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Abstract—We have developed a new error modeling and 
optimization-based localization approach for sensor networks in 
presence of distance measurement noise. The approach is solely 
based on the concept of consistency. The error models are 
constructed using non-parametric statistical techniques; they do 
not only indicate the most likely error, but also provide the 
likelihood distribution of particular errors occurring. The models 
are evaluated using the learn-and-test techniques and serve as the 
objective functions for the task of localization. The localization 
problem is formulated as task of maximizing consistency between 
measurements and calculated distances. We evaluated the 
approach in (i) both GPS-based and GPS-less scenarios; (ii) 1-D, 
2-D and 3-D spaces, on sets of acoustic ranging-based distance 
measurements recorded by deployed sensor networks. The 
experimental evaluation indicates that localization of only a few 
centimeters is consistently achieved when the average and 
median distance measurement errors are more than a meter, 
even when the nodes have only a few distance measurements. The 
relative performance in terms of location accuracy compare 
favorably with respect to several state-of-the-art localization 
approaches. Finally, several insightful observations about the 
required conditions for accurate localization are deduced by 
analyzing the experimental results. 

Keywords-consistency; error modeling; location discovery 

I.  INTRODUCTION 
The localization ( location discovery or LD) problem can be 

defined in the following way. A total of N nodes, K of which 
(K<<N) have the exact information about their positions. The 
measured distances, which are subject to errors, between M 
pairs of nodes are also available. The goal is to conclude the 
location (xi, yi) of each unknown location node i in such a way 
that L(xri – xi, yri – yi) is minimized, where (xri, yri) is the real 
location of i. Usually the targeted L is L1, L2, or L∞. 

It has been proven that the localization problem is NP-
complete [1]. It is also easy to see that the localization 
problem belongs to the class of nonlinear programs. A great 
variety of centralized algorithms (executed at a single place 
with the availability of the complete information about all 
measurements) and localized algorithms (executed by multiple 
nodes simultaneously and/or consecutively where each node 
has limited information provided by its neighbors) have been 
proposed. They range from iterative linearization and convex 
programming to conjugate direction-based and multiresolution 
search. [2] provide comprehensive surveys of state-of-the-art 
positioning designs and signal processing techniques. 

However, the effectiveness of these algorithms is constrained 
by the accuracy of the error model. There is a wide spectrum 
of available error models ranging from closed form parametric 
models to sophisticated kernel estimation-based non-
parametric models. Nevertheless, none of them is a-priori 
applicable in new environments. The following small example 
shown in Figure 1 demonstrates the importance of the correct 
error model. 

Consider 10 nodes N1,...,N10. We assume that the locations 
of the first nine nodes are available and error free. The 
topology of these 10 nodes is taken from a deployed network. 
The distances between the nodes are estimated based on the 
time-of-arrival of the acoustic signals. The traveling time of 
the acoustic signals is multiplied with the speed of the sound 
to estimate the distances between nodes – the measured 
distances [3][4]. Table 1 contains the information about the 
locations of the nine nodes (the second column); the 
real/correct distances obtained using the distance formula 
given the real locations of the nodes (the third column); the 
measured positions on two different days (the fifth and the 
sixth columns – STAT1 and STAT2). All measurements are in 
meters. In addition, the forth column shows the simulated 
distances generated under the widely used assumption of 
Gaussian noise model [5][6] on top of the real distances. 

The goal is to locate N10 using the measured/simulated 
distances.  We obtain the solution using the exhaustive search 
and following the maximum likelihood principle. Table 2 
shows the results in term of location error, i.e. (xr10 – x10, yr10 – 
y10). The three rows indicate which set of measured/simulated 
distance measurements is used to derive N10’s location (i.e. 
which type of error is in the distance measurements), and the 
four columns indicate the type of errors targeted by the 
maximum likelihood (i.e. the error model used as the 
optimization target). We see that when the correct type of 
errors is targeted, low location discrepancy is achieved, 
indicated by the bold italic numbers in Table 2. The average 
location error is between 1 and 3.3cm although some 
individual measurements have errors of more than 40m. 
However, when the errors in measurements and the 
optimization targeted error model do not match, the location 
error increase significantly. For example, when the Gaussian 
error model is assumed for the minimization of errors on the 
actually collected data – STAT1, the location error is more 
than 8m (8.179m). Even when the model obtained on one day 
is used as the optimization objective on another day, the 
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Figure 1.   Motivational example topology. 

Table 1.   The distance measurements information. 

