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Abstract

Model Predictive Control for Energy Efficient Buildings

by

Yudong Ma

Doctor of Philosophy in Control and Design

University of California, Berkeley

Professor Francesco Borrelli, Chair

The building sector consumes about 40% of energy used in the United States and is
responsible for nearly 40% of greenhouse gas emissions. Energy reduction in this sector by
means of cost-effective and scalable approaches will have an enormous economic, social, and
environmental impact. Achieving substantial energy reduction in buildings may require to
rethink the entire processes of design, construction, and operation of buildings. This thesis
focuses on advanced control system design for energy efficient commercial buildings.

Commercial buildings are plants that process air in order to provide comfort for their
occupants. The components used are similar to those employed in the process industry:
chillers, boilers, heat exchangers, pumps, and fans. The control design complexity resides in
adapting to time-varying user loads as well as occupant requirements, and quickly responding
to weather changes. Today this is easily achievable by over sizing the building components
and using simple control strategies.

Building controls design becomes challenging when predictions of weather, occupancy, re-
newable energy availability, and energy price are used for feedback control. Green buildings
are expected to maintain occupants comfort while minimizing energy consumption, being ro-
bust to intermittency in the renewable energy generation and responsive to signals from the
smart grid. Achieving all these features in a systematic and cost-effective way is challenging.
The challenge is even greater when conventional systems are replaced by innovative heat-
ing and cooling systems that use active storage of thermal energy with critical operational
constraints.

Model predictive control (MPC) is the only control methodology that can systematically
take into account future predictions during the control design stage while satisfying the
system operating constraints. This thesis focuses on the design and implementation of MPC
for building cooling and heating systems. The objective is to develop a control methodology
that can 1) reduce building energy consumption while maintaining indoor thermal comfort
by using predictive knowledge of occupancy loads and weather information, (2) easily and
systematically take into account the presence of storage devices, demand response signals
from the grid, and occupants feedback, (3) be implemented on existing inexpensive and
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distributed building control platform in real-time, and (4) handle model uncertainties and
prediction errors both at the design and implementation stage.

The thesis is organized into six chapters. Chapter 1 motivates our research and reviews
existing control approaches for building cooling and heating systems.

Chapter 2 presents our approach to developing low-complexity control oriented models
learned from historical data. Details on models for building components and spaces thermal
response are provided. The thesis focuses on the dynamics of both the energy conversion and
storage as well as energy distribution by means of heating ventilation and air conditioning
(HVAC) systems.

In Chapter 3, deterministic model predictive control problems are formulated for the en-
ergy conversion systems and energy distribution systems to minimize the energy consumption
while maintaining comfort requirement and operational constraints. Experimental and simu-
lative results demonstrate the effectiveness of the MPC scheme, and reveal significant energy
reduction without compromising indoor comfort requirement.

As the size and complexity of buildings grow, the MPC problem quickly becomes com-
putationally intractable to be solved in a centralized fashion. This limitation is addressed in
Chapter 4. We propose a distributed algorithm to decompose the MPC problem into a set
of small problems using dual decomposition and fast gradient projection. Simulation results
show good performance and computational tractability of the resulting scheme.

The MPC formulation in Chapter 3 and 4 assumes prefect knowledge of system model,
load disturbance, and weather. However, the predictions in practice are different from actual
realizations. In order to take into account the prediction uncertainties at control design
stage, stochastic MPC (SMPC) is introduced in Chapter 5 to minimize expected costs and
satisfy constraints with a given probability. In particular, the proposed novel SMPC method
applies feedback linearization to handle system nonlinearity, propagates the state statistics of
linear systems subject to finite-support (non Gaussian) disturbances, and solves the resulting
optimization problem by using large-scale nonlinear optimization solvers.
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Chapter 1

Introduction

1.1 Backgrounds and Motivations

According to the data book compiled by D&R international for the U.S. Department of En-
ergy [49], commercial buildings represent almost one-fifth of the U.S. energy consumption.
The top three end users in the commercial building sector are space heating, lighting, and
space cooling, which represent close to half of commercial site energy consumption. Between
1980 and 2009, commercial floor space and primary energy consumption increased by 58%
and 69%, respectively. In aggregate, commercial buildings consumed 17.9 quads of primary
energy in 2009, representing 46.0% of building energy consumption and 18.9% of U.S. en-
ergy consumption. Energy reduction in this sector by means of cost-effective and scalable
approaches will have an enormous economic, social, and environmental impact.

Commercial buildings are plants that process air and water in order to provide comfort
for their occupants. The components used are similar to those employed in the process indus-
try: chillers, boilers, heat exchangers, pumps, and fans. The set points for each individual
component have to be controlled so that the system delivers demanded cooling and heating
energy to building spaces. Over the last 25 years, the flexibility and sophistication of build-
ings control have greatly increased due to rapidly declining costs of embedded processors and
deployment of wireless sensors. The study in [117] shows that more sophisticated controls
approaches that consider a wider range of variables and automated control functions have
significant national energy saving potentials. In particular, in [117] a selection of advanced
control logic is analyzed, and their market-achievable energy saving potentials are reported.
One of the conclusions in [117] is that the demand controlled ventilation could potentially
achieve national energy saving of 0.3 quad. Note that a quad is a unit of energy equal to
1015 BTU or 1.055 × 1018 Joules. This potential energy saving motivates the development
and implementation of advanced control logic for building energy systems.

Most modern buildings employ some level of automated control. In certain cases the
control logic may be complex and optimized, but in the majority of cases building systems
are controlled by basic control logic that errs on the side of simplicity over subtlety. Distinct
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and interconnected proportional-integral-derivative (PID) loops and switching rules are the
industry standard. This logic responds to setpoints and schedules for building components
such as chillers and cooling towers.

Advanced decision systems are available on the market to optimize the system operation
based on component modeling, feedback, and forecasts. A variety of proprietary control
sequences for chillers, boilers, and cooling towers are available in the building industry.
However, to the best of the authors’ knowledge, their implementation is not widespread and
often limited to specific configurations and components of the cooling and heating systems.

In addition, advanced controls design becomes challenging when predictions of weather,
occupancy, renewable energy availability, and energy price are used for feedback control.
High-performance green buildings are expected to maintain comfort and satisfaction of their
occupants while optimizing energy, being robust to intermittencies in the renewable energy
generation and responsive to signals from the smart grid. Achieving all these in often under-
monitored environments is challenging. The challenge is even greater when conventional
systems are replaced by innovative heating and cooling systems that use active storage of
thermal energy with critical operational constraints [65, 88].

This thesis focuses on model predictive control of building cooling and heating systems.
Model predictive control (MPC) is the only control methodology that can systematically
take into account future predictions during the controller design stage while satisfying the
system operating constraints. In buildings, model predictive control has two mechanisms to
improve performance and reduce energy consumption of heating and cooling systems. The
first mechanism is referred to as load shifting or active storage. Load shifting consists of
shaping the energy profile delivered to a building, and exploiting the possibility of storing
energy for later use. Thermal storage is inherent to a building structure and can be increased
by including additional external energy storage devices. The optimal profile of the delivered
energy depends on various factors such as time varying utility prices, availability of renewable
energy, ambient temperature variation, and load shedding signals received from the utility
grid. The second mechanism is component optimization. Buildings can be large systems
with many control variables and degrees of freedom. Predictive models of building thermal
dynamics and energy costs of control actuators allow computation of the optimal inputs to
each actuator in order to deliver the desired energy profile.

This thesis focuses on the development and implementation of MPC for building heating
and cooling systems. In particular, the main contributions of this thesis include,

1. The design of deterministic model predictive control for building heating and cooling
energy systems with thermal storage. First, simple yet descriptive models are developed
and validated for each building components. The MPC formulations are then presented
for building heating and cooling systems, and extensive simulation and experiment
results are presented to show the advantages of MPC over baseline controllers.

2. The design of a distributed MPC scheme. The centralized MPC problem is decom-
posed into small subproblems. The optimal control law is computed by iteratively
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solving small problems in local units and communicating information between units.
The proposed method makes use of sequential quadratic programming (SQP) [104, 62],
proximal minimization [9], and dual decomposition [83] to handle the system nonlin-
earities and the decentralization, respectively. The key advance of this approach is the
ability to solve MPC problem for large scale building heating and cooling systems in
a distributed fashion. The resulting scheme is suitable to be implemented on a set of
distributed low-cost processors.

3. The design of a stochastic MPC scheme for building energy systems so that the ex-
pected electricity energy is minimized while guaranteeing a desired (low) probability
of comfort constraint violations. The proposed stochastic MPC takes into account
the prediction uncertainties and model errors at design stage, and the uncertainties
are modeled as random variables with finitely supported probability density distribu-
tions. The proposed approach handles system nonlinearities by feedback linearization,
computes tightening offsets for chance constraints, and solves the resulting non-convex
optimization problem by off-shelf optimization software.

In the following section, existing control logic for building heating and cooling systems
in literature is reviewed.

1.2 Literature Review

Over the last decades, the costs of embedded processors and wireless sensors have been
rapidly declining while their performance has been significantly improved. This trend en-
ables the cost-effective introduction of more sophisticated building automation systems and
building energy management control systems in order to facilitate the operations, main-
tenance, and monitoring of building systems. The flexibility of the building automation
platforms and the complexity of building systems have made control a very active area of re-
search and development. The ultimate goal is to reduce overall energy consumptions, ensure
comfort of occupants, and satisfy indoor air quality requirement. A variety of control logic
for building cooling and heating systems has been proposed and reported in literature. The
authors in [133] and the ASHRAE handbook [1] offer a thorough review on existing control
methodologies for building energy systems. Classical control has been widely adopted in
building energy systems due to its simplicity to design and its low computational complexity
to determine the control signals [1]. For example, ON/OFF or bang-bang controllers are
ubiquitously used in old building systems without digital control, and proportional-integral-
derivative (PID) control loops are extensively implemented in current building heating and
cooling systems equipped with digital control panels and variable frequency drivers [1]. How-
ever, for large-scale coupled buildings, tuning nested PID loops controlling systems with mul-
tiple inputs and multiple outputs is very challenging and time consuming. Often the PID
loops are coordinated by rule-based control. Rule-based control defines a sequence of if-then-
else commands for actuators based on experience of building operators and managers [1].
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Rule-based control design is widely used in building heating and cooling systems including
chiller sequencing control, cooling tower sequencing control, pump sequencing control, and
fan sequencing control.

This thesis focuses on model predictive control techniques. The main idea of model-based
control is to use the model of the plant to predict the future evolution of the system [98].
At each sampling time, starting at the current state, an open-loop optimal control problem
is solved over a finite horizon. The optimal command signal is applied to the process only
during the following sampling interval. At the next time step a new optimal control problem
based on new measurements of the state is solved over a shifted horizon.

For complex constrained multivariable control problems, MPC has become the accepted
standard in the process industries [14]: its success is largely due to its unique ability to simply
and effectively handle hard constraints on control and states.

MPC eliminates the drawbacks of traditional control techniques including: 1) excessive
parameter tuning, 2) the lack of prediction capability, 3) the incapability of optimizing the
energy consumption at a system level, and (4) the incapability to maintaining satisfactory
performance at all operating conditions.

MPC has two challenges. 1) The development cycle for MPC is longer than traditional
control methods as MPC requires analytical building models at the design stage, and 2)
MPC requires more powerful computation units to solve an optimization problem in real-
time. For these reasons, the acceptance of MPC in building community has been limited to
research purpose. This thesis will show that there can be substantially benefits associated
with MPC, and that both challenges can be addressed by automated modeling and proper
problem formulation to enable real-time implementation on low cost computation platform.

Model Predictive Control

Model-based predictive control (MPC) is the only control methodology that can handle
large-scale multi-input multi-output (MIMO) dynamically coupled systems subject to state
and input constraints, with performance guarantees. J. Braun [19] firstly proposed an op-
timal control strategy to reduce energy costs and peak electrical demand by making use of
building thermal energy storage, and this work inspired a number of model predictive control
methodologies for building heating and cooling control.

The basic idea of MPC is to solve a finite time optimal control problem at each time step
t,

min
u

k=N−1∑

k=0

Energy(xt+k|t, ut+k|t, dt+k|t), (1.1a)

subj. to xt+k+1|t = f(xt+k|t, ut+k|t, dt+k|t), ∀k = 0, 1, . . . , N − 1, (1.1b)

yt+k|t = g(xt+k|t, ut+k|t, dt+k|t), ∀k = 0, 1, . . . , N, (1.1c)

ut+k|t ∈ U , ∀k = 0, 1, . . . , N − 1, (1.1d)

yt+k|t ∈ Y , ∀k = 0, 1, . . . , N, (1.1e)
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where the symbol vt+k|t is read as “the variable v at time t+k predicted at time t”, N is the
prediction horizon, y is the output of the system, and x is the system states of building cool-
ing and heating systems including zone temperatures, humidity level, CO2 concentrations,
and other factors affecting the occupants perceptions of comfort. The vector u collects the
control inputs of building systems regulating the heating and cooling plants, and the vector
d collects exogenous signals (called “disturbances” in this thesis) such as ambient tempera-
tures and thermal load induced by occupancy, solar radiations, and electrical devices. The
function f(x, u, d) in (1.1b) allows to predict the future building states based on the current
states, control inputs, and disturbances. The objective of the model-based optimal con-
trol problem (1.1) is to minimize the total energy consumptions (1.1a) while satisfying the
operational constraints (1.1d) and comfort constraints (1.1e).

All MPC approaches appeared in the literature to building control solve a version of
problem (1.1). Their difference resides in the type of

1) comfort constraints or state constraints (1.1e),

2) dynamic models to predict the building states (1.1b), energy consumptions (1.1a), and
the disturbances dt+k|t, ∀k = 0, 1, . . . , N − 1,

3) the implementation of the optimal control inputs.

In the following sections, the MPC for building energy systems are reviewed and classified
based on the above three ingredients in MPC design. Figure 1.1 reports a graphics of the
classification scheme.

Model predictive control for 

building energy systems 

Comfort index 

Models 

Implementation 

Thermal bounds 

PMV 

Physical based  reduced 

model 

High fidelity model 

Black/grey box model 

Online optimization 

Pre-computed optimal 

solution 

Figure 1.1: Classification schematic for building MPC logic.
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Table 1.1: Relationship between PMV and thermal sensation.

PMV +3 +2 +1 0 -1 -2 -3
Thermal sensation Hot Warm Slightly warm Neutral Slightly cool Cool Cold

Comfort Constraints

Thermal comfort in buildings is generally difficult to define and measure since thermal sat-
isfaction depends on many parameters related to sensible, latent, conductive, and radiative
heat transfer processes governing the thermodynamic of human body. Extensive studies over
the last decades have tried to establish a number of thermal comfort indices for indoor cli-
mate analysis and HVAC control system design [129]. Next we discuss two types of simplified
comfort constraints: the predicted mean vote (PMV) and a combination of linear constraints
on building measured variables.

The concept of PMV was introduced by Fanger [53] in 1970. PMV is not only based
on temperature and relative humidity, but also depends on mean radiant temperature, air
velocity, and individual factors such as metabolism rate and thermal resistance of clothing.
PMV is a real scaler indicating the occupants’ thermal comfort sensation.

