
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
The Arsenal Tool Chain for the GreenDroid Mobile Application Processor /

Permalink
https://escholarship.org/uc/item/1d22306v

Author
Jia, Fei

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1d22306v
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

The Arsenal Tool Chain for the
GreenDroid Mobile Application Processor

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Fei Jia

Committee in charge:

Professor Michael Bedford Taylor, Chair
Professor Jason Mars
Professor Steven James Swanson

2013



Copyright

Fei Jia, 2013

All rights reserved.



The thesis of Fei Jia is approved, and it is acceptable in

quality and form for publication on microfilm and elec-

tronically:

Chair

University of California, San Diego

2013

iii



DEDICATION

To my beloved family, who support me all the time.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 LLVM and the Arsenal Tool Chain . . . . . . . . . . . . 3
1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . 4

Chapter 2 Overview of GreenDroid . . . . . . . . . . . . . . . . . . . . . 5
2.1 The GreenDroid Architecture . . . . . . . . . . . . . . . 5
2.2 The Software-Hardware Interface . . . . . . . . . . . . . 7
2.3 Hardware Verification . . . . . . . . . . . . . . . . . . . . 8

Chapter 3 Description of the Arsenal Tool Chain . . . . . . . . . . . . . 10
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 CC-IR and A-IR . . . . . . . . . . . . . . . . . . . . . . 12
3.3 CC-IR Generation . . . . . . . . . . . . . . . . . . . . . . 15
3.4 CC-IR Scheduler . . . . . . . . . . . . . . . . . . . . . . 18
3.5 CCIR to AIR Backend . . . . . . . . . . . . . . . . . . . 20

3.5.1 The Data Path Module . . . . . . . . . . . . . . . 20
3.5.2 Basic Block Modules . . . . . . . . . . . . . . . . 23
3.5.3 The Control Unit . . . . . . . . . . . . . . . . . . 26
3.5.4 The Tree-Structured Pipelined Multiplexer . . . . 27

3.6 AIR to C Backend . . . . . . . . . . . . . . . . . . . . . 27
3.7 AIR to V Backend . . . . . . . . . . . . . . . . . . . . . 29

Chapter 4 Calling Convention of C-Cores . . . . . . . . . . . . . . . . . . 30
4.1 MIPS O32 ABI . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Argument Passing with a C-Core as a Callee . . . . . . . 31
4.3 Stack Frame of C-Cores as Leaf Functions . . . . . . . . 33
4.4 Sub-function Calls in C-Cores . . . . . . . . . . . . . . . 34

v



4.5 Global Variables . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 5 A C-Core for the Android Dalvik Garbage Collector . . . . . . 37
5.1 Introduction to Dalvik and Dalvik GC . . . . . . . . . . 37
5.2 Generation and Test Mechanism of the C-Core . . . . . . 38
5.3 The Generated C-Core . . . . . . . . . . . . . . . . . . . 39

Chapter 6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1 Dark Silicon . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 High-level Language to Silicon . . . . . . . . . . . . . . . 44
6.3 Specialized Hardware for Garbage Collection . . . . . . . 46

Chapter 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Appendix A Format of A-IR Modules . . . . . . . . . . . . . . . . . . . . . 49

Appendix B Standard Ports and Registers of an SPE . . . . . . . . . . . . 51

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



LIST OF FIGURES

Figure 2.1: The GreenDroid Architecture [GHSV+11] . . . . . . . . . . . . 6

Figure 3.1: The Arsenal Tool Chain . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3.2: An Example of PHI Node and PHI Mov . . . . . . . . . . . . . 19
Figure 3.3: An Example of PHI Mov and PHI Register . . . . . . . . . . . 22
Figure 3.4: An Example of a GEP Instruction . . . . . . . . . . . . . . . . 25

Figure 4.1: MIPS O32 Stack Layout [Swe07] . . . . . . . . . . . . . . . . . 33
Figure 4.2: Stack Frame of C-Cores as Leaf Functions . . . . . . . . . . . . 34
Figure 4.3: Stack Frame for C-Cores as Non-Leaf Functions . . . . . . . . . 35

vii



LIST OF TABLES

Table 3.1: The Transformation Passes Used in CCIRGen . . . . . . . . . . 15
Table 3.2: The Analysis Passes Used in CCIRGen . . . . . . . . . . . . . . 16

Table 4.1: Integer Register Usage Related with MIPS O32 ABI [Swe07] . . 32

Table 5.1: Statistics of scanObject CC-IR . . . . . . . . . . . . . . . . . . 39
Table 5.2: The Instruction Count of scanObject CC-IR . . . . . . . . . . . 40
Table 5.3: scanObject C-Core Area . . . . . . . . . . . . . . . . . . . . . . 41
Table 5.4: scanObject C-Core Critical Paths . . . . . . . . . . . . . . . . . 42

Table A.1: Fields of A Data-Path Module . . . . . . . . . . . . . . . . . . . 49
Table A.2: Fields of A Control-Path Module . . . . . . . . . . . . . . . . . 49
Table A.3: Fields of A Instance . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table A.4: Fields of An Assignment . . . . . . . . . . . . . . . . . . . . . . 50

Table B.1: The Default Inputs for SPE . . . . . . . . . . . . . . . . . . . . 51
Table B.2: The Default Outputs for SPE . . . . . . . . . . . . . . . . . . . 52
Table B.3: The Default Registers for SPE . . . . . . . . . . . . . . . . . . . 53

viii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my parents for their endless sup-

port for both my study and my life. The thesis is also dedicated partly to them.

I must give my high, respectful gratitude to my adviser Prof. Michael

Taylor, who is also my committee chair, for his guidance, advice, and support

throughout the project. His vision, passion, and hacking have always been inspiring

me to do better job. Without his persistent help and support, the thesis would not

have been possible. I would also like to thank my other two committee members,

Prof. Steven Swanson and Prof. Jason Mars.

I would like especially to express my appreciation to Dr. Jack Sampson for

his invaluable suggestions and patience. From the early stage of learning, to the

final stage of thesis writing, he has been giving me precious and patient advice and

assistance. I have learned quite much from the experience of working with him.

Nathan Goulding helped me hugely when I started hacking on the project,

and his encouraging emails always inspired me. A thank you to Qiaoshi Zheng,

one of the first several friends I made after I moved to San Diego, who has been

helpful in both my work and life. I would also like to acknowledge all the other

members in Prof. Michael Taylor’s groups for their support and suggestions.

Discussion with Lu Zhang, Yanqin Jin, and other friends helped me greatly.

Their passion, carefulness and knowledge are impressive. Lu Zhang provided great

feedbacks on the process of thesis writing.

ix



ABSTRACT OF THE THESIS

The Arsenal Tool Chain for the
GreenDroid Mobile Application Processor

by

Fei Jia

Master of Science in Computer Science

University of California, San Diego, 2013

Professor Michael Bedford Taylor, Chair

In recent years, the utilization wall has become a serious problem that

prevents processor performance from increasing. GreenDroid, a heterogeneous ar-

chitecture, has been proposed to attack the utilization wall in the mobile domain.

Conservation cores (C-Cores) are exploited in GreenDroid, and a C-Core is pro-

duced from Android application source code by an automated compiler tool chain.

This thesis examines the design of a new LLVM-based compiler tool chain

for the GreenDroid architecture. It examines the choice of LLVM as the base

compiler, provides an overview of the GreenDroid system, and discusses the design

and implementation of the compiler tool chain. A C-Core generated from the

Android Dalvik garbage collector is employed as a detailed case study.

x



Chapter 1

Introduction

1.1 Motivation

Currently, transistor densities and speeds continue to increase with Moore’s

Law, but limits on threshold voltage scaling have prevented the per-transistor

switching power from scaling downwards. Meanwhile, the cooling capacity and

power budget provided for processors keep relatively constant. As a result, the

percentage of transistors that can be used simultaneously diminishes exponentially

with each process generation, which is called the utilization wall [VSG+10]. The

transistors that must stay inactive to satisfy the power constraint are called dark

silicon [Tay12] [GSV+10].

To effectively use the dark silicon in the mobile domain, GreenDroid, an het-

erogeneous architecture to optimize energy efficiency, has been proposed [GHSV+11]

[ST11]. The GreenDroid architecture is composed of arrays of tiles, and each tile

contains one host processor and several application-specific cores, which are called

conservation cores, or C-Cores. The C-Cores are produced automatically from the

source code of android applications by a compiler tool chain. Simply speaking, a

function of an application is picked first, and then transformed into a C-Core with

the identical semantics. When the application runs, and the function is called,

instead of executing the function code directly, the host processor transfers the

control to the C-Core and reads the result directly from the C-Core when the C-

Core finishes execution. Since the C-Core is a fixed-function hardware and runs

1



2

the function more energy-efficiently, the total energy consumed by the application

drops.

A compiler tool chain is used by the GreenDroid architecture to generate C-

Cores automatically from application source code. The tool chain contains several

stages, a profiler to select proper functions to target for transformation, a compiler

frontend to compile source code into intermediate representation (IR), multiple

transformation and analysis passes to reconstruct and optimize the IR, and a

backend to transform the IR into hardware modules.

In the old-version tool chain (termed the C-Core tool chain) [VSG+10], C is

used as the IR for transformation and analysis, and several compilers are applied.

GCC is used for preprocessing. LLVM [LA04] is applied for profiling and reconsti-

tution of the source code, such as function inlining, deglobalization, etc. The LLVM

C Backend is used to transform the LLVM IR back to C. CodeSurfer [BGRT05]

[Tei00] helps with code analysis, and a set of in-house OpenImpact [Kid07] passes

is employed to transform C to hardware modules. Raw-GCC (a ported GCC for

the Raw architecture [TKM+02] [Tay99]) is used to compile application source

code into the Raw assembly, which can invoke the C-Cores.

There are several drawbacks of the C-Core tool chain. First, multiple com-

pilers are used, which impairs the maintainability and reliability of the tool chain.

To make things worse, OpenImpact is not well-documented and no longer actively

supported, and CodeSurfer is a commercial analysis tool for C programming lan-

guage, which is neither open-source nor free. Second, C is not a good option as an

IR for transformation and analysis, because backends like C++ to C, or LLVM IR

to C are not well developed, and there are always bugs and unsupported features.

Meanwhile, analysis and transformation passes for C code are included in various

tools. Third, for validation purpose, hardware description code in C++ for BTL

(the Raw simulator [TPS+04] [TJ03]) is generated along with Verilog code. Imple-

menting two hardware backends, C to Verilog and C to BTL C++ (the hardware

description C++ for the BTL simulator), separately causes code duplication and

makes it hard to maintain. These drawbacks in the C-Core tool chain make us

come up with the idea of using LLVM as the base infrastructure to design and



3

implement the Arsenal compiler tool chain.

1.2 LLVM and the Arsenal Tool Chain

Low Level Virtual Machine (LLVM) [LA04] is a compiler infrastructure

with increasing popularity in both academia and industry, and is supported by

Apple and University of Illinois at Urbana-Champaign. It is well modulized into

three components: frontend, optimization, and backend. LLVM IR is the core of

the infrastructure. Frontends, such as LLVM-GCC [Lat06] and Clang [Lat08], are

used to transform various frontend languages, such as C, C++, fortran, Java, etc.

to LLVM IR. Optimization includes transformation and analysis passes. Transfor-

mation passes are conversions from LLVM IR to LLVM IR, while analysis passes

analyze and extra program information from LLVM IR. Backends transform LLVM

IR to assembly code, such as MIPS, or X86 assembly code.