ID LOCATION REAL GAUSSIAN STAT 1 STAT 2 

N1 (75, 195) 45.893 45.791 56.697 44.193 
N2 (60, 135) 42.5 43.432 42.895 42.043 
N3 (79, 110) 48.654 78.066 49.008 39.964 
N4 (122.5, 180) 35.355 35.294 34.355 42.139 
N5 (150, 85) 87.5 86.362 56.988 87.479 
N6 (75, 159.4) 22.926 53.285 23.001 27.077 
N7 (125, 187.5) 42.573 42.938 43.837 41.992 
N8 (57.5, 165.4) 41.337 42.831 41.111 49.604 
N9 (70, 85) 75.208 71.427 87.449 74.574 

Table 2.   Solutions resulted using different error models (columns) 
based on different sets of measurements (rows). 

 GAUSSIAN STAT 1 STAT 2 CONSISTENCY 
GAUSSIAN 0.0208 7.993 4.258 0.0302 

STAT 1 8.179 0.0117 5.275 0.0215 
STAT 2 7.658 6.042 0.0303 0.0310 

resultant location error still stays above 5m (6.042m and 
5.275m). Therefore, we conclude that unless an accurate error 
model with respect to the measurements is targeted, accurate 
location discovery is not possible. 

However, a simple condition of pair-wise consistency easily 
resolves this problem, at least for the example shown in Figure 
1. We say that a pair of measurements is pair-wise consistent 
if the longer measurement corresponds to the longer real 
distance. The formal definition of consistency is stated in 
Section 4. The last column in Table 2 shows the location 
errors yield using the error model derived based on the 
concept of consistency. Regardless of what type of errors is in 
the distance measurements, the location error of N10 is always 
around 3cm. The final observation is that maximizing 
percentage of consistent measurements can be easily mapped 
to nonlinear function minimization problem and solved using 
standard software. 

II. RELATED WORK 
In this section, we survey various location discovery 

algorithms. Location discovery refers to the task where all the 
unknown-location nodes seek to determine the relative and/or 
absolute position using the measured distance between 
different nodes. Such a distance can be measured by 
approaches include acoustic ranging methods [3][8][10], RSSI 
and RF proximity estimation [4][5], as well as algorithmic 
techniques [3][6]. In this paper, the set of distance measures 
we used as the demonstrative example was collected based on 
the line-of-sight acoustic signals [8][10]. 

Location discovery algorithms can be either centralized or 
localized [11]. Centralized algorithms assume that all the 
measured distances are forwarded to the center node, which 
then computes the location of each node using such 
information. Localized algorithms do not require the existence 
of the center node and allows each node to compute its position 
based on its local information by atomic multilateration, a 
method to estimate the location of a node if it is within the 
communication range of at least three beacons [12]. Iterative 
multilateration algorithm uses atomic multilateration as the 
primitive and treats an unknown node as a beacon once its 
location is resolved [13]. 

There are in general two different scenarios the location 
discovery problem is solved under. One of which assumes the 
measured distances between communicating nodes are 
available. Some of the recent work which are based on this 
assumption include [14][15][16]. Sheng and Hu [15] present a 
localization approach based on the acoustic energy decay 
model, where the acoustic energy decays inverse of distance 
square under the some mild conditions. This energy based 
localization problem is then solved by combining Maximum 
Likelihood (ML) estimation with Expected Maximization 
(EM) solution and projection solution. In addition, they also 
derived the Cramer-Rao Bound (CRB) for sensor deployment 
analysis. Niculescu and Nath  [16] propose a localization 
approach which is based on the basic idea of distance vector 
routing using only a fraction of beacons, with the assumption 
that each sensor node has some combination of ability to 
measure range, angle of arrival (AOF), orientation. They 
propose a lower bound for positioning error for a range/angle 
free algorithm, and examine the error characteristics of various 
classes of multihop ad-hoc positioning systems (APS) 
algorithms. The localization method proposed by Galstyan et 
al. [17] is distributed and on-line, which means the 
localization process is conducted simultaneously with an 
application task. Sensor nodes use their geometric constraints 
induced by radio connectivity and sensing to decrease the 
uncertainty of positions. The performance of the algorithm is 
compared with the centralized (convex) programming. In 
addition to static networks, Hu and Evens [15] introduce the 
sequential Monte Carlo localization method for mobile 
networks, which exploit mobility to improve the accuracy and 
precision of positioning. The approach does not require any 
additional hardware and has competitive results when 
compared to static localization methods. A comprehensive 
study of the fundamental limitations and location accuracy 
bound for mobile positioning is presented in [18]. 

