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A Light Detection and Ranging (Lidar) study of the Sierra Nevada with geo-spatial applications 
By 

Gary M. Phelps II 
 

Submitted to the Program of Environmental Systems and School of Engineering of May 2nd, 
2011 in partial fulfillment for the Degree of Master of Science in Environmental Systems 

 
Abstract 
 
Light Detection and Ranging (lidar) has been used widely for the remote sensing of multiple 

parameters from earth’s surface.  Lidar systems are used to measure light scattered to find and or 

range a specific target using laser pulses and radio waves by measuring the time delay between 

transmission of a pulse and detection of reflected signal.  Lidar has proven to be a promising 

technology for estimating forest biophysical parameters, but due to high-cost of flights, computer 

processing times, hard drive storage limitations, lidar flights are not numerous and difficult to 

process at high-resolutions.  Discreet return lidar (three dimensional point cloud data) is used for 

a variety of applications including: urban planning, forest management, wildlife habitat analysis, 

and forest biomass estimations.  This study aims to provide a framework in generating lidar-

derived product such as Digital Elevation Models (DEMs), Digital Surface Models (DSMs) and 

lidar-derived biomass estimates for a study area in the Sierra Nevada.  This study also provides 

an open-source framework for storing and sharing spatial data using an online web-content 

management system.  Results include USGS and lidar-derived DEM error, generating DSMs 

across a variety of platforms including point-density reduction, interpolation methods and 

resolutions, as well as a comparison of estimating biomass using individual tree extraction from 

lidar and a multivariate point cloud regression approach using ground-truthed plot data.  The 

web-based software in this study is used to store and share data amongst a variety of teams and 

persons including the public, the Sierra Nevada Adaptive Management Project, National Critical 

Zone Observatories and other research teams associated with UC Merced. 
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Chapter 1 – Introduction to Lidar data 

Light Detection and Ranging (lidar) is a prominent remote sensing technology that 

provides 3-dimensional point cloud data that are useful for a variety of geographic and spatial 

applications.  Small footprint, discrete return airborne lidar is essentially a laser scanner that 

emits discrete pulses to an object and allows for simultaneous mapping of ground, vegetation, 

buildings and other features.  Lidar has been applied across a variety of disciplines in studies 

pertaining to hydrological modeling, flood prediction, canopy height and biomass estimates for 

forests (Toyra, et al. 2005; Kato et al. 2009; Popescu et al. 2004).  In areas of dense vegetation 

or canopy cover, only a small portion of lidar pulses will penetrate the canopy; most reflect off 

the top and within the vegetation canopy.  The laser pulses penetrating to the ground, classified 

as “ground-hits,” are important because they enable accurate determination of ground elevations 

or digital elevation models (DEMs).  Pulses that reflect off the top and from within the 

vegetative canopy are used to generate digital surface models (DSMs). Figure 1 below displays 

the raw lidar point cloud viewed in the System for Geoscientific Analyses (SAGA) application.   

 
Figure 7: Lidar point-cloud visualized from Sierra Nevada including vegetation (blue) and bare-earth (red) with 

central projection. 
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Lidar provides high point sampling at very fine spatial resolutions, although the forecast 

from points to an interpolated grid is subject to much uncertainty.  In most cases, interpolation of 

the point data is needed due to irregularity of the data acquisition grid (Lloyd et al. 2002).  With 

respect to the object of interest whether bare-earth estimates based on DEMs or vegetation 

parameters (e.g., canopy height, canopy cover and building indexes) which are acquired from 

DSMs, accuracies of these lidar derived products depend mainly on the interpolation method, 

resolution and lidar point-sampling density (Bater et al. 2009; Priestnall et al. 2000; Aguilar et 

al., 2005, Guo et al. 2010) (refer to Figure 2 for interpolated vegetation points).   

 
Figure 8: Top to Bottom Digital Surface Model (DSM) and Digital Elevation Model (DEM) (left).  Interpolation is 

needed to generate these products.  The Canopy Height Model (right) is acquired from subtraction of DEM from 
DSM. 

 
With high resolution lidar data, DSMs are useful for landscape modeling, forest tree 

extraction and visualization applications figure 3. The quality of DSMs is also important for a 

variety of geographic information models and spatial processes.  Studies in lidar including DEM 

and DSM generation include modeling flood inundation from rivers in urban environments 

(Priestnall et al. 2000) as well as studies including canopy height models (CHMs) obtained by 

the subtraction of the DEM from DSM and have well documented forestry applications (Xiaowei 

et al. 2004).  Many studies have focused on lidar generated DEMs with respect to sampling 
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density and interpolation methods (Aguilar et al., 2005, Guo et al. 2010), along with studies in 

interpolation methods comparison (Caruso et al. 1998).  

 
Figure 9: Lidar visualization image courtesy of Jacob Flanagan generated by Vue of the Sierra Nevada.  Snow-

depth was a parameter added into the image on top of DEM and individual tree detected CHM. 
 

Lidar has proven to be a promising technology for estimating forest biophysical 

parameters, but due to the high-cost of flights lidar-data is not available for many geographic 

areas.  Since lidar is also computationally expensive to process with large disk space size, lidar is 

difficult to process at high resolutions.  One of the main limitations of lidar studies that are 

examined in this work is the excessively long data processing times, especially for DSM 

generation due to a large number of points which must be interpolated (> 1 billion for reasonably 

sized study areas).  The majority of lidar data in this study were processed used Intel Quad 

Core™ technologies along with simulated parallel processing.  One way to process the large 

amounts of lidar data is to execute separate scripts across separate central processing units 

(CPUs).  Server and PC Random Access Memory (RAM) used in this lidar study were increased 

to 24 GB.  In addition, multi-terabyte hard-drives (both internal and external totaling 16 TB) 

were installed to manage the large data sets and post-processed gridded surfaces.  A USB 3.0 
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PCI card was also installed to increase the efficiency of data transfer between hard-drives on a 

Dell PowerEdge R900 windows server.  The facilitation of lidar data sharing is another issue 

spatial ecologists and GIS specialist’s face on a regular basis and will be addressed in Chapter 5. 

The goal of this research is to provide a framework for generating and analyzing lidar-

derived product such as Digital Elevation Models (DEMs), Digital Surface Models (DSMs) and 

lidar-derived biomass estimates for a study area in the Sierra Nevada based in support of the 

Sierra Nevada Adaptive Management Project (SNAMP).  SNAMP is a joint effort by the 

University of California, state and federal agencies, and public stakeholders to study 

management of forest lands in the Sierra Nevada. The goal of SNAMP investigators is to 

develop, implement and test adaptive management processes by testing the efficacy of 

Strategically Placed Landscape Treatments (SPLATs) across four response variables, including: 

(1) public participation, (2) wildlife (focusing on the Pacific Fisher and the California Spotted 

owl), (3) water, along with (4) fire and forest health.  This thesis also provides an open-source 

framework for storing and sharing spatial data using an online web-content management system 

or digital library (dl).  The web-based software in this study is used to store and share data 

amongst a variety of teams and persons including the public, the Sierra Nevada Adaptive 

Management Project (SNAMP) and the National Critical Zone Observatories.   

Results described in this thesis include USGS and lidar-derived DEM error across 

multiple resolutions, DSMs generated across a variety of platforms including point-density 

reduction, interpolation methods and resolutions, and a comparison of forest biomass estimations 

using individual tree extraction from lidar and regression approaches using ground-truthed data.  

Individual chapters in this thesis will be submitted for peer review and possible publication to the 

International Journal of Remote Sensing and other high-impact journals. 



11 
 

1.1 – Study Area, Lidar Data and Ground-Truthing 

The study area of interest is located northeast of Auburn, California in the Tahoe National 

Forest and encompasses 107 km2.  The average elevation of this study area is 1559 m with 

standard deviation of 293 m.  The National Center of Airborne Laser Mapping (NCALM) at the 

University of Florida was contracted to survey the area using an Optech GEMINI Airborne Laser 

Terrain Mapper (ALTM) mounted on a twin-engine Cessna Skymaster.  This survey was 

performed in five flights: one on September 18, 2008 (calendar day 262), two on September 19, 

(263) one on September 21 (265), and a final flight on September 22, 2008 (266).  This site was 

chosen because: 1) Active United States Forest Service (USFS) management plans are currently 

in place there, 2) The location met a range of scientific criteria (including providing habitat for 

wildlife species and the potential for recruiting large tree structure), and 3) It is  representative of 

Sierran landscapes. 

 
Figure 10: Northern Study area Last Chance in Northern Sierras, east of Lake Tahoe in the Tahoe National Forest. 
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Multiple parameters were acquired from the ground-truthed inventory for individual trees 

for the particular plots including; species, diameter-at-breast height (dbh), tree-height, snag, and 

other parameters used in other facets of the SNAMP project.  Tree dbh was measured with a 

standard measuring tape, tree height was measured using Vertex Ultrasonic Hypsometer, and 

Global Positioning (GPS) of each individual tree was collected using a Trimble GeoXH.  The 

majority of the species found in these this site vary from softwood species, hardwood species and 

woody shrub species along with snags, dead, stumps, and burned trees.  Each plot (or area of 

ground-truthing), has a plot center that measures a radius of 12.62 m.  In accordance with 

ground-truthing standards set by SNAMP, each and every tree within a 12.62 m radius from a 

randomly defined plot center was measured excluding trees on or under 2 m height.     

The study area ground-truthed inventory included 115 plots and 2186 trees of eight 

different species: (Abies-magnifica Red Fir, Abies-concolor White Fir, Calocedrus-decurrens 

Incense Cedar, Pinus-contorta Lodgepole Pine, Pinus-lambertiana Sugar Pine, Pinus-ponderosa 

Ponderosa Pine, Psuedotsuga-menziesii Douglas Fir, and Quercus kelloggii Black Oak).  The 

ground-truthed data were collected by UC Berkeley’s SNAMP Spatial Team.  The distribution of 

plots collected from the ground-truth data were stratified based on vegetation type: conifer, 

mixed and deciduous trees with sparse, medium and dense canopy density were ground-truthed.  

