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Optimal Tasking of Mobile Autonomous Sensing Assets in Uncertain
Adversarial Settings

by

Ali Oran

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)
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Professor William McEneaney, Chair

In this study we consider the sensor tasking problem, with the case of

military reconnaissance as a motivating example. In order to determine the

the optimal control set, we develop a mathematical formulation for the value of

information. This value is inherited from the expected payoff for the activity which

uses the information. We adress the problem of optimal control of the sensing

assets given this inherited payoff through both open loop and state feedback control

approaches. A micro-UAV deployment scenario for a three stage urban operation

was analyzed with the open-loop approach. For the feedback case, it was found

that a particular generic form of the value function is preserved under backward

dynamic programming. This form is exploited to develop an idempotent-based
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numerical approach. Also, efficient refining and pruning methods were developed

for attenuating the curse-of-complexity associated with this class of methods.
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Chapter 1

Introduction

In the beginning of 2010s, unmanned mobile sensing assets, such as

Unmanned Airborne Vehicles (UAVs), are bringing an enormous amount of support

to the military operations worldwide. Especially through their deployment in

reconnaissance missions, these state of the art vehicles have showed their superior

capabilities since the mid 1990s. Meanwhile, as a result of their quick deployment

in recent conflicts following their developments, there are still a number of issues

that needs to be addressed concerning these vehicles. In this study we develop a

new methodology to improve the mission performance of the most utilized type

of mobile sensing missions, the reconnaissance-based sensing mission, through

optimal control theory formulations. In this introductory chapter we will address

the current needs of the UAV technology, and also give an idea of our foundational

motivations for this study. Before moving into these points, we would like to briefly

mention some of the early pioneers in aerial reconnaissance technology, and also

introduce the reader to world’s possibly first open-loop controlled UAV from the

19th century.

1.1 A Brief History

The utilization of aerial vehicles in support of the military units, operating

on the ground, can be traced back to the early discoveries of flight. One of the

earliest aerial vehicle in human history is the kite, developed around 300BC by

1
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the Chinese. Soon after its discovery, its possible military potentials were realized,

and they were utilized for the Chinese military operations, such as lifting men

into the air with a kite to spot the enemy, and to track their movements. This

development was also the birth of aerial reconnaissance. Soon after this, again the

Chinese developed the Kongming Lantern, the first pre-modern hot air balloon and

they again quickly utilized this new discovery in a similarly fashion for the military

operations, such as for signaling purposes within the army ranks. Later, towards

the end of the 18th century French inventors Joseph and Michel Montgolfier

developed the modern hot air balloon in 1783. Once again, soon after this aerial

discovery, its possible military benefits got noticed, and the French became the

first nation to exploit this new technology by forming the French Aerostatic Corps

in 1794, which is now considered world’s first Air Force. As can be guessed, the

Corps primary duty was to collect reconnaissance information, and even in the year

of their foundation they found the opportunity to show the potentials of airborne

reconnaissance at the battle of Fleurus against the Allied forces. The balloon,

l’Entreprenant, operated by the Aerostatic Corps, continuously informed the

French general Jean-Baptiste Jourdan about the Austrian army’s movements, and

gave the French side a considerable advantage. [Buc99][Boy03] In a similar fashion

to this pioneering discoveries, during the following centuries every new aerial

discovery such as the aeroplanes, or later the jet motor planes was successfully

exploited for reconnaissance advantages soon after their discoveries as well.

While these developments were the examples of early manned reconnais-

sance missions, the earliest unmanned airborne operation did not happen until

the Austrian siege of Venice in 1849. When the Austrians couldn’t surrender the

Venetians after a long artillery fire, a bright Austrian artillery officer Lieutenant

Franz Uchatius, envisaged the use of balloons to drop bombs on the city. Although

sort of mocked by a few journals back at the day, Uchatius developed the path

plan for the balloons, considering the wind, distance and other factors. This try

might also be considered in history books as the first open-loop controlled aerial

attack mission. In the end like many open-loop controlled systems the noise (the

wind) became the main factor that reduced the efficiency of the operation. [Boy03]
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Although this operation raised more interest in aerial vehicles for usage in military

operations besides the reconnaissance, it took another 100 years for the aerospace

and control technology to mature up to be used for the unmanned aerial operations.

It was not before the end of the second world war, when nations systematically

started developing UAVs.

1.2 Modern UAV Technology: Its Advantages

and Necessities

After the second world war advanced vehicle control systems and sensor

technology had matured up to a point sufficient enough for their utilization

in UAVs, and UAV programs have been developed since then. However their

deployment were negligible during the Cold War years, and until the beginning of

20th century aerial missions, including reconnaissance operations, were still carried

out by manned aerial vehicles, such as the famous Lockheed U-2. Meanwhile,

after the early 1980s, with the advent of enhanced satellite communications,

miniaturized electronics, and sophisticated sensors, UAVs’ possible future mission

capabilities were realized, and a rapid UAV development was planned by the

UAV Joint Program Office [DO05]. Following their technological development,

like their technological ancestors, the UAVs also found their initial deployments in

military environments, such as during the conflicts in late 1990s, and in 2000s, for

reconnaissance missions. In a very short period of time after their developments

and initial deployments, being noticed for their up to date successful operations,

in the beginning of 2010s, they are currently being considered as an alternative

option to many manned aerial reconnaissance units.

This rather quick consideration might come as a surprise to many but

there are several advantages UAV missions posses compared to traditional aerial

manned missions. First of all, not having a human pilot on board the vehicle

gives the mission command & control office the opportunity to deploy the UAVs

in situations that would be considered risky for a human pilot. Second, the cost

of manufacturing and maintaining of a UAV fleet could be comparably lower than
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the cost of a traditional fleet with the addition of pilot training costs. Third, and

of particular importance, UAV missions bring what is termed as ”persistence” to

intelligence-collection capabilities. By this term we address a UAV’s capability of

positioning itself over a specified area of interest for 24 hours or longer, something

not obtainable from manned aircrafts or spacecrafts. [DO05] The reader should

particularly notice the following assessment of the superiority of Global Hawk, a

particular UAV, over other aerial assets.

The lack of “persistence” has long been stated as a major deficiency
in U.S. intelligence-collection capabilities. Orbiting satellites revisit
specified targets only a few times a day and on a predictable schedule.
An enemy discovering that schedule can “hide” from the satellite
observation. Manned aircraft (for example, the U-2), while not as
predictable as satellites, can stay over a specified target area for
only a short time. Their small inventories make revisiting these ares
infrequent in most circumstances. Global Hawk, in contrast, can orbit
over a specified area for 24 hours or longer, continuously streaming
data on the target area back to the United States for near-real-time
processing and dissemination. The ability to gain an enhanced degree
of “persistence” was probably the strongest argument for acquiring
Global Hawk. [DO05]

Fourth, UAVs come in different sizes. MicroUAVs unlike a manned aircraft can be

carried by a mere human being, and could be deployed in the front lines against

an enemy immediately after the platoon commander might need intel assistance.

Additionally, such UAVs might not need their observations exploited at an image

recovery site, but at the platoon commander’s camp for rapid analysis.

Meanwhile considering their rapid development, and early deployment in

current conflicts, at the present time there are several issues that needs to be

addressed regarding them. While each UAV has its own particular potential

problems, there are also common issues that needs attention as well. We want

to list some of the known problems here. The first possible problem stems from

the deployment and later control characteristics of the UAVs. For example, Global

Hawk, one of the most capable UAV, has its mission pre-planned, and it completes

this mission by flying from one given way point to another using its autopilot. Here,

the pre-planned mission uses older information, and although the mission plan can
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be changed at flight, at todays dynamic settings we need more adaptive automated

decision mechanisms that would let the UAV make the decisions by itself when

necessary. An early publication analyzing the challenges of the autonomous control

of the UAVs, states this issue very well. “Near real-time replanning is needed as

new sensor information, commands, or intelligence is received by the UAV. The

UAV starts with a plan defined off-line, and the challenge is to optimally update

that plan as new information is received and/or unforeseen events occur.” [PC98]

Second, the UAV needs to maintain a connection to an operation base, where the

UAV observations (such as imagery) will be processed and analyzed. From that

base the updated information would be introduced to the field commander who

might be needing the intel assistance in the first place. In a worst case scenario

the adversary might jack the the connection between the operation base and the

UAV or the field commander’s camp, leaving the UAV operation inefficient. A

possible solution would be to have the UAV have a direct connection with the

field commander. A related problem that is worth mentioning is the possibility of

excess information buildup from the sensing asset observations. While the sensing

observations are being continuously channeled to the operation base, there may

not be enough personel to analyze this huge amount of data, plus even so it might

not be optimal to spend the limited resources for analyzing such a huge amount

of raw data. This issue was pointed out in one of the recent issues of the IEEE

Spectrum magazine.

In 2009 alone, the U.S Air Force shot 24 years’ worth of video over
Iraq and Afghanistan using spy drones. The trouble is, there aren’t
enough human eyes to watch it all. The deluge of video data from
these unmanned aerial vehicles, or UAVs, is likely to get worse. By
next year, a single new Reaper drone will record 10 video feeds at
once, and the Air Force plans to eventually upgrade that number to 65.
John Rush, chief of the Intelligence, Surveillance and Reconnaissance
Division of the U.S. National Geospatial-Intelligence Agency, projects
that it would take an untenable 16000 analysts to study the video
footage from UAVs and other airborne surveillance systems. [Ble10]

Following these mentioned issues, at the present time there is a strong need

for automated decision-support tools for the UAVs that would give the UAVs more
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autonomy and in return make their missions safer and more efficient. Since the

beginning of 2000s a great amount of research have been dedicated to developing

control algorithms for the UAVs by following different approaches. Meanwhile

automated decision-support tools also bring many new issues to existing ones.

Especially, the complexity associated with proposed mission models becomes a

drawback for the developed algorithms. Articles by Clough in [Clo02], and Pachter

and Chandler in [PC98] list some of the issues in this field.

1.3 Analyzing Reconnaissance Missions

As mentioned earlier, airborne reconnaissance units has been utilized for

more than 2000 years, with the purpose of spotting enemy’s movements and

capabilities in order to have an advantage on the battlefield. Following the

introduction of mobile units to the battlefield such as tanks, armored personal

carriers and bombers there is currently a much greater necessity to keep a constant

eye on the enemy, for the dynamics of the battlefield has become a very rapidly

evolving game in the past century. In such large, dynamics settings with very

different scenario possibilities, one needs to consider not only merely reducing the

uncertainty, but also to compare his possible options about how much he would

benefit as a result of any action done for the purpose of reducing uncertainty.

Basically, when analyzing modern reconnaissance operations one should focus on

maximizing his benefits, which would also be a function of the uncertainty, rather

than bluntly minimizing the uncertainty. To give an idea about this concept, we

propose the following simple problem as a motivation.

1.3.1 A Convoy Path Problem

Suppose that a military convoy will be advancing from an initial position

to its destination, and the convoy leader has to decide whether to pass through

the desert or through the forest. Figure 1.1 very simply illustrates such a scenario

where the convoy can advance from point A to point B through Path 1 (through the

desert) or Path 2 (through the forest). Intel reports that there are high adversarial
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B

A

Path 1 Path 2

Figure 1.1: Simplified Example of a Mission Map

activity in the area, and for this reason it is very likely that the convoy will come

under fire. Meanwhile, intel can not provide a certain information about the

presence of the adversary in neither of the paths, and the convoy leader needs

to decide which path to follow under these uncertain circumstances. In order to

give a structured example, we start our discussion of this problem by considering

the case when there are no reconnaissance options (such as UAV deployment)

available to the commander, and later carry the framework to a reconnaissance

assisted operation, which is the real motivation for the remaining chapters.

In a situation where there are no reconnaissance options available to the

commander, if the length of both paths were not very different, one would expect

the convoy leader to choose to go through the desert path (safer option) to avoid

possible ambushes in the forest area where enemy hideouts would be harder to

detect by the radar of the convoy vehicles. At this point, if we try to analyze

and quantify commander’s decision-making process, we would notice that his final
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decision is basically based on two factors; first, the possible attrition his convoy

might suffer, and second, the operation cost at each path (such as fuel cost or

operation time cost). For a very brief quantitative formulation let x ∈ {1, 2}
represent the state of the region of interest with the state space being the set

of possible enemy forces’ locations (enemy along path 1 or 2). Also let ug ∈
{1, 2} denote his decision option (whether to choose path 1 or 2). Following this

argument, one might formulate an overall mission cost function, J(x, ug) as:

J(x, ug)
.
= T (x, ug) + C(x, ug) (1.1)

where we used T (x, ug) as the cost function due to attrition on the convoy, and

C(x, ug) as the cost function due to everything other than the attrition, given state

x and decision ug. With this formulation, commander’s final decision, ūg, will be

minimizing the mission cost function:

ūg
.
= argmin

ug∈{1,2}

{
max
x∈{1,2}

J(x, ug)

}
(1.2)

Now, as noticed from 1.1, in order to model the convoy leader’s decision

process in this scenario, both the cost of attrition, T (x, ug), and other costs,

C(x, ug) needs to be formulated. Compared to T (x, ug), the mathematical

formulation of C(x, ug) can be done much more easily, and has been majorly

developed for many military logistics operations since the second world war. A

recent example of such an analysis was utilized during the operation desert storm

in the early 90s, for details see Hilliard et al. [HSL+92]. On the other hand,

while an experienced military officials can asess an overall payoff function very

quickly in his mind, explicit formulation of the attrition cost function, T (x, ug),

could become more challenging. Still, by careful modelling of the interactions

between the convoy and the adversary, the attrition function T (x, ug) could also

be modeled mathematically, and a quantitative model of the complete mission,

considering attrition, could be developed. Although a model of attrition might

seem a little futuristic, recently developed Real-time Adversarial Intelligence and

Decision-making (RAID) project could be such an example of mission planning

considering attrition, for details see Kott and Ownby [KO07].
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Back to our motivating example, notice that had this example been

formulated in a perfect information (deterministic) setting where the convoy leader

had known the adversaries locations, minimization of J(x, ug), and finding the

optimal path would have become straightforward after the formulation of T (x, ug)

and C(x, ug). In this more complex (and realistic) situation the convoy leader

might only know partial information about the enemy, for example intel could only

give an estimated probability of the presence of the adversary rather than certain

information. For example, assume that the intel gives the convoy commander an

estimate of the enemy presence in each path, with Path 1 (through the desert)

having a probability of %80 and Path 2 (through the forest) of %20 chance of

enemy. In this situation, x, the state of the region, would no longer be a variable but

would become a random variable, and so would T (x, u)g and C(x, ug). In this case

blue knowledge of the system state could be specified as a probability distribution

q. We let q0 denote the initial probability distribution available to the commander,

in this example q0 = [0.8 0.2]T . Depending on the decision analysis criteria utilized

to analyze this situation, this time the safer option of the desert path might be

considered more dangerous considering the possible attrition the team might suffer.

For this type of a problem Bayes’ Decision Rule could possibly be employed with

consideration of expected values of attrition on the convoy at each path. Other

possible analysis could be the conservative Worst Case Scenario Analysis or the

Maximum Likelihood criterion [HL05]. For this simple example, assume that the

commander formulates the simple T (x, ug) function as, “Probability of survivability

of the convoy following path u, given enemy state x”, and remember that we have

let x ∈ {1, 2} where x will only be the state reflecting adversaries location (being

at path 1 or at 2).

T (x, ug) = P (Convoy survives at path ug| state = x) =



for ug = 1

0.9 x=1

1 x=2.

for ug = 2

1 x=1,

0.7 x=2.

Following Bayes’ Decision Rule, with considering probabilities of each state, convoy
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leader’s decision could be formulated as:

ūg = argmax
ug

Ex[J(x, ug)] (1.3)

where we used Ex to denote the expectation over the red states. Following this

formulation the expected troop survivability probabilities at each path could be

found as:

Expected Survivability of Convoy Through Path 1 = 0.8 ∗ 0.9 + 0.2 ∗ 1.0 = 0.92

Expected Survivability of Convoy Through Path 2 = 0.2 ∗ 0.7 + 0.8 ∗ 1.0 = 0.94

Here, for a concise discussion, we omitted the operational costs of the mission,

C(x, ug) in this example. (This could also be thought as a result of same lengths

of path 1 and path 2.) Following this omission, and the results above, our analysis

suggests that the commander would favor to choose the more risky forest path

rather than the desert in this imperfect information setting.

Now, in the final part of this example, we assume the same situation when

the convoy leader has a micro UAV available for deployment for a reconnaissance

operation. With the addition of the reconnaissance unit/units, the problem

becomes more complex. The convoy leader needs to decide (if given for his

authority) where to send the reconnaissance unit, and how to interpret the

observation results. For this simple problem it will be ‘would sending the UAV

to desert improve my cost function better than sending it to the forest’. Since

observation process might also be corrupted (intentionally by the enemy or wrong

observations) the results might require more careful analysis. In literature there are

different approaches about how to approach uncertainty, and how to reduce it by

the aerial missions. One common methodology is to utilize the entropy argument.

But, besides these approaches one could also utilize the payoff function, J(x, ug), in

1.1 to analyze the effects of uncertainty and reconnaissance. Briefly speaking, one

can estimate the future probability distribution of the state of the region, q̂, from

the initial distribution, q0 = [0.8 0.2]T , through possible observations the UAVs

would yield. Considering these possible a posteriori distributions one could find

the possible changes in J(x, ug) related to UAV controls. Again omitting C(x, ug),
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following 1.3 one can formulate:

ūg = argmax
ug

Eq̂[T (x, ug)] (1.4)

Since q̂ is dependent on the UAV controls, uo, one should find the optimal UAV

control initially. The optimal UAV control can be formulated as:

ū0 = argmax
uo

Ey(uo)[Eq̂(y,uo)[T (x, ug)]] (1.5)

The first thing to do in this analysis is to update the probability distribution

considering possible observations, y(uo). For instance, a Bayesian estimator could

be utilized for this purpose. We leave the details of the estimator to chapter 2, and

in here only mention the updated probability vector, q̂ found after the estimation

for this problem. We assume that y(uo) takes values in the set {1, 2}, where

1 corresponds to an observation that results in the detection of the adversary ,

and 2 corresponds to an observation that does not result in the detection of the

adversary. Since y(uo) could be corrupted by noise we assume that it is also a

random variable, and one can find the probability of each observation result by

conditional probability formulations:

P (y(uo) = 1) =
∑
i

P (y(uo) = 1| x = i)P (x = i) (1.6)

In our simulation, the Bayesian estimators would yield the following results.

