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ABSTRACT OF THE DISSERTATION

Bioinformatics Methods for Natural Product Discovery

by

Hosein Mohimani
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Professor Pavel A. Pevzner, Chair
Professor Alexander Vardy, Co-Chair

Most of new chemical entities introduced as antibacterials over the last

decades are derivated from natural products produced by living organisms. Some of

the most effective antibiotics are peptidic natural products. The traditional process

of natural products discovery is to elucidate strcuture of the compound of interest

by chemical assays such as Nuclear Magnetic Resonance. This process is long,

laborious, and requires large amounts of highly purified material. Recent advances

in mass spectrometry has enabled natural product discovery from picograms of

material. In this thesis we propose various computational techniques to aid natural

product discovery by computational mass spectrometry.
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Chapter 1

Introduction

About 70% of new chemical entities introduced as antibacterials over the

last 25 years are derivated from natural products produced by living organisms [1].

Natural products are classified into a variety of chemical classes, including peptidic

natural products (PNPs), lipids, and carbohydrates. Various biosynthetic ma-

chineries are involved in the production of natural products, e.g. Non-Ribosomal

Peptide Synthesize (NRPS) [2, 3], Polyketide Synthesize (PKS) [4], and Post

Ribosomal Peptide Synthesize (PRPS) [5, 6]. NRPS, PKS and PRPS synthesize

Non-Ribosomal Peptides (NRPs), Polyketides (PKs), and Ribosomally synthesized

and Posttranslationally modified Peptides (RiPPs).

The traditional process of natural products discovery is to elucidate str-

cuture of the compound of interest by chemical assays such as Nuclear Magnetic

Resonance and Crystallography, and association of the chemical compound to its

biosynthetic gene cluster by genome manipulation. This process is long, laborious,

and requires large amounts of highly purified material. Moreover, rather than dis-

covering novel natural products, this process frequently rediscovers known natural

products resulting in wasted efforts. Recent advances in mass spectrometry has

enabled natural product discovery from picograms of material.

Mass spectrometry has been the method of choice for study of proteins

in a high-throughput manner. Advances in instrumentation and software has al-

lowed researchers to take over more ambitious projects, both in terms of scale

and complexity of the experiments. Mass spectrometrys versatility lies in the fact

1
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that it can detect molecules in small concentrations in a wide range of masses.

Mass spectrometry has been utilized to detect biomarkers for diseases, identifi-

cation and quantification of expressed proteins, identification of modifications on

proteins, and aiding gene annotations, just to mention a few application in the

biological sciences.

Availability of microbial genome sequences has enabled prediction of ap-

proximate structure of natural products that an organism is capable of producing.

Genome mining for a natural product refers to using information about the biosyn-

thetic genes (responsible for synthesizing this natural product) to infer information

about the natural product itself. Discovery of the Non Ribosomal Peptide (NRP)

coelichelin in Streptomyces coelicolor was one of the first examples of the discovery

of a natural product through genome mining [7, 8]. Since then, genome mining was

utilized to discover numerous natural products including NRPs, PKs, and RiPPs.

Computational mass spectrometry techniques for discovery of novel natural prod-

ucts can be devided into two categories; methods that utilize genome mining to

aid in identification, and genome independent methods.

While availablity of the genome sequence can greatly reduce the effort

required for the discovery of natural products, many of natural products are

from organisms without genome sequenced. The general approaches for struc-

ture elucidation of these chemicals is dereplication from publicly available chemical

databases [9], spectral library search [10, 11, 12, 13, 14], spectral networks [15] and

de novo sequencing [16, 17, 18]. Chapter 2 and Chapter 3 describes multiplex de

novo sequencing and multistage de novo sequencing, two novel methods for denovo

sequencing of peptidic natural products. Chpater 4 describes a novel database

search of ribosomal cyclopeptides. Chapter 5 describes NRPquest a novel method

for discovery of non-ribosomal peptides by mass spectrometry and genome mining.

Figure 1.1 describes these pipelines, and Table 1.1 compares them.
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Table 1.1: Comparing different natural product discovery approaches.

Method Genome?Novel? Non-peptide?References
Dereplication No varinatsYes [9, 19, 20, 16, 21]
Spectral libray search No No Yes [10]
Spectral networks No varinatsYes [15]
Denovo PNP sequencingNo Yes No [16, 17, 18]
PNP database search Yes Yes No [22, 23]

genome

sequence

MS/MS from crude 

bacterial extracts

RiPP Mining

(e.g. BAGEL2)

NRPS/PKS Mining

(e.g. NRPSpredictor2)

MS-RiPP
PepGen-Miner
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922.3
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931.4
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Spectral networks

De novo sequencing
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ThrThr
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Phe
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Phe
Phe

Phe
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PhePhe

DhbDhb

Dhb

Abu
Abu

Cys

Cys

CysCys

Cys

Ala

Ala

Ala Ala

Ala

Ala

Arg

Arg

Arg
Arg

Arg

Arg

Arg Arg

Arg

Ser

Ser

Ser

Ser

Dha

Dha

Dha

Thr Phe Dha Arg CysDhbPhe Dha Arg Cys

SS

S
S

Generate all putative

lanthipeptides with 

modifications
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bacterial extracts

Form and score PSMs. Report PSMs with the 

most statistically significant scores

Identifying variants of lanthipeptides

using spectral networks

Thr Phe AlaAla Arg

S

y
4

y
3

b2
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S
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S
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(+2)

(+2)(+2)

genome

sequence

Identify NRPS biosynthetic gene clusters

(NRPSpredictor2/antismash)

MS/MS from crude 

bacterial extracts
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most statistically significant scores

Form spectral network of top PSMs. 
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Me-ser,ala,gly,Me-hpg,ala,tyr

Consider linear/cyclic/branch-cyclic structures

A5

A1 A2
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A6b
2-5
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Figure 1.1: Computational mass spectrometry pipeline for natural product dis-
covery.



Chapter 2

Multiplex De Novo Sequencing of

Peptide Antibiotics

2.1 Introduction

In 1939 Renê Dubos discovered that the peptide fraction Tyrothricin, iso-

lated from the soil microbe Bacillus brevis, had an ability to inhibit the growth

of Streptococcus pneumoniae, rendering it harmless. Although discovered 10 years

after Penicillin, it was the first mass produced antibiotic deployed in Soviet hos-

pitals in 1943. Unfortunately, the identification of amino acid sequences of cyclic

peptides, once a heroic effort, remains difficult today. The dominant technique for

sequencing cyclic peptide antibiotics is 2D NMR spectroscopy, which requires large

amounts of highly purified materials that, are often nearly impossible to obtain.

Tyrothricin is a classic example of a mixture of related cyclic decapeptides

whose sequencing proved to be difficult and took over two decades to complete.

By the 1970s, scientists had sequenced 5 compounds, Tyrocidine A-E, from the

original mixture. However, these five are not the only peptides produced by B.

brevis and even today it remains unclear whether all of the antibiotics produced

by this bacterium have been documented (see reference [24] for a list of 28 known

peptides from B. brevis).

Figure 2.1(a) shows structure of Tyrocidine A. Table S1 illustrates that

4
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most cyclic decapeptides in the Tyrocidine/Tryptocidine family can be represented

as shown (the rounded amino acid masses in daltons are also shown):

V al

{

Orn

Lys

}

LeuPhePro

{

Phe

Trp

}{

Phe

Trp

}

AsnGln















Tyr

Trp

Phe















99

{

114

128

}

113 147 97

{

147

186

} {

147

186

}

114 128















163

186

147















(a) Tyrocidine A (b) Cyclomarin A

(c) Reginamide A

Figure 2.1: Structures of Tyrocidine A (a), Cyclomarin A (b), and Reginamide
A (c).

It may come as a surprise that there are no genes in B. brevis whose

codons encode any of the Tyrocidine peptides! Tyrocidines, similar to many antibi-

otics such as Vancomycin or Daptomycin, represent cyclic non-ribosomal peptides

(NRPs) that do not follow the central dogma “DNA produces RNA produces Pro-

tein”. They are assembled by nonribosomal peptide synthetases that represent

both the mRNA-free template and building machinery for the peptide biosyn-
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thesis [25]. Thus, NRPs are not directly inscribed in genomes and cannot be

inferred with traditional DNA sequencing. Cyclic NRPs are of great pharmaco-

logical importance as they have been optimized by evolution for chemical defense

and communication. Cyclic NRPs include antibiotics, antitumor agents, immuno-

suppressors, toxins, and many peptides with still unknown functions.

Most NRPs are cyclic peptides that contain nonstandard amino acids,

increasing the number of possible building blocks from 20 to several hundreds.

The now dominant 2D NMR-based methods for NRP characterization are time-

consuming, error prone, and requires large amounts of highly purified material.

Because NRPs are often produced by difficult to cultivable microorganisms, it may

not be possible to get sufficient quantities for 2D structure elucidation, therefore it

is important to develop a nmol scale structure elucidation approach [26, 27]. Such

methods promise to greatly accelerate cyclic NRP screening and may illuminate a

vast resource for the discovery of pharmaceutical agents [28].

The first automated Mass Spectrometry (MS) based approach to sequencing

cyclic peptides correctly sequenced 2 out of 6 Tyrocidines analyzed by Ng et al.

[16]. While the correct sequences for 4 other Tyrocidines were highly ranked, Ng

et al., 2009 [16] came short of identifying them as the highest-scoring candidates.

Leao et al., [29], 2010, and Liu et al., [30], 2010, recently applied the algorithm

from [16] for analyzing new cyclic peptides. In [29], the authors study peptides

produced by the cyanobacterium Oscillatoria sp. that inhibit the growth of green

algae and demonstrated that they function in a synergistic fashion, i.e., mixtures of

these analogous peptides are needed to inhibit green algal growth. This observation

emphasizes the importance of studying various peptide variants and calls for the

development of a technology able to simultaneously sequence all peptides produced

by a single organism.

Our first attempt to sequence cyclic NRPs from Oscillatoria sp. via MS

using the algorithm described by Ng et al., [16] was inconclusive. We (Leao

et al. 2010 [29]) resorted to purification of the most abundant peptide with

the goal to sequence it via 2D NMR (purification of individual NRPs is often

difficult since various NRP variants have similar physicochemical properties). This
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amounted to a large effort that involved applications of various NMR technologies

(including HSQC, HMBC, COSY, and NOESY) but still failed to identify some

inter-residue dependencies. Applications of both NMR and MS to finally sequence

four compounds using NRP-Dereplication algorithm from [16] represented a large

and time-consuming effort of a multidisciplinary team. A better approach would be

to generate MS/MS spectra of all variant NRPs (without the need to purify large

amounts of individual peptides) and to multiplex sequence them. By multiplex

sequencing we mean simultaneous (and synergetic) sequencing of related peptides

from their spectra.

Using this approach, we sequenced many known members of the Tyrocidine

family as well as some still unknown Tyrocidine variants. Finding new Tyrocidine

variants is surprising since this family has been studied for sixty years now. We

further sequenced a previously unknown family of NRPs isolated from a bacterial

strain that produces natural products with anti-asthma activities (named Regi-

namides). To validate these new sequences (obtained from a single mass spectrom-

etry experiment) we analyzed one of them (named Reginamide A) using (rather

time consuming) NMR experiments. The mass spectrometry approach revealed the

sequence of masses with molecular composition (C3H5NO, C6H11NO, C6H11NO,

C7H12N2O2, C6H11NO, C9H9NO, C6H11NO, C6H11NO) that was matched by

NMR as the cyclic peptide AIIKIFLI with structure shown in Figure 2.1(c).

We emphasize that NMR confirmation of a compound with a known sequence

(derived by MS) is much easier than NMR sequencing of a completely unknown

compound. The crux of our approach is the analysis of the entire spectral net-

work [15] of multiple Tyrocidines/Reginamides (Figure 2.4(b-c) and Table 2.2

and 2.3) rather than analyzing each Tyrocidine/Reginamide isomer separately.

The derived sequences of the Reginamides represent the first automated sequenc-

ing of a cyclic peptide family before NMR and highlights the future role that

mass spectrometry may play in sequencing cyclic peptides. MS-CyclicPeptide soft-

ware is available from the NCRR Center for Computational Mass Spectrometry at

http://proteomics.ucsd.edu.
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2.2 Results

Spectral datasets. We analyzed Tyrocidine, Cyclomarin, and Reginamide

families of cyclic peptides (see Methods section for the detailed description of

experimental protocols).

The Cyclomarins represent a family of cyclic heptapeptides with anti-

inflammatory activity, isolated from a marine Streptomyces strain [31, 32, 33].

The structure of Cyclomarin A is shown in Figure 2.1(b). We sequenced four

variants of the Cyclomarins that differ in a single amino acid residue.

The Reginamides represent a newly isolated family of cyclic octapeptides

isolated from a marine Streptomyces strain that also produces secondary metabo-

lites with anti-asthma activities (Splenocins). Multiple variants of Reginamide

isomers were sequenced using MS. Due to limited quantities of these cyclic pep-

tides and severe separation challenges, it was only possible to purify one of the

variants (named Reginamide A) for validating the derived sequences by NMR.

Multi-dimensional NMR analysis confirmed the sequence of Reginamide A, de-

rived by our multiplex sequencing algorithm.

Sequencing of individual peptides. Below we describe an algorithm

for sequencing individual cyclic peptides. The goal of this algorithm is not im-

proving the method of [16], but rather proposing the ground for multiplex peptide

sequencing, something that the algorithm from [16] is not suited for.

Consider the cyclic peptide VOLFPFFNQY (Tyrocidine A) with integer

masses (99, 114, 113, 147, 97, 147, 147, 114, 128, 163). We will interchangeably

use the standard notation (VOLF...) and the sequence of rounded masses (99,

114, 113, 147, ...) to refer to a peptide. One may partition this peptide into three

parts as OLF-PFF-NQYV with integer masses 374, 391 and 504 respectively. In

general, a k-partition is a decomposition of a peptide P into k subpeptides with

integer masses m1 . . .mk (we refer to mass(P ) =
∑k

i=1 mi as the parent mass of

peptide P ). A k-tag of a peptide P is an arbitrary partition of mass(P ) into

k integers. A k-tag of a peptide P is correct if it corresponds to masses of a

k-subpartition of P , and incorrect otherwise. For example, (374, 391, 504) is a

correct 3-tag, while (100, 1000, 169) is an incorrect 3-tag of Tyrocidine A.
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A (linear) subtag of a cyclic k-tag Tag = (m1, · · · ,mk) is a (continuos)

linear substring mi · · ·mj of the k-tag (we assume mi · · ·mj = mi · · ·mkm1 · · ·mj

in the case j < i). There are k(k − 1) subtags of a k-tag. The mass of a subtag is

the sum of all elements of the subtag and the length of a subtag is the number of

elements in the subtag. We define ∆(Tag) as the multiset of k(k−1) subtag masses.

For a peptide P , the theoretical spectrum of P is defined as ∆(P ). For example,

the theoretical spectrum of a cyclic peptide AGPT = (71Da, 57Da, 97Da, 101Da)

consists of 12 masses (57, 71, 97, 101, 128, 154, 172, 198, 225, 229, 255, and 269).

The problem of sequencing a cyclic peptide from a (complete and noiseless)

spectrum corresponds to the Beltway Problem [34] and can be stated as follows:

Cyclic Peptide Sequencing Problem.

• Goal: Given a spectrum, reconstruct the cyclic peptide1 that generated this

spectrum.

• Input: A spectrum S (a set of integers).

• Output: A cyclic peptide P , such that ∆(P ) = S.