PMV is computed as a function of four environmental variables [53] including temperature
T , relative humidity hr, mean radiant temperature Tmr, air velocity V and two individual
parameters (metabolic rate Mr and clothing index Icl),

PMV = G(T, hr, Tmr, V,Mr, Icl). (1.2)

Equation (1.2) is based on the assumption that for long exposures to a constant thermal
environment with a constant metabolic rate, a heat balance can be established for the human
body and the bodily heat production is equal to its heat dissipation [53]. Table 1.1 shows
the correspondence between PMV and thermal sensation. In 1994, this formula (1.2) was
included in ISO Standard 7730 and a PMV-based criterion has been established between
-0.5 and +0.5 as acceptable for thermal comfort in air conditioned environments.

The concept of PMV has been adopted in model-based optimal control design [55, 48,
35, 38] to guarantee occupants thermal sensation in buildings with minimum energy con-
sumption. In particular, the work in [55, 48] focused on the study of indoor thermal comfort
control problem in building HVAC systems. The HVAC heating and cooling systems are
simplified as an auto-regressive with exogenous input model. A model predictive control
problem of the form (1.1) is proposed to minimize energy consumption while maintaining
the indoor thermal comfort criterion (PMV) at an adequate level. Simulation results are pre-
sented to validate the energy savings and thermal comfort. Also the model-based optimal
control with PMV index is tested in a solar energy research center in [35]. Optimal control
problem based on PVM is non-convex due to the PMV equation (1.2). The authors in [38]
attempted to address this issue by introducing a convex approximation when computing
the PMV (1.2), and simulation results are presented to demonstrate the effectiveness and
computational efficiency of the proposed method.
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In order to reduce the complexity of the control problem and enable real time implemen-
tation, simpler yet descriptive comfort indices can be formulated as a set of linear constraints
on the zone temperatures, CO2 concentrations, and relative humidity. One example is the
thermal comfort index named “effective temperature”, which is a function of indoor temper-
ature and relative humidity [129]. Thermal comfort specified by ASHRAE can be identified
by quadrilateral regions within a psychrometric chart [55], and also falls into the category of
a fixed constrained region. Another example of simplified comfort model is defined as upper
and lower bounds on perceivable building temperatures, and this comfort index is used by
authors in [90, 95, 76, 19, 102, 105].

Model

Model-based control relies on building models to predict the building states, energy models
to predict the electricity energy consumptions, and load models to predict the future load
induced by occupancy, solar radiation as well as electrical devices. The choice of models
affects the performance and computational complexity of the resulting model predictive
controller. The models reported in literature can be categorized into three groups: 1) high
fidelity models that involve the numerical solution of differential algebraic equations (DAE)
describing thermal balance of buildings, 2) simplified physical based models based on RC
analogy, and 3) grey/black box models that do not rely on physical building models.

High fidelity models are usually developed for simulation purpose. Existing building
energy simulation programs are EnergyPlus [44], TRNSYS [77], ESP-r [40], DOE-2 [139],
IDA [118], and BuildOpt [136, 138]. A number of studies have focused on designing optimal
controllers of the type (1.1) using high fidelity models as prediction models in (1.1b).

Henze et al. in [68] demonstrated model predictive control of active and passive building
thermal storage inventory in a test facility in real time using time-varying electricity prices
without demand charges. In their study, the building was modeled by TRNSYS while Matlab
and its optimization toolbox were interfaced with the building simulation program.

Brian Coffey et al. in [41] proposed a software framework for model predictive control
based on an optimization package called GenOpt [137]. His approach allows the use of any
text-based simulation tools and simplifies the setup process for simulation-based studies or
real-time implementations. His work also introduces the use of optimization starting points
and dynamic search-space constraints based on the results of previous time-steps and on
heuristic rules.

Despite the aforementioned success, optimal control with high fidelity prediction mod-
els has the following drawbacks: 1) the identification and validation of high fidelity models
are nontrivial, and require excessive parameters tuning and simulation, 2) the complexity
and size of the prediction models quickly lead to a computationally intractable optimiza-
tion problem, and 3) high fidelity simulation models prevent the optimization solvers from
exploring the sparse structure of the resulting optimization problem. These issues are the
major obstacles for their online implementations.
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The issues related to high fidelity prediction models can be mitigated by using simplified
physical-based models or lumped parameter physical models. In particular, in this thesis
we present low order RC based bilinear building models based on thermal energy conserva-
tion law. The bilinear terms arise from the multiplication of air flow rate and supply air
temperature to compute the thermal energy delivered to zones. This simplified building
model approach has appeared in [43], and then extensively adopted in model-based optimal
control for building temperature regulations [19, 90, 76, 105, 5]. RC based load models are
proposed in [92, 64] to estimate the thermal load of buildings. In particular, buildings are
modeled as interconnections of thermal resistances and thermal capacitances representing
walls, windows, ceilings, and furniture. The building thermal load is a function of average
room temperature, room temperature set points, cloud coverage, ambient temperature, and
time. The model parameters are estimated by fitting historical measurement. In [107], a
reduced order RC-based model is developed to predict room temperatures, and the building
thermal load is estimated using extended Kalman filter that combines models with temper-
ature sensors. The author in [4] proposed to model room thermal dynamics using a first
order linear model subject to additive uncertain loads, and the loads are estimated by semi-
parametric regression using only temperature measurements. In the MPC implementation
reported in [4], the load prediction is assumed constant over the prediction horizon.

Lastly, a few approaches in the literature use gey/black box models to represent the
building dynamics. These models do not require full knowledge of the system or process.
They are developed by fitting historical behaviors of the system. The parameters in these
models do not reflect physical significance. Typical examples of black/grey box models are
polynomial curve fits, ARMAX model, and artificial neural networks (ANNs). Black/grey
box models are simple to develop and implement since they require only data. However,
black/grey box models cannot ensure reliable prediction for operating points outside the
range covered by training data, and thus extensive and adequate data training is needed in
order to guarantee prediction accuracy. Black/grey box building dynamics models have been
used in MPC design in [55, 73, 131, 141]. Black box building load models have been reported
in [90, 93], and the building loads are modeled as a bounded time-varying uncertainty. The
disturbance load envelopes can be learned from historical data, shared calendars, and weather
predictions.

Implementations

The optimal control actions obtained by solving Problem (1.1) can be implemented in differ-
ent ways. The implementation approach depends on the problem complexity and available
computational power as well as hardware specifications. The two major implementation
methods include, 1) online optimization that computes optimal control signal in real-time,
and 2) off-line method that pre-computes optimal solutions and looks up the optimal control
signal on line. Online model predictive control requires to solve the optimization prob-
lem (1.1) at each control sampling time. The optimal command signal is applied to the
system only during the current sampling interval. At the next time step a new optimal
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control problem based on new measurements of the state is solved over a shifted horizon.
Many of the optimal control methods for building energy system reported in literature fall
within this online paradigm [19, 90, 76, 105, 5]. However, as the building size increase, the
optimization solver might not be able to compute a satisfying solutions within the control
sampling time.

In order to reduce the computation time for the optimal control actions, and enable
real time implementation, off-line methods attempt to solve an optimal solution set to Prob-
lem (1.1) parameterized over initial states off-line. Instead of solving an optimization problem
at each time step as online methods, off-line methods merely require to measure the current
states and find the corresponding optimal control action within the solution set pre-computed
off-line [17, 3]. However, the complexity of this method requires excessive memory to store
the optimal solution set, and suffers from the curse of dimension. Several approximation
methods are proposed to reduce the memory usage of the off-line methods by simplifying the
representation of the optimal solution set. In particular, the authors in [46] make use of stan-
dard machine learning algorithms to approximate the optimal solution set from randomly
chosen point-wise sample values. The work in [47] deals with learning decision rules from
simulation data to mimic the binary decisions of a hybrid MPC building controller as closely
as possible while maintaining high performance. A well-known concept AdaBoost from ma-
chine learning is employed to combine a number of weak learners into a strong classifier.
The resulting controller maps directly to a majority voting system using simple if-then-else
rules, a structure that building operators are familiar with. In addition, a complementary
statistical technique has been introduced that allows for the extraction of logistic decision
models from the optimal control results for windows operation in buildings [97]. The process
works best when some time-lagged information is present as a predictor variable to ensure
that some process memory is preserved. A generalized linear model (GLM) in the form
of a multi-logistic regression was able to mimic the general characteristics of the optimizer
results, achieving energy savings, but at a small fraction of the computational expense.

1.3 Thesis Outline

The remainder of the thesis is structured as follow.

• Chapter 2 presents the models used in the control design for building heating and
cooling systems. A typical building heating and cooling system has energy conversion
and energy distribution components for both water-loop and air-loop systems. At the
water-loop system, the energy conversion systems include a set of cooling towers and
chillers to produce the chilled water, and a heating pump or boiler to produce hot water.
The energy distribution system includes water pumps and an energy storage device. At
the air-loop system, subsystems known as air handling units (AHUs) transfer energy
from water into localized air flows. These air flows are transported by a supply fan to
buildings’ spaces, delivering cooling and heating energy where required.
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For the water-loop system, a simplified model based on mass and energy conservation
law is developed and validated for an energy storage tank, and the thermal load de-
manded by the buildings are predicted using a solar and internal load predictor and
a building thermal load predictor. The solar and internal load predictor computes
the thermal load induced by solar radiation, occupancy, and electrical devices in the
buildings as a function of weather information, time, and date. The building thermal
load predictor computes the heating and cooling energy required by buildings to main-
tain thermal comfort using a simplified RC model. In addition, polynomial models are
developed to predict the energy consumptions for chillers, cooling towers, and pumps.

For the air-loop system, two types of simplified models are presented for the dynamics
of zone temperatures. The first one is a two-state bilinear model, where the first
state describes the fast dynamic thermal mass (air within the room) and the second
state is the slow dynamic thermal mass (furniture, floors, ceilings, and walls). The
bilinear term results from the computation of cooling and heating energy delivered
to building spaces. The second model is a bilinear ARMAX model. Both models
are tested on historical data collected from Bancroft DOE library at UC Berkeley.
The thermal room models are subject to uncertainty load disturbance, and the load
is calculated as follows. The room model parameters are identified using data from
unoccupied hours with minimum internal load, and the load during occupied hours are
computed as the difference between the temperature measurement and the temperature
predicted by models. The energy consumption models for each component (dampers,
heating/cooing coils, and supply fan) are modeled as static polynomial functions of
control actions and system states.

• Chapter 3 outlines the model-based predictive control design for both water-loop and
air-loop systems. The MPC controllers for water-loop and air-loop systems are denoted
as HMPC and LMPC, respectively. First the MPC concept is briefly outlined for a
simplified one-state linear building energy model. Simulation results are presented to
demonstrate its ability to save energy and reduce peak power consumption compared
to baseline controller.

A detailed case study for HMPC for the cooling system on the campus of UC Merced is
reported. To the best of the author’s knowledge, this is the first real-time implementa-
tion of model predictive control on large scale building energy systems. In particular,
a nonlinear MPC is designed to optimize the set points and schedule of the central
chilling plant and the charge level of the energy storage tank. The MPC problem is
solved using sequential quadratic programming. In addition, move blocking strategy
is applied to reduce the problem size, and a periodic robust invariant set is used as
terminal constraints so that there is always enough chilled water in the tank to meet
all possible realization of the uncertain demands. Experimental results suggested that
MPC is able to reduce the energy consumptions and increase the thermal efficiency of
the chillers and cooling towers.
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Chapter 3 also presents the details for LMPC. Extensive simulations are carried out
to show that MPC is able to maintain thermal comfort while consuming least energy
consumptions by air-loop systems. Furthermore, time varying electricity price can be
incorporated in MPC design with minimum modifications to reduce the electricity bills
associated with HVAC operations.

• Chapter 4 proposes a distributed model predictive control for building temperature
regulations. The size of the centralized predictive control problem rapidly grows when
a realistic number of rooms together with a meaningful control horizon are consid-
ered. Therefore the real-time implementation of a MPC scheme is a challenge for
the low-cost embedded platforms currently used for HVAC control algorithms. The
techniques presented in Chapter 4 enable the implementation of a MPC algorithm by
distributing the computational load on a set of VAV box embedded controllers coordi-
nated by the embedded controllers on the AHU system. This is achieved by adopting
sequential quadratic programming (SQP), proximal minimization, and dual decom-
position to handle the system nonlinearities and the decentralization, respectively.
The effectiveness and computational efficiency of the proposed distributed algorithm
is demonstrated by simulations results.

• Chapter 5 proposes a stochastic MPC for building HVAC system so that the expected
energy consumption is minimized while guaranteeing low probability of comfort con-
straint violations. In this framework, the uncertainties of model disturbances are
learned from historical data, and are modeled as finitely supported probability dis-
tribution functions. The uncertainty descriptions are explicitly taken into account
in the design stage by propagating the statistics of system states along the horizon,
and bounding the chances of constraints violations. Compared to existing stochastic
MPC approaches for building energy system [105], the proposed method is able to
directly handle bilinear systems subject to non Gaussian distributions. In particular,
feedback linearization is used to linearize the bilinear system, and the probability den-
sity function of the uncertainties are propagated using discrete method and sample
based method. Simulative and experimental studies are carried out to demonstrate
the effectiveness of the method.
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Chapter 2

System Description

2.1 Introduction

In this chapter, we describe a building cooling and heating system with energy storage
elements. A typical building heating and cooling system has energy conversion and energy
distribution systems for both water-loop and air-loop systems. In this thesis, we focus on
the building cooling system. The results in following chapters can be adapted to heating
systems with minor modifications.

The water-loop system, in general, consists of a series of chillers/cooling towers for energy
conversion, an electrical pump as well as thermal storage elements for energy distribution.
The chillers and cooling towers are responsible for the chilled water generation. The electrical
pump is operated to maintain enough static duct pressure so that a desired mass flow rate
of chilled water is supplied to the down-streaming systems. The thermal storage element is
installed to enable load shifting. The concept of load shifting allows the chillers and cooling
towers to operate when the energy price is lower and when the ambient conditions allow to
operate the chilling system more efficiently. The chilled water in the energy storage element
is used to satisfy the buildings thermal demands.

The air-loop system includes air handling units and variable air volume boxes. An air
handling unit transfers energy from distributed chilled water into localized air flows, and
these air flows are transported to buildings space, delivering cooling and heating energy
where required.

Simulative models for both water-loop and air-loop systems have been developed and
widely used in building industry for design and control purpose [138]. However, these models
are too complex to be included in the design of model-based control. Therefore it is necessary
to develop simplified yet descriptive models for both water-loop and air-loop systems. In
the following sections, control-oriented models for buildings are developed and validated.
In particular, for each level of the system, we developed a set of difference (differential)
equations describing the system dynamics, nonlinear static equations computing the energy
consumption for each building component, and empirical equations estimating the future
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load.
For the water-loop system, a simplified model is developed and validated for a class of

energy storage tank. The model is based on mass and energy conservation laws, and the
building thermal load is predicted by solar and internal load predictor and the building
thermal load predictor. The solar and internal load predictor computes the thermal load
induced by solar radiation, occupancy, and electrical devices in the buildings as a function
of weather information, time, and date. The building thermal load predictor computes the
heating and cooling energy required by buildings to maintain occupants’ thermal comfort
using a simplified RC model. In addition, polynomial curve fitting models are developed to
predict the energy consumptions for chillers, cooling towers, and pumps.