Notation-wise we used q̂y(uo)=1 to denote the updated probability given the UAV

decision uo and the observation y(uo) = 1.

for uo = 1 : q̂y(uo)=1 =

[
0.9863

0.0137

]
, q̂y(uo)=2 =

[
0.2963

0.7037

]

for uo = 2 : q̂y(uo)=1 =

[
0.1818

0.8182

]
q̂y(uo)=2 =

[
0.9744

0.0256

]

On the other hand,

for u0 = 1: P (y(uo) = 1) = 0.73, P (y(uo) = 2) = 0.27,

for u0 = 2: P (y(uo) = 1) = 0.22, P (y(uo) = 2) = 0.78.
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At this time we have analyzed all possible observation controls the commander

could consider for the UAV, and also the possible results corresponding to each

control. This kind of analysis would actually be the open-loop control of a UAV

mission, and we discuss this in further detail in chapter 2. A better approach

would be utilize the state feedback approach and this is discussed again in 3. In

the last stage we need to find the expected value of the mission cost function as a

function of each possible UAV decision, uo.

for uo = 1 : Ey(uo)[Eq̂(y,uo)[T (x, ūg)]] = 0.989 (1.7)

for uo = 2 : Ey(uo)[Eq̂(y,uo)[T (x, ūg)]] = 0.990 (1.8)

Considering this values, we can conclude that the convoy commander should choose

to task the UAV to make sensing on the adversary on path 2 rather than path 1.

Having found the optimal path the UAV should be sent to, we complete

our discussion of this motivational example. Our main motivation was to show the

necessity to consider the question of who would benefit most from a possible UAV

reconnaissance operation before defining a payoff function. This will be basic idea

on which we will build up our formulations.

1.4 The Sensor Tasking Problem

Following the discussion in the previous section, we are now ready to define

the general sensor tasking problem. For this purpose, consider a region of interest,

that we denote with R, where two adversaries Team 1 (Blue team) and Team 2

(Red team) compete in a zero sum game manner. For example, such a region could

be a convoy path that might come under attack as mentioned in the motivating

example earlier or a general battleground. We will analyze the game between the

two adversaries from the view point of the Blue team which will have only partial

(imperfect) information about the Red team. One should notice that the perfect

information setting could be considered as a special case of this problem, and our

analysis will still be valid for such settings as well. In order to improve its partial

information, Blue team is expected to deploy its mobile sensing assets, such as
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UAVs with sensors, and observe the region R from an initial time of t = t0 to

a final time time of t = T . Here, what we mean with the action of observing

is, the utilization of mobile sensors for detecting the enemy’s (Red team units)

presence and also its states, such as its arms capability, health state and other

qualities. Briefly speaking, the mobile sensors will be undertaking reconnaissance

missions in an uncertain environment, and their observation returns will be later

utilized by the Blue team for other, preceding operations. While this problem could

be defined in continuous time, modelling the observation process and solving the

optimal tasking problem would then become unnecessarily challenging. A more

practical approach would be to work on the discrete time domain. For defining

intervals on an integer set, we will use the following integer interval notation for

the rest of this study.

[a..b]
.
= {x ∈ N0| a ≤ x ≤ b}, N0 = {0, 1, 2, . . .} (1.9)

Now, we define the sensor tasking problem for future references.

Definition 1.4.1. The Sensor Tasking Problem:

In some physical region R where two adversaries, Blue and Red Teams, compete in

a zero sum game manner, by considering all possible locations the Red team units

might be present in this region, and taking Blue teams’s partial information into

account, decide on which of these locations Blue team’s mobile sensing units should

focus their sensors during the time interval of [t0..T ] such that the observation

returns would yield the maximum advantage (benefit) to the Blue team for the

upcoming operations.

Notice that this definition is a very general problem statement, and for this

reason researchers working on this problem consider subcategories of it with their

own assumptions and constraints. Throughout this dissertation we will also make

necessary assumptions to make the analysis feasible but still valid for the problem

defined above.
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1.5 An Overview of Dissertation

In chapter 2, we will develop the basic formulations of the optimal

sensor tasking problem following the general problem statement we introduced

in definition 1.4.1. After an initial discussion, we will start our formulations by

discussing characteristics of reconnaissance operations in 2.2. Later we will develop

a measure for the sensing operations. In section 2.3, we connect this measure to

the decisions regarding the sensing operations. We will develop both open and

closed loop formulations for the solution of the sensing problem. Later in 2.4 we

give an example about the utilization of the theory in an urban operation.

In chaper 3 we will discuss the closed loop solution of the optimal sensor

tasking problem in more detail. First we will develop dynamic programming

iterations for the solution of the state feedback problem. Then we will show a

way to utilize the dynamic programming algorithm with greater simplicity. In

section 3.2 we will analyze possible extensions of this methodology that improves

the computation issues of dynamic programming iterations.

In chapter 4, we will introduce two other methods to improve the

computation times demanded for the solution of the dynamic programming

formulations. The first one of these methods, is called Refining, and it is based

on utilizing the linear programming methods to seek for redundant information

produced during dynamic programming iterations. The second one is called

Pruning, and it will give us approximations of the original value function within

specified error bounds, while improving computation times.



Chapter 2

Observation Control Problem

In this chapter we will develop the basic formulations of the optimal sensor

platform tasking problem following the general problem statement we introduced in

the previous chapter, in definition 1.4.1. We start our discussion by laying out the

general ideas of the proposed methodology. Later, in section 2.2 we discuss possible

approaches to quantify the value of sensing operations, and define a unique payoff

function as a measure of the sensing actions. In section 2.3 we complete the optimal

tasking formulations by introducing methods to update the available information,

and also introduce open and closed loop control formulations to solve the problem.

In section 2.4 we utilize the developed theory for an urban mission scenario. This

analysis will be based on an open-loop controller. We leave the results related to

the closed-loop control to chapter 3 for we will exploit the structure of the payoff

function during dynamic programming iterations.

2.1 Introduction

The general sensor tasking problem defined in 1.4.1 can be thought as an

optimal decision-making problem, where the decisions are the focus points of the

mobile sensor units and the objective function being maximized is the advantage

being returned to the Blue team as a consequence of these decisions. One way

to approach, and solve this problem could be done by employing the methods of

optimal control theory. In this methodology, as a first step, one would need to

15
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formulate a relevant payoff function, J (·), which would be a quantitative measure

of the advantage to the Blue team of the consequences of the sensor observations.

Later, by maximizing this measure over the set of sensor focus points one could

arrive at the optimal set for the sensors.

At this point one can notice that the necessity to reformulate a new

payoff function before each sensor mission with detailed analysis of each mission’s

objective might become a demanding job for the mission planners. Especially for

missions that are time sensitive, such as missions involving micro-UAVs which

could be deployed by the combat units on the ground to detect enemy presence

around them, there might not be such luxury of lengthy mission planning times.

Because of this possible drawback, the proposed method might not seem like a

practical way to approach the sensor tasking problem. Meanwhile, the need for

reformulating the payoff function before each mission could be avoided by noticing

the common objectives in mobile sensor deployments, and by grouping the sensor

missions according to their mission objectives. After this grouping, by considering

the common objectives of each group of sensing missions, generic payoff functions

could be formulated for each group. This way, payoff functions that are defined for

a specific group could be utilized for all the missions belonging to that group with

slight modifications, and the burden of reformulation of payoff function before each

mission could be avoided.

In this study, as mentioned earlier in 1.4, we have assumed that the mobile

sensors would be deployed in a region with the presence of an adversary, and

that they would be on a reconnaissance mission. Under this assumption, the

generic form of J (·) could be very well formulated considering the general nature

of reconnaissance missions. By the fact that, reconnaissance based UAV missions

compromise most of UAV operations, a study based on this group of missions

could be very useful for the UAV research field. Similarly reconnaissance based

operations involving other kinds of autonomous sensing vehicles, such as UUVs

(Unmanned Underwater Vehicles), could also benefit from this new approach as

well.

Once the relevant payoff function is defined, possible sensing decisions could
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be evaluated by considering the outcomes of each decision. In this context, this

approach have similarities to solving a sequential decision making problem with

modern decision-making theory. Considering the similarities, we list the major

steps in this approach below. (taken from [KK81])

1. List all possible actions.

2. List all possible outcomes.

3. Assess the probability of each outcome from each action.

4. Choose the best action based on likelihood and utility of

the outcome.


(2.1)

In our analysis the possible actions will be the set of possible focus points

for the mobile sensing assets, and the possible outcomes will be the observation

results of the assets regarding the adversary. What will be different is that, in the

last step the likelihood criterion and the utility of the outcome will be replaced

by Bayes’ decision rule and the payoff function J (·), respectively. We will give

greater details of these steps with an example in section 2.4. Before that, we will

discuss our formulation of the generic payoff function for the sensing missions that

could be put under the general group of reconnaissance missions.

2.2 Assessing the Value of Information for Re-

connaissance Missions

From common knowledge, one is well aware that a reconnaissance operation

is aimed at improving our knowledge about a non-perfect information setting,

which could be also dynamic. We use the term setting to define the combined

concept of the physical region of interest R, plus entities that are present on this

region which will have a possible affect on the blue team’s upcoming missions.

Considering this objective, when formulating the generic payoff function for the

group of reconnaissance based mobile sensing missions, mission planners should

distinct the most essential possible part of the payoff function, their knowledge

about this setting. For this reason, for the group of reconnaissance based mobile
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sensing missions we suggest that J (·) should be formulated as a sum of two distinct

functions, C(·) and J̄(·), similar to the earlier formulation we introduced in (1.1).

J (·) .
= E

{
C(·) + J̄(·)

}
, (2.2)

where the expectation will be taken over the unknown states of the mission setting,

the initial states, and the state transitions. We define these two functions as:

J̄(·) .
= the payoff function that is directly related to the information aspect of the

sensor mission

C(·) .
= the cost function for the mobile sensing mission.

C(·), for most operations, is simply the traditional cost of the sensing action,

i.e the cost of loss and maintenance of the sensing asset. Meanwhile depending

on the particular mission it could also include any other cost that is not linked

to the information aspect of the mission, such as penalty related to the mission

completion time. It has been studied well in the literature, see for example Hilliard

et al. [HSL+92] and for this reason, we will not be further analyzing it in our

research. On the other hand, J̄(·), the payoff related the information aspect of

the mission, has been less studied, and developed. We also believe that it is the

more critical part of J (·) for the reconnaissance-based mobile sensor mission, and

for this reason we will focus our attention on this part throughout the rest of this

study.

The problem associated with J̄(·) is the difficulty of formulating it in terms

of available information, or better said, the difficulty of quantifying ones knowledge

about the enemy through this function. This is critical for one would need an

accurate measure by which the optimality level will be defined for the function

J (·).
A good candidate for J̄(·) could be based on the entropy function,

introduced by Shannon. It has been used well-before the deployment of the UAVs,

for the manned reconnaissance mission,s by the aim of reducing uncertainty in

given settings [Dan62], and is still considered by researchers for the same purpose

[BS96], [YY10]. However, one could notice that the entropy measure is not directly
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tied to the associated ongoing or future operations which will be making use of

the state information. We believe that this lack of direct relation with the related

operations is a big disadvantage of the entropy approach, and a similar criticism

can also be found in [Whi75]. For this reason, we examine the structure of the

payoff for observation in terms of the expected benefit to the operations which is to

follow. Now, in order to formulate J̄(·), at first we will assume that the observation

activities of the sensors will occur prior to the operations that will be utilizing the

updated information. Once we develop the observation control algorithm further

below, we will discuss a case where the observation tasking is occurring in parallel

with the associated operations.

While we have develop the theory for the general group of reconnaissance-

based mobile sensing missions, in order to motivate the construction, we present the

following example. Throughout this dissertation, we will come back to this example

when necessary, and we will also simulate the developed theories on this setting.

Consider the problem, depicted in Figure 2.3, where some Blue ground units will

be moving through urban terrain along the dashed blue line. Pre-observation

knowledge may indicate that there are Red fire-teams in some of the related

buildings along their path. For example, it might be known that there is a Red

fire-team in either Building 1 or Building 2 with associated probabilities. Similarly,

it might be additionally known that there is one Red fire-team distributed among

buildings 3–5, and also another again Red fire-team distributed among buildings

6–7 with some associated probabilities describing the likelihood of the various

possible configurations. Meanwhile the Blue ground units have a single micro-

UAV that they could deploy before starting to move through this region, and

receive immediate observations about the possible presence of Red teams hiding

in those buildings. After the UAV completes its mission, with the sensor returns

pre-observation knowledge will be updated, and it will be utilized by the Blue

ground units to make their own decisions when moving through the buildings.

We assume that depending on their knowledge about the presence of Red fire-

teams inside the buildings along their path, Blue ground units will decide on

possible actions on their own, even though they will not be let to modify their
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path. (Interestingly, current military doctrine does not seem to allow automated

path re-planning of troop movement, based on observation returns. However, that

point will be irrelevant to the construction to follow.) For example, Blue units will

be given the option to lay cover fire on a particular building, or to remain “tight”

during some step, meaning that they fire only if fired upon, depending on their

knowledge. We assume these local actions are chosen from some finite set. We

put this extra decision making layer to complete our example where UAV updated

information will be utilized for another mission.

Figure 2.1: Blue COA

Now we turn our attention to develop the model in the general case. As

mentioned earlier, we are assuming that the blue sensing operation will be a

precursor to another succeeding blue operation. Since our theory is aimed at a

general level, we consider the operation to follow as an abstract operation (as a

black box), which will utilize the updated information from the sensing operations.

We let ζt be the state of this operation at time t, and the finite set Z its state space.

Considering the two person game setting, we differentiate the states of the blue

team from other states (such as states defining red team) defining the operation,
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i.e.

ζt
.
=

[
Ht

Xt

]
(2.3)

where we let Ht ∈ H be the blue team’s state at time t and Xt ∈ X be states other

than these states. Without loss of generality, we let H = [1..H], and similarly

X = [1..X]. (where, of course, each c ∈ X is an integer which actually indexes a

specific configuration). Note that in this study, we do not assume that the non-

blue states, Xt, will be dynamic. For this reason, Xt will be fixed, but unknown

during time of the operations. For this reason we omit the time index from the

variable Xt, and use X for the remainder of the study.

While in our argument we are assuming an abstract follow-up operation, in

order to develop a feasible mathematical theory, we will assume that this operation

will evolve as a controlled Markov process over the discrete time interval T g .
=

[tg..T
g]. Considering the state, ζt, we introduced earlier one can define the state

process as ζ· : T g → Z. Since X is now only a random variable, the state transition

will be based on H. We suppose that at each time-step t ∈ T g− .
= [tg..(T

g− 1)] we

may select a control from finite set U g
t . We let Ph̃,h(t̃, u, x) denote the probability

of transitioning from h̃ to h at time-step t̃ ∈ T g−, given control u ∈ U g
t and x ∈ X ,

i.e.,

Ph,h̃(t̃, u, x)
.
= P (ζt+1 = h̃,X = x | ζt = h, t = t̃, ugt = u,X = x) (2.4)

where P denotes the probability measure. Correspondingly P(t̃, u, x) denotes the

H × H matrix of transition probabilities. We suppose the initial state of Ht is

distributed according to qg0 ∈ SH with components [qg0 ]h = P (ζ0 = h), where for

any positive integer, N ,

SN
.
=

{
q ∈ RN

∣∣∣∣ qj ∈ [0, 1]∀j ∈ [1..N ] and
N∑
j=1

qj = 1

}
(2.5)

is the probability simplex. Following these definitions, stochastic dynamics for the

random sequence Ht could be written as

qgt+1 = [P(t, ugt , x)]T qgt . (2.6)
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with qgtg = qg0 . We should note here that this form allows for feedback dependence

on ζt; for example, in some applications, it is useful to take ugt to be a vector of

length H where the hth row of P depends only on the hth element of ugt .

In the motivational example above, the state h ∈ H would correspond to

a health state of the Blue ground entities, and x ∈ X would correspond to an

unknown Red configuration. We might also typically take qg0 = I1 where I1
h = 1 if

h = h0 and I1
h = 0 if h 6= h0 where state h0 represents perfect health of all entities.

Back to the formulation of the general case, we let the payoff take the form

of a terminal cost criterion, Cg(HT g ,X). Let Ug .
= U g

tg × U
g
tg+1 × · · ·U

g
T g−1. At the

onset of the operation (i.e., after the observations), our knowledge of the likelihood

of any configuration x ∈ X will be given by distribution q0. Note that q0 ∈ SX .

For the operation, the expected payoff, Jg : SX × Ug × SH → R, is given by

Jg(q0, u
g
· ; q

g
0) = E[Cg(HT g ,X)], (2.7)

where the expectation is over the initial state, the unknown aspects, and implicitly,

the state transitions.

The cumulative state transition over T g− is given by

P(ug· , x)
.
= P(tg, u

g
tg , x)P(tg + 1, ugtg+1, x) · · · P(T g − 1, ugT g−1, x) (2.8)

where we note that P maps Ug×X into the space of H×H transition probability

matrices. We see that the expected payoff is

Jg(q0, u
g
· ; q

g
0) =

∑
x∈X

∑
h∈H

{[
PT (ug· , x)qg0

]
h
Cg(h, x)

}
[q0]x. (2.9)

Let

γx(u
g
· ; q

g
0)

.
=
∑
h∈H

[
PT (ug· , x)qg0

]
h
Cg(h, x)

= [Ĉg(x)]TPT (ug· , x)qg0 ,

where Ĉg(x) is the vector of length H with components [Ĉg(x)]h = Cg(h, x). Then,

Jg(q0, u
g
· ; q

g
0) = [γ(ug· ; q

g
0)]T q0 = γ(ug· ; q

g
0) · q0. (2.10)
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The value of information q is thus

J̄(q0) = J̄(q0; qg0) = max
ug· ∈Ug

Jg(q0, u
g
· ; q

g
0)

= max
ug· ∈Ug

[
γ(ug· ; q

g
0) · q0

]
. (2.11)

It is important to note that J̄ is a convex piecewise linear function of its argument,

the probability distribution regarding the unknown aspects, q0. This form will

be exploited in the closed-loop control analysis of this problem in Chapter 3. An

example of a J̄(q) is depicted in Fig. 2.2.

