
UC Irvine
UC Irvine Previously Published Works

Title
A Framework for Real-Time Service-Oriented Architecture

Permalink
https://escholarship.org/uc/item/19r1x749

Journal
IEEE Conference on Commerce and Enterprise Computing, 2009. CEC '09., 1

Authors
Panahi, Mark
Nie, Weiran
Lin, Kwei-Jay

Publication Date
2009-07-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19r1x749
https://escholarship.org
http://www.cdlib.org/

A Framework for Real-Time Service-Oriented Architecture

Mark Panahi, Weiran Nie, and Kwei-Jay Lin
Department of Electrical Engineering and Computer Science

University of California, Irvine
Irvine, CA 92697-2625, USA
{mpanahi, wnie, klin}@uci.edu

Abstract—Service-oriented architectures (SOA), though
widely accepted in a variety of industries, must be en-
hanced to support real-time activities in order to gain even
greater adoption. We present RT-Llama, a novel architecture
for real-time SOA to support predictability in business
processes. Based on a user-specified process and deadline,
our architecture, containing global resource management
and business process composition components, can reserve
resources in advance for each service in the process to
ensure it meets its end-to-end deadline. This is facilitated
by also creating a real-time enterprise middleware that
manages utilization of local resources by using efficient data
structures and handles service requests via reserved CPU
bandwidth. We demonstrate that RT-Llama’s reservation
components are both efficient and adaptable to dynamic
real-time environments.

Keywords-real-time; service-oriented architectures (SOA);
real-time enterprise (RTE)

I. INTRODUCTION

Service-oriented architecture (SOA) is the prevailing
software paradigm for dynamically integrating loosely-
coupled services into one cohesive business process
(BP) using a standard-based software component frame-
work [1], [2]. SOA-based systems may integrate both
legacy and new services, created by either enterprises
internally or external service providers.

However, current SOA solutions have not addressed the
strict predictability demands that many enterprise appli-
cations require, from banking and finance to industrial
automation and manufacturing. Such enterprises, many
of whom already embrace SOA for a large part of their
systems, would greatly benefit from a comprehensive
SOA solution that can also encompass their real-time
applications. In other words, as SOA gains prominence
in many domains, the confluence of real-time and SOA
systems is inevitable. We must prepare SOA for meeting
the predictability requirements of real-time enterprise
systems.

In this paper, we present the RT-Llama project (as an
extension of Llama [3], [4]) which meets the real-time
enterprise challenge by enabling SOA users to schedule

an entire BP, thus eliminating the risk of missed deadlines
due to the over-utilization of resources. RT-Llama differs
from previous service-oriented architectures in that it al-
lows end-to-end BP deadline guarantees through advance
reservations of local resources.

In order to make this work, we 1) design global
resource management and composition components that
reserve resources in advance for each service in a BP
to ensure it meets its end-to-end deadline; 2) implement
a CPU bandwidth management system for each host
essentially dividing a CPU into multiple temporally-
isolated virtual CPUs, allowing different classes of service
with various levels of predictability; and 3) develop a
pre-screening mechanism to decrease the likelihood of
unsuccessful distributed service reservations.

The rest of the paper is organized as follows. Sec. II
reviews the challenges of bringing real-time to SOA.
Sec. III presents the RT-Llama RT-SOA architecture. We
present the performance study of the RT-Llama imple-
mentation in Sec. IV. Related work is compared in Sec. V.

II. BACKGROUND

A. Scope of Real Time Applications

RT-SOA is a relatively new and challenging field of
study. While some aspects of SOA make its transition
to real-time simpler, still other aspects pose serious chal-
lenges. One real-world problem that can use an RT-SOA
solution is algorithmic trading. Algorithmic trading is
defined in Wikipedia as “a sequence of steps by which
patterns in real-time market data can be recognized and
responded to.” The performance requirements of algo-
rithmic trading demand not only fast transactions but
also predictable ones [5]. Therefore, it is an application
which should be implemented as RT-SOA. Examples of
algorithmic trading strategies include: 1) trading several
positions in coordination and 2) breaking larger trades
into smaller sequential trades to minimize market impact.

As an example scenario, we assume that a customer
has a choice for each trade among several brokerage
firms. Each brokerage firm offers three levels of service:

2009 IEEE Conference on Commerce and Enterprise Computing

978-0-7695-3755-9/09 $25.00 © 2009 IEEE

DOI 10.1109/CEC.2009.78

460

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on November 12, 2009 at 21:32 from IEEE Xplore. Restrictions apply.

