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The Majorana Demonstrator is a leading experiment searching for neutrinoless double-beta
decay with high purity germanium detectors (HPGe). Machine learning provides a new way to
maximize the amount of information provided by these detectors, but the data-driven nature makes
it less interpretable compared to traditional analysis. An interpretability study reveals the machine’s
decision-making logic, allowing us to learn from the machine to feedback to the traditional analysis.
In this work, we have presented the first machine learning analysis of the data from the Majorana
Demonstrator; this is also the first interpretable machine learning analysis of any germanium
detector experiment. Two gradient boosted decision tree models are trained to learn from the
data, and a game-theory-based model interpretability study is conducted to understand the origin
of the classification power. By learning from data, this analysis recognizes the correlations among
reconstruction parameters to further enhance the background rejection performance. By learning
from the machine, this analysis reveals the importance of new background categories to reciprocally
benefit the standard Majorana analysis. This model is highly compatible with next-generation
germanium detector experiments like LEGEND since it can be simultaneously trained on a large
number of detectors.

a Present address: SLAC National Accelerator Laboratory, Menlo
Park, CA 94025, USA

b Corresponding Author. Email: liaobo77@ad.unc.edu
c Present address: Duke University, Durham, NC 27708
d Present address: Universität Hamburg, Institut für Experimen-
talphysik, Hamburg, Germany

I. INTRODUCTION

Neutrinoless double beta decay (0νββ) [1–3] is a
hypothetical lepton number violating process (∆L =
2) beyond the standard model. The observation of
0νββ would prove that the neutrino is its own antipar-
ticle, also known as the Majorana particle. This is a
key ingredient for leptogenesis [4], which is one model
that explains the observed matter-antimatter asymme-
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try in our universe. Measuring 0νββ is a challenging
task since it occurs with an ultra-long half-life (> 1026

yrs) [5, 6]. This limits the number of signal events we can
collect, and requires us to reliably discover them among
a plethora of backgrounds. To maximize their discovery
potential, germanium-based 0νββ searches seek to oper-
ate in the quasi-background-free regime, where less than
one background event is expected in the region of inter-
est over the full lifetime of the experiment. Therefore,
the ability to suppress background as much as possible is
pivotal to 0νββ search experiment.

Traditional background suppression techniques are
typically derived from physical first principles, which are
used to define event-level reconstruction parameters. A
cut is then placed upon the reconstruction parameters to
minimize backgrounds while retaining signals. Because
a traditional analysis begins with first-principles, inter-
pretability is inherently built in to this approach. How-
ever, there are weaknesses with this approach as well.
The actual response of a detector to a particular back-
ground source is often clouded by complex effects inher-
ent to the detector technology that are difficult to model,
reducing the effectiveness of any background rejection
cuts. Furthermore, many physical effects that produce
backgrounds must be handled individually, increasing
the chances that a particular source of background will
be neglected. Finally, unknown detector physics could
also produce potential bias in reconstruction parameters,
harming the performance of traditional background cuts.

Machine learning presents an alternative to the tradi-
tional first-principles approach to background rejection,
and has already been proven quite successful for neutrino
physics experiments [7–16]. Unlike traditional analyses,
the background suppression power of machine learning
algorithms comes primarily from data. This allows ma-
chine learning models to efficiently handle unknown back-
grounds to reach state-of-the-art performance. Unfortu-
nately, learning from data makes machine learning anal-
yses less interpretable compared to the traditional ones.
Therefore, many machine learning analyses are equipped
with an interpretability study to reveal the underlying
decision-making logics [17–19].

In this work, we present the first machine learn-
ing analysis for the Majorana Demonstrator [20–
22], which is also the first interpretable machine learn-
ing analysis of any germanium detector experiment.
This analysis was inspired by the drift-time correction
to our multi-site and surface alpha discrimination pa-
rameters, which indicated that accounting for correla-
tions between parameters could enhance background sup-
pression power. We constructed two boosted decision
tree (BDT) models to reject two of the most critical back-
grounds in the Majorana Demonstrator, namely
the MSBDT for multi-site events and the αBDT for al-
pha events. Both models take individual reconstruction
parameters as inputs and are trained on the detector data
to provide background suppression. By learning from the
data, this model utilizes multivariate correlations among

reconstruction parameters to improve the background
suppression. It also reduces the need for detector- and
run-level tuning, which would be time-consuming in fu-
ture large-scale experiments such as LEGEND [23].

In addition, we conducted a comprehensive inter-
pretability study to understand the source of classifica-
tion power. This study leverages a coalitional game the-
ory concept to unravel the black-box that is the inside
of a machine learning model [24]. It has been widely
used in biomedical science [25–27] and other fields [28–
30]. By learning from the machine, we verified our BDTs’
abilities to learn multivariate correlations among differ-
ent features. Furthermore, we revealed the importance
of new background categories that the traditional, first-
principles-based analysis did not address, which eventu-
ally led to new analysis cuts in the standard Majorana
analysis.

The paper is structured as follows. Section II describes
the Majorana Demonstrator experiment, the ma-
jor background sources and the traditional analysis cuts
to reject them. Section III describes the data pipeline
for collecting and pre-processing the training data. Sec-
tion IV describes the gradient BDT algorithms. Sec-
tion V reports the training results of the MSBDT and
the αBDT with a comparison to the standard Majo-
rana analysis. Section VI describes the interpretability
study we conducted. We highlight Section VI B, which
outlines the ability of machine learning to reveal the im-
portance of new background categories and reciprocally
benefit the standard Majorana analysis pipeline.