For the air-loop system, two simplified models are presented for thermal zone dynamics.
The first model is a two-state bilinear system, where the first state describes the fast respond-
ing thermal mass (air within the room) and the second state is the slow responding thermal
mass (furniture, floors, ceilings, and walls). The bilinear term results from the computation
of cooling and heating energy delivered to zones. The second model is a bilinear ARMAX
model. Both models are tested on historical data collected from Bancroft library at UC
Berkeley. The thermal zone models are subject to uncertain load, and the load is calculated
as the difference between the temperature measurement and the temperature predicted by
the zone models. The energy consumption for each component (dampers, heating/cooing
coils, and supply fan) is modeled as a static polynomial function of control signals and system
states.

2.2 Cooling Control Systems

This section describes a building HVAC system by dividing it into two loops, namely water-
loop and air-loop systems. At the water-loop system, a centralized chilled water generation
system produces the required cooling energy. It is assumed that an energy storage device
is available. This thesis focuses on thermal energy stored in a stratified water tank. At
the air-loop system, subsystems known as air handling units (AHU) transfer energy from
distributed chilled water into localized air flows. These air flows are transported to building
spaces, delivering cooling energy where required. The next sections describe the water-loop
chilled water generation, the storage element, and the air-loop system.

Water-Loop: Components Outside a Building

Figure 2.1 depicts the main components of a cooling system based on chilled water conversion,
storage, and distribution. The system can serve either a single building or multiple buildings.
Chillers and cooling towers are responsible for generating chilled water. The chillers remove
heat from the chilled water loop by means of a vapor-compression or absorption refrigeration
cycle. Cooling towers reject heat from the chiller cycle to the ambient environment by
evaporation and forced convection using electrical fans.
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Figure 2.1: Schematic of a cooling system.

The chilled water storage element in Figure 2.1 can shift the peak cooling thermal energy
load so that the chillers and cooling towers can run only when it is most efficient to do so.
The logic behind the load shifting depends on various factors including time varying utility
prices, availability of renewable energy, lower ambient temperature, and load shedding signals
received from the utility grid. The chilled water is distributed through insulated piping using
hydraulic pumps. The valve in Figure 2.1 controls the chilled water flow to either fill the
storage element, or serve the buildings with a desired mass flow rate of chilled water.

Several thermal storage elements are available in the building industry. This thesis focuses
on a stratified chilled water tank that can store chilled water, such as the one installed on
the campus of University of California at Merced [94, 64]. Other storage devices are available
using ice balls or concrete slabs to store thermal energy.

Air-Loop: Components Inside a Building

The main components used to produce and distribute cool air in a building are depicted in
Figure 2.2. They are air handling units (AHUs) and variable air volume (VAV) boxes. The
AHU recirculates return air from building spaces, and mixes it with fresh outside air. The
ratio of return air flow to outside air flow is controlled by dampers located inside the AHU.
The mixed air is cooled by a cooling coil that transfers cooling energy from the chilled water
that is generated or stored by the water-loop system.
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Figure 2.2: Schematic of the air distribution system.

The air temperature downstream of the cooling coil depends on the mass flow rate of
chilled water through the cooling coil, the temperature of the chilled water, the temperature
of mixed air entering the cooling coil, the mass flow rate of the mixed air, and the physical
characteristics as well as thermal effectiveness of the cooling coil. Cool air is delivered to
the building spaces by electric fans. Before reaching the building spaces, the air goes though
variable air volume (VAV) boxes. At each VAV box the air flow rate supplied to the space
is regulated by a damper. In addition, air temperature can be increased using a reheat coil
installed in the VAV box when needed. A space served by one VAV box is referred to as a
thermal zone. The delivered air enters a thermal zone through diffusers that are designed to
fully mix the incoming air with the air in the thermal zone.

2.3 Hierarchical Levels and System Modeling

We follow the structure of the previous section and present reduced order models for both the
water-loop and air-loop of building cooling and heating systems. For each loop we describe
the associated dynamics, components that use energy, and thermal energy load. When a
multitude of buildings being controlled, the relevant model dynamics at the water-loop are
the dynamics of thermal energy storage devices. The buildings’ cooling or heating thermal
energy loads are modeled as a lumped heat flux, and the main components consuming energy
are chillers, cooling towers, and pumps. At the air-loop the relevant model dynamics are
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the dynamics of thermal zones. The thermal energy load combines the loads generated by
occupants, solar radiation, and electrical devices. The components consuming energy are a
supply fan, a cooling coil, and heating coils.

Water-Loop: Modeling a Building from the Outside

Storage Dynamics

A model of a water tank used for actively storing chilled water is presented and validated
with data collected from UC Merced campus. The water in the tank is subject to negligible
mixing, thus the tank can be modeled as a stratified system with layers of warmer water
at the top and cooler water at the bottom. Figure 2.3 depicts the temperature of water
measured inside the tank at different heights at 8:30 AM on November 29, 2007. A thin
layer of water, known as a thermocline, that has a steep temperature gradient over the
height of the tank can be observed. Warmer water above the thermocline and cooler water
below the thermocline are lumped up to obtain a four state system describing the height
and internal energy of the warmer and cooler water, respectively.
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Figure 2.3: Temperature of water layers in the tank.

The tank is assumed to be part of a closed hydraulic loop, thus the mass flow rate entering
the tank is equal to the mass flow rate exiting the tank. Subsequently, the total height of
water in the tank ztank is the sum of the height of warm water za and the height of cool water
zb in the tank. The tank dynamics are governed by mass and internal energy conservation
laws,

żb =
ṁCHWS − ṁcmp

ρπr2tank
, ża + żb = 0, (2.1a)

U̇a = Ḣa + Q̇b>a + Q̇oa>a, U̇b = Ḣb + Q̇a>b + Q̇oa>b, (2.1b)

where ρ is the density of the water, rtank is the inner radius of the tank, ṁCHWS is the
mass flow rate of water supplied to the buildings, and ṁcmp is the mass flow rate of water
returning from the buildings. U∗ = ρπr2tankz∗cpT∗ is the internal energy of the water in the
tank, where ∗ = a denotes variables for warmer water, and ∗ = b denotes variables for cooler
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water. Q̇oa>a is the heat transferred from ambient to the warmer water in the tank, Q̇oa>b

is the heat transferred from ambient to the cooler water in the tank,

Q̇oa>a = (Toa − Ta)(2πrtankza)k1, (2.2a)

Q̇oa>b = (Toa − Tb)(2πrtankzb)k1, (2.2b)

where Q̇a>b is the heat conducted from warmer water to cooler water in the tank and Q̇a>b

is the heat conducted from cooler water to warmer water in the tank,

Q̇a>b = (Ta − Tb)(πr
2
tank)k2, (2.3a)

Q̇b>a = −Q̇a>b, (2.3b)

where k1 and k2 are heat transfer coefficients.
The thermal storage tank can operate in two modes. When the chilled water flow ṁCHWS

is greater than the water flow demanded by the buildings ṁcmp, the excess flow fills the tank.
Hence the water flow enthalpy rates are calculated as

Ḣa = −(ṁCHWS − ṁcmp)cpTa, (2.4a)

Ḣb = (ṁCHWS − ṁcmp)cpTCHWS, (2.4b)

where Ḣa is the enthalpy rate for the warm water in the tank contributed by water flow, and
similarly Ḣb for the cool water.

When the chilled water flow ṁCHWS is less than the water flow demanded by the build-
ings, the water in the tank compensates for the insufficient chilled water supply. Hence the
water flow enthalpy rates are calculated as,

Ḣa = −(ṁCHWS − ṁcmp)cpTcmp,r, (2.5a)

Ḣb = (ṁCHWS − ṁcmp)cpTb, (2.5b)

where Tcmp,r is the temperature of return water from buildings.
The simplified model (2.1)–(2.5) is validated using measured data collected from May

22 to May 29, 2007. The measured inputs [ṁCHWS, TCHWS, ṁcmp, Tcmp,r] are applied to the
tank model, and the output of the model [za, zb, Ta, Tb] is compared with the measurements.
Figure 2.4 shows the tank water temperature validation results. The solid lines are the
temperature measurements of top layer water Ta and bottom layer water Tb in the tank,
and the dotted lines show the predicted cooler and warmer water temperature. The tank
model captures the temperature dynamics of the top and bottom layers of the tank water
as well as the dynamics of the cool water height (Figure 2.5). However, the second peak of
the top water temperature during the day is not captured due to the formation of a second
thermocline (note in Figure 2.4 the bumps above 15.2 ◦C every afternoon). A higher order
model overcomes this limitation. We preferred to not increase the model complexity in order
to avoid real-time implementation issues.
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Figure 2.4: Water temperature validation.
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Figure 2.5: Water height validation.

Load Modeling

At the water-loop, each building can be modeled as a load demand element. A lumped load
model predicts the total energy requested by a building based on date, time, occupancy, and
weather. In the approach studied in[64, 92], the building load model has two subcomponents,
namely the solar and internal load predictor and the building thermal load predictor. Both
components are depicted in Figure 2.6.

Figure 2.6: The building thermal load predictor.

The solar and internal load predictor uses time (ttd [sec], a number ranging from 0 to
86400), date (tdy, a number between 1 to 365 (366); tdw, a number between 1 to 7) and cloud
coverage (βcloud, a continuous value from 0 to 1, reflecting the impacts of cloud on the solar
energy) as its inputs and calculates inside and outside solar loads and internal load. The
outside solar load reflects the solar radiation on the outer surface of the building, while the
inside solar load is the solar radiation into the building (e.g. sunshine through the windows
into rooms). The internal load includes the heat from occupants, lights, and equipment. The
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outside and inside solar loads are calculated as follows:

SHour = (ttd − 12)× 15◦, (2.6a)

SDec = −23.45◦ × cos(360◦
tdy + 10

365
), (2.6b)

ESolar = max (0, cos(SHour) cos(SDec) cos(SLat) + sin(SDec) sin(SLat)) , (2.6c)

Q̇Solar,in = βcloudESolarθin, (2.6d)

Q̇Solar,out = βcloudESolarθout, (2.6e)

where SHour and SDec are variables calculated based on time and date to indicate the solar
projection angle, SLat is the latitude specifying the geographic coordinate of the building,
ESolar is the extraterrestrial horizontal radiation, θin (θout) is the solar load on the inner
(outer) wall mass per unit of clear-sky extraterrestrial horizontal radiation and it depends
on the building geometry. The internal load is assumed to be a piecewise constant signal
with a period of one week, and is evaluated as:

γ =

{
1 if tstart ≤ ttd ≤ tend
0 Otherwise

(2.7a)

Q̇internal =





γQ̇Saturday

if tdw = 6

γQ̇Sunday

if tdw = 7

γQ̇Weekday

Otherwise

(2.7b)

where tstart and tend indicate the time interval when the internal load is different from zero.
The parameters Q̇Saturday , Q̇Sunday and, Q̇Weekday are constant internal load values during
different days of the week.

The building thermal load predictor predicts the cooling load of buildings. The buildings
are conventionally modeled by RC circuits [61, 87]. The building thermal load model is
sketched in Figure 2.7, where R1 represents the thermal resistance of windows. The walls
are separated into two layers, where Cin and Cout capture the thermal capacitance of the
wall when influenced by outside and inside solar load, respectively. The thermal resistance
between Cin and Cout is modeled by R3, while R2 and R4 capture the thermal resistance
associated with heat convection. The interconnection of the thermal components is shown in
Figure 2.7. The model inputs are outside air temperature Toa, outside solar load Q̇Solar,out,
inside solar load Q̇Solar,in, internal load Q̇internal, and the indoor temperature setpoint Tsp.
The model internal states are the temperatures of the thermal masses Tin and Tout. The
model output is the cooling load demand Q̇Load.
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Figure 2.7: Building thermal load model.

The detailed equations describing the model in Figure 2.7 are

Ṫin =
Q̇Solar,in +

Tout−Tin

R3
+ Tsp−Tin

R4

Cin

, (2.8a)

Ṫout =
Q̇Solar,out +

Toa−Tout

R2
+ Tin−Tout

R3

Cout

, (2.8b)

Q̇Load = max(0, Q̇internal +
Tin − Tsp

R4
+

Toa − Tsp

R1
). (2.8c)

The load model (2.8a)–(2.8c) is used to model each building on the UC Merced cam-
pus where the parameters R1, R2, R3, R4, Cin, Cout are estimated using historical data.
A nonlinear regression problem is solved to minimize the error between the actual cooling
load demand and the predicted load demand. The predicted load demand is obtained by
simulating the model (2.8a)–(2.8c) with measured inputs. The load model with estimated
parameters is validated using load measurements from June 1 to June 5, 2009 at UC Merced.
Figure 2.8 presents the validation results for one of the buildings at UC Merced. The mea-
sured building load is depicted as the dotted line, and the solid line shows the building load
predicted by model (2.8a)–(2.8c). When the prediction mismatch exceeds desired tolerances,
the system parameters need to be re-identified based on a new set of measured data. For
other types of building load models see [96, 20].

Main Components Modeling

At the water-loop, the main components consuming energy are chillers, cooling towers, and
pumps. It is assumed that the set points sent to these components are tracked instantly
without errors.
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Figure 2.8: Campus load validation.

Chillers High fidelity models for chillers are based on thermodynamic refrigeration cycles.
The refrigerant through the evaporator absorbs energy Q̇evap from chiller water, and the
vaporized refrigerant is transformed to liquid by the compressor with external work. The
refrigerant through the condenser then loses its energy Q̇cond to the condenser water. The
refrigeration cycle enables the chillers to generate chilled water by ejecting heat to the con-
denser water loop. In order to develop control oriented model for chillers to enable real time
optimization, several empirical functions are used to relate the boundary conditions and
cooling load of the chillers to the power consumption [44]. It is assumed that chillers follow
the energy conservation law. The energy balances across the evaporator and the condenser
heat exchangers are respectively represented as,

Q̇evap = ṁCHWScp(TCHWR − TCHWS), (2.9a)

Q̇cond = ṁCWScp(TCWR − TCWS), (2.9b)

where Q̇evap is the thermal energy change across the evaporator, and Q̇cond is the thermal
energy change across the condenser.

The cooling capacity of the chiller is predicted by the biquadratic function

Q̇cap = Q̇0(a0 + a1TCHWS + a2T
2
CHWS + a3TCWR + a4T

2
CWR + a5TCWRTCHWS), (2.10)

where Q̇0 is the nominal capacity of chillers to be identified.
The part load ratio (PLR) is the fraction of the total cooling capacity used by the chillers.

PLR = max(PLRmin, Q̇evap/Q̇cap), (2.11)

where PLRmin is the minimal part load ratio allowed to start up the chillers.
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Two energy input ratio (EIR) functions are defined to capture the power consumption
of the chillers operating in various conditions, namely the energy input ratio temperature
curve EIRFT (TCHWS, TCWS), and energy input ratio PLR curve EIRFPLR(PLR),

EIRFT = b0 + b1TCHWS + b2T
2
CHWS + b3TCWR + b4T

2
CWR + b5TCHWSTCWR, (2.12)

EIRFPLR = c0 + c1PLR + c2PLR2 + c2PLR3. (2.13)

The chiller power consumption is calculated as

Pchiller = Q̇capEIRFT (TCHWS, TCWS)EIRFPLR(PLR)/COP0, (2.14)

where COP0 is the nominal coefficient of performance of the chiller when the chiller is
operating under designed nominal conditions.

