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ABSTRACT OF THE DISSERTATION
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Professor William Hodgkiss, Co-Chair
Professor David Sworder, Co-Chair

Wireless sensor networks (WSNs) are envisioned as an approach to a wide

variety of monitoring applications. From environmental monitoring to military

surveillance, the range of scenarios is diverse, as are the constraints on the net-

working problem. In most cases, these wireless systems are energy-constrained, and

it is impractical or infeasible to replace or recharge the batteries. These systems

must be designed with the goal of energy efficiency.

In this work, we investigate energy efficient approaches for WSNs that ex-

hibit a variety of connectivity properties. We study three categories of WSNs in
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particular. In the traditional view of multi-hop sensor networks, there is a large

number of sensor nodes with end-to-end connectivity, and they use multi-hop com-

munication. We also consider dense, small-scale sensor networks, in which there

are only a few nodes, and communication is primarily single-hop. Lastly, we look at

sparse sensor networks, known as a delay- or disruption-tolerant network (DTN).

These networks lack end-to-end connectivity, and must rely on mobility to make

connections to route data.

With these three categories of WSNs, we consider approaches that are

specifically applied to each unique scenario. For multi-hop WSNs, we use a dis-

tributed approach to Kalman filtering for target tracking. By moving the signal

processing onto the local nodes, the RF communication, which typically consumes

the most power, is reduced. Through simulation, we evaluate the tracking perfor-

mance.

For our approach to dense, small-scale networks, we exploit the fact that

multi-hop communication is rarely needed. We implement a hybrid MAC/routing

protocol that assumes that routing is only needed on rare occasions, thus re-

ducing the idle listening energy consumption. For sparse DTNs, we developed

a power management scheme that uses the local information available to deter-

mine a node’s likelihood of delivery, which is used to decide if a node should sleep

or listen/beacon. We evaluate these two categories of WSNs through simulation

and some experimental work (for the small-scale case), and we show significant

gains in energy efficiency over existing approaches.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless sensor networks have been envisioned as a new method of monitor-

ing the physical world. These systems consist of sensor-equipped wireless devices,

capable of performing simple processing tasks. Unlike wired sensing systems, these

sensor networks can be deployed in areas that are lacking in infrastructure, pro-

viding greater flexibility to conduct a variety of monitoring tasks. Large numbers

of these untethered nodes can be deployed for target tracking and surveillance,

environmental and habitat monitoring, and healthcare monitoring.

Although these wireless systems can be deployed more readily than wired

systems, their usage is constrained by their limited battery capacity. While some

systems do rely on energy-harvesting, a large number are still battery-powered.

Since it is often impractical or infeasible to recharge or replace these batteries,

the operation of the network is tied to a single battery life cycle. Therefore,

these systems must be designed with the goal of energy efficiency to maximize the

network lifetime.

The vision for sensor networks is typically that of a large number of small,

static devices with moderate transmission ranges. A well-known example of such is

the ExScal deployment [ARE+05] which was used for intruder detection and clas-

sification. Nodes with magnetometer, infrared, and acoustic sensors were placed at

the perimeter of a 1.3km×300m area to detect SUV, ATV, or human movement.

1
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Given the coverage perimeter, the typical node transmission range (∼30m), and

the number of nodes (10000), the ExScal network had high connectivity and re-

quired the use of multi-hop routing. These are two typical assumptions of systems

in sensor network research.

However, other sensor network systems have been proposed that challenge

these assumptions of high connectivity and multi-hop routing. For example, net-

works of sensor-equipped unmanned aerial vehicles (UAVs) have been studied, such

as Flying Gridswarms or the indoor UltraSwarm [HWNC05]. These systems con-

sist of a small number of vehicles with transmission ranges on the same order as

the coverage area, so multi-hop communication is usually not necessary. However,

such systems must still be optimized for energy efficient communication. These

vehicles have a limited payload for a battery that powers the propulsion, the sens-

ing subsystem, as well as the communication, so an efficient networking protocol

is important.

Other systems that do not conform to the traditional sensor networking

paradigm include deployments of few mobile nodes over large areas, such as the 30-

node ZebraNet wildlife tracking system [JOW+02] or the proposed Shared Wireless

Infostation Model (SWIM) system for gathering biological information of radio-

tagged whales [SH03, SH05]. If such systems are to be operational over a long time

to complete their study, a shorter range radio would be used, and connectivity

would typically be low. These types of networks challenge the assumption of high

connectivity that is characteristic of sensor network research.

These real monitoring systems have stretched the traditional view of wire-

less sensor networks as large, well-connected multi-hop networks of small, static

devices. Whether they have fewer nodes or have low connectivity, we must consider

energy efficient design approaches that are tailored to these different systems.

1.2 A Taxonomy of Energy Efficient Strategies

Before we discuss the different categories of sensor networks that we study,

we first provide an overview of proposed energy efficient strategies that can be



3

Data-Driven Duty-Cycling Mobility

Energy Efficient
Strategies

Figure 1.1: Energy conservation schemes.

applied to these systems. The energy conservation strategies that have been used

in sensor network research can be categorized as in Fig. 1.1, adopting the taxon-

omy used in the Anastasi survey paper [ACFP09]. Data-driven approaches involve

reducing the amount of sensor data to be communicated over the network, since

communication typically consumes significantly more energy than data process-

ing [RSPS02]. On the other hand, duty-cycling approaches involve controlling the

radio transceiver to be either awake, for sending and receiving, or in the low-power

sleep state, when no communication is needed. In the following subsections, we

delve deeper into these two categories. Mobility approaches introduce additional

mobile entities into the network to collect data. We do not consider using any

entities outside of the main network, and thus do not consider such approaches in

our work.

1.2.1 Data-Driven Approaches

The first category of energy efficient strategies we consider is data-driven

techniques. It has been shown that in a typical sensor network, computation usu-

ally consumes about 3 orders of magnitude less energy than communication [PK00].

The goal of data-driven approaches is to reduce the amount of data samples trans-

mitted through the network, while keeping the sensing accuracy within acceptable

levels for the particular application. One of the most studied data-driven methods
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is in-network processing or data aggregation. The idea is to move the computation

away from a remote processor and onto the nodes local to the sensed phenomena,

thus trading off communication for local computation.

For example, many deployed sensing systems continuously record and report

the unprocessed data to a remote site, as was done in the Volcán Reventador sensor

network [WALW+06]. However, by doing some processing, combining, or filtering

of the raw data locally on the nodes, the amount of data that is communicated

to the remote site can be reduced, along with the consumed energy. To achieve a

greater degree of in-network processing, data is not routed according to a shortest

path metric, but instead is routed through points where more data aggregation

can occur. This technique is known as data-centric routing [FRWZ00].

1.2.2 Duty-Cycling Approaches

The other major category of energy conservation approaches we consider

is duty-cycling. Duty-cycling involves implementing a sleep/wakeup scheme to

reduce radio energy consumption. Duty-cycling breaks down further into two broad

categories: topology control and power management.

When there are sufficiently many nodes, as in a typical sensor network,

there is usually redundant coverage. In topology control, this node redundancy

is exploited such that only a select subset of nodes are awake at a time. Node

redundancy can be viewed in terms of either geographic location or network con-

nectivity. Location-driven topology control schemes cycle through nodes that are in

the same geographic area and have redundant sensor information [XHE01, ZR03].

Connectivity-driven topology control schemes select the subset of nodes that pro-

vides sufficient sensing coverage and still allows for a connected network [CJBM02,

CE04].

In power management schemes, nodes independently implement a sleep/

wakeup cycle. Power management can be viewed as a complementary technique to

topology control, such that the subset of nodes that are covering the area control

the radio sleep/awake state at a finer granularity. Power management can be

implemented in different layers of the network architecture. Some wakeup schemes
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run on top of a medium access control (MAC) protocol [STS02, STGS02]. This

provides greater flexibility since they are agnostic regarding what MAC is used.

Other wakeup schemes are implemented directly in a MAC [YHE04, vDL03], which

can enable superior performance due to tighter integration.

1.3 Sensor Network Classification

In this section, we describe how we classify the sensor network systems that

we study, and for each class we describe which approaches to energy efficiency

are most applicable. To summarize the differences between types of networks, we

present a classification using our own nomenclature. The two network parameters

that we consider varying are the number of nodes N and the relative transmission

range r/
√
A, where r is the transmission range, and A is the deployment area.

We normalize the transmission range by
√
A, because scaling both r and

√
A

identically will have no effect on the network connectivity properties. A diagram

of our network classification is shown in Fig. 1.2.

1.3.1 Multi-Hop WSNs

For the first case we consider, we have r is small relative to
√
A and N

is sufficiently large such that the entire network is connected. We call this class

of networks Multi-Hop WSNs (Fig. 1.2). Because the transmission range is small

relative to the deployment area, nodes at different locations in the network are typ-

ically unable to communicate directly. Instead, intermediate nodes are required to

relay data, forming multi-hop communication routes. These multi-hop topologies

are commonly assumed in sensor network research, as seen in the ExScal deploy-

ment. Sensor networks are usually envisioned as collections of small devices with

relatively short range radios, and the number of nodes in the network is large

enough such all of the nodes are connected.

Most energy conservation approaches are designed for this range of WSNs.

Both duty-cycling and data-driven approaches apply. As an example, our work

presents a WSN application that works within the framework of a specific energy



6

R
el

at
iv

e 
T

ra
ns

m
is

si
on

 R
an

ge
 (
r 

/√
A

)

Number of Nodes (N)

Sparse WSNs
(Delay-Tolerant

Networks)

Connected

Disconnected

Multi-Hop WSNs
(Traditional WSNs)

Dense, 
Small-Scale WSNs

(Vehicle-Based 
Networks)

Figure 1.2: Wireless sensor network classification.
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conservation approach. This application is a target tracking system consisting of

a large number of static sensors. In traditional target tracking systems, there are

a small number of sensors, and the sensor signals are processed together to get

an up-to-date location of the target. Our challenge is to adapt this approach to

a system employing many energy-constrained sensor nodes. The energy efficient

strategy that handles this challenge most directly is a data-driven in-network pro-

cessing approach. In this problem, we assume a distributed computing network

architecture, in which the target tracking algorithm is computed on nodes local

to the detected event. This approach reduces the amount of energy-draining com-

munication as compared to a centralized approach, in which all of the raw data is

transmitted to a remote site for processing.

1.3.2 Sparse WSNs

To transition to the second class of networks, we take the previous case

of multi-hop WSNs but consider removing nodes from the network. In effect, r

remains small relative to
√
A, but we reduce N until the network has disconnected

portions. We term this class of networks Sparse WSNs (Fig. 1.2). With such low

connectivity and relatively small transmission ranges, communication and network-

ing is severely impaired. However, if mobility is introduced into the system, nodes

can physically move to come in radio range of each another, thus enabling data

routing. These kinds of mobile networks are known as delay- or disruption-tolerant

networks (DTNs). We typically encounter these types of networks in some wildlife

tracking systems, provided N and r are relatively small.

Because of certain characteristics of DTNs, there are limited options for

applying data-driven energy conservation schemes. Data-driven approaches, par-

ticularly in-network processing, rely on using data-centric metrics for routing to

enable more data aggregation. However, many DTNs do not assume control over

node mobility, so data messages are handed off upon contact with another node.

Duty-cycling with topology control is also not very applicable to sparse

WSNs. Topology control exploits redundancy in the network and can cycle through

nodes in a coordinated manner. For sparse DTNs, the coverage is not enough to
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provide sufficient redundancy to cycle through nodes.

The most suitable strategy for DTNs is duty-cycling with power manage-

ment, since these are simply sleep/wakeup cycles that depend on the application.

For DTNs, the sensible approach is to design the power management to run on top

of the MAC. The typical MAC for DTNs involves some sort of beaconing mecha-

nism for neighbor discovery, since nodes are typically not in contact. Our approach

is to design a power management that runs on top of this baseline beaconing.

1.3.3 Dense, Small-Scale WSNs

For the last class of networks, we consider a sparse WSN and bring the nodes

closer together. This has the effect of shrinking the coverage area A, so that the

relative transmission range r/
√
A increases. Eventually, nodes are brought in close

enough proximity that the network becomes connected again. We call this class

of networks Dense, Small-Scale WSNs (Fig. 1.2). Because the number of nodes

is small, connectivity is only achieved when nodes are so close together that the

network has near full connectivity (each pair of nodes can communicate directly

with one another). The characteristic of these networks is that communication

routes between nodes are mostly one or two hops in length.

The application that we are likely to find this class of WSNs is a vehicle-

based sensor network, such as swarming UAV systems. The transmission range of

these systems are on the same scale as the deployment area, since there are a small

number of vehicles that must communicate with each other on a regular basis.