1) institutional: for high volume traders where small
delays can result in large losses, 2) premium: for moderate
volume investors, and 3) individual: for low volume
casual investors. Moreover, two operations are permitted.
The getQuote operation requires a ticker symbol on an
equity and returns its price per share. This operation is
usually immediate and not reserved. The trade opera-
tion takes the quantity of shares and whether it is a buy
or sell order. This type of operation has strict execution
requirements and will usually be reserved in advance.

We make the following assumptions to guide us on our
initial work. In the future, we plan to explore the effect
of relaxing these assumptions.
• One-shot BPs. Due to the variable availability of

hosts for executing services, we currently assume a
“one-shot” model for BP composition and execution.
Typically, BPs are composed and then reused mul-
tiple times. However, since RT-Llama’s composition
process takes into account service availability, the
composed BP is intended to be used only once. If
a user has the same requirements, the BP must be
regenerated, possibly selecting different services for
each BP.

• Best-effort Reservations. The RT-Llama architec-
ture is based on the advance reservations of ser-
vice executions to guarantee timeliness. Currently,
we assume that reservation requests are made well
enough in advance of the actual service execution
such that there is plenty of time to send the request
after the reservation. Therefore, reservation requests
themselves are not subject to real-time requirements.
In later work, we plan to explore “just-in-time”
reservations.

• Adoption of BPEL. Some real-time systems deter-
mine admissibility of a task once it arrives at the host
(i.e., admission control). For RT-SOA applications,
this may not be acceptable. If tight predictability
limits are required for a BP, it would take only
one admission control rejection or cost overrun to
severely disrupt the BP’s execution. However, the
advantage of SOA is that the entire BP is encoded
in a higher level language, such as BPEL. The
execution path is known before hand and can be
reserved in advance. Therefore, we leverage this
information in our RT-Llama framework and build
advance reservation mechanisms so that the risk of
service rejections and cost overruns is eliminated.

B. Real-time SOA Support

In order to promise end-to-end predictability for any
real-time distributed system, every subcomponent or de-
pendency must also provide predictability. Furthermore,

an RT-SOA framework poses even more challenges than
any stand-alone or distributed real-time system. We have
identified the following required support for an RT-SOA
and discuss the subset of these issues we wish to address
in this work.
• Operating System. Any real-time middleware

framework must be built atop an operating system
that provides real-time scheduling and a fully pre-
emptible kernel.

• Communications Infrastructure. The communica-
tions infrastructure must provide predictability – a
requirement that the existing Internet infrastructure
currently does not provide. However, approaches
like Differentiated Services [6] and Integrated Ser-
vices [7], despite their lack of wide acceptance, pro-
vide a starting point for QoS-based communications.

• BP Composition Infrastructure. The SOA compo-
sition infrastructure must be able to generate a BP
that satisfies both a user’s functional and timeliness
requirements. It must be able to negotiate such
timeliness requirements with distribution middleware
to ensure predictable BP execution.

• Distribution Middleware. The main purpose of
a real-time middleware platform (like a real-time
enterprise service bus (ESB)) is to ensure the pre-
dictable execution of individual service requests.
Therefore an RT-SOA middleware platform must
provide support for advance reservations and avoid
overloading or overbooking its host’s resources.

• Client Infrastructure. Many existing SOA deploy-
ments use a business process execution language
(BPEL) engine, which is a centralized mechanism
to coordinate all remote service interactions within
the process. An RT-SOA solution must address any
unpredictability that a BPEL engine may produce.
Alternatively, there are also distributed coordination
mechanisms that route from service to service with-
out the intervention of a centralized apparatus, which
may be more amenable to achieving RT-SOA.

In our current work, we focus on introducing pre-
dictability into two of the main areas mentioned above:
BP composition infrastructure and distribution middle-
ware. We leverage Real-time Java [8] and the Solaris
10 OS to provide real-time scheduling capabilities to our
middleware. We leave the issues of integrating real-time
networking and predictable SOA client infrastructures to
future work.

III. ARCHITECTURE

A. System Model
In contrast to some existing distribution frameworks,

SOA can support multiple classes of service that can be

461

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on November 12, 2009 at 21:32 from IEEE Xplore. Restrictions apply.