The use of LLVM as the base of the Arsenal tool chain allows us to use a

single compiler to help with the analysis and transformation. There are a number

of well developed transformation and analysis passes in LLVM which can be used

directly. The multiple-language-support frontends allow the Arsenal tool chain to

support a wide range of frontend languages, which increases the code coverage of

the Arsenal tool chain significantly.

To reduce the code duplication in hardware backends, a hardware descrip-

tion IR (Arsenal-IR, or A-IR) is designed. LLVM IR will be transformed into

A-IR first, and then several hardware transformation and analysis passes can be

done on A-IR. At last A-IR modules are translated into Verilog or BTL C++

modules without modification of semantics. In this way, generation of different

target hardware description languages from the same source file shared the same

A-IR optimization flow, and therefore semantics equivalence is ensured and code

duplication is minimized.



4

1.3 Organization of the Thesis

Chapter 2 provides a description of the GreenDroid architecture. In Chap-

ter 3, the details of the Arsenal tool chain are provided. In Chapter 4, the im-

portance of calling-convention compatibility of C-Cores to MIPS is explained, and

design and implementation details for mips-compatibility are presented. Chapter 5

describes a C-Core generated from Dalvik Garbage Collector by the compiler tool

chain as a case study. Chapter 6 discusses the related work, and Chapter 7 is a

summary of the whole thesis.



Chapter 2

Overview of GreenDroid

To exploit dark silicon in mobile platforms, the GreenDroid architecture

is proposed as a hardware solution. In the GreenDroid architecture, each host

processor is tightly coupled with several conservation cores (or C-Cores). A C-

Core is an application-specific fixed-function co-processor, which runs a function

with at least the same speed as the host processor, but more energy-efficiently.

C-Cores allow architects to trade area for energy-efficiency, and the trade-off is

preferable in the regime of dark silicon [VSG+10].

In this chapter, first I provide an overview of the GreenDroid architecture

from the hardware perspective. Then I describe the software/hardware interface

in the GreenDroid architecture and how C-Cores are used by applications. Fi-

nally, I explain the mechanisms used in hardware verification for the GreenDroid

architecture.

2.1 The GreenDroid Architecture

As is shown in Figure 2.1, the GreenDroid system is comprised of an array

of one or more tiles, each of which is produced from the same template, dipicted

in Figure 2.1a [GHSV+11] [GHSZ+12]. Figure 2.1b shows the architecture for one

tile. In each tile, there is an in-order host processor (a MIPS core), a 32-Kb L1

data cache, a point-to-point mesh interconnect (on-chip network), and an array

of energy-efficient co-processors, called Conservation Cores, or C-Cores. Each tile

5



6

(a)

D-CacheI-Cache

CPU

FPU

Tile

Sc
an

 C
ha

in
 S

el
ec

t

C-core

C-core

C-core

C-core

OCN

(b)

Figure 2.1: The GreenDroid Architecture [GHSV+11]

typically contains 8 to 15 C-Cores, which may or may not intersect with the set

of C-Cores on other tiles in the sytem. The C-Cores are coupled directly to the

host processor within the same tile through the L1 data cache and a specialized

interface. With the interface, the host processor can address, read from and write

to the registers inside all the C-Cores within the same tile [SAGH+11]. The on-chip

network is used for memory traffic, and both host processor and C-Cores can send

memory accesses through the on-chip network.

C-Cores are application-specific co-processors, and a C-Core corresponds to

a function in a targeted application. C-Cores are generated automatically by the

Arsenal tool chain from application functions based on a standard template. A

standard template includes a control logic module, multiple basic block modules,

registers, and a specialized interface to communicate with the host processor. A

control logic module directs the execution flow among basic block modules and

registers. It consists of a set of state machines, and the state machines resemble

the control-flow graph of the targeted function [SAGH+11]. A basic block mod-

ule is a data-flow circuit for one basic block [SVGH+11b], which contains only

combinatorial logic that preserves semantics of the software block, and may have

several memory requests. There are two different types of registers, state registers

and data registers. State registers keep the states of C-Cores, and data registers



7

save the temporary value of cross-block variables when one basic block module fin-

ishes execution, and could be also viewed as the boundary of basic block modules.

The specialized interface is used by the host processor to access registers inside a

C-Core, and is implemented as a tree-structured, pipelined multiplexer.

2.2 The Software-Hardware Interface

As mentioned above, C-Cores are generated from application source code

automatically by the Arsenal tool chain. First, a profiler is used to identify the hot

spots in the source code of an application, which may be regions, such as functions,

loops, or long traces of basic blocks. The hot spots are outlined to be hot-spot

functions, and all the selected hot-spot functions are transformed into C-Cores by

the compiler tool chain automatically. The generated C-Cores are integrated into

the tiles to make the GreenDroid architecture.

In order for a targeted application to invoke the C-Cores, a C-Core aware

GCC compiler. rgcc [TJ03], compiles the application source code into the GreenDroid-

extended Raw assembly code [TKM+02]. In the assembly code, a C-Core related

function call is compiled to be a trampoline. The trampoline first checks the state

of the C-Core. If the C-Core is busy, the original function code is executed. Other-

wise, the trampoline sets the value of registers in the C-Core, transfers the control

to the C-Core and waits for the C-Core to finish. When the C-Core finishes exe-

cution, it notifies the host processor, and the trampoline copies the returned value

from the C-Core to the host processor registers [SAGH+11].

Meanwhile, during the execution of C-Cores, exceptions or function calls

may be raised for the host processor to handle. Exceptions include inner hardware

faults, such division-by-zero fault, page fault and faults for patching. Patching is

a mechanism used in the GreenDroid architecture to exploit similar code patterns

within and across applications to ensure that a small set of specialized cores could

support a large range of computations [VSG+11] [VSG+10]. Three facilities are

used to support patching: configurable constants, generalized single-cycle datapath

operators, and control flow changes [VSG+10], and the patching fault is for control



8

flow changes. When a patching fault is raised, the C-Core stops execution and

transfers control to the host processor. The host processor extracts values from

the C-Core, performs patching execution, writes values back to the C-Core, and

resumes execution. Since the C-Core can be resumed at any point in the control

flow graph (CFG), the control flow can be arbitrarily changed or replaced. Function

calls are for C-Cores to call subroutines. When an inner hardware fault happens,

the host processor reads the exception code from C-Cores and call an exception

handler to deal with the exception. When a C-Core calls a subroutine, it prepares

the content in the stack properly for the subroutines, raises the attention of the

host processor, and then waits in an exceptional state. The host processor receives

the attention signal, reads the states of the C-Core, and dispatches the subroutine

call. When the subroutine call finishes, the host processor writes back the returned

value of the subroutine call to the C-Core, and resumes the execution of the C-

Core. In case of direct or indirect recursion, the C-Core may need to stash the

value of registers to the stack, and later resume the values of the registers.

Both the Raw ISA [WTS+97] [TKM+02] [TPS+04] [BTLAA03] [KTMW03]

[TKM+03] [AAB+97] [Tay04] [Tay99] and GreenDroid-extended Raw ISA are MIPS-

compatible and use the MIPS O32 calling convention. Compared with the Raw

ISA, the GreenDroid-extended version adds four new instructions: tree load/store,

wait, and attention mask. Tree load/store is used by the host processor to access

the registers inside C-Cores via the tree-structured multiplexer. Attention mask

sets the mask for the attention bits from C-Cores, which is reserved for future

concurrent support. Wait lets the host processor sleep and wait for the attention

signal from C-Cores.

2.3 Hardware Verification

The Arsenal tool chain transforms Android application functions in C or

C++ to Verilog modules, which are verified and later synthesized by IC design

tools to produce chips. In order to verify the correctness of C-Cores described in

Verilog, the BTL simulator and the Synopsys Verilog Compiler Simulator (VCS)



9

[Syn13] are employed. The BTL simulator is used to simulate the process of

running applications on the GreenDroid architecture and generates cycle-by-cyle

signal transition information of the C-Core ports. The Synopsys VCS takes the

Verilog modules in, uses the input port information from the BTL simulator to

drive the simulation, and compares the output port value with the output port

information from the BTL simulator for verification. Energy efficiency is evaluated

by placing and routing with Synopsys IC compiler, sample-based simulation and

analysis with Synopsys PrimeTime.

In order for the BTL simulator to run, C-Cores described by BTL C++ are

also produced besides the Verilog description. In BTL, each C-Core is described as

a subclass inheriting from a common base class, and the factory method pattern

is used to execute all the C-Cores. In each C-Core, two functions need to be

implemented, calc and edge. The calc and the edge functions are called per cycle,

while the calc function is called first to evaluate combinatorial logic, and the edge

function is invoked later to update the values for all the registers. Concretely, all

the modules except registers in a C-Core are evaluated in the calc function, and

registers are updated in the edge function.

In the BTL simulator, the behaviors of all the host processors, C-Cores,

memory systems, network, etc. are cycle-accurately simulated. Meanwhile, the

host processors (MIPS cores) in GreenDroid run with a frequency of 1.5 GHz

[VSG+10]. This means that 1.5 × 109 snapshots of port values are generated to

simulate one second of actual running of the GreenDroid architecture, which takes

too much disk space, and logging itself becomes a heavy overhead to the BTL

simulator. To speed up the simulation while still maintaining the accuracy of

verification, we only log a random sample of cycles of the tested C-Cores, and use

the log for verification.



Chapter 3

Description of the

Arsenal Tool Chain

The Arsenal tool chain is used to automatically generate C-Cores for the

GreenDroid architecture. The tool chain is based on the Low Level Virtual Machine

(LLVM) compiler infrastructure and is centered on two newly designed IRs: CC-

IR and A-IR. The tool chain is composed of a frontend to generate CC-IR, a

LLVM backend to transform CC-IR to A-IR, and two hardware backends, A-

IR to Verilog, and A-IR to BTL C++. Two important features, patching and

generalization [VSG+10] [VSG+11], which are also supported in the C-Core tool

chain (the old-version tool chain) , are not discussed in the thesis since the design

and implementation is similar to that in the C-Core tool chain and relatively

independent from the other parts of the Arsenal tool chain.

In this chapter, I introduce the Arsenal tool chain first, and then I describe

the two IRs used in the Arsenal tool chain in detail. In the remaining parts I

explain the design detail of each component of the tool chain.

3.1 Introduction

The Arsenal tool chain is based on the LLVM compiler infrastructure. A

LLVM frontend, Clang [Lat08], compiles C/C++ to LLVM IR with the optimiza-

tion level of O3. Multiple LLVM analysis and transformation passes are written to

10



11

transform LLVM IR to CC-IR. A newly created LLVM backend transforms CC-IR

to A-IR.

LLVM helps increase the code coverage and improve the reliability of the

tool chain. The well structured framework and well defined IR of LLVM allow us

to build our tool chain efficiently. With LLVM IR, the tool chain could support

most frontend languages supported by the LLVM frontends, besides C or C++.