For dense, small-scale WSNs, data-driven approaches for energy conser-

vation do not provide a significant gain in efficiency. Any gain from in-network

processing will be severely limited because most nodes are in communication range

of each other. The distance from nodes to the sink will only be one or two hops,

so it is simple enough to route the unprocessed data to the sink.

Duty-cycling approaches with topology control are also not very applicable

to these networks. The number of nodes is so low for these small-scale networks,

so the node redundancy would usually be insufficient for topology control.

As with sparse WSNs, the most suitable approach for dense, small-scale
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WSNs is duty-cycling with power management. Although running a power man-

agement on top of the MAC would work, having the power management integrated

into the MAC turns out to be much more efficient. Because the network is simply

a small number of nodes in close range, the MAC function is most important.

Therefore, a MAC with a built-in wakeup schedule can provide greater energy

savings.

1.4 Contributions and Overview

This dissertation studies specific, novel energy efficient strategies for the

three classes of networks presented in the previous section. In Chapter 2, we

study the multi-hop WSN target tracking problem. In accordance with the in-

network processing approach, we implement a Kalman filter within a distributed

computing network architecture. The network is composed of a field of static

proximity sensors, which are triggered by a single moving target. The task is to

take the series of triggered sensor events, which are spaced irregularly in time, and

accurately track the target location. We develop our approach by starting with a

centralized tracking scenario, and we gradually adapt it to the proximity sensor

case with intermittent sampling.

Chapter 3 deals with the sparse delay-tolerant network. Many DTN ap-

plications are rich with information that is local to each node, such as location,

velocity, or history of contacts. Such information is typically used for delay-tolerant

routing to reduce delivery delay or improve delivery success. Our novel approach

to power management in DTNs is to use such local state information in a sleep/

wakeup scheme. We identify geographic convergecast as a particular application

that is rich in this kind of information. For this application, we develop a sleep/

wakeup decision that is a function of the local state. This is shown to outper-

form other power management approaches that do not fully leverage the available

information.

In Chapter 4, we handle the dense, small-scale swarming UAV network.

To our knowledge, no solutions have been proposed that specifically optimize the
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communication for these kinds of networks. The application we study is a contin-

uous monitoring system, in which nodes report all the data to the sink. This type

of traffic pattern is also known as convergecast. Our approach to energy efficiency

is to implement a combined MAC/routing duty-cycling protocol, which we show

to be more efficient than having separate routing and MAC layers.

In Chapter 5, we provide conclusions and future directions for this work.

1.5 Impact

The main impact of our work is that it extends the possibilities for conduct-

ing monitoring studies for different sensing systems. For example, without energy

efficient solutions, missions for autonomous vehicle networks would have stricter

time constraints to perform their tasks. As another example, a DTN monitoring

system would have a shorter overall lifetime, either cutting the study short or re-

quiring more frequent re-deployment. By tailoring our approaches to the specific

classes of networks, we can provide energy efficient solutions with performance that

exceeds that of traditional WSN solutions. Our work enables a variety of sensing

systems to extend the operation for long-term study and for greater flexibility at

the application level.



Chapter 2

Multi-Hop WSNs: A Data-Driven

Approach

In this chapter, we study an example of the traditional view of multi-hop

WSNs. We consider the task of designing a target tracking algorithm for an energy-

constrained multi-hop WSN deployed over a large area. The assumption in the

target tracking problem is that the network is operating within a data-driven, in-

network processing framework. With this assumption, we first describe the generic

target tracking algorithm that is traditionally used, and then we demonstrate how

to adapt it within our distributed sensor network framework.

2.1 Introduction

Target tracking is an essential task for commercial and military applications.

For example, traffic monitoring and facility security are applications that require

the ability to track an object[LRZ03]. Energy-aware target tracking for wireless

sensor networks is recognized as an important and challenging problem [BRS03]. In

this problem, sensor information from multiple nodes must be processed together to

accomplish the tracking task. One approach to processing the sensor data is to do

so within a centralized architecture, in which all of the raw sensor measurements are

sent to a single remote site to be processed. This architecture, however, demands

significant bandwidth for communication of all the sensor information, which can

11
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put a strain on the sensors’ on-board batteries [CZMK03]. Other issues with a

centralized architecture are high latency due to the increased traffic, and the lack

of robustness with the central site being a single point of failure.

To reduce the communication burden, a distributed architecture is preferred

for wireless sensor networks. In a distributed architecture, a different node is

chosen locally to be a processing node, and the chosen node changes with the

target position. A subset of local sensors in the network is chosen to collect sensor

data while the remaining sensors are placed in a power-saving sleep mode. An

added advantage to using a distributed architecture is its robustness to network

changes and node failures [CK03].

In this chapter, we look at an example of a distributed tracking algorithm

for a moving target. We assume that the target has been detected prior to track

initiation. At each sensor event, all of the data processing occurs at the triggered

node. We consider the problem of tracking only a single target. Extension to the

multiple target tracking problem is not considered.

In the rest of the chapter we set up the basic Kalman filtering framework

that will be used for target tracking. Then we describe the positioning of the

nodes in the sensor network and how the proximity sensor data is used as input

in the filtering framework. We then develop our approach to adapt the Kalman

filter to the distributed sensor network. Finally, we evaluate our approach though

simulation and provide our insights.

2.2 Kalman Filtering

The Kalman filter is a plant-model based estimator that minimizes the

mean squared error at each iteration of the algorithm [BSLK01]. The Kalman

filter is a common approach used for target tracking applications. The state-space

representation of the target’s state dynamics and the observation are provided in

this section. The Kalman filter equations, which estimate the state, also are given.
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State Dynamics Equation

For tracking applications, the state vector xn typically includes the target

position, velocity, and any other additional dynamics or properties of the target.

The time evolution of the target state due to the dynamics is given by the following

equation:

xn+1 = Φxn + Γwn (2.1)

where Φ is the state transition matrix, Γ is the process noise matrix, and wn is

the Gaussian process noise vector with distribution N (0,Q).

Observation Equation

The observation vector yn is the recorded data as a function of the state

vector. This vector is used as input into the Kalman filter. The observation

equation is given by

yn = Hxn + nn (2.2)

where H is the observation matrix, and nn is the Gaussian observation noise vector

with probability distribution N (0,R).

Filtering Equations

The Kalman filter uses the state dynamics plant model and filters the input

observations yn to estimate the state vector. It operates in two phases: a prediction

phase and a correction phase. The prediction equations predict the next state as

follows:

x−n+1 = Φx̂n (2.3)

P−n+1 = ΦPnΦ
T + ΓQΓT (2.4)

where P−n is the matrix that describes the covariance of the error between the

predicted and actual state vector.

The correction equations then incorporate the current observation yn+1 to
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correct the prediction:

Kn+1 = P−n+1H
T (HP−n+1H

T + R)−1 (2.5)

x̂n+1 = x−n+1 + Kn+1(yn+1 −Hx−n+1) (2.6)

Pn+1 = (I−Kn+1H)P−n+1 (2.7)

where Kn is the Kalman gain, x̂n is the state estimate, and Pn is the covariance

of the error between the estimated (corrected) and actual state vector.

2.3 Target Dynamics

In this section, we provide the equations that define the dynamics for our

particular target motion model. The state vector is given by

x =


x

y

ẋ

ẏ

 (2.8)

whose elements are x position, y position, x velocity, and y velocity. At the start

of data collection, the initial state vector is given by

x0 =


xinit

yinit

ẋinit

ẏinit

 (2.9)

The target motion model used in this work is the (nearly) constant velocity

(CV) model [BSLK01], whose state transition matrix and process noise matrix are
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given by

Φ =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 (2.10)

Γ =


T 2

2
0

0 T 2

2

T 0

0 T

 (2.11)

The process noise wn is an independent Gaussian random process with

covariance matrix

Q =

(
qT 0

0 qT

)
(2.12)

where q = 1 and T = 0.1 is the time interval between samples.

2.4 Sensor Field Setup

The sensor field is generated in a manner similar to the work by McErlean

and Narayanan [MN02] and is set up as follows:

• 900 nodes are placed in a random grid-like formation, initially centered at

grid points spaced 30 meters apart: (x, y) = (30i, 30j) (meters), where i =

1, 2, . . . , 30, and j = 1, 2, . . . , 30.

• Actual node locations deviate from the grid points by additive Gaussian

random variables with a standard deviation of σpos = 2m in both x and y

coordinates. The locations are stored in a matrix:

A =


xA(1) yA(1)

xA(2) yA(2)
...

...

xA(900) yA(900)

 (2.13)

An example of a sensor field is shown in Fig. 2.1.
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Figure 2.1: A sample deployment of a field of sensor nodes.

• The node locations are assumed to contain some associated error. These

assumed node locations deviate from the actual node locations by additive

Gaussian random variables with a standard deviation of σb = 0.4m in both

x and y coordinates. The locations are stored in a matrix:

L =


xL(1) yL(1)

xL(2) yL(2)
...

...

xL(900) yL(900)

 (2.14)

These assumed locations are stored in each sensor and used as inputs to the

tracking algorithm.

2.5 Proximity Sensor Data

The type of sensor that we consider in this work is a simple proximity

sensor, which only detects whether a target is or is not within a sensing range d.
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Figure 2.2: Proximity sensor model.

This type of sensor model is illustrated in Fig. 2.2. The measurement y1n is the

assumed location of the triggered sensor node. We assume the time associated

with the measurement (n) is halfway between the time the target enters and exits

the sensor’s range. Unlike a traditional tracking system, these time measurements

do not occur at regular intervals. This is due to having multiple proximity sensors

that are dispersed over a large area. To adapt the Kalman filter to this scenario of

sparsely sampled data, we first study the basic Kalman filtering case with regularly

sampled measurements. Then we look at a case where we remove some of the

measurements such that the remaining measurements are irregularly distributed

in time, and we adapt the Kalman filter for this case. Finally, we can apply the

same principles to adapt the Kalman filter to the proximity sensor case.

2.5.1 Tracking With Noisy Position Measurements

Before simulating the actual proximity sensor network, we first simulate a

simple two-dimensional tracking scenario in which noisy position measurements

are made at regular time instants. The target motion is the same as in Section 2.3,
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and the initial position of the target is given by xinit = 5 + nx and yinit = 5 + ny,

where nx and ny are independently and identically distributed as N (0, σ2
init). The

initial velocity of the target is given by ẋinit and ẏinit, both uniform randomly

distributed over the interval [0, vmax] (we choose vmax = 10). The noisy position is

reported as y0n at the nth detection according to

y0n = Hxn + nn (2.15)

where nn ∼ N (0,R) is the measurement noise at time sample n, and

H =

(
1 0 0 0

0 1 0 0

)
(2.16)

R =

(
σ2
meas 0

0 σ2
meas

)
(2.17)

where here we choose σ2
meas = σ2

init = 2.25. The Kalman filter starts with the

initial state:

x̂0 =


E[xinit]

E[yinit]

E[ẋinit]

E[ẏinit]

 =


5

5

5

5

 (2.18)

P0 =


σ2
init 0 0 0

0 σ2
init 0 0

0 0 v2max

12
0

0 0 0 v2max

12

 (2.19)

where the σ2
init terms come from the initial uncertainty in starting location, and the

v2max

12
terms are calculated by taking the second moment of the uniformly distributed

initial velocity. The Kalman filter uses the parameters from the constant velocity

motion model (Section 2.3), and it filters the y0n measurements to get estimates

of the target state x̂n, which contains the target position. A simulated example of

this tracking scenario is shown in Fig. 2.3. The target moves from the bottom-left

of the figure to the top-right. From the figure, we observe that the filtered data
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Figure 2.3: Target tracking for noisy position measurements, with 3σ prediction

circles.

improves on the noisy measurement. The circles show where the Kalman filter

predicts the target should be within a 3σ radius. These circles are defined by the

predicted position (from x−n+1) and predicted position error variance (from P−n+1).

The predicted position error variance in the x (or equivalently, the y) coordinate is

shown in Fig. 2.4. Fig. 2.4 shows that the error variance of the predicted x (or y)

position decreases and flattens out with more data, indicating an increasing level

of certainty in our estimates.

2.5.2 Tracking With Sparse Noisy Position Measurements

As an intermediate step between the tracking problem with noisy position

measurements and the proximity sensor problem, we study the scenario of track-

ing when data samples are missing. A distinction between the proximity sensor

network scenario and the generic two dimensional tracking problem is that in the
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Figure 2.4: Noisy position measurements predicted position error variance P−n in

the x (or equivalently, y) direction.

proximity sensor network, the data is not available at a constant sampling rate. To

study the performance of the Kalman filter when the samples are spaced irregu-

larly in time, we repeat the tracking simulation of Subsection 2.5.1, but we remove

a large section of the measurement data. For the samples where no measurement

data is available, only the prediction step (Eqns. (2.3)-(2.4)) of the Kalman filter

is carried out, and x̂n+1 and Pn+1 are set to x−n+1 and P−n+1, respectively.