There are total 16 parameters to be identified in this simplified chiller model, namely the
the nominal capacity of chillers Q̇0, the polynomial coefficients in (2.10) [a0, a1, . . . , a5], the
polynomial coefficients in (2.12) [b0, b1, . . . , b5], and the polynomial coefficients in (2.13)
[c0, c1, c2].

Historical data are used to populate this map or improve maps provided by chiller vendors.
Model (2.10)-(2.14) is used to describe the chillers performance at UC Merced. Figure 2.9
presents the validation results based on the data collected from June 1 to June 3, 2009. The
predicted chillers’ power in solid line successfully captures the measurements in dotted line.
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Figure 2.9: Chiller model validation.

Cooling Towers The cooling tower uses variable speed fans to track a set point for the
condenser water supply temperature by rejecting the condenser water heat to the ambient
environment through evaporation and conduction. In this thesis, the cooling towers are
modeled based on the cooling tower approach temperature [64]. The approach temperature
is the difference in temperature between the condenser water supply temperature and the
entering air wet bulb temperature Tapp = TCWS −Twb. Since the cooling towers are based on
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the principles of evaporative cooling, the maximum cooling tower efficiency depends on the
wet bulb temperature of the air. The approach temperature model implemented in Dymola
is estimated by a polynomial regression model of the temperature range TR = TCWR−TCWS,
the wet bulb temperature Twb, and the air to water ratio Raw = ṁCWS/ωfan. In particular,
the approach temperature is fitted using polynomial functions,

Tapp = APP (Twb, TCWS, TCWR, ṁCWS, ωfan)

+d0 + d1Twb + d2T
2
wb + d3TR + d4TwbTR + d5T

2
wbTR + d6T

2
R + d7TwbT

2
R + d8T

2
wbT

2
R

+d9Raw + d10TwbRaw + d11T
2
wbRaw + d12TRRaw + d13TwbTRRaw + d14T

2
wbTRTaw

+d15T
2
RRaw + d16TwbT

2
RRaw + d17T

2
wbT

2
RRaw + d18R

2
aw + d19TwbR

2
aw + d20TRR

2
aw

+d21TwbTRR
2
aw + d22T

2
wbTRR

2
aw + d23T

2
RR

2
aw + d24TwbT

2
RR

2
aw + d25T

2
wbT

2
RR

2
aw. (2.15)

The approach temperature model (2.15) has 26 parameters to be identified [d0, d1, . . . , d25].
Given a desired condenser water supply temperature TCWS, the fan speed ωfan is com-

puted by solving the implicit equation (2.15) with the information of Twb, TCWR, and ṁCWS.
The cooling tower power consumption is approximated as a cubic function of the fan speed

Pct = c(ωfan)
3. (2.16)

This model (2.15)–(2.16) is applied to model the cooling towers at UC Merced, and the
validation results are reported in Figure 2.10. The dotted line depicts the measured elec-
tric power consumption of cooling towers located at UC Merced, and the solid line shows
the power consumption of the cooling towers predicted by model (2.15)–(2.16). Data was
collected from June 1 to June 3, 2009.
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Figure 2.10: Cooling tower model validation.

Pumps When modeling the energy consumption of the pumps, it is assumed that the
enthalpy change of water through the pumps are constant. It is also assumed that the pump
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volumetric water flow qpump, the pump speed ωpump, the pressure difference ∆ppump generated
by the pump, and their corresponding nominal values denoted with the superscript 0 satisfy
the equations

qpump

q0pump

=
ωpump

ω0
pump

,
∆ppump

∆p0pump

=

(
ωpump

ω0
pump

)2

. (2.17)

The pressure difference ∆p0pump(q
0
pump) and efficiency η0pump(q

0
pump) under nominal opera-

tion conditions are approximated as polynomial functions of the nominal volumetric water
flow q0pump,

∆p0pump = c0 + c1q
0
pump + c2(q

0
pump)

2, (2.18)

η0pump = d0 + d1q
0
pump + d2(q

0
pump)

2, (2.19)

and the corresponding coefficients are obtained by fitting historical pump performance data.
For a given fan speed ωpump and the volumetric water flow rate qpump, the pressure difference
∆ppump, and efficiency ηpump are computed as,

∆ppump =

(
ωpump

ω0
pump

)2

∆p0pump

=

(
ωpump

ω0
pump

)2
(
c0 + c1

(
ω0
pump

ωpump

qpump

)
+ c2

(
ω0
pump

ωpump

qpump

)2
)
, (2.20)

ηpump = d0 + d1

(
ω0
pump

ωpump

qpump

)
+ d2

(
ω0
pump

ωpump

qpump

)2

. (2.21)

The pump power then is calculated as

Ppump = ∆ppumpqpump/ηpump. (2.22)

The pump model (2.21)–(2.22) is validated by using measured data from the chilled water
supply pump at UC Merced. The validation results in Figure 2.11 suggest that the model
correctly predicts the pump power consumption. The dotted line is the measured electric
power consumption of the hydraulic pump 2 in Figure 2.1 located at UC Merced. The solid
line is the pump power consumption predicted by model (2.21)–(2.22). Data was collected
from June 1 to June 3, 2009.

Air-Loop: Modeling a Building from the Inside

Thermal Zones Temperature Dynamics

We use an undirected graph structure to represent the room network and their dynamic
couplings in the following way. We associate the i-th room with the i-th node of a graph,
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Figure 2.11: Pump model validation.

and if an edge (i, j) connecting the i-th and j-th node is present, the rooms i and j are
subject to direct heat transfer. The graph G will be defined as

G = (V,A), (2.23)

where V is the set of nodes (or vertices) V = {1, . . . , Nv} and A ⊆ V × V the set of edges
(i, j) with i ∈ V, j ∈ V. We denote N i the set of neighboring nodes of i, i.e., j ∈ N i if and
only if (i, j) ∈ A.

Now consider a single room j ∈ V. The air enters the room j with a mass flow rate ṁj
s,

and supply air temperature T j
s , It is assumed that in the AHU, the outside air fully mixes

with the return air without delay, and the mixing proportion δ between the return air and
outside air is controlled by the damper configurations in the AHU system to obtain:

Tm = δTr + (1− δ)Toa, (2.24)

where Toa is the outside air temperature, and Tm is the temperature of the mixed air. Tr

is the return air temperature calculated as weighted average temperature of return air from
each room

Tr =
∑

i∈V
ṁi

sT
i/
∑

i∈V
ṁi

s. (2.25)

The return air is not recirculated when δ = 0, and no outside fresh air is used when δ = 1.
δ can be used to save energy through recirculation but it has to be strictly less than one to
guarantee a minimal outdoor fresh air delivered to the rooms.

The supply air temperature then is computed as

T j
s = Tm −∆Tc +∆T j

h , ∀j ∈ V, (2.26)

where ∆Tc represents the supply air temperature difference across the cooling coil in the
AHU, and ∆T j

h is the air temperature difference across the heating coil in the j-th VAV box.
We present two classes of models, and both are validated using historical data from

Bancroft library at UC Berkeley.
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RC Model We model the room as a two-mass system. Cj
1 is the fast-dynamic mass that

has lower thermal capacitance (e.g. air around VAV diffusers), and Cj
2 represents the slow-

dynamic mass that has higher thermal capacitance (e.g. solid parts which include floor,
walls and furniture). We remark that the phenomenon of fast and slow dynamics has been
observed in [73]. The thermal dynamic model of a room is:

Cj
1

dT j
1

dt
= ṁj

scp(T
j
s − T j

1 ) + (T j
2 − T j

1 )/R
j

+ (Toa − T j
1 )/R

j
oa +

∑

i∈N j

(T i
1 − T j

1 )/Rij + P j
d , (2.27a)

Cj
2

dT j
2

dt
= (T j

1 − T j
2 )/R

j, ∀j ∈ V, (2.27b)

where T j
1 and T j

2 are system states representing the temperatures of the lumped masses
Cj

1 and Cj
2, respectively. T j is the perceived temperature of room j, which is assumed to

be equal to the temperature of the fast-dynamic mass Cj
1. Rj

oa is the thermal resistance
between room j and outside air, and cp is the specific heat capacity of room air. Rj models
the heat resistance between Cj

1 and Cj
2 , Rij = Rji models thermal resistances between room

i and the adjacent room j, and P j
d is an unmeasured load induced by external factors such

as occupancy, equipment, and solar radiation.
The model (2.27) is used to capture the temperature dynamics of a thermal zone in the

Bancroft library located on the campus of University of California at Berkeley. By using
historical data we have identified the model parameters for each thermal zones and validated
the resulting model. The dimension of the conference room is 5 × 4 × 3 m, and it has one
door and no windows. As a result, the effect of solar radiation is negligible. The major
source of load derives from occupants and electronic equipment. The conference room has
one neighboring office room (N 1 = {2}).

The model parameters ([C1
1 , C1

2 , R1, R12, R1
oa]) are identified by fitting measured data

collected on January 20, 2012 over 24 hours using a nonlinear regression algorithm. This
corresponds to a Sunday when the conference room has no occupants (P 1

d = 0). Measure-
ments of room temperature (T 1), supply air temperature (T 1

s ), mass flow rate of the supply
air (ṁ1

s), the neighboring room temperature (T 2), and outside air temperature Toa are used
for the identification. The identified parameters values are reported in Table 2.1.

The identification results plotted in Figure 2.12 show that the proposed model successfully
captures the thermal dynamics of the conference room without occupants. In Figure 2.12
the solid line depicts the measured room temperature trend and the dashed line is the room
temperature predicted by model (2.27) when driven by the measured inputs.

The proposed model (2.27) with the identified parameters in Table 2.1 is validated against
measurements during other unoccupied hours. Figure 2.13 plots the validation results for
January 21, 2012. One can observe that the predictions match well the experimental data.
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Table 2.1: Identification results for conference room model on January 20, 2012.

Parameter Value Parameter Value
C1

1 9.163× 103 kJ/◦C R12 2.000 ◦C/kW
C1

2 1.694× 105 kJ/◦C R1
oa 57 ◦C/kW

R1 1.700 ◦C/kW
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Figure 2.12: Identification results of the ther-
mal zone model (2.27).
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Figure 2.13: Validation results of simplified
room model (2.27).

Bilinear Regression Model It has been shown that the physical based models are able
to capture to dynamics of the thermal zones. Also the physical based models are capable of
extrapolating the behavior of the thermal zones outside the training region. However, the
identification problem for model (2.27) is non-convex, and it quickly becomes computation-
ally demanding with increasing number of thermal zones. In order to reduce the computa-
tional complexity of the identification problem, the temperature dynamic of a network of
zones can be modeled as a bilinear regression model as in [73, 131]. Each thermal zone i ∈ V
is simplified as an ARMAX model, and the exogenous signals consist of the thermal energy
input (T i

s − T i) ṁi
s, internal thermal load Pd, and measured disturbances including ambient

temperature Toa and solar radiation intensity I i.

T i(t+ 1) =

q=qd∑

q=0

(
pi1,qToa(t− q) + pi2,qI

i(t− q)
)
+ pi3

(
T i
s(t)− T i(t)

)
ṁi

s(t)

+

q=qx∑

q=0


pi4,qT

i(t− q) +
∑

j∈N i

pi5,q,jT
j(t− j)


+ p6 + P i

d(t), (2.28)

where qx and qd are the autoregressive order and moving average order, respectively, and
the selection of qx and qd affects the complexity and accuracy of the model. The bilinear
regression model (2.28) is identified using data collected from unoccupied hours when the
internal load Pd is minimal. Given historical measurements of zone temperatures T , ambient
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temperature Toa, solar radiation intensity I, and recorded control inputs (ṁs and Ts), the
model parameters can be computed by solving a linear regression problem.

The bilinear zone model (2.28) with qx = qd = 2 is used to model the conference room in
Bancroft library at UC Berkeley. The floor plan of the Bancroft library is depicted in Figure
2.14. Results for the classroom (labeled VAV C-2-15 in Figure 2.14) are reported next.

Figure 2.14: Bancroft library floor plan.

The identification results are reported in Figure 2.15 for the weekend of January 20, 2012,
and the conference room is unoccupied during the weekends, i.e. P i∈V

d = 0. The identified
model then is validated for the weekend of January 21, 2012, and the results are plotted in
Figure 2.16.

Load

The load prediction P j
d (t) for each thermal zone j is important for designing predictive

feedback controllers and assessing potential energy savings. Various approaches are available
to estimate occupancy load. For instance, the authors of [86] develop an agent-based model
to simulate the occupants’ behavior in a building, and the work in [52, 100] focuses on
occupants’ behavior and mobility patterns using a wireless camera sensor network.

Time varying bounds on the disturbance load Pd(t) can be computed from the mismatch
between a nominal model and historical data, and correlating the load bounds with shared
calendars, weather predictions as well as predicted cloud coverage. This concept can be
illustrated using the conference room discussed previously. The conference room calendar
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Figure 2.15: Identification results of the ther-
mal zone model (2.28).
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Figure 2.16: Validation results of simplified
room model (2.28).

contained two regularly scheduled group meetings at 10:00 AM and 02:00 PM every Wednes-
day. The same meetings can be identified by inspecting the model mismatch between nominal
model predictions and historical data. Figure 2.17 depicts the envelope-bounded disturbance
load during all Wednesdays in July, 2012. The envelope is computed as the pointwise min-
imum and maximum difference between measured data and the nominal model described
by (2.27) with P 1

d = 0. The two peaks in the disturbance load envelope in Figure 2.17
correspond to two regularly scheduled group meetings. The off-peak prediction errors can
be attributed to unmodeled dynamics and external disturbances.

Time

Figure 2.17: Envelope-bounded disturbance load during all Wednesdays in July 2012 in the
conference room of the Bancroft Library at UC Berkeley.

Main Components

The components at the air-loop of the architecture that use energy include dampers, supply
fans, heating coils, and cooling coils as shown in Figure 2.2. The supply fan needs electrical
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power to drive the system while the heating and cooling coils consume the energy of the
chilled and hot water. It is assumed that the power to drive the dampers is negligible. A
simple energy consumption model for each component is presented next.

Fan Power The fan power can be approximated as a second order polynomial function of
the total supply air mass flow rate ṁfan driven by the fan, and the supply air mass flow rate

by the fan is equal to the summation of air flow to each room ṁfan =
∑

j∈V
ṁj

s.

Pf = c0 + c1ṁfan + c2ṁ
2
fan, (2.29)

where c0, c1, c2 are parameters to be identified by fitting recorded data. The simplified fan
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Figure 2.18: Identification results for the simplified fan power consumption model (2.29).

model (2.29) is tested on the recorded data from the UC Berkeley Bancroft Library from
October 1st to October 10th 2010. The identification results plotted in Figure 2.18 suggest
that the polynomial function successfully predicts the electricity consumption of the fan.