II. MAJORANA DEMONSTRATOR

The Majorana Demonstrator experiment searches
for 0νββ decay in 76Ge using 40.4 kg of high purity
germanium (HPGe) detectors [20]. Of these, 27.2 kg
of p-type point-contact (PPC) HPGe detectors are en-
riched to 88% in 76Ge [31]. The Demonstrator is
operated at the 4850-ft level of the Sanford Under-
ground Research Facility in Lead, South Dakota. Data
were taken from August 2015 to March 2021, and are
split into 9 data set (DS) periods, referred to as DS0-
DS8. Starting with DS8 (August 2020), novel p-type
inverted-coaxial point-contact (ICPC) detectors [32] were
added to the Majorana Demonstrator detector ar-
ray. Data taking finished in March 2021, with a to-
tal enriched exposure of 64.5 kg·yr, 2.82 kg·yr of which
is from ICPC detectors [33]. The Demonstrator’s
HPGe detectors, in combination with low-noise electron-
ics [34], have achieved good linearity over a broad energy
range [35], and best-in-field energy resolution with a full-
width-at-half-maximum (FWHM) approaching 0.1% at
the Qββ (2039 keV) of 76Ge [22]. This excellent energy
performance, coupled with the low energy threshold and
low-background of the Demonstrator, makes it a com-
petitive 0νββ decay experiment.

A weekly calibration is conducted to monitor detector
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FIG. 1: A diagram of one Majorana
Demonstrator detector module and the HPGe
detectors within.

stability and provide data for developing analysis cuts.
The thorium isotope 228Th was selected as the primary
calibration source because its decay chain emits several
gamma-rays spanning from a few hundred to 2615 keV,
which covers the Qββ of 76Ge and allows for calibra-
tion over a wide energy range. During calibrations, the
228Th source is deployed into the calibration track, which
surrounds the cryostat in a helical path [36]. Event en-
ergies are tuned to minimize 228Th calibration source
gamma line width [37]. This routine calibration provides
an excellent source of training data that will be discussed
in Section III.

Most 0νββ events are single-site events which deposit
all of their charge in a single location of <1 mm lin-
ear dimension in detector. This type of event appears
in a Majorana Demonstrator detector as a wave-
form with a single sharply-rising step, as indicated by
the black trace in the top panel of Figure 2a. Since the
waveform itself is the integrated ionized charge collected
from an energy deposition in the detector, the deriva-
tive of the waveform (red traces in the same panel) is
effectively the current induced as charges drift towards
the point contact. In the Majorana Demonstrator,
two major background sources are multi-site events and
surface-alpha events. If charge is deposited at multiple
locations within the crystal, the drift times may differ
up to ∼1µs, resulting in a waveform with multiple steps
as shown in the bottom panel of Figure 2a. This leads
to a current pulse with a smaller maximum value than
that of a single-site event with the same energy. Based on
this first principle, we designed the current amplitude vs.
energy (AvsE) described in Reference [38]. The current

amplitude is estimated by a linear fit to a smaller range of
the waveform. Cutting on the energy-normalized current
amplitude (or AvsE) leads to efficient multi-site event re-
jection. In the standard Majorana analysis, we select
events from a dedicated AvsE range by applying both low
and high AvsE cuts.

The other major source of backgrounds at Qββ is from
the alpha particles impacting the passivated surface and
p+ contact surfaces of detectors. Prior to the most recent
Majorana Demonstrator data release [33], this back-
ground source was rejected entirely using the first princi-
ple of the “delayed charge recovery” effect [39]. Based on
the characteristics of alpha interactions, it appears that
charge mobility is drastically reduced on or near the pas-
sivated surface. Therefore, a fraction of the charge from
these interactions is slowly released on the timescale of
waveform digitization, leading to a measurable increase
in the slope of the waveform tail. The delayed charge re-
covery effect lowers the peak amplitude and as shown in
Figure 2b results in a slowly rising tail slope that distin-
guishes this event from a bulk event at the same energy.
The delayed charge recovery (DCR) cut tags events with
larger tail slopes to efficiently reject surface alphas.

At a later stage of the standard Majorana analysis,
a novel analysis cut based on the first principles of late
charge (LQ) was developed. The LQ cut probes the top of
the rising edge of the waveform to identify delayed charge
collection on ∼ 1µs timescale. It efficiently eliminates
events in the transition layer and an additional popula-
tion of near-point-contact events.

The final Majorana Demonstrator standard anal-
ysis is described in Reference [33]. The standard Majo-
rana analysis for the PPC detectors is developed with
the Germanium Analysis Toolkit (GAT), and is thus re-
ferred to as the “GAT analysis”. The standard Majo-
rana analysis for the ICPC detectors is developed inde-
pendently from GAT, and is referred to as the “ORNL
analysis”. Both the GAT and ORNL analyses contain in-
dependently developed pulse shape discrimination (PSD)
cuts derived from the first principles of HPGe detec-
tor charge collection: current amplitude versus energy,
the delayed charge recovery effect, as well as the late
charge effect. In this paper, we denote those cuts as
GAT AvsE/DCR/LQ cut and ORNL AvsE/DCR/LQ cut, re-
spectively.

During the development of the standard Majorana
analysis, we observed that the PSD parameters vary with
the length of time it takes the charges to drift to the p+
electrode, defined as drift-time, due to well-understood
charge cloud diffusion and bulk charge trapping effects.
Therefore, a drift-time correction was made to correct
for this correlation. In the following text, we will use the
terms “standard AvsE/DCR/LQ” to refer to the GAT anal-
ysis for PPC detectors and ORNL analysis for ICPC de-
tectors, respectively. Additionally, we extracted the raw
AvsE and raw DCR parameters, which are preliminary ver-
sions of standard AvsE/DCR thereby not directly used by
the standard Majorana analysis. The raw parameters
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(a) (b)

FIG. 2: (a) Pulse shape plot of single-site events (top) and multi-site events (bottom). The black line shows the raw
waveform in ADC counts and the red line shows the waveform in current amplitude. (b) Illustration of waveforms
from surface alpha event and bulk event.

are generated under the GAT framework with a detector-
and run-wise energy calibration applied. However, the
raw parameters are not drift-time corrected, thus under-
performing the standard Majorana analysis parame-
ters. In this work, we decided to use the raw AvsE/DCR
parameters to train the BDTs, and then compare the
training results to the standard Majorana analysis pa-
rameters. The LQ parameters are introduced at a later
stage of the standard Majorana analysis, thus we de-
cided not to incorporate it to train the machine learning
analysis. However, we did include LQ when comparing
the two analyses in Section V C.