A full report on ground-truthed inventory data can be found in the Appendix section of this 

thesis.  
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CHAPTER 2- Lidar and USGS derived DEM Comparison 

 2.1 – Objective 

Many hydrologic, vegetation science, and urban planning applications use digital 

elevation models (DEMs) to obtain absolute surface elevation and terrain form (e.g., slope, 

aspect) information (Jensen et al. 2000).  DEMs may be produced using in situ measurements, 

photogrammetrically derived measurements from stereo-correlation and aerial surveys, lidar 

laser measurements, and interferometric synthetic aperture radar IFSAR active microwave 

measurements. Some studies have suggested that the accuracy of DEMs vary depending on land 

cover and slope. This suggestion is based on the assumption that any cover that has a substantial 

canopy will inhibit a visual modification of the DEM or an automatic terrain extraction 

algorithm. It is not known what the accuracies are for DEMs derived over certain land cover 

classes or whether the errors are significantly different between land cover categories (Bolstad  et 

al. 1994; Hogdson et al. 2003; Smith et al. 2004; Hodgson et al. 2004; Hodgson et al 2005). 

 This study aims to quantify the effects of slope, canopy cover, canopy height and land-

cover across multiple resolution DEMs for California and the Sierra Nevada.  DEMs used in this 

study are from the United States Geological Survey (USGS), and lidar-derived DEMs from the 

study site as described in section 1.1.  USGS derived DEM resolutions include 30 m and 10 m 

per pixel, while lidar derived DEM resolutions include 1 m per pixel.  The USGS products were 

compared by means of aggregation, 10 m and 30 m, while the USGS 10 m and lidar-derived 1 m 

products were compared separately.  The LandFire dataset was used to acquire canopy cover, 

canopy-height and landcover information for the 10 m and 30 m comparison.  Results indicate a 

significant difference between USGS derived DEMs, and lidar derived 1 m products.  Landcover 

type, and slope play a major role in DEM accuracy for all generated DEMs. Error between 
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canopy cover and height values did not seem to affect DEM generation significantly.  The 

following research questions were addressed in this study: 

i. Is the USGS 30 m DEM derived from the USGS 10 m product? 

ii. How does slope and canopy cover correlate with DEM error between resolutions? 

iii. How does canopy cover and canopy height affect USGS DEM generation? 

iv. Does landcover play a major role in DEM generation?   

v. Where are the over/under-detections with respect to slope and canopy cover? 

vi. How can we use categorical data to evaluate the significant differences and errors? 

One study in particular has evaluated the accuracy of USGS DEMs as well as lidar 

generated DEMs (Hodgson et al. 2003).  This study evaluates the accuracy of USGS DEMs, 

lidar and ifsar over a controlled watershed with leaf-on conditions.  The main contribution of this 

particular study is the collection of ground referenced information in comparison to these 

products and rigorous error assessment.  Although, no research to date has evaluated the 

accuracy of USGS DEMs for the entire state of California and the Sierra Nevada for USGS 30 

m, USGS 10 m and lidar-generated DEMs as well as evaluate the topographic error associated 

with canopy cover, canopy height, and landcover type across all three remote sensing DEMs.  

The unique contribution of this paper is the identification of error in DEM products which are 

highly used by many people for a variety of purposes including research and hydrological 

modeling specifically in the Sierra Nevada. 
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2.2 – Methods 

 The USGS has been a major producer for DEMs for the United States over the past 30 

years.  USGS has four primary methods of deriving DEMs that are categorized into 3 different 

levels of quality, Levels 1, 2 and 3.  The four methods for producing these DEMs are 1) manual 

profiling 2) automatic correlation, 3) contour-to-grid interpolation, 4) integrated contour to grid 

interpolation.  Each method has its advantages and disadvantages that can result in unique 

problems and/or artifacts in elevation products.  For a complete description on USGS derived 

DEMs, refer to Hodgson, et al. 2003.   

 Two separate analyses of DEMs were compared for two different study area extents.  The 

first analysis was the comparison between USGS 30 m and USGS 10 m for the entire state of 

California.  The USGS 10 m DEM product is assumed to be a better means of recorded elevation 

since it has much higher resolution and results from a better method of production.  To compare 

which topographic factors affected the generation of the USGS 30 m, the LandFire vegetation 

layers including landcover were used for the entire state of California.  LandFire is a shared 

project between the U.S Department of Agriculture Forest Service and the U.S Department of the 

Interior wildland fire management programs and is sponsored by the Wildland Fire Leadership 

Council (LANDFIRE Data Products, 2011).  LandFire Zones included Zone 3, 4, 5, 6 and 13 

which cover the entire spatial extent of California at 30-meter spatial grid resolution and are 

developed using geo-referenced field plot data, satellite imagery and simulation models.  Figure 

10 displays LandFire datasets for the entire state of California including canopy cover and 

canopy height layers.   The USGS 10 m and lidar-derived 1 m DEMs for the study area described 

in section 1.1 were compared for the Sierra Nevada.  Since lidar data provides high point 

sampling at very high spatial resolution, this remote sensing dataset is assumed to be more 
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accurate for estimating elevation than the USGS 10 m DEM.  To acquire topographic factors in 

this separate analysis, the canopy height model (CHM) was acquired from interpolated lidar 

datasets of the subtraction between DSM and DEM.  Canopy cover was calculated for vegetation 

greater than 2 m, if the canopy height is greater than or equal to 2 m for the particular 1 m pixel, 

canopy cover yield is 100%, and otherwise canopy cover is 0% (bare-earth).   Lidar derived 

elevation, canopy height, and canopy cover was aggregated from 1 m to 10 m spatial resolution.  

Slope products for both the 30 m and 10 m comparisons were derived from USGS 10 m and 

lidar-derived 1 m DEMs respectively.  ArcGIS 10 and python 2.6 were used to subtract, 

aggregate and project the multiple DEMs at common resolutions and also create slope, canopy 

cover and canopy height products.  Refer to figure 5 for the complete flow of processing for the 

comparison of USGS 30 m, USGS 10 m and lidar derived DEMs.  USGS 10 m and 30 m 

products were also compared using this method in ArcGIS and python using the ArcPy library.   

 

Figure 11: Processing steps for aggregation, projection and analysis of USGS 10 and 30m derived DEMs. 

  

Once datasets of all geospatial information were created in ArcGIS including the absolute 

subtraction layer between elevation products, a final product (refer to figure 6) of combined 

layers was needed in order to evaluate which topographic factor(s) have the most influence on 

remotely sensed elevation datasets.  To combine datasets into one database, the ArcPy library 
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SearchCursor feature was used.  A cursor is a data access object that is used to iterate over the 

sets of rows in a table within a shapefile.  In this case read-only access was used to execute a 

SearchCursor function over all geospatial datasets and combine each pixel in each geospatial 

dataset for the comparison of all remotely sensed elevation products.  Since there were two 

comparisons, two databases were created: 1) USGS 30 m and USGS 10 m DEM comparison 2) 

USGS 10 m and lidar-derived DEM comparison.  The Absolute Error Layer contains the 

absolute difference between both comparisons on pixel-by-pixel subtraction.  Over and under-

detections from elevation surfaces Zreal - Zobserved is observed where Zreal is the higher resolution 

elevation surface (the more accurate method of generating an elevation surface) used in the 

comparisons and Zobserved is the DEM under evaluation (the lower resolution elevation surface, or 

the method under evaluation).  In case 1: USGS 30 m DEM = Zobserved, USGS 10 m DEM = Zreal  

and in case 2: USGS 10m = Zobserved, lidar-derived DEM = Zreal.  Since adequate landcover 

products typically do not exist for high-spatial resolutions, landcover was not a topographic 

factor used in the USGS 10 m and lidar-derived DEM comparison.   

 

Figure 12: SearchCursor function in ArcPy Library from ArcGIS 10.0 used to combine geospatial information per 
pixel into database. 
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2.3- Results 
 
 The first comparison was made between USGS 10 m and 30 m DEMs.  From the pixel-

based subtraction (after the USGS 10 m elevation surface has been aggregated to 30 m), it is 

evident that the two DEMs are significantly different, thus proving the fact that the USGS 30 m 

product was not derived using the same methodology as the 10 m product.  Since there was a 

greater over-estimate in elevation in the USGS 30 m product than that of the USGS 10 m 

product, this might suggest canopy properties influencing creation of DEMs based on results 

described in Hodgson et al. 2003.  However, after running an analysis of variance (ANOVA) 

with error value (subtraction value in meters) as the dependent variable and the following factors 

as independent variables: Slope (degrees), Vegetation Type (LandFire vegetation key), Canopy 

Cover (0-100%), Canopy Height (meters), and Over/Under Detection/Zero; results suggest that 

slope had the greatest influence in DEM error (refer to Figure 7).   

Table 1: ANOVA of 10 m and 30 m USGS comparison DEM including vegetation layers from LandFire datasets 
Source Type III Sum of Squares d.f Mean Square F Sig. 

Slope 231643      57 4063    783     0.01 

Landcover 3195     28 114     22 0.01 

Canopy Height 867      5 173     33 0.01 

Canopy Cover 191      9             21      4 0.01 

Detection                  52      2             26      5 0.01 

 
 
Based on the f-score values acquired from the ANOVA analysis, landcover and canopy-

height are also contributing factors to USGS 30 m in elevation accuracies.  Canopy Cover and 

over/under detection in DEMs might not be a significant contributing factor to USGS derived 

DEMs but shouldn’t be completely removed from overall DEM accuracies because this factor 
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might suggest dependencies on accuracies with respect to which methodology or remote sensing 

technique is used to derive an elevation surface.  There is also a spatial-autocorrelation factor 

associated with elevation accuracies which will be later explained in the discussion section of 

this chapter. 