Fig. 2.5 shows the result of the simulation. Again, the target moves from

the bottom-left of the figure to the top-right. The solid line indicates the sam-

ples for which measurements are available, and the dotted line indicates when no

measurements are available. The large ellipses are the 3σ prediction error ellipses.

After the 10 samples without data, the prediction for the target location is less

certain, and resulting in a higher error variance, and a larger 3σ prediction error el-

lipse. This larger ellipse includes the beginning of the connected line segment near

position (22m,24m), where the measurements resume. This shows that although

no measurements of the target are available for those 10 samples, the prediction
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Figure 2.5: Target tracking for sparse position measurements with 3σ prediction

circles.

error ellipse is still able to encompass the target’s position when the measurements

are available again. The predicted error variance is plotted in Fig. 2.6. We observe

that the variance (uncertainty) of the prediction in the x or y coordinate decreases

when data is present but grows sharply in the absence of data.

2.5.3 Tracking With Proximity Sensor Measurements

We now study the proximity sensor network scenario, in which a sensor node

is triggered if a target is present within the sensing range d (chosen here to be 15m).

When a sensor is triggered, it reports its location as the measurement. The time

that corresponds to this measurement is halfway into the time interval over which

the target is in sensing range. These measurements occur very sparsely in time.

We adopt the approach from Subsection 2.5.2, so that when no measurement is

available, only the prediction step of the Kalman Filter is carried out. The assumed
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sensor location Lj is reported at the nth time sample as

y1n =

(
Lj,1

Lj,2

)
(2.20)

To adapt these measurements to the state space observation equation (Eqn. (2.2)),

we model the Gaussian noise term nn as having two sources of noise: (1) the

difference between the actual triggered node location (Aj) and the assumed node

location (Lj) and (2) the difference between the target location (Hxn) and the

actual triggered node location (Aj). The resulting error covariance matrix is given

by

R =

(
d2

3
+ σ2

b 0

0 d2

3
+ σ2

b

)
(2.21)

The σ2
b term is from the uncertainty in the assumed node locations. The d2

3
term

comes from target location error, in which we using the second moment of a uniform

distribution to approximate the Gaussian term. The target location is modeled as

uniformly distributed in the jth sensing range [Aj,k−d,Aj,k +d] in both the x and

y coordinates.

The Kalman filter is initiated at the first detection, so the initial state

estimate is the corresponding assumed sensor location, or

x̂0 =


E[xinit]

E[yinit]

E[ẋinit]

E[ẏinit]

 =


y10,1

y10,2

5

5

 (2.22)

P0 =


d2

3
+ σ2

b 0 0 0

0 d2

3
+ σ2

b 0 0

0 0 v2max

12
0

0 0 0 v2max

12

 (2.23)

where the v2max

12
terms are calculated by taking the second moment of the uniformly

distributed initial velocity.
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2.6 Simulation Evaluation

We simulated a target moving within a sensor field using the motion dy-

namics given in Section 2.3, and we assessed the performance of each tracking

system using the mean-squared error between the true and estimated positions.

The simulation is run for 1000 samples or until the target is outside of the sensor

field:

xn,1, xn,2 /∈ [30, 900] (2.24)

Fig. 2.7 is one realization of the proximity sensor simulation of the target

moving through the sensor network. We observe that the track estimates are able to

approximate the actual target path better than the sensor locations, demonstrating

the work of Kalman filter. Fig. 2.8 is a zoomed-in version of the proximity sensor

simulation with the 3σ circles shown, which, with high probability, encompass the

target position at the times of detection. These 3σ circles can be used to predict

the location of the target so that neighboring nodes can be alerted of the target’s

arrival. They can also be used for electing the next local processor node.

Fig. 2.9 shows the error variance of the predicted position as a function

of time. As we have observed with the simulation from Section 2.5.2, the error

variance increases sharply in the absence of measurement data, when only the

prediction step of the Kalman filter is carried out. When a measurement is re-

ported, the error variance decreases drastically. As time progresses and samples

are provided, the general trend is that the error variance decreases, indicating an

increase in confidence in our track estimates. Fig. 2.10 plots the squared error in

the position as a function of time. We can see that while the error of the unfil-

tered positions does not display a trend, the error of the filtered positions shows a

downward trend with time. In other words, while the observations have the same

error variance over time, the error variance of the estimates trends downward.

In Figs. 2.11-2.14, we also show a target whose motion dynamics have a

slightly curved track, and is therefore not exactly matched to the CV motion

model of the Kalman filter. The position error still has a downward trend, and

the error ellipses can still encompass the target position, though not quite as well

as if the motion models were matched. If the mismatch was worse, one simple
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Figure 2.7: Case 1: Simulation of target tracking with proximity sensors, d = 15,

q = 1.

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

x (m)

y 
(m

)

 

 
track actual
track estimate
sensor
data

Figure 2.8: Case 1: Simulation of target tracking with proximity sensors (zoomed

version), with 3σ prediction circles, d = 15, q = 1.
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Figure 2.9: Case 1: Predicted variance P−n in the x (or equivalently, y) direction

for target tracking with proximity sensors, d = 15, q = 1.
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Figure 2.10: Case 1: Squared position error for target tracking with proximity

sensors, d = 15, q = 1.
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Figure 2.11: Case 2: Simulation of target tracking with proximity sensors, curved

track, d = 15, q = 1.

design change that could be made to the tracking algorithm is to increase the

assumed process noise. This change allows the Kalman filter to compensate for

target motion that is more dynamic than assumed by the plant model.

2.7 Summary

The proximity sensor provides very little information about the target loca-

tion, compared to sensors that detect the received power of a target or directional

information. One advantage of using the proximity sensor is that it reduces the

amount of data that must be shared among the nodes, increasing the overall power

efficiency of the network. Also, as our simulations show, the Kalman filter is able

to improve these position measurements to get better estimates of the target po-

sition. Another useful feature of the Kalman filter is the prediction error circles,

which can be used in an energy-saving effort to select the set of sensor nodes to be

active for tracking.
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Figure 2.12: Case 2: Simulation of target tracking with proximity sensors,

(zoomed version) with 3σ prediction circles, curved track, d = 15, q = 1.
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Figure 2.13: Case 2: Predicted variance P−n in the x (or equivalently, y) direction

for target tracking with proximity sensors, curved track, d = 15, q = 1.



29

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

time (s)

Sq
ua

re
d 

Po
sit

io
n 

Er
ro

r

 

 
filtered
unfiltered

Figure 2.14: Case 2: Squared position error for target tracking with proximity

sensors, curved track, d = 15, q = 1.
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Chapter 3

Sparse WSNs: Local

Information-Based Power

Management

In the previous chapter, we examined how a data-driven approach to energy

efficiency in a multi-hop WSN affects a specific task of the sensor network. In this

chapter, we consider the case of sparse WSNs, in which there are fewer nodes in the

network, but transmission ranges are still short relative to the deployment area.

We present a duty-cycling power management scheme for delay-tolerant networks

that is designed to run on top of a MAC. First, we present the general idea of

including local information in a sleep/wakeup decision. Then we choose a specific

application to develop our sleep/wakeup strategy, and evaluate its effectiveness

through simulation.

3.1 Introduction

In recent years, significant effort has been devoted to a class of mobile ad

hoc networks (MANETs) known as delay- or disruption-tolerant networks (DTNs).

DTNs are typically composed of nodes with intermittent connectivity, and mobility

is often utilized to route data between nodes with no end-to-end connectivity. Ap-

plications such as vehicular ad hoc networks (VANETs), large-scale mobile sensor

30
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networks, or networks in challenged environments can often suffer from low con-

nectivity. Applying a DTN framework to such networks can enable communication

to a greater extent.

Just as in traditional wireless sensor networks, energy conservation is a con-

cern for delay-tolerant networks. Because data delivery in DTNs is characterized

by long delays, it is important to extend the network lifetime. Mobile nodes are

equipped with batteries of limited capacity, thus constraining the operation of the

network. A power management mechanism designed specifically for DTNs would

aid energy efficient communication.

Some power management mechanisms that have been proposed for DTNs

use some global information about the network to determine when to put nodes

in a low-powered sleep state. For example, Jun et al [JAZ05] used statistics about

node inter-contact time and contact duration time to trade off contact discovery

probability for energy. Others have used network traffic load information to de-

termine a sleep schedule. However, in addition to the global network information,

there is often a lot of local information available to aid in power management.

For instance, nodes may have their own position/velocity information from GPS,

packet queue length information, expiration time of contacts, history of contacts,

or road traffic information (for VANETs). We propose using such information for

nodes to decide when to be awake to transmit or receive, and when they can sleep.

For example, we consider a node that has no data to transmit, but may

make itself available to relay data for another node. If a node’s local information

indicates that its probability of delivery is not good (e.g., it is far away from a

known sink, it has not come into contact with many nodes), the node can decide

to put the radio in a low-power sleep mode more often. With such a strategy, nodes

actually utilize local information to reduce the amount of idle listening when they

have low routing utility, thus conserving energy.
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3.2 Related Work

Power management for MANETs and wireless sensor networks (WSNs) is

a well-researched area. Although power management for MANETs and WSNs

could be applied to a DTN framework, the focus is different because traditional

MANETs assume end-to-end connectivity, whereas DTNs are characteristically

sparse networks, in which nodes make infrequent contacts through mobility. There

have been a few power management schemes proposed for DTNs, but they have

not exploited the local information available to the extent that we have in our

work. Also, the aim of our work is to minimize the energy consumption under the

constraint of achieving a desired delivery ratio.

Jun et al. [JAZ05] proposed a synchronous, knowledge-based power man-

agement framework for delay-tolerant networks. They used global information

to trade off contact discovery probability for sleep, such as inter-contact times

and contact duration. The only local information used is knowledge of current

contacts. Xi et al. [XCC07] proposed an asynchronous context-aware power man-

agement scheme (CAPM), which calculates the duty cycle based on the traffic load

and node density to minimize energy. Our proposed scheme differs in that it is

synchronous and our sleep schedule is built on a baseline duty cycle, which could

be determined in a similar manner as CAPM.

The existing scheme that best takes advantage of local information is the

adaptive exponential beacon period protocol (AEB) [CS09]. AEB is a synchronous

protocol in which each node uses the knowledge of the most recent contact to

lengthen the beacon period. This scheme is a precursor to our work, which seeks

to exploit all useful local information to determine a sleep schedule. In our ap-

proach, we layer our power management scheme on top of AEB. We compare our

performance to AEB only and show that our scheme outperforms AEB in energy

for a given delivery ratio. Our approach also has more flexibility in tuning its

performance to achieve a desired delivery ratio.



33

3.3 Local Node State for Delay-Tolerant Routing

Our proposal of using a node’s local state information to do power manage-

ment often goes hand in hand with the particular routing scheme. In this section,

we present an overview of delay-tolerant routing and how it relates to local infor-

mation.

In traditional MANET routing, network topologies are assumed sufficiently

stable relative to the transmission speed, such that end-to-end routes can be estab-

lished and used for data transmission. For DTNs, end-to-end routes are typically

unavailable, so routing must be performed in an opportunistic manner. Specifi-

cally, at each node encounter, a node must make a decision about transmitting its

data.

Most DTN routing falls under the category of multi-copy routing, in which a

source node propagates multiple copies of a message through the network in an ef-

fort to reduce the delay and increase the overall delivery ratio. Usually, multi-copy

strategies include some type of control to limit the storage and communication

demands. Some of these strategies are stateless, in which no external information

is used in routing decisions [VB00, SPR05], while others take into account informa-

tion on the nodes’ states, such as location or contact history data [LDS04, WW06].

A smaller portion of the research is devoted to single-copy routing, in which for-

warding decisions can be made randomly or based on some utility function [SPR04].

If a single-copy routing scheme is well-designed and sufficient information is avail-

able to the nodes, the routing scheme can be competitive with multi-copy routing,

while requiring significantly less network resources.

Whether multi-copy or single-copy, it is typically advantageous to use nodes’

state information in a given DTN routing scheme to predict whether forwarding

data to another node will improve data delivery. In the next section, we describe

how we use that same local information for power management in such a way that

routing performance is minimally affected.
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3.4 Local Node State for Power Management

3.4.1 Network Model

We model our network as a collection of wireless nodes moving in a circu-

lar area. The node density is sufficiently low such that the network is generally

disconnected. The nodes move according to the random direction (RD) mobility

model [Bet01] with zero pause time, and nodes’ velocity vectors reflect off the

edge of the space. Our proposed power management is a clock-based scheme that

assumes network-wide synchronization.

3.4.2 Baseline Beaconing Mechanism

We propose a framework for power management using a synchronous wake-

up, in which nodes decide when to beacon and listen to make a connection with

another node. As a baseline, we start with a modified AEB protocol [CS09], since

it already utilizes some local information. This mechanism consists of a beacon

window, a post-window space, and a wakeup period (Fig. 3.1), each of which

is synchronized across all nodes. This network-wide synchronization is achieved

independent of the beacon messages, which are described as follows. When a node

wants to beacon, it waits a random time before sending its beacon message. A

node sending a beacon-response then waits a random time before sending in the

post-window space.