III. DATA PIPELINE

We collected both a signal and a background dataset
to train the BDT. The signal dataset should be represen-
tative of the signal (0νββ events in our case), and the
background dataset should represent the proper back-
ground to reject. Before creating signal and background
datasets from the Majorana data, a standard suite of
cuts is applied: periods of high noise associated with
liquid nitrogen fills or unstable operation are removed;
non-physical waveforms, pileup waveforms, and pulser
events are then removed by data cleaning cuts; and finally
events in which multiple germanium detectors are trig-
gered are removed. We particularly avoided the usage of
high-level selection cuts, such as standard AvsE/DCR/LQ,
since the tuning and validation of these cuts can be time-
consuming. Decoupling from these cuts allows a fast-
track application of this model on newly-taken data from
multiple detectors. We then chose events in the dou-
ble escape peak (DEP) from 228Th calibration data as
the signal dataset. The DEP events are pair produc-

tion events where both gammas have successfully escaped
from the detector, thus mostly single-site events. An en-
ergy cut of 1592.5 ± 2.5 keV is applied to select DEP
events. Monte Carlo simulations including X-ray excita-
tions and bremsstrahlung predict the events under DEP
selection criteria to be 90% single-site with 10% multi-
site impurities.

TABLE I: List of input features to the MSBDT and the
αBDT. Cat. stands for categorical and Cont. stands for
continuous.

Features Type Description

detType Cat.
detector type:

enriched PPC or ICPC
channel Cat. detector DAQ channel

tDrift Cont.
drift time from the start of the rise

to 99% waveform amplitude

tDrift50 Cont.
drift time from the start of the rise

to 50% waveform amplitude

AvsE Cont.
raw A. vs E, pulse shape parameter
for multi-site event rejection[33, 38]

DCR Cont.
raw DCR, pulse shape parameter
for alpha event rejection [33, 39]

noise Cont. measuring 10-20MHz noise

DS Cat.
data period the event belongs to,

defined by run ranges

The background datasets for the MSBDT and the
αBDT are selected separately. For MSBDT, we select
events under the single escape peak (SEP) of 228Th cali-
bration data. The SEP events are pair production events
where only one gamma has escaped from the detector.
Although all SEP events are technically multi-site, if
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those sites occur at the isochrones of equal drift-time,
they will reach the point contact at roughly the same
time. In that case, the time difference between the two
sites is smaller than the detector’s timing resolution, re-
sulting in an apparently single-site waveform even though
more than one energy deposition has occurred. These
events are the impurities to the background dataset. An
energy cut of 2103.5 ± 2.5 keV is applied to select these
events.

For the αBDT, since the major alpha backgrounds
are energy-degraded alpha events from the continuum,
we have to select training data from a broader spec-
trum. We first select high energy alpha events by col-
lecting events above 2615 keV in background runs. This
sample is expected to have some contamination from
high energy gamma events, originating from the decay of
cosmogenically- and neutron-induced isotopes and ura-
nium/thorium chain. We then select low energy alpha
events by collecting the DCR tagged background events in
a 1000-2615 keV energy range. In this way, a total of 723
high energy alpha and 2,839 low energy alpha events are
selected.

After event selection, we extract 8 features from ev-
ery event. The names and descriptions of these param-
eters are listed in Table I. AvsE and DCR are dedicated
pulse shape parameters for multi-site/alpha rejection re-
spectively. Other parameters are added to probe their
multivariate correlations with AvsE/DCR and to each
other. For example, adding the channel parameter will
allow the model to perform detector-wise tuning; adding
tDrift and tDrift50 will allow the model to perform a
drift-time correction, and our noise parameter allows us
to look for correlations during noisy periods in the data.
Among all features in Table I, some features are contin-
uous and some features are categorical. BDTs naturally
handle both types of feature in the structure of the tree,
allowing us to train on all detectors from all run periods
simultaneously.

A. Data Augmentation

The data we selected above are highly imbalanced.
First of all, only about 4% of data points are provided by
ICPC detectors while the rest are from PPC detectors.
Secondly, only 3,562 α events are collected compared to
600,000 DEP events in αBDT training. This forms a
typical long tail distribution where the head class con-
tains most of the events and the tail class contains only
a minimal proportion. If a BDT is trained with such an
imbalanced dataset, it will be heavily biased towards the
ample head class while ignoring the scarce tail class. We
fix this issue by performing data augmentation.

Data augmentation refers to algorithms that generate
synthetic data points to boost the population of the tail
class for training purposes. We employ it to boost the
population of both ICPC detector events and surface al-
pha events. The input dataset contains 8 features per

event, 3 of which are categorical features. A Synthetic
Minority Over-sampling TEchnique - Nominal and Con-
tinuous (SMOTE-NC) [40] algorithm is adopted for data
augmentation. SMOTE-NC generates synthesized data
by randomly interpolating between datapoints and its
nearest neighbors. It works well on low dimensional data
with both continuous and categorical features. It is first
applied to all 3 datasets (DEP, SEP and alpha) to boost
the population of ICPC events by a factor of ∼50, then
applied again on the alpha dataset to boost the popu-
lation of alpha events by a factor of ∼115. We refer to
the events directly collected from detectors as genuine
events and the events from data augmentation as aug-
mented events. The augmented events are only used for
training; model evaluation that will be discussed in Sec-
tion V is based on genuine events.