  

Figure 7: USGS 10 m & 30 m absolute error (left), Slope of USGS 10 m of California (right). 

 

USGS 10 m and 30 m derived elevation errors depend mainly on slope, and canopy-

height.  Slope and canopy-height in error analysis were categorically binned using the following 

slope-values in degrees as shown in Figure 9.  Slope yielded an exponential increase in elevation 

uncertainty from the USGS 30 m product.  Also, as canopy-height increases, it shown that error 

increases linearly.  On a pixel-by-pixel average, the average uncertainty USGS 30 m contains in 

elevation accuracy is 7 m.  For higher sloped and taller canopy regions the average elevation 

error can be as great as 30 m.  This result should encourage users of the USGS 30 m product to 
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use higher-resolution DEMs due to the significant uncertainties in sloped or high elevated 

regions.  Elevation uncertainties from gridded surfaces in low-sloped areas are relatively low. 

 

Figure 8: DEM Error increase with respect to slope and Canopy Height of USGS 30 and 10m DEM of California.   
 

From total statistics tallied from the USGS 10 m and 30 m database the following 

landcover types (acquired from LandFire) should be noted on extreme outlying accuracies in 

USGS 30 m DEM: 

i. Greatest under-detection in open-water, inter-mountain basins, deserts and lakes. 

ii. Greatest over-detection in SubApline, Oak and Mesic Conifer Forests. 

iii. No significant difference in Central Valley of California (i.e low-slope area).   

Figure 9 displays subtracted values (error) from USGS 30 m which was compared to aggregated 

USGS 10 m, including greatest under and over-detections with respect to landcover.  Also note 

over-detections in the Sierra Nevada and coastal mountain ranges.  Figure 10 also displays 

canopy characteristics acquired from the LandFire datasets.  
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Figure 9: Subtraction Layer for USGS 30 m and USGS 10m shown.  Greatest under-detection in open-water, inter-
mountain basins, deserts and lakes.  Image acquired from 1m NAIP imagery. 

 

 
 

Figure 10: Canopy Cover percentage (left) and Canopy Height (right) of mosaic of California based on 
LandFire vegetation layers. 
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The comparison between USGS 10 m and lidar-derived 1 m DEM for the Sierra Nevada 

(study area described in section 1.1) yields an over-detection in USGS 10 m elevation based on 

over more than 1 million lidar ground-points.  This might suggest that only lidar can penetrate 

through canopy and provide adequate DEM accuracies.  The next-step in this analysis was to 

provide a quantitative means of accessing the accuracy of the 10 m product based on 

categorizing error into six different parameters.  The first assumption based on a variety of 

studies was that slope influenced DEM generation the greatest (Su et al. 2006; Hodgsen et al. 

2003; Hodgsen et al. 2005).  Figure 11 describes the increase in error and slope based on the 

subtraction between USGS 10 m and lidar-derived 1 m product.  As discussed, canopy-height 

was acquired from a subtraction of interpolated elevations from classified ground-points and 

vegetation points.  As shown, it is evident that great sloped areas can provide elevation 

uncertainties of up to 50 m Figure 12. 

 

Figure 11: Exponential increase in absolute error as slope increase.  Canopy Height at each categorized slope are 
also shown. 
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This analysis was also categorized based on average values from derived spatial products 

(i.e. error values, canopy-height and canopy cover with respect to slope categories were 

averaged).  Although a separate evaluation of canopy cover was taken into consideration in 

comparing USGS 10 m and lidar-derived 1 m DEM, it did not provide the same trend as of error 

increase with slope increase even though categories were binned based on a normal distribution 

of canopy cover within our study area. Although based on a pixel-by-pixel analysis this proves 

that better elevation accuracies exist in the USGS 10 m product than USGS 30m product.  Also, 

since canopy cover in our study area was relatively high (refer to Figure 13) it was difficult to 

quantify erroneous trends with this parameter.  As previously stated, landcover was not included 

in this study due to insufficient coverage of vegetation products for this study area. 

 

Figure 12: Absolute error in USGS 10m in comparison to lidar DEM 1m for the Sierra Nevada.  Error value in 
meters (left) pictured next to slope in degrees (right) of study area.  Highlighted areas show some regions of spatial-

auto correlation. 
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2.4 – Discussion 

As DEMs play a major role in spatial processes and modeling, it is necessary to acquire a 

means of error with respect to elevation and terrain attributes (Thomspon et al. 2001).  It is 

suggested that when the complexity of the terrain increases with respect to topographic variable 

parameters that uncertainty in elevation increases (Smith et al. 2004).  Although it is noted that it 

is difficult to combine all of these factors of topographic variability together into one study due 

to strong colinearlity between them (Guo. et al. 2010). Since there a variety of methods to 

represent topographic variability, the inclusion of fractal dimension, semivariogram, coefficient 

of variation and elevation variation were not included in this study.  It should also be also noted 

that for the analysis of USGS 30 m and USGS 10 m for the entire state of California, that spatial-

auto correlation exist for the Sierra Nevada and mountain regions due to: highly sloped, dense 

canopy (refer to Figure 13), and tall vegetated regions as well as distinctive landcover features.  

As opposed to the mountainous regions in California, the Central Valley is a low sloped, sparse 

canopy and low vegetated region with homogenous landcover characteristics. The Central Valley 

has low uncertainty in elevation accuracies in both USGS 30 m and 10 m DEM products. The 

inclusion of snow-on conditions or water levels may lead to over-estimate of elevation especially 

in mountainous regions, this suggest that time-of-year in acquired elevation surfaces must be 

recorded during a time of year where snow levels are low and mountainous regions present leaf-

off conditions for bare-earth penetrability from remote sensors.    

The relationship in reported elevation is strongly related to slope, canopy-height and 

landcover properties for Case 1: USGS 30 m and 10 m comparison.  Although, in Case 2: USGS 

10 m and lidar-derived 1 m comparison, there was not a clear trend in canopy parameters 

affecting erroneous elevations.  The suggestion of canopy inhibiting lidar sensors from 
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penetrating ground is a measurement that was very difficult to quantify in this study due to high 

density vegetation and canopy cover within study area without the inclusion of ground-recorded 

elevation accuracies.  The suggestion of canopy inhibiting elevation accuracies also depends on 

methodologies of deriving elevation surfaces as described in Hodgsen et al. 2003.   

 

Figure 13: Canopy Cover percentage for study area. 
 

LandFire vegetation products that were used in this study as a means of vegetation layers 

are mapped using predictive landscape models based on extensive field-referenced data, satellite 

imagery, biophysical gradient layers, and classification and regression trees. These data are 

useful for determining existing vegetation conditions, for change detection, and for natural 

resource management analysis.   Users of LandFire datasets should also consider the amount of 

error in all of their products as a comparison of this data to lidar generated products displayed 
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statistically significant amounts of error.  A comparison of the LandFire product to lidar-derived 

products for the study site was beyond the scope of this work, but warrants further investigation.   

  The main observation in acquiring accurate elevation and using accurate elevation 

models suggest slope, and vegetation type (landcover), as described in previous studies (Smith et 

al. 2004; Hodgsen et al. 2003; Hodgsen et al. 2004; Hodgsen et al. 2005).  It should be noted 

mainly that high sloped regions can be erroneous in both USGS and lidar-derived DEMs, 

although great errors of under and over-detection of differences between DEMs should be taken 

into consideration when acquiring elevation from large spatial areas where lidar data becomes 

unrealistic to process.   

Since the ANOVA analysis in this study was solely based on f-score, it is not completely 

valid to assume parameters in this study based on higher f-score were high contributing factors 

unless a partial eta squared analysis is able to be performed.  Since the partial eta squared 

analysis was not included in this study as in Hodgsons et al. 2003 it is difficult to make a clear 

distinction on whether canopy-height or landcover variables affect DEM generation the greatest.  

Although a greater f-score generally yield a higher partial eta squared which deems that 

particular variable in the ANOVA analysis to be a contributing factor on the dependent variable 

(in this case the dependent variable was error with respect to the subtraction of DEMs as stated 

in section 2.3). 

Also, when generating DEMs from lidar data it is important on which interpolation 

method is used, with other parameters suggested in publications (Christopher W. Bater, Nicholas 

C. Coops, 2009; G. Priestnall, J. Jaafar, A. Duncan, 2000; Aguilar et al., 2005, Guo et al. 2010) 

including: topographic variability including canopy cover, slope, and coefficient of variation. 

Although, choosing the appropriate interpolator can have its own advantages and disadvantages 



27 
 

with respect to terrain complexity and topographic variability.   In this study, the Universal 

Kriging method was used to interpolate the raw lidar data at a spatial resolution of 1m, although 

it is suggested the high-resolutions (such as 0.5m) predict elevation accuracy with less 

uncertainty. Further research is needed in order to explore what best parameters of topographic 

variability have the greatest influence of elevation accuracy.  