The lengths of the periods in the baseline cycle are set a priori, and they can

be set to approximate a particular delivery performance, which is dependent on the

given specifications of network dynamics (e.g., transmission range, node velocity,

node density, motion model, etc.). Setting these period lengths is outside of the

scope of our work. The actual beacon cycle doubles for each beacon opportunity

without transmission, up to 2hmax× the original cycle. Our baseline only differs

from the original AEB in that the communication is sender-initiated instead of

listener-initiated. This results in slightly lower energy consumption, since only

nodes with data send a beacon. Our power management is layered on top of this

baseline beaconing.
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Figure 3.1: Baseline beaconing mechanism for DTN power management.

3.4.3 Local Information-Based Sleep

With the baseline AEB protocol in place, nodes can further decide at each

beacon opportunity whether to wake up or continue to sleep. For our approach,

we use the local information available to the node to make this decision.

A node makes an estimate of its ability to deliver data based on information

available to it prior to any communication in the current beacon window. Examples

of such information may be the packet queue length, packet expiration times,

history of contacts, road traffic conditions, mobility map information, or battery

level. These kinds of information are frequently proposed in the literature for use

in delay-tolerant routing. Our scheme uses the same information to judge a node’s

ability to deliver data, and subsequently makes decisions for sleep and wakeup.

To describe our power management concept, we provide an example of how

local information can be used to reduce energy consumption for a node with data,

which we call a data carrier, and a node without data, which we call a relay

node. For a data carrier, the local state can be more favorable or less favorable for

successful delivery to the sink. An example of a favorable state is having a history

of frequent contact with the destination. If a carrier is in a favorable state, it can

reduce the frequency of beaconing and listening to detect other nodes, since it has

a high likelihood of delivery and is in no need of a relay node. A carrier in an

unfavorable state will beacon more frequently, to try to hand off to a node with a
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more favorable state.

Relay nodes make themselves available to assist carriers in delivering data

with a desired probability of success. A relay node with an unfavorable state has

a lower likelihood of delivery and has little use in offering its relaying services, so

it listens less frequently. When in a favorable state, a relay node will listen more

frequently to take on data from carriers with a lower likelihood of delivery.

In Fig. 3.2, we illustrate the manner in which we run our local information-

based power management mechanism on top of the baseline beaconing mechanism.

For the purposes of this illustration, we assume a beacon at every cycle (hmax = 0).

We first consider a relay node and illustrate its operation in Fig. 3.2a. At time

0, a relay node uses its local information to determine that it has a high enough

probability of contacting the destination. Because it is in a favorable state, it will

listen to assist an unfavorable node in need of a relay. In this case, it does not

receive any data. At time t0, the state of the node changed enough so that it is no

longer considered favorable. It is unnecessary to make itself available since it has

a low probability of delivery, so instead of listening, it chooses to sleep through the

entire period. When the node becomes favorable again at time t1, it listens at the

next opportunity.

The strategy for data carriers is illustrated in Fig. 3.2b. Data carriers have

to be concerned with achieving a desired delivery ratio for its data. For data

carriers, the decision may not simply be to sleep when unfavorable and wake up

when favorable. Rather, the task is to choose a suitable beaconing/listening rate,

such that the data is delivered with a certain probability of success. A carrier with

a less favorable state wakes up for more of the beacon windows because it wants

to hand off to a more favorable node. A carrier with a more favorable state can

sleep for more of the beacon windows because it is less likely to require a relay.

3.5 Geographic Convergecast Application

To illustrate our local information-based power management concept, we

choose a single-copy, geographic routing scenario. In geographic routing, nodes
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Figure 3.2: Local information-based power management.
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have knowledge of their own physical locations (e.g., via GPS, localization) and

of the location of the destination, and they make routing decisions based on this

information. This scenario frequently arises in systems such as mobile sensor net-

works or vehicular ad hoc networks (VANETs). This particular application is very

rich in local information that is available at each node, so it is well suited for our

power management scheme. We do not consider replication-based (epidemic) rout-

ing, since our power management is most efficient when nodes have empty queues.

For simplicity, we consider a convergecast application, in which many source nodes

send data to a single sink node.

In our geographic routing, the metric used to make handoff decisions is the

rate of progress of the mobile node. When a node with a packet makes contact

with another potential relay node, they compare their rates of progress toward

the destination. This information is contained in the beacon and beacon-response

packets. If the potential relay node has a higher rate of progress, the packet is

handed to it, and it assumes the duty of delivering the packet. The equation for

the rate of progress is

ṗ = v cos θ (3.1)

where θ is the angle between the vector from node to destination and the velocity

vector (Fig. 3.3). We assume the magnitude of the velocity vector v is constant.

As a result, our routing metric performs identically to the motion vector (MoVe)

algorithm for VANETs [LCGZ05], in which the angle θ is the routing metric.

For the geographic convergecast application, the local state metrics that

we consider in our sleep strategies are rate of progress (ṗ), proximity to sink (d),

and packet expiration time (texp). For these metrics, the favorable states include a

higher rate of progress, closer proximity to the sink, and a longer packet expiration

time. In the following section, we detail the methods for mapping these local states

to a sleep/wakeup decision.
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3.6 Power Management for Geographic

Convergecast

The goal for our power management scheme is to minimize energy consump-

tion while still achieving a desired packet delivery ratio. If a low enough target

delivery ratio is chosen, a simple approach to minimizing the energy is to put all

relay nodes to sleep and only wake up data carriers when in range of the sink

node (since they have knowledge of their own and the sink’s locations). For our

purposes, we only consider target delivery ratios that are high enough to require

some routing.

We express the node’s local state as a combination of the three metrics,

(ṗ,d,texp). We choose different approaches for relay nodes and data carriers when

mapping the state to a sleep/wakeup decision. Relay nodes are not in possession of

any packets, so texp is unknown to them, and they only know the state (ṗ,d). Even

for this state space, it is still complex to evaluate a relay node’s likelihood of data

delivery. For simplicity, we only consider the state ṗ, and we define a threshold ˜̇p.

Then the sleep/wakeup is decided as follows:

relay node radio state =
{ Sleep , if ṗ < ˜̇p

Wake up , if ṗ ≥ ˜̇p
(3.2)

For data carrier nodes, our strategy is to set a beaconing/listening rate for



40

a given state (ṗ,d,texp). Similar to AEB, we choose beacon periods Tbeac(ṗ, d, texp)

that are powers of 2, so that carrier nodes have beacon periods that are multiples

of one another. To choose an appropriate Tbeac, a data carrier estimates its own

delivery probability for various values of Tbeac, and it chooses the lowest beacon

rate that approximates the desired delivery probability. Since Tbeac depends on

texp, it must be computed at each time step, and the sleep/wakeup is decided as

follows:

carrier node radio state =
{ Sleep , if t (mod Tbeac) 6= 0

Wake up , if t (mod Tbeac) = 0
(3.3)

where t is a global clock time step.

3.7 Pre-computing Delivery Ratio Using Markov

Chain Model

Because we do not have closed-form expressions of the geographic delay-

tolerant routing scenario, we cannot compute estimates of the delivery probability

in real time. Instead, we compute the threshold ˜̇p for relay nodes and the beacon

periods Tbeac(ṗ, d, texp) for carrier nodes prior to implementing the power manage-

ment on the nodes.

To approximate the delivery ratio for the given design parameters ˜̇p and

Tbeac(ṗ, d, texp), we model the geographic delay-tolerant routing system as a discrete

Markov chain. We quantize the state values of ṗ and d so that there are a finite

number of states:

ṗ ∈ {[−10,−9), [−9,−8), . . . , [8, 9), [9, 10]} (3.4)

d ∈ {[0, 100), [100, 200), . . . , [1300, 1400), [1400, 1500]} (3.5)

Our state vector, xt, represents the distribution of data packets throughout

the system. With the above quantization, there are 300 possible combinations
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Figure 3.4: Markov chain model for geographic convergecast.

of (ṗ, d) pairs, so xt is a 300-element row vector. To model the progress-based

routing and the network dynamics, we have two 300× 300 transition matrices, the

routing matrix Φrt and the motion matrix Φmv. If a node is awake for a packet

handoff opportunity, we update the system using xt = xtΦrt. At each time step,

the dynamics of the system makes the update xt+1 = xtΦmv.

To model the data arrival at the sink, we set some of the elements φ(ṗ,d)m,(ṗ,d)n

in the transition matrices Φrt and Φmv so that any packet that enters a state with

a d that is in transmission range of the sink does not leave that state (Fig. 3.4).

Formally, we define those matrix elements as

φ(ṗ,d)m,(ṗ,d)n =
{ 1 , if m = n

0 , otherwise
(3.6)

for the (ṗ, d)m in which d < r, where r is the transmission range. To get st, the

delivery ratio at a given time t, we sum up the states in xt that have d in range of

the sink:

st =
∑
d<r

x(ṗ,d),t (3.7)
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3.7.1 Computing Transition Matrices

To model the progress-based routing in the transition matrix Φrt, we first

made the simplifying assumption that handoffs occur in the same relative proximity

d. Then we modeled the handoffs as the transition (ṗm, d)→ (ṗn, d), where ṗm <

ṗn. This is computed as:

φ(ṗ,d)m,(ṗ,d)n = pmcP (random node’s progress = ṗn) +

pmrP (random node’s progress = ṗn)1(ṗn > ˜̇p) (3.8)

where pmc and pmr are the probability of meeting a carrier or relay during one time

step, respectively, and 1(ṗn > ˜̇p) is the indicator function for when the receiving

state’s ṗ is greater than the threshold ˜̇p. pmc and pmr are computed analytically

using methods from Spyropoulos et al[SPR06]. The expressions are as follows:

pmc = 1− (1− 2rvv̂rd
A

)pcN (3.9)

pmr = 1− (1− 2rvv̂rd
A

)prN (3.10)

where v̂rd is the normalized relative velocity for the RD mobility model, pc is the

probability that a random node is a data carrier, and pr = 1−pc is the probability

that a random node is a relay node. The values of pc and pr are dependent on

the network settings. Because data converges to fewer nodes over time, the pc and

pr terms are actually time-dependent values, but we model them as constant. For

our study, these values were obtained by simulation. The expressions for pmc and

pmr are approximate, in that they do not account for initial conditions and edge

effects.

The probability of remaining in the state (ṗ, d)m is

φ(ṗ,d)m,(ṗ,d)m = 1−
∑

(ṗ,d)n 6=(ṗ,d)m

φ(ṗ,d)m,(ṗ,d)n (3.11)
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Table 3.1: DTN Simulation Parameters.

Parameter Value

Packet Lifetime 2500 s

Field Radius 1500 m

Transmission Range 200 m

Node Velocity 10 m/s

RD Time Epoch 10 s

The network dynamics transition matrix (Φmv) was generated by Monte Carlo

simulation of a single node. This captures the crossover from one geographic zone

to the next, as well as the random change in direction as determined by the RD

mobility model. The simulation parameters are shown in Table 3.1.

3.7.2 Computing the Progress Threshold ˜̇p

To initiate the Markov chain, we choose x0 that assumes a uniform distribu-

tion of packets over the circular area and a uniform distribution over the starting

progress. To calculate the routing transition matrix, we consider the possible ˜̇p

taken from the set {−10,−9, . . . , 9, 10} and calculate Φrt for each. We then step

through the Markov chain with both Φrt and Φmv for all 2500 seconds of the packet

lifetime, and compute the delivery ratio s ˜̇p,2500 (Eqn. 3.7). We choose the ˜̇p that

minimizes the normalized energy consumed, which we estimate as
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e = pcar + (1− pcar)P (ṗ > ˜̇p) (3.12)

where pcar is the probability that a node is a data carrier, which we obtain through

simulation. e is the proportion of energy consumed by data carriers (always wake

up) plus the proportion of energy of consumed by relays (wake up if above ˜̇p)

(Fig. 3.5a).

3.7.3 Computing the Beacon Period Tbeac

After choosing the minimum energy threshold ˜̇p, we calculate the beacon pe-

riod for each of the 300 possible Markov states for a carrier. For this calculation, we

further quantize time into members of the set {[0, 100), [100, 200), . . . , [2400, 2500)},
such that there are 7500 possible carrier states, (ṗ,d,texp).