B. Distribution Matching

While building our BDT models, we want them to look
at the correlations of features instead of single features,
unless that single feature is the first-principle feature as
discussed in Section II. The first-principle feature—that
is AvsE for MSBDT or DCR for αBDT—is designed to
fulfill the same background rejection goal as the BDT
model. We do not expect features other than the first-
principle feature to contribute to the classification inde-
pendently, but they can contribute through their corre-
lations with the first-principle feature or other features.
Undesirable behavior arises when other parameters are
allowed to contribute independently to classification. For
example, if a given channel in the MSBDT training
dataset is accidentally biased to contain 50% more sig-
nals than backgrounds, the BDT will “remember” this
bias and tend to classify events in this channel as sig-
nal regardless of the rest of the features. If we then
validate the BDT on another out-of-sample, unbiased
dataset, the classification performance on this channel
will be suppressed. This phenomenon is referred to as
overfitting. To avoid this kind of overfitting, we car-

FIG. 3: Distribution matching of the tDrift feature in
input data.
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ried out a process called “distribution matching” on 6
out of 8 secondary features. Figure 3 shows the dis-
tribution matching effect on the tDrift feature. The
distribution of each secondary feature is first put into
a histogram with predefined bin width. Then for ev-
ery bin in the histogram, we randomly sample with-
out replacement the same number of events from the
signal and background datasets. This will reduce the
size of both signal and background datasets to the same
amount. Eventually, the sampled events are aggregated
into a new signal/background dataset. We leave the
first-principle feature—AvsE for MSBDT and DCR for
αBDT—unmatched because we expect them to follow
different distributions between the signal and background
dataset. The detType feature is not matched either since
it overlaps with the channel feature. After distribution
matching, the signal/background dataset spectrum will
exhibit the same spectrum shape over matched secondary
features. Distribution matching only affects the training
dataset. The performance of trained BDT is evaluated
on both DEP/SEP datasets and a flat Compton Contin-
uum(CC) dataset, as described in Section V C and Ta-
ble II.

In summary, the data pipeline for the MSBDT contains
the following steps: we first select 228Th DEP events as
the signal dataset and 228Th SEP events as the back-
ground dataset; we then extract eight features as de-
scribed in Table I for every event in both datasets; we
then perform data augmentation to generate augmented
ICPC events; lastly, we perform distribution matching on
all features except AvsE and detType. The data pipeline
of the αBDT contains the following steps: we first select
228Th DEP events as the signal dataset, and aggregate
both low- and high-energy alphas to form the genuine
alpha dataset; we then extract eight features; perform
data augmentation to generate augmented ICPC detec-
tor events and alpha events as the background dataset;
lastly, we perform distribution matching on all features
except DCR and detType.

IV. BOOSTED DECISION TREE

The decision tree (DT) model produces classification
decisions by making a series of binary choices. This fea-
tures allow decision tree to naturally handle both con-
tinuous and categorical dataset, without the need of ad-
ditional structures such as one-hot encoding. Boosting
algorithms allow the machine to generate many decision
trees iteratively to form a classification “committee”. Af-
ter training the mth decision tree, the classification com-
mittee containing the first through mth trees is denoted
Tm(xi). The dataset can be described as {xi, yi}ki=0,
where xi is the input event, yi is the label and k is
the number of events. The dataset is modified accord-
ing to the output of Tm(xi). The modified dataset is
then fed into Tm+1(xi) for training. The way the dataset
is modified for each iteration defines the boosting algo-

rithm type. In this work, the BDT model is trained us-
ing the LightGBM package [41]. LightGBM adopts a
gradient boosting algorithm [42] to grow decision trees.
First, a binary cross-entropy loss function L(yi, Tm(xi))
is defined for the classification task, where yi is the event
label. Then for each data point, we calculate the pseudo-
residual rim:

rim = −∂L(yi, Tm(xi))

∂Tm(xi)
(1)

rim is the negative gradient of the loss function with re-
spect to the classification committee output at xi. For
each boosting iteration, the dataset is modified from
{xi, yi}ki=0 to {xi, rim}ki=0, then a new decision tree
hm+1(x) is fit to the modified dataset. The new decision
tree is incorporated into the committee via the following
equation:

Tm+1(x) = Tm(x) + γm+1hm+1(x) (2)

Where γm+1 is chosen to minimize the loss function by
solving the following optimization problem:

γm+1 = arg min
γ

k∑
i=0

L(yi, Tm(xi) + γhm+1(xi)) (3)

The procedure above describes the mathematical for-
mulation of BDT training. To train the BDT model, we
first mix and shuffle the signal and background datasets.
We then split the mixed dataset into training and vali-
dation datasets with an 80:20 ratio. The BDT models
are trained on the training dataset. An early stopping
algorithm will terminate the training process if the loss
on the validation dataset does not decrease for a given
number of iterations. The performance is quantified on a
dedicated evaluation dataset which will be discussed later
in Section V; the interpretability study is conducted on
a customized interpretability dataset, which will be dis-
cussed later in Section VI.

LightGBM contains several highly customizable BDT
models defined by collections of hyperparameters. Hy-
perparameters refer to parameters that do not change
during training, such as the type of boosting algorithms,
maximum number of trees to grow, number of early stop-
ping iterations, and maximum number of leaves per tree.
Some hyperparameters may greatly impact the metric,
while other parameters may have minimal to no impact.
All hyperparameters are searched simultaneously using
Bayesian optimization to maximize the background re-
jection efficiencies at 90% signal acceptance [43].