While the Beltway Problem is similar to the well-studied Turnpike Prob-

lem [35, 36], the former is more difficult than the latter one [34]. Moreover, de novo

sequencing of cyclic peptides is much harder than the (already difficult) Beltway

Problem. Indeed, the real spectra are incomplete (missing peaks) and noisy (addi-

tional peaks). Table S2 represents an experimental spectrum of Tyrocidine A and

illustrates that while the experimental spectrum captures many masses from the

theoretical spectrum (45 out of 90 masses), it also contains 30 other masses (corre-

sponding to noisy peaks and neutral losses). The limited correlation between the

theoretical and experimental spectra makes the spectral interpretation difficult.

Given a tag Tag and an experimental spectrum S (represented as a

set of integer masses), we define Score(Tag, S) as the number of elements

(masses) shared between ∆(Tag) and S (ignoring multiplicities of elements in

1We emphasize that the peptide might have amino acids with arbitrary masses, rather than
the 20 standard amino acids.
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∆(Tag)). For example, for the 3-tag Tag = (374, 391, 504) of Tyrocidine A,

Score(Tag, S) = 5, since the spectrum S contains 5 out of 6 elements in

∆(Tag) = (374, 391, 504, 765, 878, 895).

The problem of sequencing a cyclic peptide from an incomplete and noisy

spectrum can be stated as follows:

Cyclic Peptide Sequencing Problem from Incomplete/Noisy Spectrum.

• Goal: Given an incomplete and noisy spectrum, reconstruct the cyclic pep-

tide that generated this spectrum.

• Input: A spectrum S (a set of integers) and an integer k (peptide length)

• Output: A cyclic peptide P of length k, such that Spectrum and ∆(P ) are as

similar as possible, i.e. Score(P, S) is maximized among all cyclic peptides

of length k.

A tag is valid if all its elements are larger than or equal to 57 (minimal

mass of an amino acid). A valid (k+1)-tag derived from a k-tag Tag by breaking

one of its masses into 2 masses is called an extension of Tag. For example, a 4-tag

(374, 100, 291, 504) is an extension of a 3-tag (374, 391, 504). All possible tag

extensions can be found by exhaustive search since for each k-tag (m1 . . . mk) there

exist at most
∑k

i=1 mi extensions.

Our algorithm for sequencing individual peptides starts from scoring all

2-tags and selecting t top-scoring 2-tags, where t is a parameter. It further itera-

tively generates a set of all extensions of all top-scoring k-tags, combines all the

extensions into a single list, and extracts t top scoring extensions from this list.

Table 2.1(a) shows the reconstructed 7-tags for the Tyrocidine family and illus-

trates that the highest-scoring tags are incorrect for most Tyrocidines. However,

by simultaneously sequencing pairs of spectra of related peptides, one can achieve

better results. For the sake of simplicity, we illustrate how our approach works

with integer amino acid masses. However, with available high precision mass spec-

trometry data we are able to derive the elemental composition of each amino acid

(see Text S5).
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Furthermore, we describe an algorithm for combining information from all

high scoring tags to generate a spectral profile (Figure 2.2) that compactly repre-

sents all high-scoring tags (similar to sequence logos [37]). Each Tag = (m1 . . .mk)

with
∑k

i=1 mi = M defines an M -dimensional boolean vector
−−→
Tag with 1s at

k positions
∑j

i=1 mi for 1 ≤ j ≤ k. For example, a tag (3,2,4) defines a vec-

tor 001010001. Given a vector x = x1 . . . xM , we define its i-shift as the vec-

tor xM−i+1xM−i+2 . . . xMx1 . . . xM−i and its reversal as the vector xMxM−1 . . . x2x1.

We define the reversed i-shift as the reversal of the i-shift. For example, 2-shift

of 001010001 is 010010100, and reversed 2-shift is 001010010. Given vectors x

and y, we define alignment(x,y) as a shift or reversed shift of x with maximum

dot-product with y. For x = 001010001 and y = 101000000, alignment(x,y) =

101000100.

Our algorithm for constructing the spectral profile (generated from a spec-

trum with parent mass M) starts from ordering t high-scoring k-tags Tag1 . . . Tagt

in the decreasing order of their scores and defines T0 as an M -dimensional vector

with all zeros. It proceeds in t steps, at each step aligning the tag Tagi against

the vector Ti−1. At step i, it finds alignment(
−−→
Tagi, Ti−1) between

−−→
Tagi and Ti−1

and adds it to Ti−1 to form Ti = alignment(
−−→
Tagi, Ti−1) + Ti−1. After t steps, the

algorithm outputs the vector Tt

t
as the spectral profile.

For example, for Tyrocidine A, the two 7-tags with the highest scores are

Tag1 = (114, 147, 244, 260, 111, 119, 274) and Tag2 = (114, 147, 244, 291, 80,

133, 260). After the first step, we form a vector T1 =
−−→
Tag1 with 1s at positions

114, 261, 505, 765, 876, 995 and 1269. At the second step, we align
−−→
Tag2 and T1

and form a vector T2 with 1s at positions 765, 995, 796, 1009 and 2s at positions

114, 261, 505, 876, and 1269. Repeating these steps for 100 high-scoring tags for

Tyrocidine A results in the spectral profile shown in Figure 2.2(a). Table S4

provides the annotations of the spectral profiles for Tyrocidine A, B and C.

Sequencing of peptide pairs. We define a spectral pair as spectra

S and S ′ of peptides P and P ′ that differ by a single amino acid. Con-

sider a spectral pair (S, S ′) and set δ = Mass(S ′) − Mass(S). Given a k-tag

Tag = (m1 . . .mk) of a spectrum S and an offset δ, we define a corresponding
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k-tag TagiS→S′ = (m1 . . .mi + δ . . .mk) of S
′ for each 1 ≤ i ≤ k. For example for

Tag = (213, 260, 244, 147, 114, 128, 163) of Tyrocidine A,

Tag1Tyc A→Tyc A1 = (227, 260, 244, 147, 114, 128, 163) is the corresponding tag of Ty-

rocidine A1. Any k-tag of S corresponds to at most k k-tags of S ′, and any correct

k-tag of S corresponds to (at least) one correct k-tag of S ′. Given a k-tag Tag of

a spectrum S, define its PairwiseScore as

PairwiseScore(Tag, S, S ′) =
Score(Tag, S) + max1≤i≤k Score(Tag

i
S→S′ , S ′)

2

The algorithm for pairwise sequencing of the cyclic peptides is exactly the same

as the algorithm for sequencing individual cyclic peptide but instead of using

Score(Tag, S) for scoring a single tag, it uses PairwiseScore(Tag, S, S ′). Ta-

ble 2.1(b) shows that while pairwise sequencing improves on sequencing of indi-

vidual cyclic peptides, it does not lead to correct reconstructions of all Tyrocidines.

Identifying spectral pairs. While the described algorithm assumed that

we know which spectra form spectral pair, i.e. which peptides differ by a single

substitution, such an information is not available in de novo sequencing appli-

cations. The problem of whether spectra of two linear peptides form a spectral

pair was investigated by Bandeira et al., [15]. In this section we address a more

difficult problem of predicting whether the spectra of two cyclic peptides form a

spectral pair based only on their spectra. Our approach extends the dereplication

algorithm from [16] by comparing spectra of mutated peptides (rather than com-

paring a spectrum against a sequence of a mutated peptide) and is based on the

observation that related peptides usually have high-scoring corresponding tags. A

simple measure of similarity between spectra is the number of (S, S ′)-shared peaks

(see Table S6). In the following we introduce ∆(S, S ′) distance between spectra,

that, in some cases, reveals the similarity between spectra even better than the

number of (S, S ′)-shared peaks. Given a set of k-tags TagList for a spectrum S,

we define:

MaxScore(TagList, S) = max
Tag∈TagList

Score(Tag, S)

Given an additional spectrum S ′, we define:

MaxPairwiseScore(TagList, S, S ′) = max
Tag∈TagList

PairwiseScore(Tag, S, S ′)
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Finally, given a set of k-tags TagList for a spectrum S and a set of k-tags TagList′

for a spectrum S ′, define ∆(TagList, TagList′, S, S ′) (or, simply, ∆(S, S ′)) as the

differences between the sum of scores of the best-scoring tags for S and S ′ and the

sum of pairwise scores of the best-scoring tag of S/S ′ and S ′/S pairs:

∆(S, S ′) = MaxScore(TagList, S) +MaxScore(TagList′, S ′)

−MaxPairwiseScore(TagList, S, S ′)−MaxPairwiseScore(TagList′, S ′, S)

It turned out that ∆(S, S ′) is a good indicator of whether or not peptides P and

P ′ that produced S and S ′ are only one amino acid apart. Table S6 illustrates

that all seven spectral pairs of Tyrocidines have ∆ less than or equal to five, while

for remaining pairs, ∆ is greater than or equal to seven, with exception of Tyroci-

dine A1/C1 pair representing two substitutions at consecutive amino acids FF →

WW. Such substitutions at consecutive (or closely located) positions are difficult

to distinguish from single substitutions. For example, the theoretical spectrum for

FF → WW substitutions (each with 39 Da difference in the mass of amino acids)

is very similar to the theoretical spectrum of a peptide with a single substitution

on either of Phe residues with 78 Da difference.

Spectral Network Construction. Given a set of peptides P1, · · · , Pm,

we define their spectral network as a graph with m vertices P1, · · · , Pm and edges

connecting two peptides if they differ by a single amino acid substitution. In

reality, we are not given peptides P1, · · · , Pm, but only their spectra S1, · · · , Sm.

Nevertheless, one can approximate the spectral network by connecting vertices Si

and Sj if the corresponding peptides are predicted to differ by a single amino acid,

i.e. if ∆(S, S ′) is less than a threshold. Figure 2.4(a) show the spectral network

of six Tyrocidines analyzed in [16].

Multiplex sequencing of peptide families. We now move from pair-

wise sequencing to multiplex sequencing of spectral networks of (more than two)

related cyclic peptides. While we use the notion of spectral networks from [15],

the algorithm for sequencing linear peptides from spectral networks (as described

in [15]) is not applicable for sequencing cyclic peptides.

In multiplex sequencing of peptide families, we are given a set of spectra of

peptides of the same length n, without knowing their amino acid sequences, and
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without knowing which ones form spectral pairs. Sequencing of individual cyclic

peptides is capable of generating a set of candidate k-tags, that typically contains

a correct tag (at least for k smaller than n). However, sequencing of individual

spectra typically fails to bring the correct peptide to the top of the list of high-

scoring peptides or even, in some cases, fails to place it in this list. To alleviate this

problem, we analyze all spectra in the spectral network and introduce a multiplex

scoring that utilizes the information from all spectra.

Below we formulate the multiplex sequencing problem. Given a spectral

network G of spectra S = (S1, · · ·Sm), we call a set of peptides (P1, · · ·Pm)

G-consistent if for every two spectra Si and Sj connected by an edge in G, Pi and

Pj differ by a single amino acid.

Multiplex Cyclic Peptide Sequencing Problem.

• Goal: Given spectra of related cyclic peptides (of the same length) and their

(estimated) spectral network, reconstruct all cyclic peptides that generated

this spectra.

• Input: Spectra S = S1, · · · , Sm, their (estimated) Spectral Network G, and

an integer k.

• Output: A G-consistent2 set of peptide P1, · · · , Pm (each of length k) that

maximizes
∑m

i=1 Score(Pi, Si) among all sets of G-consistent peptides of

length k.

Let S = (S1, · · ·Sm) be a set of spectra of m peptides forming a spectral

network and let Tag = (Tag1, · · · , Tagm) be a multitag, which is a set of tags such

that Tagi is a k-tag of spectrum Si (for 1 ≤ i ≤ m). In Text S1 we describe multi-

plex scoring of multitags, taking into account dependencies between spectra in the

spectral network. This is in contrast to scoring multitags as
∑m

j=1 Score(Tagj, Sj)

2Since we work with estimated (rather than exact) spectral networks, the multiplex cyclic
peptide sequencing may not have a solution (i.e. a set of G-consistent peptides does not exist).
Given a parameter u, a set of peptides is called (G, u)-consistent if for all but u edges (Si, Sj),
Pi and Pj differ by a single amino acid. The algorithm address finding (G, u)-consistent sets of
peptides for a small parameter u.
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that is equivalent to independent optimization of individual scores on all individual

k-tags. This approach will not give any payoff in comparison to individual spectral

sequencing.

MultiplexScore defined in Text S1 scores a multitag against all spectra in

the spectral network. However, generating a correct multitag from m lists of t top-

scoring tags in spectra S1, . . . , Sm is impractical since (i) the number of candidate

multitags (tm) is large, and (ii) some lists may not contain correct individual tags.

We therefore generate candidate multitags from individual tags and score them

against all spectra using MultiplexScore. Figure 2.3 describes the algorithm for

generating a k-multitag from a single individual k-tag using the spectral network

G. Given a candidate individual tag Tag of a spectrum Su, 1 ≤ u ≤ m, our algo-

rithm generates a candidate multitagmultitag(Tag, u,S, G) = (Tag1, · · · , Tagm),

satisfying Tagu = Tag. Note that given a tag Tag = (m1, · · · ,mk), the (i, δ)-

modification of Tag is defined as (m1, · · · ,mi + δ, · · · ,mk).

We now define multiplex score on an individual tag Tag of a spectrum Su

as follows:

MultiplexScore(Tag, u,S, G) = MultiplexScore(multitag(Tag, u,S, G),S, G)

The multiplex sequencing algorithm (i) generates lists of individual tags for each

spectrum in the spectral network, (ii) constructs the spectral network G, (iii)

selects an individual Tag that maximizes MultiplexScore(Tag, u,S, G) among all

individual tags, and (iv) outputs multitag(Tag, u,S, G) as the solution of the

multiplex sequencing problem.

Multiplex sequencing algorithm is exactly the same as the individual se-

quencing algorithm, with the only difference that we use MultiplexScore here,

instead of Score (individual sequencing). Again we start with high scoring 2-tags

(in MultiplexScore sense), and extend them, keeping t highest scoring tags in each

step. Table 2.1(c) illustrates that the multiplex sequencing algorithm sequences

all six Tyrocidines studied in [16] correctly.

Figure2.2 (b-d) shows spectral profiles for t = 100 high scoring tags of

multiplex sequencing of Q-TOF spectra of Tyrocidines, Cyclomarins, and Regi-

namides.



16

Figure 2.4(b) and Table 2.2 show spectral network and sequences of

Tyrocidines, predicted by multiplex sequencing algorithm (using ESI-IT spectra,

see Text S3 for details). Figure 2.4(c) and Table 2.3 show similar results for

Reginamides (see Text S4 for details).

To analyze Reginamides, the Q-TOF and ESI-IT tandem mass spectrome-

try data was collected on both ABI QSTAR and ThermoFinnigan LTQ. In both

cases, sequencing of Reginamide A resulted in a sequence of integer masses (71, 113,

113, 128, 113, 147, 113, 113). Using accurate FT spectra collected on ThermoFinni-

gan, we further derived amino acid masses as (71.03729, 113.08406, 113.08405,

128.09500, 113.08404, 147.06849, 113.08397, 113.08402) that pointed to amino

acids Ala (71.03711), Ile/Leu (113.08406), Lys (128.09496) and Phe (147.06841)

and revealed the elemental composition. These sequences were further confirmed

by NMR (see Text S6).

2.3 Methods

Generating mass spectra. Q-TOF tandem mass spectrometry data for

Tyrocidines, Cyclomarines, and Reginamides were collected on ABI-QSTAR. In

addition, ESI-IT tandem mass spectrometry data were collected for Tyrocidines

and Reginamides on a Finnigan LTQ-MS. All spectra were filtered as described in

[16, 38] by keeping five most intense peaks in each 50 dalton window. All masses

were rounded after subtraction of charge mass and multiplication by 0.9995 as

described in [39]. High resolution FT spectra of Reginamides were also collected

on a Finnigan. Typical mass accuracy of IT instruments are between 0.1 to 1 Da,

while typical accuracy of TOF and FT instruments are between 0.01 to 0.1Da, and

0.001 to 0.01Da respectively.