The second scenario which location discovery is solved 
under does not put any requirement on the availability of 
measured distances [19][20]. He et al. [19] propose a range-
free localization approach which performs the best when an 
irregular radio pattern and random node placement are 
considered. The algorithm is called area-based, which has two 
phases: i) isolating the environment into triangular regions 
between beacon nodes; ii) by considering whether a node’s 
presence inside or outside of these triangular regions allows a 
node to narrow down the area in which it can potentially reside. 
The algorithm is demonstrated in conjunction with the routing 
and the tracking problems. Shang et al. in [20] presents a 
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localization method that uses the connectivity information (i.e. 
who is within the communication ranges of whom) to derive 
the positions of the unknown sensors. 

III. PRELIMINARIES 

A. The Distance Measurements 
We construct the statistical error models and conduct 

location discovery on sets of distance measurements that are 
collected using the acoustic signal detection-based ranging 
techniques. The number of deployed sensor nodes varies from 
79 to 93, with the average being 90. The sensor nodes are 
custom designed based on an SH4 microprocessor running at 
200MHz (Figure 2(a)). The nodes are deployed at the Fort 
Leonard Wood Self Healing Minefield Test Facility, which 
has size 200m x 50m. The radio signal (communication) range 
is about 50m. Figure 2(b) shows an example of deployment 
topology. Each node is equipped with four independent 
speakers and microphones as the ranging tool. The distance 
between two nodes is obtained by timing the arrival of the 
acoustic signals [8]. Each node in the network takes turns to 
transmit the acoustic signals, all the nodes that receive the 
signals record the time of arrival and convert the time of flight 
to distance in meters. There are total 33 sets of distance 
measurements collected over the course of few days; each set 
consists of one round of acoustic signal transmission by all the 
nodes. For the sake of simplicity, we demonstrate the 
algorithms and techniques on a randomly selected set of 
measurements, and we present the results for ten other 
randomly selected data sets in Section 5. The details on the 
experimental setup and the acoustic detection scheme used can 
be found in [8][10].  

From the communication point of view, we distinguish two 
types of the communications between a pair of nodes: i) 
exchange of the acoustic signals for the purpose of distance 
ranging; ii) transmission and reception of radio signals (in 
terms of bytes) for the purpose of exchanging information. 
More specifically, we denote Li as a set of nodes that receive 
node i’s acoustic signals, therefore can estimate the distances 
between themselves to node i. Similarly, Ci denotes a set of 
nodes that receive the radio signals from i. We assume that the 
acoustic signal range (ASR) is independent from the radio 
signal range (RSR), which means that it is possible for a node i 
to have the distance estimate to another node j (i has received 
j’s acoustic signals), while i can not exchange information with 
j (j is out of i’s radio signal range), and vise versa. 
Furthermore, it is not necessary that all nodes in the network 
have the same ASR and RSR properties. This is a more 
realistic reflection of the actual deployed networks. 

B. Location Discovery 
The location discovery problem can be formally stated as 

follows. In a k dimensional space, when we consider the 
homogeneous case where two sensor nodes i (x1i, x2i,…,xki) 
and j (x1j, x2j,…,xkj) have measured distance dij, exactly one 
equation of the form of Equation (1) can be written where εij 
denotes the discrepancy between the calculated distance and 
the measured distance.  

ij

k

l
ljliij dxx −−= ∑

=1

2)(ε                                                       (1) 

After a set of equations that correspond to the pairs of nodes 
that have measured distances are written, where the unknown 
variables being the coordinates of the unknown nodes, the 
system of equations is then linearized and fed to a linear 
optimization mechanism. [13] provides a detailed procedure of 
how the system of equation is linearized. 

We formulated the location discovery problem in terms of a 
nonlinear function minimization instance where the objective 
function F has the form expressed in Equation (2). Function M 
can take the form of L1, L2, L∞ norms (F is subject to 
minimization), or the Gaussian distribution with various 
variances or the statistical error model constructed using the 
kernel density estimation technique (F is subject to 
maximization). In our study, M is the pair-wise consistency-
based error model. 

Nonlinear programming is a direct extension of linear 
programming where the linear objective function is replaced 
by the nonlinear ones. Nonlinear programming has advantages 
in terms of computing power and formulation flexibility. The 
most important reason why we formulated the localization 
problem as a nonlinear programming is due to the NP-
completeness of the localization problem [1].  

F = M(εij)                                                                            (2) 
   where  

ij

k

l
ljliij dxx −−= ∑

=1

2)(ε   

for pairs of nodes i&j that have measured distance dij. 

IV. OFF-LINE LOCALIZATION 
Statistical models that predict the variable of high 

importance from an easy to measure variable are off great 
importance in sensor networks and many other domains. The 
models can be used to make a number of decisions during the 
realization of many applications. We define consistency as the 
pair-wise relationship between two pairs of predicting and 
predicted variables. More specifically, two pairs P1(x1, y1) and 
P2(x2, y2) are consistent with respect to each other if and only 
if (Equation (3)). 