User Job:

In,Out,

Start, DL RT-Qbroker
Business Process

Scheduler

Global Resource Manager

HUR

Utilization

updates

LRM

Service
Reservation

Manager

Host

Utilization

Reserve

Service

Utilization

updatesReserve

Service

Reserve

Service

Figure 1. RT-SOA system using RT-Llama.

offered by providers at different price points. RT-Llama
is comprised of several components that aid providers
in offering predictable service execution and users in
ensuring that their BPs meet their specified deadlines.
A typical operating scenario is shown in Fig. 1. From
a user’s perspective, all that is required of them is
to specify input values, desired output, and timeliness
parameters, including start time and deadline. Based on
this information, RT-Llama selects and reserves a feasible
BP that matches the user’s requirements.

In RT-Llama, providers can deploy services under two
categories:

• Unreserved: Services deployed under this category
accept requests without any prior workload reserva-
tion. There are two main subclasses:

– Immediate requests are serviced in first-in first-
out order according to the operating system’s
underlying real-time scheduler. There may be
at most one immediate class. However, it may
support several priorities.

– Background requests are serviced in a best ef-
fort fashion according to the operating system’s
underlying non-real-time scheduler.

• Reserved: Services deployed under this category
may only receive requests that have been reserved
in advance. There may be any number of reserved
classes. Reserved classes are intended to map to
different levels of service that providers would like
to offer. We identify three policies that may govern
multiple classes:

– Resource favorability. Providers can give
higher classes more bandwidth (a larger share
of system resources) than lower ones.

– Run-time spillover. Providers can set policies

such that higher class requests can steal band-
width from lower classes in the case of cost
overruns or tardy requests, in order to ensure
that higher class requests meet their deadlines.

– Reservation spillover. Higher class users may
be able to have a service reservation span into
lower classes allowing it to finish sooner and
thus increasing the likelihood of a successful
reservation of the overall BP.

B. Real Time Model

Similar to the standard real-time task model, we define
the real-time task model for SOA as follows: A business
process BPi is a workflow composed of sequential service
invocations Si,j . Each BPi begins execution at time ri,
finishes at time fi, with an execution time of ci, and has
a deadline of di, that is respected if fi <= di. Similarly,
each service invocation arrives at time ri,j , finishes at
time fi,j after executing for ci,j , with a deadline of di,j .

Since the RT-Llama framework supports advance reser-
vations, we have ai as the scheduled start time for BPi

and ai,j as the scheduled start time for Si,j . We thus have
the relation wi = di−ai as the time window for BPi and
wi,j = di,j −ai,j as the time window for Si,j . Moreover,
each Si,j has worst case execution time wceti,j .

This system model must be supported by the under-
lying infrastructure. Therefore, we currently assume that
each host that deploys this framework is at least a 2-
CPU or dual core system, with one (or more) CPU/core
completely devoted to servicing real-time tasks (RT-CPU)
and at least one available for background tasks and other
operating system tasks (non-RT-CPU) as shown in Fig. 2.
The RT-CPU will execute both the unreserved immediate
class, as well as all reserved classes. These classes,
although sharing the same CPU, must be temporally

462

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on November 12, 2009 at 21:32 from IEEE Xplore. Restrictions apply.

isolated from each other, meaning that cost overruns
that may occur in one class cannot interfere with other
classes. This is accomplished by creating multiple virtual
CPUs out of the RT-CPU using the constant bandwidth
server (CBS) framework [9]. Therefore, each class is
assigned to a virtual CPU, which in turn has a system
defined bandwidth percentage. For example, if we have
one immediate class, and three reserved classes (H, M,
and L), we may assign bandwidth allocations of 20%,
40%, 30%, and 10%, respectively.

C. RT-Llama Architecture
The RT-Llama architecture is shown in Fig. 2. Specif-

ically, the components are as follows.
• The Global Resource Manager (GRM) compo-

nents are responsible for scheduling a user’s BP
based on their requirements.

– QBroker/RT-QBroker is a QoS broker de-
signed to select a BP based on user specified
constraints, and has been previously studied
in [10]. In addition to its original role for best-
effort BPs, RT-QBroker has been designed to
perform feasibility checks on individual services
during service selection, by consulting the Host
Utilization Repository, to determine if the host
is likely to be available during the general span
of time of the BP.