Cooling and Heating Coils Cooling coils and heating coils are air-water heat exchang-
ers. There has been extensive studies to develop simplified yet descriptive models of coil
units [116, 37, 134]. The authors in [116] developed simple empirical equations with four
parameters by using a finite difference method to capture the transient response of counter-
flow heat exchangers. In [37], the authors presented an improved simulation model-based on
ASHRAE Secondary HVAC Toolkit, and in [134] a simplified control oriented cooling coil
unit model is presented based on energy and mass conservation laws.

In this thesis, we use a simple coil model with constant efficiency (ηc for the cooling coils
and and ηh for the heating coils). With this simplification the energy consumption model is
a static function of the load on the air-side

Pc =

∑
j∈V ṁ

j
scp∆Tc

ηc COPc

, P j
h =

cpṁ
j
s∆T j

h

ηh COPh

, (2.30)
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where Pc is the electrical power consumption related to the generation of chilled water
consumed by the cooling coils in AHU and P j

h is the power used to generate the hot water
consumed by the heating coils in the VAV box connected with room j. ∆Tc is the temperature
difference through the cooling coils, ∆T j

h the temperature difference through the heating coils
in the VAV box j, COPc is the chilling coefficient of performance, and COPh is the heating
coefficient of performance. The coefficient of performance (COP) is defined as

COP =
Ethermal

Einput

. (2.31)

COP captures the efficiency of the exchange system, i.e., the amount of thermal energy
Ethermal (J) generated by the system with one Joule of energy consumed. The input energy
Einput can be from different resources such as electricity, fuel, and gas for different systems.
Model (2.30) is oversimplified as compared to the aforementioned literature. However, the
model is adequate to capture the energy consumption if coils are operating in a narrow
performance range.

2.4 Summary

In this chapter, the building cooling and heating systems with energy storage elements
are presented. The overall system is divided into water-loop system and air-loop system.
Simplified yet descriptive control oriented models are derived and discussed for both water-
loop and air-loop systems. The models are used in the design of model-based predictive
control in the following chapters.
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Chapter 3

Deterministic Predictive Control
Design

3.1 Introduction

This chapter describes the design of model predictive control for building cooling and heating
systems. The chapter starts with an illustrative MPC design for a one-state building model.
The example is used to demonstrate the basic principles of active thermal storage.

In the second part, a MPC scheme is presented to optimize the operation of water-loop
in building cooling and heating systems. The algorithm is implemented for the control of
the cooling system on UC Merced campus. A nonlinear MPC is designed to optimize the
operation of the central chilling plant, and the charge level of a energy storage tank. The
MPC problem is solved using sequential quadratic programming. In addition, move blocking
strategy is applied to reduce the problem size, and a periodic robust invariant set is used
as terminal constraints so that there is always enough chill water in the tank to meet all
possible realization of the uncertain demands. Experimental results suggested that MPC is
able to reduce the energy consumptions and increase the thermal efficiency of the chillers
and cooling towers.

In the third part, we present the design of MPC logic for air-loop of building cooling
and heating systems. Extensive simulations show that MPC is able to maintain thermal
comfort while reducing energy consumptions. Furthermore, time varying electricity price
can be incorporated in MPC design with minimum modifications to reduce the electricity
bills.

The control design of this chapter uses nominal models and expected predictions. How-
ever, prediction uncertainties will degrade the performance of MPC. We conclude with a
simple numerical example to demonstrated that simple control can possibly outperform
nominal MPC design if prediction uncertainty is high. We will address MPC design with
prediction uncertainty using stochastic MPC in Chapter 5.
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3.2 Model Predictive Control and Thermal Storage:

a Simple Example

In order to make people feel comfortable, energy is converted and delivered to building
spaces. In this thesis occupants’ comfort is measured by the perceivable air temperature of
a given space. The objective of this section is to use a simple thermal mass model to show
the basic principles of active thermal storage, to demonstrate active storage that naturally
emerges as closed-loop behavior of MPC scheme, and to discuss the main tradeoffs that arise
in active thermal storage.

The temperature dynamics of a given space can be modeled using resistance-capacitance
(RC) circuit analogy

CṪ = u+ Pd + (Toa − T )/R, (3.1)

where T is the temperature of the space, Pd is the external disturbance load generated by
occupants, direct sunlight, and electrical devices, Toa is the temperature of outside air, and
u is the heating and cooling power input to the space. The space is cooled when u ≤ 0 and
heated when u ≥ 0.

In water-loop problem, the simplified thermal mass model (3.1) can be viewed as the
abstraction of an entire building and the temperature T is an average temperature of all
building spaces. In air-loop problem, the simplified thermal mass model (3.1) can be viewed
as the abstraction of one zone within a building, and T is the temperature measurement of
the zone. In this case, the lumped parameter R describes the thermal resistance of walls and
windows that isolate the zone from the outside environment, and the parameter C lumps up
the thermal capacitance of the zone. The active storage mechanism explained next shares
the same properties for both control problems.

The representation of system (3.1) in discrete time is obtained using Euler discretization
with a sampling time of ∆t,

T (k + 1) = AT (k) +Bu(k) + d(k), (3.2)

where A = 1−
∆t

RC
, B =

∆t

C
, d =

Pd∆t

C
+

Toa∆t

RC
.

A simple model predictive control problem is formulated with the objective of minimizing
total heating and cooling energy consumption, minimizing the peak power consumption, and
maintaining zones within a desired temperature range despite the predicted load changes.
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At each time step, the predictive controller solves the following problem

min
Ut, ε, ε

N−1∑

k=0

|ut+k|t|∆t+ κmax{|ut|t|, . . . , |ut+N−1|t|}+ ρ

N∑

k=1

(
|εt+k|t|+ |εt+k|t|

)
(3.3)

subject to

Tt+k+1|t = ATt+k|t +But+k|t + dt+k|t, (3.4)

T − εt+k|t ≤ Tt+k|t ≤ T + εt+k|t, (3.5)

εt+k|t, εt+k|t ≥ 0, (3.6)

where the symbol vt+k|t is read as “the variable v at time t + k predicted at time t.”
For instance, T3|1 represents the predicted temperature at time 3 when the prediction is
made at time t = 1 starting from the current temperature T (1). T3|1 is in general differ-
ent from T3|2, which is the predicted temperature at time 3 when the prediction is made
at time t = 2 starting from the current temperature T (2). With this notation in place,
Ut =

[
ut|t, ut+1|t, . . . , ut+N−1|t

]
is the vector of energy control inputs, ε =

[
εt+1|t, . . . , εt+N |t

]

is the vector of temperature violations below the lower bound, ε collects the temperature
violation above the upper bound, Tt+k|t is the thermal zone temperature, and dt+k|t is the
load prediction. T and T are the lower and upper bounds on the zone temperature, respec-
tively. ρ is the penalty on the comfort constraint violation, κ is the penalty on peak power
consumption, and N is the length of the prediction horizon.

Let U∗
t = {u∗

t|t, . . . , u
∗
t+N−1|t} be the optimal solution to Problem (3.3)–(3.6) at time t.

The first element of U∗
t is applied to system (3.2)

u(t) = u∗
t|t. (3.7)

The optimization problem (3.3)–(3.6) is repeated at the next time step t + 1 based on the
new measured temperature Tt+1|t+1 = T (t+1), yielding a moving or receding horizon control
strategy.

The following parameters are used in the simulations presented next. Thermal capaci-
tance C = 9.2× 103 kJ/◦C, thermal resistance R = 50 ◦C/kW, sampling time ∆t = 1 hour,
prediction horizon N = 24 hours, and thermal comfort interval [T , T ] = [21, 26] ◦C. Note
that the plant model (3.2) and the model used in the MPC scheme (3.4) are the same. It
is assumed that weather and load are periodic with a period of one day, and that their pre-
dictions are perfect without mismatch between predictions and actual measurements. The
outside air temperature profile Toa(t) used in (3.1) is depicted in Figure 3.1, and the distur-
bance load profile Pd(t) used in (3.1) is depicted in Figure 3.2. The load Pd(t) resembles a
3 kW thermal load of a conference room with a daily meeting scheduled from 9:00 AM to
11:00 AM.

Two controllers are considered. Controller C1 is a proportional controller designed to
reject the load without predictive information. Controller C1 inputs zero power when the
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Figure 3.1: Ambient temperature (◦C).
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Figure 3.2: Disturbance load (kW).

space temperature is within the comfort range, otherwise the proportional control law

u(t) =





K(T − T (t)) T (t) ≥ T
0 T < T (t) < T
K(T − T (t)) T (t) ≤ T

(3.8)

is applied to system (3.2). Controller C2 implements the MPC Problem (3.3)–(3.7).
Simulations of system (3.2) in closed-loop with C1 and C2 are performed until the system

settles to steady-periodic behavior. The performance of the controllers is measured by the
closed-loop total energy consumption

Ju =

N−1∑

k=0

|u∗(k)|∆t, (3.9)

the peak power consumption

Jp = max{|u∗(0)|, . . . , |u∗(N − 1)|}, (3.10)

and the total comfort violation

Jε =
N∑

k=0

(|ε∗(k)|+ |ε∗(k)|)∆t. (3.11)

Closed-loop simulations are performed with various gains K of the controller C1 and various
tuning ρ of MPC with no penalty on peak power consumption, that is κ = 0. Figure 3.3 shows
the tradeoff between comfort violation and total energy consumption. It is observed that
C1 and C2 use the same energy for the same amount of constraint violation. As expected,
increased comfort violation corresponds to a lower energy use for both controllers. Note
that the results above are valid for the model (3.2) and the performance indices defined by
(3.9)-(3.11).

When κ 6= 0, a different behavior is observed. Simulation results for C1 with K = 400
and C2 with ρ = 1000 and κ = 2 are plotted in Figure 3.4-3.5.
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Figure 3.3: Comparing MPC (C2) and proportional controller (C1). Observe that C1 and C2
use the same energy Ju

C1 = Ju
C2 for the same amount of constraint violation Jε

C1 = Jε
C2. As

expected, increased comfort violation corresponds to a lower energy use for both controllers.
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Figure 3.4: Zone temperature (◦C).
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Figure 3.5: Cooling input (kW).

The peak power consumption Jp is reduced by 89% relative to the proportional con-
troller C1 when MPC C2 is used. For both controllers the comfort violation index Jε is zero.
This behavior is obtained by taking advantage of the predictive information of the distur-
bance and using the space thermal storage. In fact MPC precools the space temperature to
22.8 ◦C before the occupancy load begins. This precooling behavior reduces the peak power
consumptions of the system and flattens the control profile.

In the previous simulation, the total energy consumption Jp of MPC is increased by 6.3%
compared to the proportional controller. The increase in energy consumption is due to energy
losses through the resistance R while precooling. The tradeoff between the total energy losses
Ju
C2−Ju

C1

Ju
C1

and the peak power reduction
J
p
C1−J

p
C2

J
p
C1

is further explored in Figure 3.6. The tradeoff
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lines are generated for different tunings of κ taken from the interval [0, 5] and three different
thermal resistances with values R0 = 50 ◦C/kW, R0/5, and 5R0. MPC achieves lower peak
power consumption at the cost of higher energy consumption. MPC energy losses relative to
the proportional controller decrease as the thermal resistance R in (3.1) increases. Thorough
studies on load shifting have appeared in [19, 102].

The above example shows the benefits and tradeoffs resulting from the use of MPC.
However, two important elements are not captured by the example. The first element is the
complexity of the real problem. Buildings are more complicated than simple RC systems.
It is therefore necessary to adopt descriptive yet simple enough models for real-time opti-
mization in MPC and bring substantial savings to the real world. Also, the cost function of
a MPC scheme in practice includes more detailed energy consumption functions for system
components and external signals such as time varying utility price, availability of renew-
able energy, and load shedding signals received from the utility grid. The resulting MPC
logic combines load shifting with additional features such as peak electrical power reduction
and free cooling. The second element not captured by the example is the uncertainty in
predictions. In reality the model and predictions of load and weather are uncertain.

In this chapter, we address the first issue by incorporating more descriptive dynamic
models and energy models introduced in Chapter 2. The second issue will be addressed in
Chapter 5 using stochastic MPC.

For the sake of brevity, we concentrate on the cooling side. Despite of different central
equipment for heating generation, the heating architecture is similar to the cooling one. As
a result, the abstraction levels and control methodology in this thesis can be extended to
heating systems with minimal effort.

The MPC architecture presented in this chapter is depicted in Figure 3.7. A high-level
MPC (HMPC) is deployed to optimize the operation and schedule of the water-loop in
cooling systems with active thermal storage and a low-level MPC (LMPC) controls the air-
loop including VAV boxes and the air handling units in each building to guarantee occupant
thermal comfort. At both levels various predictions can be included in the constraints and
in the cost function to control the system in an efficient and effective way. These predictions
include building loads, load shedding signals from the power grid, utility prices, weather,
occupancy, and solar radiation. In addition, HMPC and LMPC can exchange information
to achieve better performance. For example, the occupancy load prediction from LMPC can
help HMPC achieve better accuracy of building load predictions. Also, the chilled and hot
water temperature predictions from HMPC impose constraints for the LMPC on achievable
supply air temperature downstream of the cooling and heating coils, respectively.



CHAPTER 3. DETERMINISTIC PREDICTIVE CONTROL DESIGN 39

chillers  cooling towers 

water pumps 

thermal storage tank 

water loop system 

cooling/heating coils 

supply fan 

dampers 

air loop system 

water 

supply 

water 

return 

high-level 

MPC 

low-level 

MPC 

information 

exchange 

Building loads 

weather 

DR signal 

Utility price 

Occupancy 

weather 

Setpoints 

Solar radiation 

x u x u

Figure 3.7: Hierarchical MPC structure for a building control system.

The following optimization problem is used to describe both the HMPC and LMPC

J⋆(x(t), t) = min
ut|t,...,ut+N−1|t

N−1∑

k=0

J(xt+k|t, ut+k−1|t, k) + JN(xt+N |t) (3.12)

subject to

xt+k+1|t = f(xt+k|t, ut+k|t, dt+k|t, k), ∀k = 0, 1, . . . , N − 1, (3.13)

yt+k|t = g(xt+k|t, ut+k−1|t, dt+k|t, k), ∀k = 0, 2, . . . , N, (3.14)

yt+k|t ∈ Y, ∀k = 1, 2, . . . , N, (3.15)

ut+k|t ∈ U, ∀k = 0, 1, . . . , N − 1, (3.16)

dt+k|t ∈ D(t+ k), ∀k = 1, 2, . . . , N, (3.17)

xt|t = x(t), (3.18)

where Y is set of feasible system outputs y, U is the feasible set of control inputs u, JN(x)
is the terminal cost function, f(x, u, d, k) is the state update equation, d is the disturbance,
and D is the set of possible disturbances realizations. Disturbances dk can be predicted by
a dynamic model such as building load model (2.8a)–(2.8c). An alternative approach is to
obtain the future admissible set of disturbances D(t + k) by external modules such as the
occupancy model in Figure 2.17.
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Let U⋆
t→t+N−1|t = {u⋆

t|t, . . . , u
⋆
t+N−1|t} be the optimal solution to problem (3.12)–(3.18)

at time t. Then the first element of U⋆
t→t+N−1|t is applied to the system, u(t) = u⋆

t|t. The

optimization problem (3.12)–(3.18) is repeated at t+∆t, with the updated state xt+∆t|t+∆t =
x(t +∆t), yielding a moving or receding horizon control strategy.