Figure 2.2: An example of J̄(q) (blue surface). Red planes are individual vi · q
defining J̄(q), whereas purple planes are inactive.
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2.3 Observation Control Problem

In the above subsection, we obtained the form of the value of information

through its effect on the associated operations. In this section, we will develop the

observation tasking problem for a payoff of that form. Prior to development of

this material, we again motivate the discussion with the military urban operations

support example. Recall that there was some a priori information on the unknown

Red configuration, and that this could be modeled as a probability distribution over

some set of possible Red configurations, X . Refer again to Figure 2.3. Suppose

X consisted of all possible Red configurations with one Red fire-team in either

Building 1 or Building 2, and two additional Red fire-teams distributed across

Buildings 3–7. One could, for example, have a uniform distribution over all of the

possibilities for the positions of the three Red fire-teams. (A slight extension of X
would allow for less than three fire teams as well.) One could suppose that there

were two sensing assets which could be tasked at each time-step. For example, one

asset could be tasked to examine Building 2, and the other to examine Building 5.

Further, one could suppose the possible observation returns were of the simple form

that either a Red fire-team was spotted in the building or a Red fire-team was not

spotted there. There would be probabilities of detection and missed detection (i.e.,

a confusion matrix). Then, based on the observation returns, one would update

the probability distribution describing our knowledge, and if time allowed, re-task

the sensing assets to obtain further data.

Now we develop the observation control problem in a bit more generality.

We suppose the observation task will take place over a fixed, finite number of time-

steps, T o = [s..T o] and also let T o,− = [s..T o − 1]. At each t ∈ T o,−, the sensor(s)

will make observations of a finite set of aspects of the configuration X . Suppose,

without loss of generality, that the set of possible sets of aspects is indexed by

L = [1..L]. That is, a state index, l ∈ L corresponds to a particular set of aspects to

be observed in a time-step. The sensing assets state at time t ∈ T o,− will be ξt ∈ L.

(We do not include technical complications such as sensor asset health state.) We

let the observation control space be Uo = L, and take ξt+1 = uot for all t ∈ T o,−.

That is, we are allowing one-step transition from observing any set of aspects to
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observing any other set of aspects. One could limit the possible next states to

be dependent on the current state. (In the above example, this could correspond

to not allowing a sensor to move from say, Building 1 to Building 7 in a single

time-step.) This would only introduce additional notational and computational

complexity to the current theory, and so we do not include that here. We suppose

that while in state ξt+1 = uot = l ∈ L, observation set yt = y ∈ Y l will be made,

where Y l = [yl1..y
l
Y l ] is finite. We suppose that one has conditional probability of

observing y ∈ Y l while observing aspects l ∈ L given x ∈ X , denoted by Ry,l
x .

Let Ry,l be the vector of length X with components Ry,l
x , and let Dy,l be

the X × X diagonal matrix with diagonal elements Dy,l
x,x = Ry,l

x . Then, given

any sensing control action uot = ξt+1 = l ∈ L and resulting (random-variable)

observation yt, with Bayes’ theorem one can write

qt+1 =
1

Ryt,l · qt
Dyt,lqt

.
= βyt,l(qt) = βyt,l(qt;u

o
t ), (2.12)

which defines the stochastic dynamics for the state X.

Now that we have completed our discussion of the value of information

and the stochastic state dynamics we are ready to define the control formulations

on top of these settings. We start with an open-loop controller. The payoff for

information state q at any time t with observation-platform control uo· is

J (s, q, u·)
.
= E

{
J̄(qT )

}
(2.13)

where uo·
.
= uo[s,T o−1] = {uot ∈ Uo| t ∈ T o,−} and the propagation of the state from

qs = q to qT follows (2.12) with sequence of controls uo· . This kind of analysis

would be appropriate for a concept-of-operations where incoming observational

data could not be used to re-adjust the sensing-platform task plan. With such

a model, the control problem reduces to an open-loop optimization problem. In

particular, one solves for the value function

V o(t, q) = max
uo· ∈[Uo]To−s

J (s, q, u·). (2.14)

In the next section we give an example that solves the optimal control problem

with this type of control. But before that we would like to define the state-feedback
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approach. Now, let As denote the set of non-anticipative feedback controls over

T o,−. That is, we let

As .=
{
α[s,T o−1] : [SN ]T

o−s→ [Uo]T−s
∣∣ if qr = q̂r for all

r ≤ t̄ then αr[q·] = αr[q̂·] for all r ≤ t̄ }

where [Uo]T o−s denotes the outer product of Uo, T − s times, and similarly with

[SN ]T−s. The payoff for information state qs = q and non-anticipative control

α ∈ As is

J (s, q, α·)
.
= E

{
J̄(qT )

}
(2.15)

where the propagation of the state from qs = q to qT follows (2.12) with control

uot = αt[q·] at each time, t ∈ T o,−. The corresponding value function is:

V (s, q) = sup
α·∈As

J (s, q, α·). (2.16)

Note that, from (2.15) and (2.16),

V (T, q) = J̄(q), (2.17)

and considering (2.11), one has

V (T, q) = max
ug· ∈Ug

Jg(q, ug· ; q
g
0) = max

ug· ∈Ug

[
γ(ug· ; q

g
0) · q

]
. (2.18)

This formulation is particularly important for it will be utilized at the beginning

of dynamic programming iterations, which are discussed in chapter 3.

2.4 Open Loop Analysis of the Urban Operation

Following our theoretical developments in the previous section, now

we utilize the open-loop controller formulations to solve the optimal tasking

formulation for the previously mentioned urban operation. We first define the

details of this setting and present our results after.
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2.4.1 Operation Setting

We suggest the reader to check Fig 2.3 to remember the physical setting

for this problem where a team of blue ground units would be moving through

an urban zone with a high possibility of coming under attack. In this scenario

we assume that the blue team are given information that there are already 3 red

fire-teams present in the region. Additionally, it is known that the first of these

teams are based in either building 1 or building 2, the second team in building

2,4, or 5, and the last team in 6 or 7. Before the start of this mission, blue

ground units will deploy their micro-UAV and will improve their knowledge about

this setting following the observations. We need to find the optimal buildings the

UAV should focus its sensors on to maximize the expected troop survivability at

the end of the mission. Consistent with our earlier assumption of Xt being time

independent, we will assume that red units will stay on defense, and will hold

their positions, that are unknown to the blue team. Also in this scenario, our

other earlier assumption of having the follow-up operations evolve as a controlled

Markov chain, can be interpreted as having the attrition on blue units at time t

being independent of the expected attrition at other times, and we will model the

payoff function accordingly.

Considering the given information we start our analysis by discretizing the

whole map (R) into 3 subregions, each of which has exactly 1 enemy team. We

enumerate this subregions as subregions 1, 2 and 3 according to the forward path

of the ground units, i.e., staring with 1 for the initial one and 3 for the last. We

form the the following sets that contain the building numbers at each subregion,

B1 .
= {1, 2}, B2 .

= {3, 4, 5}, and B3 .
= {6, 7}. We let B

.
= B1 ∪ B2 ∪ B3. For

future reference, we also form vectors for each of these sets. We order the vectors

considering the numbers associated with each building. For each t ∈ {1, 2, 3}, we

let ∆t .= [i1, i2..., in]T where ij < ik for j < k and ij ∈ Bt, ik ∈ Bt. We also define

∆
.
=


∆1

∆2

∆3


The discretized map is shown below in figure 2.3.
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Figure 2.3: Discretized Blue Course of Action

In order to avoid multiple time scales, we also switch from real time to

operation time, and in this setting we assume that one step of time will pass at each

subregion. Also, without losing generality, in order to avoid extra time notations

we will let the operation start at time t = 1. Following these, the operation time

period will be T g− = {1, 2, 3}, and at each time the blue ground units will be at

the subregion with the same number.

2.4.2 Formulation

As mentioned before, in this motivational problem, a possible state h ∈ H
would correspond to the health state of the Blue entities. In this simulation in

order to reduce computational complexity, we consider a small state space H, for

the state H. We let H = {1, 2}, with 1 corresponding to a killed state and 2 for a

full healthy state.

As for the other state, X, remember that we have earlier mentioned that

it would correspond to unknown red configurations. Unlike the blue state H, we

will not consider heath state of red units for defining X. Instead, following a worst

case scenario approach we will assume that the red entities have full health prior

to the start of the game and will keep it throughout the operation. We let X to

be the unknown physical locations of red fire-teams. In this specific setting, since

we have partitioned R into three subregions, we want to distinguish the red state
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at one subregion from another. Following this reason, for this problem, we define

X as a random vector

X = [X1 X2 X3]T (2.19)

For a 3 stage operation like this if we hadn’t had any a priori knowledge about

the location of red forces the range of X would be the all possible locations of 3

red fire-teams, i.e., the set of triplets formed from the set of building numbers, B̄3.

Considering a priori knowledge, a smaller subset of B̄3 could be defined for this

purpose, i.e., X : Ω→ B3 where

B3 .
= {[a, b, c]T | a ∈ B1, b ∈ B2, c ∈ B3}.

Furthermore, with an indexing function f(·) we can map enumerate all possible

triplets with an index set N , i.e., f : B3 → N is 1-1 and onto and N .
= {1, 2...12}.

Here, #(B1)#(B2)#B3) = 12. This way for f(X) we can define the distribution q

we defined earlier in this chapter such that [q]k = P (f(X) = k) ∀ k ∈ N . Notice

that in this problem q is the joint distribution. At this point we also would like to

define the probability of the presence of a red fire-team at a specific building. We

define the probability of red unit presence for building i ∈ B1 using the marginal

probability formulation below.

pi
.
=

∑
j∈B2,k∈B3

P (X1 = i,X2 = j,X3 = k), i ∈ B1. (2.20)

With a similar formulation, the probability of red presence for buildings in

other subregions can be formulated as well. Notice that, following the a priori

information that there is one fire-team at each subregion, these probabilities satisfy

the following:

p1 + p2 = 1

p3 + p4 + p5 = 1

p6 + p7 = 1
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Notice that the following vectors

q1 =

[
p1

p2

]
, q2 =


p3

p4

p5

 , q3 =

[
p6

p7

]
(2.21)

act as distributions to X1, X2, and X3. We will consider these vectors in a moment.

As mentioned earlier we assume that blue ground units will utilize updated

information in their own actions. For this scenario we model such actions in the

following way. When blue units are passing through a subregion by considering

the probability distribution of the enemy they can either lay cover on one of the

buildings or hold tight (only fire if fired on). Following this model, at time t ∈ T g−,

ugt ∈ B̄t .= Bt∪{0}. Notice that we used 0 to denote the control option of remaining

“tight”.

Related to ground units decisions, we will define the value of information

for this game as the expected survivability through the operation in region R.

Related to this function, we define the state (health) transition matrix for the blue

team in the following form.

P(t, u, x) =

[
1 0

k(t, u, x) 1− k(t, u, x)

]
(2.22)

where we define k(t, u, x) as the probability of kill against blue units given state

x, ground team action u at time t. Remember that the health transition matrix

P(t, u, x) corresponds to attrition happening at the tth stage of the operation, and

also that the attrition on ground units at one stage will not be influenced by the

states of the other stages. For this reason, when defining P(t, u, x), it is sufficient

to only considering the state space of X t, i.e., x will take values in Bt.

Notice that the heath transition matrix defined above has the computational

advantage that one only needs to consider k(u, x) in order to define the cumulative

state transition matrix. For example, for a two step operation the cumulative state

transition matrix, P̄ , would be,
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P̄ ({ugt1 , u
g
t2}, x) =

[
1 0

k(t1, u
g
1, x) 1− k(t1, u

g
1, x)

][
1 0

k(t2, u
g
2, x) 1− k(t2, u

g
2, x)

]

=

[
1 0

k(t1, u
g
1, x) + (1− k(t1, u

g
1, x)) k(t2, u

g
2, x) (1− k(t1, u

g
1, x)) (1− k(t2, u

g
2, x))

]

In the final matrix above, the probability of blue unit survivability (healthy state

ending at healthy state) after two steps is given at 2nd row 2nd column, (1 −
k(t1, u

g
1, x)) (1 − k(t2, u

g
2, x)). It is, in fact, the product of 2nd row 2nd column

entries of probability transition matrices for ug1 and ug2. For this reason, if one

wants to find the survivability of blue units, in order to reduce the computational

efforts, he can only work on and store this term rather than the full matrix. For

its importance we will denote this term through a vector. For this purpose, as

a first step, we need to define an index sets for these vectors. We define sets,

I1 .
= [1..#(B̄1)], I2 .

= [(#(B̄1)+1)..#(B̄1)+#(B̄2)], and I3 .
= [#(B̄1)+#(B̄2)..I],

where I
.
= #(B̄1) + #(B̄2) + #(B̄3). We also let,

I .
=
⋃
t∈T g

It and It
⋂
I t̄ = ∅ for t 6= t̄ ∈ T g. (2.23)

Now, we define a functional M[t](·) : B̄t → It, 1-1 and onto, such that M[t](i) <

M[t](j) for i < j, i ∈ Bt, j ∈ Bt ∀t ∈ T g. Following this, we define the vector

vj
.
=


1− k(t, u, [∆t]1)

...

1− k(t, u, [∆t]n)

 (2.24)

where j = M[t](u), j ∈ It. Remember that ∆t is the vector containing the

building numbers for subregion t. For example

v2 =

[
1− k(1, 2, 1)

1− k(1, 2, 2)

]
(2.25)

where we have let M1[2] = 2. To make our point more clear, we present the

following diagram about formation of the index vector I.
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I =


1
...

10

 =


I1

I2

I3


←− B̄1

←− B̄2

←− B̄3

Now, suppose that the vector vj corresponds to an action at time t, and

remember that time t corresponds to subregion t. For this reason, it should

be noted that this newly defined vector contains enough information to define

the dynamics at subregion t. Said in a different way, the payoff of information

(maximum expected survivability) at subregion t could be defined as

max
i∈It

{
vit · qt

}
(2.26)

where j =M[t](u), j ∈ It for some u ∈ B̄t. By introducing this vector in <#(Bt)

notice that we are avoiding the need to store 3 (2x2) matrices. Now, remember

our earlier general assumption that the operations following the sensing actions

would evolve as a controlled Markov process. This assumption has let us to think

of the attrition on blue units on a subregion independent of other attrition on other

subregions. Following this reasoning, the total payoff for this operation could be

formulated as the product of expected survivability at each subregion, i.e;

J̄(q) =
3∏

k=1

[
max
i∈Ik

{
vik · qk

}]
(2.27)

At this point, we also want to mention our formulation of the observation

control problem for this scenario. For this purpose, we first need to determine

the control space, Uo for the sensing asset. Remember that in our early model in

section 2.3 we let Uo = L and L was the set of possible configurations for X. In this

scenario since the set of possible configurations for X is B3 we could consider it as a

possible candidate for L. Meanwhile since we assume we have single UAV available

we pick the set B. We assume that the micro-UAV utilized in this scenario has

the limited capability of making two observations at each state l ∈ L, ‘See’ and

‘No See’, which as the names suggests correspond to seeing a red fire-team, or not

seeing a red fire-team at building l, respectively. Following this assumption, we

define Y .
= {1, 2} with 1 corresponding to the observation result ‘See’ and 2 to ‘No

See’. Notice that Y l = Y , ∀ l ∈ L.



33

Now, we will update given information according to (2.12). In order to

utilize this equation we need to define conditional probability vectors Ry,l for all

possible observations y and for all possible states l. Remember that we have defined

Ry,l
x as the conditional probability of observing y ∈ Y l while focusing on l ∈ L given

x ∈ X . To reduce the burden of defining Ry,l for all possible observations and all

possible states, we will define the following two conditional probability variables α

and β, and will define Ry,l according to them afterwards.

α
.
= P

(
yt = 1, for uot = l | X = [x1x2x3]T , ∃i ∈ T g− xi = l

)
(2.28)

β
.
= P

(
yt = 2, for uot = l | X = [x1x2x3]T , @i ∈ T g− xi = l

)
(2.29)

Basically, expressed in words, α is the conditional probability of seeing an enemy

at a building given an enemy is there, and β is not seeing an enemy at a building

given an enemy is not there. We will assume that these conditional probabilities

will be constant for any building (i.e., for any l ∈ L = B). At this point,

notice that when the micro-UAV is sent to make an observation at building l,

notice that the conditional probabilities of observing an enemy or not observing an

enemy only depends on the state of the subregion containing l, and is independent

on other subregions’ states. Following this reason when considering to update

the distribution of X, q, following a sensor observation at subregion t, it would

be sufficient to work with the distribution of Xt, qt. This could also save us

computation time by working with a smaller size vector, Ry,l. The update of qt

also follows (2.12). Then when UAV is sent to make an observation on building

l, which is at subregion k, we update qk but leave other subregional distributions

unchanged. For example, for uot = 2, and yt = 1 one should update q1 by (2.12)

where

R2,1 =
[

(1− β) α
]

(2.30)

We present our results using to this formulations in the next section.

2.4.3 Results

Before presenting our results about (2.14) the optimal sensor tasks that

improved the excepted ground unit survivability the most, we also would like to
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present a few figures about the ground unit actions that we have mentioned so

much, and clear any possible ambiguity.

For this purpose consider the first subregion of this urban operation

scenario. Assume that the health transition matrices P(t = 1, u, x) are defined

as the following.

P(1, 1, 1) =

[
1 0

0.1 0.9

]
P(1, 2, 1) =

[
1 0

0.4 0.6

]
P(1, 0, 1) =

[
1 0

0.15 0.85

]

P(1, 1, 2) =

[
1 0

0.5 0.5

]
P(1, 2, 2) =

[
1 0

0.15 0.85

]
P(1, 0, 2) =

[
1 0

0.35 0.65

]
Now we want to see how the ground troops make their choices as a function of q1.

Since q1 = [p1 p2]T and p2 = 1− p1, it would be sufficient to draw the results with

respect to p1 on a one dimensional graph rather than two. The results are shown

on figure 2.4.

As could be expected when p1 is closer to 1, that is the case when the

possibility of the red fire team being at building 1 is very likely, ground troops

opt to lay cover fire on building 1. Similarly when p1 is closer to 0, that is the

case when the possibility of the red fire team being at building 1 is very unlikely,

ground troops opt to lay cover fire on building 2. The worst situation is happening

when p1 is in the vicinity of 0.5, when the uncertainty is highest, and the ground

units opt to stay tight.