((x1 ≥ x2)⇒ (y1 ≥ y2) ∨ (x1 ≤ x2)⇒ (y1 ≤ y2))                        (3) 

It is easy to see that consistency is the necessary and 
sufficient requirement to make correct decisions when 
selecting between two or more options for the predicted 
variable from the predicting variables. In addition, stability of 
a particular data set for constructing error models is often well 
captured by high consistency.  

 (a)     (b) 
Figure 2(a).   A SH4 node.  

Figure 2(b).   An example of the deployment topology. 
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Figure 3.   Superimposed grid with number of data points counted.
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Figure 4.   Inconsistency charge/cost and the modified Dijkstra’s 

shorted path algorithm setup. 

In off-line error modeling, the predicting variable is the 
measured distances; the predicted variable is the 
corresponding real distances. In our study, the real distances 
are calculated using the distance formula given the correct 
coordinates of the nodes for all measured distances. The 
models obtained in this section have multiple usage: i) serves 
as a reference for model comparison; ii) validation of solutions 
of other methods (e.g. on-line LD); iii) if only measurements 
from beacons are available, the model construction techniques 
still can be applied to the limited set of measurements in order 
to evaluate possible solutions; iv) serves as a starting 
framework for other data sets, if similar environments are 
observed. A more complex and realistic scenario where no real 
distances are available is discussed in detail in [21]. 
Conducting regressions (e.g. monotonic regression) is the first 
step of constructing consistent error models. In this section, 
our first objective is to develop model that relies solely on the 
notion of consistency. This requirement has two ramifications: 
i) any arbitrary two points belong to the regression curve 
satisfy the consistency requirement with respect to each other; 
ii) all points belongs to the regression curve that maps the 
predicting to the predicted variable are maximally consistent 
with respect to all the available measurements.  

Therefore, the regression function is either monotonically 
non-decreasing or monotonically non-increasing. By mapping 
the problem of developing monotonic and consistent error 
models into discrete domain and further into the graph theoretic 
framework, we are able to develop provably optimal algorithms 
of polynomial complicity. This technique is versatile in the 
sense that it can be adopted to satisfy many additional 
requirements such as the restriction of the maximum and the 
minimum slopes of the curve. In addition, the algorithm can be 
applied not only to regression, but also to the kernel density 
estimation, where not only the most likely value of the 
predicted variable given a predicting value is derived, but also 
the likelihood of the predicted variable having a particular 
arbitrary value. 

A. Regression 
In this section, we introduce the technique for off-line 

consistency-based regression, which is the first step towards 
constructing the consistency-based error model. We start by 
stating the procedure of mapping the continuous instance to 
the discrete domain in order to enable the application of the 
imitable graphical theoretic. After that, the instance is 
transformed to a graph format where finding the most 
consistent monotonic regression function is equivalent to 
finding the shortest path of the graph. The shortest path 
problem is solved using a simplified dynamic programming-
based Dijkstra’s shortest path algorithm. We conclude the 
section by analyzing the complicity of the algorithm and 
presenting the regression accuracy using the standard learn-
and-test technique [7]. Furthermore, we introduce the 
modified versions of the algorithm to achieve different 
objectives such the unimodularity of the regression function, 
enhancement of the robustness, and minimum control 
complexity of the regression function. 

The input of the regression is a set of pairs of measured 
distances and their corresponding real distances. Figure 3 

shows an instance of 750 such pairs, where the x and y axes of 
each data point indicate the measured and the corresponding 
real distance respectively. We first establish how well the data 
set is suitable for modeling in a quantitative way by examining 
the consistency among data points. For this particular set of 
data points, the consistency is 0.844; and 10 data points need 
to be excluded for consideration in order to achieve a 
consistency 0.967; 20 points need to be excluded in order to 
achieve a consistency 0.981. Clearly, only a few of 
inconsistent data points are contributing to the inconsistency. 
We conclude that the data set is suitable for regression and 
modeling. In order to transform the instance from continuous 
to discrete domain, we superimpose an uniform distance grid 
on top of space where the data points are placed. It is 
important to note that there are many different procedures to 
superimpose a grid, such as based on an uniform number of 
data points or an uniform relative error in each grid. For the 
sake of simplicity, in our description, we will reside our 
attention on the uniform distance grid. After the 
transformation, all the data points within each grid cell are 
treated and weighted equally. The granularity of the grid can 
be either specified by the user or statistically determined by 
the procedure introduced in the later section. After the grid is 
specified, the number of data points in each grid cell is 
counted (Figure 3). The goal is to determine a regression 
function that goes though grid cells in such a way that the total 
inconsistent data points in these grid cells is the minimum. 
Therefore, the regression function is most consistent with 
respect to all the data points. After counting the number of 
points in each cell, the next step is to calculate the 
inconsistency cost/charge of each grid cell with respect to all 
other grid cells according to the previous definition of 
consistency.  More specifically, the grid can be considered as a 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE SECON 2006 proceedings.