In the center of the compiler tool chain are two IRs, C-Core IR (or CC-IR)

and Arsenal IR (or A-IR). CC-IR is a subset of LLVM IR with constraints and

analysis results to help with hardware module generation. A-IR is a hardware

description IR designed particularly for C-Cores, and is in XML form for easy

generating and parsing. The idea of CC-IR and A-IR is from the optimization

perspective. The optimizations for C-Core can generally be divided into two cate-

gories, software optimizations and hardware optimizations. Software optimizations

map to compiler optimizations, such as loop unrolling, and common subexpression

elimination. Hardware optimizations include more circuit-related approaches, such

as hardware module replacement, where a fast module in a non-critical path may

be replaced with slow but more energy-efficient modules. With CC-IR and A-

IR, software optimizations can be performed on CC-IR with LLVM optimization

passes, while hardware optimizations are applied to A-IR. Another benefit of us-

ing A-IR is that A-IR allows us to separate the hardware optimizer from hardware

backends. The hardware optimizer does A-IR to A-IR transformations, and two

backends, AIR to Verilog, and AIR to C++, directly interpret A-IR to hardware

description languages without the modification of semantics. The isolation be-

tween hardware backends and the hardware optimizer also ensures the semantic

equivalence between modules produced by different backends.

As shown in Figure 3.1, the compiler tool chain is divided into several com-

ponents: CCIRGen, CCIRScheduler, CCIRToAIR, AIRToV, and AIRToC. CCIR-

Gen contains a series of LLVM transformations and analyses that transform LLVM

IR to CC-IR. CCIRScheduler schedules the instructions within basic blocks and

generates states for instructions. CCIRToAIR is a LLVM backend, transforming

CC-IR to A-IR with the scheduling information from CCIRScheduler. AIRToV



12

CCIRGen	  

CCIRScheduler	  

CCIRToAIR	  

AIRToV	  

AIRToC	  

CC-‐IR	   A-‐IR	  

V	  

BTL	  

LLVM	  
IR	  

Figure 3.1: The Arsenal Tool Chain

and AIRToC are hardware backends, which transform A-IR to Verilog and BTL

C++ respectively. Because A-IR is in XML form, AIRToV and AIRToC do not

depend on the LLVM infrastructure for parsing.

3.2 CC-IR and A-IR

CC-IR is a subset of LLVM IR with constraints enforced by transformation

passes and annotations added by analysis passes. CC-IR is the interface between

LLVM IR and A-IR. On one hand, a CC-IR function has exactly the same semantics

as the LLVM IR function. On the other hand, a CC-IR function could be directly

mapped to an A-IR module.

LLVM IR is defined in static single assignment (SSA) [LA04]. In SSA, each

variable is defined only once, and φ operators help select values for variables in

the merging points [CFR+91]. In C-Cores, basic block modules follow the style

of spatial computation [BVCG04], and the SSA form allows a CC-IR basic block

to map to an A-IR basic block module easily. Meanwhile, the control-flow graph

is explicitly presented in LLVM IR, which maps to part of the control logic unit.

Moreover, the strict type system of LLVM IR help us identify the width of ports

and wires in AIR. All of the above nice features make LLVM IR a good option as

hardware behavior description IR.

There are also limitations of LLVM IR as a proper hardware behavior de-



13

scription IR, because LLVM IR is designed to be an RISC-like instruction set with

higher level information for analysis [LA04]. First, LLVM IR is designed to be a

target-independent representation, and some hardware features are not presented

explicitly, such as how arguments are passed by argument registers or stacks, how

global variables are accessed, and how arrays are allocated. Second, to provide

a compact form, several instructions may be nested together in LLVM IR, which

increases the complexity of backends. For example, constant memory addressing

instructions may be nested into store or load instructions. Finally, some instruc-

tions like long-long-type memory accesses have not been supported directly by the

architecture yet, but can be implemented by two int-type memory access instruc-

tions instead. It will be nicer to explicitly present in the IR how there instructions

are indirectly supported. These limitations of LLVM IR make us come up with

the idea of CC-IR.

CC-IR follows most parts of LLVM IR, but has some added rules and an-

notations to better describe the behavior and organization of hardware. One rule

of CC-IR is that the CC-IR should express the hardware system organization if

possible. According to this rule, the calling conventions should be expressed explic-

itly in CC-IR. Another important design principle of CC-IR is that each CC-IR

instruction performs a single task that can be mapped to a primitive hardware

module if possible. This principle simplifies the logic and reduces the code dupli-

cation in the CCIRToAIR backend, and also makes it easier for resource binding,

where a template may be used. For example, we may say an add instruction in

LLVM is mapped to an adder in AIR, and a select instruction is mapped to a

2-way multiplexer. With these rules, CC-IR is designed to be a more expressive

and helpful hardware description IR.

A-IR is in the format of XML and is a hardware description IR at register-

transfer-level (RTL) [TLW+89], which allows us to isolate the hardware optimizer

from hardware backends. The hardware optimizer includes A-IR transformations

and analyses, and there are two hardware backends used in the Arsenal tool chain.

One is for A-IR to Verilog, and the other is for A-IR to BTL C++. All the hardware

optimizations are done by the hardware optimizer, and the two hardware backends



14

do not change the semantics or structure of hardware modules described by A-IR.

An A-IR C-Core module is described by one A-IR XML file. There are

several components contained in an A-IR module: a top-level data path module, a

sequence of basic block modules, a control unit, several dynamically defined one-

hot multiplexers, and a tree-structured pipelined multiplexer for register addressing

and accessing by the host processor. Appended to an AIR C-Core module are two

information nodes. One describes the multiple-cycle constraints for the C-Core,

and the other defines the logic of how to deal with exceptions raised by the C-Core

in the host processor.

A-IR modules are generally classified into two types: data-path modules

and control-path modules. Data-path modules only contain combinatorial logic,

which are purely defined by instances and interconnections between then, and there

is no branching statement, or sequential logic. Control-path modules contain state

machines, and branching statements and sequential assignments, and the order of

assignments matters.

All the A-IR modules has a name, a list of port description, and a list of

wire description. A data-path module also contains the description of instances

and wires between instances, while a control-path module contains register/wire

assignment lists, nested state machines, and conditional basic blocks.

The top-level data path module and all the basic block modules are de-

scribed as data-path modules. The control unit, one-hot multiplexers, and the

tree-structured multiplexers are defined as control-path modules. The reason to

separate data-path modules from control-path modules is from the semantics and

hardware optimization perspective. Control-path modules are mainly composed

mainly of state machines and conditional blocks, and fewer optimizations can be

done to improve their energy efficiency. Data-path modules are combinatorial cir-

cuits, and many hardware optimizations are applicable. For example, if a path is

not the critical path in data flow model, part of it may be replaced with slower, but

more energy-efficient, modules to improve the energy efficiency without reducing

the performance.



15

3.3 CC-IR Generation

CCIRGen generates CC-IR from LLVM-IR, and this section describes the

LLVM transformation passes and analysis passes developed to transform LLVM

IR to CCIR. A list of transformations is shown in Table 3.1, and analyses are

presented in Table 3.2.

Table 3.1: The Transformation Passes Used in CCIRGen

Name Description

AddStoreForCallInstArg Add store instructions before each call

instruction to store arguments on the

stack to support subroutine calls from

C-Cores.

BreakConstantGEPs Break nested constant GetElementPtr

(GEP) instructions. GEP instructions

are used for memory addressing.

LongLongMemAccessLowering Lower long-long-type memory access

to add support for 64-bit memory op-

erations.

SetMipsCallConv Enforce MIPS O32 calling convention.

SetNameForUnnamedVar Give names to anonymous variables in

LLVM IR.

SplitBlockOnCallInst Split basic block on call instructions for

subroutine call handling.

BreakConstantGEPs is an LLVM-specific transformation pass to eliminate

the use of constant GetElementPtr (GEP) values in LLVM IR. GEP is a LLVM

instruction for memory addressing [LA04]. Constant GEPs are nested into store

or load instructions by the LLVM transformation pass ConstantFolding [LA06].

This makes a single instruction map to several primitive hardware modules, which

is less straightforward, and increases the complexity of the CCIRToAIR backend.

Thus, in CC-IR, the constant GetElementPtr values are unfolded to be separate



16

Table 3.2: The Analysis Passes Used in CCIRGen

Name Description

BlockIDInfo Give each basic block a unique ID.

PhiMovInfo Push a PHI node up to be phi mov

instructions in the predecessors.

StackOffsetInfo Calculate the offset of arguments, lo-

cal variables, and arguments for sub-

routines.

GetElementPtr instructions.

LongLongMemAccessLowering is used to support 64-bit store and load in-

structions in LLVM IR. Since the memory system in the GreenDroid architecture

only natively supports 8-bit, 16-bit, and 32-bit memory operations, memory oper-

ations of 64-bit need to be lowered. In detail, a 64-bit load instruction is split into

two 32-bit load instructions, and the two loaded 32-bit values are concatenated into

the 64-bit value. A 64-bit store instruction is transformed into two 32-bit store in-

structions, the inputs of which are the higher and lower 32 bits of the initial stored

value respectively. The support for the 64-bit memory operations is primarily for

the long-long type, since double-precision floating-point number calculation is not

supported by GreenDroid at the moment, and is rewritten to be single-precision

in source code reconstitution.

Another constraint is that CC-IR function should comply the MIPS O32

/ Raw calling convention explicitly [Swe07]. The constraint is enforced by the

transformation pass SetMipsCallConv. Through this pass, each LLVM function is

transformed into a CC-IR function with a signature based on the same template.

The first four arguments represent the registers arg0 to arg3 in MIPS calling con-

vention with the type of unsigned int. The fifth argument is argSP, which stores the

stack pointer, and the sixth argument is argGP, which corresponds to the global

pointer. Several casting and load instructions are added to the beginning of the

CC-IR function to resume the value and type of original arguments. In this way,

the MIPS O32 calling convention is enforced explicitly in a CC-IR function, and



17

we could generate hardware pieces straightforwardly based on CC-IR functions.

SetNameForUnnamedVar is used to give each anonymous LLVM variable a

unique name. This allows us to name hardware wires based on LLVM variables.

The SSA property [CFR+91] of LLVM IR [LA04] and well-designed naming rules

ensure that there is no naming conflict among hardware wires or instances.

Finally, SplitBlockOnCallInst isolates function calls from other instructions

to make each function call become an independent basic block ending with an

unconditional branch instruction. In C-Cores, a function call is implemented as

an exception raised by C-Cores to the host processor, and once the execution is

transferred back to the host processor, an exception handler is called to decide how

to process the exception. With function call isolation, there is no more than one

function call in the same basic block, and the handler can decide which function to

be called based on the ID of the currently executed basic block. Furthermore, since

each function call is followed by an unconditional branch instruction, the execution

of the C-Cores could be always resumed from the next basic block, which simplifies

the C-Core execution resume logic in the host processor.

Some transformations may invalidate others. For example, SetMipsCall-

Conv may add 64-bit load instructions, which need to be handled by LongLong-

MemAccessLowering. AddStoreForCallInstArg may add store instructions before

call instructions in the same basic block, which need to be further separated by

SplitBlockOnCallInst. With the help of the dependency graph of the transforma-

tion passes, we figure out a feasible order: SetMipsCallConv, LongLongMemAc-

cessLowering, AddStoreForCallInstArg, BreakConstantGEPs, SplitBlockOnCall-

Inst, SetNameForUnnamedVar.