V. RESULT

After training, we evaluate the performance of both
the MSBDT and the αBDT. The trained BDT model
takes the input of 8 features as described in Table I, and
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Standard AvsE   89.6%±0.07%       6.25%±0.03%
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FIG. 4: (a) MSBDT score distribution for signal and background events. (b) Background subtracted ROC curve for
MSBDT classifier, AvsE corrected classifier and AvsE classifier. The ROC curve plots the true positive rate (TPR)
vs. the false positive rate (FPR) of a binary classifier by placing the cutting threshold at every possible location.
Larger area under ROC curve represents better classification performance. For both AvsE classifiers, only the
traditional low AvsE cut are applied.
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FIG. 5: (a) αBDT output distribution for signal and background events. (b) ROC curve for αBDT classifier and
standard DCR classifier.

outputs a single floating point number as the classifi-
cation score between 0 and 1. A higher classification
score indicates the input event is more signal-like and a
lower classification score indicates the input event is more
background-like. A cutting threshold is placed to accept
signals and reject backgrounds. The selection criteria of
the cutting threshold will be discussed in the following
subsections. We also use the Receiver Operating Charac-
teristic (ROC) [44] curve to gauge the classification per-
formance of our models. The ROC curve plots the true
positive rate (TPR) vs. the false positive rate (FPR)
by placing the cutting threshold at every possible loca-
tion. The fraction of area under the ROC curve (AUC)

statistically describes the classification power of a binary
classifier, in that larger AUC corresponds to better clas-
sification performance and smaller AUC corresponds to
worse classification performance. For example, an AUC
of 1 indicates perfect classification, and an AUC of 0.5
indicates no classification.

A. MSBDT Result

Events from the 228Th calibration data sets are used
to test the MSBDT. The DEP events from 1590-1595
keV are used as the signal event sample, and the SEP
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events from 2101-2106 keV are used as the background
event sample. The MSBDT score spectra for signal and
background samples are illustrated in Figure 4a. The
signal and background peaks are well-separated, albeit
with “misclassified” events under both peaks. Since both
the signal and the background samples have impurities
described in Section III, these events could be the impure
events and thus being correctly classified.

The ROC curves of MSBDT, standard AvsE, and raw
AvsE are shown in Figure 4b. At each cutting location,
the baseline subtraction and uncertainty evaluation are
then performed in the same way as in Reference [38].
To set the MSBDT cutting threshold, we first apply the
standard AvsE cut—that is, AvsE > −1.0—to the evalu-
ation dataset. This cut leads to a TPR of 89.6%, shown
as the horizontal magenta line in Figure 4b. Next, the
BDT cutting threshold and raw AvsE cutting threshold
are selected to reach the same TPR as the standard AvsE.
At this level of TPR, the survival fraction of background
samples of the raw AvsE, the standard AvsE and MS-
BDT are 7.40%, 6.25%, and 5.71%, respectively. The
standard AvsE leverages the drift-time correlations to re-
ject 16.3% of SEP events that the raw AvsE accepts. MS-
BDT leverages additional multivariate correlations to re-
ject a further 8.6% of SEP events that the standard AvsE
accepts.

Rows 2-4 in Table II compares the performance of
the MSBDT and the standard AvsE for each Majorana
dataset. For most datasets, the MSBDT outperforms the
standard AvsE on selected data samples. This demon-
strates the ability of our BDTs to self-discover the drift-
time corrections and other possible feature correlations to
improve background rejection performance. Meanwhile,
introducing DS, channel, and detType as categorical fea-
tures allows the machine to perform detector- and run-
level tuning without explicitly programming. However,
the background data samples described above are only
good representations of the true background dataset; the
deviation from true background dataset could come from
energy (DEP energy vs. Qββ energy) and subtle dif-
ferences in the intra-detector distribution of event posi-
tions. Therefore, additional data samples are collected to
examine model performance near the true energy region
of interest of 0νββ decay. These data samples—denoted
as Calibration Compton continuum (Cal. CC) samples,
contain all events between 1989 and 2089 keV from the
228Th calibration runs. Only 40.3% of Cal. CC samples
survive MSBDT while 42.3% survive standard AvsE as
shown in Row 5-6, Table II.

B. αBDT Result

Events from the 228Th calibration data sets and the
0νββ search data sets are used to test the αBDT. All
228Th calibration events between 1000 keV and 2380 keV
that pass the standard AvsE cut are selected as the sig-
nal samples, and the collection of genuine alpha events

are selected as the background samples. The αBDT out-
put distribution of signal and background datasets are
shown in Figure 5a. Based on the plot, the background
dataset is highly concentrated near 0.0 BDT score, indi-
cating an excellent alpha tagging efficiency of the αBDT.
Meanwhile, the signal dataset spans the entire range, but
most events are still concentrated near 1.0 αBDT output.

The ROC curves of the αBDT and the standard DCR
parameter are shown in Figure 5b. A cutting threshold
is set at the horizontal red line to accept 98.2% of signal
events. This acceptance matches the standard DCR accep-
tance in the standard Majorana analysis. At this cut-
ting threshold, the DCR corrected analysis has 2.9% back-
ground acceptance, while the αBDT only accepts 2.1%
of surface alpha events. As mentioned in Section III, low
energy genuine alpha are DCR tagged background events
between 1000 keV and 2615 keV. Therefore, when eval-
uating the performance of the standard DCR cut, 100%
of low energy genuine alpha will be manifestly removed.
Given the fact that standard DCR is “cheating” on low
energy alpha rejection, the αBDT still outperforms stan-
dard DCR by rejecting 27.6% of genuine alpha events that
standard DCR accepts.