Isolation of Reginamide A. CNT357F5F5 sample was obtained from a

cultured marine streptomyces in five 2.8 L Fernbach flasks each containing 1 L

of a seawater-based medium and shaken at 230 rpm at 27 ℃. After seven days of

cultivation, sterilized XAD-16 resin was added to adsorb the organic products, and

the culture and resin were shaken at 215 rpm for 2 hours. The resin was filtered

through cheesecloth, washed with deionized water, and eluted with acetone. Pure
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Reginamide A eluted at 12.6 min to give 2.0 mg of pure material.

Generating NMR spectra. CD3OD and C5D5N were purchased from

Cambridge Isotope. 1H NMR, 13C NMR, 1H − 1H COSY, 1H − 1H TOCSY

(mixing time 90 ms), HMBC (2J or 3J1H−13C = 7 Hz), HSQC (1J1H−13C = 145

Hz), and ROESY (mixing time = 400 ms) spectra were generated on the Bruker

(AVANCE III 600) NMR spectrometer with 1.7 mm cryoprobe. All the NMR

spectra are provided in the Supplementary Information.

Parameter Setting. Text S7 discusses setting of parameters of the al-

gorithm.
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Figure 2.2: (a) Spectral profile of 100 highest scoring 7-tags for Tyrocidine A.
Intensities of correct peaks account for 68% of total intensity. (b) Spectral profile
of 100 highest scoring 10-tags for Tyrocidine A generated by multiplex sequenc-
ing of Tyrocidines. Intensities of correct peaks account for 86% of total intensity.
(c) Spectral profile of 100 highest scoring 7-tags generated for Cycolmarin A by
multiplex sequencing of four Cyclomarins (Cycolmarin A, Cyclomarin C, Dehydro
Cyclomarin A and Dehydro Cyclomarin C). For Cyclomarin A, amino acids a,
b, c, d, e, f and g stand for Alanine (71Da), β-methoxyphenylalanine (177Da),
Valine (99Da), N-methylleucine (127Da), 2-amino-3,5-dimethylhex-4-enoic acid
(139Da), N-(1,1-dimethyl-2,3-epoxyprophyl)-β-hydroxytryptophan (286Da) and
N-methyl-δ-hydroxyleucine (143Da). In Cyclomarin C, f is replaced by N-prenyl-
β-hydroxytryptophan (270Da). Dehydrations also occur on residue f . Intensi-
ties of correct peaks accounts for 59% of total intensitites. (d) Spectral profile
of 100 top scoring 8-tags of Reginamide A generated by multiplex sequencing of
Reginamides. The top scoring 8-tag of Reginamide A, also verified by NMR, is
(71, 113, 113, 128, 113, 147, 113, 113). Intensities of correct peaks account for 81%
of total intensity.
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Table 2.1: Individual (a), pairwise (b) and multiplex (c) de novo sequencing of
Tyrocidines. The correct tag is selected from the set of 1000 top-scoring tags (the
top scoring correct tag and its rank are shown). Table S3 shows the process of
extensions of top scoring tags of Tyrocidine A from 2-tags to 7-tags. Rank 1 · · · 7
for the highest scoring tag of Tyrocidine A1 means that the seven highest scoring
tags have equal score, and one of them is the correct tag. Composite masses such
as [113+147] for Tyrocidine A mean that the sequencing algorithm returned 260Da
instead of 113Da and 147Da corresponding to Leu and Phe. [99 + 114/128] for
Tyrocidine A/A1 pair means that the mass 99 + 114 = 213 in the first position of
Tyrocidine A is substituted by the mass 99 + 128 = 227 in Tyrocidine A1. Part (c)
shows 10-tags resulting from multiplex sequencing of six Tyrocidines (projected to
Tyrocidine A). Correct masses are shown in bold. MS stands for Multiplex Score,
and WMS stands for weighted Multiplex Score (See Text S2 for details).

Peptide The highest-scoring correct 7-tag (among all generated tags) Rank

Tyc A [99+ 114] [113+ 147] 97 147 147 114 [128+ 163] 384 · · · 1000
Tyc A1 [99+ 128] [113+ 147] [97+ 147] 147 114 128 163 1 · · · 7
Tyc B [99+ 114] 113 147 97 [147+ 186] 114 [128+ 163] 14 · · · 134
Tyc B1 99 128 [113+ 147] [97+ 186] 147 [114+ 128] 163 2 · · · 13
Tyc C 99 114 [113+ 147] [97+ 186] [186+ 114] 128 163 6 · · · 72
Tyc C1 99 128 [113+ 147] [97+ 186] 186 114 [128+ 163] 4 · · · 38

(a) Individual

Pair The highest-scoring correct 7-tag (among all generated tags) Rank

Tyc A/A1 [99+ 114/128] [113+ 147] [97+ 147] 147 114 128 163 2 · · · 5
Tyc B/B1 99 114/128 [113+ 147] [97+ 186] 147 [114+ 128] 163 1
Tyc C/C1 99 114/128 [113+ 147] [97+ 186] 186 [114+ 128] 163 1
Tyc A/B 99 114 [113+ 147] [97+ 147/186] 147 [114+ 128] 163 2 · · · 6
Tyc B/C 99 114 [113+ 147] [97+ 186] 147/186 [114+ 128] 163 1
Tyc A1/B1 99 128 [113+ 147] [97+ 147/186] 147 [114+ 128] 163 1 · · · 4
Tyc B1/C1 99 128 [113+ 147] [97+ 186+ 147/186] 114 128 163 43 · · · 82

(b) Pairwise

Family Sequences (10-tags) MSWMSRank

Tyrocidines

99 114 113 147 97 147 147 114 128 163 232 29.14 1
99 114 113 147 97 147 147 69 173 163 228 28.78 2
99 114 141 119 97 147 147 114 128 163 222 28.14 3
99 114 113 147 97 147 147 114 111 180 222 27.85 4

(c) Multiplex
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goal: Given spectra of related cyclic peptides (of the same length), sequence of one of them, and

their (estimated) spectral network, reconstruct all the cyclic peptides that generated this spectra.

input: Spectra S = (S1, · · · , Sm) of m related cyclic peptide, their (estimated) Spectral Network

G, an integer k, a k-tag Tag of Su for some 1 ≤ u ≤ m, a scoring function Score(Tag, S) for

individual spectra.

output: an approximate solution multitag(Tag, u,S, G) of constrained multiplex cyclic peptide

sequencing problem.

for j = 1 to m do

Tagj ← null

end for

Tagu ← Tag

repeat

Change← 0

for all spectral pairs (Sj , Sr) in E(G) do

δ = ParentMass(Sr)− ParentMass(Sj)

if Tagj 6= null and r 6= u then

for i = 1 to k do

Tag′r ← (i, δ)-modified Tagj

if Score(Tag′r, Sr) > Score(Tagr, Sr) then

Tagr ← Tag′r

Change← Change+ 1

end if

end for

end if

end for

until Change = 0

return (Tag1, · · · , Tagm)

Figure 2.3: Algorithm for generating multitags from a candidate Tag of a spec-
trum Su in the spectral network formed by spectra S1, . . . , Sm corresponding to
the spectral network G. Given a k-tag Tag of the spectrum Su, the algorithm
initializes Tagu = Tag and Tagj = Null for all other 1 ≤ j ≤ m. We assume
that Score(Null, Si) = −∞ for all 1 ≤ i ≤ m. E(G) stands for the edge set
of the spectral network G. Since the sum

∑m
i=1 Score(Tagi, Si) is monotonically

increasing, the algorithm converges (typically after few iterations).
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Table 2.2: Reconstructed peptides from the spectra corresponding to vertices
in the spectral network shown in Figure 2.4(b). The spectra were dereplicated
using (known) Tyrocidines A, A1, B, B1, C and C1 by applying the multitag
algorithm described in Figure 2.3. Four of the sequences are reported previously
(see Table S12). For one spectrum with previously reported parent mass, 1292
Da, our reconstruction slightly differs from that of [1].

PM Tag ScoreComment
1269 99 114 113 147 97 147 147 114 128 163 21 Tyrocidine A
1283 99 128 113 147 97 147 147 114 128 163 26 Tyrocidine A1
1291 99 114 113 147 97 186 147 97 128 163 18 New
1292 99 114 113 147 97 186 131 114 128 163 22 PM matches Tryptocidine A[1]
1306 99 128 113 147 97 186 147 114 112 163 23 New
1308 99 114 113 147 97 186 147 114 128 163 25 Tyrocidine B
1322 99 128 113 147 97 186 147 114 128 163 32 Tyrocidine B1
1331 99 114 113 147 97 186 147 114 128 186 24 Tryptocidine B[1]
1345 99 128 113 147 97 186 147 114 128 186 27 previously reported[1]
1347 99 114 113 147 97 186 186 114 128 163 24 Tyrocidine C
1361 99 128 113 147 97 186 186 114 128 163 30 Tyrocidine C1
1370 99 114 113 147 97 186 186 114 128 186 26 Tyrocidine D[1]
1384 99 128 113 147 97 186 186 114 128 186 24 previously reported[1]

Table 2.3: Dereplication of Reginamide variants represented by the spectral net-
work in the Figure 2.4(c)) from the Reginamide A, using multitag algorithm.

PM Peptide Score
897 71 99 113 128 113 147 113 113 31
911 71 113 113 128 113 147 113 113 31
925 71 113 113 142 113 147 113 113 25
939 71 113 113 156 113 147 113 113 31
953 71 113 113 170 113 147 113 113 29
967 71 113 113 184 113 147 113 113 28
981 113 85 113 184 113 147 113 113 28
995 71 113 113 212 113 147 113 113 24
1009 113 113 113 184 113 147 113 113 26
1023 71 113 113 240 113 147 113 113 20
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TycA

TycA1

O/K (+14)

TycB

F6/W6 (+39)

TycB1
F6/W6 (+39)

TycC1

FF/WW (+78)

O/K (+14)

TycC
F7/W7 (+39)

F7/W7 (+39)

O/K (+14)

(a) Six tyrocidines

1269

1283

13471322

1292

1306

1308

1339

1331

1345

1370 1361

1384

(b) All tyrocidines

897

911

925

939

953 981

967 995

1009

1023

(c) Reginamides

Figure 2.4: (a) The spectral network of six Tyrocidines analyzed in [16] reveals
7 (correct) spectral pairs differing by a single substitution and one (incorrect)
spectral pair (Tyc A1 and Tyc C1) differing by two substitutions. (b) The spectral
network of Tyrocidines after clustering similar spectra (see Text S3 for details).
The sequences were dereplicated from Tyrocidines A, A1, B, B1, C and C1 in
Table 2.2 (green node) using the multitag algorithm. (c) The spectral network
of Reginamides after clustering similar spectra (see Text S4 for details). The
sequences were dereplicated from Reginamide A in Table 2.3 (green node) using
the multitag algorithm.



Chapter 3

Sequencing Cyclic Peptides by

Multistage Mass Spectrometry

3.1 Introduction

Sequencing cyclic peptides, once a heroic effort, remains difficult today.

The dominant technique for sequencing cyclic peptides is 2D nuclear magnetic

resonance (NMR) spectroscopy, which requires large amount (miligrams) of highly

purified materials that are often nearly impossible to obtain [28]. Tandem mass

spectrometry (MS/MS) provides an attractive alternative to NMR since it allows

one to sequence a peptide from picograms of non-purified material. However, the

algorithms for interpreting mass spectra of cyclic peptides are still in infancy.

In the case when a cyclic peptide is a new variant of a known peptide

family (differing from a known peptide by one or two mutations) dereplication

algorithm presented in [16] can usually resequence the new variant. However, the

approach works well when there exist a similar peptide and does not work for

a peptide from a previously unknown family or distant homologs from the same

family. De novo sequencing by mass spectrometry can be tricky even for linear

peptides1 [41, 42, 40], let alone for cyclic peptides. In the case of linear peptides,

mass spectrometrists usually reserve to database search since it is more accurate

1De novo sequencing of linear peptides by MS/MS remains difficult and fails to correctly
sequence 60− 70% of all spectra [40].
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than de novo sequencing [43, 44]. The recently developed database search approach

for spectra of cyclic peptides (Ng et al. [16]) only works if an identical or very close

variant is present in a database of cyclic peptides. Since many cyclic peptides

are either nonribosomal (and thus are not directly encoded by codons), or are

generated by concatenating and cyclization of peptides from different proteins (e.g.,

θ-defensins [45]), the existing databases of cyclic peptides (e.g. NORINE [46]) are

very limited and represent only a small fraction of cyclic peptides present in various

organisms. Thus, in difference from linear peptides, de novo sequencing rather than

database search represent the primary mode for analysing cyclic peptides.

Two approaches has emerged to improve accuracy of de novo sequencing of

linear peptides: multistage mass spectrometry [47, 48] and spectral networks [15].

Both approaches use information about related peptides (either generated during

multistage mass spectrometry experiment or naturally present in the sample) to

synergistically sequence a peptide of interest. Both multistage mass spectrometry

and spectral networks enable an ability to distinguish between C-terminal and N-

terminal ion series [48, 49], a major obstacle in interpreting mass spectra [50, 51,

52].

While spectra of linear peptides are characterized by two ion series (N-

terminal and C-terminal ions), spectra of cyclic peptides of length k have k ion

series (each series correspond to subpeptides starting at position i of a cyclic pep-

tide, 1 ≤ i ≤ k). Thus, de novo sequencing of cyclic peptides can be more complex

than sequencing of linear peptides. Similar to the case of linear peptides, one

can think of two approaches for de novo sequencing of cyclic peptides: multistage

mass spectrometry and spectral network analysis. While Ng et al. [16] presented

the first automated algorithm for de novo sequencing of individual cyclic peptides,

and Mohimani et al., [17] improved on [16] by applying the idea of spectral net-

works to cyclic peptides, the application of multistage mass spectrometry remains

poorly explored for sequencing of cyclic peptides. We show that multistage mass

spectrometry improves the quality of de novo sequencing of cyclic peptides as

compared to single stage sequencing and illustrate its application to Reginamides,

Etamycins, Dianthins and Tyrocidines.
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3.2 Materials and methods

Spectral datasets. We analyzed cyclic peptides Reginamides, Tyro-

cidines, Etamycins and Dianthins using multistage mass spectrometry.

The Reginamides represent a newly isolated family of cyclic octapeptides

isolated from a marine Streptomyces strain that also produces secondary metabo-

lites with anti-asthma activities (Splenocins). Mohimani et al., 2010 [17], se-

quenced ten variants of Reginamides simultanously. In this paper we analyze

the same ten variants of Reginamides using multistage mass spectrometry.

The antibiotic Tyrothricin, isolated from the soil microbe Bacillus brevis by

Rene Dubos in 1939, is a classic example of a mixture of related cyclic decapeptides

whose sequencing proved to be difficult and took over two decades to complete.

Tang et al., [24] listed 28 known peptides from B. brevis. Mohimani et al. [17]

showed how to sequence multiple variants of Tyrocidines, and even discover new

variants from a single mass spectrometry experiment. In this paper we analyze six

variants of Tyrocidines.

Etamycin is an antibiotic isolated from terrestrial actinomycete S. griseus

alongside the streptogramin A antibiotic, and the two molecules together displayed

bactericidal activity against some Gram-positive bacteria [53]. Recently, Etamycin

is shown to be active against Methicillin-Resistant Staphylococcus aureus [54]. In

this paper we analyse four variants of Etamycins.

Dianthins are cyclic peptides of variable length isolated from plant Dianthus

superbus, which is used as a traditional Chinese medicine for the treatment of

urethritis, carbuncles, and carcinoma [55, 56]. In this study we investigate five

known Dianthins (Dianthins B-F) and discover six new variants. While dianthins

B-F show some faint sequence similarities with each other, this level of similarity

is insufficient for construction of the spectral network of dianthins, thus making

the approach from [17] inapplicable.