One limitation in processing large amounts of spatial data in ArcGIS is the 2 GB limit of 

shapefiles.  This proved to be a limitation is using such large datasets such as the lidar or 

USGS/LandFire data for the entire state of California.  One way around this is to use Data 

Cursors in ArcPy and extract rows from each feature class into a text-file as described in section 

2.2.  Python can then be used to combine all parameters in the study into one large text file and 

then imported into statistical software to complete the analysis.  The combination of text file size 

including USGS and lidar-derived parameters in this study did not exceed 50 GB.  Both DSM 

and DEM were interpolated using Universal Kriging at a spatial resolution of 1 m for the study 

area.  SPSS was used to generate descriptive statistics on the datasets.  Intel Quad Core CPUs 

were used to process the majority of the data to decrease computation time due to the large size 

of files, especially from lidar datasets. 
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CHAPTER 3- Deriving Digital Surface Models from Lidar 

 3.1 - Objective 

Point cloud density, spatial resolutions and interpolation methods play a major role in 

lidar derived Digital Elevation Models (DEMs) and Digital Surface Models (DSMs) as stated in 

previous chapters.  DEMs are created by interpolated classified ground-points, and DSMs are 

created by interpolated classified vegetation points, excluding ground objects.  In this study, 

DSMs were generated from full density lidar points and reduced to 80%, 60%, 40%, 20% and 

5% of original lidar point density (20 pts/m2 on average).  Lidar resolutions were generated at 

0.5m, 1m, 5m, and 10m using interpolation methods: Triangulated Irregular Network (TIN), 

Inverse Distance Weight (IDW), Spline, Original Kriging (OK) and Universal Kriging (UK).  

The DSMs generated across these different platforms were compared using a 10-fold cross 

validation method and the Root Means Square Error (RMSE) from original points to the 

interpolated surface.  Results based on 3-Way Analysis of Variance (ANOVA) suggest that 

interpolation method along with resolution have the greatest impact on lidar derived DSMs.  

Data density reduction proved to have a small significance in generating lidar derived DSMs.  

UK, OK and TIN proved to be the best interpolation methods at a resolution of 0.5 m.   

A very small portion of studies have focused on interpolation methods with respect to 

DSM generation.  Two studies in particular assess kriging methods and their affects on lidar 

derived DSMs (Lloyd, C.D. and Atkinson, P.M., 2002) as well as using universal kriging 

interpolation approach in lidar error (Coveney et al 2010).  Lidar derived error from DSMs have 

also been studied and linked to different interpolation methods for urban areas (Smith, S.L et al. 

2004).  Although some generated lidar DSMs include ground points (Brovelli et al 2004), to 
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eliminate complications in this thesis, DSMs in this study are interpolated vegetation points or 

earth’s surface excluding all ground objects. 

3.2 – Methods 

The following interpolation methods used in this study are described below: 

Triangulated irregular network (TIN) is an alternative terrain representation approach that 

partitions a surface into a set of contiguous, non-overlapping triangles (Polis and McKeown, 

1992).  Elevation is then recorded for each triangle node, while elevations between nodes can be 

interpolated, thus allowing the generation of a continuous surface.   

Inverse distance weighted (IDW) is a simple interpolation method that estimates the 

value of a point by averaging the values of sample data points within its neighborhood.  This 

interpolation method is based upon the geographic principle that objects that are closer together 

tend to be more alike than objects that are farther apart (Tobler, 1970); this method gives more 

weight to nearby points than to distant points.  

The spline method estimates values using a mathematical function that minimizes overall 

surface curvature, resulting in a smooth surface that passes exactly through the sample points 

(Bojanov et al., 1993).  In this study we chose tension spline which needs two parameters to be 

defined: weight and number of points.  The weight parameters defines the third derivative of the 

surface in minimizing the curvature expression, a higher weight allows for a smoother surface, 

although too high a weight produces results that lack detail.  Since we ran into some issues later 

described with regularized spline, it was found that tension spline weight: 10.0, points: 12 

yielded the best results.   

 Both universal kriging and original kriging were used as interpolation methods in this 

study.  Kriging is an advanced geostatistical procedure that generates an estimated surface from a 
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scattered set of points with z-values.  It is based on the regionalized variable theory that assumes 

that the spatial variation represented by z-values (in this case vegetation height), is statistically 

homogenous throughout the surface.  To estimate the spatial variation, the semivariogram is 

estimated by the sample semivariogram which is computed for the input point data set.  To read 

more about universal kriging and the specific approaches used in each interpolation method, 

refer to (Guo et al. 2010).   

Every interpolation method was run at 0.5m, 1m, 5m, and 10m resolutions with 20 

datasets of variability within the study sites dataset.  To assess the accuracy of the interpolation 

methods, a 10-fold cross-validation (Kohavi et al., 1995; Picard and Cook, 1997) was applied to 

our lidar data set.  The lidar points were first randomly divided into 10 sub-samples. We retained 

one of the 10 sub-samples as the validation data for testing the models performance, and used the 

remaining nine sub-samples as training data for DSM interpolation. We repeated the process 10 

times so that all sample points were used for both training and validation. Root Mean Squared 

Error (RMSE), a widely used global accuracy measure for evaluating the performance of DEMs 

(Aguilar et al., 2005) was also implemented on DSMs:  

                            (14) 

where Zpredicted is the predicted surface elevation, Zreal is the real surface elevation from lidar 

ground points, and n is the total number of points.  The objective of this study focuses on the 

interpolation errors only. 

 TerraSolid’s Terrascan software was used to classify vegetation points after the lidar was 

flown.  ArcGIS 9.3 tools and the arcgisscripting library in python 2.5 were used to interpolate all 
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point datasets into surfaces.  After each interpolation method ran at the common resolutions, as 

well as separate data-densities, lidar points were then compared to the interpolated surfaces.  The 

10-fold cross-validations were combined to compute Mean Square Error (MSE) between the 

lidar points and the interpolated surfaces.  After the MSE was computed, RMSE was computed 

based on the number of points for each interpolation method, density and resolution.  Figure 15 

describes that data processing from raw lidar to DSM generation. 

 
Figure 15: Flowchart of creating Digital Surface Models related to this study using lidar data density reduction, 

multiple interpolation methods & resolutions. 
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3.3 - Results 

 Factors in DSM generation including: resolution, density, interpolation method and 

interactions between these factors were compared for statistical significance at a 95% confidence 

level.  The 3-Way ANOVA statistical test was used to determine if the means in a set of data 

differ when grouped by multiple factors.  The comparison of RMSE values on multiple densities, 

multiple interpolation methods and resolutions were used to determine which factors or 

combinations of factors are associated with the difference.  The 3-Way ANOVA is a 

generalization of the two-way ANOVA.  In its simplest form ANOVA provides a statistical test 

of whether or not the means of several groups are all equal.  Based on the higher f-score and 

RMSE trends it is safe to conclude which interpolation method and resolution has the most 

influence on lidar generated DSMs (refer to Table 2). 

Table 2: 3-Way ANOVA Results for DSM data: resolutions 0.5m,1m,5m,10m at densities 5%, 20%, 40%, 60%, 
80% and 100% using TIN, IDW, SPLINE, OK and UK Interpolation methods. *Significance level: 0.05 

Source         Sum Sq. d.f Mean Sq. F Prob. > F 

Resolution       4.08e+007        2 20240680 1621     0.01 

Density 8.01e+006 4 2002886 160 0.01 

Method 9.91e+007 3 33050692 2648 0.01 

Resolution*Density 1.29e+007 14 924574 74 0.01 

Resolution*Method 1.45e+008 11 13224487 1059 0.01 

Density*Method 3.75e+007 19 1977720 158 0.01 

Resolution*Density*Method 4.94e+007 59 838429 67 0.01 

Error 9.43e+007 7560 12479   

Total 4.13e+008 7678    
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Since the lidar data points in this study were an average of 20pts/m2 in heavily dense 

canopy regions, data density reduction played a minor role in generating DSMs.  Even at a data 

reduction of 5%, which is 1pt/m2, it is found that DSMs can be produced without losing 

significant detail for particular interpolation methods.  Table 3 and figure 16 describe the trend in 

errors across the multiple interpolation methods and the increase in error from fine to course 

spatial resolution in lidar-generated DSMs. 

Table 3: Descriptive Statistics of RMSE of each interpolation method across all resolutions & densities. 

Method         Mean Median Std. Dev Min Max 

Universal Kriging     5.03          4.95           1.43     2.13 8.71     

Original Kriging 5.78 5.68 2.19 2.03 12.45 

TIN  6.05 5.78   2.4    1.07 13.26 

Spline   6.85 6.33    3.47 1.29 16.31 

Inverse Distance Weight 10.89 10.27 3.25 4.80 19.42 

 

  UK and OK interpolation methods yielded the lowest RMSE values through all 

resolutions and densities based on mean values, although these methods proved to be 

computationally expensive; the time required to estimate the semivariogram for the kriging 

method is very long for producing a surface for each tile.  A detailed description of the kriging 

method along with problems that might arise from using kriging has also been well documented 

for spatial applications (Cressie, N., 1988, Cressie, N., 1990, Armstrong, M., 1984).  One of the 

main problems with using an interpolator such as kriging is its tendencies to smooth detailed 

information in DSMs.  TIN and tension spline produced decent results; although a visual 

inspection of both interpolators is required in order assess the quality of each interpolator.  TIN 

produces better quality DSMs than spline (both tension and regularized) but during the RMSE 
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calculation it was noted that corners or edges of the tiles were not interpolated very well.  For the 

corner or edge values in the DSM there were no-data values, which needed to be removed during 

post-processing once the DSMs were created.  

As figure 16 (vi.) displays regularized spline with parameters weight: 0.1 and points: 12, 

produces spikes or cones for tree tops and very high RMSE values.  Tension spline is a 

generalization of the cubic spline and is used to avoid extraneous inflection points as well as to 

interpolate a surface without sacrificing smoothness.  After multiple trial and error runs it was 

found that using a relatively high weight: 10.0, with points: 12 for tension spline produced the 

best results without increasing smoothness to lose detail and reduce inflection points caused by 

regularized spline.  Statistically and visually UK and OK figure 16 (i. and ii) produce the best 

lidar-derived DSMs, although they are very computationally expensive especially for large lidar 

datasets. 