The cost function, model dynamics, constraints, and disturbances depend on the abstrac-
tion level and the specific problem of interest. Two detailed implementations of HMPC and
LMPC schemes are presented in the following sections. We remark that when a nominal
model of the disturbances dk is replaced by a set valued model, that is dk ∈ D(k) with a
given probability distribution function, then robust or stochastic MPC formulations [112, 7,
30, 130, 42] need to be used in place of (3.12)–(3.18). More details on stochastic MPC are
presented in Chapter 5.

3.3 Predictive Control for Water-Loop System

The objective of HMPC is to minimize the electrical energy consumption while generating
enough chilled water. A typical cost function of the HMPC in (3.12) penalizes total electricity
bill and the deviation from the building thermal energy demand satisfaction. The cost can be
further extended to include the peak load requests, time varying utility prices, and time vary-
ing availability of renewable energy. The control variables to be optimized by MPC include
the chilled water supply temperature TCHWS, condenser water supply temperature TCWS,
chilled water supply flow rate ṁCHWS, chilling system start time ts, and chilling system end
time tend. The dynamic system f(x, u, d, k) includes the storage dynamics in (2.1a)–(2.1b),
and the disturbance d includes weather and building load demand.

The following section reports a real time implementation of HMPC for the cooling system
installed on the UC Merced campus.

3.4 University of California at Merced Experimental

Testing

The HMPC controller for the UC Merced campus computes the set points for cooling tow-
ers, chillers, and the thermal storage tank at the central plant. The MPC algorithm is
implemented in Matlab R© and runs in real time on a Pentium 4 Intel processor. The MPC
algorithm receives and sends data to the campus through the building automation system
“Automated Logic Web Control.” In the following sections, the MPC problem formulation
and implementation details are presented.

Control Variables

The control variables of the HMPC implemented at UC Merced are listed as follow,



CHAPTER 3. DETERMINISTIC PREDICTIVE CONTROL DESIGN 41

1. TCWS,ref(t): Reference temperature of water exiting cooling towers. The sampling rate
is 1 hour.

2. ṁCHWS,ref(t): Mass flow rate of the chiller water supply. It is a disconnected set.
The mass flow rate is 0 when chillers are off, and [148, 235] kg/s while the chillers are
operating. The sampling rate is 1 hour.

3. TCHWS,ref(t): Reference temperature of water supplied by chillers. The sampling rate
is 1 hour.

4. ts (tf ): Start-up (Shut-down) time of chillers and cooling towers. The sampling rate is
1 day.

Measured Variables

The following variables are measured to initialize prediction of the HMPC controller (3.18),

1. Ta: Temperature of the cool water in the tank.

2. Tb: Temperature of the warm water in the tank.

3. za: Height of the warm water in the tank above the thermocline.

4. zb: Height of the cool water in the tank below the thermocline.

The following variables are predictions downloaded from the national weather service.

1. Tamb: Ambient temperature.

2. Twb: Ambient temperature.

3. βcloud: Cloud coverage.

Operation Constraints

The following constraints avoid the malfunction of the system components.

1. TCWS,ref ∈ [288, 295]K.

2. ṁCHWS,ref ∈ {0}
⋃
[148, 235]kg/s.

3. TCHWS,ref ∈ [276.5, 280.4]K.

4. TCHWR ∈ [283, 295]K.

5. zb ∈ [0.3, 1]ztank.
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Model Summary

The dynamic equations of the water-loop system include the energy storage tank (2.1a)–
(2.5), the load model (2.6)–(2.8) that estimates the total energy requested by buildings, and
the chilling system including the chillers (2.14), cooling towers (2.16), and pumps (2.22).
The dynamic system is discretied with sampling time (∆t) of 1 hour:

x(t+∆t) = fwl(x(t), u(t),Φ(t), t), (3.19a)

y(t) = gwl(x(t), u(t),Φ(t), t), (3.19b)

where

fwl =

{
f1(x(t), u(t),Φ(t), t); if ṁCHWS ≤ ṁcmp

f2(x(t), u(t),Φ(t), t); if ṁCHWS > ṁcmp

u(t) = [TCWS,ref ; ṁCHWS;TCHWS,ref ] ∈ U

x(t) = [Ua;Ub; za; zb;Tin;Tout]

y(t) = [TCHWR; zb] ∈ Y.

U and Y are the feasible control input set and feasible output set defined in Section 3.4,
respectively.

Energy Price

UC Merced is currently enrolled in a special plan, electric schedule E-20. The unit price for
the service under Schedule E-20 varies depending on the period of time. Table 3.1 shows the
definition of the time periods.

Table 3.1: Definition of time periods.

SUMMER Period A (May 1st though Oct. 31st)
Peak 12:00–18:00 except holidays
Partial-peak 8:30–12:00 except holidays

AND 18:00–9:30
Off-peak 21:30–8:30 Mon. through Fri.

ALL DAY Sat., Sun, and holidays

WINTER Period B (Nov. 1st though Apr. 30st)
Partial-peak 8:30–21:30 except holidays
Off-peak 21:30–8:30 Mon. through Fri.

ALL DAY Sat., Sun, and holidays

We denote the unit electricity price for energy charge defined by Table 3.2 as the function
Ce. The customer pays for energy by the kilowatt hour (kWh).
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Table 3.2: Total energy rates.

Total Energy Rates ($ per kWh)
Peak Summer $ 0.13593
Part-Peak Summer $ 0.09204
Off-Peak Summer $ 0.07392
Part-Peak Winter $ 0.08155
Off-Peak Winter $ 0.07118

The total bill then is computed as

Billwl(t) =

k=N∑

k=0

Ce(t + k∆t)Powerwl(t + k∆t)∆t, (3.20)

where Powerwl is the function adding up the power consumption of chillers (2.14), cooling
towers (2.15)-(2.16), and pumps (2.21)-(2.22).

HMPC Problem Formulation

This section presents the design of a MPC controller whose objective is to find the optimal
control sequence that satisfies the required cooling load and minimizes electricity usage.
Consider the following optimization problem: Consider the following optimization problem:

J⋆(x(t), t) = min
ût|t,...,ût+M−1|t,ts,tf

Billwl,t|t (3.21a)

s.t. yt+k|t ∈ Y, ∀k = 1, 2, . . . , N − 1 (3.21b)

ut+k|t ∈ U, ∀k = 0, 1, . . . , N − 1 (3.21c)

yt+N |t ∈ Yf(t) (3.21d)

[u′
t|t, . . . , u

′
t+(N−1)|t]

′ = B ⊗ Im[û
′
t|t, . . . , û

′
t+M−1|t] (3.21e)

xt+k+1|t = fwl(xt+k|t, ut+k|t,Φt+k|t, k) (3.21f)

∀k = 0, 1, . . . , N − 1,

yt+k|t = gwl(xt+k|t, ut+(k−1)|t,Φt+k|t, k)

∀k = 1, 2, . . . , N (3.21g)

where Yf(t) is the terminal constraint set; Billwl(·) is the electricity energy bill defined in
(3.20).

In (3.21) xt+k|t denotes the state vector at time t+ k∆t predicted at time t obtained by
starting from the current state xt|t = x(t) and applying the input sequence ut|t, . . . , ut+N−1|t
to the system model (3.21f).

Let U⋆
t→t+N−1|t = {u⋆

t|t, . . . , u
⋆
t+N−1|t} be the optimal solution of problem (3.21) at time

t, and J⋆
t (x(t)) the corresponding value function. Then, the first element of U⋆

t→t+N−1|t is
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implemented to the system (3.19): u(t) = u⋆
t|t. The optimization problem (3.21) is repeated

at t + ∆t, with the updated state xt+∆t|t+∆t = x(t + ∆t), yielding a moving or receding
horizon control strategy. The proposed MPC controller uses a move blocking strategy (3.21e)
to reduce the computational time required for its real time implementation. Details are
discussed in the following section.

Move Blocking Strategy

The prediction horizon of the proposed MPC controller is 24 hours, and the control sampling
time is one hour. As a result, there would be total 72 optimization variables as the control
input dimension is 3. It is common practice to reduce the degrees of freedom by fixing the
input or its derivatives to be constant over several time steps [110]. In this thesis, we are
using the moving window blocking approach proposed in [21]. For the sake of completeness
of the thesis, the algorithm to compute the blocking matrix B in (3.21e) is briefly outlined.
We first need the following definitions before providing the algorithm used.

Definition 1 (Admissible Blocking Matrix) A matrix B ∈ {0, 1}N×M is an admissible
blocking matrix if M < N , and one entry in each row of B is equal to 1, the elements of the
matrix are arranged in an ”upper staircase” form, i.e. if the column in which a 1 occurs in
the i’th row is

j⋆(i) := {j|Bi,j = 1},

then j⋆(i+ 1) ≥ j⋆(i) for all i ∈ {1, 2, · · · , N − 1}. Bi,j denotes the element of i’th row and
j’th column of matrix B.

Definition 2 (Blocking Length Vector) Given an admissible blocking matrix B, the block-
ing length vector L(B) is defined as the columnwise summation of the matrix B. An admissible
block vector corresponds to a unique blocking length matrix.

The following algorithm is in the proposed MPC.

Algorithm 1 (Moving window blocking)
Initial: Select an initial blocking length matrix L0, and let i = 0.
Step 1: if Li(1) > 1,

Li+1 := Li;

Li+1(1) := Li(1)− 1;

Li+1(end) := Li(end) + 1.

if Li(1) = 1,

Li+1 := [Li(2 : end), Li(1), 0].

Step 2: if Li = L0, stop. Otherwise, go to next step.
Step 3: let i := i+ 1, and go to step 1.
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Where Li(end) is the last element of Li.
By following Algorithm 1, we can get a series of blocking length matrices for each step. In
this thesis, we choose L0 = [2, 2, 18, 1, 1, 0], and Algorithm 1 will give

L1 = [1, 2, 18, 1, 1, 1],

L2 = [2, 18, 1, 1, 2, 0],

L3 = [1, 18, 1, 1, 2, 1],

L4 = [18, 1, 1, 2, 2, 0],
...

L24 = [2, 2, 18, 1, 1, 0].

More details can be found in [21].

Terminal Constraints

It is well known that stability and feasibility are not ensured by the MPC law without
terminal cost or terminal constraints. Usually the problem is augmented with a terminal
cost and a terminal constraint set Yf . Typically Yf is a robust control invariant set which
guarantees that if Problem (3.21) is feasible for a given x0, then it is always feasible for t ≥ 0.

A formal definition of robust control invariant sets follows [98, 8].

Definition 3 (Robust Control Invariant Set) A set C ⊆ X is said to be a robust control
invariant set for system (3.19) if

∀x(k) ∈ C, ∃u(k) ∈ U| f(x(k), u(k), d(k)) ⊆ C ∀d(k) ∈ D.

The set C∞ is said to be the maximal robust control invariant if it is robust control invariant
and contains all robust control invariant set contained in X. Where f(x(k), u(k), d(k)) is
defined in Equation (3.19).

We use historical data of Tcmp,s, Tcmp,r and ṁcmp in order to compute the possible range of
Q̇Load. Figure 3.8 plots historical daily campus load during September 2008, and we observe
that the load has a period of one day. It is reasonable to model the admissible campus load
as a periodic disturbance with periodic envelope constraints (the bounds are represented
with thicker lines in Figure 3.8).

Since the disturbance is periodic, the idea proposed by F. Blanchini and W. Ukovich
in [13] can be applied to the proposed MPC controller. The invariant sets, if it exists, will be
time variant and periodic with the same period as the disturbances. In order to guarantee
that the tank has enough cold water to satisfy the demand, we use the algorithm proposed
in [13] to calculate the CPI (Controlled Periodic Invariant) set for the system described in
(2.1a). The system for calculating the CPI set is a simple buffer plant subject to constraints
in Section 3.4 and periodic disturbance modeled in Figure 3.8.
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Figure 3.8: Campus load.
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Figure 3.9: Lower bound b(t) of the controlled periodic invariant set Yf (t) in (3.22).

We implemented the algorithm proposed in [13] and Figure 3.9 plots the lower bound
b(t) of the computed periodic set Yf (t):

Yf(t) = {zb(t) : b(t) ≤ zb(t) ≤ ztank}. (3.22)

If the height of the cool water in the tank is greater than the lower bounds b(t), there exists a
feedback control law that will satisfy any disturbance belonging to the envelope in Figure 3.8
without violating the states and inputs constraint.

Experimental Setup

The MPC controller computes the set points for cooling towers, chillers and the thermal
storage tank at the central plant. Because of lower level control loops, the closed loop
system indirectly affects all the components of the campus including the pumps and fan
coils of the distribution system.

The MPC algorithm is implemented in MatlabR© and running in real-time on a Pentium
4 IntelR© processor. The average computational time for solving an optimization problem



CHAPTER 3. DETERMINISTIC PREDICTIVE CONTROL DESIGN 47

was 20 minutes which ensured real-time implementation with the chosen one hour sampling
time. The MPC algorithm receives and sends data to the campus through the Automated
Logics Web Control (ALC) system. ALC is a building automation system, offering a user
interface and some control features. ALC enables one to access all building management
functions including (1) set and change schedules; (2) adjust set points and other control
parameters; (3) trend building conditions; (4) view and acknowledge alarms and events;
(5) run preconfigured and customized reports on energy usage, occupant overrides, tenant
billing.

The implementation of the experiment involves three steps:

1. Download data from ALC system and pre-processing the data to get the information
required by MPC;

2. Run MPC to get the control set points;

3. Update the control set points onto the ALC system, thus controlling the plant.

Experiment

Four scenarios have been studied in order to evaluate the performance of the MPC controller:

[S1] Scenario 1 is the baseline performance. The plant is operated manually by using
the policy defined by the plant managers. There is no optimal control algorithm
involved. Rather, the control policy is based on the operators’ experience. The data
for experiment S1 are collected from May 27 to May 31, 2009.

[S2] Scenario 2 implements the MPC control (3.21) with the additional constraint that start
time and stop time (ts and tf ) can only be multiple of the sampling time (1 hour) [94].
The data for experiment S2 are collected from June 2 to June 6 2009.

[S3] In Scenario 3 the plant is operated manually by using a modified policy defined by the
plant managers. The modifications are extracted by observing the policy used by the
MPC controller in S2. The data for experiment S3 are collected from June 8 to June
12, 2009.

[S4] Scenario 4 implements the MPC controller (3.21). The data for experiment S4 are
collected from October 6 to October 10, 2009.

In all four scenarios, the quantity of chilled water stored in the tank at the end of the
experiment is forced to be equal to the one available at the beginning of the experiment.
Despite the difference in time, the weather conditions during experiments S1 and S4 are
similar. This allows us to fairly compare the MPC performance to the one obtained with
the baseline control logic.
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Comparison Metrics

Two comparison metrics are defined to evaluate the performance of MPC: the electricity
bills and the coefficient of performance.

Electricity Bill The electricity bill function is described by Equation (3.20), and by com-
paring the electricity bill we can quantify the cost savings generated by the MPC controller.