For each of the above peptides, MS3 and MS4 spectra were collected by

data dependent acquisition [57] using Thermo Scientific linear ion trap mass spec-

trometers. Thermo LTQ instrument was configured for the acquisition of up to 20

MS3 spectra for each MS2 spectra (n2 = 20) and up to 20 MS4 spectra for each
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MS3 spectra (n3 = 20). Therefore, we have a single MS2, 20 MS3, and 400 MS4

spectra for each peptide investigated. 3.1 shows an example of MS3 and MS4

spectra acquisition.

Cyclic tags and linear subtags. Consider the cyclic peptide VOLF-

PFFNQY (Tyrocidine A) with integer masses (99, 114, 113, 147, 97, 147, 147, 114,

128, 163). One may partition this peptide into three parts as OLF-PFF-NQYV

with integer masses 374, 391 and 504 respectively. In general, a k-partition is a

decomposition of a peptide P into k subpeptides with integer masses m1 . . . mk

(we refer to mass(P ) =
∑k

i=1 mi as the parent mass of peptide P ). A k-tag of a

peptide P is an arbitrary partition of mass(P ) into k integers. A k-tag of a pep-

tide P is correct if it corresponds to masses of a k-subpartition of P , and incorrect

otherwise. For example, (374, 391, 504) is a correct 3-tag, while (100, 1000, 169)

is an incorrect 3-tag of Tyrocidine A.

A (linear) subtag of a cyclic k-tag (m1, · · · ,mk) is a (continuos) linear sub-

string mi · · ·mj of the k-tag (we assume mi · · ·mj = mi · · ·mkm1 · · ·mj in the

case j < i). There are k(k − 1) subtags of a k-tag. The mass of a subtag is

the sum of all elements of the subtag. The length of a subtag is the number

of elements in the subtag. For example, 114, 260, 244, 147 is a subtag of 7-tag

(99, 114, 260, 244, 147, 242, 163) of Tyrocidine A with length 4 and mass of 765Da.

For a Subtag = mi · · ·mj, all the subtags contained in Subtag that ei-

ther start at mi or end at mj are called children of Subtag and Subtag is called

their parent. A subtag of length k has 2(k − 1) children. For example, subtag

260, 244, 147 is a child of subtag 114, 260, 244, 147, and 114, 260, 244, 147 is parent

of 260, 244, 147.

Experimental ion tree. A multistage MS experiment generates mul-

tiple spectra S1, · · · , St of related peptides. The experimental ion tree is a

graph with vertices (S1, · · · , St) where a vertex (spectrum) Si is connected to

a vertex (spectrum) Sj with a directed edge if Sj is a product spectra gener-

ated from a peak m in Si. In this case we set PrecursorMass(Sj) = m and

PrecursorSpectrum(Sj) = Si. The spectra of original peptide, Sr, is called the

root of ion tree. Figure 3.1 illustrates (part of) experimental ion tree of Reginamide
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(a)

Figure 3.1: Illustration of experimental ion tree of Reginamide A, a peptide with
amino acid sequence AIIKIFLI and mass 912.59 (plus charge). 686.42 is the mass
of AIIKIF and KIFLIA. 728.47 is the mass of IKIFLI and IIKIFL. 445.28
is the mass of FLIA. 558.37 is the mass of IFLIA. 615.46 is the mass of IKIFL,
KIFLI and IIKIF . 487.40 is the mass of IFLI.

A consisting of MS2, MS3 and MS4 spectra.

Peptide Ion Tree Match Score (PITMScore) Assume we are given a

CyclicPSM Score CyclicPSMScore(Tag, Spectrum) that assign a score to each

pair of cyclic tag and cyclic spectra (e.g. [17]) and a linearPSM Score

LinearPSMScore(Tag, Spectrum) that assign a score to each pair of linear tag

and linear spectra (e.g. [42]). Then Given a peptide Ion Tree Match (Peptide, IT),

PITMScore can be defined as:

PITMScore(Tag, IT ) = CyclicPSMScore(Tag, Sr) + cdepth(S).
∑

S∈V (IT )−Sr

linearPSMScore(Tag(S), S)

where V(IT) is the vertex set of Ion Tree. Tag is the defined in an upside-down

order, from root to leaf, as follows: Tag(Sr) = Tag, and Tag(S) is defined as the

child of Tag(precursor(S)) that satisfies mass(Tag(S)) = PrecursorMass(S)

and Null2 if no such tag exists3. depth(S) is the distance of vertex S from the root

Sr of the ion tree, and c2 · · · cn are parameters for an ion tree of depth n. Ideally,

2PSMScore(Null, .) is defined as zero.
3if more than one subtag satisfies the mass constraint, we define Tag(v) as the subtag maxi-

mizing linearPSMScore(Tag(v), spectrum(v)).
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one should learn and optimize these parameters from a larger collection of PITMs.

However, due to unavailability of a large training set of PITMs, we simply assume

c2 = c3 = · · · = cn = 1.

Now we define the Multistage Cyclic Peptide Sequencing Problem.

• Goal: Given an experimental ion tree, reconstruct the cyclic peptide (tag)

that generates this ion tree.

• Input: An experimental ion tree IT , and a parameter k (tag length).

• Output: A cyclic tag Tag of length k that maximizes PITMScore(Tag, IT ).

To find the tag with maximum score against the given experimental ion

tree, we adapt the branch and bound procedure, which is briefly described below.

goal: Given an experimental ion tree and a Peptide Ion Tree Match Score, construct a set of high

scoring peptides of length k.

input: an experimental ion tree IT , a Peptide Ion Tree Match Score PITMScore, a peptide length

k, and number of returned high scoring tags t.

output: the set Tk of t high scoring tags of length k.

Find the set T3 of all high score 3-tags by brute force search.

for u = 4 to k do

Extend all k − 1-tags in Tk−1 to k-tags.

Select Tk as the t top scoring k-tags of this extended set.

end for

Figure 3.2: Finding high scoring k-tags using branch and bound approach.

A tag is valid if all its elements are larger than or equal to 57 Da (minimal

mass of an amino acid). A valid (k+1)-tag derived from a k-tag Tag by breaking

one of its masses into 2 masses is called an extension of Tag. For example, a 4-tag

(374, 100, 291, 504) is an extension of a 3-tag (374, 391, 504). All possible tag

extensions can be found by exhaustive search since for each k-tag (m1 . . . mk) there

exist at most
∑k

i=1 mi extensions.

Our algorithm for sequencing cyclic peptides starts from scoring all 3-tags

and selecting t top-scoring 3-tags, where t is a parameter. It further iteratively

generates a set of all extensions of all top-scoring k-tags, combines all the extensions
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into a single list, score each k-tag usingMutiStageScore, and extracts t top scoring

extensions from this list. Figure 3.2 shows the main steps of our algorithm.

3.3 Results

We tested multistage de novo sequencing on Reginamides, Tyrocidines,

Etamycins and Dianthins Table 3.1. The multistage approach resulted in se-

quencing peptides that evade MS2-sequencing [17, 16]. Previously described re-

constructions (whenever available) are shown in Table 3.2.

Table 3.3 compares the result of mutistage analysis with the result of

single (MS2) spectral analysis4. For each peptide Peptide, IT is a collection

of a single MS2, 20 MS3 and 400 MS4 spectra, each one with 20 highest in-

tensity peaks, and Spectrum is a single MS2 spectra with 100 highest inten-

sity peaks. We use the shorthands S = CyclicPSMScore(Peptide, Sr), MS =

PITMScore(Peptide, IT ). pe is the emprical p-value of score of correct peptide

among 1000000 randomly generated valid tags with length and parent mass similar

to Peptide. Because of the limited number of randomly generated tags, many of

empirical p-values are zero, and this makes it difficult to compare single stage and

multi stage scores.

As an alernative benchmark we define local p-value, pl as follows: Construct

the set U of all the valid tags generated by substitution of a pair of adjacent masses

mi and mi+1 by mi + δ and mi+1 − δ for δ 6= 0 and 1 ≤ i ≤ k5. For example given

a integer sequence (99, 114, 113, 147, 97, 147, 147, 114, 128, 163), (96, 117, 113,

147, 97, 147, 147, 114, 128, 163) falls in U (only two adjacent masses have different

values), while (99, 114, 113, 145, 97, 149, 147, 114, 128, 163) does not belong to

U . pl is defined as the ratio of tags in U having a score higher than or equal to

the score of Peptide.

Figure 3.3 ilustrates distribution of both single stage and multi stage

scores, on both the whole set of valid tags, and the restricted set U , for regi-

4For MS2 spectral analysis, we use the scoring function from [17] for benchmarking in Ta-

ble 3.3.
5mi+1 is defined equal to mi mod k +1.
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Table 3.1: Multistage sequencing results. Masses that are verified by NMR are
shown in bold. PM stands for Parent Mass of the peptide. For Tyrocidines, MS2

Time of Flight (TOF) spectra is used in addition to MSn ion trap (IT) spectra.
Rank 1 · · · 3 for the highest scoring tag of Reginamide 925 means the three high
scoring tags of Reginamide 925 have equal scores, and one of them is the tag shown.
Asterisk on 147Da and 113Da means if we exchange these masses, the score wouldnt
change. 222−18 and 147+18 masses for Etamycin 878 means instead of returning
the correct masses 222Da and 147Da, the algorithm has returned 204Da and 165Da
(this alternative breakage is also reported in [58]). ⇄ between 128Da and 113Da
residues of Reginamide A means the algorithm has made a mistake in the order of
those two residues, compared to previous reconstructions.

Peptide MS4 reconstruction PM rank
Reginamide A 71 113 128 ⇄ 113 113 147 113 113 911 4 · · · 6
Reginamide 897 71 113 99 128 113 113 147 113 897 2 · · · 3
Reginamide 925 71 113 99 156 113 147∗ 113∗ 113 925 1 · · · 3
Reginamide 939 71 113 113 156 113 147∗ 113∗ 113 939 4 · · · 6
Reginamide 953 71 113 170 113 113 147 113 113 953 3 · · · 4
Reginamide 967 71 113 184 113 113 147 113 113 967 24 · · · 30
Reginamide 981 71 113 113 85 226 147 113 113 981 1 · · · 2
Reginamide 995 113 113 331 226 212 995 3 · · · 4
Reginamide 1009 113 113 297 147 113 226 1009 1 · · · 5
Reginamide 1023 113 113 797 1023 5 · · · 15
Tyrocidine A 99 114 [113+ 147] [97+ 147] 147 114 128 163 1269 20 · · · 44
Tyrocidine A1 99 128 [113+ 147] 97 147 147 114 128 163 1283 22 · · · 49
Tyrocidine B 99 114 [113+ 147] 97 186 147 [114+ 128] 163 1308 11 · · · 19
Tyrocidine B1 99 128 [113+ 147] 97 186 147 [114+ 128] 163 1322 37 · · · 105
Tyrocidine C 99 114 [113+ 147] 97 186 [186+ 114] 128 163 1347 67 · · · 169
Tyrocidine C1 99 128 113 147 97 186 186 114 128 163 1361 10 · · · 33
Etamycin 878 71 141 71 113 113 222− 18 147+ 18 878 5 · · · 8
Etamycin 864 71 127 71 113 113 222− 18 147 + 18 864 1 · · · 3
Etamycin 862 71 141 71 97 113 222− 18 147 + 18 862 9 · · · 12
Etamycin 858 71 141 71 113 113 222− 18 127 + 18 858 11 · · · 12
Dianthin F 57 97 99 ⇄ 147 147 547 13 · · · 20
Dianthin 564 57 113 113 71 97∗ 113∗ 564 6 · · · 14
Dianthin E 113 87 [147+ 99+ 57+ 97] 600 7 · · · 36
Dianthin 610 97 99 [97+ 57] 113 147 610 7 · · · 11
Dianthin 624 57 97 147 113 97 113 624 5 · · · 9
Dianthin 640 57 113 113 [97+ 147] 113 640 25 · · · 66
Dianthin 644 57 97 99 147 147 97 644 1
Dianthin B 113 147 398 658 1
Dianthin 672 113 559 672 1 · · · 6
Dianthin C 57 147⇆ 97 163 99 113 676 5 · · · 7
Dianthin D 87 113 97 97 113 [147+ 57] 711 13 · · · 18

namide A. Empirical p-value is the ratio of the valid tags with score above the

score of correct peptide, and local p-value is the ration of tags in U with score

above the score of correct peptide. Figure 3.3 shows while the empirical p-value

can not differentiate between single stage and multi stage scores, local p-value of

multi stage score is much lower than single stage score.
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(a) (b)

Figure 3.3: (a) Distribution of single stage scores on all the valid tags (shown by
blue) and tags in U (shown by orange). (b) Distribution of multi stage scores on
all the valid tags (shown by blue) and tags in U (shown by orange). One can see
empirical p-value of both single and mutistage scores are zero, but local p-values
are positive.

Text S1 describes how to combine information from all high scoring tags to

generate a spectral profiles, and Figure S1 shows a comparison of MS2 and MS4

results using spectral profiles. Text S2 shows a more comprehensive comparison

of single-stage and multi-stage sequencing on synthetic data.

3.4 Discussion

Sequencing cyclic peptides adds two fundamental difficulties to the already

challenging task of de novo peptide sequencing: the amino acid masses are not

known in advance and the peptides are cyclic rather than linear. Current de

novo sequencing algorithms cannot adequately address these difficulties. Using

multistage mass spectrometry leads to multiple lower-quality spectra from shorter

subpeptides that need to be integrated to reveal the sequence of the cyclic peptide.

Although the theoretical problem of an interpretation of a multistage spectrum is

difficult, we have shown that a tag-based approach works well in practice.

There is a catch-22 when it comes to using mass spectrometry for inter-

pretation of cyclic peptides. On the one hand, there is hardly any MS data for
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Table 3.2: Previous reconstructions for Reginamide A [17], Etamycin 878 [54],
Dianthins [55, 56] and Tyrocdines [24]. For Etamycin 878, Reginamide A and
Dianthins B and C the sequences are determined by NMR, while for Dianthis D-F
the sequence ois determined by ESI-MS2. Orn stands for amino acid Ornithine.
Hyp stands for HydroxyProline. Phg stands for Phenylglycine.

Compound NMR reconstruction
Reginamide A Ala Ile Ile Lys Ile Phe Leu Ile
Tyrocidine A Val Orn Lue Phe Pro Phe Phe Asn Gln Tyr
Tyrocidine A1 Val Lys Lue Phe Pro Phe Phe Asn Gln Tyr
Tyrocidine B Val Orn Lue Phe Pro Trp Phe Asn Gln Tyr
Tyrocidine B1 Val Lys Lue Phe Pro Trp Phe Asn Gln Tyr
Tyrocidine C Val Orn Lue Phe Pro Trp Trp Asn Gln Tyr
Tyrocidine C1 Val Lys Lue Phe Pro Trp Trp Asn Gln Tyr
Etamycin 878 Ala MeLeu N-MeGly Hyp Leu Thr+Hpca MePhg
Dianthin B Ile Phe Phe Pro Gly Pro
Dianthin C Gly Pro Phe Tyr Val Ile
Dianthin D Gly Ser Leu Pro Pro Ile Phe
Dianthin E Gly Pro Ile Ser Phe Val
Dianthin F Gly Pro Phe Val Phe

Table 3.3: Comparison of Single Stage and MultiStage spectra. MultiS refers to
multistage score, while S refers to single stage score.