We consider two approaches to pre-computing the Tbeac: one using a local

delivery estimate and the other using a global delivery estimate. The first approach

is to choose the longest beacon period that achieves the desired delivery ratio,

based on the current local state (ṗ,d,texp). If the delivery ratio is not achievable,

the beacon period is the same as the baseline beaconing mechanism. The initial

condition x0 is simply 1 for the current Markov model state x(ṗ,d) and 0 for the

remaining states. We use the Φrt corresponding to the minimum energy threshold

˜̇p, and compute the delivery probability for a beacon period Tbeac(ṗ, d, texp) =

1, 2, 4, . . ., until the delivery probability is no longer satisfied (Fig. 3.5b). Note that

we only update the state with Φrt every Tbeac(ṗ, d, texp) time steps, in accordance

with the beaconing (Expr. 3.13).

xΦrtΦ
Tbeac
dyn Φrt . . . (3.13)

With the local estimate approach, the overall delivery ratio is likely to

overshoot the desired delivery ratio by a wide margin. This occurs because the

Tbeac is chosen such that the calculated delivery ratio will be greater than the

desired delivery ratio for each local state individually, so the average over all states

will also be greater. To get a closer approximation of the desired delivery ratio,

we consider a second approach.



45

For the second approach, we first compute the largest beacon period that

achieves the desired delivery ratio for each state with an expiration time in [0, 100),

using the first approach. Then we compute the beacon period for states with an

expiration time in [100, 200), but account for the beacon periods for the expiration

time in [0, 100). Because there are different beacon periods for different states, this

requires a routing transition matrix Φrt(t) that is time dependent. Depending on

the time step and each state’s beacon period, some rows assume beaconing and

some rows do not.

For example, assume state (ṗ1,d1,[0, 100)) has a beacon period of 1 and

state (ṗ2,d2,[0, 100)) has a beacon period of 2. The row of Φrt(t) that corresponds

to state 1 will compute the state transitions due to routing for every time step.

However, for state 2, the row of Φrt(t) will only compute the state transitions due

to routing for every 2 time steps. For the other time steps, the row is set to that

of the corresponding row in the identity matrix (the diagonal element is set to 1,

the rest are zeros). Φrt(t) is defined for every t, and the state is operated on by

the routing transition matrix at each time step.

After beacon periods are computed for states with expiration time in [100,

200), we repeat the procedure for states with an expiration time in [200, 300), and

keep repeating while incrementing the expiration time up to [2400, 2500). Using

this global approach, we can reduce the margin by which we overshoot the desired

delivery ratio, when comparing with the local estimate approach.

3.8 Simulation Evaluation

We implemented our delay-tolerant routing and power management scheme

in the network simulator ns-2. We used the simulation parameters from Table 3.1,

and for the baseline beaconing, we used AEB with hmax = 3. At time 0, there are

40 data carriers and 0 relay nodes (carriers become relays when they unload their

data), and the sink is located at the center of the circular area. In each case, the

simulation time was 2500 seconds.
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Table 3.2: Delivery Ratio for LI-PM+AEB, Geographic Convergecast for DTNs,

Threshold Only.

˜̇p Calculated s Simulated s

None 98.01% 96.77%

2 m/s 97.86% 97.55%

4 m/s 97.58% 97.80%

6 m/s 97.00% 97.86%

8 m/s 95.49% 97.29%

10 m/s 76.55% 74.50%

3.8.1 Progress Threshold Only

For our initial set of simulations, we investigated the effect of implementing

a threshold on the progress metric for all relay nodes. In this case, Tbeac = 1 for

all nodes. First we computed the delivery ratio using the Markov model of the

DTN for different threshold levels. Then we simulated the scenario using ns-2,

averaging over 1000 simulations. We see in Table 3.2 that the resulting calculated

and simulated delivery ratios after 2500 seconds have similar values. Sources of

error in the calculated scenario have been described in the previous section.

We have plotted the simulated delivery ratio against delay in Fig. 3.6. We

observe that for most delay values, higher thresholds lead to lower delivery ratios

since nodes sleep more and have fewer routing opportunities. However, by the end

of the simulation, the delivery ratios converge, and sometimes a higher threshold

can have a slightly higher delivery ratio. For example, in Table 3.2, a threshold of

4 m/s has a slightly higher delivery ratio (97.80%) than that of a 2 m/s threshold

(97.55%). A possible cause for this phenomenon is that routing is more likely to

transmit to a node farther away from the sink (Fig. 3.7), since we only consider

rate of progress as the routing metric.

We have also plotted the simulated delivery ratio against energy consumed

in Fig. 3.8. We observe that relative to no threshold, energy consumption can be

about 4 times less when we use a threshold for a desired delivery ratio of about

97%. Also, as we choose higher thresholds, the energy consumed decreases, since
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graphic Convergecast for DTNs, Threshold Only.
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nodes are more likely to be under the threshold, and thus sleeping more often.

Because we ran our simulation long enough, most of the delivery ratios are similar

for large changes in threshold. Only with a threshold at the maximum progress of

10 m/s is the delivery ratio drastically different, in which case, relay nodes always

sleep. Therefore, if the desired delivery ratio is less than 74.20%, relay nodes can

always sleep.

3.8.2 Threshold and Beacon Period, Local Estimate

For the second set of simulations, we set both the threshold and beacon pe-

riod to achieve the delivery estimate locally. We calculated the ˜̇p and Tbeac(ṗ, d, texp)

for target delivery ratios s = 0.95, 0.85, 0.75, and provide the results in Table 3.3.

We also show the calculated s using the Markov model, which can have up to 6%

higher value than the target value. This is partly due to choosing the beaconing

period such that each of the 300 states individually achieve the target s, so that

the collective s is much higher. Also, the granularity of beaconing rates is not fine

enough to approximate the target s. However, the beacon periods were chosen to

be exponential for the synchronization properties with other nodes. The simulated

s are also provided in the table. As in the previous subsection, they are in the

ballpark of the calculated s, but some approximations are made in the Markov

model that result in these differences.

In Fig. 3.9, we have plotted the delivery ratio vs. delivery delay for AEB

Only and for our local information-based scheme running on top of AEB (LI-

PM+AEB). These results are averaged over 500 simulations. We observe that

the delivery ratios for the LI-PM+AEB schemes increase more slowly as time

progresses relative to AEB Only Schemes. This trend is due to the texp being

favorable when it is high, so LI-PM sleeps more early in the simulation, thus

trading off latency for energy.

In Figs. 3.10-3.11, we have plotted the delivery ratio vs. energy consumption

for the same set of schemes. The normalized energy is simply the awake time per

node. When we compare LI-PM+AEB, 95% with AEB Only, hmax = 3, the

delivery ratio is similar, but the energy consumed is on the order of 4 times less.
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Table 3.3: Power Management Settings for LI-PM+AEB and AEB Only, Geo-

graphic Convergecast for DTNs, Local Estimate.

Target s ˜̇p Average Tbeac Calculated s Simulated s

95% 8 m/s 1.01 s 95.49% 97.64%

85% 9 m/s 1.34 s 92.99% 97.12%

75% 10 m/s 2.05 s 76.45% 74.20%

Table 3.4: Delivery Ratio for AEB Only, Geographic Convergecast for DTNs.

hmax Simulated s

3 96.77%

4 95.16%

5 91.27%

6 66.35%

With such rich local information available to the nodes, we are able to design

an intelligent sleep/wakeup schedule that still achieves a high delivery ratio. Also,

our sleep/wakeup allows for greater flexibility for achieving a desired delivery ratio.

AEB Only does not have the same flexibility, as seen by the large gap in delivery

ratios as hmax is incremented (Table 3.4). However, we do not observe great

accuracy for the desired delivery ratio for this local estimate approach. In addition,

the target delivery ratio of 75% is not achieved because the calculated delivery

ratio for a threshold of 10 m/s was over 75%, but the simulated delivery ratio was

actually under 75%.

3.8.3 Threshold and Beacon Period, Global Estimate

For our third simulation, we again set both the threshold and beacon period

to achieve the delivery ratio, but this time we use the global estimate. Specifically,

we estimate the delivery ratio for each local state using the beacon periods for

states with lower texp. The beacon period is chosen such that the overall delivery

ratio, starting from the current state and using all the beacon periods for states



51

0 500 1000 1500 2000 25000

0.2

0.4

0.6

0.8

1

delay (s)

de
liv

er
y 

ra
tio

 

 

LI−PM+AEB, 95%
LI−PM+AEB, 85%
LI−PM+AEB, 75%
AEB Only, hmax=3
AEB Only, hmax=4
AEB Only, hmax=5
AEB Only, hmax=6

Figure 3.9: Delivery Ratio vs. Delay for LI-PM+AEB and AEB Only, Geographic

Convergecast, Local Estimate.



52

0 5 10 15 20 25 30 350.5

0.6

0.7

0.8

0.9

1

normalized energy

de
liv

er
y 

ra
tio

 

 

LI−PM+AEB, 95%
LI−PM+AEB, 85%
LI−PM+AEB, 75%
AEB Only, hmax=3
AEB Only, hmax=4
AEB Only, hmax=5

Figure 3.10: Delivery Ratio vs. Energy Consumption for LI-PM+AEB and AEB

Only, Geographic Convergecast, Local Estimate.



53

2 4 6 8 10
0.7

0.75

0.8

0.85

0.9

0.95

1

normalized energy

de
liv

er
y 

ra
tio

 

 

LI−PM+AEB, 95%
LI−PM+AEB, 85%
LI−PM+AEB, 75%

Figure 3.11: Delivery Ratio vs. Energy Consumption for LI-PM+AEB (zoomed),

Geographic Convergecast, Local Estimate.



54

Table 3.5: Power Management Settings for LI-PM+AEB, Geographic Converge-

cast, Global Estimate.

Target s ˜̇p Average Tbeac Calculated s Simulated s

95% 8 m/s 2.76 s 94.95% 97.36%

85% 9 m/s 9.74 s 89.46% 94.26%

75% 10 m/s 3.45 s 76.26% 73.76%

with lower texp, achieves the target delivery ratio. We show our calculated results

in Table 3.5.

In Fig. 3.12, we have plotted the delivery ratio vs. delivery delay for LI-

PM+AEB using the local and global estimates. These results are averaged over

500 simulations. We observe that the global estimate reduces the delivery ratio

further, since we are not just calculating an estimate of the delivery ratio at each

local state. Again, we have delayed the delivery further, with latency being traded

off for energy.

In Fig. 3.13, we have plotted the delivery ratio vs. energy consumption

for the same set of schemes, and we have also plotted the threshold only curves

to show the improvement that LI-PM+AEB yields. Here we see that both global

and local approaches save energy over the threshold only approach, and the global

estimate does not overshoot the target delivery ratio as much as the local estimate.

As expected, the global approach consumes less energy than the local approach.

For 95% and 85%, the target delivery ratio is achieved. Again, for 75%, the target

delivery ratio is not achieved because the calculated delivery ratio for a threshold

of 10 m/s was under 75%.

3.9 Summary

In this work, we have demonstrated the concept that local information can

be used in designing a power management scheme for delay-tolerant networks. We

have shown a procedure for determining a sleep/wakeup strategy for a geographic

convergecast application using local information. We propose a threshold-based
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strategy for relay nodes and a beacon period strategy for data carrier nodes. Our

simulation results show that for this application, our scheme layered over an AEB

scheme approximates a desired delivery ratio while reducing energy consumption by

4× over AEB only. Our heuristic approach calculates a rate of progress threshold

for relay nodes, and sets beaconing rates for data carriers.
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Chapter 4

Dense, Small-Scale WSNs: A

Hybrid MAC/Routing Solution

for Convergecast

In the previous chapter, we looked at a duty-cycling approach to sparse

WSNs, specifically a local information-based power management scheme for delay-

tolerant networks. In this chapter, we consider bringing the relatively few nodes

in close proximity, yielding a dense, small-scale WSN. Again, we apply a duty-

cycling approach that is appropriate for this particular type of network. To develop

our approach, we first present a study on the the typical topologies of small-

scale networks. Then we use our insights from the study to develop a combined

MAC/routing approach. We evaluate our approach using simulation to compare

with an existing solution. We also provide experimental evaluation and show the

effect of a real-world wireless channel.

4.1 Introduction

The use of networked autonomous vehicles is of great value to many sens-

ing applications such as environmental monitoring or disaster response. For such

applications, the ability to dispatch these vehicles to a remote (and often hostile)

location is critical. Since these vehicle applications are of a different nature than

58
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traditional sensor networks, a different approach should be taken to the networking

and communication of such systems. Before we detail our approach, we first draw

out the design objectives by setting the problem in the context of a specific sensing

application.

In this example, a small number of unmanned aerial vehicles (∼10 UAVs)

are equipped with sensors (e.g., smoke, humidity) to detect some substance in the

atmosphere, and the system’s task is to report the sensor data to a base station

for further processing. Because we are dealing with planes in flight, they will be

communicating over relatively long distances, on the order of a kilometer. There-

fore, the typical low-power, short-range radio technologies used for sensor networks

(e.g., 802.15.4) are inappropriate for this application. Instead, this system requires

a higher-powered radio technology, such as 802.11. We have conducted tests with

a pair of UAVs with 802.11 radios, demonstrating the ability to communicate over

ranges of up to a mile. In addition, these radios are powered by batteries with

significant weight and volume, which contribute to the planes’ payload. The al-

lowable payload is a critical constraint, limiting the battery that can be mounted

on the plane. Given the limited on-board batteries and high-powered radios, it is

important to design our networking strategy with energy efficiency as our primary

constraint.