– The Business Process Scheduler (BPS) is re-
sponsible for reserving a BP selected by RT-
QBroker according to either a concurrent or
sequential mechanism (discussed later) by con-
tacting the host of each service. In the event
of a reservation failure (i.e., the reservation is
not feasible or the request timeout is exceeded)
the BPS requests a new BP from RT-QBroker,
absent any unfeasible services. If RT-QBroker
cannot find a feasible BP, the user’s request is
rejected.

– The Host Utilization Repository (HUR) stores
cached future utilization information regarding
each host using TBTrees (discussed shortly).
As a cache, it may be updated at predefined
intervals, and thus not always completely up-to-
date. It may also have coarser grain information
than that stored on the host to save on space.
However, it provides a quick way of determining
if a service is likely to be available at a future
time.

• The Local Resource Manager (LRM) is respon-
sible for hosting services and ensuring that requests
on such services are executed predictably by working
with the GRM components.

– The Reservation Manager (RM) manages ad-
vance reservations for the host. It uses a TBTree
for each of the reserved classes to manage their
overall utilization, as well as a simple hashmap
to manage specific reservation information. Both
data structures are represented by the Reserva-
tion Repository (RR). The RM supports search,
insert, and delete operations for reservations.
Additionally, it sends asynchronous updates on
recent utilization changes to the HUR.

– The Admission Controller (AC) accepts in-
coming service requests and routes them to
an Executor responsible for servicing requests
for the various classes of service. Each ex-
ecutor is mapped to one or more threads on
the underlying operating system. The real-time
executors include the Unreserved Executor and
the Reserved Executors and are each given a
fixed amount of bandwidth on the RT-CPU by
promoting the FIFO priority of the real-time
thread backing the Executor for an amount of
time out of a period according to its bandwidth
percentage. For reserved requests, it looks up the
ai,j , wceti,j , and di,j according to the request’s
reservation ID in the RR. This information is
necessary for the Reserved Executors to en-
sure that requests are serviced in an earliest
deadline first (EDF) fashion and to properly
accommodate tardy requests and deadline over-
runs. The Best-effort Executor, by contrast,
executes on the non-RT-CPU along with other
system threads and provides no guarantees for
predictability.

D. Reservation Data Management

One of the unique features of the RT-Llama framework
in contrast to other SOA systems is its ability to reserve
service executions in advance. This avoids the pessimistic
nature of on-demand admission control strategies and
leads to potentially higher utilization rates as users are
able to plan their BP executions ahead-of-time.

To keep track of existing reservations in the RT-Llama
framework, we favor the temporal bin tree (TBTree)
discussed in [11] over other data structures due to its flexi-
bility, efficiency in both time and space, and suitability for
real-time planning applications. The TBTree uses a binary
tree structure to store the total amount of time available
within an interval at different levels of granularity. Each
node in the tree contains the sum of the available time
in its left and right children, each of which covering half
the time interval of the parent. A search for available time
begins at the root and descends into the tree and identifies

463

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on November 12, 2009 at 21:32 from IEEE Xplore. Restrictions apply.

L
o
c
a
l
R
e
s
o
u
rc
e

M
a
n
a
g
e
r

RT-Qbroker
Plan Repo

Business Process SchedulerUser Job:

In,Out,

Start, DL

BPEL Engine
Async Resource

Util Updates

Service

Feasibility

Schedule

Service

Executions

Submit BP

RT BP

Request

Selected BP

Execution

Stage

Planning

Stage

%
 U
ti
l.

Time

100%

Host Utilization

Repository
Services to omit

Global Resource Manager

nonRTCPU

Reservation

Manager

RTCPU

CPU Bandwidth Management System

RTOS/RTJava

Immediate

Request

Reserved

RequestBest-effort

Request
Reservation

Repository

Unreserved

Executor

Reserved

Executor

Reserved

Executor

Reserved

ExecutorBest-effort

Executor

100%

Qbroker

Best-effort BP Request

Admission

Controller

Figure 2. RT-Llama architecture.

the leaf node that can completely accommodate the task,
specified as either an earliest start time or latest finish
time, and the expected execution time.