C. Comparison to Standard Majorana Analysis

The background index of the standard Majorana
analysis is evaluated in the 0νββ Background Estima-
tion Window (0νββ BEW). The 0νββ BEW samples are
collected from 1950 to 2350 keV, excluding ±5 keV region
around the 2039 keV Qββ value and three gamma peaks
at 2103 keV, 2118 keV and 2204 keV. Based on simula-
tions, the background rate is expected to be flat after the
exclusion. Both BDTs are applied to produce a number
of survival events for 0νββ BEW in each dataset, which
can be compared to the number of survival events for
each dataset after applying the suites of standard Ma-
jorana analysis cuts: the standard AvsE cut, the high
AvsE cut, the DCR cut, and the LQ cut. Note that neither
the LQ feature nor the transition layer events are included
in the BDT training process; thus, the BDT analysis
will not be sensitive to these events. Given this “un-
fair” condition, the BDT analysis still manages to match
and, in some datasets, outperform the standard Majo-
rana analysis. The total number of 0νββ BEW survival
events for BDT/standard Majorana analysis are 164
and 153 [33], indicating consistency between the two. As
a comparison, standard Majorana analysis without LQ
cut allows 168 events to remain in the 0νββ BEW. Fig-
ure 6 shows the comparison between the two analyses
over the entire energy range. The two analyses agrees
well except in the low energy region, where the standard
Majorana analysis cuts more aggressively. This dis-
crepancy is mainly subject to the the LQ cut, and the
applicability of LQ at low energy is still under investiga-
tion. Therefore, these agreements show that the BDT
analysis can start from raw parameters and tune them
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TABLE II: Table of survival fractions of signal and background events in each Majorana Demonstrator dataset.
The signal and background event selection is defined in Section V A for MSBDT and Section V B for the αBDT .
The BDT cutting thresholds are selected so that they produce the same signal acceptance with the standard
analyses. The AvsE corrected, DCR corrected and LQ parameters are adopted in the standard Majorana analysis.
CC stands for the compton continuum (1989-2089 keV) events in 228Th calibration dataset, and BEW stands for the
0νββ background estimation window events (1950-2350 keV, excluding three gamma peaks) in the 0νββ search
dataset. The survival numbers in BEW are calculated after joint cuts. The number in parentheses (last column of
Row 11) is the survival number without the LQ cut.

Row Dataset DS0 DS1 DS2 DS3 DS4 DS5 DS5c DS6 DS6c DS7 DS8 DS8 All DS

Index Detector Type PPC PPC PPC PPC PPC PPC PPC PPC PPC PPC PPC ICPC (Expo. Weighted)

1 Exposure(kg · yr) 1.13 2.24 1.13 0.96 0.26 4.49 2.34 24.52 13.25 4.44 6.41 2.74 64.5

2 Single Site Signal (%) 90.3 89.8 88.6 89.9 89.4 89.1 87.4 89.4 89.8 89.7 89.7 88.7 89.5

3 MSBDT Bkg. (%) 5.62 5.85 5.01 5.71 6.31 5.95 5.70 5.73 5.58 4.57 6.41 5.76 5.71

4 Standard AvsE Bkg. (%) 6.13 6.29 5.93 5.31 5.48 6.24 6.51 6.25 6.39 6.00 6.78 6.17 6.25

5 MSBDT Cal. CC (%) 41.9 38.9 36.8 39.7 42.1 41.9 42.6 42.1 40.5 35.6 32.5 31.4 40.3

6 Standard AvsE Cal. CC (%) 43.1 42.9 41.5 41.0 42.1 42.0 41.6 42.3 42.7 42.1 43.3 35.0 42.3

7 Bulk Event Signal (%) 97.9 97.8 98.1 98.9 98.0 97.8 97.8 98.5 98.3 98.5 98.6 97.6 98.2

8 αBDT Bkg. (%) 0.4 1.4 2.1 0.8 1.2 3.8 3.4 1.6 1.9 3.5 4.7 8.1 2.1

9 Standard DCR Bkg. (%) 1.7 1.9 2.8 3.9 0.0 2.9 5.7 2.6 3.1 5.4 2.8 0.8 2.9

10 BDT 0νββ BEW (#) 11 6 2 0 0 8 6 66 23 20 19 3 164

11 Standard 0νββ BEW (#) 11 4 1 0 0 9 5 58 20 17 24 4 153 (168)
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FIG. 6: Energy spectrum of the standard Majorana analysis and the BDT analysis with 64.5±0.9 kg exposure, a
good agreement is reached within the background estimation window. The low energy discrepancy between two
analyses was mainly due to the LQ cut.

to match a highly optimized analysis.

D. ICPC Detectors

For the ICPC detectors, the trained BDT model takes
the raw parameters as input and compares the output
BDT score to the ORNL analysis parameters. This leads

to additional challenges since the raw parameters are de-
veloped with GAT while the ORNL parameters are inde-
pendently developed and customized for ICPC detectors.
In this analysis, we use the raw parameters as inputs to
train the BDT models to reach or exceed the background
rejection performance of the ORNL analysis. This means
that the BDT must perform multivariate corrections and
account for the technical differences between two inde-
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pendently developed analyses. The second-to-last col-
umn of Table II shows the model evaluation results on
ICPC detectors. MSBDT outperforms the ORNL AvsE
for multi-site event rejection, with a background sur-
vival fraction of only 5.76%, compared to 6.17% for the
ORNL AvsE. It also makes a significant improvement
over its primary input parameter, raw AvsE, which has
a 25% background survival fraction (not shown in Table
II). On the other hand, the αBDT underperforms the
ORNL DCR with a 8.1% genuine alpha survival frac-
tion, compared to 0.8% for the ORNL DCR. However,
the αBDT still makes a significant improvement over its
primary input parameter, raw DCR, which allows 18%
of genuine alphas to survive (not shown in Table II). The
BDT analyses account for the technical differences among
independently developed analyses to simultaneously an-
alyze different types of germanium detectors. Finally,
the result of the BDT analyses indicate that the GAT
analysis has the potential to reach the same level of per-
formance on ICPC detectors under proper tuning.

VI. MACHINE INTERPRETABILITY

We demonstrated the BDT’s ability to outperform the
standard Majorana analysis, but the source of addi-
tional classification power was not readily apparent. To
identify these sources, a post facto machine interpretabil-
ity study was performed on the trained MSBDT and
αBDT. This study used a coalitional game theory con-
cept, Shapley value [45], to interpret the decision of a
BDT. The Shapley value is defined as follows:

φi(v) =
∑

S⊆N/{i}

|S|!(n− |S| − 1)!

n!
(v(S∪{i})−v(S)) (4)

v is the characteristic function that maps a subset of play-
ers to a real number. S represents a coalition of players
without the player i. N is the set of all players and n is
the size of that set. In this analysis, v is the BDT model
mapping input features to the BDT score. Each feature
is a “player” of the game. v(S ∪ {i}) − v(S) describes
the difference in BDT score including/excluding feature
i. This difference is summed over all coalitions S — that
is, the possible combinations of all other features except
{i} — to produce the Shapley value for i. Therefore, the
Shapley value in the context of a BDT represents each
feature’s contribution to the final BDT score, assuming
they work collaboratively.