Although we have described a specific example here, we believe this sce-

nario covers the more generic set of vehicle-based sensing applications. To define

the vehicle-based networking problem, we identified certain characteristics of such

systems, which, in some cases, set them apart from the well-studied traditional

sensor networks. One characteristic of these networks is that they typically have

a convergecast traffic pattern, in which many nodes report data to a single sink

node. Another characteristic is that these networks have a dynamic topology, since

the vehicles can be highly mobile. The impact on data routing is that routes expire

quickly and the opportunity for route reuse is limited. Lastly, these networks are

of a small scale, in which the number of nodes is on the order of ten to a few tens of

nodes. The reason for such small network sizes is that the cost to manufacture and

deploy these vehicles is much higher than the cost for small static sensor nodes,
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thus limiting the scale of such networks. Therefore, scalability is not a requirement

for the networking strategy, as is often assumed for traditional sensor networks.

Instead, the need for scalability can be traded off for a more efficient solution. Our

networking problem is to provide energy-efficient communication for small-scale,

convergecast mobile networks. In our solution, we leverage the fact that these

networks are small-scale for more efficient operation.

The first step in our design approach was to gain some insight into the

degree of routing that is actually required for small-scale networks. We conducted

a preliminary topology study, in which we simulated a network of 15 nodes in a

100 meter radius disk sending to a sink node located at the center. For each node,

a transmission range was fixed such that it has connectivity with other nodes

in that range. Then, with the network’s node connectivity given, we measured

the minimum distance in hops of each node from the sink. We gathered these

statistics over many realizations of random node deployments, and we calculated

the percentage of times that nodes are n hops from the sink for various transmission

ranges (Fig. 4.1). As a systems designer, we would like to use the information from

Fig. 4.1 to make the best design choice for a radio with a specified transmission

range. We observe that for transmission ranges less than 80 meters, some nodes do

not have a route to the sink, which is inadequate for real-time reporting. Therefore,

to avoid having a disconnected network, a range of at least 80 meters is required.

However, if we choose an 80 meter range, a majority of the nodes are already just

1 hop from the sink. Furthermore, we know that, in reality, radio transceivers do

not have precise transmission ranges, since the actual range is dependent on the

environment. To compensate for such uncertainties, the system would have to be

overdesigned such that a longer-range radio is chosen. In selecting a longer range,

we observe from Fig. 4.1 that 100% of nodes very quickly come into 1-hop range

of the sink. So in practice, nodes will mostly be in direct communication with

the sink. Therefore, full-scale routing is not necessary. Note that this result only

comes about due to the small number of nodes in the network.

Although we have observed that in most cases nodes are one hop away

from the sink, there are still some rare situations for which a multi-hop route is
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required. It is important to design our solution to also be able to handle such

scenarios. Taking our UAV application as an example, a group of UAVs may be

sensing a large plume of smoke located in some expected area, in which all nodes

have a 1-hop route to the base station. However, it is possible that there is a

smaller peripheral cloud of smoke that one of the UAV detects farther away from

the main plume, and direct communication with the base station is not possible.

It is still important to report such information, so a multi-hop route would be

needed.

Our observation is that for these small, vehicle-based sensor networks, nodes

are mostly in 1-hop range of the sink, but in rare cases, a node may need a multi-hop

route to report data to the sink. Our networking approach exploits this knowl-

edge of the typical route lengths so that the communication can be optimized for

energy efficiency. To do this, we eliminate the need for a separate routing layer,

and instead incorporate the routing functionality directly into the medium access

control (MAC). As a result, we have a networking solution that behaves mainly as

an efficient MAC protocol, but it retains the ability to multi-hop route to account

for such rare situations.

4.2 ConverSS: Hybrid MAC/Routing Solution

ConverSS is a combined MAC and routing solution for reliable and energy-

efficient convergecast for small-scale, mobile networks. ConverSS is designed

specifically for cases where most nodes are one hop from the sink, and where

mobility limits the opportunity for reusing routes. For clarity purposes, we first

present a brief overview of the protocol operation and provide two illustrative ex-

amples, before describing the full features of the protocol. The pseudocode of the

full protocol is included at the end of the chapter.

For many of these real-time sensing applications, sensor-generated data

must be sent to a sink periodically. We focus on one cycle of our protocol operation,

or a sending interval, in which each node has one data packet to deliver. A sending

interval occurs periodically with the data arrival period (Fig. 4.2).
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Figure 4.2: ConverSS two-phase approach.

Because these are small networks, it is feasible to use a fixed-assignment

TDMA MAC, in which each node is assigned a dedicated time slot for sending.

This MAC requires that the number of nodes in the network be fixed at the system

initialization. However, this setup is sufficient for most sensing missions, which

have a small, consistent team of vehicles. Time synchronization for the MAC is

done using GPS, which has been used in existing systems and shown to achieve

accuracy within 30ns [JOW+02, ZC98].

4.2.1 Two-Phase Approach of ConverSS

The idea behind ConverSS is that it functions primarily as a fixed-assign-

ment MAC, but includes a fallback mechanism to accommodate multi-hop routing.

We capture this idea in a two-phase approach (Fig. 4.2), which efficiently handles

the most common cases in the first phase, and then if necessary, deals with all

other cases in the second phase. In Fig. 4.2, we label the owner of each sending

slot below every time slot, with the sink’s slot indicated by an S .

Phase 1 operates under the assumption that nodes are one hop from the

sink, so each node attempts to send directly to the sink in its sending slot. Since

there is no routing in this phase, nodes do not need to listen in the other nodes’

slots. They can instead be placed in sleep mode, in which nodes turn off the radio

and thus consume very low power. The sink follows by broadcasting a Delivery

Status Message (DSM), which contains information on which nodes’ packets have
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been delivered to the sink. All nodes listen to this slot to discover if their data

has been delivered. In case of packet errors, more frames are allotted in which

nodes can retransmit any undelivered data. By the end of Phase 1, packets from

all 1-hop nodes should have been received by the sink. If this includes all nodes, as

we expect in most cases, then they all go to sleep until the next sending interval.

The operation described is efficient because there is no route setup, and nodes

only send in their own slots and do not need to listen in the other slots. This will

turn out to be the main difference with layered approaches, since a route must be

established and the MAC will always assume that routing may be needed, resulting

in idle listening.

It is possible that there are still undelivered packets after Phase 1 because

of packet errors or nodes being out of range of the sink. If that is the case, a

second phase is necessary to do a best-effort data delivery. In Phase 2, any nodes

whose packets were not delivered perform a type of controlled flooding, in which

nodes broadcast their data and receiving nodes can rebroadcast to try to deliver

it to the sink. The mechanisms used to control the flooding and limit redundant

transmissions will be illustrated in examples and in Section 4.3.2.

The reason for using flooding rather than a route setup followed by data

transmission relates to the presence of asymmetric links. Studies have demon-

strated the problem of asymmetry in radio propagation, in which a link is stronger

in one direction than in the reverse [ZHKS06, SAZ07]. In typical routing, only

symmetric links can be used because a handshake is required before a packet can

be sent over a link. Flooding, however, does not require a handshake, thus enabling

the use of asymmetric links in routing the data to the sink. Since these are small

networks, routes with asymmetric links may be the only ones available. Therefore,

with more options for routing, data delivery has an improved chance of success.

After the two phases have completed, the network can go to sleep until

the next sending interval, when the next packet is ready for delivery. Given the

small number of nodes, the two-phase sending interval is typically short enough

such that the network topology will be stable during that time. Because no routes

are assumed prior to Phase 1, the protocol is robust to changes in topology in
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Figure 4.3: ConverSS Example 1–Simple Network.

between sending intervals. Only in rare cases will changes to the topology during

the sending interval affect the delivery rate, and the system can recover from these

by the next sending interval. The cost of such rare occurrences is small relative to

the gains in energy efficiency that the protocol design affords.

Example 1–Simple Network

We first provide an example using the simple network topology shown in

Fig. 4.3, in which all but one node have a 1-hop route to the sink, and the remaining

node is two hops from the sink. In Phase 1, the nodes transmit unicast packets to

the sink in turn, and conserve energy by going to sleep in each others’ slots. The

sink receives the data from all but node 2, and broadcasts this information in a

Delivery Status Message. Nodes that receive the DSM, i.e., nodes 1 and 3, learn

whose data have been received. Since node 2 did not receive the DSM, it attempts

to retransmit in the remaining Phase 1 frames, but with no success.

In Phase 2, nodes whose packets have not been delivered (e.g., node 2) flood

their data. Up until this point, nodes 1 and 3 have not received from node 2 since

they were not listening in that slot in Phase 1. By receiving the DSM, nodes 1

and 3 know that node 2 does not have a route to the sink, so they listen in its

slot. Nodes 1 and 3 receive the flooded packet, and node 3 forwards the message
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to the sink. Note that in Phase 2, the frame structure changes and each sending

slot is followed by the sink’s slot, so that a DSM can be immediately sent. In

this example, the sink sends the DSM after node 3, node 1 then learns that node

2’s packet has been delivered, and node 1 can simply remove that packet from its

queue. The DSM indicates that all nodes have delivered their data successfully

and can go to sleep. Although not shown in the figure, node 3 sends a DSM to

node 2, telling it to go to sleep.

Example 2–More Complex Network.

Now we look at a more complex example to illustrate some of the other

features of ConverSS. The network shown in Fig. 4.4 is the same as in Example 1

but adds a node with a unidirectional link to the sink (node 5), and a node that

is three hops away from the sink (node 4). In Phase 1, the nodes transmit unicast

packets to the sink in turn, and the sink receives from nodes 1, 3, and 5. The sink

then broadcasts the DSM, which is received by nodes 1 and 3. Nodes 2, 4, and 5

do not receive a DSM, so they retransmit for the remainder of Phase 1.

In Phase 2, nodes that believe their packets have not been delivered (e.g.,

nodes 2, 4, and 5) must flood their data and listen in all other slots. Nodes that

received the DSM (e.g., nodes 1 and 3) now listen to nodes whose packets have not

been delivered, namely nodes 2 and 4. Node 2’s flooded data is received by nodes

1, 3, and 4. As in Example 1, node 3 forwards it to the sink, the sink broadcasts

a DSM, and node 1 knows to remove node 2’s packet from its queue. While node

3 forwards this data, node 2 overhears it and assigns node 3 as its parent node for

future reference. The function of this will become apparent shortly.

Node 4 floods its packet, which is received by node 2. Instead of flooding,

node 2 now knows to forward the packet directly to its parent. This parent assign-

ment is a feature of ConverSS that is used to limit the amount of flooding. Node

4 follows suit by overhearing node 2 forward in the next frame and assigning node

2 as its parent. If there happened to be another node sending to node 4, node 4

would simply forward the packet to its parent.

Node 5’s flooded data is received by the sink, which has already received
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the data in Phase 1 and therefore drops the packet. Node 5 cannot receive a DSM

because of the unidirectional link. It rebroadcasts a number of times to account

for packet errors, and then it removes its own packet from the queue.

Once node 4’s data has been delivered, the sink sends a DSM indicating

that all packets have been delivered and nodes can go to sleep. Although not

shown in the figure, node 3 sends a DSM to node 2 telling it to go to sleep, and

node 2 sends a DSM to node 4. Node 5 does not receive a DSM and is idle for a

period of time. All nodes have an idle timer running such that if it expires, the

node goes to sleep.

4.3 ConverSS Protocol Features

In this section, we elaborate on the features illustrated in the previous

examples, and describe the details of the protocol operation at work in the two-

phase structure of ConverSS.

4.3.1 ConverSS Header

ConverSS employs a special header structure shown in Fig. 4.5. It consists

of the following header fields: Packet Type, Packet Sequence Number, Source Ad-

dress, Destination Address, Delivery Status Bitmap, and Acknowledgment Bitmap.

The Delivery Status Bitmap indicates the source node’s knowledge of which nodes’

data have been successfully delivered. The Acknowledgment Bitmap indicates from

which nodes it has received since its last sent packet. Every data packet uses this

header. A Delivery Status Message is simply the ConverSS header with no payload.

4.3.2 Controlled Flooding

To reduce the amount of redundant transmissions during Phase 2, we im-

plement the following two features that control the flooding of data.
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Type SourceAddr DestAddr Delivery Status Bitmap ACK BitmapSeqNo

Figure 4.5: ConverSS packet header.