As noted by the 3-way ANOVA analysis, resolution is a contributing factor in the 

uncertainty of lidar-generated DSMs  figure 17 displays the lidar generated DSMs at multiple 

resolutions, 0.5m, 1m, 5m, and 10m.  It is shown that as resolution increases, detail from the 

interpolated vegetation surface decreases.  Although, this study focuses on forested regions and 

high-point lidar data density, this result is obvious as there is great detail in vegetated surfaces 

generated by lidar that is lost when spatial resolution is decreased.  Since the 3-way ANOVA 

analysis deemed lidar point-density as less of a contributing factor to the uncertainty of point-to-

surface DSMs, this parameter was explored in detail in figure 18 and displays major factors on 

uncertainty involved in interpolation methods; specifically those methods that depend on 

neighborhood operations such as IDW, and spline. 
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i. 

 
ii. 

 
iii.  

iv. 

 
v. 

 
vi. 

Figure 16: All interpolation methods used in this study: i) Universal Kriging, ii) Original Kriging, iii) Triangulated 
Irregular Network, iv) Inverse Distance Weight, v) Tension Spline, vi) Regularized Spline 
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a. 

 
b. 

 
c. 

 
d. 

Figure 17: Multiple interpolated resolution for Universal Kriging method: a) 0.5m, b) 1m, c) 5m, and d) 10m  
 

 DSMs at very high sampling density (in this case 20pts/m2 on average at full lidar data 

density), have greater uncertainty with interpolation methods such as spline.  It should be noted 

that as sampling density decreases especially below 40% of original lidar points (8pts/m2 on 

average), tension spline level of uncertainty is relatively low in comparison to other interpolation 

methods.  When gaps exist between points, splines do a good job minimizing surface curvature 

while filling in the “holes” or “gaps” in data with lower uncertainty.  Although as lidar-point data 

density increases, especially to the point sampling density of 60% or greater (12pts/m2 on 

average), interpolation uncertainty in the IDW interpolation decreases.  This decrease in 

uncertainty is due to the fact that IDW relies on sample data points within a neighborhood.  

Figure 18 refers to all interpolation methods separated by resolution across all sampling lidar 

point sampling densities.  
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Figure 18: Relationship between RMSE and sampling density at multiple resolutions from: A) 0.5m B) 1m C) 5m 
D) 10m 

3.4 – Discussion  
 

The quality of lidar generated DSMs is of importance for many geospatial applications 

including urban and non-urban environments.  Since the lidar generated DSMs in this study are a 

result from a densely forested area in the Sierras, it should be taken into consideration that many 

of these interpolation methods might vary in performance for particular areas in both urban and 
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non-urban environments. One of the reasons this analysis was performed was due to the many 

studies including published results for forestry applications using DSMs that do not describe the 

interpolation method or resolution used in creating point-to-grid surfaces of classified vegetation 

of lidar data.  Since resolution increases error in lidar-derived DSMs it should be noted that a 

finer resolution produces better detailed surfaces, and different interpolation methods can 

improve or decrease both detail and elevation of surface models.  Loss of information due to 

interpolation method or resolution can propagate error throughout products such as canopy 

height information and canopy cover information as well as detecting and extracting individual 

trees from the lidar surface which will be later in the Chapter 3 discussion section.   

Since topographic variability in lidar derived surfaces especially for forested areas are 

somewhat homogenous with respect to landscape, additional information such as variation in 

canopy cover should be noted when generating lidar-derived DSMs.  Canopy cover in our study 

area as shown in figure 13 was is relatively dense with respect to some open areas which should 

also be noted in this study.  Another parameter to include in this study is the coefficient of 

variation (CV), which is the ratio of the standard deviation of the spread of the points to the 

average number of points.   CV of elevation (Chaplot et al., 2006), is another method that 

describes topographic variability. There are varieties of other methods used to describe 

topographic variability in elevation (Guo. et al. 2010).  

Classification algorithms, especially those of vegetation in lidar data can be another 

factor of providing quality DSMs.  The correct filtering of lidar-data is also needed to remove 

“mis-hits” or mis-classifications which can occur from birds or other objects in-or-above the 

lidar flown area of interest.  TerraSolid vegetation classification schemes should be noted in 

generated lidar DSMs in this study.  The removal of outliers and visual inspection of any 
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anomalies in the lidar data should also be taken into consideration when evaluation point-to-grid 

interpolation.   

Another issue in providing a means of deriving lidar DSMs with multiple parameters is 

computation time needed to interpolate raw lidar points to a surface and comparing points to 

interpolated surface.  ArcGIS functions were used in this study such as extractByValue and other 

functions to compute RMSE through the dbf files and since ArcGIS is limited in the amount of 

processors it can access, it would be ideal to use separate GIS software to perform heavy 

computations and those such as lidar data using the Geospatial Data Abstraction Library 

(GDAL) libraries and python.  The computation of this Lidar dataset ran under a Windows™ 

server with Intel Quad-Core 2.93 GHZ processors and 24 GB Memory using ESRI ArcGIS 9.3 

and python 2.5.  OK and UK generate the most accurate DSM, but their processing time is also 

the greatest.  TIN and spline generate quick DSMs, although the use of the spline interpolation 

method should be visually inspected before its use especially the use of regularized spline which 

produced cone-shaped tree-tops as shown in figure 16 (vi.).  IDW had the highest cumulative 

RMSE value across all data densities and should be avoided due to erroneous values created in 

its interpolated surfaces.  The comparison of point to interpolated surface was very 

computationally expensive using ArcGIS and python. 

Choosing an appropriate interpolator has both advantages and disadvantages as 

previously stated.  Kriging is very time-consuming, but produces the most accurate depictions of 

point-to-grid surfaces for forested lidar points.  Splines seem to provide a relatively good 

interpolation technique but due to inflections and numerical instability (Guo et al. 2010) may not 

provide very accurate means of elevation from classified vegetation points.  The use of an 

appropriate weight for splines with respect to the area of interest also needs to be taken into 
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consideration.  TIN produces very fast interpolations with relatively good results although there 

is no universal approach to solving the best interpolation method due to variability of points and 

the error associated with point-to-grid interpolations.  IDW should be disregarded in 

interpolating dense forested regions due to point-to-grid uncertainty. 

The unique contribution and aspect of this study are high-resolution (0.5m and 1m) lidar-

generated interpolated datasets for vegetation.  Very few studies have focused on a variety of 

interpolation methods with data density reduction across multiple resolutions for surfaces 

generated from vegetated lidar data with respect to point data density reduction.  Further in-depth 

analysis will be included as well as an update to the 3-way ANOVA analysis, topographic 

variability factors such as coefficient of variation within interpolated point-to-surface and a 

possibility of including other interpolators such as nearest neighbor in this study.  This article 

will be submitted to the International Journal of Remote Sensing letters once completed. 
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CHAPTER 4 - Comparison of Biomass estimates from Lidar 

 4.1 - Objective 

Since there has been a drastic increase in atmospheric concentrations of carbon dioxide 

(CO2) and other greenhouse gases as a result from the previous century including the industrial 

revolution, our society is currently focusing on methods to sequester carbon to mitigate climate 

change (Jackson et al. 2005; R. Lal., 2004). Biomass (biological material from living or recently 

living organisms) is a renewable energy source that has the ability to produce electricity or 

product heat.  Biomass can also generate biodegradable waste that has the ability to be burnt as 

fuel.  Since forests are a considerable part of the global carbon cycle as they are able to sequester 

large amounts of CO2, estimates of total component and above ground biomass are of importance 

due to the fundamental understanding of forest carbon cycles and concerns regarding climate 

change (Callaway et al. 1994).  Remote sensing techniques have become more valuable in 

extracting parameters from the earth’s surface including biomass estimates since CO2 

sequestration in high-volume biomass forests is difficult to acquire, especially for conventional 

and optical and radar sensors (Lefsky, et al. 2002).  Better  methods for characterizing biomass 

estimates from forests are sought-after to understand the overall implications of CO2 

sequestration, climate change, as well as the impact of anthropogenic disturbances including 

landuse and landcover changes.   

There are a variety of methods used to acquire biomass characteristics from forest plots 

that scale at multiple ranges along with different units of measurement.  The most common form 

for deriving forest biomass is through the use of destructive sampling and regression.  In this 

method, trees are measured standing, and then cut and weighed.  The dry mass of each trees’ 

particular components (leaves, branches, trunks) and is then regressed by allometric equations.  
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Although, equations between species are sometimes interchangeable, studies show that many 

require trees to be similar in terms of architectures granted that allometric equation for one 

species to be successfully applied to the other species in the same category.  Species-specific 

equations aren’t various due to costs, labor, etc (R. M. Lucas et al., 2008).  Although, Jenkins et 

al.. 2003 provides a framework for deriving biomass equations for a variety of tree-species in 

North-America.    

Some studies have focused on individual tree biomass estimates using small-footprint 

lidar and plot-level biomass estimates (Zachary J. B, Randolph H. W, 2005; Sorin C. Popescu 

2005; R. M. Lucas et al 2008).  Although, some studies do focus on implementing the use of 

hyper spectral remote sensing on tree-vegetation and biomass estimates (Moses et al. 2007; 

Treuhaft et al., 2003).  Since multi-spectral and hyperspectral imagery were out of the scope of 

this study, this paper focuses solely on plot-level and individual tree biomass estimates from raw 

lidar, and ground-truth measurements including vegetation parameters from CalVeg vegetation 

parameters from the United States Forest Service.  

 Acquiring individual tree biomass from small-footprint lidar data might be considered a 

better method of estimating biomass as opposed to plot-level regression methods from ground-

truth data or lidar data (Popescu, et al., 2007).  Although, with uncertainty in global positioning 

systems (GPS), ground-truthed measurements and uncertainty in detection of individual trees 

provides a means of error to lidar derived individual tree measurements.  The effects and quality 

of a certain interpolation methods from point to grid can aggregate biomass uncertainty in DEM 

and DSM surfaces as well (Smith, et al. 2004).  Certain lidar derived individual tree biomass 

estimations may also provide a means of quantifying uncertainty to plot-level regression methods 



44 
 

from ground-truthed data or vice-versa.  In this study, ground-truthed GPS points were manually 

corrected to their nearest-neighboring tree-top or Canopy Height Model (CHM) value.  