In our analysis we didn’t solve the open loop control of the sensor tasking

problem for a specific distribution q but we rather discretized the whole probability

simplex into smaller elements and analyzed the sensor problem on this discretized

simplex. For each element in this discretized simplex we considered all possible

sensor controls (buildings in this case) and all possible observation possibilities (see

or no see). We updated the each distribution utilizing (2.12) and found a posterior

distributions. As we considered our possible observations, yt as random variables,

we calculated their respective probabilities as well for each UAV control. Finally

we found the payoff for an initial distribution q with (2.27).

The additive inverse of the value function for the open-loop case is depicted

below in figure 2.5, as a function of the initial information in subregions 1 and



35

! !"# !"$ !"% !"& !"' !"( !") !"* !"+ #
!"(

!"('

!")

!")'

!"*

!"*'

!"+

!"+'

#

,
#

-
.
,
/
0
1/
2
34
5
67
87
9
:
8;8
1<

45:6/=8>?3!#!

! !"# !"$ !"% !"& !"' !"( !") !"* !"+ #
#

$

%

,
#

@
6>
5
?
2
3A
?
81
3B
>
?
16
>
;C

Figure 2.4: Expected ground unit survivability and unit decisions in subregion 1
as a function of p1.

3. (Note that the information state is minimally stored as a vector in the four-

dimensional unit hypercube, and so we only display it over two componentsthe

probabilities that there is a red entity in building 1 and the probability there is a

red entity in building 6.

We compared this with a heuristically generated sensing-platform task plan,

which for any specific q, might be similar to what a commander would choose. The

expected payoff for the heuristic task planner is depicted in 2.6, and the percent

improvement (in terms of reduced attrition) is depicted in 2.7.

Notice that after switching to the heuristic controller the expected attrition
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Figure 2.5: Expected attrition on ground units following optimal UAV support.
(On this figure axis q1 corresponds to p1 and axis q2 corresponds to p6).

on blue units was increased between %0 to %40. Notice the change of attrition

values around the edges.

Overall, in this scenario, the proposed sensor tasking formulation was able

to reduce the expected attrition (increase the expected survivability) significantly,

especially more significantly for some particular distributions. While our example

was simple and had only 3 stages, the expected gains shows that it might be good

alternative to automated decision making algorithms for the sensor platforms. The

drawback of this approach is its incapability to incorporate the current states

of the system, and its dependence on pre-operation knowledge. Still it should

be considered for situation when state feedback might not be available to the

controllers. We complete our discussion of the open-loop control here and proceed

to the closed loop formulation.



37

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

 

q2

q1

 

At
tri

tio
n 

w/
 H

eu
ris

tic
 C

on
tro

l

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Figure 2.6: Expected attrition on ground units following heuristic UAV support.
(On this figure axis q1 corresponds to p1 and axis q2 corresponds to p6).
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UAV support to heuristic UAV support. (On this figure axis q1 corresponds to p1
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Chapter 3

The State Feedback Control

Problem

In this chapter we analyze the optimal sensor tasking problem from the

state feedback control perspective. As opposed to the open-loop control state

feedback control delivers better performance by inheriting the advantages of closed-

loop control. Meanwhile, the computational efforts to fully analyze, and solve the

control problem of (2.16) is more challenging than the open-loop case. However,

as we will show in the next section, the special linear form of (2.18) will give us

an opportunity to exploit this special form in the solution of the optimal control

problem, and avoid numerical challenges. We start our discussion with formulating

the solution to the sensor tasking problem.

3.1 Solution of the State Feedback Control Prob-

lem with Dynamic Programming

In this section we solve the feedback control problem of (2.16) utilizing

dynamic programming. In order to give a complete discussion, at first we briefly

mention some of the dynamic programming results.

Proposition 3.1.1. Principle of Optimality:

An optimal policy has the property that whatever the initial state and initial decision

38



39

are, the remaining decisions must constitute an optimal policy with regard to the

state resulting from the first decision. [Bel57]

The principle of optimality could be captured in a mathematical form

considering the payoff function, J (.), and the value function V (.) of the previous

chapter. For a discrete time dynamical system, when analyzing a finite time

horizon problem, the above proposition could be expressed as in the following

theorem.

Theorem 3.1.2. Principle of Optimality for Discrete-Time Fine-Time Horizon

Problems:

For the a system whose dynamics are governed as,

ξt+1 =f(ζt, ut, wt)

ξt =x

one can formulate the value function,

V (t0, x) = inf
α·∈At0

J(t0, x, α·) (3.1)

V (t0, x) = inf
α·∈At0

E|ζs=x

[
t1−1∑
t=t0

L(ζt, µt) + V (t1, ζt1)

]
(3.2)

This theorem could be put into another form that would let us solve the

optimal state feedback problem.

V (to, x) = inf
u∈U

[L(x, u) + E[V (t0 + 1, f(x, ut0 , wt0)]] (3.3)

We will refer the above equation as the dynamic programming equation (which is

also known as the Bellman equation), or shortly DP throughout this dissertation.

Now that we have introduced the DP formulation, we can utilize it to

develop the solution to the feedback control of the optimal sensor tasking problem.

The following theorem highlights this.

Theorem 3.1.3. For t ∈ {0, 1, . . . T − 1},

V (t, q) = max
uot∈R

Eyt

{
V (t+ 1, βy,u

o
t (q))

}
(3.4)

where the expectation is over the set of possible observations.
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Proof. The cost function J(.) we developed in the previous chapter only had

terminal cost and no running cost, i.e, L(x, u) = 0. Also we have defied the

value function as a function of information state q rather than x. The propagation

of the distribution q, was formulated in terms of the function β in (2.12).

Now, we indicate how the backward DP is mechanized for our own problem

we formulated in (2.17). Starting from the terminal time, T ,

V (T, q) = J̄(q).

Next, note that from (3.4)

V (t, q) = max
uot∈U

∑
yt∈Yuot

P (yt)V (t+ 1, βyt,u
o
t )

and further expanding this equation considering definitions of βyt,u
0
t and P (yt).

V (t, q) = max
uot∈U

∑
yt∈Yuot

{
[Ryt,u0t · q] V

(
t+ 1,

1

Ryt,u0t · q
D(Ryt,u0t q)

)}
(3.5)

Considering the formulations above one can notice that the solution of

the feedback control is demanding. In order to compute V (t, q), one must have

V (t + 1, ·) on SX . One way to approach and solve the feedback problem, (3.4),

could be through numerical methods via discretization of the probability simplex.

Especially for small scale settings, such as small building numbers etc, this type

of approach might be a reasonable option for the field commander to find the

optimal UAV paths. Meanwhile, one can notice that for larger values ofX = #(X ),

the dynamic programming computations would become computationally infeasible

when performed over the discretized probability simplex (grid-based methods),

even for short time spans. To notice the numerical burden of calculations consider

the following example. Let L = 3, the information state being defined on S3,

and suppose that we’ll be discretizing each axis into 25 = 32 elements. For this

setting the terms inside the bracket in (3.5) will be recalculated for a total of 6, 144

times. This number is definitely unacceptable for such a low scale example, not to

mention the possible numerical errors associated with discretization.



41

Meanwhile, the special form of V (t, q) inherited from J̄(q) can be exploited

to avoid this problem. That is, from (2.18), V (T, q) takes the form

V (T, q) = max
i∈I

(vi · q). (3.6)

Here we let I = Ug for notational simplicity in the upcoming sections, and again

for the same reason use the notation vi to represent the vectors γ(ug· ; q
g
0) in the

sequel.

If we can show that this form is retained under the dynamic programming

propagation, then we will be able to work with the vi vectors instead of a discretized

form of V (t, q) over the probability simplex. In order to demonstrate this, we first

introduce the following notation. For any set, I, and positive integer M , let PM(I)

denote the set of all sequences of length M with elements from I. (Note that the

cardinality of PM(I) is (#I)M .) Also in order to simplify our problem notation,

we take Y = {1, 2, . . . Ny}, and define the general control set as U .
= [1..Nu].

Theorem 3.1.4. Suppose V (t+ 1, q) takes the form

V (t+ 1, q) = max
i∈It+1

vit+1 · q

where It+1 = [1..It+1]. Then,

V (t, q) = max
i∈It

vit · q (3.7)

where It = [1..It], It = Nu(It+1)Ny , and

vit =
∑
yt∈Y

Dyt,uot v
jyt
t+1, (3.8)

where (uot , {jyt}) = M−1(i), and M is a one-to-one, onto mapping from U ×
PNy(It+1)→ It (i.e., an indexing of U × PNy(It+1) ).
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Proof. Using the assumption and Theorem 3.1.3, one can write:

V (t, q) = max
uot∈U

∑
yt∈Y

V (t+ 1, βu
o
t ,yt(q))Pr(yt)

= max
uot∈U

∑
yt∈Y

max
i∈It+1

[
vit+1 · βu

o
t ,yt(q)

]
Pr(yt)

= max
uot∈U

∑
yt∈Y

max
i∈It+1

[
vit+1 ·

Dyt,uot q

Ryt,uot · q

]
Ryt,uot · q

= max
uot∈U

∑
yt∈Y

max
i∈It+1

[
vi

T

t+1

Dyt,uot q

Ryt,uot · q
Ryt,uot · q

]
= max

uot∈U

∑
yt∈Y

max
i∈It+1

[
vit+1 ·Dyt,uot q

]
. (3.9)

The next step is most easily seen using the max-plus algebra notation, where we

note that the max-plus algebra is the commutative semifield over R∪ {−∞} with

operations a ⊕ b = max{a, b} and a ⊗ b = a + b (c.f., [FBQ92], [CG79], [KM97],

[McE06]). Using this notation, we have

V o,f (t, q) =
⊕
uot∈U

⊗
yt∈Y

⊕
i∈It+1

[
vit+1 ·Dyt,uot q

]
which, using the max-plus distributive property,

=
⊕
uot∈U

⊕
{iyt}∈P

Ny (It+1)

⊗
y∈Y

[
v
iyt
t+1 ·Dyt,uot q

]
where PNy(It+1) =

{
{iyt}yt∈Y | iyt ∈ It+1 ∀yt ∈ Y

}
. Returning to our previous

notation, this is:

V (t, q) = max
uot∈U

max
{iyt}∈I

Ny
t+1

∑
yt∈Y

[
v
iyt
t+1 ·Dyt,uot q

]
= max

uot∈U
max

{iyt}∈I
Ny
t+1

[∑
yt∈Y

v
iyt
t+1

T
Dyt,uot

]
q.

Note that Dyt,uot is symmetric, and manipulating the dot product one obtains:

V (t, q) = max
uot∈U

max
{iyt}∈I

Ny
t+1

[∑
yt∈Y

Dyt,uot v
iyt
t+1 · q

]
.

Now we proceed to reindex. We first define the new integer index set, It
.
=]1, It[

where It = (It+1)NyNu and It+1
.
= #It+1. This new set, It, may be viewed as
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composed of disjoint subsets, Iu
o
t

t , each of which is related to a particular sensor

control, uot ∈ U , i.e:

It =
⋃
uot∈U

Iu
o
t

t and Iu
o
t

t

⋂
I ū

o
t

t = ∅ for uot 6= ūot ∈ U

Now, we define a functional Mt[u
o
t ] : INy

t+1 → I
uot
t , 1-1 and onto, such that the

following ordering holds. Mt[u]{iyt} <Mt[ū]{iyt} for u < ū, u ∈ U ,ū ∈ U . Then

one can formulate V (t, q) as:

V (t, q) = max
uot∈U

max
k∈I

uot
t

{
vkt · q

}
where,

vkt =
∑
yt∈Y

Dyt,uot v
iyt
t+1 and k =Mt[u

o
t ]({iyt}).

Combining the two maxima, we find

V (t, q) = max
k∈It

vkt · q.

We now develop some helpful notation. For any t, let Vt
.
= {vit | i ∈ It}.

Then, by Theorem 3.1.4, the dynamic program can equivalently be given as

(Vt, It) = DU
[
(Vt+1, It+1)

]
,

where the operator, DU is defined by the propagation (3.8). Also, we can denote

the reconstruction of V (t, ·) from the pair (Vt, It) as V (t, ·) = C
[
(Vt, It)

]
, where

the reconstruction operator is given by (3.7).

Using Theorem 3.1.4, the numerical burden of grid-based analysis of V (t, q)

on the probability simplex is now avoided, and one only needs to propagate the

vectors vit backwards in time using (7). This can yield a significant reduction

in the computation time, especially for for settings where the state space is large.

However, when the DP was performed for large time spans, the computation speed

was observed to still be too slow relative to what would be required for real-time

UAV operations. The remaining difficulty was the growth of the set It at each
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iteration. Remember that, It
.
= [1..It] where It = (It+1)NyNu and It+1

.
= #It+1.

In this equation, the growth of It as a power function is source of problem.

To see this issue, consider the particular example we have considered earlier

on S3. With the newly proposed method, to find V (T−1, q) from V (T, q) a number

of 48 viT−1 vectors needs to be found using (7). This number is no doubt a big

improvement compared to 6,144 iterations earlier. However; continuing to 2nd

and 3rd time steps, to find V (T − 2, q) and V (T − 3, q) from V (T, q) first a total

number of 6912 and then an incredible amount of 143,327,237 vectors would

needed to be calculated and also stored in the computer memory. The following

diagram shows the growth of It.
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.
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.

.

48
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.

.

.

.

.

6912

Figure 3.1: Growth of IT

We will address the means that may be used to attenuate this problem in
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Chapter 4. But before that we would like find out possible extensions of 3.1.4. One

particular case is the formulation we had earlier for the multi subregion case in

section 2.4. Remember that in order to reduce computational complexity we had

switched from the joint distribution, q, to subregional distributions, q1, q2, and q3

and later we have formulated the payoff function as a product of maximums. In

the next section, we will analyze similar multi-subregion operations, and will try

determine if the form of value function could also be preserved in such cases.

3.2 Extension of Theorem 3.1.4 to Other Possi-

ble Cases

As mentioned earlier, the previous section was based on the assumption that

a single mobile sensor would be deployed on a region with a single subregion. For

this reason one can wonder, if a similar result to the one we mentioned in theorem

3.1.4 could be found in other possible scenarios. For this purpose we analyze two

other possible cases. The first analysis considers the situation of N UAVs being

deployed to a region consisting of N subregions, while the second one considers a

single UAV being deployed to a region of N subregions. Before analyzing these

cases, we again consider the assumption that the value of information regarding

different subregions will be independent from each other. For example, in our

earlier urban operation example we have defined the value of information as the

expected survivability of blue ground units. For that scenario, our new asspumtion

considers the expected survivability of blue ground units in a particular subregion

independent of the expected survivability in other subregions. Also, in a similar

way, we assume that the observations in different subregions will be independent of

each other. This assumption is consistent with our earlier open loop formulations

in secton 2.4.
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3.2.1 N UAVs for a Region of N Subregions

Before strating our analysis we present the following mathemathical

identities which will be utilized later.

Lemma 3.2.1. : Consider two finite sets F and G, both of which are subsets of

<, and have their elements indexed by index sets IF and IG. Then,

max
(i,j)∈IF⊗IG

{|fi| |gj|} = max
i∈IF
|fi|max

j∈IG
|gj|

Proof.

Let f̄
.
= max

i∈IF
|fi| and ḡ

.
= max

i∈IG
|gi|

Then, since

|fi||gj| ≤ f̄ ḡ ∀(i, j) ∈ IF ⊗ IG,

max
(i,j)∈IF⊗IG

{|fi||gi|} ≤ f̄ ḡ.

Also, by the definition of the max operator,

max
(i,j)∈IF⊗IG

{|fi||gi|} ≥ |fk||gl| ∀(k, l) ∈ IF ⊗ IG,

max
(i,j)∈IF⊗IG

{|fi||gi|} ≥ f̄ ḡ.

Considering two inequalities,

max
(i,j)∈IF⊗IG

{|fi||gi|} = f̄ ḡ = max
i∈IF
|fi|max

j∈IG
|gj|

Corollary 3.2.2. : Consider two finite sets F and G, both of which are subsets of

<+ .
= {x ∈ <|x ≥ 0}, and have their elements indexed by index sets IF and IG.

Then,

max
i∈IF
{fi}max

j∈IG
{gj} = max

(i,j)∈IF⊗IG
{fi gj}

Proof. Follows the lemma above.
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Now suppose that the operation following the sensing operations will go

through K different subregions. Similar to our 3 stage problem we solved earlier,

we enumerate each subregion with a positive integer from 1 to K. As an initial

asumption we assume that the blue ground units will spend one time step at

eack subregion but later will cosider the general case. Similar to the index set

I used earlier, we define Ik to be the index set for the survivability vectors in

subregion k ∈ [1..K]. Under the earlier assumption of “the value of information

regarding different subregions will be independent from each other” one can write

the following formulation at time T considering the distribution q.

V (T, q) =
K∏
k=1

[
max
ik∈Ik

{
vik · qk

}]
(3.10)

Now, by theorem 3.1.3, and the above equation can be modified into

V (T − 1, q) = max
uoT−1∈UK

{
EyT−1

[V (T, βyT−1(q))]
}
,

= max
uoT−1∈UK

 ∑
yT−1∈YK

[V (T, βyT−1(q))Pr(yT−1)]

 ,

= max
uoT−1∈UK

∑
yT−1

[
K∏
k=1

[
max
ik∈Ik

{
vik · [βyT−1(q)]k

}]
Pr(yT−1)

] .

Notice that in the formulations above, UK = U1 ⊗ U2 . . .UK . Following the

assumption that observations in different subregions will be independent of each

other,

Pr(yT−1) =
K∏
k=1

Pr([yT−1]k) and [βyT−1(q)]k = β[yT−1]k(qk).

Substituting these into the previous equation yields

V (T − 1, q) = max
uoT−1

∑
yT−1

[
K∏
k=1

[
max
ik∈Ik

{
vik · β[yT−1]k(qk)

}] K∏
k=1

Pr([yT−1]k)

]
= max

uoT−1

∑
yT−1

[
K∏
k=1

[
max
ik∈Ik

{
vik · β[yT−1]k(qk)

}
Pr([yT−1]k)

]] .
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Notice that the last term Pr([yT−1]k) is independent of ik ∈ Ik, so can be taken

inside the max.