Immediate Delivery Confirmation

Phase 2 utilizes a different frame structure in which a sending slot for the

sink is inserted after each node’s sending slot (Fig. 4.2). This structure allows the

sink to immediately follow transmissions with a DSM, confirming delivery of the

packet and stopping any other nodes in range of the sink from trying to deliver the

same flooded packet. Since we expect nodes to mostly be in range of the sink for

these vehicle applications, this frame structure should be very effective in limiting

flooding and conserving energy.

Implicit Routing for Flooding Nodes

Although Phase 2 is the fallback to flooding, not all nodes perform flooding.

Instead, an implicit routing allows some nodes to forward data upstream in the

direction of the base station. We call any node with a route to the sink a non-

flooding node.

At the start of Phase 2, nodes that had successful deliveries in Phase 1 do

not flood because they know they are in the one-hop neighborhood of the sink.

Instead, they forward any received data directly to the sink. Nodes outside of the

sink’s one-hop neighborhood start Phase 2 as flooding nodes. If a flooding node

can establish a bidirectional link with a non-flooding node, then the flooding node

has also realized a route. From that point on, the node can unicast forward any

packets to the non-flooding node, thus becoming a non-flooding node.

To establish a bidirectional link with a non-flooding node, a flooding node

tries to overhear a unicast transmission, which would confirm the incoming link.

To confirm that the outgoing link exists, the non-flooding node must indicate that

it has received from the flooding node. It does so in the acknowledgment bitmap

(ACKB) in the header of the overheard transmission (Fig. 4.5). Then the flooding

node can assign the other node as its parent, to which it forwards any packets in the
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future. This completes the transformation of a flooding node into a non-flooding

node. We note that not all nodes will become non-flooding, but they make this

transformation when possible.

4.3.3 Phase 2 Listening Schedules

To reduce the amount of idle energy consumed in Phase 2, nodes construct

listening schedules to determine in which slots to turn on the radio and listen. To

construct these schedules, a Delivery Status Bitmap (DSB) field is included in the

ConverSS packet header. The DSB distributes knowledge of which nodes’ packets

have been delivered to the sink, with a “0” indicating “not delivered” and a “1”

indicating “delivered” (Fig. 4.5). Every node maintains a local DSB with the most

current knowledge of the network.

At the start of Phase 1, every node sets its local DSB to be all 0’s, and they

only listen to the sink’s slot. When the sink receives a packet, the sink sets the

corresponding node’s bit to 1. The sink sends a DSM containing the new DSB,

and receiving nodes update their local DSB by performing a bitwise OR operation

with the DSB field. This DSB is embedded in the header of every packet sent, so

that overhearing nodes can update their local DSBs.

At the start of Phase 2, nodes listen to the slots of nodes that have a 0 in

the DSB, in case they have to forward the data. If a node receives a data packet, it

adds the source node as a child. If a flooding node overhears a non-flooding node

acknowledge it in the ACKB, it assigns the node as its parent. Each node can

only associate with one parent during each sending interval. The overall listening

rule for each node is to listen to its parent and children, as well as nodes that

correspond to a 0 bit in the DSB. As packets are received at the sink in Phase 2,

the sink continues to set the originating node’s bit to 1 and send out a DSM.

4.3.4 Sleeping Mechanism

We implement a sleeping mechanism so that when all packets have been

delivered, nodes can sleep until the next sending interval. A node knows that all
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packets have been received by the sink when its local DSB is all 1’s. If the node has

children, it broadcasts a DSM to update their DSB fields, and then the node goes

to sleep. If a node does not have a parent and cannot otherwise get any updates to

the DSB, an idle countdown timer is used. This timer operates such that a node

that has not sent or received for a time TCD goes to sleep until the next sending

interval, since it assumes that it is not needed for forwarding.

4.4 Simulation Evaluation

To evaluate the performance of ConverSS, we implemented the protocol in

the network simulator ns-2. For comparison purposes, we have also implemented

two other protocols. To provide some insight into the best possible performance,

we use an Ideal protocol, which uses a fixed-assignment TDMA MAC and an omni-

scient routing layer. In this protocol, nodes have knowledge of routes omnisciently,

and can thus coordinate sending and listening schedules without any actual com-

munication. In terms of performance, the energy consumption is minimum, and

the latency is minimum for a fixed-assignment TDMA.

The second protocol that we compare to is a traditional Layered proto-

col. For routing, it utilizes a simplified version of one-phase pull directed diffu-

sion [SHGE04]. Directed diffusion is a data-centric scalable routing framework

that is commonly studied in sensor networks. We implemented a “slim” version of

the protocol, which expects only one type of data.

The sink initiates the Layered protocol by flooding the network with an

interest, or a data query. The interest expires at the end of each sending interval.

Upon receiving the interest, nodes set up gradients according to which neighbor

it received from first, and packets are sent along those gradients toward the sink.

When the sink has received all data, it floods the network with a message telling

nodes to go to sleep. For the MAC, this protocol uses a fixed-assignent TDMA.

Each node has a sending slot, and nodes listen in all other slots. Because we use a

time-slotted MAC, nodes that are not sending or receiving do not need to be idle

for an entire time slot. Instead, nodes can listen at the start of the slot, and if no
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Table 4.1: Power consumption of the ORiNOCO IEEE 802.11b PC Gold Card

(11 Mbps).

Mode Transmit Receive Idle

Power Consumption 1400 mW 950 mW 805 mW

header is received, nodes can sleep for the remainder of the slot. We handle idle

listening in the same manner for our ConverSS protocol.

For these simulations, one packet containing 64 bytes of data is generated

at each node for every sending interval. To evaluate energy consumption, we used

the power consumption specifications from the ORiNOCO IEEE 802.11b PC Gold

Card, shown in Table 4.1 [SBS02]. We choose these specifications because 802.11

is the radio technology used in our UAV application.

4.4.1 Varying Network Size

In the first simulation, we compared the different protocols for various net-

work sizes. Each node is given an error-free transmission range of 100 meters. (We

will investigate the effects of non-uniform range later.) Nodes are uniformly ran-

domly deployed in a disk at a fixed node density of 0.0008 nodes
m2 . We vary the area

of the disk centered around the sink, resulting in networks of different scales. Only

nodes with a route to the sink are included in the simulation. Fig. 4.6 shows the

average number of hops per node, the average latency, and the energy consumed

per packet.

We note that for network sizes up to 25 nodes, all nodes are in one-hop

range of the sink (Fig. 4.6a). We first comment on the results for these one-

hop networks, for which ConverSS is optimized. For ConverSS and Ideal, the

latency is small since the data is delivered in the first frame, and the latency for

Layered is a bit more because the gradient to the sink must first be established

(Fig. 4.6b). The energy consumption for ConverSS is very close to Ideal since

all nodes immediately send to the sink and do not need Phase 2. ConverSS only

consumes 10% of the energy of Layered (Fig. 4.6c), since layered protocols pay the
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Figure 4.6: ConverSS Simulation Evaluation: Varying Network Size.

price of always listening in each others’ slots, in case a route is needed.

For network sizes greater than 25 nodes, we observe the performance as

multi-hop routes are introduced (Fig. 4.6a). The latency increases for all protocols

(Fig. 4.6b), but it is greater for ConverSS due to the Phase 2 frame structure,

which inserts a sink slot after every node’s slot. Concerning energy, ConverSS

consumes more energy than Ideal due to the flooding, but it still consumes less

than Layered (Fig. 4.6c) because only a small fraction of nodes are flooding.

4.4.2 Multi-hop Routes

For the second simulation, we study the performance when most nodes

require multi-hop routes, a scenario that is atypical for these vehicle networks. Al-

though multi-hop routes are rare for these applications, we observe that ConverSS

is still equipped to handle such cases. We again fix an error-free transmission range

of 100 meters, but now we fix the number of nodes at 10. We vary the node den-
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sity by varying the area over which these 10 nodes are randomly distributed. Only

those deployments for which all nodes have a route to the sink were considered.

As the network area grows, nodes are spread out farther over more hops, and the

percentage of 1-hop nodes decreases. Fig. 4.7 plots the average and maximum hops

per node and the energy consumption.

Although we have not shown it here, nodes with a route to the sink have

a packet delivery rate of 100% success. We see in Fig. 4.7b that the energy con-

sumption of ConverSS increases at a faster rate than Layered. For network area

radii greater than 127 meters, ConverSS actually becomes the less energy-efficient

choice. This is due to the inefficiency of flooding when nodes get stretched out

to have longer routes (Figs. 4.7a). This simulation illustrates that ConverSS is

not meant as a generic solution for all types of networks. It is not designed for

networks consisting of mostly multi-hop routes, but instead, it is meant for small

networks, which consist of mostly one-hop nodes. Still, ConverSS is fully capable

of handling general connected networks because of the fallback mechanism.

4.4.3 Link Asymmetry

Lastly, we simulated ConverSS for networks that contain asymmetric links.

To simulate these effects, we introduced randomness to each node’s transmit power

and receive threshold, which varies the transmission range independently for each

link in each direction. Three different degrees of asymmetry were simulated, re-

sulting in networks for which 23%, 12%, and 0% of the links were unidirectional.

We used the same network settings as in Simulation 1. The results are shown in

Fig. 4.8.

Again, though not displayed here, all cases achieve 100% delivery success for

nodes that have a path. From Figs. 4.8a-4.8b, we see that the latency and energy

increase slightly as asymmetry increases. This is because nodes with asymmetric

links are unable to hear when their transmission has been received by the sink or

forwarded by another node. Therefore, nodes must retransmit those packets, and

in some cases, the flooding is not controlled. Although the presence of asymmetric

links incurs a slight penalty in performance, we observe that ConverSS is still
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Figure 4.9: 802.15.4-compliant TelosB mote from Crossbow, Inc.

resilient to such impairments.

4.5 Experimental Evaluation

The network simulator provided an evaluation of the protocol performance

that assumed an idealized model of the wireless channel. To evaluate the perfor-

mance of the protocol in a real-world scenario, we implemented ConverSS in an

actual network deployment using the 802.15.4-compliant TelosB motes from Cross-

bow, Inc. (Fig. 4.9). This test also serves as a scaled-down version of our actual

UAV application. The energy consumption was calculated using the power con-

sumption values for the ChipCon CC2420 transceiver shown in Table 4.2 [CC2].

In these experiments, the system is subject to non-ideal link behavior, such as

anisotropic transmission range and packet losses due to time-dependent fading.

These are the types of phenomena common to many wireless systems, and we ex-

pect similar challenges in the UAV scenario. In our results, we demonstrate that

ConverSS is able to tolerate such impairments, and that it is efficient for mostly-

one-hop networks. For these experiments, we have allotted 3 frames for Phase 1

and up to 6 frames for Phase 2. Any data packets that do not reach the base

station within the 9-frame data arrival period expire and get dropped.

4.5.1 Various Network Topologies

In the first experiment, we studied the performance of ConverSS for dif-

ferent network topologies by varying the transmit power, which yielded routes of
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Table 4.2: Power consumption of the ChipCon CC2420 IEEE 802.15.4-ready

Transceiver (Transmit Power Level=3).

Mode Transmit Receive Idle

Power Consumption 30.60 mW 67.68 mW 67.68 mW

Table 4.3: Output Transmit Powers of the ChipCon CC2420 IEEE 802.15.4-ready

Transceiver.

Power Setting Output Power (dBm)

3 -25

2 -28

1 -33

different lengths. As expected, we observe that the performance is better as the

number of hops per route gets smaller, the scenarios for which ConverSS was de-

signed. We deployed the nodes in a regular 3 × 4 grid as shown in Fig. 4.10a,

and generated results for networks of various size, all sending data to node 0. For

a network size = 3, only nodes 1-3 were used, for a network size of 6, nodes 1-6

were used, etc. The lowest 3 transmit power settings (out of 31) were chosen to

accommodate a sufficiently small testing area. The associated output powers are

listed in Table 4.3 [dPAP08]. To study how well our simulations compare with

the experimental results, we have duplicated this scenario in ns-2 using error-free

links. Simulated transmission ranges were chosen to match the route lengths for

this particular environment, as shown in Fig. 4.10b. These ranges turned out to

be 4 feet, 8 feet, and 16 feet (for Power = 1, 2, and 3, respectively).

Fig. 4.10c plots the data delivery success rate for a data arrival period

of 9 frames. The data delivery rate is 100% for most scenarios. In rare cases,

packets do not arrive within the given sending interval due to link failures. In

Fig. 4.10d, when the network size is 3, power consumption is small for all power

levels because all nodes are 1 hop away, which is when the protocol is most efficient.

We observe that as the network size grows, the energy consumption increases for

the lower power levels (multi-hop networks). This is because transmission ranges
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are shorter, so more hops are required to route to node 0. These conditions are

rare for practical vehicle-based sensor networks since nodes will mostly be in range

of the base station.

The simulation results approximate the experimental results well. In some

cases, the average number of hops is lower in the experiment (Fig. 4.10b) since

the actual transmission range can be greater, depending on the test environment.