E. Reservation Mechanism

As shown in Fig. 1, the reservation mechanism begins
when a user submits the input, desired output, QoS
requirements, start time and deadline to the GRM. The
GRM in turn composes a suitable BP, schedules it for
execution, and submits it to the BPEL engine at the
specified start time. The main challenges during this
process include 1) deciding the intermediate start times
and deadlines for each service within the BP, and 2)
appropriately reserving all the hosts involved in the BP
using the two-phase commit transaction protocol. The ex-
act difficulty with each challenge depends on the strategy
being used.

When a BPS receives the initial input from a user, it
then contacts RT-QBroker to construct the BP based on
the functional requirements. During RT-QBroker’s selec-
tion phase, it can pre-screen each service to be selected
based on the service’s utilization information in the HUR.
The utilization of Si’s host over time t is given by ui,j(t),
and let k be some utilization threshold. The service may
be considered if its host’s utilization over the BP’s time
frame is below the threshold, i.e., ui,j(wi) ≤ k.

Once service selection is complete and a BP is com-

posed, there are two main strategies that can be used to
perform service reservations:
• Concurrent: This strategy is based on first selecting

the BP and then determining the start time and
deadline for each service, i.e., ai,j and di,j , after
which the reservation process may begin. Moreover,
both RT-QBroker and the BPS can screen service
availability against the HUR. This way, if a service
is unlikely to be available, RT-QBroker may produce
another BP without the overhead of unsuccessful
distributed reservation procedure.
Before the reservation, the BPS must determine
parameters ai,j and di,j for each service. Under
the concurrent strategy, we adopt two intermediate
deadline assignment methods, proportional deadline
(PD) assignment and normalized proportional dead-
line (NPD) assignment. For PD, the values of ai,j ,
di,j , and wi,j are based on wceti,j as a proportion
of the total time available for the BP (i.e., wi). Thus,
we have wi,j = wceti,jP

wceti,j
wi, ai,j = di,j−1, and

di,j = ai,j+wi,j . NPD is a more reasonable interme-
diate deadline assignment method in that it takes into
account host utilizations. Under this scheme, we have
wi,j = wceti,j∗ui,j(wi)P

j wceti,j∗ui,j(wi)
. Once the intermediate

start times and deadlines are computed, the BPS may
apply a more precise screening process according to
the relation ui,j(wi,j) <= k, essentially checking

464

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on November 12, 2009 at 21:32 from IEEE Xplore. Restrictions apply.

the service’s host’s utilization over the service’s own
time window.
Now that the BP is ready to be reserved, asyn-
chronous reservation requests are sent to the RM on
each services’ LRM, with a timeout attached to each
request, using a transaction-based two-phase commit
algorithm. If a timeout expires, or a reservation
request is rejected, all pending service reservations
must be undone, and the procedure repeats again
with a new BP from RT-QBroker.

• Sequential: According to this strategy, a BP is
reserved service-by-service from start to end using a
greedy strategy in order to maximize the remaining
time available for remaining services in the BP. RT-
QBroker, and its screening option, is used in much
the same way as in the concurrent strategy. However,
the BPS does not find the intermediate start times
and deadlines for each service. Timeout values are
attached to each reservation request, and once a
timeout expiration or reservation failure occurs, the
BP reservation must be rolled back.

There are tradeoffs to both approaches. With the se-
quential approach, there will likely be a higher level of
success with each attempt. Each attempt, however, will
most likely take longer than the concurrent approach. But
each attempt of the concurrent approach would be less
likely to be successful as it relies at best on the cached
information in the HUR.

IV. SIMULATION RESULTS

The main goal of our simulation study is to observe
the performance and tradeoffs of different reservation
methods. To focus on the real-time requirements of BPs
rather than the complexity of BP structures, all BPs in
our simulation have only sequential structures.

We have defined the following system properties in our
study.

1) workload factor: the amount of workload gener-
ated for the simulation. A workload factor of 1.0
represents a workload exactly equal to the system
capacity, which is the maximum amount of work
that can be handled by the system. A workload
factor of 0.8 represents a workload 80 percent of
the system capacity.

2) success ratio: the number of successful reservation
requests divided by the total number of reservation
requests.

3) average attempts: In our design, the GRM has the
option of rejecting a request after the first unsuc-
cessful reservation attempt or trying to come up
with another BP and repeat the reservation. In other
words, there could be multiple reservation attempts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 1 1.5 2

su
cc

e
ss

 r
at

io

work load

PD NPD SEQ

Figure 3. Success ratio for different reservation schemes and
workloads (MaxAttempts=1, monotonic-random pattern).

by the GRM per user request. We define the average
attempts to be the total number of attempts divided
by total number of requests, which approximates
the average response time to a user request.