There are three LLVM analysis passes. In LLVM, analysis passes analyze

the IR code, generate and store the analysis result, which can used directly by

LLVM transformation passes and LLVM backends. In CCIRGen, BlockIDInfo

gives a unique ID to each basic block. StackOffsetInfo, which calculates and pro-

vides the stack offset information for arguments and allocation instructions, is used

by both AddStoreForCallInstArg and SetMipsCallConv.

PhiMovInfo is used to transform PHI nodes into PHI mov instructions.



18

LLVM IR is defined in the form of SSA, and PHI nodes are used to select values

for variables in the merging points. As shown in Figure 3.2a, foo and bar are

both assigned by PHI nodes, and the value assigning to foo and bar depends on

which predecessor the flow comes from. PHI mov are instructions generated to

replace PHI nodes. Figure 3.2b shows the CC-IR with PHI mov that has the same

semantics as the LLVM IR in Figure 3.2a. Each PHI node in LLVM IR is “pushed

up” to the predecessors to become PHI mov instructions. PHI mov instructions

simply move the value from source to the destination. One thing to notice is

that the existance of PHI mov breaks the SSA form, so PHI mov are stored in an

analysis pass to keep CC-IR still a legal LLVM IR. The idea of replacing PHI nodes

with PHI mov instructions is from optimization perspective, and will be discussed

later in Section 3.5.1.

Analysis passes should come after transformation passes if they are not used

by transformation passes. Here, StackOffsetInfo is used by two transformation

passes, but the two transformation passes do not change the result of StackOffset-

Info, so the analysis result calculated by StackOffsetInfo can still be used in later

stages.

3.4 CC-IR Scheduler

This section describes the scheduling algorithm in the Arsenal tool chain.

The technique of selective depipelining [SAGH+11] is used to improve energy ef-

ficiency. There are two logical clocks used in C-Cores with different frequencies.

The “fast” clock is used to drive memory request, and the “slow” one is used to

control registers. Another way to look at it is that fast clock drives the execution

logic inside a basic block, and the slow clock drives the execution between basic

blocks, since memory requests are only raised in the middle of a basic block, and

registers are the boundaries of basic block modules. The state of slow clock is

called PC, while the state of execution inside basic blocks is called substate. So a

pair of PC and substate specifies a unique state of C-Cores. PC represents the ID

of the basic block module being executed, and substate represents the inner state



19

•  foo.0	  =	  arg0	  
•  …	  

•  foo.1	  =	  arg1	  
•  …	  

•  foo	  =	  phi	  bb0:foo.0,	  bb1:foo.1	  
•  bar	  =	  phi	  bb1:arg2,	  bb2:arg2,	  bb3:bar	  
•  …	  

bb1 bb2 

bb3 

(a)

•  foo.0	  =	  arg0	  
•  …	  
•  foo	  =	  phi_mov	  foo.0	  
•  bar	  =	  phi_mov	  arg2	  
	  
	  

•  foo.1	  =	  arg1	  
•  …	  
•  foo	  =	  phi_mov	  foo.1	  
•  bar	  =	  phi_mov	  arg2	  
	  

	  
•  …	  
•  bar	  =	  phi_mov	  bar	  

bb1 bb2 

bb3 

(b)

Figure 3.2: An Example of PHI Node and PHI Mov



20

of the basic block module.

CCIRSchedule is an analysis pass which calculates and stores substates of

instructions inside basic blocks with a greedy algorithm. The detailed scheduling

algorithm is described in [Sam].

3.5 CCIR to AIR Backend

CCIRToAIR is an LLVM backend transforming CC-IR to A-IR. It is com-

posed of several parts: DataPathModuleGen, ControlPathModuleGen, BasicBlock-

ModuleGen, TreeRegMuxGen, ExceptionHandlerGen and MultiCycleConstraint-

Gen. DataPathModuleGen generates the top-level data-path description of a C-

Core. ControlPathModuleGen produces the control unit, which drives the ex-

ecution of the C-Core. BasicBlockModuleGen generates basic block modules.

TreeRegMuxGen generates the tree-structured pipelined multiplexer used as the

specialized interface between the host processor and the C-Core. ExceptionHand-

lerGen and MultiCycleConstraintGen generates ExceptionHandler node and Mul-

tiCycleConstraint node respectively. These two nodes do not directly describe the

hardware implementation of C-Cores. ExceptionHandler describes a dispatcher

called by the host processor to handle exceptions from C-Cores, and MultiCycle-

Constraint provides timing constraints for hardware pieces that are used.

3.5.1 The Data Path Module

DataPathModuleGen generates the top-level data-path module for a C-

Core. In the GreenDroid architecture, all C-Cores are generated from the same

template, and use the same standard ports for communication with the host proces-

sor and the memory system. A list of standard ports is provided in Table B.1 and

Table B.2. A C-Core is composed of a control unit, several basic block modules,

many registers, a tree-structured pipelined multiplexer, and a memory interface.

In C-Cores, registers are generally classified into two types, state registers

and data registers. State registers include spe status, PC, substate, and edge id

registers. Spe status represents the execution status of a C-Core, namely done,



21

programming, running and waiting. PC is the ID of the basic block running, and

substate is the inner state of a basic block. Edge id stores the ID of the preceding

basic block and the ID of the current block, and is used for exception dispatching.

Data registers are argument registers, global variable offset registers, live-

out registers, and PHI registers. Argument registers and global variable offset

registers are written by the host processor to pass arguments to C-Cores. Both

live-out registers and PHI registers serve to store the temporary values of cross-

block variables when C-Cores are running. The difference is that PHI registers

store the output of PHI mov instructions, and live-out registers store the value

of other live-out variables. The PHI mov destinations with the same name are

stored into the same PHI register through a multiplexer. The select signal of the

multiplexer is asserted by the control unit based on PC and substate. Figure 3.3

gives an example of PHI registers. There are two PHI registers in Figure 3.3b,

foo reg and bar reg. The input of foo reg is from bb1 and bb2 through a two-

way multiplexer, and the input of bar reg is from bb2 and bb3 through another

multiplexer. When the last substate of bb1 is reached, foo.0 is selected to be

stored in foo reg, and when the last substate of bb2 is reached, foo.1 is selected.

Silimar routing scheme applies to bar reg.

An alternative mechanism to deal with PHI nodes, which may be more

straightforward, is to transform each PHI node into a multiplexer in the same

basic block module where the PHI node is defined. The select signal is determined

by the control path based on the preceding block ID. However, in this way we

need to reason about the preceding block which may be very odd in exception or

patching cases. Meanwhile, live-out registers need to be generated for each PHI

node source instead of one PHI register for a PHI node. In general cases, intuition

tells us that the number of registers will be much larger compared with the PHI

mov mechanism, which will consume more power.

In the remaining parts of the section, I will explain basic block modules,

the control unit, and the tree-structured pipelined multiplexer in detail.



22

•  foo.0	  =	  arg0	  
•  …	  
•  foo	  =	  phi_mov	  foo.0	  
•  bar	  =	  phi_mov	  arg2	  
	  
	  

•  foo.1	  =	  arg1	  
•  …	  
•  foo	  =	  phi_mov	  foo.1	  
•  bar	  =	  phi_mov	  arg2	  
	  

	  
•  …	  
•  bar	  =	  phi_mov	  bar	  

bb1 bb2 

bb3 

(a)

arg0 reg arg2 reg arg1 reg 

arg0 arg1 

foo_sel bar_sel 

foo.0 

foo bar 

foo bar 

bar 

foo.1 
bb2 bb1 

bb3 

foo reg bar reg 

(b)

Figure 3.3: An Example of PHI Mov and PHI Register



23

3.5.2 Basic Block Modules

A basic block module is produced for each basic block in CC-IR. The in-

structions of a basic block are implemented as a data-flow model, similar to that

in spatial computation [BVCG04] [MCC+06].

The ports of a basic block module include live-in variables as input, live-out

variables as output, several memory access related ports, and enable signals and

state signals for the control unit. The data flow of a basic block starts from the live-

in variables, namely outputs of live-out registers or phi registers, passes through

inner instructions of basic blocks, and reaches the live-out variables, namely inputs

of live-out registers or phi registers. By this means, the instructions of a basic

block satisfy a strict data-flow model. In the end, the state information, usually

the predicate value for conditional branch instructions or switch instructions, is

sent to the control path module to decide which basic block module to be enabled

next.

Instructions within basic blocks can be classified as several types: memory

access instructions, binary operations, casting instructions, memory addressing

instructions, and termination instructions.

Memory access instructions are stores and loads. Each load or store in-

struction is divided into two stages, request and confirm. In the request stage, for

a load instruction, the memory address is sent to the memory system, and for a

store instruction, besides memory address, value to be stored is also sent to the

memory system. Then control unit waits in the substate of the confirm stage.

When the memory system finishes the memory request, a valid signal is sent back

to the C-Core, and then the control unit moves to the next substate. The valid

signal resembles the memory ordering token in systems like Tartan [MCC+06] and

WaveScalar [SMSO03].

Binary operations include arithmetic operations and logical operations. A

schema is used for resource binding, which maps a binary operator to a hardware

module. For most integer binary operators, a mapped module is instantiated sep-

arately, but for integer multiplication and division and floating-point operations,

modules are shared among instructions within and across basic blocks, because



24

these operations consume much more power and area and generally appear much

less frequently. To execute such a shared module, a request is sent to the module

from basic blocks, and the state of basic blocks is handled in a similar way as that

for memory access.

Casting instructions include extensions and truncations . Each of these

instructions is mapped to a module with a single input and a single output, and

source and destination width as parameters.

GetElementPtr (GEP) is a memory addressing arithmetic in LLVM IR.

It is designed in a way that preserves the type information and allows machine-

independent memory addressing [LA04]. In A-IR, a GEP instruction is translated

into a sequence of adders and constant shifters depending on the machine data

layout information, such as alignment and endian. For the example in Figure 3.4,

the GEP instruction is used to calculate the offset of arg0[arg2].r.c. In 32-bit,

byte-addressed, little-endian machine, the circuit of the GEP instruction is shown

in Figure 3.4b. Two points to be noticed are that the size of struct block is 16

bytes, and the size of struct row is 8 bytes due to alignments, and the offset of c

in a struct row is 0 because of the little endianness.

Allocation instructions allocate space on the stack for local static arrays.

In C-Cores, stack offsets are allocated statically and in the run-time an allocation

instruction only return the stack address of the allocated space. Thus, alloca-

tion instructions could also be viewed as memory addressing instructions, and the

address is decided statically.

Basic Block termination instructions are conditional and unconditional branch

instructions, switch instructions, and return instructions. For branch instructions

or switch instructions, the values of the condition variables are passed to the con-

trol unit as state signals. For a return instruction, a signal is sent to the control

unit to tell that the execution is finished. If the type of the returned value is not

void, the returned value is stored in C-Core register V0, V1. On returning to the

host processor, the values of C-Core register V0, V1 are copied to the V0, V1 of

the host processor to comply with the O32 function calling conventions.