Compound Single Stage (MS2)MultiStage (MS2, MS3 and MS4)
S p pl MultiS pe pl

Reginamide A 22 0 0.253 178 0 0.001
Tyrocidine A 30 0 0.107 45 0 0.017
Tyrocidine A1 30 0 0.080 42 0 0.018
Tyrocidine B 28 0 0.032 50 0 0.041
Tyrocidine B1 27 0 0.153 27 0 0.006
Tyrocidine C 27 0 0.025 26 0 0.035
Tyrocidine C1 32 0 0.006 25 0 0.011
Etamycin 878 22 0 0.014 64 0 0.009
Dianthin F 11 0 0.052 17 0 0.006
Dianthin E 9 0.061 0.079 6 0.001 0.031
Dianthin B 5 0.432 0.249 9 0 0.028
Dianthin C 14 0 0.030 39 0 0.009
Dianthin D 20 0 0.051 40 0 0.008
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cyclic peptides because nobody knows how to interpret the spectra automatically,

thus providing little incentive for generating large datasets. On the other hand,

absence of MS data for cyclic peptides slows down development of algorithms for

their interpretation because large MS datasets are needed to develop such algo-

rithms. As has been the case with de novo sequencing of linear peptides, large MS

samples can be used to derive elaborate statistical models. Since cyclic peptides

are implicated in many biologically important processes (see [30, 29] for the role

of cyclic peptides in chemical defense and communication), the time has come to

generate large datasets of annotated spectra of cyclic peptides.
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Chapter 4

Cycloquest: Identification of

cyclopeptides via database search

of their mass spectra against

genome databases

4.1 Introduction

A growing number of cyclic peptides (cyclopeptides) that are biosynthesized

by a ribosomal pathway have been discovered in recent years [59] (Figure 4.1 and

Figure S1). The cyclic nature of the backbone renders cyclopeptides impervious

to the action of exopeptidases and provides protection in some cases from endopro-

teases. The cyclic backbone also imparts rigidity on these molecules, which may

facilitate conformation-specific interactions with other proteins. A large propor-

tion of cyclopeptides represent biologically important agents, such as antibiotics

(e.g. subtilosin A from Bacillus subtilis [60, 61], microcin J25 from Escherichia

coli [62] and Circulin A and B from Bacillus circulans [63, 64]), innate immune

system peptides (e.g. θ-defensins from Macaca mulatta [45]), bacteriocins (e.g.

uberolysin from Streptococcus uberis [65] and carnocyclin from Carnobacterium

maltaromaticum [66]), toxins (e.g. amatoxin and virotoxin from Amanita fam-

34
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Figure 4.1: Ribosomal cyclopeptides appear in all domains of life. The number
of cyclopeptides sequenced in 1965-2010. The majority of known cyclopeptides
have been found in plants. The data on cyclopeptides prior to 2008 have been
imported from Uniprot, and the data for 2009 and 2010 have been imported from
Cybase [75]. The detail of cyclopeptides found before 1997 is shown in Table S1

.

ily [67, 68]), protease inhibitors (e.g. SFTI-1 from Helianthus annuus [69]), bacte-

rial cannibalism agents (e.g. SKF from Bacillus subtilis [70, 30]), agents active in

plant defence (e.g. Kalata B1 from Oldenlandia affinis [71, 72], Cyclopsychotride

A from Psychotria longipes [73] and Circulins from Chassalia parvifolia [74]) and

many others. It seems that the world of ribosomal cyclopeptides is much more

diverse than originally anticipated, and their structural diversities are only just

beginning to be appreciated[59]. The availability of genomes for many species and

our incomplete knowledge of the biosynthetic pathways employed by ribosoma-

lly synthesized cyclopeptides encourages us to use genome mining approaches in

combination with mass spectrometry to discover novel cyclopeptides.

Sequencing cyclopeptides, once a heroic effort, remains a challenge today.

Tandem mass spectrometry (MS/MS) provides an attractive alternative to 2D nu-

clear magnetic resonance (NMR) spectroscopy, as it can provide access to peptide

sequence information from picograms of non-purified material [28]. However, the

development of algorithms for the interpretation of mass spectra of cyclopeptides

is still in its infancy. Non-ribosomal cyclopeptides are not encoded by nucleotide

sequence in a genome through synthesize via mRNA to peptide. Instead, they

are biosynthesized by large enzyme modules (nonribosomal peptide-synthetase),

where each enzyme module is responsible for incorporating one amino acid sub-
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unit. Therefore mass spectrometrists must often conduct de novo interpretation

of mass spectra[16, 17]. De novo peptide sequencing algorithms give promising re-

sults for short (up to 10 amino acid) cyclopeptides [17], but often fail to correctly

sequence longer peptides.

Currently, peptide sequence tag [76] (PST)-based searches of genomes are

the method of choice for sequencing longer ribosomally-synthesized peptides from

mass spectrometry data. For example, using imaging mass spectrometry in con-

junction with a five amino acid PST (LPHPA) search, Liu et al. [30] identified an

active metabolites from the Bacillus subtilis cannibalism system. This metabolite

was identified as a 26 amino acid peptide named sporulation killing factor (SKF).

The success of the PST approach was critically dependent on the existence of a

long series of consecutive ions with standard amino acid mass differences. The

sequence tag is used to search against a database comprising proteins from the

organism of interest. In the reported example, the sequence tag (LPHPA) yielded

a single match when searched against the Bacillus subtilis proteome, however, the

same tag could have many more matches if searched against larger proteomes.

When a human proteome is queried with the same (LPHPA) for instance, 12 pu-

tative peptide matches results. For many species, the complete genome and hence

proteome are not known and it is necessary to search against closely related species

or larger databases to identify novel peptides. This implies a need for database

search tools that can identify cyclopeptides, analogous to Sequest [43] and Mas-

cot [44] for linear peptides. Recently, Colgrave et al. [77] proposed a method for

the identification of known and novel cyclotides, a class of three-disulfide knot-

ted plant cyclopeptides of 28-37 amino acids, by searching spectra of their linear

derivatives against a database of all linearized products for all cyclotides from the

Cybase database[75]. However, to date, no such database search method exists for

the interrogation of genomes and proteomes.

Although most ribosomal cyclopeptides are formed via a head-to-tail liga-

tion of a single peptide, the θ-defensins are generated by concatenation and cy-

clization of a pair of peptides from different proteins [45] (Figure 4.2). In contrast

with linear peptide identification tools such as Sequest and Mascot, a cyclopeptide
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(a) (b)

Figure 4.2: Head-to-tail cyclization versus concatenated cyclization. (A) Head
to tail cyclization of SFTI-1 from within PawS1. (B) Concatenated cyclization
of θ-defensin. Nine amino acid segments of two different proteins (RTD1a and
RTD1b) are concatenated.

database search tool must also address concatenation events in addition to the

more commonly observed head-to-tail ligation events.

In this paper we present Cycloquest, the first database search algorithm for

cyclopeptides. The search strategy is validated using sunflower trypsin inhibitor-1

(SFTI-1) and SFTI-like 1 (SFT-L1) from Helianthus annuus, sporulation killing

factor (SKF) from Bacillus subtilis, and Rhesus θ-defensin (RTD-1) from Rhesus

macaque. Our Cycloquest software for identifying cyclic peptides from their mass

spectra is open source and available at http://proteomics.ucsd.edu .

4.2 Materials and Methods

Spectral datasets

Preparation of MALDI matrix (SFTI-1 and SFT-L1). A saturated

solution of α-cyano-4-hydroxycinnamic acid (CHCA; Sigma Aldrich) was prepared

by dissolving the matrix in 50% acetonitrile, 0.1% trifluoroacetic acid (TFA) with 5

mM ammonium phosphate to a final concentration of 5 mg/mL. The solution was

vortexed thoroughly, sonicated in a water bath for several minutes, and centrifuged

at 18,000 x g for 10 minutes at room temperature. The supernatant was used in

the preparation of samples for MALDI-TOF MS.



38

Matrix assisted laser desorption/ionisation time-of-flight mass spec-

trometry (SFTI-1 and SFT-L1). Stock solutions (1 mg/mL) of sunflower

trypsin inhibitor-1 (SFTI-1) or the peptide SFT-L1 were prepared in water and 1

µL mixed directly with the matrix (1:1, v/v). Aliquots (0.6 µL) of the mixtures

were spotted on a 192 well plate (Applied Biosystems) and air dried. Mass anal-

ysis was carried out in positive ion reflector mode on a 4700 Proteomics Analyzer

(Applied Biosystems) using a 200 Hz frequency tripled Nd:YAG laser operating

at 355 nm. Fifty spectra at each of twenty randomly selected positions were ac-

cumulated per spot between 800 and 5000 Da using an MS positive ion reflectron

mode acquisition method. MS/MS spectra were acquired at seven different laser

energy settings from 4000-7000 (in increments of 500) and the spectra with op-

timum fragmentation was used for cyclopeptide sequencing. Calibration of the

instrument was carried out using the MSCal1 peptide standard (Sigma Aldrich).

Data were analyzed on the accompanying 4000 series Explorer Software.

Electrospray ionization ion trap mass spectrometry (SKF and RTD-

1). SKF and RTD-1 were prepared to a concentration of 20 µg/mL in 50:50

methanol:water with 1% acetic acid and were then subjected to electrospray ion-

ization on a Biversa Nanomate (Advion Biosystems, Ithaca, NY) nano-spray source

(pressure: 0.3 psi, spray voltage: 1.4-1.8 kV). MS spectra were acquired on a 6.42 T

Finnigan LTQ-FTICR MS or a Finnigan LTQ-MS (Thermo-Electron Corporation,

San Jose, CA) running Tune Plus software version 1.0 and Xcalibur software ver-

sion 1.4 SR1. For MS/MS experiment, the instrument was first autotuned on the

m/z value of the ion to be fragmented. Then, the ions were isolated by the linear

ion trap and fragmented by collision induced dissociation (CID) (isolation window:

3 m/z; collision energy: 30). Hundreds of MS/MS scans were acquired in centroid

mode and averaged using QualBrowser software version 1.4 SR1 (Thermo). The

Thermo- Finnigan RAW files containing the average spectra were then converted

to mzXML file format using the program ReAdW (tools.proteomecenter.org).

Sodium Borohydride treatment of SKF. Dethiolated SKF was prepared by

dissolving 1 µg of SKF with 1.5 µg NaBH4 and 1.5 µg NiCl2 in 6.25 µL of 60%

MeOH. This reaction was incubated at 50, and an additional 1.5 µg of NaBH4
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and NiCl2 were added into the reaction 5 and 10 minutes after initiation of the

reaction to ensure complete conversion of SKF into dethiolated SKF. The mixture

was then centrifuged for 1 min at 14,500 rpm to remove the insoluble particles and

then purified by HPLC using an Agilent Eclipse XDB-C18 column running MeCN

gradients or by C18 ZipTip (Millipore) following the manufacturers protocol prior

to MS analysis.

PFA treatment of RTD-1.

The PFA treatment was performed using a four step process: (1) Peptide

sample 0.1-10 µg (equivalent to 50-2000 pmol) was vacuum dried; (2) 19 volumes

of 97% formic acid were mixed with 1 volume of hydrogen peroxide and allowed

to stand on ice for 60 min; (3) 10µL of this reagent was added to the dried sample

and incubated for 30 min at room temperature; and (4) the resulting solution was

vacuum dried and washed three times with 50 µl of ice cold water.

Cycloquest algorithm.

Similar to the MS/MS database search algorithms employed by Sequest and

Mascot, our database search consist of four steps: filtering the database (e.g. by

parent mass as in Sequest or Mascot, by PST as in InsPecT, etc), constructing the

theoretical spectra for candidate peptides, scoring the theoretical spectra against

the experimental spectra, and finally, listing the top scoring peptide spectrum

matches (PSMs). While the first and the last steps of our method are very similar

to Sequest and Mascot, construction of the theoretical spectra and their scoring

needed to be redefined for cyclopeptides. Fortunately, we could use the scoring

defined in [16, 17] with slight modifications in the second and third steps of the

algorithm. Another difference between Cycloquest and major database search al-

gorithms is that Cycloquest uses a non-enzyme search strategy. The reason for this

is two-fold. Many cyclic peptides are resistant to enzymatic digestion because of

their compact and often disulfide-bonded nature. Additionally, digestion of cyclic

peptides may result in formation of peptide fragments too small to analyze and too

difficult to confidently identify. An additional step in cyclopeptide identification

is to decide whether the spectrum is generated by a cyclic or a linear peptide. We
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address this additional complication in the Results section.

We defined a (linear) subpeptide of a cyclopeptide Peptide = A1A2 · · ·Ak

as a (continuous) linear substring Ai · · ·Aj of the peptide (we assume Ai · · ·Aj =

Ai · · ·AkA1 · · ·Aj in the case j < i). There are k(k−1) subpeptides of a peptide of

length k. The mass of a subpeptide is the sum of masses of all its amino acids. We

define the theoretical spectrum of a peptide, ∆(Peptide), as the multiset of k(k−1)

subpeptide masses. For example, the theoretical spectrum of a cyclopeptide AGPT

= (71.037 Da, 57.021 Da, 97.052 Da, 101.047 Da) consists of 12 masses (57.021 Da,

71.037 Da, 97.052 Da, 101.047 Da, 128.058 Da, 154.073 Da, 172.084 Da, 198.099

Da, 225.110 Da, 229.105 Da, 255.120 Da, and 269.136 Da). We represented the

experimental spectrum as a set of top t high intensity masses from the spectra,

where t is a parameter. CyclicScoreδ(Peptide, S), the number of elements (masses)

shared between theoretical spectrum of Peptide and S within tolerance δ was

defined (Text S1).

Distinguishing cyclic spectra from linear spectra

One of the challenges in identification of cyclopeptides is being able to

distinguish between the spectra of linear and cyclic peptides. In this section we

describe a method that given a spectrum and a protein database, enables the de-

termination of whether the spectrum was derived from a cyclic or a linear peptide.

In addition to the CyclicScoreδ(Peptide, S) defined above, given a linear

spectrum S and a peptide Peptide, we define the LinearScoreδ(Peptide, S) as the

number of masses shared between S and the linear theoretical spectrum of Peptide

within the accuracy δ, where the linear theoretical spectrum is the set of k − 1

b-ions and k − 1 y-ions of Peptide of length k (for CID spectra).

By using the cyclic and linear scores defined above, cyclopeptides can be

distinguished from linear peptides based on the normalized score. Normaliza-

tion is required due to different statistics of linear and cyclic scores (Figure S2).

Moreover, peptides with different length have different statistics. Therefore, we

normalize the score based on structure type (cyclic or linear) and peptide length.

The normalized score of a match is equal to the difference of score of that match
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and average score of all the matches with the same length and peptides mass within

0.5 Da tolerance, over the standard deviation of all such matches.

MS/MS database search for concatenated peptides

The θ-defensin peptides are more difficult to identify than other cyclopep-

tides, because they are generated by concatenation and cyclization of peptides

from two different protein precursors. It is computationally difficult to score the

concatenation of each peptide pair over the entire macaque proteome (with 36,424

proteins totalling to 16,143,647 amino acids).

A similar problem arises for linear peptides known as the fusion peptide

identification problem. While Ng and Pevzner [78] proposed a method for identifi-

cation of the fusion peptides, their approach is not applicable to cyclopeptides. To

address the quadratic growth of the number of generated concatenates, one needs

a more efficient filter than the sole parent ion mass.

Many database search methods for linear peptides are hybrid, meaning that

they attempt to use filters constructed by de novo searches for PSTs in order to

speed up the database search by filtration using the found PSTs [79, 42, 40, 39].

The following subsection explains our approach for making the database search of

concatenated peptides computationally feasible.

While fast implementations of linear peptide database search methods are

based on PSTs, we used cycloPSTs (cyclo-Peptide Sequence Tags) to speed up

our database search algorithm. Given a cycloPST CycloPST = A1A2 · · ·Ak and a

parent mass ParentMass, we define an artificial peptide Peptide(CycloPST ) =

A1A2 · · ·AkAk+1, where Ak+1 is an artificial amino acid satisfying

mass(Ak+1) = ParentMass−mass(A1)− · · · −mass(Ak).