The interpretability study was conducted using the
SHAP package [24]. The underlying mechanism is analo-
gous to a one-dimensional free body diagram [46]. SHAP
assigns a Shapley value to each feature of the events to
be interpreted. The Shapley value acts as a “force” to
change the BDT score: a positive Shapley value pushes
the BDT score toward a more signal-like score, while a
negative Shapley value pushes the BDT score toward a
more background-like score. After all “forces” are ap-

plied, the BDT reaches an equilibrium, and the equi-
librium position is the BDT score of the input event.
Therefore, if an event is classified as signal, the feature
with the largest positive Shapley value will be the driving
factor for this classification decision, while features with
negative Shapley values suggest against the classification
decision. An example force plot of a single Majorana
Demonstrator event is shown in Figure 7c. By inves-
tigating the Shapley values on designated datasets, we
will understand the driving feature which leads to the
additional classification power.

A. Interpreting MSBDT

Figure 7a presents a summary plot to illustrate the
feature importance of the MSBDT. To make this plot,
we first randomly sampled 10,000 228Th DEP events
and 10,000 228Th SEP events to form the interpretabil-
ity dataset. The Shapley values are calculated for each
event in the dataset, and the distribution of Shapley val-
ues with respect to each input feature is plotted in Fig-
ure 7a. The shape of these distributions represents the
importance of the given feature. An important feature
exhibits a dumbbell shape, indicating this feature drives
the decision by a large magnitude most of the time. A
less important feature exhibits a spindle shape, indicat-
ing this feature outputs a near-zero Shapley value most
of the time but occasionally drives the decision with a
large amplitude. An irrelevant feature exhibits a verti-
cal bar shape, indicating that this feature almost always
outputs a Shapley value of 0. Figure 7a ranks the impor-
tance of features from top to bottom according to this
rule. The most important feature is AvsE as we expected,
and the second most important feature is channel. This
means MSBDT’s classification power mainly comes from
channel-wise calibration of AvsE. The least important
feature is detType since it is redundant with channel.
The importance ranking shown in Figure 7a can also be
used for feature selection. In case the computation power
is limited, low-importance features such as detType can
be removed from the input. In this work, the BDT train-
ing takes less than one miunte on CPU. Therefore, low-
importance features are kept since they do not seem to
adversely affect the performance.

To further understand the classification power of MS-
BDT, especially the additional classification power com-
pared to standard AvsE, we collected outperforming
events from the interpretability dataset with two crite-
ria:

• DEP events that MSBDT classifies as signal but
raw AvsE classifies as background

• SEP events that MSBDT classifies as background
but raw AvsE classifies as signal

Figure 7b shows the joint distribution of drift time and
raw AvsE on a 2D scatter plot on outperforming events.
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(a) (b)

(c)

FIG. 7: (a) Feature importance plot of the MSBDT. From top to bottom, the features are ranked from the most
important to the least important. The color of each dot represents the Shapley value of each feature, normalized by
the highest and lowest Shapley values of all input samples. (b) The scatter plot of raw AvsE vs. tDrift for
outperforming events in a single detector in DS6. The color of each dot represents the sum of Shapley value assigned
to both tDrift and tDrift50. Higher magnitude represents more important contributions from drift time. The
green line represents a linear fit to the linear dependency of drift time. (c) Force plot of a single Majorana
Demonstrator event denoted by the magenta diamond in (b). The Shapley value of AvsE and channel provides
positive forces, while the Shapley value of tDrift, tDrift50, and dcr provides negative forces. The equilibrium
position is at 0.34.

To avoid smearing caused by different detectors or differ-
ent datasets, only outperforming events from a single de-
tector in DS6 are shown. The color of each dot indicates
the summed Shapley value of tDrift and tDrift50.
Two types of drift time dependencies are observed on
raw AvsE: a linear dependency appears on the raw AvsE
for large drift time events, and a non-linear dependency
on low drift time events. In the standard Majorana
analysis, the linear dependence is corrected through a
detector-by-detector drift time correction as discussed in
Section II. From the MSBDT’s perspective, the BDT as-
signs a positive Shapley value on drift time to repro-
duce the drift time correction: although the linear de-
pendency leads to lower-than-usual AvsE at large drift
time, the MSBDT successfully captures this dependency
and produces a positive Shapley value to compensate for
this effect. This is equivalent to the drift-time correction
in standard Majorana analysis. Without explicit pro-
gramming, the MSBDT independently learns these corre-
lations from data and leverages them to further improve
background rejection performance as expected.

The non-linear dependency happens primarily on
events with drift time below 400 ns. These events hap-

pen near the point-contact and drift almost immediately
to it. As shown in Figure 7b, these fast-drifting events
possess excessively high AvsE and will be classified as
signals even if the waveform is multi-site. In the stan-
dard Majorana analysis, we use the high AvsE cut and
the LQ cut to remove these events near the point-contact.
In this analysis, the MSBDT assigns a negative Shapley
value according to the drift time to compensate for the
higher-than-usual AvsE values. To demonstrate this, we
selected a single event from this region (the magenta di-
amond on Figure 7b) and showed its Shapley forces in
Figure 7c. Although the excessively high AvsE produces
an overwhelmingly positive force, MSBDT recognizes the
non-linear drift time dependency and assigns negative
forces to tDrift and tDrift50 to counteract the posi-
tive force. The equilibrium position is at 0.34, which falls
below the cutting threshold of MSBDT. Therefore, this
event is rejected by MSBDT but accepted by standard
AvsE. Without explicit programming, the MSBDT learns
the linear and non-linear correlation from data and han-
dles them correctly to produce better background tagging
efficiency.
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(a)
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FIG. 8: (a) Feature importance plot of the αBDT. (b) The scatter plot of raw DCR vs. tDrift for all outperforming
genunie alpha events. The color of each dot represents the sum of Shapley value assigned to both tDrift and
tDrift50. Higher magnitude represents more important contributions from drift time.

