the top 

7. New way to connect evacuated tubes to manifolds, such as compression fittings 
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Overall the XCPC solar powered double effect absorption cooling project was a success.  

What needs to be developed is a systematic approach to not only designing these systems but 

evaluating them as well. This will normalize data that is being researched around the world and 

will allow the technology and data to be easily understood on a global scale. Securing a strong 

foundation for the system to be analyzed will allow researchers to continue to develop state of 

the art solar collectors and chillers and integrating them into a well-designed system that fits in 

the overall goal of being energy efficient, environmentally friendly and economically 

reasonable.xxiv 
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9. Appendix 

9.1 Acronyms 

CEC California Energy Commission 

COP Coefficient of Performance 

CPC Compound Parabolic Concentrator 

CSP Concentrated Solar Power 

HTG High Temperature Generator 

IAM Incidence Angle Modifier 

ICPC Integrated Compound Parabolic Concentrator 

EW East-West 

kW Kilowatt 

kWh Kilowatt hour 

LiBr Lithium-Bromide  

NS North-South 

RT Reflectech 

UCM University of California, Merced 

USRT United States Refrigeration Ton 

UT U-tube 

VC Vapor Compression 

XCPC External Compound Parabolic Concentrator 

 

1.1 Nomenclature ��I = ÷ff`^`]a^e	cf	÷��	� 
��I = �cn]g	`ab	bℎ]	^c__]^bcg, cf	÷� 

�	� = �cn]g	`abc	bℎ]	^c__]^bcg, cf	�� 
� = �ca^]abg�b`ca 
��I = �ca^]abg�b`ca	cf	÷� 

�	� = �ca^]abg�b`ca	cf	�� 



101 

 

Φ, !cb�_	ögg�p`�b`ca	�^^]qb]p	ie	^ca^]abg�bcg, ��� 

ö� = \`ffho]	ögg�p`�b`ca, i�o]p	cff	cf	1000 ��� 

é�� = �]�b	f_cn	bℎgchdℎ	haoℎ�p]p	n`apcnao	cf	�g]�	�� 
é���ç = �]�b	f_cn	bℎgchdℎ	oℎ�p]p	n`apcnao	cf	�g]�	���ç 
é��� = �]�b	f_cn	bℎgchdℎ	haoℎ�p]p	n�__o	cf	�g]�	��� 
é����ç = �]�b	f_cn	bℎgchdℎ	oℎ�p]p	n�__o	cf	�g]�	����ç 
é��� = �]�b	f_cn	bℎgchdℎ	gccf	�g]�	��� 
é� = �]�b	_c�p	g]oh_b`ad	fgc�	`af`_bg�b`ca	cf	õ]ab`_�b`ca 
é�� = ê�b]ab	ℎ]�b	_c�p 
öç� = �]��	^c�qca]ab	cf	`aoc_�b`ca	ca	ℎcg`¬cab�_	ohgf�^] 
öç� = \`ffho]	^c�qca]ab	cf	`aoc_�b`ca	ca	ℎcg`¬cab�_	_`a] 
ö� = �gchap − g]f_]^b]p	^c�qca]ab	cf	`aoc_�b`ca ��,� = �hbo`p]	�ap	öao`p]	ℎh�`p`be	g�b`co 
�� , ��� , ��� = �õ]g�__	ℎ]�b− bg�aof]g	^c]ff`^`]abo	fcg	n`apcno,n�__o	�ap	gccf, `a^_hp`ad	g�p`�b`ca 
�� = �]b	`af`_bg�b`ca	�ap	õ]ab`_�b`ca	��oo	f_cn	g�b]	cf	pge	�`g 
��� = �q]^`f`^	ℎ]�b	cf	�`g 
!� = �hbo`p]	pge − ih_i	b]�]qg�bhg] 
! = öapccg	pge − ih_i	b]�qg�bhg] ��ç = �ℎ�p]	f�^bcg, 1 = haoℎ�p]p, 0	^c�q_]b]_e	oℎ�p]p 
 �,�� = n�__	oc_�g	�iocgqb�a^],	 
 �,�� = gccf	oc_�g	�iocgqb�a^] 
` = oc_�g	`a^`p]a^]	�ad_]	ca	n�__o, n`apcno	�ap	gccf 
ℎ�, ℎ = chbo`p]	�ap	`ao`p]	�`g	]abℎ�_qe 
  = oc_�g	�_b`bhp]	�ad_] �� = _�b]ab	ℎ]�b	cf	n�b]g	õ�qcg �,�	 = n`apcn	bg�ao�`bb�a^]	fcg	i]��	4p`g]^b)`aoc_�b`ca 
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̅�,� = n`apcn	bg�ao�`bb�a^]	fcg	p`ffho]	`aoc_�b`ca, �ap̅�,�= n`apcn	bg�ao�`bb�a^]	fcg	dgchap	g]f_]^b]p	`aoc_�b`ca 
 