359



 

 1.   Let L(1) = min(C[1, j]), j=1,…,N
 2.   for i=2,...,M
            L(i) = min(C[i, j]+L(i-1)), j=1,…,N
 3.   Trace the shortest path that lead to L(M)

 
Figure 5.   Pseudocode of the modified Dijkstra’s shortest path algorithm. 
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Figure 6.   The prediction error of various error models. 

Kernel:  w denotes the sliding window size; 
Consistency (Consis.):  g denotes the grid size. 

MxN matrix (M=5 and N=11 in the example). C[i, j] denotes 
the number of data points within the grid cell [i, j], where 
i=1,…,M and j=1,…,N. the inconsistency cost/charge of grid 
cell [i, j] is defined as ∑C[s, t] where (s>i ∧ t<j) ∨ (s<i ∧ t>j), 
s=1,…,M and t=1,…,N. Figure 4 shows the inconsistency cost 
of all gird cells with respect to all other grid cells.  

Now we transform the problem instance of consistent and 
monotonic regression determination defined on a grid to the 
corresponding graphic theoretic instance where calculating the 
consistent and monotonic regression function is equivalent to 
finding the shortest path in the graph domain. The graph is 
constructed in the following way (Figure 4). The graph has 
M·N+1 nodes where the M·N grid cells correspond to the M·N 
nodes in the graph. In addition, the graph has a node labeled as 
the destination node D. The node which corresponds with the 
grid cell [1, 1] is labeled as the source node S. The 
inconsistency cost/charge of each grid cell is the weight of 
each node. Moreover, (M–1) [1/2 N(N +1)+(N –1)] directed 
edges are introduced in the following way. Each node that 
corresponds to the grid cell [i, j] has outgoing edges to i) the 
node that corresponds to the grid cell [i, j+1]; ii) the nodes that 
correspond to grid cells [i+1, t] where t=j,…,N. All N nodes 
belong to the last column have outgoing edge to the 
destination node. Once the graph is constructed, our goal is to 
find the path from the source to the destination which has the 
least accumulative weight. Note that this shortest path problem 
is equivalent to finding the most consistent regression function 
with respect to all data points since the assigned weights of the 
nodes are their inconsistency cost. Moreover, the monoticity 
of the regression function (i.e. the shortest path) is enforced by 
the way the edges are introduced. The problem of finding the 
shortest path in a graph can be solved using the Dijkstra’s 
shortest path algorithm. Due to the special structure of the 
graph, even more efficient algorithm can be constructed in the 
following way. For the sake of simplicity, we describe the 
process in the grid domain. The idea is to traverse the grid 
cells in a certain order. Grid cells are traversed according to 
the column that they belong in, columns are visited in the left 
to right fashion and the grid cells within the same column are 
visited in the bottom up fashion. The goal is to calculate the 
accumulative minimum inconsistency cost among all paths 
from the source to the current column. Figure 5 states the 
pseudocode of this simplified Dijkstra’s algorithm. The 
minimum inconsistency cost is first calculated along the first 
column (line 1). For each grid cell belong to column i, 
i=2,…,M, the accumulative minimum inconsistency cost up to 
the previous column is added to all the cells in the ith column 
without violating the monoticity principle. The process is 
speed up by only remembering the minimum accumulative 
inconsistency cost from the previous column L(i–1) (line 2). 
The grid cell that has the minimum inconsistency cost in the 
last column is the second to last node on the shortest path of 
minimum weight (D is the last node on the path). The shortest 

path is determined by tracing back the grid cells that have 
leaded to the grid cell which has the least accumulative 
inconsistency cost in the last column (line 3). 

The runtime of the Dijkstra’s algorithm is O(V2+E)=O(V2) 
where V is the number of nodes in the graph and E is the 
number of edges. In our case, the runtime of the Dijkstra’s 
algorithm becomes O((MN)2). Since our graph is sparse, the 
runtime of the Dijkstra’s algorithm can be speed up using 
priority queue with binary heap to O(ElgV), which is 
O(M·N2lg(M·N)) for our graph. The modified version of the 
algorithm presented in this section has runtime O(M·N). 
Therefore, we achieve a speed up of O(Nlg(M·N)). 