B. Interpreting αBDT

We used a similar approach to interpret the αBDT.
Since there are only 3,562 genuine alpha events, we col-
lected all the genuine alpha events as backgrounds and
3,562 randomly sampled 228Th DEP events as signals
to form the interpretability dataset. The summary plot
is shown in Figure 8a. As expected, raw DCR is the
most important feature in making a classification deci-
sion. tDrift50 is the second most important feature,
indicating that the αBDT is mainly performing a drift-
time correction on raw DCR to enhance its classification
power. Similar to the MSBDT, detType is the least im-
portant feature since it is redundant with channel.

Outperforming events are collected from the inter-
pretability dataset to understand the additional classi-
fication power of the αBDT. Since the signal sacrifice
of the αBDT and DCR is negligible, the outperforming
dataset is defined as genuine alpha events rejected by the
αBDT but accepted by the standard DCR. Figure 8b
shows the joint distribution of drift time and standard
DCR on a 2D scatter plot on outperforming events. These
events form a cluster near a drift time of 200 ns, indi-
cating that they are surface alpha events near the point
contact. After creation, these events drift to the point
contact almost immediately, leaving almost no delayed
charge on the passivated surface thus violating the first
principle of the DCR cut. However, the fast-drifting na-
ture allows the αBDT to efficiently tag these events based
on their drift-time, thus outperforming the traditional
analysis. As αBDT interpretability study revealed the
importance of these backgrounds, a dedicated high AvsE
cut is introduced into the standard Majorana analy-
sis to reject them. High AvsE turns out to also reject
multisite event near the point contact as we discussed in
Section VI A.
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FIG. 9: A typical surface alpha event waveform (black)
near the point-contact of Majorana PPC detector. t0
is the start of charge deposition. The time interval of
tDrift50 and tDrift features are shown.

The interpretability study also shows that tDrift50 is
more important in the αBDT model than tDrift. This
can be explained by the difference between the calcula-
tion of these two parameters. A typical outperforming
event is shown in Figure 9. When a surface alpha event
happens near the point-contact, the charge deposition
starts almost immediately, leading to a sharp rising edge
of the waveform. On the other hand, the passivated sur-
face reduces the drift speed of charges comparatively fur-
ther away from the point-contact. This effect delays the
completion of charge deposition, leading to a rounded top
of the waveform. Since tDrift is calculated from the the
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start of the rise to the time when the waveform reaches
99% of its maximum amplitude, the rounded-top struc-
ture significantly increases the value of tDrift, allowing it
to appear as a slowly drifting event, thus escape the low
drift-time/high AvsE cut. However, tDrift50 is immune
to the rounded-top structure since it is caluclated only up
to 50% of the waveform amplitude. The interpretability
study suggests that a tDrift50-based cut could be de-
veloped to further benefit the alpha rejection in future
first-principle analyses.

The interpretability study allows machine learning
analysis to unveil physics in germanium detectors. Lever-
aging multivariate correlations and automatic categoriza-
tion, the BDT was able to outperform individual PSD
parameters and match both the GAT and the ORNL
analyses, as discussed in Section V with less detector-by-
detector calibration. Furthermore, the interpretability
study leverages the additional classification power to re-
veal the importance of new background categories. This
eventually led to the implementation of a high AvsE cut
in the standard Majorana analysis and suggests a new
direction for future improvement. The reciprocal rela-
tionship between the machine learning analysis and the
traditional, first-principle analysis revealed by the inter-
pretability study, demonstrates that an interpretable ma-
chine learning analysis can not only outperform but also
benefit the traditional analysis.

VII. CONCLUSION

In this work, we have presented the first machine learn-
ing analysis for the Majorana Demonstrator; this
is also the first interpretable machine learning analysis
of any germanium detector experiment. This analysis
contains two parts: learning from the data to improve
background rejections and learning from the machine
to understand classification power. Leveraging gradient
boosted decision trees and data augmentation, this anal-
ysis outperforms the the individual PSD parameters and
match the overall results of the highly optimized standard
Majorana analysis [33]. Learning from data also closes
the gap between two independently developed analyses
applied to different types of detectors.

For the first time in the field, a thorough machine in-
terpretability study is conducted, leveraging the Shapley
value in coalitional game theory. This study not only
justifies BDT’s capability to capture multivariate cor-
relations but also to independently discover new back-
ground categories to reveal its importance. The machine
learning analysis and the standard Majorana analysis
established a reciprocal relationship through the inter-
pretability study. Since BDT model is widely used in
the particle and nuclear physics community [47–53], this
work provides a template for interpreting the BDT model
to gain more physical insight and even make new scien-
tific discovery.

This work has focused on developing and interpret-

ing the first machine learning analysis for Majorana
Demonstrator. The data-driven nature of this anal-
ysis allows a straightforward generalization to different
germanium detector experiments, especially the next-
generation tonne-scale experiment LEGEND-1000 [23].
Given the large number of detectors, detector- and run-
level tuning may be time-consuming in LEGEND. In that
case, the BDT’s ability to simultaneously train on all de-
tectors would be highly beneficial. Furthermore, the in-
terpretability study allows us to unravel the black-box
nature of machine learning models to reveal underlying
physics and independently discover new background cat-
egories without explicit programming. We intend to ap-
ply this model to LEGEND data, which could enable im-
provements in background rejection, and possibly help us
gain a more nuanced understanding of the detector per-
formance. Our future work involves using more powerful
and versatile machine learning models such as recurrent
neural network (RNN). RNN can be trained directly on
the Demonstrator’s waveform, which opens up an en-
tirely new avenue for more machine learning applications.
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