To deal with the memory ordering problem in the data-flow model of basic



25

; struct block { char c; int i; struct row r; } 16 bytes 
%struct.block = type { i8, i32, %struct.row } 
; struct row {char c; int i; } 
%struct.row = type { i8, i32 } 8 bytes 
; arg0[arg2].r.i 
%addr = getelementptr %struct.block* %arg0 
        , i32 %arg2, i32 2, i32 0 

(a)

add	  

arg2 

arg0 

8 

addr add	  shl	  

4 

(b)

Figure 3.4: An Example of a GEP Instruction



26

blocks, the inner state of a basic block is kept by the control unit, and the memory

requests are issued in order based on the inner state [VSG+10]. For example,

assume there are three load instructions in a basic block, load1, load2, and load3.

Each load instruction takes two substates, one for request and the other for confirm.

The confirm substate for the preceding loads could be the same as the request

substate of the current load. So in substate 0, the request from load1 is sent

through a memory access multiplexer whose select signal is based on the substate.

Then the BasicBlockModule moves to substate 1, sends the request for load2, and

waits for the confirmation of load1. When load1 is confirmed successfully, the

module moves to substate 2, sends the request for load3, and waits for the confirm

of load2. When load2 is confirmed, it moves to the next substate and waits for

the confirm of load3 and then finishes. The store instructions are dealt with in the

same way as load instructions, and in this way the memory ordering is ensured.

3.5.3 The Control Unit

ControlPathModuleGen is used to generate the control unit. The control

unit is a state machine, and there are two levels of states, PC and substate. PC

decides which basic block module to be enabled, and substate decides the inner

execution state of a basic block. PC changes based on the terminator instruction.

There are several kinds of terminator instructions, such as the conditional branch

instruction, unconditional branch instruction, switch instruction, return instruc-

tion, etc. For unconditional branch instructions, the next PC is the id of the

following basic block. For conditional branch instructions and switch instructions,

the condition value is passed from basic blocks to the control unit to decide which

basic block to be enabled next. For the return instructions, the “done” state is

reached, which means the C-Core finishes execution successfully, and valid values

can be read from registers V0 and V1.



27

3.5.4 The Tree-Structured Pipelined Multiplexer

TreeRegMuxGen is used to generate the tree-structured pipelined multi-

plexer for each C-Core [SAGH+11]. Each register in the GreenDroid has a unique

ID, which is composed of three parts: C-Core ID, group ID and in-group register

ID.

TreeRegMuxGen is different from other module generators, since it is ac-

tually a transformation pass based on A-IR, which could be also viewed as an

hardware optimization to A-IR modules. TreeRegMuxGen first scans the mod-

ule SPE and finds out all the registers accessible to the host processor, and then

groups them. A schema is used to tell the group ID and register ID for standard

registers, which are always put into group 0, and the register IDs are fixed for easy

access from the host processor. Then TreeRegMuxGen generates the multiplexers,

registers, wires and connections for AIR modules.

3.6 AIR to C Backend

AIRToC transforms the optimized A-IR to BTL C++. BTL C++ is a

hardware simulator library used for Raw and GreenDroid.

In BTL C++, factory design pattern is used, and a C-Core is translated

into a “subclass” of spebase. Since ports for all C-Cores are identical, the stardard

ports are declared as public member variables in spebase. In a C-Core subclass, the

wires are defined as private variables, and two base-class functions are overridden:

calc and edge. For each simulator cycle, calc is called first to execute the data-path

logic, and then the edge function is called to update register values.

Each of the other AIR modules is transformed into a function. Inputs

of modules are transformed into input parameters, while outputs of modules are

transformed into output parameters, which are passed by reference in C++. Then

the instances of modules are transformed into function calls.

In top-level C-Core description module, all the non-register instances, wire

connections are transformed into function calls in calc, and registers are in edge.

The execution order of instances and wires in calc are decided by topological or-



28

der. Each instance or wire connection could be regarded as a node in the graph,

and the edge in the graph represents the dependency between instances and wire

connections. A node is dependent on another node if and only if the first node uses

a wire defined by the second node. For the topological sort to be applied, there

should be no loop in the graph. Basic blocks are separated by value registers, so

the loop between basic blocks do not become the loop relationship between basic

block instances in calc. But as to control path module, it is first used to generate

the signal to enable basic blocks, and then the state signals from basic blocks are

used by control path module to decide the next state, which makes control path

module used twice in one calc call leading to loop dependency in the graph. To

resolve the problem, we use a schema to divide a control path module into two

parts, the control-enable logic and the next-state logic. The control logic calculates

the control signals for C-Core, and the next-state logic reads the state of C-Core,

and decides the next state. The content of the two modules are exactly the same,

but they have different ports. The two new modules replaced the initial module in

the graph, and in this way, the loop dependency is removed. We can further prove

that, for circuits without non-deterministic states, we can always use such a way

to resolve the loop dependency.

The BTL C++ function for basic block modules can be generated in a

similar way as that for the top-level data path module. In basic block modules,

most instances are of modules from a common hardware module library, such as

adders, shifters, etc. In BTL C++, to take care of the common library modules,

a library of inlined functions for all the modules is created. The functions can

be called by the AIR modules. Instead of copying and pasting the module code

directly, inlined functions simplify the abstraction, increase the code readability

and reduce the impact on the performance.

For the control-path modules, like the control unit and multiplexers, a state

machine is translated into a C++ switch statement, and a conditional block is con-

verted into a C++ if-else statement. The ordered RTL assignments are translated

into C++ assignments with the same semantics and the same order. The “unused”

ports in the split control units become local variables of the function.



29

In this way, an A-IR C-Core module is translated into a BTL C++ module

which can be used by the BTL simulator for simulation. In the simulation, BTL

generates cycle-by-cycle port value information, which can be used to verify the

correctness of Verilog C-Core modules.

3.7 AIR to V Backend

AIR is a hardware description IR which is quite similar to Verilog [TM02].

Each AIR module can be transformed into a Verilog module in a straightforward

way. Data-path modules, including the top-level data path module and basic

block modules, are interpreted as Verilog modules with instances and wire non-

blocking assignments. In control path modules, state machines and conditional

blocks are translated into case statements and if-else statements in Verilog RTL

representation respectively and are surrounded by an always block to be executed

by both “slow” and “fast” clock edges.

The generated Verilog C-Core modules are later synthesized, verified, and

used to produce C-Cores in the GreenDroid architecture.



Chapter 4

Calling Convention of C-Cores

The semantics of the execution of a C-Core is equivalent to running its

source function’s code on the host processor. The host processor needs to pass

parameters, stack pointer, the global pointer to C-Cores, and read the returned

value from C-Cores. When a C-Core to be used is not available, the host processor

may execute the function code locally without transferring control to the C-Core. A

trampoline is used to wrap the call of a C-core. Meanwhile, a C-Core may call other

functions, the code of which needs to be executed by the host processor or other

C-Cores. To simplify the work done by the trampoline and make sub-function

calls in C-Cores easier, C-Cores are made compatible to the calling conventions

used by GreenDroid architecture, namely the Raw ABI, which closely resembles

the MIPS O32 ABI differently only in which registers are callee vs. caller saved.

The compatible here means that C-Core reads the arguments in the same way as

a function called in the host processor, and functions called by a C-Core could

also read the arguments in the same way, which means that both caller and callee

functions of a C-Core may not be aware of the existence of the C-Core.

4.1 MIPS O32 ABI

MIPS O32 ABI (Application Binary Interface) is composed of two parts:

arguments passing and stack conventions [Swe07].

Table 4.1 shows the usage of integer registers in MIPS O32 ABI, and Fig-

30



31

ure 4.1 shows the stack frame in MIPS O32 calling convention.

Both argument registers and stack can be used for argument passing. When

a function is called, sp points to the bottom of the current stack frame, and should

be 8-byte aligned. The slots right above sp is the space for argument passing.

The first argument is in the lowest position, and each argument takes at least four

bytes. Long long type takes 8 bytes, and should be 8-byte aligned. The argument

space should be at least 16 bytes. The content of arguments is the same as the

lowest 16 bytes in stack argument space, and sometimes the lower 16 bytes in stack

argument space could be empty.

The way the returned value is stored in v0 and v1 depends on the type of

the returned value. If the returned value is of basic type with width no more than

32 bits (including pointer type in 32-bit machine), for most compilers, only v0 is

used. If the returned value is of type double or long long, the lower 32 bits are

stored in v0, while the higher 32 bits are stored in v1. If the returned value is of

type struct, the function type is transformed with a pointer to the returned value

being the first argument, and the other arguments are pushed backward by one

position.

Accessing global variables is not part of MIPS O32 ABI, but is also discussed

here. Global variables are stored on the heap, and are addressed with global pointer

gp. A read access to a global variable is a load instruction, and a write access is

a store. The offsets of global variables with reference to gp are calculated at the

linking time.

4.2 Argument Passing with a C-Core as a Callee

In GreenDroid, the execution of a C-Core is equivalent to a function call,

and is compatible with MIPS O32 ABI. ABI compatibility maximizes the inter-

operability with C-cores and existing tools such as debuggers and libraries that

rely upon the ABI. In C-Cores, there is a local version of register a0 to a3, sp and

gp used for argument passing. When the trampoline calls a C-Core, it copies the

value of these registers in the host processor to the registers in the C-Core, and the



32

Table 4.1: Integer Register Usage Related with MIPS O32 ABI [Swe07]

Register Number Name Purpose

$0 zero Always 0

$2, $3 v0, v1 Returned value registers

$4 - $7 a0-a3 Argument registers

$28 gp Global pointer

$29 sp Stack pointer

$31 ra Return address for sub-

routines

stack layouts are the same, and the value of sp is unchanged. When the C-Core

starts, it needs to load the value of arguments from local argument registers and

stacks.

CC-IR is the LLVM-formatted hardware representation, and we express the

MIPS O32 ABI in CC-IR explicitly. This ensures CC-IR is closer to the hardware

implementation of a C-Core. A transformation pass is added to CCIRGen to

enforce the MIPS O32 ABI. In detail, a LLVM function to be made into a C-Core

is transformed into an equivalent function with arg0 to arg3, sp, and gp as the

arguments. The type of arg0 to arg3 is the same as the type of the first four

arguments in the original function respectively if the first four arguments are not

of 64-bit type. Otherwise, two arguments maybe combined to represent one long-

long-type argument, or padding may be needed. The content of arg0 to arg3 is the

same as the argument registers a0 to a3. Sp and gp are byte-pointers, which stores

the stack pointer and global pointer respectively. To ensure the same semantics, a

new basic block is added at the beginning of the function to load from the stack

the value of arguments in the original function.

In this way, a CC-IR function conforms to the MIPS O32 ABI by con-

struction, which will be directly mapped to an A-IR hardware module in a direct

way. Optimizations related to memory accesses could also be applied to the CC-IR

function.



33

Higher address 

Lower address 

Caller frame 

Four 32-bit argument 
slots 

More arguments if 
required 

Local stack variables and 
temporaries 

… 

Arguments for callee 

Callee frame 

sp on entry 

sp while running 

Frame size 

Figure 4.1: MIPS O32 Stack Layout [Swe07]

4.3 Stack Frame of C-Cores as Leaf Functions

In order to be compatible with MIPS O32 calling convention, the stack

layout in GreenDroid is similar to that in MIPS O32, shown in Figure 4.2. One

difference is that there is no stack space for temporaries or local variables except

those assigned by an alloc instruction, because temporaries and local variables

typically turn into physical registers and wires in C-Cores. An alloc instruction

allocates a static space on the stack and assigns the base address of the space to

the destination variable.