V (T − 1, q) = max
uoT−1

∑
yT−1

[
K∏
k=1

[
max
ik∈Ik

{
vik · β[yT−1]k(qk)Pr([yT−1]k)

}]]
where

β[yT−1]k(qk) =
D(R[uoT−1]k,[yT−1]k)qk

R[uoT−1]k,[yT−1]k · qk
(3.11)

and

Pr(yT−1) = R[uoT−1]k,[yT−1]k · qk (3.12)

After cancellation of common terms:

V (T − 1, q) = max
uoT−1

 ∑
yT−1∈YK

[
K∏
k=1

[
max
ik∈Ik

{
vik ·D(R[uoT−1]k,[yT−1]k)qk

}]]
Now, we will expand the sum defined for YK , and also to shorten the notation we

define:

D[yT−1]k
.
= D(R[uoT−1]k,[yT−1]k)

Then:

V (T − 1, q) = max
uoT−1

 ∑
[yT−1]1∈Y

. . .
∑

[yT−1]K∈Y

[
K∏
k=1

[
max
ik∈Ik

{
vik ·D[yT−1]kqk

}]]
Notice that the terms inside the product are independent of [yT−1]K except the

Kth term. Taking out the Kth term from the common product

V (T − 1, q) = max
uoT−1

 ∑
[yT−1]1

. . .
∑

[yT−1]K−1

K−1∏
k=1

[
max
ik∈Ik

{
vik ·D[yT−1]kqk

}]
· · ·

∑
[yT−1]K

[
max
iK∈Ik

{
viK ·D[yT−1]kqk

}]
Continuing in this fashion we get:

V (T − 1, q) = max
uoT−1

 ∑
[yT−1]1

[
max
i1∈I1

{
vi1 ·D[yT−1]1q1

}]
· · ·

∑
[yT−1]K

[
max
iK∈IK

{
viK ·D[yT−1]kqk

}]
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Now using the Max-Plus distributivity property as used before:

V (T − 1, q) = max
uoT−1


 max
{(i1)[yT−1]1

}∈[I1]Ny

∑
[yT−1]1

{
v(i1)yT−1 ·D[yT−1]1q1

} · · ·
max

{(iK)[yT−1]K
}∈[IK ]Ny

∑
[yT−1]K

[{
v(iK)yT−1 ·D[yT−1]kqk

}]
= max

uoT−1


K∏
k=1

max
{(ik)[yT−1]k

}∈[Ik]
Ny

 ∑
[yT−1]k

{
D[yT−1]kv(ik)[yT−1]k · qk

}
Again similar to the previous analysis, define: Ik

.
= #(Ik).

IkT−1
.
= (Ik)Ny ∗Nk

u , IT−1
.
=

K∑
k=1

(Ik)Ny ∗Nk
u

Now, similar to the functionals we defined earlier, we define the functional,

MT−1[[uoT−1]k] : [Ik]Ny → Ik,[u
o
T−1]k

T−1 , 1-1 and onto, such that the following ordering

holds. MT−1[[uoT−1]k]{(ik)[yT−1]k
} < MT−1[[ūoT−1]k]{(ik)[yT−1]k

} for [uoT−1]k <

[ūoT−1]k, u
o
T−1 ∈ U ,ūoT−1 ∈ U . Notice that Ik,[u

o
T−1]k

T−1 are partitions of IkT−1 for

different [uoT−1]k; i.e:

IkT−1 =
⋃

[uoT−1]k

Ik,[u
o
T−1]k

T−1 and Ik,[u
o
T−1]k

T−1

⋂
Ik,[ū

o
T−1]k

T−1 = ∅ for [uoT−1]k 6= [ūoT−1]k

(3.13)

Then,

V (T − 1, q) = max
uoT−1


K∏
k=1

max
j∈I

k,[uo
T−1

]k
T−1

{
vjT−1 · qk

}
where

vjT−1
.
=
∑

[yT−1]k

D[yT−1]kv(ik)[yT−1]k where j = MT−1[[uoT−1]k]{(ik)[yT−1]k
} (3.14)

By Corollary 3.2.2, we can interchange
∏

and max. Then for a fixed uoT−1 define

the set of K tuples (related to control u0
T−1)

S
K,u0T−1

T−1
.
=
{

(j1, j2, · · · jK) | jk ∈ I
k,[uoT−1]k
T−1

}
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and

SKT−1
.
=

⋃
uoT−1∈UK

S
K,u0T−1

T−1

Then,

V (T − 1, q) = max
uoT−1

 max
i∈S

K,u0
T−1

T−1

{
K∏
k=1

[
vjT−1 · qk

]}
Combining two max’s:

V (T − 1, q) = max
i∈SK

T−1

{
K∏
k=1

[
vjT−1 · qk

]}
.

Notice that SKT−1 can also be defined as

SKT−1 =
{

(j1, j2, · · · jK) | jk ∈ IkT−1

}
i.e., SKT−1 = I1

T−1 ⊗ I2
T−1 ⊗ · · · IKT−1. Then again by corollary 3.2.2, we can

interchange the max and the product operators to get,

V (T − 1, q) =
K∏
k=1

max
i∈IkT−1

[
vjT−1 · qk

]
.

This result showed that the value function retained its form of product of

maximums when propogated backwards in DP from the terminal time. With a

proof following the smae mechanics, it can also be shown that for any t ∈ T o−
this form will be preserved. The following theorem summarizes this result.

Theorem 3.2.3. : Suppose that V (t+ 1, qk) takes the form

V (t+ 1, q) =
K∏
k=1

max
i∈Ikt+1

(vit+1 · qk)

Then

V (t, q) =
K∏
k=1

max
i∈Ikt

(vit · qk)

where Ikt propogates according to (3.13) and the vectors, vi, according to (3.14).
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3.2.2 Single UAV for a Region of N Subregions

Now, suppose we have only a single UAV to deploy to battlefield. We need to

analyze the best control decision based on this scarce resource. One can argue that

it would be best for the ground units to send the sensor once to each subregion

instead of sending it more than once to a subregion and leaving another unobserved.

We first analyze this situation and later develop a more general framework for

unconstrained UAV controls. Again starting from the terminal time T , we have

V (T, q) =
K∏
k=1

[
max
ik∈Ik

{
vik · qk

}]
Now, first using the Dynamic Programming Principle (DPP), and then using the

above equation:

V (T − 1, q) = max
uoT−1

{
EyT−1∈Y [V (T, βyT−1(q))]

}
= max

uoT−1

 ∑
yT−1(uoT−1)

[V (T, βyT−1(q))Pr(yT−1)]


= max

uoT−1

 ∑
yT−1(uoT−1)

[
K∏
k=1

[
max
i∈Ĩk

{
vi · [βyT−1(q)]k

}]
Pr(yT−1)

]
Now we split the

∏
into two parts, the subregion where UAV is going to go and

the subregions unaffected by the UAV controls. Also:

[βyT−1(q)]k = qk if k 6= L(uoT−1)

= βyT−1(qk) if k = L(uoT−1)

where L(uoT−1) is an operator that gives the subregion number for any uoT−1 ∈ U .

Then

= max
uoT−1


∑
yT−1

 K∏
k=1

k 6=L(u0T−1)

[
max
i∈Ĩk

{
vi · qk

}]

max
j∈ĨL(uo

T−1
)

{
vj · βyT−1(qL(uoT−1))

}
Pr(yT−1)

]}
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Again noticing that Pr(yT−1) is independent of j ∈ ĨL(uoT−1) it can be taken inside

the max. Also to shorten the notation lets define:

qL
.
= (qL(uoT−1))

Now using previously defined formula for βyT−1qL:

= max
uoT−1


∑
yT−1

 K∏
k=1

k 6=L(u0T−1)

[
max
i∈Ĩk

{
vi · qk

}]

max
j∈ĨL(uo

T−1
)

{
vj · D

yT−1qL
RyT−1 · qL

RyT−1 · qL
}]}

= max
uoT−1


∑
yT−1

 K∏
k=1

k 6=L(u0T−1)

[
max
i∈Ĩk

{
vi · qk

}]
max

j∈ĨL(uo
T−1

)

{
vj ·DyT−1qL

}


Whole
∏

term is independent of yT−1:

= max
uoT−1


K∏
k=1

k 6=L(u0T−1)

[
max
i∈Ĩk

{
vi · qk

}]∑
yT−1

max
j∈ĨL(uo

T−1
)

{
vj ·DyT−1qL

}


Now, interchanging
∑

and max as done before:

= max
uoT−1


K∏
k=1

k 6=L(u0T−1)

[
max
i∈Ĩk

{
vi · qk

}]

max
{jyT−1

}∈[Ĩ
L(uo

T−1
)
]2

∑
yT−1

{
vjyT−1 ·DyT−1qL

}
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= max
uoT−1


K∏
k=1

k 6=L(u0T−1)

[
max
i∈Ĩk

{
vi · qk

}]

max
{jyT−1

}∈[Ĩ
L(uo

T−1
)
]2

∑
yT−1

{
DyT−1 vjyT−1

}
· qL


Similar to previous analysis, now define: Ik

.
= ](Ĩk).

IkN,T−1
.
= (Ik)2 ∗ bk, IN,T−1

.
=

K∑
k=1

(Ik)2 ∗ bk,

ĨkN,T−1
.
= {IT + 1, · · · , IT + IN,T−1}, ĨkT−1

.
= ĨkT

⋃
ĨkN,T−1

define: The functional, MT−1[uoT−1] : [ĨL(uoT−1)]2 → Ĩ
L(uoT−1),uoT−1

N,T−1 , 1-1 and onto,

where Ĩ
L(uoT−1),uoT−1

N,T−1 are partitions of Ĩ
L(uoT−1)

N,T−1 for different uoT−1 ∈ L(uoT−1); i.e:

Ĩ
L(uoT−1)

N,T−1 =
⋃

uoT−1∈L(uoT−1)

Ĩ
L(uoT−1),uoT−1

N,T−1 and

Ĩ
L(uoT−1),uoT−1

N,T−1

⋂
Ĩ
L(uoT−1),ūoT−1

N,T−1 = ∅ for uoT−1 6= ūoT−1

Then:

= max
uoT−1


K∏
k=1

k 6=L(u0T−1)

[
max
i∈Ĩk

{
viT−1 · qk

}]
max

r∈Ĩ
L(uo

T−1
),uo

T−1
N,T−1

[
vrT−1 · qL

]
where

vrT−1
.
=

∑
yT−1

DyT−1 vjyT−1 where, r = MT−1[uoT−1](j1, j2) for j1, j2 ∈ ĨL(uoT−1)

vsT−1
.
= vs for s /∈ ĨL(uoT−1)

By Corrollary 3.2.2, we can interchange
∏

and max. Then for a fixed uoT−1 define:

S
K−1/L(u0T−1)

T
.
= {(i1, i2, · · · , iK−1) | ik ∈ Ĩk ∀k < L(uoT−1) and

ik ∈ Ĩk+1 ∀k ≥ L(uoT−1)
}
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and similarly

[q̄]k
.
= qk ∀k < L(uoT−1) and

[q̄]k
.
= qk+1 ∀k ≥ L(uoT−1)

Then:

= max
uoT−1

 max
j∈S

K−1/L(u0
T−1

)

T

K−1∏
k=1

[
vjkT−1 · q̄k

]
max

r∈Ĩ
L(uo

T−1
),uo

T−1
N,T−1

[
vrT−1 · qL

]
Combining two max’s with defining a new set:

S
K,uoT−1

T−1 = {(i1, i2, · · · , iK)| ik ∈ Ĩk ∀k 6= L(uoT−1), and

iL(uoT−1) ∈ Ĩ
L(uoT−1),uoT−1

N,T−1 }

Then:

= max
uoT−1

 max
i∈S

K,uo
T−1

T−1

K∏
k=1

[
vikT−1 · qk

]
Now, define:

SKT−1
.
=
⋃
uoT−1

S
K,uoT−1

T−1

Then:

V o,f (T − 1, q) = max
i∈SK

T−1

K∏
k=1

[
vikT−1 · qk

]
If written in terms of subregional indices, the set SKT−1 is:

SKT−1 =

{
(i1, i2, · · · , iK)| ik ∈ ĨkT−1 and

K∑
k=1

N(ik) = 1

}

where N(j) = number of UAV visits related to index j.

Up to this point the constraint and unconstrained UAV control analysis are the
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same. Now lets have a look at constrained UAV control (i.e: UAV visiting each

subregion once)

Constrained UAV analysis:

Analysing time t=T-2 with the Dynamic Programming Principle (DPP), and

considering the equation above:

V o,f (T − 2, q) = max
uo
T−2

L(u0T−2)6=L(uoT−1)

{
EyT−2(uoT−2)∈Y

[
V o,f (T − 1, βyT−2(q))

]}

= max
uoT−2

∑
yT−2

[
V o,f (T, βyT−2(q))Pr(yT−2)

]
= max

uoT−2

∑
yT−2

[
max
i∈SK

T−1

{
K∏
k=1

[
vikT−1 · [β

yT−2(q)]k
]}]

Pr(yT−2)


Now dividing the

∏
with first noticing again:

[βyT−2(q)]k = qk if k 6= L(uoT−2)

= βyT−2(qk) if k = L(uoT−2)

Then

= max
uoT−2


∑
yT−2

 max
i∈SK

T−1


K∏
k=1

k 6=L(u0T−2)

[
vikT−1 · qk

] [
v
iL(uo

T−2
)

T−1 · βyT−2(qL(uoT−2))

]
Pr(yT−2)]}

And now using lemma (1) we divide the maxi∈SK
T−1

into parts that are and not

related to uoT−2 and also again to shorten the notation lets define:

qL
.
= (qL(uoT−2))
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for a fixed uoT−2 define:

S
K−1/L(u0T−2)

T−1
.
= {(i1, i2, · · · , iK−1) | ik ∈ ĨkT−1 ∀k < L(uoT−2) and

ik ∈ Ĩk+1
T−1 ∀k ≥ L(uoT−2) and

K−1∑
k=1

N(ik) = 1

}
and similarly

[q̄]k
.
= qk ∀k < L(uoT−2) and

[q̄]k
.
= qk+1 ∀k ≥ L(uoT−2)

Then:

= max
uoT−2

∑
yT−2

 max
i∈S

K−1/L(u0
T−2

)

T−1

{
K−1∏
k=1

[
vikT−1 · q̄k

]}

max
j∈ĨL(uo

T−2
)

[
vjT−1 · β

yT−2(qL)
]
Pr(yT−2)

]}

Again noticing that Pr(yT−2) is independent of j ∈ ĨL(uoT−2) it can be taken inside

the max. Also notice that for j ∈ ĨL(uoT−2), vjT−1 = vj.

= max
uoT−2

∑
yT−2

 max
i∈S

K−1/L(u0
T−2

)

T−1

{
K−1∏
k=1

[
vikT−1 · q̄k

]}

max
j∈ĨL(uo

T−2
)

[
vj · D

yT−2qL
RyT−2 · qL

RyT−2 · qL
]]}

= max
uoT−2

∑
yT−2

 max
i∈S

K−1/L(u0
T−2

)

T−1

{
K−1∏
k=1

[
vikT−1 · q̄k

]}
max

j∈ĨL(uo
T−2

)

[
vj ·DyT−2qL

]
But the set S

K−1/L(u0T−2)

T−1 is independent of yT−2:

= max
uoT−2

 max
i∈S

K−1/L(u0
T−2

)

T−1

{
K−1∏
k=1

[
vikT−1 · q̄k

]}∑
yT−2

[
max

j∈ĨL(uo
T−2

)

{
vj ·DyT−2qL

}]
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Now using the Max-Plus Distributivity:

= max
uoT−2

 max
i∈S

K−1/L(u0
T−2

)

T−1

{
K−1∏
k=1

[
vikT−1 · q̄k

]}

max
{jyT−2

}∈[Ĩ
L(uo

T−2
)
]2

∑
yT−2

{
vjyT−2 ·DyT−2qL

}

= max
uoT−2

 max
i∈S

K−1/L(u0
T−2

)

T−1

{
K−1∏
k=1

[
vikT−1 · q̄k

]}

max
{jyT−2

}∈[Ĩ
L(uo

T−2
)
]2

∑
yT−2

{
DyT−2vjyT−2

}
· qL


But, remember that the previously defined functional: MT−1[u] : [ĨL(u)]2 →

Ĩ
L(u),u
N,T−1, 1-1 and onto.

Using MT−1[u] again as MT−1[uoT−2]:

= max
uoT−2

 max
i∈S

K−1/L(u0
T−2

)

T−1

{
K−1∏
k=1

[
vikT−1 · q̄k

]}
max

r∈Ĩ
L(uo

T−2
),uo

T−2
N,T−1

∑
yT−2

{
vrT−1 · qL

}
where

vrT−1
.
=

∑
yT−2

DyT−2 vjyT−2 where, r = MT−1[uoT−2](j1, j2) for j1, j2 ∈ ĨL(uoT−2)

One should note that this value of vrT−1 is already computed in the previous step.

Now combining two max’s with defining a new set:

S
K,uoT−2

T−2 = {(i1, i2, · · · , iK) | ik ∈ ĨkT−1,

K∑
k=1

k 6=L(u0T−2)

N(ik) = 1, ∀k 6= L(uoT−2),

and iL(uoT−1) ∈ Ĩ
L(uoT−1),uoT−1

N,T−1

}
Then:

V o,f (T − 2, q) = max
uoT−2

 max
i∈S

K,uo
T−2

T−2

K∏
k=1

[
vikT−1 · qk

]



58

Now, define:

SKT−2
.
=
⋃
uoT−2

S
K,uoT−2

T−2

Then:

V o,f (T − 2, q) = max
i∈SK

T−2

K∏
k=1

[
vikT−1 · qk

]
If written in terms of subregional indices, the set SKT−2 is: (similar to SKT−2)

SKT−2 =

{
(i1, i2, · · · , iK)| ik ∈ ĨkT−1 and

K∑
k=1

N(ik) = 2

}

where N(j) = number of UAV visits related to index j.