Coefficient of Performance The Coefficient of Performance (COP)

COP = EThermal
Generated/E

Electrical
plant (3.23)

captures the efficiency of the central plant, i.e. the amount of thermal energy (J) generated by
the central plant with 1 J of electricity power. EElectrical

plant is the electricity power consumed

by the central plant, and EThermal
Generated is the thermal energy generated by the central plant

defined as

EThermal
Generated =

∫ tf

t0

ṁCHWS(TCHWR − TCHWS)dt (3.24)

By comparing the COP between the 3 scenarios S1, S2 and S3, we can better understand if
MPC improves the efficiency of the central plant.

Discussion of Experimental Results

Next we compare the four experiments S1, S2, S3 and S4 by analyzing the performance of
the central plant and the corresponding control profiles.

Performance Comparison The performance of the central plant will be compared by
using the metrics defined in Section 3.4.

Table 3.3: Central plant performance comparison (all quantities correspond to daily average).

S1 S2 S3 S4
Energy Consumption [KJ] 8.63e6 4.25e6 4.40e6 3.58e6
Energy Generated [KJ] 4.05e7 2.01e7 2.31e7 2.01e7
COP 4.70 4.77 5.26 5.60
Bill [dollar] 1.68e3 4.18e2 4.75e2 4.00e2

Table 3.3 lists the electrical energy consumption, thermal energy generated, COP and
the electricity bill for experiments S1, S2, S3, and S4. We can observe that

• Comparing S1 with S2. The MPC controller has significantly reduced the daily elec-
tricity bill in experiment S2 by $1265 compared to experiment S1. Meantime, the
efficiency of central plant, COP, is also improved by 1.5%.
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• Comparing S3 with S1. The electricity bill reduction is $1205 and COP is increased
by 11.9%.

• Comparing S4 with S3 and S1. The COP of the central plant reaches 5.60 in experiment
S4, increased by 19.1% over baseline (S1). The daily electricity bill is reduced by $75
when compared to S3 and by $1280 when compared to S1.

The performance improvement is further discussed by looking at the implemented control
profiles in the rest of the section.
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Figure 3.10: Control input set points TCWS,ref .

06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06
−50

0

50

100

150

200

250

time (hour)

m
do

t C
H

W
S
 (

kg
/s

)

 

 

S1
S2
S3
S4

Figure 3.11: Control input set points ṁCHWS,ref .
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Figure 3.12: Control input set points TCHWS,ref .

Table 3.4: Average values of central plant flows and temperatures during charging time.

S1 S2 S3 S4
TCWS [K] 289.0 292.3 293.2 290.72
ṁCHWS [Kg/s] 152.6 158.2 178.0 187.0
TCHWS [K] 276.7 276.4 276.9 278.6

Control Profile Figure 3.10-3.12 shows the control profiles for experiments S1, S2, S3
and S4 respectively. Table 3.4 lists the average values of the control set points during the
charging time. Based on these information the following remarks can be drawn:

• The baseline control logics in S1 works as follow: condensed water supply temperature
(TCWS,ref) is set as low as possible so that the cooling towers always work at full
load, chilled water supply temperature set point TCHWS,ref is fixed to 276.5K, and the
average mass flow rate ṁCHWS,ref is set to 150kg/s. The operation schedule starts at
10 pm and ends when the tank is fully charged.

• The MPC controller in S2 applies higher condensed water supply temperature (TCWS)
for cooling towers than experiment S1. In the baseline control (experiment S1), the
operators set the TCWS as low as possible. This overloads the cooling towers, and a
higher TCWS can help balance the tradeoff between power consumed by the chilling
system while meeting cooling loads.

• The MPC in S4, applies a desired condensed water supply temperature TCWS of 293.1
K. However due to a lower level controller malfunctioning, TCWS did not track its
reference but was as low as 290.72K in the first three days.



CHAPTER 3. DETERMINISTIC PREDICTIVE CONTROL DESIGN 51

• During experiments S2 and S4, the central plant is working with shorter charging
windows, and the average mass flow rate ṁCHWS is greater than the one used by the
operators in S1.

• The set points of chilled water supply temperature TCHWS,ref for S1, S2, S3 and S4
are reported in Figure 3.12, and for S1, S2 and S3 scenarios, there is no noticeable
difference.

We notice that experiment S3 improves COP over experiment S2 (with MPC in the loop).
The reason is that the MPC in S2 assumes that start time and stop time (ts and tf in (3.21))
can only be multiple of the sampling time (one hour). Because of such coarse sampling time,
a constant and high mass flow rate would overcharge the tank. As it can be observed in
Figure 3.11, the mass flow rate (ṁCHWS,ref) in experiment S2 is high only at the beginning
of the charging window. Then, it decreases in order to satisfy the load demand. Since for
the specific scenario and chillers performance curves, a high COP is always obtained for
higher mass flow rates (ṁCHWS,ref), the decrease in ṁCHWS,ref erodes the efficiency of the
central plant. This problem is fixed in experiment S4 where chillers start time and stop time
(ts and tf ) are allowed to assume any continuous value in the optimization problem (3.21).
As a result, in scenario S4 a high flow ṁCHWS,ref is maintained over the charging period
(Figure 3.11).

After experiment S2 the operators observed the behavior of the MPC and decided to
apply maximum chilled water supply mass flow rate and set the condensed water supply
temperature around 293.7K. These two modification are used in scenario S3. As observed
from Table 3.4, the performance of the central plant, in terms of COP, is improved by 11.9%
compared to their original baseline control S1.

Weather Dependence

The MPC performance is affected by the weather patterns. In order to better understand
the potential improvement under a variety of weather conditions, an extensive simulation
study over six months was performed. The proposed MPC in Section 3.4 was simulated in
closed loop with the tank dynamic model in Section 2.3. The campus load is estimated by
using model presented in Section 2.3.

We performed extensive simulations from December 1, 2008 to July 1, 2009 by using
the weather conditions at UC Merced. Figure 3.14 shows that the simulations cover a daily
average ambient temperature from 278K in winter to 300K in summer. We note that under
such a wide range of weather conditions, the COP with the MPC proposed in Section 3.4
constantly outperforms the COP of the baseline control (see Figure 3.13). The missing points
in Figure 3.13-3.14 corresponds to missing data in the (corrupted) weather database.

Figure 3.15 plots the correlation between the absolute COP improvement over baseline
and the average ambient temperature during the charging time. The dashed line shows the
upper bound of the COP improvement and the solid line is the lower bound. The MPC
controller can achieve better COP improvement with average ambient temperature ranging
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Figure 3.13: COP improvement of MPC over baseline.

Figure 3.14: Daily average of ambient temperature.

from 285K to 291K. This can be explained as follows. Low ambient temperatures limits the
achievable condensed water temperature (TCWS) for cooling towers and, as pointed out in
Section 3.4, higher condensed water temperature provides higher COP. On the other hand,
higher ambient temperatures reduce the maximum COP achievable ηTCHWS/(Tamb−TCHWS),
where η is the efficiency of the system, and TCHWS/(Tamb − TCHWS) is the COP of an ideal
Carnot compression refrigeration cycle [2].

3.5 Predictive Control for Air-Loop System

The objective of LMPC is to minimize the energy consumption in the form of cold water,
hot water, and electricity while maintaining the thermal zones within the comfort range.

Control Variables

The control variables of LMPC are listed as follow,

1. ṁi
s,ref(t): Reference for supply air mass flow rate to ith zone.



CHAPTER 3. DETERMINISTIC PREDICTIVE CONTROL DESIGN 53

Figure 3.15: Max (dash line) and min (solid line) COP improvement as a function of average
ambient temperature (K) during charging time.

2. ∆Tc,ref(t): Reference for temperature difference of supply air through the cooling coil
in AHU.

3. ∆T i
h,ref(t): Reference temperature difference of supply air through the reheating coil

in VAV box connected to ith zone.

4. δ: The mixing proportion of return air and outside air.

Measured Variables

The following variables are measured to initialize prediction of the HMPC controller (3.18),

1. T i: Average air temperature of ith zone.

The following variables are load predictions.

1. Toa: Outside air temperature.

2. I i: Solar radiation intensity of ith zone.

3. P i
d: Internal thermal load for ith zone.

Operation Constraints

The following constraints avoid the malfunction of the system components and guarantee
thermal comfort of occupants.

1. T i ∈ [T i, T
i
]: The thermal comfort is defined as a box constraints on perceivable zone

air temperatures.

2. ṁi
s,ref ∈ [mi

s, m
i
s]: The supply air flow rate to each zone is limited by the capacity of

VAV boxes.
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3.
∑

i ṁ
i
s,ref ∈ [mi

s, m
i
s]: The total supply air flow rate delivered by the fan in AHU is

constrained by the fan size.

4. ∆Tc,ref ∈ [0,∆T c]: The supply air temperature difference through the cooing coil is
upper bounded due to the capacity of cooling coil in AHU.

5. ∆T i
h,ref ∈ [0,∆T

i

h]K: The supply air temperature difference through the reheating coil
is upper bounded due to the capacity of reheating coil in VAV box.

6. δ ∈ [0, δ]. The mixing ratio of return air and outside air is upper bounded by δ < 1 to
guarantee minimum ventilation requirement.

Model Summary

The main dynamics of the air-loop system are thermal zones, and in this section the RC
model (2.27) is implemented. The dynamic system is discretied with sampling time (∆t) of
15 minutes:

x(t +∆t) = fal(x(t), u(t), w(t), t), (3.25a)

y(t) = gal(x(t)), (3.25b)

where

u = [ṁi∈V
s,ref ; ∆T i∈V

h,ref ; ∆Tc,ref ; δ] ∈ U,

x = [T i∈V
1 ;T i∈V

2 ],

w = [Toa; I
i∈V ;P i∈V

d ],

y = [T i∈V
1 ] ∈ Y.

U and Y are the feasible control input set and feasible output set defined in Section 3.5,
respectively.

Energy Price

The energy price for air-loop systems is defined as Table 3.2, and the total bill is computed
as

Billal(t) =

k=N∑

k=0

Ce(t + k∆t)Poweral(t + k∆t)∆t, (3.26)

where Poweral is the function adding up the power consumption of fan (2.29) and cooling
and heating coils (2.30).
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LMPC Problem Formulation

This section presents the design of a MPC controller whose objective is to find the optimal
control sequence that satisfies the required occupants’ comfort and minimizes electricity
usage. Consider the following optimization problem:

J⋆(x(t), t) = min
ût|t,...,ût+N−1|t,ts,tf

Billal,t|t (3.27a)

s.t. yt+k|t ∈ Y, ∀k = 1, 2, . . . , N (3.27b)

ut+k|t ∈ U, ∀k = 0, 1, . . . , N − 1 (3.27c)

xt+k+1|t = fal(xt+k|t, ut+k|t, wt+k|t, k) (3.27d)

∀k = 0, 1, . . . , N − 1,

yt+k|t = gal(xt+k|t)

∀k = 1, 2, . . . , N (3.27e)

where Billal(·) is the electricity energy bill defined in (3.26). The LMPC optimization problem
(3.27) is solved by Ipopt, a software package for large-scale nonlinear optimization developed
by [135].

Simulation Results

In this section1, we construct a simple 5-zone building model with input thermal loads as
shown in Figure 3.16 to demonstrate LMPC (3.27). The heat transfer between the five
zones is neglected. The first four zones have equal and negative load that requires heating
except briefly in the afternoon. Zone 5 has high positive load that requires cooling during
occupied hours, with a small negative load in unoccupied hours. The nominal LMPC results
in Figure 3.17 and 3.18 show the tradeoff between supply temperature and mass flow rate.
Between 6:30 and 10:00, we can see economizer and temperature reset-like operation where
cooling of zone 5 is performed using outside air, warmer supply temperatures, and high mass
flow rates.

This control scheme saves energy because the rest of the zones are in heating mode
during this period, and any cooler supply temperature would require reheat to keep those
zone temperatures above their lower bounds. Once all of the zones are in cooling mode,
controlling the cooling coil to the minimum feasible supply temperature and using lower flow
rates becomes a more efficient strategy. We see a brief supply temperature reset behavior
again near the end of the occupied hours at 18:00. Anticipating less cooling demand for the
unoccupied period, the LMPC controller starts increasing the supply temperature early.

1This section is extracted from Anthony Kelman’s contribution to the paper titled ”Model Predictive
Control for Energy Efficient Buildings with Thermal Storage: Modeling, Simulation, and Experiments” in
IEEE Control System Magazine, vol. 32, no. 1, pp. 44-64, February 2012.
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Figure 3.16: Zone thermal loads P i
d.
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Figure 3.17: Nominal case zone results.

To compare against the nominal case LMPC results in Figure 3.17 and Figure 3.18, we
repeat the calculations with modified versions of the bill function. First, in Figure 3.19, we
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Figure 3.18: Nominal case AHU results.

modify the electric utility rate Ce(k) to have a higher value between 12:00 and 16:30. In
Figure 3.20 the utility rates are constant throughout, but we add an additional penalty term
to the cost function to minimize the peak electric power over the entire day. The modified
bill function is

Billmod
al (t) =

(
k=N∑

k=0

Ce(t+ k∆t)Poweral(t+ k∆t)∆t

)
+ ϕ

N
max
k=0

Poweral(t + k∆t), (3.28)

where ϕ is a penalty weighting factor in dollars per unit power.
Both these modified cases in Figures 3.19 and 3.20 demonstrate precooling of zone 5 and

lengthened cooling of zones 1-4, but with different timing and intent. In Figure 3.19, the
peak electric power is not penalized in the cost function but the electric utility rate has
a higher value between 12:00 and 16:30. As a consequence, precooling is only performed
immediately before noon, with a corresponding spike in cooling power, so that less cooling
energy is used between 12:00 and 16:30. In Figure 3.20, the peak electric power is included
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Figure 3.19: Variable utility rate case. Note the precooling and spike in cooling power
immediately before noon.
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Figure 3.20: Peak power limiting case. Note the timing of the precooling and the intentional
plateau in cooling power.

in the cost function so zone 5 is precooled beginning earlier in the morning. As a result,
cooling power is increased at a time when it would normally be low, shifting electric power
use away from the times it would normally be at maximum.
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3.6 Summary

In this chapter, a simple thermal mass model has been used to show the basic mechanism
of active thermal storage and how this mechanism naturally emerges in a predictive control
scheme. The model is also used to demonstrate a fundamental tradeoff involving savings,
losses, and uncertainty in load shifting. We also provided the main ingredients of a predic-
tive control framework implementable in a building equipped with thermal storage. MPC
formulations are developed for both air-loop and water-loop systems in building cooling and
heating systems. Simulations and experimental results have shown the effectiveness of the
proposed control scheme. However, the appealing advantages of MPC shown though sim-
ulations and experiments in the previous sections do not come without a price. Several
issues have to be considered while designing and implementing MPC for buildings. In the
remainder of this section we conclude with some design and implementation considerations.