Also, in simulation, the power consumption is lower due to the error-free links, and

100% delivery is achieved for all cases. Still, the experimental results demonstrate

good performance in spite of packet errors and link asymmetry, especially for the

common scenarios.

4.5.2 Multi-hop Chain of Nodes

In the second experiment, we studied the performance when most nodes

are in range of the base station with a few out-of-range nodes. This scenario is

sometimes found in the UAV application, in which a few planes may wander out

of the main sensing area. This experiment captures the situations we expect most

often for these vehicle-based sensing systems, in which up to a few nodes require

multi-hop routes. The power level is fixed and set to 2, and the network is set

up as shown in Fig. 4.11a. Nodes 9-11 are the out-of-range nodes, and we vary

the spacing between the chain of nodes, d. The operation is shown to be efficient

when there are fewer hops (d is small). We have simulated this setup in ns-2 with

error-free links, and the transmission range that matches the route lengths is 19

feet (Fig. 4.11b). This range differs from that of Experiment 1 because it was

conducted in a different test environment.

In Fig. 4.11, we have plotted the average number of hops, the data delivery

rate, and the average energy consumption for nodes 1-8, and for nodes 9, 10, and

11 separately. Fig. 4.11c shows that the data delivery rate is best for nodes that

are close to the base station, and it decreases as nodes are more hops away from

the base station and as d gets larger(Fig. 4.11b). Just as in Experiment 1, some

packets do not reach node 0 because of link failures. However, if there are there

are no link failures, the data will be delivered, as the simulations demonstrate.
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The operation of ConverSS, and likewise the energy consumption of each

node, is dependent on the particular network topology. The general trend is that as

d gets larger, energy consumption increases for all nodes because of the potential

of having to forward another node’s data (Figs. 4.11d). For d > 9 ft., nodes that

are in 1-hop range (nodes 1-8) of the base station consume more energy largely

due to the extra idle listening and receiving from the base station, which occupies

every other slot in Phase 2 (Fig. 4.2).

The overall energy consumption pattern fits with our intuition of how Con-

verSS was designed. When nodes are in range of the base station, the protocol

functions primarily as a MAC, and the energy consumption is very efficient. When

some nodes are out of range, other nodes must accommodate the need for rout-

ing, and thus consume more energy, but for typical scenarios, it still outperforms

layered approaches.

4.6 Related Work

There has been a lot of research into convergecast, since it is recognized as

an important traffic pattern for sensor networks. Much of the focus has been on

scheduling to increase throughput [LKL08] or to reduce latency [LKR04, RXMC05].

Routing is usually achieved by constructing a routing tree prior to scheduling

[ZH05], but often through the use of a centralized coordinator with knowledge of

the connectivity graph [TC08, AGS03]. Our approach differs in that our networks

are mobile, and routes are discovered during data delivery. Directed diffusion rout-

ing [SHGE04] is data-gathering by nature, in that individual nodes request and

receive data from the rest of the network. However, directed diffusion is more

efficient when routes are reused, so it is not optimized for our application.

There has also been much study into routing for vehicular ad hoc networks

(VANETs), but communication is typically not convergecast, and energy efficiency

is not a primary focus for these automotive applications. Most routing approaches

are position-based [KK00, LH04], which rely on knowledge of the positions of the

source, its neighbors, and the destination. Street maps are often used to assist
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in routing [BM08], which does not apply in general for our sensing applications.

Some rely on flooding-based techniques for high mobility [BTD06], especially for

applications such as automotive collision avoidance. For such applications, the

important performance metric is latency. Wang et al. [WLH+05] proposed an

intelligent flooding technique for inter-vehicle communications (IVC), designed for

general data services. This technique was shown to outperform reactive routing

approaches for small networks, in terms of throughput and latency.

Another protocol that is designed for these small-scale convergecast net-

works is TreeDMA [KS09]. The main idea of this work is that a routing tree is

implicitly constructed during data delivery, using beaconing and overhearing. How-

ever, this protocol fails when packet errors and asymmetric links are introduced.

ConverSS is robust to such real-world effects.

4.7 Summary

Sensor-equipped vehicle networks present an important application area in

which nodes can be dispatched to a remote location to perform a task. They differ

from traditional sensor networks in that they are mobile and consist of a small

number of nodes. We have shown that these small-scale networks are mainly com-

posed of nodes that are only one hop from the sink (Fig. 4.1). By designing a

protocol specifically for these scenarios, we have achieved better performance than

traditional layered protocols, which are designed for larger, multi-hop networks.

We have introduced a two-phase, cross-layered networking approach that is robust

and is optimized for these applications. For small, mostly one-hop networks, Con-

verSS has been shown to have energy consumption similar to an “ideal” protocol

and 10 times better than a layered protocol.

4.8 ConverSS Pseudocode

Phase 1 Pseudocode

1: Wake up at start of sending interval
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2: Set DSB all 0’s

3: for all slots do

4: if My sending slot AND have data packet then

5: Send to Sink

6: else if Sink’s sending slot then

7: Listen

8: if Receive DSM then

9: if My ACKB bit==1 then

10: Add Sink as parent

11: Free data packet

12: end if

13: Update DSB

14: if DSB is all 1’s then

15: Sleep until the next sending interval

16: end if

17: end if

18: else

19: Sleep in slot

20: end if

21: end for

Phase 2 Pseudocode

1: for all slots do

2: if Beginning of frame then

3: Schedule listening in slots of unsuccessful nodes (DSB bit == 0) and

my parent and children node(s)

4: end if

5: if My sending slot AND have data packet then

6: Send()

7: else if Listening scheduled in slot then

8: Listen()
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9: else

10: Sleep in slot

11: end if

12: if Have not sent or received for TCD then

13: Sleep until the next sending interval

14: end if

15: end for

Phase 2 Send Procedure

1: procedure Send()

2: if Packet’s Source Node’s DSB bit==1 then

3: Remove packet from queue

4: else

5: if Have a parent AND parent 6=Packet’s Source node then

6: Send to parent

7: else

8: Broadcast data packet

9: end if

10: Set ACKB to all 0’s

11: end if

12: if Sent packet was DSM OR resend threshold exceeded then

13: Remove packet from queue

14: end if

15: if DSB is all 1’s AND no packets queued then

16: Sleep until the next sending interval

17: end if

18: end procedure

Phase 2 Receive Procedure

1: procedure Listen()
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2: Listen

3: if Receive packet for me then

4: Set received packet’s source node’s ACKB bit=0

5: if Have not yet received it before and its DSB==0 then

6: Add received packet’s source node as child

7: Queue packet

8: else

9: Queue DSM (To receive packet’s source node)

10: end if

11: else if Overhear packet then

12: if Have no parent and my ACKB bit==1 then

13: Add received packet’s source node as parent

14: Free received data packet

15: Update DSB

16: else if Have a parent then

17: if Received packet’s source node is parent then

18: if My ACKB bit==1 then

19: Free data packet

20: end if

21: Update DSB

22: end if

23: end if

24: return

25: else if Receive DSM then

26: if My ACKB bit==1 then

27: Free received data packet

28: end if

29: Update DSB

30: end if

31: if DSB is all 1’s AND no packets queued then

32: if Have children then
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33: Queue DSM (broadcast)

34: else

35: Sleep until the next sending interval

36: end if

37: end if

38: end procedure
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Chapter 5

Conclusion and Future Directions

In previous chapters, we have addressed energy efficient strategies for three

different sensor network applications, each of which have distinctly different con-

nectivity properties. Real deployments have emerged that have opened up a space

for energy conservation schemes focused on these different classes of WSNs. In

this chapter, we review our main results and propose future research directions

separately for each category.

In Chapter 2, we focused on the case for multi-hop sensor networks, with a

focus on a target tracking application. Most of the focus in sensor network research

has been for these multi-hop, connected networks. Sensor network applications are

often designed to operate within the context of a distributed computing architec-

ture for the purpose of energy efficiency. Our approach follows this new networking

paradigm. We adapt a traditional target tracking technique within a distributed

sensor networking context.

For our particular setup, we studied a network of proximity sensors, which

detect an event when a node is within a given sensing range. The triggered node is

responsible for the data processing and for alerting nearby nodes of an upcoming

event. We gradually developed our tracking algorithm by first demonstrating the

Kalman filter operation for a continuous sampling case. We then adapted the

Kalman filter to a case in which data is unavailable for a number of samples. This

case was handled by only running the prediction phase of the Kalman filter when no

observed data was available. Finally, we adapted the Kalman filter to the proximity
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sensor case, using the sensor locations as the noisy observed data, and running only

the prediction phase of the Kalman filter in between the observations. Through

simulation, we showed target location estimates that improved on the observed

data, and the predicted error ellipses were shown to be useful for alerting nodes of

upcoming events and electing the next local processor node.

In Chapter 3, we presented a power management scheme that is designed for

sparse delay-tolerant networks. This type of network is distinct from the previous

two in that the network is typically partitioned, and mobility is required to route

data between nodes. Mobility-enabled routing is a well-studied area for DTNs, and

these routing algorithms often rely on some local contextual information to make

a decision on whether to hand off data messages. We use the local information

available to the individual node in our power management to make a sleep/wakeup

decision for the radio.

As an example of a scenario where nodes have rich local contextual infor-

mation, we chose a geographic convergecast application. In this example, nodes

are aware of their own geographic location, their own velocity, and the geographic

location of a static sink node. This information has been used previously in a pro-

posed routing algorithm [LCGZ05], such that nodes hand off data to other nodes

whose velocities are in the direction of the sink. For our power management prob-

lem, we showed how to use this same information to put nodes to sleep. First, we

used the local state to determine if a node is likely to reach the sink. Then, we

used that likelihood to determine the radio sleep/awake state.

We started our design by choosing a baseline beaconing mechanism, as is

common for DTNs. We devised two different sleep/wakeup strategies for nodes

with data and nodes without. Since nodes without data only need to be available

as relays, we chose a threshold on the state metric to divide the state space into

sleep and awake. The threshold is chosen in such a way that the desired delivery

ratio is met. Nodes with data are primarily concerned with delivering the data they

already have. The strategy is to choose a beaconing rate at which potential relays

can be discovered, such that the desired delivery ratio can still be achieved. The

threshold and beaconing rates are calculated using a quantized local state space
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and a Markov representation of the network dynamics. We derived the Markov

model parameters using simulation and analytical derivation. We demonstrated

our power management scheme in simulation and show that it outperforms existing

schemes.

Our work has demonstrated the concept of using local state information to

maximize energy efficiency for DTNs. What still needs to be explored is the effect

of the power management on the available local information. Specifically, sleeping

may reduce the accuracy of the local state information, so a power management

strategy must account for keeping such accuracy within acceptable levels. For

our geographic convergecast application, the information available to the power

management was mostly independent of any information communicated between

nodes. For other applications, there may be issues with nodes sleeping too much

and as a result, lacking accurate, up-to-date information on the local state.

In Chapter 4, we focused on an example of a dense, small-scale sensor

network, using a vehicle-based sensor network as the relevant application. This

type of network is distinct from the multi-hop WSN in that the transmission range

is on the same order as the coverage area. As a result, most nodes are within one

or two transmission hops of each other. We use this fact to develop a duty-cycling

solution that is optimized for our specific application. The same principle can be

extended for other applications of dense, small-scale WSNs.

The specific application that our protocol is designed for is a UAV network

with periodic convergecast. In this scenario, all nodes regularly send messages to

the central sink. Because nodes are mostly in range of the sink, messages can

be addressed directly to the sink and routing is not required. In most cases, all

that is required is a MAC. However, we must account for the possibility of nodes

straying from the expected coverage area, in which a multi-hop route is needed.

Therefore, the overall approach we take is to have a MAC with a fallback routing

scheme. We developed ConverSS, our hybrid MAC/routing solution for small-scale

convergecast networks, and demonstrated its superior performance over a layered

approach.

A possible extension to the dense, small-scale problem would be to mod-
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ify our solution for implementation in a wider range of networking tasks. The

principle of leveraging the typical small-scale topologies can be applied beyond

our specific scenario. In this work, we focused on periodic convergecast, which is

a very common task for these systems. As these swarming vehicles become more

sophisticated, they may achieve greater autonomy and be less reliant on a base sta-

tion node. The data traffic in this system would not necessarily be convergecast or

periodic, so our protocol would have to be adapted for arbitrary data traffic. There

is likely to be a tradeoff between energy efficiency and the ability to accommodate

a greater variety of tasks.

In this dissertation, we have mapped out a broad view of sensor networks

that expands on the traditional definition of WSNs. We have identified new kinds of

energy-sensitive systems and have proposed strategies for energy efficiency that are

designed specifically for these systems. As mobile sensor networking technologies

continue to emerge, our work will have sustained applicability for the practical

design of efficient sensor networks.
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