Now, generalizing this idea to any time t = T − n:

Theorem 3.2.4. : Suppose that V o,f (t+ 1, qk) takes the form

V o,f (t+ 1, q) = max
i∈SK

t+1

{
K∏
k=1

(vit+1 · qk)

}

Then

V o,f (t, q) = max
i∈SK

t

{
K∏
k=1

(vit · qk)

}
where

SKt = SKT−n =

{
(i1, · · · , iK)| ik ∈ ĨkT−1 and

K∑
k=1

N(ik) = n

}

and

vkt = vkT−1 ∀t ∈ [T − 1, T − n]

Unconstrained Analysis:

We start analysis from t = (T − 1)th step in the previous section. Recall:

V o,f (T − 1, q) = max
i∈SK

T−1

K∏
k=1

[
vikT−1 · qk

]
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with

SKT−1 =

{
(i1, i2, · · · , iK)| ik ∈ ĨkT−1 and

K∑
k=1

N(ik) = 1

}
where N(j) = number of UAV visits related to index j.

Now the UAV controller does not have a constraint of sending the UAV to another

subregion. Thus we can no longer assume: L(uoT−2) 6= L(uoT−1).

A similar analysis yields:

V o,f (T − 2, q) = max
uoT−2

{
EyT−2(uoT−2)∈Y

[
V o,f (T − 1, βyT−2(q))

]}
= max

uoT−2

∑
yT−2

[
V o,f (T, βyT−2(q))Pr(yT−2)

]
= max

uoT−2

∑
yT−2

[
max
i∈SK

T−1

{
K∏
k=1

[
vikT−1 · [β

yT−2(q)]k
]}]

Pr(yT−2)


And splitting the

∏
:

= max
uoT−2


∑
yT−2

 max
i∈SK

T−1


K∏
k=1

k 6=L(u0T−2)

[
vikT−1 · qk

] [
v
iL(uo

T−2
)

T−1 · βyT−2(qL(uoT−2))

]
Pr(yT−2)]}

However, unlike the previous case maxi∈SK
T−1

can not be divided into two separate

entities. The value chosen for j ∈ Ĩ
L(u0T−2)

T−1 is going to affect what is left for the

remaining subregions. The main reason for this is that UAV can either go back to

the previous subregion or to a new one. Depending on this choice, indices left to

other regions are affected.

Dividing the max we get (writing only the terms after max):
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max
j∈Ĩ

L(uo
T−2

)

T−1

 max
i∈S

K−1/L(uo
T−2

),j

T−1

{
K−1∏
k=1

[
vikT−1 · q̄k

] [
vjT−1 · β

yT−2(qL)
]}Pr(yT−2)

where similar to previous definitions

S
K−1/L(u0T−2),j

T−1
.
= {(i1, i2, · · · , iK−1) | ik ∈ ĨkT−1 ∀k < L(uoT−2) and

ik ∈ Ĩk+1
T−1 ∀k ≥ L(uoT−2) and

K−1∑
k=1

N(ik) +N(j) = 1

}
and similarly

[q̄]k
.
= qk ∀k < L(uoT−2) and

[q̄]k
.
= qk+1 ∀k ≥ L(uoT−2)

Like the previous analysis Pr(yT−2) is independent of both sets that define max

and thus can be taken inside to give us:

max
j∈Ĩ

L(uo
T−2

)

T−1

 max
i∈S

K−1/L(uo
T−2

),j

T−1

{
K−1∏
k=1

[
vikT−1 · q̄k

] [
vjT−1 ·D

yT−2qL
]}

Then, V o,f (T − 2, q) would become:

= max
uoT−2

∑
yT−2

 max
j∈Ĩ

L(uo
T−2

)

T−1

[vjT−1 ·D
yT−2qL

]
max

i∈S
K−1/L(uo

T−2
),j

T−1

{
K−1∏
k=1

[
vikT−1 · q̄k

]}


Using Max-Plus trick:

= max
uoT−2

 max
{jyT−2

}∈[Ĩ
L(uo

T−2
)

T−1 ]2

∑
yT−2

[
v
jyT−2

T−1 ·D
yT−2qL

]

max
i∈S

K−1/L(uo
T−2

),jyT−2
T−1

{
K−1∏
k=1

[
vikT−1 · q̄k

]}
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Unlike previous case, now yT−2 is affecting both UAV sent region and other regions.

(No separation) !

PROBLEM !!!

One can take the UAV related term inside the max,:

= max
uoT−2

 max
{jyT−2

}∈[Ĩ
L(uo

T−2
)

T−1 ]2

∑
yT−2

max
i∈S

K−1/L(uo
T−2

),jyT−2
T−1

[
v
jyT−2

T−1 ·D
yT−2qL

]
K−1∏
k=1

[
vikT−1 · q̄k

]}}
Now combining the product with defining a new set: (similar to before):

S
K,uoT−2,jyT−2

T−2 = {(i1, i2, · · · , iK) | ik ∈ ĨkT−1 ∀k 6= L(uoT−2), iL(uoT−2) = jyT−2
,

and
K∑
k=1

k 6=L(u0T−2)

N(ik) +N(jyT−2
) = 1,


= max

uoT−2

 max
{jyT−2

}∈[Ĩ
L(uo

T−2
)

T−1 ]2

∑
yT−2

max
i∈S

K−1/L(uo
T−2

),jyT−2
T−1

K∏
k=1

[
v̂
ik,jyT−2

T−1 · qk
]


where

v̂
ik,jyT−2

T−1
.
= vikT−1 if k 6= L(uoT−2)

.
= DyT−2 v

jyT−2

T−1 if k = L(uoT−2)

Now one can use the Max-Plus trick on the last max too:

= max
uoT−2

 max
{jyT−2

}∈[Ĩ
L(uo

T−2
)

T−1 ]2

 max
{iyT−2

}∈[S
K−1/L(uo

T−2
),jyT−2

T−1 ]2

∑
yT−2

K∏
k=1

[
v̂
ik,jyT−2

T−1 · qk
]



By combining max’s, this can be put into a final form of:

V o,f (T − 2, q) = max
i∈SK

T−2

∑
yT−2

K∏
k=1

[
v

[iyT−2
]k

T−2 · qk
]
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This finding shows that for a the case of K subregion, single UAV case the

value function does not retain its form during backward DP iterations. For this

reason, for this kind of settings grid-based methods would still be the only option

to solve the optimal tasking problem.



Chapter 4

Refining and Pruning Methods

4.1 Introduction

In this chapter, we introduce two approaches to increase the computation

speed of the new methodology defined in theorem 3.1.4. Briefly, the first one,

“refining”, will involve the elimination of inactive members of the set It, i.e., the

elimination of those that nowhere achieve the maximum. On the other hand,

“pruning” will refer judicious elimination of active elements of It.

4.2 Refining the Index Set, It
When backward dynamic programming was employed to obtain the new

vectors, vt, out of the set of Vt+1, it was noticed that the newly generated set of

Vt was not generally the minimal set containing the necessary information at time

t. Some vectors in set Vt were inactive (suboptimal) in the simplex and thus they

never influenced the supremum. That is, an inactive vector yields hyperplanes

which are everywhere below the supremum of the other hyperplanes; an example

can be seen in Fig. 2.2 where purple hyperplanes are inactive.

These inactive vectors hold precious computer memory, and moreover

during dynamic programming iterations, since every vector in Vt is propogated,

additional new vectors are produced from them. From this observation, one

might wonder whether the progeny of such vectors (through the dynamic program

63
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propagation) would also remain inactive during subsequent steps. If so, then

any inactive vector can instantly be eliminated from Vt at the first time of non-

influence, and in this way the growth of the size of Vt would be slower, thereby

greatly speeding computation. The following theorem indicates this propagation

of inactivity.

Theorem 4.2.1. Let Rt+1 be the refined subset of It+1, i.e:

Rt+1
.
= {i ∈ It+1 | ∃ q ∈ SN , υit+1 · q > υjt+1 · q ∀j ∈ It+1 \ {i} },

and let the corresponding refined vectors be VRt+1 = {vit+1 ∈ Vt+1 | i ∈ Rt+1}. Let

(V̂t, Ît) = DU
[
(VRt+1,Rt+1)

]
i.e., the backward propagation of the refined set of

vectors. Then,

C
[
(V̂t, Ît)

]
= C

[
(Vt, It)

]
.

In other words, it is sufficient to work with V̂t, so we only need to propogate VRt+1.

Proof. For the sake of presentation we define a slightly different notation for the

mapping M. For each uo ∈ U and {iyt} ∈ PNy(It+1), we let Mt[u
o
t ]({iyt}) =

M(uo, {jyt}). Now, consider j ∈ It but j /∈ Ît. Then by the definition of It,∃uot ∈
U , and {iyt} ∈ (It+1)Ny such that Mt[u

o
t ]({iyt}) = j. Then for q ∈ SN following the

formulation 3.1.4 one can write:

vjt · q =

(∑
yt

D(Ruot ,yt)v
{iyt}
t+1

)
· q =

∑
yt

(
D(Ruot ,yt)v

{iyt}
t+1 · q

)
=

∑
yt

([
v
{iyt}
t+1

]T
DT (Ruot ,yt) q

)
=

∑
yt

([
v
{iyt}
t+1

]T
D(Ruot ,yt) q

)
=

∑
yt

(
v
{iyt}
t+1 ·D(Ruot ,yt) q

)
=

∑
yt

(
v
{iyt}
t+1 · q̂u

o
t ,yt Ruot ,yt · q

)
,

where q̂u
o
t ,yt

.
=
D(Ruot ,yt) q

Ruot ,yt · q
= βu

o
t ,yt(q)
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Here, following the properties of the mapping βu
o
t ,yt(.), it should be noticed that

q̂u
o
t ,yt ∈ SN . Then for q̂u

o
t ,yt , by the definition of Rt+1, and {iyt} ∈ (It+1)Ny ,

∃ kyt ∈ Rt+1 we can write:

v
kyt
t+1 · q̂u

o
t ,yt ≥ v

iyt
t+1 · q̂u

o
t ,yt ∀iyt ∈ It+1

which implies:

vjt · q ≤
∑
yt

(
v
{kyt}
t+1 · q̂yt Ruot ,yt · q

)
Following previous steps this time backwards we can write:

vjt · q ≤
∑
yt

(
D(Ruot ,yt) v

{kyt}
t+1

)
· q (4.1)

Now, similar to Mt[u
o
t ], define a functional M̂t[u

o
t ] : RNy

t+1 → Î
uot
t , 1-1 and onto,

such that the following ordering holds. M̂t[u
o
t ]({kyt}) < M̂t[ū

o
t ]({kyt}) for u0

t < ū0
t ,

u0
t ∈ U ,ū0

t ∈ U . Notice that Îu
o
t

t are partitions of Ît for different uot ; i.e:

Ît =
⋃
uot

Îu
o
t

t and Îu
o
t

t

⋂
Î ū

o
t

t = ∅ for uot 6= ūot

Then following (4.1)

vjt · q ≤ vrt · q,

where,

vrt
.
=
∑
yt

D(Ruot ,yt)v
{kyt}
t+1 and r = M̂t[u

o
t ]({kyt}), r ∈ Î

uot
t

This analysis shows that, for any j ∈ It \ Ît,∃r ∈ Ît (defined from {kyt} ∈ R
Ny

t+1)

such that vjt · q ≤ vrt · q. Thus it is sufficient to propagate Rt+1 rather than the

complete set It+1.

Graphically, the propagation of the sets should be done as shown below:

(Vt+1, It+1)
REFINE−−−−−→ (VRt+1,Rt+1)yDP
(Vt, It)

.
= (V̂t, Ît)

REFINE−−−−−→ (VRt ,Rt)
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Now that we have established that suboptimal vectors do not influence the

subsequent value functions, the only thing that remains is to develop a method to

identify these inactive vectors in Vt, and then form the refined vector set VRt by

excluding them. Following Theorem 4.2.1, where we defined the refined subsets Rt

of It and VRt of Vt, we know that a vector vit must be excluded from VRt if there

exists no q ∈ SN such that vit · q > vjt · q ∀j ∈ It \ {i}. This is equivalent to saying

that, vit is an inactive vector if the difference, vit · q − v
j
t · q < 0 ∀j ∈ It \ {i} and

at any q ∈ SN . Since this difference is negative for any q ∈ SN , we notice that

taking the maximum of this difference over SN would still yield a negative number.

For this reason, the identification of the inactive vectors can be formulated as an

optimization problem over the simplex, SN . Considering the linear nature of the

problem we use the well documented linear programming algorithm.

Now, suppose that a number of vectors are already present in the set

Vt, and we want to determine particularly whether the vector vit is an active

member of this set, i.e., if it is influencing the supremum, V (t, q). The following

optimization formulation formulates the inactive vector identification problem

as a linear programming problem following the ideas developed in the previous

paragraph. It formulates the objective function as the difference between the dot

product, vit ·q, and the surface z, which is defined in the constraint equation by the

other vectors in Vt . Other constraints defining the simplex, SN , appear as well.

max
q∈SN

: vit · q − z

subject to : vjt · q − z ≤ 0, ∀j ∈ It − {i}

qk ≥ 0, ∀k ∈]1, N [

z ≥ 0∑
qk = 1.


.
= ψi (4.2)

Equivalently, the above formulation can be expressed in the all-inequality form:

−ψi =

 min
x

: c · x

subject to : Ax ≥ 0,
(4.3)
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where

x = [qT z]T , c = ci
.
= [−vit

T
1]T (4.4)

and

A = AIt,i
.
=



−a1T

−a2T

...

−ai−1T

−ai+1T

...

−aItT

I(N+1)

bT

−bT



, with aj =


[
vjt
]

1
...[

vjt
]
N

−1

 , b =


1
...

1

0



If this last optimization scheme (4.3) results in a negative value (positive in

the first scheme) then the vit vector should retained (as it contributes to V (t, q)).

Otherwise, it should be eliminated. Repeating this scheme for each vector vit, i ∈ It,
one could get the the minimal set Rt which still would yield V (t, q). We complete

the refining method by giving the Refining algorithm below.

Definition 4.2.2. Refining Algorithm:

Suppose that at some time t ∈ T g we have the set of vectors, Vt and the

corresponding index set It = {1, · · · It} that define V (t, q). In order to eliminate

the inactive vectors in Vt the following pseudo-code is employed.

Step 0: Let i = 1

Loop over, j = 1 : It

Step 1: Form the matrix A = AIt,i, and solve (4.3).

Step 2: If ψi ≤ 0: vjt is not an active vector.

Erase ith row of A

Else: vjt is an active vector.
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i = i+ 1

End loop

Once the loop ends, the set of vectors active, VRt , can be extracted from the final

form of the matrix A. The kth vector in set VRt will be, vkt = A(k, 1 : N)

The reader should notice the extreme growth of the size of It in Theorem

3.1.4. Overall, the refining of It gave us a significant boost to computation speeds

by reducing this growth. Simulations were done with randomly created VT sets

and for a sensor tasking problem problem defined again on S2, it was found that

the refining algorithm reduced the size of the set IT−1 to an average 1/3 of its

original size. The sizes of subsequent sets were even reduced by higher factors. By

the end of the third iteration (with observation and refining at each step) the size

of IT−3 was reduced by an average factor of more than 30,000.

Besides this improvement, it was noticed that the simplex method was also

giving us a quantitative value about the contribution of each individual vector in

(Vt,Rt) to our analysis of V (t, q), the quantity maxq(v
j
t · q − z). Exploiting this

value, one can think about eliminating vectors with very small contributions to

V (t, q) to keep the size of It more manageable. This idea forms the basis for the

next analysis.

4.3 Pruning the Refined Set, Rt

At a given time t ∈ {0, 1, ..., T −1}, after refining the original set of vectors,

Vt, we ended up with the refined set of vectors, VRt , which was consisted of the

vectors that were active through the simplex S.

At that time, it was quickly noticed that some of the vectors in Vt defining

V (t, q) were having very small contributions to V (t, q). What we mean is that the

value of V (t, q) would have changed very small and/or in a very small portion of

the simplex S if such vectors were taken out of VRt .

In order to further improve the computation speed without loosing accuracy

in our analysis, these vectors might be omitted carefully. To identify which vectors
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to eliminate from the refined set, Rt, we first need to define an error function

at time t, εt, over the probability simplex, SN , for the pruning analysis. Two

candidates chosen for this purpose were the functions defined by L∞ and L1 norms.

We first present our results with the L∞ norm and later with the L1 norm.

Definition 4.3.1. L∞ based Error Function, ε∞:

Suppose that at some time t ∈ {0, 1, ..., T − 1}, a certain number of vectors were

pruned out of the refined set, Rt, leaving us with the remaining set, Pt which has a

cardinality of #(Pt) = p. We define the the error, ε∞, occurring by omitting these

vectors out of the refined set, using the L∞ norm as:

ε∞(Pt, t)
.
=‖ V (t, q)−WPt(t, q) ‖∞= max

q∈SN

{
V (t, q)−WPt(t, q)

}
(4.5)

where V (t, q) is the value function as defined in (2.16), and WPt(t, q), value

function after pruning, is defined as:

WPt(t, q)
.
= max

i∈Pt

{
vit · q

}
. (4.6)

Since, ε∞(Pt, t) is dependent on the choice of Pt, the set that that results in the

minimum pruning error should be chosen at the end to yield the optimal pruning

error, εo∞(t). Let 2R denote the power set of R, i.e., the algebra consisting of all

subsets of R. Then we can write:

εo∞(t)
.
= min
Pt∈2R

ε∞(Pt, t). (4.7)

Following this definitions, we now look for a method to calculate εo∞(t),

and find Pot . Since ε∞(Pt, t) is defined as the maximum over the simplex SN ,

calculation of this error can be considered as an optimization problem over that

simplex. For this reason, an error formulation utilizing the linear programming

formulation, similar to (4.2), can be formulated over the probability simplex, SN ,

and later the well documented simplex algorithm can again be utilized to solve

this problem as well. Now, as mentioned in the previous paragraph, at time t we

assume that a number of vectors were pruned out of the refined set, Rt, leaving
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us the remaining set, Pt. In order to reduce notational complexity, here we define

the set Tt, as Tt
.
= Rt \ Pt. Following the same ideas utilized in the refining

formulations, we can formulate the error induced by omitting the vectors vit with

i ∈ Tt, and working only with the vectors vjt , j ∈ Pt as:

ε∞(Pt, t)
.
= max

(q,z)∈SN⊗<

[
max
i∈Tt

(
vit · q

)
− z
]

(4.8)

subject to : vjt · q − z ≤ 0, ∀j ∈ Pt

qk ≥ 0, ∀k ∈]1, N [

z ≥ 0∑
qk = 1


(4.9)

Notice that in the above equations z is defined by Pt, and for this reason could be

taken inside the parentheses in (4.8):

ε∞(Pt, t) = max
(q,z)∈SN⊗<

[
max
i∈Tt

(
vit · q − z

)]
.