It was out of the scope out of this study to estimate biomass using destructive sampling 

and regression.  The main objective of this study was to quantify above ground biomass 

characteristics in the study site relative to the Sierra Nevada Adaptive Management Project as 

well as: 

i. Use ground-truthed observations to validate individual tree detection from lidar data 

using individual tree segmentation from TreeVaW software (Popescu, et al. 2004). 

ii. Explore the use of Jenkins et al. 2003 biomass equations with vegetation parameters 

acquired from CalVeg data for a better estimation of total plot-level biomass in 

comparison to using individual tree-based approach. 

iii. Use lidar based multivariate regression approaches to compare individual tree based 

measurement from lidar and ground-based measurements. 

iv. Access the overall quality of using CalVeg and TreeVaW as vegetation and individual 

tree-detection parameters to estimate biomass at the individual-tree level. 

As shown in the appendix section of this thesis, ground-truth data collected in this study 

provides a validation to detected biophysical parameters extracted from lidar data, including a 

validation to software that provide algorithms in extracting tree-height parameters such as 

TreeVaW.  Since previous studies prove that tree-dbh is the most reliable variable for estimating 

biomass (Crow, 1971; Schroeder et al., 1997), figure A-2 (Descriptive statistics on tree-height 

and observed diameter at breast height (dbh) of tree species from study area) and table A-

1(Descriptive Statistics on ground inventory data including biomass based on Jenkins, et al. 

2003) describes the ground-inventory statistics for the area used in this study. 
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4.2 – Methods 

Since tree-species are a component in measuring biomass based on equations in forestry 

management such as (Jenkins et al. 2003), the CalVeg dataset from US Forest Service was used 

to apply tree-species to our individual detected trees extracted from lidar-data.  CalVeg datasets 

provide existing GIS vegetation maps that meet regional and national vegetation mapping 

standards.  The methodology used to capture forest vegetation characteristics using automated 

includes methods such as remote sensing classification, photo-editing and field based 

oberservations (CalVeg Existing Vegetation, 2011). To read more on how CalVeg classifies 

vegetation parameters based on the level of National Vegetation Classification Standard 

hierarchy please see the following reference CalVeg Existing Vegetation, 2011.  Although, this 

dataset is very coarse especially at the individual tree-level.  Finer resolution datasets at an 

individual tree level do not yet exist.   

Since this paper explores the variation of multiple methods of extracting biomass 

estimates from a forested region in the Sierra Nevada, a lidar point cloud extraction was 

performed on height-percentiles from raw lidar data.  The raw lidar data is compressed into .las 

format, and it is necessary to extract the points from the raw lidar based on the bytes classified 

from TerraSolid’s TerraScan software.  In this case, python 2.6 was used to extract classified 

ground-points and vegetation points from the raw-lidar data.  After both types of classification 

points were filtered (removal of outlying values in each point-dataset), each point dataset was 

interpolated using Universal Kriging at 1m spatial-grid to create DEM, DSM and CHM products.  

The following information was extracted from the raw-lidar data including ground-truth data for 

each plot measured in the study area: height-percentiles based on discrete lidar points of plot 

(min, 1%, 5%, 10%, 25%...99%), Max, Mean, Standard Deviation, Coefficient of Variation.  
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Ground-truth data parameters extracted per plot in ground-truth data include:  height of tree 

average, dbh average, and bulk data density averages to perform the multivariate regression to 

extract percentile heights from the raw lidar data.  The assumption behind the multivariate 

regression technique from raw lidar to ground-truthed biomass estimates is that vegetative height 

in each plot extracted from lidar data has a independent relationship with dependent biomass 

estimates from ground-based inventory data (table A-1).  Refer to figure 19 for percentile heights 

extract for specific ground-truth plots. 

 

Figure 19: Percentile Height Information extracted from raw lidar data including a sub-set of plots in study 
area.  

The software used for detecting individual trees from the CHM (interpolated tree-height 

surface) is implemented in TreeVaW software described (S.C. Popescu and R.H. Wynne, 2004; 

S.C. Popescu, R.H. Wynne and J.A. Scrivani, 2004).  TreeVaW essentially executes an adaptive 

technique for local maxima focal filtering on a CHM surface.  The study-area CHM was split 

into multiple subsections in ArcGIS 9.3, processed using ENVI software standard format, and 

then passed into the TreeVaW application.  The result provided parameters such as Longitude 
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and Latitude in decimal degrees, Tree-Height and Crown-Radii in ASCII format.  This TreeVaW 

software output was then imported back into ArcGIS for analysis to combine tree-height 

information with existing vegetation information for the study site.  Refer to figure 20 below for 

a complete flowchart of data processing from raw-lidar to the comparison of biomass estimates. 

 

Figure 20: Flowchart of extraction of biomass estimates for the Sierra Nevada study area as described in section 1.1. 

After importing the resulting individual tree-detection from TreeVaW into ArcGIS, a 

spatial join was then used to merge the existing vegetation type from CalVeg to the detected 

trees.  A spatial join was performed in ArcGIS; each tree-height point acquired from TreeVaW 

that falls within that particular vegetation polygon is assigned that particular vegetation type 

from CalVeg.  After this was performed for each sub-section of the study site, the final combined 

shapefile was then exported into ASCII format for analysis.  Python 2.6 was used to 



48 
 

programmatically assign the biomass equations at the individual tree-level.  A linear regression 

approach was used to assign dbh to a particular tree-species from the ground-based 

measurements (see appendix) to tree species classified and tree-heights detected from CalVeg 

and TreeVaw respectively.  A buffer was used to acquire the number of detected, biomass, and 

statistics of individual trees for each plot to compare tree-heights assigned from TreeVaW to 

ground-based measurements (refer to table 4 for results).   

4.3 – Results 

Biomass estimations were calculated and compared at the plot-level using three different 

methods: individual tree based approach, ground-truth approach, and multivariate regression 

lidar approach using percentile heights extracted from raw-lidar points.  On average TreeVaW 

under-detected the amount of trees in comparison to ground-truthed data, based on 116 plot 

measurements.  Due to the TreeVaW software under-detection, this also led to under-estimation 

of the amount of biomass at the plot-level.  Since a variety of studies have included the use of 

TreeVaW with respect to biomass excluding study area regions in the Sierra Nevada (Popescu, et 

al. 2004; Popescu, et al. 2005; Lefsky et al. 2002), this might suggest that this software might 

not be as reliable on high dense canopy cover and vegetative regions.   

Based on the multivariate regression approach on 9 different percentiles (1%, 5%, 10%, 

25%, 75%, 90%, 95%, and 99%) point-cloud heights extracted from the raw-lidar for each plot 

in comparison to the dependent variable (ground-measured biomass) in this study, we found that 

the correlation r2 value was 0.75.  This value can be a means of stating that solely using 

percentile heights in lidar data we are able to describe a relatively high correlation of biomass 

using species, dbh and tree-height information from ground-truth data at the plot-level.  Since 
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tree-dbh was found to be the most reliable method of describing biomass, it should also be noted 

that tree-height information is also a major factor in estimating biomass at both the plot-level and 

individual tree-level.  This multivariate lidar regression approach seems to be a reliable method 

of calculating biomass for an entire study-site rather than the individual tree-based approach 

using TreeVaW and CalVeg since TreeVaW on average under-detects the amount of trees within 

a certain plot, there is a great underestimation of biomass at the plot-level.  The discussion 

section in this chapter will provide further insight into these using these particular methods for 

estimating biomass for particular study-areas and situations.  

Table 4:  Descriptive Statistics on individual tree-biomass, results based on average for 115 plots.  Including r2 
values between programmatic TreeVaW/Calveg approach and Ground-based approach. 

Data Biomass(kg)  Tree Count  DBH(cm) Tree-Height(m) 
TreeVaW  7739  10.55   40.46   17.50 

Ground Truth 

r2 

13557 

         0.31 

            13.03 

             0.03 

39.68 

           0.28 

18.50 

              0.42 

 

Since each and every tree was measured within the 12.62 m radius (distance measured 

from chosen plot-center) plot in the ground-inventory data, it was acceptable to compare 

measured ground-based tree-count with tree-count of TreeVaW (individual tree based-approach).  

For 116 measured plots, TreeVaW detected an average of 10 trees per plot.  Ground-based tree-

count measured an average of 13 trees per plot.  TreeVaW under-detected tree-heights from 

ground-truthed data; this suggestion might also include lidar-data underestimates due to first-

return hits in the lidar data (Popescu et al., 2002; Juan C. Suarez et al. 2005).  This underestimate 

of biomass at the invidividual tree level in comparison to plot-level is shown in figure 21 as well 

as biomass estimates from the study area in the Sierra Nevada in figure 22.  



50 
 

 

Figure 21: Individual tree (blue-line) and ground-based biomass comparison (red-line).  Units are in kilograms/plot. 

 

 
Figure 22: Biomass estimates for study area using TreeVaW tree-detection, CalVeg vegetation, & ground-truth 

regression.  Biomass is measured in kilograms/20m2. 
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4.4 – Discussion 

 Currently there exists a variety of studies that suggest discrete lidar has become a proven 

technology to estimate forest biophysical parameters automatically at both the plot and stand 

level (Popescu et al. 2007; Lefsky et al. 2002), although not a variety of studies have researched 

the comparison of extracting biomass from a variety of approaches from lidar data with the usage 

of existing vegetation layers or the comparison thereof.   The unique contribution and suggestion 

of this paper is that users of TreeVaW and any other individual tree-detection algorithm 

software, vegetation classification and other schemas should thoroughly compared and validated 

before their use especially for high dense canopy cover and highly vegetated regions with a very 

thorough ground-based inventory dataset as described in the appendix.  Topographic variability 

including the coefficient of variation in the CHM surface was also computed for plot-level 

biomass comparisons where Zpredicted is the interpolated canopy height surface and Zreal is the 

actual lidar point at i, Z is the mean elevation and n is the number of lidar points within the plot 

specific 12.62 m radius. 