9.2 Solar 

 

Figure 55: Top and cross sectional view of the XCPC with a counter flow tube. 
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9.2.1 Testing Method: 

Collector Thermal Efficiency 

The instantaneous collector efficiency ����� can be defined as 
����� = ��è !!�"#   
with 

é����� = ��èí!∙%µè !!%µèí! , 

� = ������ + #&'(()*+�, , 

������� = �ç�G − ������  
Where 

é�����: useful power extracted from collector, 

é����: calorimeter power,  

Δ!����: temperature difference between collector fluid at collector outlet and inlet, 

Δ!���: temperature difference between the fluid at the calorimeter outlet and inlet, 

��: effective aperture area of collector – we define this area as the length of the active area of the 
absorber tube (which is the area covered by the selective coating) times the width of the reflector 

�: solar irradiance captured by concentrating collector, 
������: direct normal irradiance (measured with a pyrheliometer), 

�������: diffuse sky irradiance, 
�ç�G: hemispherical irradiance (measured with a pyranometer). 

��: geometric concentration of collector 
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Temperature dependence of collector efficiency 

The temperature dependence of the instantaneous efficiency ����� can be represented graphically 
as a function of the reduced temperature !∗. The thermal performance of the collector can then 

be characterized by the two coefficients �� and ��, which are determined by a least square 

parabolic curve fit: 

����� = �� − ��!∗ − ���4!∗)�  
with 

��: optical efficiency 
!∗: reduced temperature 

!∗ = µ'-2µí.î#   

where 

!�G�: ambient temperature, 

!k: collector inlet temperature, 

��	and ��: coefficients determined from least squares parabolic curve fit, and the value of � in 
the formula above is assumed to be 1000 �/��. 
Description of Test Loop 

The test facility used is a closed loop system that includes a circulating oil temperature controller 

with integrated pump and expansion tank (see Figure 56). The circulating oil temperature 

controller provides a selectable constant temperature (up to 260°C) to the heat transfer fluid that 

is circulated through the collector. The loop further includes a flow meter and temperature 

sensors before and after the collector. There are flow mixers introduced into the loop before each 

temperature sensor. The solar collector is mounted on a dual axis tracker to allow the 

measurement of collector performance under controlled incidence angles. 

The test facility further includes a meteorological station with a Precision Spectral Pyranometer 

and a Normal Incidence Pyrheliometer that are both mounted on the same tracker as the solar 

collector, a thermometer to measure the ambient temperature, and an anemometer. 

In addition, a calorimeter was used as an improved method of determining the instantaneous 

thermal efficiency without depending on knowing the heat capacity of the oil.
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The data from the flow meter, the temperature sensors and the meteorological station were 

recorded through a data acquisition system. 

Instrumentation 

Circulating oil temperature controller: Chromalox CMXO 6kW (with integrated pump  

and expansion tank) 

Temperature sensors:     Type-K thermocouples from Omega 

Flow meter:      Micro Motion Coriolis F-Series sensor 

Flow control valve:     Valtek ½” Flow Top Control Valve 

Back pressure regulating valve:   Jordan: 1” 50-100-S6-I5-S6-Y-8-21-S6-MD 

Pressure Control Valve 

Sun tracker:      Wattsun AZ-125 dual axis tracker 

Calorimeter:     Custom made by Valin Inc. 