We evaluate the regression functions using the standard 
learn-and-test technique [7], where t% of the original data is 
used to conduct regression while the remaining portion of the 
data is used to evaluate the regression functions. In our study, 
t=70%. We randomly select 70% of the data points to construct 
the regression function; then we obtain the predicted values for 
the remaining data based on the regression function and 
compare the difference (L1 norm) between the predicted value 
and the actual correct value for all the testing data. Figure 6 
shows the boxplots of the L1 prediction error cross four types of 
regression methods: linear regression, polynomial of second 
degree regression, kernel density estimation-based regression 
[7], and consistency-based regression. The top and the bottom 
line of each boxplot are the maximum and the minimum 
prediction error of the testing set respectively; the upper line of 
the box, the line in the box, and the bottom line of the box are 
the 75%, 50% (mean), and the 25% percentiles of the 
prediction error of the testing set respectively. 

B. Density Estimation 
In this section, we introduce the pair-wise consistency-based 

technique for the derivation of the density estimation function. 
We start by explaining the importance of the density 
estimation and restating the density estimation problem from 
pair-wise consistency point of view. Then we explain the 
consistency-based density estimation procedure. Finally, we 
discuss how the density estimation function are validated and 
evaluated.  

Regression curve answers the question of what is the most 
likely value of the predicted variable for a given predicting 
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Figure 7.   Positive Inconsistency calculation. 
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Figure 8.   Five deferent regression lines. 

variable. The goal of regression curve can be many-fold and 
includes the minimization of average and maximum error. 
Density estimation is a generalization of regression. It does not 
only indicate the most likely predicted variable given a 
predicting variable, but also provide the probability of any 
particular value of the predicted variable is observed for a 
given predicting variable. It is easy to see that density 
estimation is significantly difficult than regression and it often 
requires significantly many more pairs of predicting and 
predicted variables than regression itself. Usually density 
estimation function is presented graphically in 3-d space 
where x-axis corresponds to the predicting variable, y-axis 
corresponds to the predicted variable, and z-axis is the 
probability of pairs of x and y coordinates. Standard 
techniques for density estimation are based on histograms and 
smoothing the histograms using windows of different scope 
and shape. There are several conceptually different ways to 
enable the transition from pair-wise consistency-based 
regression curves to density estimation function. We will 
reside our attention only on one that results the best 
performance according to statistical and application tests. The 
overall approach has four phases: i) identification of subset of 
data points for regression; ii) consistency-based regression 
(Section 4.1); iii) cumulative density function (CDF) 
derivation; iv) probability density function (PDF) derivation. 

We first identify the subset of points from the original set 
that have cardinality of 2C%, where C is the percentage of the 
points that forms the lowest C% of the CDF. The 
identification of such points is based on the calculation of 
positive inconsistency. Positive inconsistency can be defined 
either in the original or the normalized form. In the original 
form, for the point with coordinates (xi, yi), positive 

inconsistency is equal to the difference in number of points (xj, 
yj) that have the property  (xj>xi ∧ yj<yi) and the number of 
points (xk, yk) that have the property (xk<xi ∧ yk>yi). The 
concept of positive inconsistency is depicted in Figure 7 where 
the positive inconsistency of point P is the difference between 
the number of points in region A and region C. The stated 
definition is adequate when the points are approximately 
uniformly distributed with respect to the x-axis. However, 
when this is not the case, there is a need to compensate for the 
non-uniform distribution of points. For example, the 
normalization can be conducted by following Equation (4). 

||||
||

||||
||)(

BC
C

DA
APPI

+
−

+
=                                              (4) 

     where |i| is the number of points in region i.  

To summarize, positive inconsistency is a quantitative 
measure of how often a particular point is larger than expected 
with respect to all other points. Therefore, if the goal is to 
identify the values that form C% of the CDF, we have to 
identify 2C points that have the lowest value (possibly 
negative) in terms of positive inconsistency. Note that once the 
least consistent points are identified, the relative ranking of the 
other points can be altered. Therefore, in principle, it is 
required to simultaneously select all 2C points. We have 
experimented with various heuristic and probabilistic 
approaches for this task, and found that iteratively resorting is 
not required and it is sufficient to select points according to 
their initial ranking, at least for our sets of distance 
measurements. Out of all data sets (33 in total), this strategy is 
optimal in all but seven cases. Even in these seven cases, the 
ranking is minimally altered, and never more than two 
positions. 