For example, for cycloPST [156.10,57.02,99.06] corresponding to RGV and

ParentMass = 2086.24, Peptide(CycloPST ) = [156.10, 57.02, 99.06, 1774.04].

For a cycloPST cycloPST and an experimental spectrum S, we define

CyclicScoreδ(CycloPST, S) = CyclicScoreδ(Peptide(CycloPST ), S)
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For example, for cycloPST [RGV] from θ-defensin with parent ion mass

2086.24:

CyclicScoreδ([RGV ], S) = CyclicScoreδ([156.10, 57.02, 99.06, 1774.04], S)

.

Given an experimental spectrum S and a parent mass ParentMass, the

first step of the algorithm consists of finding high scoring CycloPSTs. However, it is

computationally difficult to try all 20k length k cycloPSTs when k gets large. The

strategy used in this study is the application of a branch and bound approach, in

which all length three cycloPSTs are extended in each step by one of the 20 possible

amino acids, and then a fixed number of high scoring cycloPSTs are selected for

the next step. For θ-defensins, we use this approach to retain 1000 high scoring

length nine cycloPSTs at each iteration. In this case, the list of 1000 high scoring

cycloPSTs contained the correct cycloPST [RC∗IC∗RRGVC∗R], where C∗ stands

for cysteic acid, and all leucines are converted to isoleucines.

Given a high scoring cycloPST CycloPST = A1A2 · · ·Ak of length k, we

can generally divide it into two parts in k − 1 possible ways, i.e. {A1|A2 · · ·Ak},

{A1A2|A3 · · ·Ak}, · · · , {A1 · · ·Ak−1|Ak}. For each of these divisions, we search

both fragments in the genome and select the pairs of hits that can be extended

to a pair of peptides with a total mass close to ParentMass. Assuming peptide

concatenation is N-terminal to C-terminal (excluding infeasible N-terminal to N-

terminal or C-terminal to C-terminal concatenations), we only accept pairs of

peptides with matching directions. By concatenating each pair of peptides, we

derive a set of candidate peptides which is much smaller than the original set.

The final step is scoring all the candidate peptides using the cyclic score defined.

Figure 4.3 shows the steps of algorithm.
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4.3 Results

Trypsin Inhibitor and Trypsin Inhibitor-Like peptides

The cyclopeptide SFTI-1 is a potent trypsin inhibitory peptide isolated from

sunflower (Helianthus annuus) seeds. The peptide is 14 amino acids in length, and

features a single disulfide bond and a head-to-tail cyclicized backbone[69]. The

cyclic and braced nature of SFTI-1 makes the peptide more resistant to degra-

dation than linear peptides of the same size and for this reason SFTI-1 has been

extensively studied in the last decade as a potentially stable peptide-based drug

template [80]. In addition to potent trypsin inhibition, SFTI-1 is shown to inhibit

matriptase, a serine protease overexpressed in prostate and ovarian tumors, high-

lighting the importance of fast-tracking cyclic peptide discovery [81, 82]. Recently,

Mylne et al. [83] reported the identification of a 12 amino acid peptide also iso-

lated from sunflower seeds named SFT-L1 that shares some structural elements

with SFTI-1 but lacks the trypsin inhibitory activity. SFTI-1 and SFT-L1 both

emerge through proteolytic processing of much larger and functionally unrelated

precursor proteins. SFT-L1 was identified through similarity of its precursor PawS2

to PawS1, the precursor of SFTI-1. SFT-L1 was manually sequenced by MS/MS,

and its structure was obtained by NMR[83]. In this study, we determined the

sequences of these cyclopeptides by searching the six frame translation of the sun-

flower nucleotide database using MS/MS spectra generated by MALDI-TOF/TOF

mass spectrometry.

The lack of a complete sunflower genome required that we use the Ex-

pressed Sequence Tag (EST) library of seven Helianthus species available at the

UC Davis Compositae Genome Project website, consisting of 136,935 cDNAs (to-

talling 96,493,071 nucleotides). Rather than covering the whole genome, ESTs

only cover the RNA coding region of genome. With our interest in ribosomally

synthesized cyclopeptides, searching ESTs is entirely suitable.

Both SFTI-1 and SFT-L1 contain a single disulfide bond that interferes

with collision-induced dissociation during tandem mass spectrometric analysis.
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The disulfide bonds were removed by reduction during sample preparation1. The

theoretical mass to charge ratio (m/z) of SFTI-1 and SFT-L1 in the native form

are 1513.73 and 1203.48 respectively. The theoretical m/z of reduced SFTI-1 and

SFT-L1 are 1515.74 (observed 1515.72 Da) and 1205.49 Da (observed 1205.46 Da)

respectively. The TOF spectra of SFTI-1 and SFT-L1 were collected with laser

energy settings of 4500, yielding optimum fragmentation in each case to allow

de novo sequencing and database searching. We also analyzed a synthetic linear

version of SFTI-1 called SFTI-1[K,S], which corresponds to the peptide SIPPICF-

PDGRCTK, with reduced mass of 1533.67 Da.

The first step of the database search consisted of filtering the database by

parent mass. Table 4.1, 4.2, 4.3 show the top scoring hits for singly charged

MALDI-TOF spectra of the sunflower peptides to the six frame translation of

the EST library (assuming 0.5 Da mass accuracy for the parent ion mass). After

scoring MS/MS fragments, normalizing scores, and sorting, both SFTI-1[K,S] and

SFT-L1 are listed as the best match, while SFTI-1 is the third top match to

its spectrum. In addition to the correct peptide sequence, there are some other

high scoring hits from each spectrum to the database. These hits are usually

computational artifacts. An additional validation step is usually required in order

to distinguish the correct sequence from the shortlisted top scoring hits, e.g. by

checking if the peptide is within known protein domains, in an ER signal sequence

or a non-transcribed region of genomic DNA. For large proteomics datasets, false

discovery rate (FDR) of the peptide sequence matches (PSMs) can be estimated

to rule out false positives, similar to what occurs in the database matching of MS

data to linear peptide.

Sporulation Killing Factor

When bacteria become cannibalistic, a differentiated subpopulation har-

vests nutrients from their genetically identical siblings to allow continued growth

in nutrient-limited conditions[70]. One of the active metabolites in Bacillus sub-

1After reduction, the peptides can be alkylated to prevent reoxidation of the cysteines. The
results for reduced and alkylated peptides are shown in Table S2.
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Table 4.1: Top score reconstructions for SFT-L1 from a singly charged mass
spectrum. Correct reconstructions are shown in bold.

Peptide StructNScore Score PME len
1aG2CIEGSPVCFPD1G2 cyclic 5.4 49 0.0 12
LRCLSVRKCQ linear 5.1 10 0.2 10
CRLIFSLNHC linear 5.1 10 0.1 10

a. Superscript numerals indicate alternative cyclization positions2.

Table 4.2: Top score reconstructions for SFTI-1 from a singly charged mass
spectrum. Correct reconstructions are shown in bold.

Peptide StructNScore Score PME len
WRSCVGGHCNIRQ linear 5.9 11 -0.0 13
QTLIHNNGINCWC linear 5.2 10 -0.0 13
1G2RCTKSIPPICFPD1G2 cyclic 4.9 44 0.0 14

tilis cannibalism is sporulation killing factor (SKF), a 26 amino acid cyclopeptide

that is post-translationally modified with one disulfide and one cysteine thioether

bridged to the α-position of a methionine[30]. After breaking the disulfide and

thioether bridges, we were able to search for, and identify SKF in the proteome

database of Bacillus subtilis.

The theoretical mass of SKF (with disulfide and thioether bridges) is

2781.30 Da (a triply charged ion of m/z 928.11 measured by FT-ICR [30] cor-

responds to a mass of 2781.30 Da, 1.5 ppm error). By sodium borohydride reduc-

tion, all the cysteines are reduced to alanine and all the methionines are reduced

to homoalanines3. Sodium borohydride has no effect on any other standard amino

acid. The theoretical mass of sodium borohydride reduced SKF is 2551.45 Da (a

triply charged ion at m/z 851.49 measured by FT-ICR [30] was observed, which

corresponds to a mass of 2551.44 Da, 2.2 ppm).

We use the proteome database of Bacillus subtilis available from UniProt

with 4,188 proteins, totalling 1,230,503 amino acids.

Table 4.4 shows the top scoring hits for the electrospray ionization ion

3with mass of 85.0527 Da and composition C4H7ON
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Table 4.3: Top score reconstructions for SFTI-1[K,S] from a singly charged mass
spectrum. Correct reconstructions are shown in bold.

Peptide StructNScore Score PME len
SIPPICFPDGRCTK linear 10.8 21 0.0 14
KYCLLLHRSACNL linear 5.5 11 0.0 13
CVSSFSFSFSFWC linear 5.5 11 -0.1 13

trap-generated spectra of the sodium borohydride reduced SKF to the Bacillus

subtilis proteome database (assuming a 0.01 Da accuracy for the parent ion mass).

The correct peptide is listed as the top scoring match.

Table 4.4: Top score reconstructions of SKF from a triply charged mass spectrum.
Correct reconstruction is shown in bold.

Peptide Struct NScore Score PME len

CMGCWASKSIAMTRVCALPHPAMRAI cyclic 4.5 167 0.0 26
AKWLLSELNKLEKKERRKDW cyclic 4.3 96 0.0 20
QSLKDLKGKTVGVQLGSIQEEKGK cyclic 3.6 124 -0.0 24

Another active metabolites in Bacillus subtilis cannibalism is the killing

factor (SDP), a 42 amino acid linear peptide that is post-translationally modified

with a disulfide bond. We analyzed a triply charged native version of SDP, with

triply charged parent mass ion at 1438 Da. Cycloquest identified SDP correctly,

as the top hit to the Bacillus subtilis proteomic database (Table 4.5).

Table 4.5: Top score reconstructions of SDP from a triply charged mass spectrum.
Correct reconstruction is shown in bold.

Peptide Struct NScore Score PME len
CGLYAVCVAAGYLYVVGVNAVALQTAAAVTTAVWKYVAKYSS linear 8.1 48 0.2 42
SVFFLWILNFVIGFAFPILLSSVGLSFTFFIFVALGVLA linear 4.4 28 0.4 39
ELPGDLIARAQDILKELEHSGNKPEVPVQKPQVKEEPAQ cyclic 4.0 316 0.3 39

θ-defensin

The first cyclopeptide discovered in animals was θ-defensin, an antimi-

crobial octadecapeptide that is expressed in the leukocytes of the Macaca mu-

latta. Like the previously characterized α- and β-defensin families, θ-defensins
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Figure 4.3: Steps of Cycloquest (for concatenated cyclopeptides such as RTD-1).

possess broad spectrum antimicrobial activities against bacteria, fungi, and pro-

tect mononuclear cells from infection by HIV-1[84].

We were able to identify the θ-defensin peptide using a doubly charged ion-

trap (IT)-generated tandem mass spectrum. The theoretical mass of θ-defensin is

2079.90 Da (a doubly charged ion at m/z 1040.50 was observed, which corresponds

to a mass of 2080.00 Da), and after performic acid treatment it increases to 2373.70

Da (a doubly charged ion at m/z 1188.50 was observed using ion-trap, which

corresponds to a mass of 2374.00 Da), indicating the presence of three disulfide

bonds.

Under PFA treatment, cysteine residues are modified to cysteic acid with a

residue mass of 150.99 Da. According to Williams et. al. [85] only cysteine residues

are affected by the treatment, and the on-target oxidation is not complicated by

reactions with H, M, W or Y amino acid containing peptides.

Table 4.6 shows highest scoring hits to the triply charged IT spectra (as-

suming 0.5 Da mass accuracy for the parent ion mass).

False discovery rate of Cycloquest

In order to calculate false discovery rate, we tested the method on the

previously published Shewanella oneidensis MR-1 spectral data set containing 14.5
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Table 4.6: Top score reconstruction for θ-defensin from a doubly charged IT
spectrum. Correct reconstruction is shown in bold.

Peptide structNScore Score PME len
RCICTRGFCRCLCRRGVC cyclic 15.3 160 -0.1 18
CLCRTPCNRCICTRGFCR cyclic 13.9 149 -0.1 18
CRCRRCRCICTRGFCRL cyclic 12.2 139 -0.1 17

million spectra. The spectra were acquired on an ion trap MS instrument (LCQ,

ThermoFinnigan, San Jose, CA) using ESI. The protocol for acquiring the spectra

and identifications from this data set is described in Gupta et al. [86]. 28,377

peptides were reliably identified with false discovery rate 5% using InsPecT [79]

(spectrum-level false discovery rate (FDR) is 1%). We selected 21,087 tryptic

peptides with a net charge of 2, obtained one representative spectra for each of

these peptides (most peptides were identified from multiple spectra), and grouped

these by the length of their peptide identifications to form a test data set for each

length. We will refer to the length of the InsPecT identification of a spectrum as

the spectrum length.

Our test set is a set of 1,663 spectra with spectrum length 12. We

searched this dataset against the Shewanella database, and the corresponding de-

coy database. The classic reverse databases are not good candidates for decoy

databases, because the theoretical spectrum of a cyclic peptide PEPTIDE, is ex-

actly equal to the theoretical spectrum of the reverse cyclic peptide EDITPEP.

Therefore, instead of using reverse sequences, the decoy is generated by shuffling

the odd amino acids a2i+1 with the even amino acids a2i, for a protein sequence

a1, a2, · · · , an. For example, the protein sequence PEPTIDE is shuffled to EPT-

PDIE. After testing the method in this dataset using a parent ion mass accuracy

of 0.5 Da and fragment ion mass accuracy of 0.5 Da, out of 1,663 spectra, the

method classified 1595 of them as linear target hits, 25 as cyclic targets, 26 as

linear decoys, and 17 as cyclic decoys. Figure 4.4 shows the number of cyclic

targets, linear decoys and cyclic decoys for different number of identifications. It

takes about 35 minutes for Cycloquest to search 1663 Shewanella spectra against
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Figure 4.4: The number of decoy hits plotted against the number of identification.
The number of cyclic target hits is shown in black, the number of linear decoy hits
is shown in red, and the number of cyclic decoy hits is shown in blue.

Shewanella proteome (about 1 spectrum/second) on a 3.00 GHz Core 2 Duo CPU.

While this experiment indicates a small false positive rate for Cycloquest,

we are unable to estimate false negative rate due to the unavailability of suitable

spectral data sets for cyclopeptides.

4.4 Discussion

While the rate of the cyclopeptide identification has increased in recent

years, computational approaches for the identification of cyclopeptides are still

in their infancy. As a result, papers reporting new cyclopeptides typically dis-

cuss a single family of cyclopeptides per paper. In this study we have analyzed

cyclopeptides from three different kingdoms.

We propose Cycloquest as a database search method for the identification of

cyclopeptides from mass spectrometric data. The general steps of Cycloquest are

similar to Sequest and Mascot. However, the scoring scheme used in Cycloquest is

designed specifically for cyclopeptides. We demonstrated the utility of Cycloquest
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through its application to the sequencing of SFTI-1, a trypsin inhibitor from He-

lianthus annuus and a related peptide. Additionally, Cycloquest sequenced SKF, a

bacterial cannibalism factor from Bacillus subtilis, and RTD-1, the θ-defensin from

Rhesus macaque. Thus, Cycloquest is capable of correctly identifying all four of

these cyclopeptides, opening a possibility of sequencing of novel cyclopeptides in

future studies.
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Chapter 5

A new approach to evaluating

statistical significance of spectral

identifications

5.1 Introduction

The dominant technique for sequencing cyclic peptides is nuclear magnetic

resonance (NMR) spectroscopy, which requires large amount (milligrams) of highly

purified materials that are often nearly impossible to obtain [28]. Tandem mass

spectrometry (MS/MS) provides an attractive alternative to NMR because it al-

lows one to sequence a peptide from picograms of non-purified material. Recently,

new algorithms have been developed for interpreting mass spectra of cyclic peptides

using de novo sequencing [16, 17, 18] and database search [87].