In the following experiments, we simulate 5 hosts. A
TBTree with 1024 time units is associated with each host
to record the utilization information. Services with the
same function are replicated so that we can always switch
to a host with a low utilization if there is one. In the
simulation, we simulate a process containing 3 services
with each service having an execution time of 1 time
unit. Process instances differ in their start times and have
a relative end-to-end deadline varying between 20 to 32
time units. To simulate a more realistic environment, we
pre-loaded the system with 30% of system capacity before
collecting data.

As discussed in Section III-E, advance reservations
can be made using: (1) concurrent with proportional
deadline (PD) assignment, (2) concurrent with normalized
proportional deadline (NPD) assignment, or (3) sequential
(SEQ) schemes. We have designed experiments to see 1)
the effect of the reservation methods and the workload
factor on the success ratio, and 2) how many attempts
on average are necessary to either accept or reject a
reservation if we allow multiple attempts.

Fig. 3 shows the success ratio of the three reser-
vation methods for different workload factors under a
monotonic-random pattern. In a monotonic-random pat-
tern, reservation requests form clusters that increase
monotonically along the time horizon. But within each
cluster, the reservation requests are random in their start
times. We believe this work pattern simulates realistic
workloads.

In Fig. 3, we can see that when the workload factor
increases, the success ratio decreases because more re-
quests are generated but the system capacity remains the

465

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on November 12, 2009 at 21:32 from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

2 3 4 5

av
g.

 a
tt

e
m

p
te

s

su
cc

e
ss

 r
at

io

maximum attempts allowed

PD (success ratio) NPD SEQ

PD (avg. attempts) NPD SEQ

Figure 4. Effects on success ratio and avg. attempts using
multiple reservation attempts (workload factor=1.0, monotonic-
random pattern).

same. For example, the maximum success ratio that can
be achieved for a workload factor of 2.0 is 50%. Another
observation is that when the workload factor increases,
the success ratios achieved by all schemes approach the
upperbound value, i.e., 50% for a workload factor of 2.0.

Fig. 4 shows the effect on success ratio and avg.
attempts if multiple reservation attempts can be made for
a single business process request. As expected, avg. at-
tempts (lines) increase for all three schemes when the max
attempt value increases and the result for SEQ remains the
lowest. For the success ratio (bars), concurrent schemes
(PD and NPD) enjoy a relatively greater benefit from
increasing the max attempts value, while SEQ remains
high. Although SEQ outperforms both PD and NPD in
terms of success ratio and avg. attempts, there is a tradeoff
not shown in the figure: the response time for a sequential
reservation is the sum of response times of individual
reservations, whereas for concurrent schemes (i.e. PD and
NPD), the response time is the maximum of response
times of all individual service reservations. Therefore, the
concurrent schemes may perform more efficiently where
long communication latencies (between GRM and LRM)
are expected.

V. RELATED WORK

Real-time enterprise is an attractive idea that has re-
ceived huge interest from many IT companies. Companies
such as IBM, Microsoft, Sun Microsystems, and HP
have all invested heavily on developing the technology.
Microsoft has developed Microsoft Dynamics as a line
of integrated business management solutions that auto-
mate and streamline financial, customer relationship, and
supply chain processes. IBM has proposed the complex
event processing (CEP) framework which is made up of

WebSphere Business Events (the event processing en-
gine), WebSphere Business Monitor (the rich dashboard),
WebSphere Message Broker (event transformations and
connectivity functions), and Generalized Publish and Sub-
scribe Services (GPASS) [12]. The HP ZLE framework
claims to provide application and data integration to
create a seamless, enterprise-wide solution for real-time
information and action. To our knowledge, however, none
of the current real-time enterprise products offers service
reservation capability.

The common object request broker architecture
(CORBA) is an object-oriented distributed architecture
designed to provide location, platform, and programming
language transparency. RT-CORBA [13] brings real-time
features to CORBA by specifying a priority-based scheme
for handling object requests. RT-CORBA differs from
our RT-Llama architecture in that 1) it is deadline-based
rather than priority-based and 2) it can reason about
the predictability of an entire process rather than just
one service at a time. In other words, based on the
deadline of the entire process, it manages to determine the
intermediate deadline for and schedules each individual
service that comprises the process.