A special case is that the address of a local variable is passed to the sub-

function as an argument. In this case, since all the local variables are stored in the



34

local registers, and there is no space on the stack for them, the subroutines cannot

access the variable with the address. To solve the problem, an alloc instruction is

used to create a space for the variable in the stack, and the pointer to the space is

passed to the subroutine.

Higher address 

Lower address 

C-Core frame 

Four 32-bit argument 
slots 

More arguments if 
required 

Space for alloc 
instructions 

Arguments for callee 

Callee frame 

Sp 

Frame size 
Space reserved for 

function call wrappers 
52 bytes 

Figure 4.2: Stack Frame of C-Cores as Leaf Functions

4.4 Sub-function Calls in C-Cores

Functions to be converted into C-Cores may also call other functions, in

which case the C-Cores are not leaf functions, and parameters for the sub-functions

need to be prepared by the C-Cores.



35

When a C-Core needs to call a sub-function, it prepares the arguments

in the stack, sends an attention signal to the host processor, and waits in an

exceptional state. The host processor receives the attention signal, and executes a

wrapper function that reads the state of the C-Core and decides which exception-

handling function to be actually executed. Then it copies arguments from stack

to argument registers (a0 to a3 in the host processor) conforming to MIPS O32

ABI, executes the function, copies the returned value from v0 and v1 back to the

registers of C-Core, and in the end resumes execution of the C-Core.

Two levels of wrapper functions are used to dispatch and execute the func-

tion, extra space in the stack is reserved for the argument space of wrapper function

call, as is depicted in Figure 4.3. Since arguments in the stack should be adjacent

to the callee frame, the reserved space for the wrappers is above the argument

space of the callee.

Higher address 

Lower address 

Caller frame 

Four 32-bit argument 
slots 

More arguments if 
required 

Space for alloc 
instructions 

Sp 

Frame size 

Figure 4.3: Stack Frame for C-Cores as Non-Leaf Functions



36

4.5 Global Variables

In LLVM IR, global variables are accessed by the pointers. When the value

of a global variable is read, a load instruction is used to get the value referenced

by the pointer, and when the value is changed, a store instruction is issued.

When a function is called, the global pointer gp is passed in, and the offset

to each global variable is calculated in advance at the linking time. In this way,

the function can access each global variable.

In order for the C-Core to access global variables, a similar method is used.

In a C-Core, for each global variable the C-Core accesses, a register called global

variable offset register is created. Before the C-Core is executed, the offset of

each global variable is written to the global variable offset register in the C-Core.

During the execution, the pointer to each global variable is calculated by adding

GP and the offset of the global variable, and the pointer is then used for memory

accessing.

The offsets for global variables are set during the linking stage. So an easy

way to initialize the global variable offset registers is to read the offsets at the start

of a program, and then write the correct offset values to registers, which is done

at the start of the main function.

One problem os this approach is that static global variables are only acces-

sible within the file scope. Therefore if static global variables not in the same file

as the main function, the offset cannot be obtained. The solution is to append an

offset reading function for each global variable to the file where the global variable

is defined. In the main function, the offset reading functions are called to get the

offsets of static global variables. For static variables within a function scope or a

class scope, similar methods can be used, but have not been implemented yet.

Another reason to use global variable offset registers is for patching. When

the order of global variables changes, or new global variables are added, the offset

of each global variable may change. With global variable offset registers, we can

support the change of global variable offsets without generating new C-Cores.



Chapter 5

A C-Core for the Android Dalvik

Garbage Collector

The GreenDroid architecture is designed to be used in mobile phones to

increase energy-efficiency and exploit dark silicon. The Android operating system

[Dev11] is one of the current mainstream mobile operating systems, and an energy-

consumption hot-spot in the Android system is the Dalvik [Bor08] garbage collector

[GSV+10].

In this chapter, I describe a C-Core generated from the Android Dalvik

Garbage Collector as a case study. First, I make a brief introduction of the Dalvik

Java virtual machine and the garbage collector in it. Then I explain the mecha-

nisms used in generating and testing a C-Core from the garbage collector. Finally,

I provide the software and hardware features of the generated C-Core.

5.1 Introduction to Dalvik and Dalvik GC

Dalvik is the Java virtual machine (VM) used in the Android operating

system [Bor08] [Ehr10]. Due to the resource constraints of mobile phones, Dalvik

is designed to run on a slow CPU, use less memory and consume lower power than

JVM. In Dalvik, each application runs on a virtual machine in a separate process,

and has an independent heap. Garbage Collection (GC) for each application is

done separately.

37



38

There are four kinds of memory: shared clean, private clean, shared dirty,

and private dirty. Shared means the memory is used by many processes, and

private means the memory is used by one process. A clean memory space is

mmap()ed from dex files and unwritten, while a dirty memory is created in the

heap through malloc(). GCs are done independently for dirty memory spaces

and should respect shared memory spaces.

The mark-sweep algorithm [BW88] is used in Dalvik for GC [Cha09]. In

the mark step, objects in heaps are scanned recursively, and reachable objects are

marked. Then in the sweep step, the unreachable objects are swept and deal-

located. Before the mark step, all the other threads in the current process are

paused, and resumed after mark is finished. Unmarked memory is not used any

more, so sweep could be done in parallel while the application resumes execution.

From the profiling result in [SVGH+11a], the coverage of scanObject is

3.6% of the Android execution time, ranking second among all the functions.

scanObject is used in the mark step of the GC. Thus a C-Core will be made

from scanObject to make the GreenDroid architecture run Android more energy-

efficiently.

5.2 Generation and Test Mechanism of the C-

Core

To generate a C-Core from scanObject function, only the function source

code is required. To test the C-Core, the C-Core needs to be run by the Android

operating system, or Dalvik Java virtual machine. Since BTL is a cycle-by-cycle

simulator, it is too slow to run either android operating system or Dalvik Java

virtual machine. At the same time, the Dalvik Java virtual machine is deeply

coupled with the Android operating system, and could not be readily isolated and

ported.

Thus, to test the C-Core, we need to isolate the garbage collector from

Dalvik first. Then an object and object dependency initialization function is called

before scanObject, and a result check function is invoked after the execution of



39

scanObject. To test performance, QEMU [Bel07] will be modifed to dump the

snapshot of object and object dependency when GC is called each time, and the

snapshot is used by the initialization function. Because the mark step is executed

in single-thread mode, writing a test to test the mark step separately is reasonable.

5.3 The Generated C-Core

Table 5.1 shows the statistics for the CC-IR function for scanObject. The

optimization level of the LLVM frontend Clang is O3. From Table 5.1, it is noticed

that there are totally 87 basic blocks, and memory instructions account for 50.11%

of the total instructions.

Table 5.2 is a list of static instruction counts in the CC-IR function for

scanObject by instruction type. The top five instruction types take up 78.17% of

the total static instructions. GetElementPtr instructions are used for memory ac-

cess addressing, which are implemented as combination of constant-offset shifters

and adders in hardware. Br are branch instructions, including conditional and un-

conditional ones. The larger the number of branch instructions, the more complex

the control path module will be. BitCast instructions are no-op casting from one

type to another, which is basically a wire connection in hardware. Load and Store

are memory access instructions. Memory instructions include Store instructions,

Load instructions, GetElementPtr instructions, Call instructions, Invoke instructions

and Alloca instructions. Table 5.1 and Table 5.2 both show that scanObject is a

memory-intensive application.

Table 5.1: Statistics of scanObject CC-IR

Name Count

Basic blocks 87

Instructions (of all types) 449

Memory instructions 225

Non-external functions 1



40

Table 5.2: The Instruction Count of scanObject CC-IR

Instruction Name Count Percentage

GetElementPtr 112 24.94%

Br 83 18.49%

BitCast 60 13.36%

Load 49 10.91%

Store 47 10.47%

ICmp 33 7.35%

Call 17 3.79%

PHI 17 3.79%

And 9 2.00%

Add 6 1.34%

LShr 6 1.34%

Sub 3 0.67%

Switch 3 0.67%

PtrToInst 1 0.22%

Ret 1 0.22%

Shl 1 0.22%

Xor 1 0.22%

Total 449 1

For synthesis a TSMC 45-nm GS process is targeted using Synopsys De-

sign Compiler (C-2009.06-SP2) and IC Compiler (C-2009.06-SP2). The generated

synthesizable Verilog is processed automatically in the Synopsys CAD tool flow,

starting with netlist generation and continuing through placement, clock synthesis,

and routing, and finally performing post-route optimization.

As is shown in Table 5.3, scanObject takes 0.0556mm2 in total. v

Table 5.4 shows the top five critical paths in scanObject C-Core. The

longest critical path is from the live-out register load 23 1 lo reg, to the mem addr

output of the C-Core. The output of the start-point register is used in memory



41

Table 5.3: scanObject C-Core Area

Port Count 213

Net Count 25671

Cell Count 21436

Combinational Cell Count 16678

Sequential Cell Count 4557

buf/inv Count 3423

Reference Count 596

Combinational area 0.0384mm2

Noncombinational area 0.0173mm2

Total area 0.0556mm2

address calculation, and then routed to mem addr through a multiplexer. The

next several longest critical paths all start from some bit of pc reg to some bit

of mem store value. pc reg is used by the control path module to decide the

value of enable and select signals. One of the select signals is used by the

multiplexer for memory to-be-stored value, the output of which is connected to

mem store value. The critical path information tells that memory addressing

logic and the state machines in the control unit take the longest time, which may

be further optimized to improve the performance of C-Cores.



42

Table 5.4: scanObject C-Core Critical Paths

Start Point End Point Time/ns Slack/ns

load 23 1 lo reg/

state reg[11]

mem addr[31] 0.6459 -0.1469

pc reg/

state reg[3]

mem store value

[19]

0.6324 -0.1334

pc reg/

state reg[3]

mem store value

[25]

0.6323 -0.1333

pc reg/

state reg[3]

mem store value

[27]

0.6317 -0.1327

pc reg/

state reg[3]

mem store value

[23]

0.6313 -0.1323



Chapter 6

Related Work

In this chapter, related works on dark silicon, synthesis tools from high-level

languages to silicon, and specialized hardware for garbage collection, are provided

and discussed.

6.1 Dark Silicon

With the breakdown of Dennard scaling [DGR+74], the percentage of active

silicons used simultaneously in a chip drops exponentially with each process gener-

ation. Several works analyze the phenomenon of dark silicon [Tay12] [GHSV+11]

[GSV+10] [VSG+10] [EBA+11].

In [VSG+10] [GSV+10] [GHSV+11] [Tay12], the utilization wall is proposed

as the cause of dark silicon and the derivation of utilization wall is discussed in

detail. The number of transistors in chips with same areas continues to scale by 2x

and the switching speed of a transistor scales by 1.4x every two years as predicted

by Moore’s Law. The transistor capacitance reduces 1.4x continually, but the

threshold voltage fails to reduce in the post-Dennardian scaling regime. Thus

the energy efficiency is only improved by 1.4x every two years, which requires a

shortfall of 2x for the percentage of active transistors, which leads to the utilization

wall. The transistors that must stay inative to meet the power constraint are called

dark silicon. [EBA+11] also analyzes dark silicon and the end of multicore scaling

based on scaling models, performance models and empirical results to point out

43



44

the coming regime of dark silicon.