   (23)        

 

Figure 24: Coefficient of variation of raw lidar data for study for 116 measured plots. 
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Topographic variability as shown in equation (23) and figure 24 for our study area explains 

terrain complexities within vegetation surfaces within each plot.  This variable may be explored 

in created Canopy Height Models from a variety of interpolation techniques include canopy 

coverage, lidar-point data density and multiple individual tree extraction techniques.  Sensitivity 

analysis and error analysis between products aggregates when there is error at the beginning 

stages in spatial processes and should be noted when trying to extract particular information 

especially from that of lidar data. 

Individual tree extraction or identification methods along with the classification of tree-

species in this study is lacking due to the availability of remotely sensed methods and data.  

Although some studies focus on other methods of deriving biomass such as scale-invariant 

approaches and the fusion of multi-spectral imaging (Zhao et al. 2009, Popescu et al. 2004).  

Other approaches of acquiring biomass use training data at the individual tree-level have been 

studied (Zachary et al. 2005) as well as a comparison of biomass across multiple communities 

characterized by distinctive tree species (Lefsky, et al. 2002).  A comprehensive comparison of 

each particular method used to extract biomass information from lidar data from both the 

individual tree and plot-level would be an interesting study along with different biomes.  Another 

interesting study would be the comparison of multiple individual tree extraction methods from 

canopy interpolated surfaces or directly from the lidar point-cloud as suggested in these studies 

(Daniel A. Zimble et al. 2003; Juan C. Suarez et al. 2005; Li, W. et al. 2011).  Although this 

study aims to provide suggestions into what methods to extract biomass from lidar data using a 

multivariate regression approach and ground-truth approach, that are the most used in practice 

and are the simplest forms in extracting biomass estimates from lidar.  Individual tree extraction 

and species classification are two underlying issues in detecting biomass, as well as a few 
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unanswered questions that needed to be answered in this study with regard to error propagation 

with respect to ground-truth data, available equations and vegetation datasets: 

1) How to apply biomass equations to CalVeg species misclassification (i.e CalVeg 

misclassified a tree as water)? 

2) How to apply ground-truth based regression to species classification outside of 

ground-inventory (i.e tree-species detected in CalVeg doesn’t exist in ground-

inventory data or Jenkins et al. 2003 biomass equations)? 

3) What is the uncertainty in Jenkins et al. 2003 biomass equations? 

4) How reliable are GPS recorded ground-based measurements?  Can we derive a means 

of error from lidar detected trees visually? 

A further in-depth analysis of acquiring biomass and the comparison of approaches is 

needed in order to further quantify which means is appropriate for a particular study area 

including better methods of extracting individual trees from lidar as well as species classification 

using multi/hyperspectral imagery.  The individual tree extraction method along with species 

classification uncertainty is also needed to acquire error bounds in biomass estimates.  Also, 

since lidar datasets tend to be relatively large and very time-consuming to process, 

computationally fast methods are needed in order to compute biomass in a timely manner for 

large spatial regions.  

Ground-truth observations should be measured carefully since there are inherit errors in 

GPS and Vertex Ultrasonic Hypsometer to measure tree-heights.  In this study, we assumed the 

GPS of the lidar was more accurate due to its mounting aircraft and full-view of sky.  Since each 

tree detected that was ground-based had some inherit error due to GPS being inhibited by the 
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canopy, each ground-measured tree was moved to its nearest neighboring, and relatively closest 

CHM pixel tree-top value.  A comparison of GPS error between manually corrected ground-

based measurements and raw ground-based measured can yield error bounds of GPS devices.  A 

comparison between Vertex Ultrasonic Hypsometer and the CHM acquired from interpolated 

lidar data can also be performed to access the validity in the Hypsometer device.  Also since the 

interpolation between point-to-grid is subject to much uncertainty, it should be noted when 

creating a CHM to use a higher resolution (0.5m preferably) along with a reliable interpolation 

method for the study area of interest.  Descriptive statistics on ground-truthed data is available in 

the appendix section of this thesis. 
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5 – Web-based Digital Library Development 

5.1 - Introduction 

As the cyber infrastructure supporting environmental observations expands, managing, 

sharing, and extracting information from data, many of which are continuously changing, is 

becoming an increasingly challenging problem.  Flexible data repositories are needed to manage 

heterogeneous data and metadata streams, ranging from large spatial data sets (e.g., remote 

sensing products) to in situ sensor and sensor web time series, to results from manual sampling 

campaigns. In particular, environmental datasets pose significant technical challenges in terms of 

management and web-based storage and retrieval of these datasets.  To promote data sharing and 

maximize information extraction, these repositories need to be accessible to a broad spectrum of 

users with an equally broad range of familiarity with information management and database 

querying skills.  This paper provides a framework of developing a web-based storage and 

retrieval system to manage, store and share relatively large amounts of spatial data and other 

datasets using a lightweight, user-friendly open-source content management system using an 

object-oriented database and scripting languages.  The combination of Zope, Python and the 

Google Maps Application Programming Interface (API) provides a novel user-friendly and 

relatively quick method for parsing, sharing and visualizing large spatial datasets.  Eventual 

optimizations to the system will lead to even faster retrieval and easy distribution of this 

packaged software to run on a variety of platforms both UNIX and Windows based. 

Earth systems observational capabilities have been increasing rapidly over the past few 

decades along with the increasing need for a multidisciplinary perspective in terms of data 

management and analysis.  Data are increasingly available at a variety of spatial and temporal 

scales from remote sensing products (e.g., high resolution images, multi- and hyperspectral 



56 
 

products, lidar, etc.) and reliable in situ sensor platforms for monitoring meteorology, air quality, 

hydrology, water quality, and terrestrial and aquatic ecology.  While the availability of such data 

can enable researchers to pursue complex lines of inquiry, rapid progress hinges on the need for 

easy access to and integration of these data.  Hence, organizing heterogeneous datasets in a 

manner that facilitates shared access and analysis by a broad and interdisciplinary user base is an 

important task.  This organization must encompass robust metadata schemes that enable 

specification of the datasets, including where, when and how they were obtained, as well as 

provenance information on newer versions of previous datasets in the event modifications are 

made. 

Digital libraries (DLs) include a variety of digital content as well as the aggregation of 

multiple collections of metadata describing it (Baldonado et al. 1997).  Libraries, museums, and 

universities have been rapidly moving toward a DL format, but find difficulties in building these 

services because of metadata quality and shareability issues such as: inconsistencies in metadata, 

too much technical information, lack of key contextual information and lack of conformance of 

technical standards  (Shreeves et al. 2006).  Analogously, environmental data streams are 

becoming increasingly digital in nature (Pundt and Bishr, 2002), yet possess a wide range of 

metadata attributes associated with the time, location, and method associated with their 

acquisition.  Thus, given ease of use and familiarity of a DL format to most potential users, it is 

reasonable to suggest that DL systems combining web-based storage and retrieval of Earth 

systems science data and metadata would be more likely to attract a broad user base than, say, 

comparable database programs.   This is significant, as the use of spatial databases and 

visualization of environmental datasets therein has also seen dramatic increase (Oosterom, and 

Lemmen, 2001).   
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Web-based information storage and retrieval systems are now offered by a variety of 

organizations, usually governmental, and include soil attributes, landcover, digital elevation 

models (DEMs), light detection and ranging (lidar) data, and others (USGS 2004; USDA 2011; 

NASA 2011).  Although the majority of these systems are successful to some extent, access to 

centralized spatial data with descriptive metadata is often limited, and can be relatively difficult 

for a non-expert end-user to acquire and process.  An example of a fast and user-friendly 

application is the Soil-Web product (Beaudette and O'Geen, 2009), an online soil survey that 

depicts a seamless coverage of soils information for California, Nevada and Arizona.  Although 

queries for larger datasets are limited in the Soil-Web are limited, this product is a step forward 

in combining a variety of data into one centralized product using open-source applications.  

Another environmental application is a portal offering enhanced access to high-resolution 

topography data (V. Nandigam et al. 2010).  These portals have become increasingly popular 

within the last decade, as web-based Application Programming Interfaces (APIs) and relational 

databases become increasingly easier to use.  Although large volume environmental datasets, 

such as lidar, make it difficult for a typical user to process this type of data, supercomputer 

clusters and the use of parallel processing can decrease processing times exponentially.  The 

need for centralization of data and a simple way to share data along with descriptive metadata is 

essential, but lacking in this era of web-based technology. 

This paper provides a solution to the challenging problem of storing and sharing 

heterogeneous spatial and temporal environmental datasets using an open source, lightweight, 

user-friendly web-based digital library (DL).  The framework presented is novel in that it is 

particularly adept for managing environmental datasets, non-spatial, spatial and temporal.   The 

following sections provide an overview of the component software and how it was used to 
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develop this DL.  This is followed by a description of several cases studies in which the DL is 

being implemented to manage data and facilitate collaboration in both research and educational 

contexts.  