The function inside the parentheses is uniformly continuous in both q and z.

Considering this property, we can interchange the order of the max terms:

ε∞(Pt, t) = max
i∈Tt

[
max

(q,z)∈SN⊗<

(
vit · q − z

)]
.

To complete our discussion, for i ∈ Tt we define:

εi∞(Pt, t)
.
= max

q∈SN
(vit · q)− z (4.10)

subject to : vjt · q − z ≤ 0, ∀j ∈ Pt

qk ≥ 0, ∀k ∈]1, N [

z ≥ 0∑
qk = 1.


(4.11)

With the formulation above εi∞(t) can be computed by the utilization of the simplex

algorithm. Following this one can compute ε∞(Pt, t) as:
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ε∞(Pt, t) = max
i∈Tt

εi∞(Pt, t). (4.12)

At this point, one might wonder about the existence of a possible error

bound during DP iterations. The following theorem highlights the boundedness

property of the error, ε∞(t).

Theorem 4.3.2. Let V (t+ 1, q) and WPt(t+ 1, q) be the functions defined above

for some pruned set Pt. If

ε∞(Pt, t+ 1) =‖ V (t+ 1, q)−W (t+ 1, q) ‖∞= ε

then

ε∞(Pt, t) =‖ V (t, q)−W (t, q) ‖∞≤ ε

Proof. By the definition of V (t+ 1, q) and WPt(t+ 1, q),

V (t, q) = max
ut

{∑
yt

V (t+ 1, βut,yt(q))P (yt)

}
and

WPt(t, q) = max
ut

{∑
yt

WPt(t+ 1, βut,yt(q))P (yt)

}
.

Consequently,

V (t, q)−WPt(t, q) = max
ut

{∑
yt

[
V (t+ 1, βut,yt(q))−WPt(t+ 1, βut,yt(q))

]
P (yt)

}
with

βut,yt(q) =
D(Rut,yt) q

Rut,yt · q
∈ SN , ∀q ∈ S.

Thus,

V (t+ 1, βut,yt(q))−WPt(t+ 1, βut,yt(q)) ≤ ε (4.13)

which yields:

‖ V (t, q)−WPt(t, q) ‖∞≤ max
ut

{∑
yt

ε P (yt)

}
= ε
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Corollary 4.3.3. If for some t ∈ {0, ..., T}, εo∞(t) = ε, then for all 0 ≤ τ ≤ t, one

has εo∞(τ) ≤ ε.

Proof. Notice that theorem 4.3.2 was valid for any pruned set Pt. For this reason,

the inequality holds for the optimal pruned error as well. By induction on theorem

4.3.2 we complete the proof.

This corollary states that the error induced by pruning a set of vectors out

of the analysis at time t, would not grow during subsequent steps in the DP. The

easy use of linear programming and the boundedness of the pruning error make the

error function defined by the L∞ norm look like a perfect candidate for measuring

the error in pruning. However, ε∞ also possesses two disadvantages. First, and

most importantly, it was found that pruning was not optimal for approximating

V (t, q) with a smaller set using the L∞ norm. That is, the optimal set of, say n̄,

vectors for approximating V (t, ·) (where n̄ < #It = #Vt) may not consist of a

subset of the elements of Vt. The following example shows this situation.

Here, we present a counter example to show that when approximating the

function maxi(v
i · q), i ∈ R, with the ε∞ based pruning method defined in (??),

one may not end up with the optimal pruned set that would minimize ε∞.

Consider the two-dimensional simplex, S2, and let q ∈ S2 be:

q =

[
q1

q2

]
=

[
q1

1− q1

]
,with q1 ∈ [0, 1]. (4.14)

On this simplex, S2, consider 3 vectors comprising the set R:

v1 =

[
0.95

0.35

]
, v2 =

[
0.75

0.75

]
, v3 =

[
0.35

0.95

]

Suppose that we need to prune out one of these vectors considering the ε∞ criteria

(pruning out the vector that will yield the least error based on L∞ norm). For a

better visualization of the situation, the vectors above are plotted in Fig. 4.1 (as

solid lines). Following the definition of εi∞ in (4.10) one finds:

ε1
∞ = 0.20, ε2

∞ = 0.10, ε3
∞ = 0.20
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Considering these numbers, one would decide to prune out v2 so that the remaining

vectors, v1 and v3 would be approximating to the original piecewise function

maxi∈R(vi · q) with the least error, ε∞. Meanwhile, if we analyze approximations

other than pruning, we can notice that the following vectors (shown as dashed lines

in Fig. 4.1 would yield the optimal approximation, with an error of ε∞ = 0.0667:

v4 =

[
0.8833

0.4833

]
, v5 =

[
0.4833

0.8833

]
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q
1

v
i .q

Figure 4.1: A counter example for pruning with ε∞. Rather than any 2 of the
original 3 vectors (solid lines), vectors with dashed lines comprise the optimal set
approximating maxi(v

i · q)

Second, the authors are concerned that using the L∞ norm might not

be an accurate way to measure the pruning error. To see such an inaccurate

pruning situation consider a set of vit’s where some of these vectors having a huge

contribution to V (t, q) by means of the infinity norm only in a very small region

of the simplex, SN . Then according to L∞ pruning algorithm, these vectors may

still be stored in the memory not required to be pruned.

Because of these drawbacks an error function based on the L1 norm,

ε1(Pt, t), was also considered for analyzing a pruned set Pt. We define ε1(Pt, t)
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as below:

ε1(Pt, t)
.
=

∫
SN

V (t, q)−WPt(t, q)dq (4.15)

where V (t, q) and WP
t (t, q) are as defined earlier. Similar to εo∞(t) we denote the

optimal pruning error according to L1 analysis with εo1(t).

The main advantage of using εo1(t) was highlighted in [McE09], where it was

proven that an error function based on the L1 norm would be convex, and moreover,

when approximating a set of functions with another smaller set of functions the

optimal reduced complexity representation would be comprised of a subset of the

original set of functions. That is, with an error metric based on the L1 norm,

pruning does, in fact, yield the optimal solution. This is the superiority of the L1

norm over the L∞ norm. Having an optimal set of pruned vectors over the refined

set Rt we are encouraged us to use εo1(t) over ε1∞(t). However, contrary to these

fine properties εo1(t) was not found to posses the boundedness property of ε∞(t)

during DP. A counterexample is given below.

Here, we present an example to highlight the fact that εo1 pruning error

might grow during DP iterations. For this purpose, again on S2 as defined in

(4.14), we consider a refined set Rt+1 = {1, 3} with:

v1
t+1 =

[
0.95

0.25

]
and v3

t+1 =

[
0.7

0.65

]

Suppose that out of these 2 vectors we need to prune the vector that will result to

the the minimal pruning error, εo1(t+ 1). Similar to εi∞(t) defined earlier, we define

the pruning error induced by pruning a vector i from the refined set, Rt, but this

time based on the L1 norm as:

εi1(t+ 1)
.
=

∫
SNu

V (t+ 1, q)− V −i (t+ 1, q) dq

where V −i (t + 1, q) = maxi∈It+1\{i}(v
i · q). Now, since we are trying to prune out

one single vector that would lead to least error in our analysis, the error εo1(t+ 1)

would be:

εo1(t+ 1) = min
i∈Rt+1

εi1(t+ 1)



75

Following the definition of εi1(t+ 1) above one can find,

ε11(t+ 1) = 0.0481 and ε31(t+ 1) = 0.1231

Then, ε1(t + 1) = 0.0481, and vector 1 should be pruned out to give us the

pruned set, Pt+1 = {3}. Now, we analyze V (t, q) and W (t, q) backwards in time.

Remember that:

V (t, q) = max
uot
{
∑
yt

max
i∈Rt+1

(vit+1 ·Dyt,uot q)}

Since the problem is developed on S2, a physical system consisting of two buildings,

one of which having an enemy, could be considered as a real life application of this

problem. We enumerate the buildings as Building 1 and Building 2, and thus

uot ∈ {1, 2}. We also assume that the UAV’s observation on a building could result

in either a detection (detecting an opposing force) which we denote by 1, or a

non-detection which we denote by 2. With this, yt ∈ {1, 2}, as well. For these sets,

we use the following Dyt,uot matrices:

D1,1 =

[
0.95 0

0 0.1

]
, D2,1 =

[
0.05 0

0 0.9

]
(u = 1)

D1,2 =

[
0.1 0

0 0.95

]
, D2,2 =

[
0.9 0

0 0.05

]
(u = 2)

Performing the numerics, one can find the piecewise linear functions defining

V (t, q):

V (t, q1) =



0.65 + 0.05q1 if 0 ≤ q1 < 0.0816,

0.63 + 0.295q1 if 0.0816 ≤ q1 < 0.6154,

0.61 + 0.3275q1 if 0.6154 ≤ q1 < 0.9383,

0.25 + 0.70q1 if 0.9383 ≤ q1 ≤ 1,

and following similar calculations one can find,

W (t, q) = max
uot

{∑
yt

max
i∈Pt+1

(vit+1 ·Dyt,uot q)

}
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as:

W (t, q1) = 0.65 + 0.05q1.

Integrating the difference between V (t, q) and W (t, q) one finds:

ε1(t) =

∫
SNu

V (t, q)−W (t, q) dq

=

∫ 1

0

V (t, q1)−W (t, q1) dq1 = 0.1058

Since ε1(t+ 1) > ε1(t), we notice that the error propagation of DP is not bounded

with the L1 based error metric.

Because of this unboundedness one might be worried about error growth

during the propagation process. However, even tough ε1(t) might grow during

subsequent steps in DP, an upper bound for the error growth is always maintained

because of the relationship between the L∞ and L1 norms. The following theorem

highlights this fact.

Theorem 4.3.4. Suppose at some time t ∈ {0, ..., T}, ε∞(t) = ε. Then during

DP, for any 0 ≤ τ ≤ t, ε1(τ) ≤ ε.

Proof. Following the definition of ε1(τ) and ε∞(τ) we can write:

ε1(τ) =

∫
SN

V (τ, q)−W (τ, q) dq ≤
∫
SN

max
q
{V (τ, q)−W (τ, q)} dq

=

∫
SN

ε∞(τ) dq = ε∞(τ)

Now, from Corollary 4.3.3, we have ε∞(τ) ≤ ε∞(t) = ε for any 0 ≤ τ ≤ t.

Combining these, one finds that ε1(τ) ≤ ε

Although this theorem eases our worries about unbounded growth of ε1(t),

it can be easily seen that it is actually a conservative bound. Here, one needs to

trade off between computation speed and error bounding carefully.

Another issue that needs attention is the numerical computation methods

needed to calculate ε1(t). Unlike ε∞(t) one cannot use linear programming, and

numerical integration methods are required for complex piecewise functions that

define V (t, q). For probability simplexes with dimensions lower than four, volume



77

calculation algorithms not subject to the curse-of-dimensionality can be developed

with the help of visual aids. For higher dimensions, the construction of such volume

computation algorithms appears to be a difficult task. Although a promising

approach to find the volume of such higher dimensional problems can be found

in [ST01].

Meanwhile, both εo∞ and εo1 based approaches suffer from the computational

cost of the search for the optimal pruned set. In order to find an optimal pruned

set P .
= Pt at a given time t, one needs to analyze all possible subset combinations

of an original set R .
= Rt, and for large sets considering all such combinations

with numerically calculating relative pruning errors for each subset would reduce

the computational advantages of pruning. Especially, the cost of such search will

noticeably be demanding for the L1 pruning approach considering the mentioned

issues in the previous paragraph. In order to avoid such computational burden one

might resort to the well-known “Stingy” or the “Greedy” algorithms (c.f., [NW78]).

Briefly, the Stingy algorithm starts with the refined set R, and at each iteration

removes the vector that would lead to the smallest pruning error from this set,

leading finally to pruned set P . Greedy on the opposite, starts with an empty set,

and at each iteration adds the vector that would give the largest increase in value

to the newly forming set, leading finally to the pruned set P . Before introducing

the pseudo-code of both algorithms we introduce functions, W−
j (t, q) and W+

j (t, q),

similar to WP−t(t, q) defined earlier. Given t ∈]0, T − 1[, q ∈ SX and P ⊂ R, let

W−
j (t, q)

.
= max

i∈P,i 6=j
(vit · q), ∀ j ∈ P (4.16)

W+
j (t, q)

.
= max

i∈P∪{j}
(vit · q), ∀ j ∈ T = Rt \ P . (4.17)

Also, we will let ε̄ be a predefined bound on the allowable pruning error,

and n̄ be a predefined maximum number of elements of the set P . We include

both ε̄, and n̄ as possible stopping criteria for the algortihms. However, one would

typically choose ε̄ = 0 or n̄ = ∞, depending on the criteria preferred. With this

new notation the pseudo-code for the stingy and greedy algorithms for the L1 norm

approach is as follows:
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Stingy Algorithm:

Step 0: Starting with set R, initialize P = R.

Step 1: If: #P ≤ n̄, stop.

Else: Select: k ∈ P such that:

k = argmin
j∈P

∫
SN

[
W (t, q)−W−

j (t, q)
]
dq

(with ties settled arbitrarily).

Step 2: If:
∫
SN

[
V (t, q)−W−

k (t, q)
]
dq ≥ ε̄, stop.

Else: Update: P = P \ {k}. Return to Step 1.

Greedy Algorithm:

Step 0: Starting with the empty set, ∅, initialize P = ∅.
Step 1: If: #P ≥ n̄, stop.

Else: Select: k ∈ R \ P such that:

k = argmax
j∈R\P

∫
SN

[
W+
j (t, q)−W (t, q)

]
dq

(with ties settled arbitrarily).

Update P = P ∪ {k}.
Step 2: If:

∫
SN [V (t, q)−W (t, q)] dq ≤ ε̄, stop.

Else: Return to Step 1.

The pseudo-codes for stingy and greedy algorithms could also be utilized

for the L∞ based pruning with k being defined as the following:

k = argmin
j∈P

{
max
q∈S

(
W (., q)−W−

j (., q)
)}

for Stingy, and

k = argmax
j∈P

{
max
q∈S

(
W (., q)−W+

j (., q)
)}

for Greedy

In practice when #R is large, the conditions involving ε̄ might be omitted

and both algorithms could be run considering only the conditions on n̄. Also it

could be noticed that the Stingy Algorithm should be preferred when n̄ ≥ #R/2
and Greedy should be preferred otherwise. Unfortunately, although this methods

would avoid the computational burden of an optimal set search, their resulting

values would be suboptimal. We briefly present an example to point out that the
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computationally fast Greedy Search algorithm may not yield optimal solutions for

the L∞ and L1 based pruning methods

Again on the two-dimensional simplex, S2, consider 3 vectors comprising

the set R:

v1 =

[
0.95

0.35

]
, v2 =

[
0.75

0.75

]
, v3 =

[
0.35

0.95

]
If one needs to prune this set R to P with cardinality of 1 using the

Greedy Algorithm, he would get the pruned set P = {1} following both L∞

and L1 approaches with pruning errors, ε∞ = 0.6 and ε1 = 0.1667 respectively.

On the other hand, by considering all other pruning options one would find that

the optimal pruned set would be Po = {2} with optimal errors εo∞ = 0.2 and

εo1 = 0.0667.

Given that this approach does not yield the optimal pruned set, one must

be concerned with the deviation from the result the optimal pruned set would

yield. Here, by referring to known results regarding optimization of submodular

functions (c.f., Nemhauser and Wolsey [NW78]), we at least obtain a bound on the

error induced by our suboptimal pruning using the greedy algorithm. Note that

submodular functions are mappings from a class of sets to the real line, which meet

a condition given in the proof below. In order to the error bound for the greedy

algorithm, first, we must identify the submodular set functions that could be used

for the pruning process when greedy is utilized. Following our discussion above

defining the greedy algorithm, and the methodology developed in [NW78], one

might first think about using set-based error functions, similar to error functions

in (4.8) and (4.15), for this purpose. Specifically, one might take

δt,∞(Z)
.
= max

q∈SX

{
V (t, q)−max

i∈Z
(vi · q)

}
, Z ⊂ R

and

δt,1(Z)
.
=

∫
q∈SX

{
V (t, q)−max

i∈Z
(vi · q)

}
, Z ⊂ R.

It should be noticed easily that both functions could easily been incorpo-

rated into the pruning algorithms and thus would be great choices. However, it
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was noticed that neither functions carried the suboptimality property. Because of

this reason, we turn our attention to similarly defined functions:

f∞(Z)
.
= max

q∈SX

{
max
i∈Z

(vi · q)
}
, and (4.18)

f1(Z)
.
=

∫
q∈SX

{
max
i∈Z

(vi · q)
}
, Z ⊂ R. (4.19)

By the nature of the max operator, f∞ as defined above will not be useful for

Stingy and Greedy algorithms. Because of this, f∞ will not employed for pruning

practices. Below we show the submodularity property of both functions.

Theorem 4.3.5. Functions f∞ and f1 defined in (4.18) and (4.19) are both

submodular.

Proof. We must show that f∞ and f1 satisfy the submodularity property, i.e., that

fη(A) + fη(B) ≥ fη(A ∪B) + fη(A ∩B) ∀A,B ⊆ R

for η ∈ {1,∞}. We begin with f∞. Given A,B ⊆ R one has:

f∞(A ∪B) = max
q∈S

{
max
i∈A∪B

(vit · q)
}

= max

{
max
q∈S

{
max
i∈A

(vit · q)
}
,max
q∈S

{
max
i∈B

(vit · q)
}}

= max {f∞(A), f∞(B)} . (4.20)

Without loss of generality let f∞(A) ≥ f∞(B). Then, (4.20) implies

f∞(A ∪B) = f(A). (4.21)

On the other hand, since (A ∩B) ⊆ B

f∞(A ∩B) = max
q∈S

{
max
i∈A∩B

(vit · q)
}
≤ max

q∈S

{
max
i∈B

(vit · q)
}

= f∞(B) (4.22)
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Combining (4.21) and (4.22), one has

f∞(A ∪B) + f∞(A ∩B) ≤ f∞(A) + f∞(B), (4.23)

which implies that suboptimality holds for f∞.