To attack the utilization wall and exploit dark silicon, chip shrinking, dim

silicon, hardware specialization and fundamental breakthrough in semiconductor

devices may be potential directions [Tay12]. The GreenDroid architecture employs

the specialized hardware to use dark silicon in the mobile domain [GHSV+11]

[VSG+10] [GSV+10], and [HFFA11] analyzes the potential of the mechanism of

hardware specialization in the server domain.

6.2 High-level Language to Silicon

There are several other frameworks which build accelerators directly from

high-level language source code, such as AutoPilot from AutoESL [ZFJ+08], Im-

pulse C [C10], Synopsis Synphony/PICO [SAM+02], SUIF [BRM+99] etc. In this

section, I discuss the difference of the tools and ours.

AutoPilot [ZFJ+08] is a commercial Electronic system-level (ESL) synthesis

platform. Instead of traditional HDL, a subset of C or C++ is used to describe

the hardware, which is called synthesizable C, or C++. A tool chain is used to

compile the C, C++ description, apply some optimizations, and synthesize the

code to RTL VHDL or Verilog. Since in AutoPilot, C/C++ is employed to replace

traditional RTL as hardware description, but only a limited number of C/C++

features are supported, and the usage of dynamic pointers, dynamic allocations,

and function recursions are disallowed. In comparison, our tool chain is targeted

supporting arbitrary C/C++ functions, and is designed to support all the C/C++

features, which allows C/C++ functions in existing applications to be synthesized

directly without modifications of the source code.

Synopsis Synphony/PICO [SAM+02] automatically synthesizes accelerators

for loop nests in C. Several compiler loop optimizations, and scheduling mecha-

nisms are used to employ the parallelism of loops, and the compiler requires that

the loop nests are perfect. Perfect means that all the statements in the loop nests

except the for statements should be in the innermost loop. For example, the below

nested loop provided in [SAM+02] is not a perfect nest, because there is an initial-



45

ization statement in the outer loop. Users need to manually move the initialization

code to another loop to make it a perfect nest. Such a strong constraint limits

the coverage of code that could be automatically transformed to accelerators. In

contrast, in our tool chain, irregular code is also supported and the parallelism can

still be used through the mechanism of selective depipelining [SAGH+11].

f o r ( j 1 = 0 ; j 1 < 8192 ; j 1++) {
y [ j 1 ] = 0 ;

f o r ( j 2 = 0 ; j 2 < 16 ; j 2++)

y [ j 1 ] = y [ j 1 ] + w[ j2 ] ∗ x [ j 1 + j2 ] ;

}

CHiMPS [PEB+09] is a Field Programmable Gate Array (FPGA) com-

piler for manycache, an application-specific FPGA-based memory architecture.

CHiMPS reads the C-Code, and transforms it into CHiMPS Target Language

(CTL), and then generate the VHDL for the memory architecture based on the

CTL. Compared with the compiler tool chain for GreenDroid, CHiMPS targets at

the memory architecture and FPGA, while our compiler tool chain generates the

hardware code for computing accelerators, which can be either FPGA or ASIC.

CTL in CHiMPS is a dataflow intermediate language used to analyze memory ac-

cess pattern. The CC-IR and A-IR in our tool chain are both used to describe the

hardware, while CC-IR is the behavioral specification, and A-IR is a combination

of gate level and register transfer level (RTL) description.

Altera C2H[LPM06] is to generate stand-alone hardware modules from

C/C++ functions. Similar to our tool chain, Altera C2H also supports the feature

of specifying a function in an application code, and transforming it automatically

to a hardware module. The difference is that our compiler tool chain targets at

normal mobile applications, while Altera C2H is basically a platform or software

IDE to allow developers to use C for both software and hardware development.

Meanwhile, Altera C2H generate accelerators for speed-up, and the accelerators

from our tool chain are for energy-efficiency.

Impulse C [C10] is a subset of ANSI C for FPGA programming. Impulse C

tool chain optimizes C code for parallelism, generates HDL files ready for FPGA



46

synthesis, and also generates hardware/software interface. Similar to CHiMPS,

Impulse C is another tool chain targeting for FPGA. Moreover, applications need

to be written specifically complying with the subset of ANSI C supported by

impulse C, and needs to use a function library provided by impulse C to improve

parallelism with FPGA.

Spatial computation uses a compiler tool chain similar to ours [BVCG04]

[MCC+06], but the generated co-processors use asynchronous logic, and are op-

timized for performance. The mechanism to deal with PHI node is also different

from that in C-Cores.

6.3 Specialized Hardware for Garbage Collection

Several previous works that use hardware to help accelerate garbage collec-

tors are discussed in this section.

In [Moo84], a small piece of special hardware (a barrier) is used to help

with the garbage collection in Lips system. [SN94] introduces a special mem-

ory architecture with garbage-collected memory modules (GCMM) to help with

garbage collection in C++ programs. GCMM has a local processor to run the

garbage collection algorithms. The GCMM is connected with CPU and memory

through buses. Both [SaLC03] and [GS05] are designed for Java in embedded sys-

tems. [SaLC03] explains a memory processor used as a hardware garbage collector

with reference counting and a mark-sweep garbage collection algorithm. [GS05] de-

scribes a concurrent garbage collector unit (GCU) for the Java Optimised Processor

(JOP) [Sch08], and the GCU implements a mark-compact algorithm with concur-

rency support. All of the hardware coprocessors are designed and implemented

manually for a targeted platform with specific garbage collection algorithms to in-

crease performance. In comparison, the Arsenal tool chain automatically produces

a garbage collector C-Core based on the Dalvik GC source code, and is used to

improve energy-efficiency.



Chapter 7

Conclusion

In the current regime, the utilization wall has prevented processor speed

from increasing, and heterogeneous architecture is an effective way to exploit dark

silicon. GreenDroid, a heterogeneous architecture optimized for energy efficiency,

has been proposed as a solution to attack utilization wall in the mobile domain.

The Arsenal tool chain is used to automatically generate conservation cores (C-

Cores) for the GreenDroid architecture. In this thesis, I describe the design and

implementation details of the Arsenal tool chain. Then I discuss in detais the

calling convention of C-Cores to show how dynamic allocation, dynamic memory

access, sub-function call, and global variables are supported in C-Cores. At last, I

examine a C-Core generated from the Android Dalvik garbage collector as a case

study.

The Arsenal tool chain is based on the LLVM compiler infrastructure. The

tool chain itself provides a mechanism to synthesize hardware behavioral descrip-

tion in C/C++ to a combination of RTL and gate-level representation in Verilog

and BTL C++. Two IRs are designed and used in the tool chain, CC-IR and

A-IR. CC-IR, a subset of LLVM IR, is proposed as an hardware behavioral de-

scription IR. A-IR, a hardware RTL and gate-level description IR, is introduced

for hardware optimization and to reduce the effort in hardware backend design.

The CC-IR to A-IR is an LLVM backend which bridges the hardware behavioral

description and lower-level description.

As to the future work, the impact of software optimization, such as loop un-

47



48

rolling and function inlining, on hardware performance, area and energy-efficiency

needs to be explored. The support for C++ features, such as exceptions, class

inheritance, and exception, needs to be further studied and discussed. An effective

mechanism to handle direct or indirect recursion of C-Cores need to be designed

and developed. Moreover, the experiments on what percent of Android applica-

tion code can be supported by the Arsenal tool chain, and the energy efficiency

improved by the GreenDroid architecture on the whole Android system require to

be conducted. At last, the tool chain support for other frontend languages than

C/C++ is to be explored.

Finally, the work presented in the thesis provides a LLVM-based tool chain

for the GreenDroid architecture, which is more reliable and maintainable, and

easier to apply hardware optimizations. The Arsenal tool chain has supported

most of the benchmarks supported by the old-version tool chain, and a chip using

the GreenDroid architecture and including two C-Cores from the Android source

code produced from the Arsenal tool chain is scheduled to be taped out. It is my

hope that the Arsenal tool chain could continuously contribute to the research and

development in the GreenDroid project.



Appendix A

Format of A-IR Modules

Table A.1: Fields of A Data-Path Module

Field Name Description

Name The module name

Ports The description of ports

Wires The description of wires

Connections The connection between wires

Instances The instances of the modules

Table A.2: Fields of A Control-Path Module

Field Name Description

Name The module name

Ports The description of ports

Wires The description of wires

Assignments The RTL-assignments

StateMachine One state machine block

ConditionBlock One conditional block

49



50

Table A.3: Fields of A Instance

Field Name Description

Name The instance name

Module The name of the module of the instance

Ports The mapping between ports and wires

Table A.4: Fields of An Assignment

Field Name Description

SVar The left value of an assignment

Expr The expression



Appendix B

Standard Ports and Registers of

an SPE

Table B.1: The Default Inputs for SPE

Name Description

clk clock

mem load value loaded value from memory

mem tag in tag from memory

mem valid valid signal from memroy

reset reset signal

tree addr tree access address

tree re read enable signal for tree access

tree store value to be stored value for tree access

tree we write enable signal for tree access

51



52

Table B.2: The Default Outputs for SPE

Name Description

attention attention signal the host processor

err flag real error flag for the host processor

mem access type memory access type, 2 for load, 1 for

store, 0 for none

mem addr memory access address

mem store mode alignment for store instruction, 0 for

8-bit, 1 for 16-bit, and 2 for 32-bit

mem store value value to be stored in the memory

mem tag out memory access to memory

tree load value loaded value from tree reg mux



53

Table B.3: The Default Registers for SPE

Name Description

spe status The register storing the spe current ex-

ecution status. 1 : Ready; 2: Off /

Done; 4: Programming; 8: Waiting for

exception to be handled

pc Storing the id of the currently execut-

ing block

prev pc Storing the id of the predecessor block

substate Storing the substate in the current

block

prev pc Storing the last substate

edge id Storing the edge id. The higher 16 bits

equal to pc, and the lower 16 bits equal

to prev pc.

ret code Storing the return code. 0 for running,

1 for exception handling, and 2 for nor-

mal finish.

exceptionCause Not used currently.

arg0 first argument

arg1 second argument

arg2 third argument

arg3 fourth argument

argSP Stack pointer

argGP Global variable base address

argV0 Return value register V0

argV1 Return value register V1

argRA Return address



Bibliography

[AAB+97] A. Agarwal, S. Amarasinghe, R. Barua, M. Frank, W. Lee, V. Sarkar,
D. Srikrishna, and M. Taylor. The raw compiler project. Proceedings
of the Second SUIF Compiler Workshop, pages 21–23, 1997.

[Bel07] Fabrice Bellard. Qemu open source processor emulator. URL:
http://www. qemu. org, 2007.

[BGRT05] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitel-
baum. Codesurfer/x86a platform for analyzing x86 executables. In
Compiler Construction, pages 139–139. Springer, 2005.