Once we identify the subset of cardinality of 2C least 
consistent points, we can fit a regression curve based on the 
pair-wise consistency. We experimented with a variety of fits 
according to both statistical and numerical-based tests, pair-
wise regression-based modeling performs the best.  Figure 8 
shows five regression curves of different percentages: 1%, 2%, 
50%, 98% and 99%. A simple but crucial observation is that 
these regression curves correspond to the CDF value C at each 
measured distance. Figures 9 shows the CDF for a given 
measured distance 35m. The five points A, B, C, D and E in 
Figure 9 correspond to the five points on the CDF curve in 
Figure 8. By positioning a vertical line for each given 
predicting value (measured distance) and read off the 
predicted values (real distance) by following the regression 
curves of different C value, we can obtain the complete CDF 
curve. For each measured distance, its CDF can be 
consequently presented in a 2-d plot, where the x-axis is the 
predicted real distance and on the y-axis is the accumulative 
probability. 

Once the CDF is available, it is easy to derive the PDF 
using either numerical or statistical techniques. Figure 10 
shows the piece-wise linear estimation of the PDF. For the 
case of numerical technique, all is required is to take the 
difference between two consecutive values of the CDF 
function. In some case, it may be advantageous to employ 
statistical fitting in order to increase the smoothness of the 
PDF. From obtained PDFs and CDFs for various measured 
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Figure 13(a)   The measurement error (measured – real) boxplot. 13(b).   The 
measurement error boxplot zoom view. 16(c).   The boxplots of the location 

error comparison. 

distances, we can easily construct 3-d probability estimation 
and accumulative probability estimation functions for distance 
measurements. For the sake of easy visualization, Figure 11 
shows an example of 3-d CDF represented in a 2-d space for 
eight distance measurements. 

The validation and evaluation of the derived CDF and PDF 
are conducted also using the learn-and-test technique. We use 
70% of the original data as the training set to derive the CDF, 
the remaining 30% is testing set and we did 200 resamplings. 
The key idea is to map each data point in the testing set to its 
corresponding CDF value, which is derived using the learning 
data set. After each resampling, we plot the sorted (in 
ascending order) testing sets where the x-coordinate indicates 
its ranking normalized against the cardinality of the testing 
data set, and the y-coordinate shows the product of its CDF 
value and its ranking (Figure 12). Note that if the CDF derived 
based on the training data is a good representation of the 
testing set, all points would reside on the line y = x. By 
examining the slope (0.955) and the residual (0.972) of the 
least linear squares fit, we conclude that the CDF (therefore 
the PDF) obtained using the regression techniques described in 
Section 4.1 is indeed an accurate representation of the distance 
measurement errors. 

Once the PDF is available, we modify the objective function 
in such a way that the probabilities of certain error values 
occurring are maximized.  This is based on the standard 
assumption that errors are independent. The function M (in 
Equation (2)) no longer solely depends on the single variable 
of εij, but also the measurement dij itself. More specifically, the 
objective function F has the form expressed in Equation (5) 
and is subject to maximization, where Pij is the probability that 

error εij is detected when the estimated distance between 
sensors i and j is dij.  

F = ∏ ijP ,  where Pi,t = M(εi,t, di,t)                                    (5) 
    for pairs of nodes i&j that have measured distance dij                   

In the actual implementation of the nonlinear function 
minimization, instead of maximizing the product of the 
probabilities, we take the logarithm of each probability and 
maximize the summation of logarithms. 

V. EXPERIMENTAL RESULTS 
In this section, we experimentally evaluate the three 

consistency-based LD algorithms: GPS-based and GPS-less 
off-line LD based on consistency error models; the GPS-based 
on-line LD. In GPS-less LD, we first solve the instance 
without using any beacon information (obtain relative 
locations); then map the relative locations to the absolute 
positions using the available beacon information. The 
executions cross all four scenarios are done on a Pentium III 
1200MHz processor. We conduct analysis of the LD 
algorithms in terms of the average connectivity, and the 
scalability in terms of network size, dimension and different 
types of measurement errors. In addition, we also present the 
results for 10 other randomly selected data sets. Finally, we 
compare the relative performance of the LD algorithms with a 
sample of previously published algorithms. All experiments 
are conducted based on the data produced by the deployed 
sensor networks.  

A good way to evaluate the overall effectiveness of both the 
objective function and the LD algorithm is to compare the 
input error (the distance measurements errors) and the 
resultant location errors. Figures 13(a) and 13(b) present the 
boxplots of the distance measurement errors. The median and 
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Figure 14.   The location error boxplots given different average 

connectivity for off-line GPS-less LD. 
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Figure 15.   The scalability study – location error boxplots given 

different network sizes. 
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off-line LD, the centralized on-line LD, and the localized LD across 10 
independent data sets. 