Now we turn to f1(.). Given A,B ⊂ R, we first partition the probability

simplex, S, with the following 4 disjoint sets:

SA
.
=
{
q ∈ S| ∃ i ∈ (A\B), vi · q > vj · q, ∀j ∈ B

}
, (4.24)

SB
.
=
{
q ∈ S| ∃ i ∈ (B\A), vi · q > vj · q, ∀j ∈ A

}
, (4.25)

SI
.
=
{
q ∈ S| ∃ i ∈ (A ∩B), vi · q > vj · q,∀j ∈ (A\B) ∪ (B\A)

}
, (4.26)

and

SK
.
= S \ (SA ∪ SB ∪ SI). (4.27)

Notice that:

S = SA ∪ SB ∪ SI ∪ SK , and SA ∩ SB ∩ SI ∩ SK = ∅. (4.28)

Since SK is defined in terms of SA, SB and SI , we first give an equivalent

formulation for SK by considering the definitions of the other sets.

Lemma 4.3.6. SK defined in (4.27) is equivalent to the following set:

SK =

{
q ∈ S | max

i∈A\B
(vi · q) = max

j∈B\A
(vj · q) ≥ max

k∈A∩B
(vk · q)

}
∪
{
q ∈ S | max

i∈A\B
(vi · q) = max

j∈A∩B
(vj · q) ≥ max

k∈B\A
(vk · q)

}
∪
{
q ∈ S | max

i∈B\A
(vi · q) = max

j∈A∩B
(vj · q) ≥ max

k∈A\B
(vk · q)

}
Proof. First, we introduce the following notations for ease of notations.

Ā
.
= A \B, B̄

.
= B \ A, and AB

.
= A ∩B (4.29)

Note that, the definitions of SA, SB, and SI in (4.24), (4.25) and (4.26) are

equivalent to the following formulations.
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SA =

{
q ∈ S|max

i∈Ā
(vi · q) > max

j∈B
(vj · q)

}
, (4.30)

SB =

{
q ∈ S|max

i∈B̄
(vi · q) > max

j∈A
(vj · q)

}
, (4.31)

SI =

{
q ∈ S|max

i∈AB
(vi · q) > max

j∈Ā∪B̄
(vj · q)

}
. (4.32)

On the other hand by using the set identity A \ B = A ∩ B′ and other basic set

theory formulations, the set SK from (4.27) could be written as:

SK = S ∩ (S ′A ∩ S ′B ∩ S ′I) = (S ∩ S ′I) ∩ (S ′A ∩ S ′B) = S ′I ∩ (S ′A ∩ S ′B) (4.33)

since S is the universal set. Following (4.30):

S ′A =

{
q ∈ S |max

i∈Ā
(vi · q) ≤ max

j∈B
(vj · q)

}
=

{
q ∈ S |max

i∈B
(vi · q) ≥ max

j∈Ā
(vj · q)

}
Meanwhile, since B = B̄ ∪AB, we can write S ′A as the union of sets SA1 and SA2

defined below:

S ′A =

{
q ∈ S |max

i∈B̄
(vi · q) ≥ max

j∈Ā
(vj · q)

}
︸ ︷︷ ︸

.
=SA1

∪
{
q ∈ S |max

i∈AB
(vi · q) ≥ max

j∈Ā
(vj · q)

}
︸ ︷︷ ︸

.
=SA2

In a similar fashion by considering (4.31) and using the relation A = Ā ∪ AB:

S ′B =

{
q ∈ S |max

i∈B̄
(vi · q) ≤ max

j∈A
(vj · q)

}
=

{
q ∈ S |max

i∈A
(vi · q) ≥ max

j∈B̄
(vj · q)

}
=

{
q ∈ S |max

i∈Ā
(vi · q) ≥ max

j∈B̄
(vj · q)

}
︸ ︷︷ ︸

.
=SB1

∪
{
q ∈ S |max

i∈AB
(vi · q) ≥ max

j∈B̄
(vj · q)

}
︸ ︷︷ ︸

.
=SB2

,

and by considering (4.32):

S ′I =

{
q ∈ S |max

i∈AB
(vi · q) ≤ max

j∈Ā∪B̄
(vj · q)

}
=

{
q ∈ S | max

i∈Ā∪B̄
(vi · q) ≥ max

j∈AB
(vj · q)

}
=

{
q ∈ S |max

i∈Ā
(vi · q) ≥ max

j∈AB
(vj · q)

}
︸ ︷︷ ︸

.
=SI1

∪
{
q ∈ S |max

i∈B̄
(vi · q) ≥ max

j∈AB
(vj · q)

}
︸ ︷︷ ︸

.
=SI2

.
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Recalling (4.33), we have: SK = S ′I ∩ (S ′A ∩ S ′B) = (S ′I ∩ S ′A) ∩ S ′B. Expanding the

first term on the right by using the newly defined sets above:

(S ′I ∩ S ′A) = (SI1 ∪ SI2) ∩ (SA1 ∪ SA2)

= (SI1 ∩ SA1) ∪ (SI1 ∩ SA2) ∪ (SI2 ∩ SA1) ∪ (SI2 ∩ SA2).

Now let:

S1
.
= (SI1 ∩ SA1) =

{
q ∈ S |max

i∈B̄
(vi · q) ≥ max

j∈Ā
(vj · q) ≥ max

j∈AB
(vj · q)

}
S2

.
= (SI1 ∩ SA2) =

{
q ∈ S |max

i∈Ā
(vi · q) = max

j∈AB
(vj · q)

}
S3

.
= (SI2 ∩ SA1) =

{
q ∈ S |max

i∈B̄
(vi · q) ≥ max

j∈AB
(vj · q),max

i∈B̄
(vi · q) ≥ max

j∈Ā
(vj · q)

}
S4

.
= (SI2 ∩ SA2) =

{
q ∈ S |max

i∈B̄
(vi · q) ≥ max

j∈AB
(vj · q) ≥ max

j∈Ā
(vj · q)

}
.

Then, for the final phase:

SK = (S1 ∪ S2 ∪ S3 ∪ S4) ∩ S ′B
= (S1 ∩ S ′B) ∪ (S2 ∩ S ′B) ∪ (S3 ∩ S ′B) ∪ (S4 ∩ S ′B)

= (S1 ∩ (SB1 ∪ SB2)) ∪ (S2 ∩ (SB1 ∪ SB2)) ∪ (S3 ∩ (SB1 ∪ SB2))

∪ (S4 ∩ (SB1 ∪ SB2))

=
4⋃
i=1

2⋃
j=1

(Si ∩ SBj) (4.34)

where,

(S1 ∩ SB1) =

{
q ∈ S |max

i∈B̄
(vi · q) = max

j∈Ā
(vj · q) ≥ max

j∈AB
(vj · q)

}
(4.35)

(S1 ∩ SB2) =

{
q ∈ S |max

i∈B̄
(vi · q) = max

j∈Ā
(vj · q) = max

j∈AB
(vj · q)

}
(4.36)

(S2 ∩ SB1) =

{
q ∈ S |max

i∈Ā
(vi · q) = max

j∈AB
(vj · q) ≥ max

j∈B̄
(vj · q)

}
(4.37)

(S2 ∩ SB2) =

{
q ∈ S |max

i∈Ā
(vi · q) = max

j∈AB
(vj · q) ≥ max

j∈B̄
(vj · q)

}
(4.38)
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(S3 ∩ SB1) =

{
q ∈ S |max

i∈Ā
(vi · q) ≥ max

i∈B̄
(vi · q) ≥ max

j∈AB
(vj · q), (4.39)

max
i∈B̄

(vi · q) = max
j∈Ā

(vj · q)
}

(4.40)

(S3 ∩ SB2) =

{
q ∈ S |max

i∈B̄
(vi · q) = max

j∈AB
(vj · q), (4.41)

max
i∈AB

(vi · q) ≥ max
i∈B̄

(vi · q) ≥ max
j∈Ā

(vj · q)
}

(4.42)

(S4 ∩ SB1) =

{
q ∈ S |max

i∈B̄
(vi · q) = max

j∈AB
(vj · q) = max

j∈Ā
(vj · q)

}
(4.43)

(S4 ∩ SB2) =

{
q ∈ S |max

i∈B̄
(vi · q) = max

j∈AB
(vj · q) ≥ max

j∈Ā
(vj · q)

}
(4.44)

Note that (4.40) and (4.42) could be further reduced to:

(S3 ∩ SB1) =

{
q ∈ S |max

i∈Ā
(vi · q) = max

i∈B̄
(vi · q) ≥ max

j∈AB
(vj · q)

}
(4.45)

(S3 ∩ SB2) =

{
q ∈ S |max

i∈AB
(vi · q) = max

i∈B̄
(vi · q) ≥ max

j∈Ā
(vj · q)

}
(4.46)

Also,

(S1 ∩ SB1) ∪ (S1 ∩ SB2) =

{
q ∈ S |max

i∈B̄
(vi · q) = max

j∈Ā
(vj · q) ≥ max

j∈AB
(vj · q)

}
(4.47)

(S2 ∩ SB1) ∪ (S2 ∩ SB2) =

{
q ∈ S |max

i∈Ā
(vi · q) = max

j∈AB
(vj · q) ≥ max

j∈B̄
(vj · q)

}
(4.48)

(S4 ∩ SB1) ∪ (S4 ∩ SB2) =

{
q ∈ S |max

i∈B̄
(vi · q) = max

j∈AB
(vj · q) ≥ max

j∈Ā
(vj · q)

}
(4.49)

Now, substituting (4.45) through (4.49) into (4.34) one gets:
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SK =

{
q ∈ S |max

i∈Ā
(vi · q) = max

j∈B̄
(vj · q) ≥ max

j∈AB
(vj · q)

}
∪
{
q ∈ S |max

i∈Ā
(vi · q) = max

j∈AB
(vj · q) ≥ max

j∈B̄
(vj · q)

}
∪
{
q ∈ S |max

i∈B̄
(vi · q) = max

j∈AB
(vj · q) ≥ max

j∈Ā
(vj · q)

}
.

Now that we have defined the set SK in terms of sets A and B, we can

continue with the formulation of f1(A) and f1(B) Following the partition of the

set S in (4.28), one can formulate f1(A) as the following:

f1(A) =

∫
S

max
i∈A

(vi · q) dS

=

∫
SA

max
i∈A

(vi · q) dS+

∫
SB

max
i∈A

(vi · q) dS+

∫
SI

max
i∈A

(vi · q) dS+

∫
SK

max
i∈A

(vi · q) dS

(4.50)

and

f1(B) =

∫
S

max
i∈B

(vi · q) dS

=

∫
SA

max
i∈B

(vi · q) dS+

∫
SB

max
i∈B

(vi · q) dS+

∫
SI

max
i∈B

(vi · q) dS+

∫
SK

max
i∈B

(vi · q) dS

(4.51)

Lemma 4.3.7. In (4.50)
∫
SK

maxi∈A(vi · q) dS = 0, and in (4.51)
∫
SK

maxi∈B(vi ·
q) dS = 0.

Proof. In Lemma 4.3.6 consider the sets whose union define SK . All q belonging

to the first one of these sets satisfy: maxi∈A\B(vi ·q) = maxj∈B\A(vj ·q), and notice

that A \ B and B \ A are disjoint sets. For this reason, for an n dimensional

probability simplex the set of q that satisfies this equality defines an n − 2

dimensional hyperplane. Similarly, q belonging to the other sets also define an

n− 2 dimensional hyperplane. The integral defined over all this lower dimensional

hyperplanes becomes zero (an example of this situation is a line integral evaluated

at a countable number of points).
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Also, notice that because of the way we have defined SA in (4.24) and SI

in (4.26) we can write:∫
SA

max
i∈A

(vi · q) dS =

∫
SA

max
i∈A\B

(vi · q) dS, and (4.52)∫
SI

max
i∈A

(vi · q) dS =

∫
SI

max
i∈A∩B

(vi · q) dS (4.53)

Then, following Lemma 4.3.7 and identities (4.52) and (4.53), (4.50) could be

reduced to:

f1(A) =

∫
S

max
i∈A

(vi ·q) dS =

∫
SA

max
i∈A\B

(vi ·q)+

∫
SB

max
i∈A

(vi ·q) dS+

∫
SI

max
i∈A∩B

(vi ·q) dS

(4.54)

Similarly, because of the way we have defined SB in (4.25) and SI in (4.26) we can

write: ∫
SB

max
i∈B

(vi · q) dS =

∫
SB

max
i∈B\A

(vi · q) dS, and (4.55)∫
SI

max
i∈B

(vi · q) dS =

∫
SI

max
i∈A∩B

(vi · q) dS (4.56)

Then, following Lemma 4.3.7 and identities (4.55) and (4.56), (4.51) could be

reduced to:

f1(B) =

∫
S

max
i∈B

(vi ·q) dS =

∫
SA

max
i∈B

(vi ·q) dS+

∫
SB

max
i∈B\A

(vi ·q)+

∫
SI

max
i∈A∩B

(vi ·q) dS

(4.57)

Considering (4.54) and (4.57):

f1(A) + f1(B) =

∫
SA

max
i∈A\B

(vi · q) dS +

∫
SB

max
i∈A

(vi · q) dS +

∫
SA

max
i∈B

(vi · q) dS

+

∫
SB

max
i∈B\A

(vi · q) dS + 2

∫
SI

max
i∈A∩B

(vi · q) dS (4.58)

Meanwhile;

f1(A ∪B) =

∫
S

max
i∈A∪B

(vi · q) dS =

∫
SA

max
i∈A∪B

(vi · q) dS +

∫
SB

max
i∈A∪B

(vi · q) dS

+

∫
SI

max
i∈A∪B

(vi · q) dS (4.59)
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,and following definitions of SA in (4.24), SB in (4.25) and SI in (4.26) we have:

∫
SA

max
i∈A∪B

(vi · q) dS =

∫
SA

max
i∈A\B

(vi · q) dS, (4.60)∫
SB

max
i∈A∪B

(vi · q) dS =

∫
SB

max
i∈B\A

(vi · q) dS, (4.61)∫
SI

max
i∈A∪B

(vi · q) dS =

∫
SI

max
i∈A∩B

(vi · q) dS (4.62)

With Lemma 4.3.7 and identities (4.60), (4.61), and (4.62), (4.59) could be reduced

to:

f1(A ∪ B) =

∫
SA

max
i∈A\B

(vi · q) dS +

∫
SB

max
i∈B\A

(vi · q) dS +

∫
SI

max
i∈A∩B

(vi · q) dS

(4.63)

On the other hand,

f1(A ∩B) =

∫
S

max
i∈A∩B

(vi · q) dS =

∫
SA

max
i∈A∩B

(vi · q) dS +

∫
SB

max
i∈A∩B

(vi · q) dS

+

∫
SI

max
i∈A∩B

(vi · q) dS (4.64)

Summing (4.63) with (4.64):

f1(A∪B)+f1(A∩B) =

∫
SA

max
i∈A\B

(vi·q) dS+

∫
SB

max
i∈B\A

(vi·q) dS+

∫
SA

max
i∈A∩B

(vi·q) dS

+

∫
SB

max
i∈A∩B

(vi · q) dS + 2

∫
SI

max
i∈A∩B

(vi · q) dS (4.65)

Comparing (18 & 22) one can notice that some of the terms are common in both

equations. Leaving out those common terms, suboptimality condition would be

equivalent to the following inequality:
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f1(A) + f2(B) ≥ f1(A ∪B) + f1(A ∩B)

m∫
SB

max
i∈A

(vi · q) dS +

∫
SA

max
i∈B

(vi · q) dS ≥
∫
SA

max
i∈A∩B

(vi · q) dS +

∫
SB

max
i∈A∩B

(vi · q) dS

(4.66)

Since (A∩B) ⊆ A and (A∩B) ⊆ B, the equivalent inequality always holds proving

the submodularity of f1(.) and f∞(.).

Although f1 function inherits the submodularity property, it isn’t a suitable

candidate for the greedy algorithm based pruning, and for this reason we omit it

in our analysis. Now that we have proved the submodularity of the function

f1, we are ready to give a bound on the degree of suboptimality related to

the greedy algorithm for finding the pruned set. If the algorithms were run

without any limit on ε̄, and only having limitations on n̄, then by the results

on optimization of submodular functions of [NW78], one can guarantee bounds

on the greedy algorithm results. In that study, the authors demonstrate that the

greedy algorithm cannot result in a value of less than (e− 1)/e ≈ 0.63 of the value

the optimal pruned set would yield. This immediately implies the same bound on

the suboptimality of our W (·, q). Of course this bound is quite conservative, as it

is completely general. Meanwhile it can still considered as a way to keep track of

the error following greedy algorithm.

Anoter way to adress the error bound could be utilization of the L∞ error

after the greedy and stingy algorithms. Since ε∞ could be easily calculated utizing

the linear programming methods, one could calculate the error resulting from such

approaches based on L∞. Since ε∞ was found to define an upper bound on ε1, one

could find a bettrr error bound after such analysis.



Chapter 5

Conclusion and Future Work

The main theme of this research was to develop a new methodology for

optimally tasking the sensing assets deployed for information gathering in uncertain

and adversarial environments. The dissertation can be divided into three parts

although all are very related to each other; development of a new measure for

reconnaissance missions, open loop and state feedback control approaches to the

optimal sensor tasking problem that utilizes this new measure, and numerical

methods to improve computation times of the proposed approach.

Development of this new measure is based on the observation that although

uncertainty should be eliminated during reconnaissance missions, the trade-off of

where to eliminate the uncertainty depends on how uncertainty is going to affect

the operations that will follow-up the reconnaissance missions. For this reason, the

new measure for the reconnaissance missions is based on the benefit the team who

is doing the reconnaissance is receiving. A Markovian type model is developed for

an upcoming operation that would succeed the reconnaissance mission. A payoff

function is defined for this operation such that it was dependent on the available

information.

This payoff was related to the payoff of the sensing operations and the

optimal control options for the sensors was found. An open loop analysis yielded

significant increases for an analyzed scenario. Closed loop analysis was subject to

curse of dimensionality. First a max-plus analysis was used to avoid grid based

analysis. Although it provided the us the opportunity to avoid grid based methods,

89
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it was again suffering from long computation times.

Computation times were improved using refining and pruning methodolo-

gies. Refining methods utilized linear programming to detect inactive objects

stored and progresed during DP iterations. Pruning methods gave us an option to

find aproximated solutions with faster computation times.
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