Advance reservation systems like that discussed for RT-
Llama is a growing research area. For example, Mamat
et. al. [14] discuss an advance reservation system for
clusters, particularly to help manage I/O conflict among
nodes in a cluster. They identify an advance factor for
reservations that are multiples of task interarrival times,
anywhere from immediate to a factor of ten. However, no
special discussion of data structure would be required for
such a short time range. Our research, however, requires
efficient data structures for storing managing reservations
on the order of seconds to minutes in advance.

The GARA system [15] is another advance reservation
system that is especially useful for reserving bandwidth
for streaming applications. However, streaming media
applications have coarser requirements than the individual
service execution reservations required for RT-SOA.

VI. CONCLUSION

SOA has gained wide acceptance in the past few years
but due to its unpredictable nature, cannot incorporate
real-time applications. In this paper, we attempt to bridge
that gap by creating an RT-Llama SOA framework that
allows users to specify end-to-end deadlines on their
business processes. RT-Llama in turn, after performing
initial screening and feasibility checks based on cached
utilization data, plans the full BP execution by efficiently
reserving resources in advance on the hosts where each
service is to execute. We have explored the merits of vari-
ous reservation mechanisms, demonstrating the flexibility

466

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on November 12, 2009 at 21:32 from IEEE Xplore. Restrictions apply.

of RT-Llama for different environments.

REFERENCES

[1] M. Bichler and K.-J. Lin, “Service-oriented computing,”
IEEE Computer, vol. 39, no. 3, pp. 99–101, March 2006.

[2] M. N. Huhns and M. P. Singh, “Service-oriented comput-
ing: Key concepts and principles,” IEEE Internet Comput-
ing, January-February 2005.

[3] K.-J. Lin, M. Panahi, Y. Zhang, J. Zhang, and S.-H. Chang,
“Building accountability middleware to support depend-
able SOA,” IEEE Internet Computing, vol. 13, no. 2, pp.
16–25, 2009.

[4] Y. Zhang, K.-J. Lin, and J. Y. Hsu, “Accountability mon-
itoring and reasoning in service-oriented architectures,”
Journal of Service-Oriented Computing and Applications
(SOCA), vol. 1, no. 1, 2007.

[5] R. Martin, “Data latency playing an ever increasing role
in effective trading,” InformationWeek, May 2007.

[6] S. Blake, D. Black, M. Carlson, M. Davies, Z. Wang, and
W. Weiss, An Architecture for Differentiated Services, RFC
2475, 1998.

[7] R. Braden, D. Clark, and S. Shenker, Integrated Services in
the Internet Architecture: an Overview, RFC 1633, 1998.

[8] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turn-
bull, The Real-Time Specification for Java. Addison-
Wesley, 2000.

[9] L. Abeni and G. Buttazzo, “Resource reservation in dy-
namic real-time systems,” Real-Time Systems, vol. 27,
no. 2, pp. 123–167, 2004.

[10] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for
web services selection with end-to-end QoS constraints,”
ACM Transactions on the Web, May 2007.

[11] S. A. Moses, L. Gruenwald, and K. Dadachanji, “A scal-
able data structure for real-time estimation of resource
availability in build-to-order environments,” Journal of
Intelligent Manufacturing, vol. 19, no. 5, pp. 611–622,
2008.

[12] A. Bou-Ghannam and P. Faulkner, “Enable the real-time
enterprise with business event processing,” IBM Business
Process Management Journa, no. 1.1, December 2008.

[13] Object Management Group, RealTime-CORBA Specifica-
tion, v 2.0, OMG Document formal/03-11-01 ed., Object
Management Group, November 2003.

[14] A. Mamat, Y. Lu, J. Deogun, and S. Goddard, “Real-
time divisible load scheduling with advance reservation,”
in Euromicro Conference on Real-Time Systems, ECRTS
’08., July 2008, pp. 37–46.

[15] I. T. Foster, M. Fidler, A. Roy, V. Sander, and L. Winkler,
“End-to-end quality of service for high-end applications,”
Computer Communications, vol. 27, no. 14, pp. 1375–
1388, 2004.

467

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on November 12, 2009 at 21:32 from IEEE Xplore. Restrictions apply.