average of the measurement error are 6.73m and 0.74m 
respectively. Figure 13(c) presents the boxplots of the location 
errors for five algorithms: the centralized off-line algorithm 
with error model constructed using the kernel density 
estimation technique as the optimization objective [21]; the 
centralized GPS-based and GPS-less off-line algorithm with 
consistency-based error models as the optimization objectives; 
the centralized on-line algorithm; and finally the localized 
algorithm. We conclude from the plot that without considering 
the beacons (GPS-less) yields better median location error 
than in the case of when beacons are available. Our 
interpretation for this is that the optimization has more degrees 
of freedom to alter each node’s positions around in order to 
improve the objective function as suppose to when the 
beacons’ positions are fixed. We compare the relative 
performance with a recent state-of-the-art literature [1] in 
terms of the ratio of the resultant location error and the input 
error (random noise). The authors introduced random noise 
which follows the Gaussian distribution with mean 0 and 
standard deviation 1cm, 5cm and 10cm. The resultant mean-
square errors are 4.43cm, 14.39cm and 16.22cm respectively 
(e.g. the mean location errors are then 2.1cm, 3.8cm and 
4.02cm respectively). Therefore, the corresponding ratio 
between the location error and the input error are 210%, 76% 
and 40.2% respectively. In our study, we consider the mean 
location error of the four algorithms and then normalize them 
against the mean input error (0.74m), the corresponding ratios 
are 1.8% (off-line GPS-based), 1.76% (off-line GPS-less), 
3.7% (on-line GPS-based). 

It is widely assumed that a high degree of connectivity of 
nodes resolves to smaller location errors. Figure 14 show the 
boxplots of the location error distribution given different 
average number of LD neighbors for the off-line GPS-less. We 
see that while it is important to have more than minimally 

required three neighbors, once the number of neighbors per 
node is more than 10, one can expect very little further 
improvement. More importantly, the quality of the 
neighboring measurements matters much more than the sheer 
number of neighbors.  

We have developed an integer linear programming (ILP)-
based instance generator, which creates instances with random 
node placements while following a specified measurement 
error distribution [21]. The scalability analysis is conducted on 
the networks created using the ILP-based instance generator 
with the same error distribution as in the original instance 
(Figure 11). We use the centralized off-line GPS-less LD 
approach for this study. 

From Figure 15, we observe that initially the median 
location error increases by more than a factor of 2 when the 
network size doubles (79 nodes to 150 nodes). However, the 
increase diminishes with any further size increase. In addition, 
we observe that the location error distribution expands to a 
wider range as the network size grows. This is an expected 
consequence of the presence of large number of nodes. Our 
interpretation of this phenomenon is that some nodes have 
higher probability of getting ‘lucky’ and vise versa when the 
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network size expands. It is interesting to note that no instances 
larger than 300 nodes are solved well using the centralized 
execution. Obviously the limit that can be addressed by the 
optimization software is reached. The instances larger than 
this critical point – 300 nodes, are solved by grouping 200 
nodes consecutively and invoking the optimization in a 
distributed fashion.  

In addition to network size, we also analyze the scalability 
in terms of dimensions and different types of errors in 
measurements. Figure 16 shows the location error boxplots 
when the localization is conducted in 1-d, 2-d and 3-d space. It 
is interesting to note that in 3-d, the medium and the 75% 
percentile of the location error increased by almost 50% while 
the other percentiles have smaller fluctuations. In Figure 17, 
we compare the performance on three sets of measurements 
that follow different types of error distribution. Stat. is the set 
of measurements we have obtained from the deployed 
networks which has error distribution shown in Figure 11 (the 
same GPS-less off-line boxplot as in Figure 13(c)). The other 
two sets of measurements are generated in simulation. On top 
of the real distances, random noise that i) follows the Gaussian 
distribution (µ=0, σ=0.5m) and ii) has triangular shape 
(h=0.5m, b=±0.5m) are imposed. The mean location errors are 
within 15% of each other for all three sets of measurements. 
This finding supports that the consistency-based error model 
(as the optimization target) is effective regardless of the types 
of error distribution. 

Furthermore, we examined the consistency of performance 
on all of the 33 data sets. For the sake of easy visualization, 
Figure 18 shows the results for 10 randomly selected instances 
where the number of neighbors is on average six per node. 
Centralized GPS-less off-line, centralized GPS-based on-line, 
and the localized algorithms are evaluated. 

VI. CONCLUSION 
We have developed a new localization approach that is 

solely based on the concept of consistency. If the localization is 
conducted off-line, statistical error models with specified 
properties are constructed using non-parametric statistical 
methods and used to guide the optimization mechanism for 
localization. If the localization is conducted on-line, no a priori 
knowledge about the error distribution is necessary; the 
optimization objective is the consistency between the 
measurements and the solutions provided by the optimization 
mechanism. The approach is evaluated using data produced 
from deployed networks. We also compared the performance 
with several other state-of-the-art localization methods. 
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