[Bor08] Dan Bornstein. Dalvik vm internals. In Google I/O Developer Con-
ference, volume 23, pages 17–30, 2008.

[BRM+99] Jonathan Babb, Martin Rinard, Csaba Andras Moritz, Walter Lee,
Matthew Frank, Rajeev Barua, and Saman Amarasinghe. Paralleliz-
ing applications into silicon. In Field-Programmable Custom Comput-
ing Machines, 1999. FCCM’99. Proceedings. Seventh Annual IEEE
Symposium on, pages 70–80. IEEE, 1999.

[BTLAA03] M. Bedford Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. Scalar
operand networks: On-chip interconnect for ilp in partitioned archi-
tectures. In High-Performance Computer Architecture, 2003. HPCA-
9 2003. Proceedings. The Ninth International Symposium on, pages
341–353. IEEE, 2003.

[BVCG04] Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea, and
Seth Copen Goldstein. Spatial computation. In International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2004.

[BW88] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an
uncooperative environment. Software: Practice and Experience,
18(9):807–820, 1988.

54



55

[C10] Impulse C. Impulse accelerated technologies. Inc.,
http://www.impulsec.com, 2010.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman,
and F Kenneth Zadeck. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Transactions
on Programming Languages and Systems (TOPLAS), 13(4):451–490,
1991.

[Cha09] Brett Chabot. vm/alloc - platform/dalvik - git at google.
https://android.googlesource.com/platform/dalvik/+/android-
2.0 r1/vm/alloc/, 2009.

[Dev11] Android Developers. What is android?
http://developer.android.com/guide/basics/what-is-android.html, 2,
2011.

[DGR+74] Robert H Dennard, Fritz H Gaensslen, VL Rideout, E Bassous, and
AR LeBlanc. Design of ion-implanted mosfet’s with very small physi-
cal dimensions. Solid-State Circuits, IEEE Journal of, 9(5):256–268,
1974.

[EBA+11] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan
Sankaralingam, and Doug Burger. Dark silicon and the end of mul-
ticore scaling. In Computer Architecture (ISCA), 2011 38th Annual
International Symposium on, pages 365–376. IEEE, 2011.

[Ehr10] David Ehringer. The dalvik virtual machine architecture. Techn.
report (March 2010), 2010.

[GHSV+11] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auric-
chio, P. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson,
and M. Taylor. The greendroid mobile application processor: An ar-
chitecture for silicon’s dark future. Micro, IEEE, pages 86–95, March
2011.

[GHSZ+12] Nathan Goulding-Hotta, Jack Sampson, Qiaoshi Zheng, Vikram
Bhatt, Steven Swanson, and Michael Taylor. Greendroid: An ar-
chitecture for the dark silicon age. In Asia and South Pacific Design
Automation Conference, 2012.

[GS05] Flavius Gruian and Zoran Salcic. Designing a concurrent hardware
garbage collector for small embedded systems. Advances in Computer
Systems Architecture, pages 281–294, 2005.



56

[GSV+10] Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino Gar-
cia, Joe Auricchio, Jonathan Babb, Michael Taylor, and Steven
Swanson. GreenDroid: A Mobile Application Processor for a Fu-
ture of Dark Silicon. In HOTCHIPS, 2010.

[HFFA11] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia
Ailamaki. Toward dark silicon in servers. Micro, IEEE, 31(4):6–15,
2011.

[Kid07] Robert E Kidd. The OpenIMPACT Whole Program Optimization
Framework. PhD thesis, University of Illinois at Urbana-Champaign,
2007.

[KTMW03] J.S. Kim, M.B. Taylor, J. Miller, and D. Wentzlaff. Energy char-
acterization of a tiled architecture processor with on-chip networks.
In Proceedings of the 2003 international symposium on Low power
electronics and design, pages 424–427. ACM, 2003.

[LA04] Chris Lattner and Vikram Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In Code Generation
and Optimization, 2004. CGO 2004. International Symposium on,
pages 75–86. IEEE, 2004.

[LA06] Chris Lattner and Vikram Adve. Llvm language reference manual,
2006.

[Lat06] Chris Lattner. Introduction to the llvm compiler infrastructure. In
Itanium Conference and Expo, 2006.

[Lat08] Chris Lattner. Llvm and clang: Next generation compiler technology.
In The BSD Conference, Ottawa, Canada, 2008.

[LPM06] David Lau, Orion Pritchard, and Philippe Molson. Automated gen-
eration of hardware accelerators with direct memory access from an-
si/iso standard c functions. In Field-Programmable Custom Comput-
ing Machines, 2006. FCCM’06. 14th Annual IEEE Symposium on,
pages 45–56. IEEE, 2006.

[MCC+06] Mahim Mishra, Timothy J Callahan, Tiberiu Chelcea, Girish
Venkataramani, Seth C Goldstein, and Mihai Budiu. Tartan: evalu-
ating spatial computation for whole program execution. In ACM
SIGOPS Operating Systems Review, volume 40, pages 163–174.
ACM, 2006.

[Moo84] David A Moon. Garbage collection in a large lisp system. In Pro-
ceedings of the 1984 ACM Symposium on LISP and functional pro-
gramming, pages 235–246. ACM, 1984.



57

[PEB+09] Andrew Putnam, Susan Eggers, Dave Bennett, Eric Dellinger, Jeff
Mason, Henry Styles, Prasanna Sundararajan, and Ralph Wittig.
Performance and power of cache-based reconfigurable computing.
ACM SIGARCH Computer Architecture News, 37(3):395–405, 2009.

[SAGH+11] Jack Sampson, Manish Arora, Nathan Goulding-Hotta, Ganesh
Venkatesh, Jonathan Babb, Vikram Bhatt, Steven Swanson, and
Michael Bedford Taylor. An evaluation of selective depipelining for
fpga-based energy-reducing irregular code coprocessors. In Field Pro-
grammable Logic and Applications (FPL), 2011 International Con-
ference on, pages 24–29. IEEE, 2011.

[SaLC03] Witawas Srisa-an, C-TD Lo, and J-M Chang. Active memory pro-
cessor: A hardware garbage collector for real-time java embedded de-
vices. Mobile Computing, IEEE Transactions on, 2(2):89–101, 2003.

[Sam] John Morgan Sampson. Design and Architecture of Automatically-
generated Energy-reducing Coprocessors. PhD thesis.

[SAM+02] Robert Schreiber, Shail Aditya, Scott Mahlke, Vinod Kathail, B Ra-
makrishna Rau, Darren Cronquist, and Mukund Sivaraman. Pico-
npa: High-level synthesis of nonprogrammable hardware accelera-
tors. The Journal of VLSI Signal Processing, 31(2):127–142, 2002.

[Sch08] Martin Schoeberl. Jop: A java optimized processor for embedded
real-time systems. VDM Publishing, 2008.

[SMSO03] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin.
Wavescalar. In Proceedings of the 36th annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, page 291. IEEE Computer
Society, 2003.

[SN94] William J Schmidt and Kelvin D Nilsen. Performance of a hardware-
assisted real-time garbage collector. In ACM SIGPLAN Notices,
volume 29, pages 76–85. ACM, 1994.

[ST11] Steven Swanson and Michael Taylor. GreenDroid: Exploring the
next evolution for smartphone application processors. In IEEE Com-
munications Magazine, March 2011.

[SVGH+11a] Jack Sampson, Ganesh Venkatesh, Nathan Goulding-Hotta, Sat-
urnino Garcia, Manish Arora, Siddhartha Nath, Vikram Bhatt,
Steven Swanson, and Michael Bedford Taylor. Conservation cores:
Energy-saving coprocessors for nasty real world code. In Languages,
Compilers, Tools and Theory for Embedded Systems, April 2011.



58

[SVGH+11b] Jack Sampson, Ganesh Venkatesh, Nathan Goulding-Hotta, Sat-
urnino Garcia, Steven Swanson, and Michael Bedford Taylor. Effi-
cient Complex Operators for Irregular Codes. In HPCA 2011: High
Performance Computing Architecture, 2011.

[Swe07] Dominic Sweetman. See MIPS run. Morgan Kaufmann, 2007.

[Syn13] Synopsys. Synopsys vcs. http://www.synopsys.com/VCS, 2013.

[Tay99] M.B. Taylor. Design decisions in the implementation of a Raw ar-
chitecture workstation. PhD thesis, Citeseer, 1999.

[Tay04] M.B. Taylor. The raw processor specification. Comprehensive speci-
fication for the Raw processor, 2004.

[Tay12] Michael B. Taylor. Is dark silicon useful? harnessing the four horese-
men of the coming dark silicon apocalypse. In Design Automation
Conference, 2012.

[Tei00] Tim Teitelbaum. Codesurfer. ACM SIGSOFT Software Engineering
Notes, 25(1):99, 2000.

[TJ03] Michael Taylor and Paul Johnson. Raw resources.
http://groups.csail.mit.edu/cag/raw/raw intro day web/RawMap.html,
2003.

[TKM+02] Michael B. Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae
Ghodrat, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jae-Wook
Lee, Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan
Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, and
Anant Agarwal. The Raw Microprocessor: A Computational Fabric
for Software Circuits and General Purpose Programs. In IEEE Micro,
March 2002.

[TKM+03] M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-
wald, H. Hoffman, P. Johnson, W. Lee, A. Saraf, et al. A 16-issue
multiple-program-counter microprocessor with point-to-point scalar
operand network. In Solid-State Circuits Conference, 2003. Digest of
Technical Papers. ISSCC. 2003 IEEE International, pages 170–171.
IEEE, 2003.

[TLW+89] Donald E Thomas, Elizabeth D Lagnese, Robert A Walker,
Jayanth V Rajan, Robert L Blackburn, and John A Nestor. Algorith-
mic and Register-Transfer Level Synthesis: The System Architect’s
Workbench, volume 85. Springer, 1989.



59

[TM02] Donald E Thomas and Philip R Moorby. The Verilog R© Hardware
Description Language, volume 2. Springer, 2002.

[TPS+04] Michael Bedford Taylor, James Psota, Arvind Saraf, Nathan Shnid-
man, Volker Strumpen, Matt Frank, Saman Amarasinghe, Anant
Agarwal, Walter Lee, Jason Miller, et al. Evaluation of the raw mi-
croprocessor: An exposed-wire-delay architecture for ilp and streams.
In Computer Architecture, 2004. Proceedings. 31st Annual Interna-
tional Symposium on, pages 2–13. IEEE, 2004.

[VSG+10] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Gar-
cia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and
Michael Bedford Taylor. Conservation cores: reducing the energy of
mature computations. In ASPLOS 2010: Architectural Support for
Programming Languages and Operating Systems, 2010.

[VSG+11] Ganesh Venkatesh, John Sampson, Nathan Goulding, Sravan-
thi Kota Venkata, Michael Bedford Taylor, and Steven Swanson.
Qscores: Configurable co-processors to trade dark silicon for energy
efficiency in a scalable manner. In Proceedings of The 44th Interna-
tional Symposium on Microarchitecture, 2011.

[WTS+97] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, et al. Baring it all to software:
Raw machines. Computer, 30(9):86–93, 1997.

[ZFJ+08] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang,
and Jason Cong. Autopilot: A platform-based esl synthesis system.
High-Level Synthesis: From Algorithm to Digital Circuit, pages 99–
112, 2008.