MS/MS coupled with database search is the most popular method for iden-

tification of (linear) peptides. A database search engine selects candidate peptides

from a database of protein sequences that match the precursor mass from a mass

spectrum. Then for each candidate peptide, the software compares a theoretical

MS/MS derived from the peptide to the experimental mass spectrum, and reports

a peptide with best score.

In the last decade, much effort has been invested in computing statistical

51
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significance of Peptide Spectrum Matches (PSMs). Many of these studies stem

from the pioneering paper by Fenyo and Beavis [88] that proposed approximating

the statistical significance of PSMs by first modeling the distribution of PSM scores

(e.g. by Gumbel distribution [88]) and further using this distribution to compute

p-values [89, 90, 91, 92, 93, 94, 95]. Unfortunately, this approximation approach,

while useful in many applications, often fails when one has to estimate extremely

small p-values typical for mass spectrometry (e.g. PSM p-values of the order 10−10

are often required to achieve 1% FDR [96]). Fortunately, the challenge of estimat-

ing the probability of extremely rare events has already been addressed by particle

physicists in 1950s [97], and communication systems engineers in 1980s [98]. How-

ever, the mass spectrometry community has overlooked these fundamental studies

(directly relevant to mass spectrometry) resulting in inaccurate p-value estimation

in some mass spectrometry studies [99].

In the late 1940s, many top mathematicians worked on the neutron shield-

ing problem that was crucial for designing nuclear facilities [100, 101]. In this

problem, one has to compute the probability that a neutron, doing a random

walk, would pass through a slab, an extremely rare event. Two general methods

emerged for evaluating extremely rare events by Monte Carlo random sampling

(using computers that became available in mid 1940s); importance sampling and

multilevel splitting. Both were developed for nuclear-physics calculations by Fermi,

Harris, Kahn, Metropolis, Ulam, von Neumann, and their colleagues, during the

production of the first nuclear bomb [97, 100, 101, 102, 103]. Importance sampling

is based on the notion of modifying the underlying probability distribution in such

a way that the rare events occur much more frequently. Multilevel splitting uses

a selection mechanism to favor the trajectories deemed likely to lead to the rare

events of interest. While importance sampling is the most popular rare event simu-

lation method today, the main advantage of the multilevel splitting approach is the

fact that it does not need to modify the probabilistic model governing the system.

This makes multilevel splitting applicable to any system represented as a black

box [101], and specifically applicable to mass spectrometry studies. Kahn and

Harris solved the neutron shielding problem using multilevel splitting in 1951 [97].
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Later, similar rare event estimation techniques found applications in communica-

tion systems [98], financial mathematics [104], air traffic management [105], and

chemistry [106]. However, this powerful approach has never been applied to mass

spectrometry. This is surprising because there is a clear analogy between statistical

significance evaluation in mass spectrometry, and the neutron shielding problem,

where a spectrum plays the role of a neutron, a peptide plays the role of a slab,

and the rare event “spectrum gets a high score against a peptide” plays the role

of an event “neutron passes through a slab”.

Currently, the dominant technique for statistical evaluation of a set of PSMs

is to compute the False Discovery Rate (FDR) using the Target Decoy Approach

(TDA) [107]. TDA is attractive for proteomics studies because it is widely appli-

cable to different instrument platforms and database search algorithms. However,

TDA is not applicable to non-linear peptide studies, because in these studies re-

searchers usually work on a few non-linear peptide at a time, whereas TDA is best

suited for statistical analysis of large spectral datasets [107]. Even in the case of

linear peptides, some popular database search tools are not TDA-compliant [108].

An alternative technique is to compute a p-value for an individual PSM [99].

Given a PSM (Peptide, Spectrum) of score t, the p-value of (Peptide, Spectrum) is

defined as the fraction of random peptides with a score equal to or exceeding t [99].

Unlike the FDR that is defined on a set of PSMs, the p-value is defined on a single

PSM. Therefore computing the p-value is adequate for non-linear peptide studies,

where a single or a few non-linear peptides are considered at a time. Since our

results can be applied to both cyclic peptides (e.g. surfactin) and branch-cyclic

peptides (e.g. daptomycin), we will use the same term ‘cyclic’ to refer to both

cyclic and branch-cyclic peptides.

For cyclic peptide studies, computing p-values offers additional advantages.

In studies of peptide natural products, we are given a mixture of spectra of linear

and cyclic peptides, from which a small number of spectra of cyclic peptides should

be separated and investigated independently. Therefore we need a method that

identifies whether a given spectrum represents a linear or a cyclic peptide. This is

difficult because different scoring functions are used for linear and cyclic peptides.
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Since scores from different scoring functions are not usually comparable [109, 110],

we need to convert them into p-values (Fig. 5.1) [108].
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Figure 5.1: Deciding whether a peptide that produced a spectrum is linear, cyclic
or branch-cyclic. Given a spectrum with unknown structure, we compute its score
under different structure assumptions (e.g. linear/cyclic/branch-cyclic), and derive
a p-value for each assumption. If one of the structures result in a very small p-
value (e.g. linear structure with p-value of 0.0001), that structure is accepted as
the most likely structure.

In the case of linear peptides, Kim et al., 2008 [99] presented a polynomial

time algorithm for computing p-values, called MS-GF. However, MS-GF is only

applicable to scoring functions that can be represented as a dot-product of vectors,

i.e. additive scoring functions. Moreover, MS-GF is only applicable to linear

peptides, and no one has generalized MS-GF to non-linear peptides yet.

Fenyo and Beavis [88] constructed an empirical score distribution of low-

scoring (erroneous) peptide identifications and extrapolated it to evaluate the p-

value of high-scoring peptide identifications in the tail of the distribution. Similar

approaches are now used in many tools, that provide p-value or E-value of in-

dividual PSMs, e.g. OMSSA [111]. However, this approach was demonstrated

to be inaccurate [99]. While the pitfalls of such approaches are well recognized

in genomics, they remain under-appreciated in proteomics. Waterman and Vin-
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gron [112] argued that it is difficult to accurately estimate the extreme tails of a

distribution in general, requiring accurate estimation of rare event probability. To

do so, one may consider estimating p-values by a Monte-Carlo simulation generat-

ing a population of millions of peptides and estimating the probability distribution

of scores on this population [113]. This approach becomes time-consuming for es-

timating extremely low p-values, since it requires calculating scores of billions of

randomly generated peptides for accurate estimation of p-values as low as 1 in a

billion.

In this paper, we propose MS-DPR (MS-Direct Probability Redistribution),

a new method for estimating p-values of PSMs based on rare event probability

estimation by multilevel splitting. We show that MS-DPR reports p-values similar

to those reported by MS-GF in the case of linear peptides, confirming that it

accurately estimates p-values. Furthermore, we show that unlike MS-GF, MS-

DPR can compute p-values of PSMs when an arbitrary (non-additive) scoring

function is used or when the peptide is non-linear.

5.2 Materials and Method

In contrast to importance sampling, which changes the probability laws

driving the model, multilevel splitting [97, 102] constructs a Markov chain and uses

a selection mechanism to favor the trajectories in the Markov chain deemed likely

to lead to rare events. Multilevel splitting is composed of three steps. First, de-

compose the trajectories to the rare events of interest into shorter sub-trajectories

whose probability is not so small. Second, encourage the realizations that take

these sub-trajectories (leading to the events of interest) by giving them a chance

to reproduce by introducing reproduction probabilities. Third, discourage the real-

izations that go in the wrong direction by killing them with some positive killing

probability. The sub-trajectories are usually delimited by levels. Starting from a

given level, the trajectories that do not reach the next level will not reach the rare

event, but those that do will split into multiple copies when they reach the next

level. Each copy pursues its evolution independently from then on. This creates
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an artificial drift toward the rare event by favoring the trajectories that go in the

right direction. In the end, an unbiased estimator can be recovered by multiplying

the contribution of each trajectory by the appropriate weight [97].

While multilevel splitting has wide applicability across diverse fields, it is

not clear how to select the reproduction and killing probabilities, and the num-

ber of offsprings in mass spectrometry applications. Inspired by Kahn and Har-

ris [97] and proposed by Haraszti and Townsend [114], Direct Probability Redis-

tribution (DPR) is a realization of multilevel splitting for estimating the prob-

ability of rare states in a Markov chain. Given a Markov chain, DPR implic-

itly constructs a modified Markov chain where probabilities of states are in-

creased by an arbitrary order of magnitude. For a Markov chain with n states

and (unknown) equilibrium probabilities p1, · · · , pn, given oversampling factors

µ1, · · · , µn, DPR constructs a Markov chain with (unknown) equilibrium proba-

bility p′1 = µ1p1/
∑

µkpk, · · · , p
′
n = µnpn/

∑

µkpk. For example, take a two-state

Markov chain with equilibrium probabilities p1 = 0.999 and p2 = 0.001. If we

choose µ1 = 1 and µ2 = 999, we end up with equilibrium probability p′1 = 0.5

and p′2 = 0.5, illustrated in Fig. 5.2(A-B). If one decides to estimate probability

distribution of Fig. 5.2(a) by Monte Carlo, thousands of simulations are required

(since p2 = 0.001 is small). However, if one tries to estimate probability distribu-

tion of Fig. 5.2(b), only a few simulations are sufficient (since p1 = p2 = 0.5 is not

small). This contrast in the number of simulations is the key idea of DPR. Here we

descibe how to apply DPR to the problem of estimating probability distribution

of PSM scores.

For simplicity, we define a spectrum as a set of integer masses. A peptide of

length k is defined as a string of k positive integers Peptide = m1m2 · · ·mk. The

mass of the peptide is defined as the sum of all the integers in the string. A score of

a PSM (Peptide, Spectrum) is denoted by Score(Peptide, Spectrum). Note that

the proposed algorithm works for an arbitrary set of amino acid alphabets, not

only for the alphabet of 20 standard amino acids. Since nonribosomal peptides

often contain non-standard amino acids, in this section we consider peptides in

the alphabet of all integers. In the Result section we also consider the case of the
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Figure 5.2: (a) Markov chain before performing DPR, with equilibrium proba-
bilities (0.999, 0.001). (b) Markov chain after performing DPR, with equilibrium
probabilities (0.5, 0.5). (c) An example of a Markov chain with nine peptides in
three score states (d) Probability distribution after performing DPR with over-
sampling factors (µ1, µ2, µ3) = (1, 2, 3). The states with decrease in probability
are shown in blue, and the states with increase in probability are shown in red.

standard 20 amino acid alphabet.

Note that while a linear peptide of length k has a unique representation

m1, · · · ,mk, a cyclic peptide of length k can have up to k equivalent representa-

tions. For example, peptide (3, 7, 1) could also be presented as (7, 1, 3) and (1, 3, 7).

One can choose an arbitrary representation among these representations, e.g., the

representation where the first residue has minimum mass.

Given Peptide = (m1, · · · ,mi,mi+1, · · · ,mk), integer residue index 1 ≤

i ≤ k, and integer mass −mi < δ < mi+1, we define Peptide(i, δ) as a peptide

(m1, · · · ,mi+ δ,mi+1− δ, · · · ,mk). These peptides are called sister peptides. Note

that sister peptides have equal lengths and equal (parent) masses, and they share

all the amino acid masses but at most two (see Fig. 5.3(a)). There are many alter-

native ways to define the notion of a sister peptide. RandomTransition(Peptide)

is a Peptide(i, δ), where i and δ are integer random variables, i chosen from

the uniform distribution on [1, k], and δ chosen from the uniform distribution

on [−mi,mi+1]. We define PeptideSpace as the set of all peptides with length k

and mass m. Consider the following Markov chain defined on PeptideSpace:

Peptidet+1 = RandomTransition(Peptidet)

where Peptide0 is chosen from PeptideSpace with uniform distribution. Then
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the problem of finding probability distribution of all scores of peptides from

PeptideSpace against Spectrum is equivalent to finding equilibrium distribution

of the above Markov chain. We use the DPR technique to accurately estimate

the total probability of all peptides with high scores (rare events) in this Markov

chain. Figure 5.3(b) illustrates this Markov chain.
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Figure 5.3: (a) Illustration of all sister peptides (1, 3, 3), (1, 1, 5) and (2, 2, 3) for
the cyclic peptide (1, 2, 4). (b) Illustration of the Markov chain for cyclic peptides
of length 3 and mass 7. We have total of four different cyclic peptides, (1, 1, 5),
(1, 2, 4), (1, 3, 3), and (2, 2, 3). Each random mutation is determined by selecting
i (three cases), and δ (four cases), giving rise to a total of twelve equiprobable
mutations. Transition probabilities between different states of the Markov chain,
derived from the uniform mutation probabilities (1/12), are also shown for each
edge in the Markov chain.

Assume the set of all feasible scores (called score states) is ScoreSpace =

{1, . . . , n}, with (unknown) probabilities p1, · · · , pn. Assume arbitrary oversam-

pling factors µ1, · · · , µn are given. Then the DPR approach provides a way to

modify the transition probabilities such that in the equilibrium distribution of the

resulting Markov chain, the probability of states with score i are oversampled by a

factor µi, i.e. p
′
1 = µ1p1/

∑

µkpk, · · · , p
′
n = µnpn/

∑

µkpk. An example of this pro-

cedure is shown in Fig. 5.2(C-D). Figure 5.4(a) shows the MS-DPR algorithm,

which is a modification of the original DPR algorithm [114].

Glasserman et. al., 1998, [115] show that the optimal choice of µ1, · · · , µn
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(with respect to reducing the number of trials to achieve the required accuracy for

estimation of score distribution) is the one that makes all score states equiprobable,

i.e. (µ1, · · · , µn) = (1/p1, · · · 1/pn). However, since in practice p1, · · · , pn are

unknown beforehand, one needs their rough estimate to efficiently implement DPR.

Our idea is to first run the algorithm with µ1 = · · · = µn = 1, and obtain a rough

estimate of p1, · · · , pn. Then we choose µk = 1/pk in the next iteration. This

procedure is summarized in Fig. 5.4(b).

5.3 Results

We used the Standard Protein Mix database consisting of 1.1 million spectra

generated from 18 proteins using eight different mass spectrometers [116]. For this

study, we considered the charge 2 spectra generated by Thermo Electron LTQ

where 1,388 linear peptides of length between 7 and 20 are identified with false

discovery rate 2.5% using Sequest [43] and PeptideProphet [117] in the search

against the Haemophilus influenzae database appended with sequences of the 18

proteins (567,460 residues). For testing MS-DPR on cyclic peptides, we use the

dataset from the Cycloquest paper[87], that includes cyclopeptides SFTI-1 and

SFT-L1 from Helianthus annuus, as well as a linear and a cyclic peptide, SDP and

SKF, from Bacillus subtilits.

To apply MS-DPR, we first need to define scoring functions for linear and

cyclic peptides. Linear theoretical spectrum of a peptide Peptide = (m1, · · · ,mk),

LinearSpectrum(Peptide), is a set of k − 1 b-ions and k − 1 y-ions, where each

b-ion is the mass of a prefix of the peptide plus rounded H+ mass, m1 + · · · +

mj−1 + 1, and each y-ion is the mass of a suffix of the peptide plus rounded H+

and H2O mass, mj + · · · +mk + 19. Similarly to the Cycloquest paper [87], The

cyclic theoretical spectrum of the peptide, CyclicSpectrum(Peptide), is defined

as the set of masses of its k(k − 1) substrings of the peptide, mi + · · · + mj−1

(mi+ · · ·+mk +m1+ · · ·+mj−1, if i ≥ j), illustrated in Fig. 5.5(a). For branch-

cyclic peptide Peptide, BranchCyclicSpectrum(Peptide) is defined as the union of

LinearSpectrum(Peptidel) and CyclicSpectrum(Peptidec), where Peptidel is the
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linear part of Peptide with cyclic tail assumed as a modification, and Peptidec is

the cyclic part of Peptide with the linear tail assumed as a modification, illustrated

in Fig. 5.5(b).