Pyranometer:      Eppley Precision Spectral Pyranometer 

Pyrheliometer:     Eppley Normal Incidence Pyrheliometer 

Data Acquisition System 1:   Agilent 34970A Data Acquisition/Switch Unit 

Data Acquisition System 2:    Acquisuite Data Acquisition System
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9.3 The System 

9.3.1 Chiller 

 
Table 20: Chiller burner refrence table. 

Burner and Heat Source Valve 

operation reference table 

    

      

HTG temp Two levels 

burner(High/Low) 

Four levels burner/valve(Heat 

source valve, 4-20mA burner) 

4˚C above the target temperature  / HTG 

maximum allowed temperature 

Stop Close/Stop 

2˚C above the target temperature   maintain maintain 

Target temperature Low(if stopped, 

now start) 

lvl 1(If stopped, now start) 

2˚C below the target temperature   maintain lvl 2 

4˚C below the target temperature   High lvl 3 

6˚C below the target temperature   High lvl 4 

Above the high burner starting 

temperature(about 90˚C) 

Low to High lvl 1 to lvl 2, 1 min later to lvl 3, 

1 min later to lvl 4 

Below the high burner starting 

temperature(about 90˚C) 

High to Low To lvl 1 
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9.3.2 Computer Programs 

9.3.2.1 EW vs NS 

With the given matlab codes, despite your inlet temperature, diffuse irradiation or where you are 

located, this program should identify which CPC design type, East West or North South is 

optimal a solar thermal system, strictly in terms of energy only.  

PlayId: This file has a for loop that iterates through the temperature and allows one to compute a 

string of values to use for different temperatures in the evaluation of the break even function. 

The plot is of the temperature vs. the diffuse level, Id. 

fId:  This file creates the break even function and takes as input the Id level and the string of 

values for the temperatures.  

PlayID 

clc 

clear all 

%The for loop runs through temperature iterations creating a string that I  

%can use for input that will allow me to compute the break even function 

%for multiple temperatures.  

Ti = 70; 

dT = 10; 

for i = 1:14 

    Ti = Ti + dT; 

    Temp(i) = Ti; 

    Id(i) = fzero(@(x)fId(x,Ti),100); 

end 

%This plot has the temperature as the x-axis ranging from 80-200C, and the 

%Y-axis is the Diffuse level. (%Diffuse of Irradiation. Based on 1000w/m^2) 

plot(Temp,Id,'x-') 

xlabel('Inlet Temperature [C]') 

ylabel('Diffuse [W/m^2]') 

title('Break Even for NS,EW AL,UT,ambient = 35') 
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fID 

function f = fId(Id, Ti)%Evaluates the function, which is the break even analysis of EW vs. NS 

atany temperature, and any diffuse level, Id.     

Ta=35;          %Ambient Temperature 

c1=1.8;         %EW Concentration 

c2=1.15;        %NS Concentration 

N1=.664;        %No for Ew 

N2=.691;        %No for NS 

a1=.908;        %The first co-efficient for the equation for EW 

a2=.00239;      %The second "" 

b1=1.08;        %The first coefficient for the equation for NS 

b2=.00351;      %The second "" 

Pew=(((1-c1)/(c1))*Id +1000);  %Power of EastWest because assumed 1m^2 area 

Pns=(((1-c2)/(c2))*Id +1000);  %Power of NorthSouth because assumed 1m^2 area 

New=N1-a1*((Ti-Ta)/(Pew))-a2*Pew*((Ti-Ta)/(Pew))^2;        %Efficiency for EW 

Nns=N2-b1*((Ti-Ta)/(Pns))-b2*Pns*((Ti-Ta)/(Pns))^2;        %Efficiency for NS 

f = New*Pew-Nns*Pns; 

return 
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9.3.3 Cooling Load Program 