 

5.2 - Methods 

The open-source content management system used in this framework is Zope 3 and 

programming language Python 2.5.  Zope standalone provides security as well as user-defined 

access control to particular folders or sites created, and can provide a quick and simple solution 

to the use of storing and sharing data.  Zope is an easily installable content management system 

that is primarily python extensible, security assignable, and works under a relational database or 

“catalog”.  Zope also supports many different web-based scripting languages such as Hyper-Text 

Markup Language (HTML), JavaScript, Cascading Style Sheets (CSS), etc.  These main tasks 

were to be accomplished to have a successful working web-based digital library for 

environmental datasets.  Some of the characteristics of the Zope-based system are:  

i. Fast and easy way to store and share data. 

ii. Secure way to store and share data (assignable permissions via access control). 

iii. Metadata functionality for each item or list of items (multi-file control). 

iv. Assignable metadata for each item or list of items uploaded. 

v. Assignable spatial extents to be displayed and queried via dragZoom feature. 

vi. File Transfer Protocol (FTP) for large spatial files. 

vii. Structured Query Language (SQL) extensible. 
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Figure 25: Zope interaction between ZServer, Apache and Web-browser with extensions such as Products and File 

System Storage. 
 

Access control can be defined in the Security and local roles section of Zope.  In this 

instance, our site is connected via Lightweight Directory Access Protocol (LDAP) for users and 

is extensible through Zope.  Those outside of LDAP system still may have access privilege to 

certain content within the site.  In this case, we have designated specific teams allowed to access 

only their folders data.  For a descriptive overview on setting access control privileges visit 

zope.org.    

  All data items that are stored into our digital library are controlled by a ZCatalog for 

quick indexing, searching and queries.  A ZCatalog is a Zope object that can be added to a Folder 

in the site, managed through the web and extended in many ways.  It is also very simple to create 

search forms and report results from queries using this object.  To allow users to search for 

individual words within the description, metadata can be assigned to each particular file.  In this 

case, we present a method for a set of vocabularies used in SNAMP and NCZO projects 
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(described in our case studies) to define spatial metadata and a programmatic approach to 

assigning this metadata along with querying the metadata.  

The front-end of our current digital library system’s graphical user interface (GUI) is 

controlled by an HTML file, which has preloaded CSS and JavaScript.  The current setup for the 

GUI mimics Zope’s file storage structure with the ability to add, delete, copy, files from a user.  

Since Zope only allows the control of single file upload per-submission, we can also have 

created another form for batch uploads.  We also encourage users to add zip files for large 

amount of files of the same type.   

Another unique aspect of our digital library is that a separate python script with 

embedded HTML in Zope controls the metadata structure for each particular file.  This metadata 

assignment can be entered manually via the python form or programmatically parsed from an 

eXtensible Markup Language (XML).  This flexibility allows users to assign multiple files the 

same metadata if needed.  If the metadata field needs to be updated, we add this new attribute to 

the index of the ZCatalog. 

Figure 26: The GUI for our Digital Library using backend Zope functionality. 

 
 The ability to download multiple files along with assigned metadata (if also multiple) is 

another important feature that was added to this digital library.  For example, if two separate 

types of spatial data types were added to the digital library along with two separate metadata 
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attributes within the same folder; a user should be able to download these separate data types 

along with assigned metadata. A “Download All” and “Download All with Metadata” functions 

have been implemented at the folder level.  These functions return a zip file to the user after the 

desired files are selected for download.  The zip file contains the metadata in XML format along 

with the specific file in its original data format.  An FTP site for large data transfers can also be 

extended through Zope.  In the spatial data case, we use FTP sites for large volume spatial data 

transfers as well as remote sensing images. 

 This digital library can host a variety of datasets including non-spatial data such as 

documents, images, etc. as well as temporal data, although, this digital library was built on the 

basis to support and handle spatial data files and formats.  Metadata within the system although 

specifically formatted for environmental datasets can be generic, meaning the metadata schema 

in this system is user-defined. Depending on the amount of storage space allocated within the 

platform that is being used, this digital library can store and share this data.  To query spatial data 

after the metadata form is filled (specifically the extent attributes), the Google Maps API 

displays those specific longitude and latitude attributes for selection.  Also the ability of KML 

(Keyhole Markup Language) overlays are also able to be parsed into the map and downloaded.  

Point or polygon data is able to be queried from this map after it is loaded via click or dragZoom.  

The dragZoom feature is a feature that is built in JavaScript although called through the Google 

Maps API so that a user can select an area defined by that person’s bounding box extent.  After 

the bounding box extent is drawn by the user, the resulting data is displayed in a website 

allowing the user to download the data along with its corresponding metadata in zip format.  

After the dragZoom bounding box is drawn, the resulting coordinates are passed back to the 

ZCatalog, returning any files whose spatial extent attributes fall within the region.  If an 
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overlapping region is selected, a multi-tabbed infoWindow is generated to display a selection of 

data within the region of interest.  If a user also clicks on the point or polygon displayed inside of 

the map, that user will be able to download that corresponding areas data with metadata within 

the Google Maps API infoWindow.  Temporal data downloads are also able to be queried within 

the Google Maps API.   

 
Figure 27: Google Maps API visualization of spatial data collected in the Sierra Nevada parsed from spatial extent 

attributes in metadata including Lidar and temporal data. 
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5.3 – Case Studies, Discussion and Acknowledgements 

The earliest version of this DL approach was the Sierra Nevada San Joaquin Hydrologic 

Observatory (SNSJHO 2007). The SNSJHO was initially developed as a data repository for the 

U.S. National Science Foundation (NSF) WATERS Network California test bed (Montgomery et 

al., 2007), The SNSJHO now serves as a data and information repository for multiple major 

research projects, including the SNAMP project (SNAMP, 2010), a joint effort by the University 

of California, state and federal agencies, and the public. The SNAMP project has been formed to 

develop, implement and test Adaptive Management processes through testing the efficacy of 

Strategically Placed Landscape Treatments (SPLATs) across four response variables, including: 

public participation, wildlife focusing on the Pacific Fisher and the California Spotted owl, 

water, along with fire and forest health (SNAMP, 2010).  This diverse set of variables creates a 

broad range of data and information types.  The SNSJHO DL also houses data emanating from 

the National Critical Zone Observatory (NCZO), a watershed-scale program that primarily 

investigates the processes that occur at and near the Earth's surface that are affected by fresh 

water, both are in need of an accessible system to store, share and retrieve spatial data along with 

metadata attributes (NCZO, 2010).  Both the SNAMP and NCZO projects have implemented the 

DL to securely store, share and retrieve data ranging from documents to high volume spatial 

data.  This online content management system is accessed daily by members including the public 

interested in acquiring spatial datasets and metadata attributes.   A second DL example supports 

an education and outreach effort aimed at middle school students. 

The files placed into our digital library then ultimately in the ZCatalog are considered 

Zope objects.  Handling Zope objects solely is a limitation instead of handling the files 

themselves directly.  This setback led us in the direction of pursuing a Zope and PostgreSQL 
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database connection instead of using the ZCatalog for file handling.  The flexibility of a 

standalone PostgreSQL database allows for the centralized data access, essentially one database 

can host a large amount of spatial data, while our digital libraries can display and submit queries 

directly to the database.  The current system in place won’t allow for subsections of spatial data 

to be parsed, similar to (V. Nandigam et al. 2010) system.  Another addition to the system would 

be to handle each spatial data by coordinates in a database.  This type of setup would be ideal for 

those looking for a lightweight system to store and share data amongst a variety of users.  

Download speeds and transfer rates would be dependent on user’s bandwidth.    

 

 
Figure 28: Flow of data execution when queried from Google Maps API 

  

I’d like to acknowledge the developer who created this first generation of this software 

system Jason Fisher, along with those who aided in the recent developments of this digital library 

in order of contribution: Otto Alvarez, Jacob Flanagan and Andrew Zumkehr.  Also, the Sierra 

Nevada Research Institute and the National Science Foundation for help in funding this project. 
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Appendix 

 
Figure A-1: Tree-heights of study area from CHM filtered at 50 meters, including ground-truthed plots. 
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Figure A-2: Descriptive statistics on tree-height and observed diameter at breast height (dbh) of tree species from 

study area. 
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Table A-1: Descriptive Statistics on ground inventory data including biomass based on Jenkins, et al. 2003. 

Species     
Red Fir  DBH (cm) Tree-Height (m) Biomass (kg) 

 Minimum 9.50 2.10 21.07 
 Maximum 115.50 51.20 10367.59 
 Range 106 49.10 1943.94 
 Standard Deviation 22.95 10.91 10346.52 
 Average 48.52 21.33 1715.92 

White Fir  DBH (cm) Tree-Height (m) Biomass (kg) 
 Minimum 12.20 2.10 39.19 
 Maximum 160.90 56.50 23601.25 
 Range 148.70 54.40 23562.05 
 Standard Deviation 20.87 9.11 2059.98 
 Average 40.53 18.79 1193.10 

Douglas Fir  DBH (cm) Tree-Height (m) Biomass (kg) 
 Minimum 10.8 4.7 36.01 
 Maximum 167 65 29010.64 
 Range 156.2 60.3 28974.62 
 Standard Deviation 28.62 11.1 3833.24 
 Average 48.03 24 2332.62 

Pine (All)  DBH (cm) Tree-Height (m) Biomass (kg) 
 Minimum 7.5 3.1 10.70 
 Maximum 150.6 53.7 15907.02 
 Range 143.1 50.6 15896.32 
 Standard Deviation 25.84 11.14 2057.23 
 Average 42.47 19.95 1245.21 

Incense Cedar  DBH (cm) Tree-Height (m) Biomass (kg) 
 Minimum 12.4 3.4 38.64 
 Maximum 147 57.7 10309.13 
 Range 134.6 54.3 10270.49 
 Standard Deviation 26.85 8.91 1603.61 
 Average 43.48 16.37 1034.62 

Black Oak  DBH (cm) Tree-Height (m) Biomass (kg) 
 Minimum 19 5.1 73.62 
 Maximum 113.3 28.6 1540.08 
 Range 94.3 23.5 1466.45 
 Standard Deviation 19.64 5.25 284.20 
 Average 36.25 16.98 256.51 

 
 
 
 