Similarly to the Cycloquest paper [87], CyclicScore(Peptide, Spectrum)

and BranchCyclicScore(Peptide, Spectrum) are defined as the number of shared

masses between Spectrum with CyclicSpectrum(Peptide) and BranchCyclicS

pectrum(Peptide), respectively. For simplicity, score of linear peptide Peptide

and a spectrum Spectrum, LinearScore(Peptide, Spectrum), is defined as the

number of shared masses between Spectrum and LinearSpectrum(Peptide) (In

our experiments we will also use advanced MS-GF scores for linear peptides). We

emphasize that while we use the same ”shared peak count” principle, the resulting

scoring functions are very different in the case of linear, cyclic and branch-cyclic

peptides.

In addition to the p-value computed by MS-DPR (denoted by pDPR), we

also compute the empirical p-value (denoted by pE), using a Monte Carlo ap-

proach by generating millions (or even billions) of random peptides and estimating

probability distribution. Moreover, pMS−GF stand for p-value of MS-GF software

tool [99] (with 20 standard amino acid assumption), while pGF stands for exact

score probabilities computed by the generating function approach [99] for the case

of arbitrary masses of amino acids.

Figure shows the evolution of µ and p in three iterations of MS-DPR. p =

(p1, · · · pn) is the original probability distribution, p′ = (p′1, · · · p
′
n) is the modified

probability distribution, and µ = (µ1, · · ·µn) is the vector of oversampling factors.

p′ converges to uniform distribution, and p converges to the correct distribution

pGF .

To evaluate the accuracy of the MS-DPR approach, we used all 1388 iden-

tifications from the ISB database. We compared pDPR and pGF (Fig. 5.7(a)),

under the following assumptions: (i) all integers are considered as possible masses

of amino acids (typical assumption for analyzing non-ribosomal peptides in the al-

phabet of arbitrary amino acid masses [18]), (ii) p-values are computed under the

assumption that peptides have fixed known length, and (iii) the shared peak count
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Table 5.1: Comparison of theoretical p-value of cyclic PSM
(Peptide, CyclicSpectrum(Peptide)), with the p-value estimated by MS-DPR
with a million simulations.

Peptide score theoretical p-value pDPR

(10, 20, 40) 7 0.0025 0.0021
(10, 20, 40, 80) 13 1.42e-05 1.35e-05
(10, 20, 40, 80, 160) 21 2.59e-08 2.49e-08
(10, 20, 40, 80, 160, 320) 31 1.45e-11 1.09e-11
(10, 20, 40, 80, 160, 320, 640) 43 2.40e-15 6.49e-15
(10, 20, 40, 80, 160, 320, 640, 1280) 57 1.15e-19 2.71e-20

is used as score. A correlation R2 = 0.9998 between the two p-values shows that

our method accurately estimates the probability distribution. Fig. 5.7(b) shows

the comparison with the p-values computed by actual MS-GF software tool for the

case of the standard amino acids alphabet [99] (correlation of 0.9990). These small

deviations of MS-DPR from the theoretical value are acceptable, as the accuracy

of a Monte Carlo algorithm depends on the number of simulations.

To validate MS-DPR for cyclic peptides, we designed the following exper-

iment. For cyclic peptide Peptide = (10, 20, 40), and the spectrum Spectrum =

CyclicSpectrum(Peptide) = (10, 20, 30, 40, 50, 60, 70), CyclicScore(Peptide, Spec

trum) = 7. In this case we have total of
(

70
2

)

peptides of length three with mass

70, and six of them (rotations and reverse rotations of (10, 20, 40)), have score 7.

Therefore, the exact p-value for score 7 in this case is equal to 6/
(

70
2

)

= 0.0025,

while MS-DPR returns 0.0021. Table 5.1 shows comparison of theoretical and

estimated p-value for some cyclic PSM of variable length.

To validate our approach for cyclic peptides and branch-cyclic peptides in

practice, we compared pDPR and pE for Tyrocidine A and Daptomycin A21978C2

spectra. Tyrocidine A is a cyclic peptide with length 10 and mass 1269.7Da,

and Daptomycin A21978C2 is a branch-cyclic peptide with length 14 and mass

1652.8Da. Three different scores are used: CyclicScore, MultiStageCyclicScore

defined in the multistage de novo sequencing paper [18], and BranchCyclicScore.
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Figure 5.8 demonstrates that these approaches produce similar results for prob-

abilities higher than 10−6.

To validate efficiency of MS-DPR in identifying whether a spectrum is from

a linear, or a cyclic peptide, we compare each spectrum in our dataset against

the corresponding proteome. Cycloquest [87], a database search for identification

of linear and cyclic peptides from the mass spectra, is used for searching these

peptides, and MS-DPR is used to re-rank top scoring PSMs given by Cycloquest.

For Helianthus annuus, we used the EST database described in the Cycloquest

paper [87], for B. subtilis we used the genome available from Uniprot, and for ISB

dataset, we used the 18 protein sequences. By calculating p-values of all PSMs,

the method correctly identifies SFTI-1 and SFT-L1 as cyclic peptides with lowest

p-values. SDP and SKF are also identified as linear and cyclic peptides with lowest

p-values (Table 5.2). Among 1388 linear peptides from ISB dataset, 1358 (97.8%)

are correctly identified as linear peptides, and 99.6% of linear peptide identifica-

tions have identical sequences with the ones found by the InsPecT database search

tool [79]. Note that the standard ISB dataset does not contain any cyclic peptide,

and all 31 cyclic PSMs are non-significant (p-values assigned are larger than 0.01).

Lets define plin(Spectrum) as the p-value of the most statistically significant lin-

ear PSM of Spectrum, and pcyc(Spectrum) as the p-value of the most statistically

significant cyclic PSM. Figure 5.7(c) shows plin versus pcyc for SFTI-1, SFT-

L1, SKF, SDP and all spectra in ISB dataset. The figure shows that MS-DPR

distinguishes cyclic peptides from their linear counterparts.

MS-DPR takes about one second per spectrum in the non-standard amino

acid case and about one minute per spectrum in the standard amino acid case

with MS-GF score. MS-DPR is specifically designed for computing p-values for

cyclic, branch-cyclic and other non-linear peptides, where no alternative tools are

available. We do not suggest using MS-DPR for linear peptides in the case of

additive scoring function, where fast analytical solution is available. [99]. How-

ever, some MS/MS database search tools use non-additive scoring function and

compute empirical estimates of p-values or E-values. Since these estimates may be

inaccurate [96], MS-DPR may be used for validating or correcting these estimates.
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Table 5.2: Top score reconstructions of three cyclic and one linear peptides from
the Cycloquest paper (a) Top score reconstruction of SFT-L1 peptide from a singly
charged ion-trap spectrum. Correct reconstructions are shown in bold. PME
stands for Parent Mass Error. (b) Top score reconstruction of SFTI-1 peptide
from a singly charged spectrum. (c) Top score reconstruction of SKF peptide from
a triply charged ion-trap spectrum. (d) Top score reconstruction of linear SDP
peptide from a triply charged ion-trap spectrum. Note that the previous version
of Cycloquest [87] (that lacked the algorithm for computing p-values) was unable
to identify SFTI-1.

Peptide score p-value PME len struct
GCIEGSPVCFPD 49 5.2e-11 0.036 12 cyclic
ICTQGNCQLEP 13 1.5e-7 0.069 11 linear
LNICCNVEVAQ 11 9.9e-6 0.105 11 linear
GRCTKSIPPICFPD 42 1.7e-7 0.024 14 cyclic
ICKQRVACWKNKG 36 8.7e-7 0.083 13 cyclic
KKCQKEVIENVCL 35 2.2e-6 0.082 13 cyclic
PSTHCWHHGMTHC 35 2.2e-6 -0.137 13 cyclic
PPMTTQCNICSFSS 10 0.00017 -0.092 14 linear
CMGCWASKSIAMTRVCALPHPAMRAI 167 1.7e-15 0.007 26 cyclic
GERTKVAGVKEANKENVKAWLKD 120 7.9e-12 -0.055 23 cyclic
ESLLKAVRSLEADVYHLELKDAA 119 1.1e-11 -0.077 23 cyclic
KEDAEKRVKSNLTLEAIAKAENL 119 1.1e-11 -0.045 23 cyclic
LGVLFIWLVAASIIKWRRFTY 16 6.6e-06 0.040 21 linear
CGLYAVCVAAGYLYVVGVNAVALQTAAAVTTAVWKYVAKYSS 39 9.1e-15 0.24 42 linear
CLLHDPKVLILDEPTNGLDPAGIREIRDHLKKLTRERG 180 3.4e-6 0.37 38 cyclic
YLPQLRGPMMIFTKVGRMSLTCYLLHSIIGTVLFLRY 168 9.9e-6 0.34 37 cyclic
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5.4 Discussion

Most of the computational techniques developed in mass spectrometry fo-

cus on linear rather than non-linear peptides. Hence, computational mass spec-

trometry has not benefited the field of natural products yet, where the majority

of interesting peptides are cyclic or branch-cyclic. One of the important ques-

tions in the field of peptide natural products is how to determine the structure

(linear/cyclic/branch-cyclic) and amino acid sequence of a peptide from its spec-

trum. Since scoring functions for linear, cyclic and branch-cyclic peptides are very

different, converting these scores to p-values is the first step toward automated

MS-based discovery of peptide natural products.

We presented MS-DPR, a method for estimating statistical significance of

PSMs in mass spectrometry. In contrast to existing methods for estimating p-

values, MS-DPR can work with arbitrary scoring functions and non-linear pep-

tides. Comparison of p-values estimated by MS-DPR with the p-values given by

the generating function approach [99] validated MS-DPR in the case of additive

scoring function and linear peptides. While there is no method for computing ex-

act p-value of cyclic PSMs for a comprehensive evaluation of MS-DPR in the case

of cyclic peptides, incorporating p-values in the recently developed Cycloquest al-

gorithm [87] improved its performance (e.g. identification of cyclic peptide SFTI-1

missed by Cycloquest in previous study).

In the case of non-linear peptides, we used the shared peak count to score

PSMs. While advanced scoring algorithms accounting for peak intensities increase

the number of identifications of linear peptides at a given FDR, such scoring meth-

ods are not currently available for non-linear peptides. This is partially due to the

fact that there are not enough annotated non-linear peptide spectra to train scor-

ing algorithms. Recently, the natural product community has started collecting

large scale mass spectrometry datasets. Thus, development of more comprehensive

scoring algorithms will be possible in the near future.

While we tested MS-DPR only on linear, cyclic, and branch-cyclic peptides,

our method is independent of a specific peptide structure and specific score scheme

used. By defining a proper scoring function and random mutation for each peptide
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structure, MS-DPR can convert the score to an accurate p-value.

Cycloquest web-server reporting MS-DPR p-values is available at

http://cyclo.ucsd.edu. The source code for MS-DPR is freely available at

http://proteomics.ucsd.edu.
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(a)

procedure MS-DPR-Iteration(µ1, · · · , µn)

input: Spectrum Spectrum, score function Score(Peptide) = Score(Peptide, Spectrum) with

scores in {1, · · · , n} domain, random transition generator RandomTransition(Peptide), number of

output peptides N , and oversampling factors µ1 · · ·µn.

output: An estimate of score probability distribution p1, · · · , pn on the score space.

select a random Peptide0 from PeptideSpace

z ← 0 and µmin ← mink=1,··· ,nµk

SimulateDPR(Peptide0, µmin)

procedure SimulateDPR(Peptide,Ω)

while z < N do

Peptide′ ← RandomTransition(Peptide)

if µScore(Peptide′) < Ω

return

if µScore(Peptide′) > µScore(Peptide)

Y ← µScore(Peptide′)/µScore(Peptide)
∗

for i = 1 to Y − 1

choose Ω′ from the uniform distribution on

[µScore(Peptide), µScore(Peptide′)]

SimulateDPR(Peptide′,Ω′)

end

end

z ← z + 1

Peptidez ← Peptide′

end

return

end

for k = 1 to n nk ← #{z|Score(Peptidez) = k}.

p′k ← nk/N .

pk ←
nk/µk∑
ni/µi

.

end

return (p1, · · · , pn)

(b)

procedure MS-DPR(K)

input : Number of iterations K∗∗

output : an estimation of the probability distribution p1, · · · pn

(µ1 · · ·µn)← (1, · · · , 1)

for j = 1 to K

(p1, · · · , pn)←MS-DPR-Iteration(µ1, · · · , µn).

(µ1 · · ·µn)← (1/p1, · · · , 1/pn)

end return (p1, · · · , pn)

Figure 5.4: (a) MS-DPR-Iteration(µ1, · · · , µn) algorithm[114] adapted for esti-
mating statistical significance of PSMs. (b) MS-DPR(K) algorithm for estimating
the probability distribution of scores.
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Figure 5.5: (a) Illustration of CyclicSpectrum(Tyrocidine). (b) Illustration of
BranchCyclicSpectrum(Daptomycin).
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Figure 5.6: Evolution of (a) µk (b) pk for three iterations of MS-DPR. The
analysis is performed for N = 1, 000, 000 simulated peptides of length 7, and a
spectrum of peptide KYIPGTK from standard ISB database with parent mass 787.
Blue, red and green plot stands for first, second, and third iterations respectively.
In part (b) pGF is plotted by black. Note that the blue plot in part (b) corresponds
to first iteration of MS-DPR, which simply gives the empirical p-value, pE. From
the second iteration on, pDPR is very similar to pGF .
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Figure 5.7: (a) Comparison of −log10 of generating function p-value with MS-
DPR p-value for 1388 peptides from ISB database. Red line shows the x = y
line. Correlation between the two p-values is 0.9998. Non-standard amino acid
model is used, assuming each peptide has a fixed known length, and peak count
score. MS-GF approach [99] is modified accordingly, to satisfy these assumptions.
(b) Comparison of −log10 of the original, publicly available MS-GF p-value with
MS-DPR p-value. Correlation between the two p-values is 0.9990 . Standard
amino acid model is used, with the variable peptide length assumption and MS-
GF score [99]. (c) Comparison of −log10 of plin, versus −log10 of pcyc for SFTI-1,
SFT-L2, SKF, SDP, and spectra from the ISB dataset. Cyclic peptides SFTI-1,
SFT-L2 and SKF are shown as green stars, and linear peptide SDP is shown as a
black star. Blue dots show spectra from ISB dataset, and red line shows the x = y
line.
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Figure 5.8: (a) Estimating the score distribution for PSMs formed by the cyclic
peptide Tyrocidine A (single-stage MS). Solid line shows the distribution of scores
of 109 peptides that are randomly generated. The dots show the MS-DPR p-
values. (b) Similar results for the MultiStage score defined in the multistage de
novo sequencing paper [18], for 107 peptides. Red dashed lines represent the scores
of the correct peptide. The figure shows that MS-DPR p-values and empirical p-
values are well correlated. Moreover, the p-value of the correct peptide is lower for
multi-stage score (5e−13) single-stage score (5e−07), illustrating the advantage of
multi-stage mass spectrometry. MS-DPR enables comparisons between arbitrary
scoring functions. (c) Similar results for the score distribution for PSMs formed
by the branch-cyclic peptide A21978C2 (single-stage MS).
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