B=90;                                                                        
L=37;                                                                        
Hs=0;                                                                        
N=204;                                                                     
Ss=-23.44*cosd((360/365)*(N+10));                                            
To=100;                                                                      
Ti=72;                                                                       
Arf=11*56;                                                                 
AwaNS=12*56;                                                                 
AwaEW=12*11;                                                              
Awi=12.5;                                                                  
Awish=0;                                                                     
Awash=0;                                                                    
Alpha=.12;                                                                 
Fsh=.1;                                                                      
Tbwi=.6;                                                                     
Tdwi=.81;                                                                    
Trwi=.6;                                                                     
Ihb=185;                                                                     
Ihd=80;                                                                     
Ir=70;                                                                       
Uwa=0.19;                                                                    
Uwi=1.09;  
 
Urf=0.061;                                                                   
Qw=.3;                                                                        
  
IncidenceAngle=cosd(B)*cosd(L-Ss)+sind(B)*sind(L-Ss) 
SolarAltitude=cosd(L-Ss) 
  
SouthFacingWindowLoad_BTUperHR= 
Awi*(Fsh*Tbwi*Ihb*(IncidenceAngle/SolarAltitude)+Tdwi*Ihd+Trwi*Ir+Uwi*(To-Ti)) 
 
ShadedWindowLoad_BTUperHR=Awish*Uwi*(To-Ti) 
  
SouthFacingWallLoad_BTUperHR=(AwaNS-
Awi)*(Alpha*(Ir+Ihd+Ihb*(IncidenceAngle/SolarAltitude))+Uwa*(To-Ti)) 
  
ShadedWallLoad_BTUperHR=Awash*(Uwa*(To-Ti)) 
  
RoofLoad_BTUperHR=Arf*(Alpha*(Ihd+Ihb*(IncidenceAngle/SolarAltitude))+Urf*(To-Ti)) 
 
LatentHeatLoad_BTUperHR=Qw*(AwaNS*2+AwaEW*2-12*Awi)*(Uwa*(To-Ti)) 
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TotalLoad_BTUperHR=SouthFacingWindowLoad_BTUperHR+ShadedWindowLoad_BTUper
HR+SouthFacingWallLoad_BTUperHR+ShadedWallLoad_BTUperHR+LatentHeatLoad_BTUp
erHR+RoofLoad_BTUperHR 
  
TotalLoad_USRT=(TotalLoad_BTUperHR)/12000 
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9.3.4 Heat Exchanger: Oil to Glycol 

 

Specification Sheet 
 

Unit : B3-052-30-M   
 

Ref : U of C Merced   Date  : 07-24-2009 

Design Duty : 21.9 kW 

Side 1 Side 2 

Fluid Name  : Dowtherm 4000 
40% 

Duratherm 600 

Inlet Temperature °C : 161 180 

Outlet Temperature °C : 170.34 168 

Mass Flow Rate GPM : 9.16 16 

Pressure bar : - - 
 

Physical Properties of Fluid : 
                             

Reference Temperature °C : 165.67 174 

Viscosity mPas : 0.288 1.4 

Viscosity Wall mPas : 0.284 1.505 

Density kg/m³ : 962.8 749 

Specific Heat Capacity kJ/kg,°K : 3.944 2.417 

Thermal Conductivity W/m,°K : 0.446 0.134 
 

Designed Plate Heat Exchanger : 
                                  

Heat Load kW :  21.9  

Total Heat Transfer Area m² :  1.43 

Log Mean Temperature Difference °K :  8.26 

Overall H.T.C. W/m²,°K :  2193/1860 

Calculated Pressure Drop psi : 1.77 4.14 

Number of Channels  : 1*14M 1*15M 

Port Hole Diameter mm : 25 25 

Number of Heat Transfer Units NTU : 1.131 1.453 

Total Number of Plates  :  30 

Over surfacing % :  18 

Fouling Factor m²,°K/kW :  0.0818 

Volume dm3 : 1.358 1.455 

Length Of Plate Package mm :  82.5 

Weight (Empty) kg :  8.7 

Max. Operating Pressure bar :  45 

Test pressure bar :  56 

Max. Operating Temperature °C :  195 

Flow Type  : Q3=>Q4 Q1=>Q2 
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9.3.5 Fluids 
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