Design Considerations

Stability and Feasibility

Stability and feasibility of MPC are well-studied issues [98]. In particular, it has been shown
that stability and feasibility are not ensured by the MPC law without terminal cost and
terminal constraints[98]. Typically the terminal constaint is a robust control invariant set
so that the persistent feasibility of the MPC strategy is guaranteed. Persistent feasibility
ensures that if the MPC (3.12)–(3.18) is feasible for a given initial state x(0), then it is
feasible for all t ≥ 0. Definitions and properties of invariant sets can be found in [12, 98]. In
the specific context of the MPC considered in this thesis, the terminal set ensures that enough
energy is actively stored in thermal storage elements to counteract a bounded unpredicted
change in demand. A treatment of sufficient conditions guaranteeing persistent feasibility
of MPC problems has been demonstrated for the specific case of the UC Merced study in
Section 3.4.

Prediction Uncertainty

The example in the first section of this chapter showed benefits of MPC under the assumption
that MPC has perfect knowledge of predicted disturbances and system dynamics. This
section tries to highlight potential issues associated with this assumption. We focus on total
energy consumption using the simple MPC problem (3.3)–(3.6) with κ = 0. The control
design assumes that weather prediction in Figure 3.1 is perfect and occupancy load prediction
in Figure 3.2 is perfect. This time we assume that in reality the occupancy load differs from
what predicted. Two scenarios are considered. In scenario S1 the future occupancy load is
exactly the same as predicted in Figure 3.2 with probability P (S1) equal to α. In scenario
S2 the occupancy load is zero over the entire day with probability P (S2) equal to 1− α. In
short, the controller is designed based on S1 but the probability of S1 happening is α.
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The expected value of the control input cost E[Ju] and constraint violation E[Jε] for MPC
C2 and proportional controller C1 are computed in closed-loop. The closed-loop simulations
use different occupancy load profiles depending on the chosen probability α.

Simulation results for various values of α and various tunings for MPC C2 and propor-
tional controller C1 are summarized in Figure 3.21. When the prediction is perfect with
α = 1, the performance of MPC C2 is the same as the proportional controller C1 in terms
of total energy consumption and constraint violation. However, the MPC performance dete-
riorates as α decreases. In fact, MPC fails to keep the zone temperature within the comfort
constraints due to the misleading predictions. MPC consumes more energy than the pro-
portional controller for α = 0.5 and α = 0 because MPC is performing precooling even if
occupants do not enter the space.
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Figure 3.21: Comparison results.

Stochastic MPC [105, 31] might be a better approach to address this issue when prob-
ability distribution functions of the loads are available. In this case, we would minimize
expected costs and satisfy constraints with a given probability. Further investigations on
prediction uncertainty are presented in Chapter 5.
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Implementation Considerations

Convergence to Suboptimal Solutions

The product between air temperatures and mass flow rates in the thermodynamic energy
balance equations (2.27) leads to a non-convex MPC problem which might have distinct
locally optimal solutions. Fast computational techniques for solving non-convex optimiza-
tion such as sequential quadratic programming (SQP) can only provide certificates of local
optimality. These locally optimal solutions might be less efficient than those obtained with
simpler control design. We are currently analyzing different types of local optima and their
physical interpretation. The analysis can be used to derive branch and bound rules which
allow a SQP solver to converge to globally optimal control sequences.

Computational Complexity of Model Predictive Control

As the complexity of the building model increases, centralized MPC might become computa-
tionally intractable due to the limited computational resources available on current building
control platforms. This limitation is critical at the low-level of the control architecture where
distributed inexpensive computing platforms are common.

One approach to address the computational complexity of MPC is to precompute the
control action for a set of initial states and external parameters. A lookup table can be
generated by gridding the space of parameters and states and solving the optimization prob-
lem offline for each grid point. For linear and switched linear systems the gridding can be
avoided using multiparametric optimization [14]. In the specific context of MPC for buildings
the authors of [97] present a rule extraction approach. Rather than running an online MPC
in real time, many simulations of the MPC are executed offline. The simulation results are
then used to generate simplified rule-based controllers as functions of operating conditions.

Alternatively, the limitation might be overcome by efficient numerical solvers tailored
to the specific hardware or with the use of distributed model predictive control [114, 90].
In distributed MPC, the centralized problem is decomposed into a set of smaller problems
which can be associated with different subsystems such as VAV boxes and AHUs. Each
subsystem solves local small MPC problems with information from local and neighboring
subsystems. The local MPC control modules communicate with each other to converge to
an optimal solution [90]. More details will be presented in Chapter 4.

Equipment Retrofitting

Model predictive control requires sensor data from a building in order to initialize simulations
and make predictions. Additionally, there must be some way to communicate the computed
optimal control inputs either to lower level controllers (for setpoint tracking) or directly to the
control actuators. Modern digital building automation systems satisfy these requirements,
but are only present in new buildings. In order to apply MPC to the existing stock of older
buildings, HVAC equipment must be retrofitted for digital control and additional sensors
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need to be added or existing sensors replaced with digital versions. This can be prohibitively
expensive, and must be offset by the operational energy cost savings of MPC versus the
baseline control.
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Chapter 4

Distributed Model Predictive Control

4.1 Introduction

The size of the centralized predictive control problem rapidly grows when a realistic number
of rooms together with a meaningful control horizon are considered. Therefore the real-
time implementation of an MPC scheme is a challenge for the low-cost embedded platforms
currently used for HVAC control algorithms. In this chapter, we present a distributed model-
based predictive control (DMPC) for regulating heating and cooling in order to minimize
energy consumption while satisfying comfort constraints. We make use of the nonlinear
models presented in Section 2.3 to model the thermal behavior of buildings. The techniques
presented in this chapter enable the implementation of an MPC algorithm by distributing the
computational load on a set of VAV box embedded controllers coordinated by the embedded
controllers on the AHU system. Compared to existing DMPC schemes [16, 114, 127, 15],
the proposed method is tailored to the specific class of problems considered in this thesis.
In particular, it makes use of sequential quadratic programming (SQP) [104, 62], proximal
minimization [9], and dual decomposition [83] to handle the system nonlinearities and the
decentralization, respectively. The SQP and proximal minimization methods are used to
derive a strictly convex Quadratic Program (QP) from the original nonlinear optimization
problem. The dual decomposition scheme takes advantage of the separability of the dual
Lagrangian QP problem. By doing so, the dual QP is solved iteratively by updating dual
and primal variables in a distributed fashion. In this thesis we show that if the centralized
MPC problem is properly formulated, the resulting primal and dual update laws can be
easily derived. Simulation results show good performance and computational tractability of
the resulting scheme.
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4.2 Model Summary

The thermal dynamic model (2.27) in Chapter 2 is compactly rewritten as

dxj

dt
= fc(x

j , uj, ua, Tm, w
j) +

∑

i∈N j

Ej
i x

i, ∀j ∈ V, (4.1a)

gc(x
j∈V , uj∈V , ua, wj∈V , Tr, Tm) = 0, (4.1b)

where xj = (T j
1 , T j

2 ) is the state of the j-th room, uj = (ṁj
s, ∆T j

h) are the control inputs
to the j-th VAV box, and ua = (δ, ∆Tc) collects the AHU control inputs. The vector
wj = (P j

d , Toa) is the disturbance assumed to be perfectly known. Equation (4.1b) lumps up
the algebraic equations that describe the static model for return air temperature and mixed
air temperature, respectively. The set xj∈V is defined as

{
x1, x2, . . . , xNv

}
. Note that the

room dynamics in the network are coupled through states (the second term in (4.1a)) and
inputs (δ and ∆Tc are common to all rooms).

The continuous time system (4.1) is discretized as follow. We consider a control law with
uniform sampling time ∆t,

uj(t) = uj
k, ∀j ∈ V, (4.2a)

ua(t) = ua
k, (4.2b)

t ∈ [k∆t, (k + 1)∆t).

With the control law defined by (4.2), the system equations (4.1) are discretized over
t ∈ [k∆t, (k + 1)∆t) using the trapezoidal method to obtain:

xj
k+1 − xj

k

∆t
=

1

2
fc(x

j
k, u

j
k, u

a
k, Tmk, w

j
k) +

1

2
fc(x

j
k+1, u

j
k, u

a
k, T

+
mk, w

j
k+1)

+
∑

i∈N j

Ej
i

xi
k + xi

k+1

2
, ∀j ∈ V, (4.3a)

gc(x
j∈V
k , uj∈V

k , ua
k, w

j∈V
k , Trk, Tmk) = 0, (4.3b)

gc(x
j∈V
k+1, u

j∈V
k , ua

k, w
j∈V
k+1, T

+
r,k, T

+
m,k) = 0, (4.3c)

where T+
r,k and T+

m,k are the temperature of return air and mixed air when time approaches

(k + 1)∆t, respectively. Note that T+
r,k (T+

m,k) is generally different from Tr,k+1 (Tm,k+1) due
to the discontinuity introduced by the control law (4.2).

If uc
k = (ua

k, Tr,k, Tm,k, T+
r,k, T+

m,k), then the discretized room model (4.3) can be com-
pactly rewritten as
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f(xj
k+1, x

j
k, u

j
k, u

c
k, w

j
k, w

j
k+1) +

∑

i∈N j

Ej
i

xi
k + xi

k+1

2
= 0, ∀j ∈ V, (4.4a)

g(xj∈V
k+1, x

j∈V
k , uj∈V

k , uc
k, w

j∈V
k , wj∈V

k+1) = 0, (4.4b)

uc
k ∈ U c; xj

k ∈ X , uj
k ∈ U j , ∀j ∈ V. (4.4c)

In the next section we will also use the following linearized version of model (4.4) around
the trajectory of states and control inputs (x̄1

k, . . . , x̄
Nv

k , ū1
k, . . . , ū

Nv

k , ūc
k), k = 0, 1, . . . , N−1:

T j
kdx

j
k+1 + Aj

kdx
j
k +Bj

kdu
j
k +Bc

kdu
c
k + f e,j

k +
∑

i∈N j

Ej
i

dxi
k+1 + dxi

k

2
= 0, (4.5a)

∀j ∈ V, (4.5b)

Gc
kdu

c
k +

∑

j∈V
G+

j,kdx
j
k+1 +

∑

j∈V
Gx

j,kdx
j
k +

∑

j∈V
Gu

j,kdu
j
k + gek = 0, (4.5c)

ūc
k + duc

k ∈ U c, x̄j
k + dxj

k ∈ X , ūj
k + duj

k ∈ U j , ∀j ∈ V, (4.5d)

T j
k =

∂f

∂xj
k+1

∣∣∣∣
x̄
j
k+1

, Aj
k =

∂f

∂xj
k

∣∣∣∣
x̄
j
k

, Bj
k =

∂f

∂uj
k

∣∣∣∣
ū
j
k

, Bc
k =

∂f

∂uc
k

∣∣∣∣
ūc
k

, (4.5e)

G+
j,k =

∂g

∂xj
k+1

∣∣∣∣
x̄
j
k+1

, Gx
j,k =

∂g

∂xj
k

∣∣∣∣
x̄
j
k

, Gu
j,k =

∂g

∂uj
k

∣∣∣∣
ū
j
k

, Gc
k =

∂g

∂uc
k

∣∣∣∣
ūc
k

, (4.5f)

f e,j
k = f(x̄j

k+1, x̄
j
k, ū

j
k, ū

c
k, w

j
k, w

j
k+1) +

∑

i∈N j

Ej
i

x̄i
k+1 + x̄i

k

2
, ∀j ∈ V, (4.5g)

gek = g(x̄j∈V
k+1, x̄

j∈V
k , ūj∈V

k , ūc
k, w

j∈V
k , wj∈V

k+1), (4.5h)

where dxj
k, du

j
k, and duc

k are the deviations of states and control inputs around the trajectory.
f e
k and gek are residuals of nonlinear equality constraints (4.4a) and (4.4b).

4.3 Distributed Model Predictive Control

In this section we formalize the MPC control problem and provide details on the distributed
MPC (DMPC) design. We are interested in solving at each time step t the following opti-
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mization problem:

min
U,X

J(U,X) =

N−1∑

k=0

{
Pc + Pfan +

∑

j∈V
P j
h

}
∆t (4.6a)

subj. to:

f(xj

t+k+1|t, x
j

t+k|t, u
j

k|t, u
c
t+k|t, w

j

t+k|t, w
j

t+k+1|t) +
∑

i∈N j

Ej
i (x

i
t+k+1|t + xi

t+k|t)/2 = 0,

∀j ∈ V, k = 0, 1, . . . , N − 1, (4.6b)

g(xj∈V
t+k+1|t, x

j∈V
t+k|t, u

j∈V
t+k|t, u

c
t+k|t, w

j∈V
t+k|t, w

j∈V
t+k+1|t) = 0,

k = 0, 1, . . . , N − 1, (4.6c)

xj

t+k|t ∈ X j , ∀j ∈ V, k = 1, . . . , N, (4.6d)

uj

t+k|t ∈ U j, uc
t+k|t ∈ U c, ∀j ∈ V, k = 0, . . . , N − 1, (4.6e)

xj

t|t = xj(t), ∀j ∈ V, (4.6f)

where U = (u1
t|t, . . . , u

1
t+N−1|t, . . . , u

Nv

t|t , . . . , u
Nv

t+N−1|t, u
c
t|t, . . . , u

c
t+N−1|t) lumps up uc and uj∈V

over the prediction horizon, and X = (x1
t|t, . . . , x

1
t+N |t, . . . x

Nv

t|t , . . . , x
Nv

t+N |t) is the vector of

system state predictions over the prediction horizon. Let T = (X,U) be the vector collecting
all optimization variables. The cost function in (4.6) is the total energy consumed by all
VAV boxes and the AHU system over the prediction horizon.

In (4.6) xj

t+k|t denotes the state of room j at time t + k∆t predicted at time t starting

from the current state xj

t|t = xj(t), ∀j ∈ V.

Let (U⋆,X⋆) be the optimal solution of problem (4.6). Then, only the first element of
every control sequence is implemented to the system, i.e. uj(t) = uj ⋆

t|t , u
a(t) = ua ⋆

t|t .

The optimization (4.6) is repeated at time t + ∆t, with the updated state xt+∆t|t+∆t =
x(t +∆t), yielding a moving or receding horizon control strategy.

The MPC problem (4.6) has a non-convex cost (4.6a) which includes bilinear terms
for the energy consumption of cooling and heating coils, bilinear equality constraints (4.6b)
and (4.6c), and box constraints on system states and control inputs. The size of the nonlinear
optimization problem rapidly grows when a realistic number of rooms and a meaningful
horizon length N are considered. In order to solve the MPC problem (4.6) in a distributed
fashion, we apply sequential quadratic programming (SQP), proximal minimization, and
dual decomposition. Next we show the main idea of these techniques and implementation
details for the specific class of problems considered in this thesis.

The SQP procedure is an efficient method to solve nonlinear programming problems [62,
104]. The basic idea is to linearize the nonlinear constraints around a candidate solution
and replace the objective with a quadratic function around this guess. The solution to the
resulting QP is then used to update the candidate solution. The iterations are repeated until
convergence is achieved [62]. Note that the hessian of the cost (4.6a) is, in general, indefinite
since the cost is nonconvex.
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The proximal minimization algorithm is adopted to solve the indefinite QP problem
obtained from the SQP procedure by iteratively solving a set of subproblems whose cost
functions have extra convex quadratic terms [9]. By doing so, the primal cost function of the
subproblem is strictly convex, which implies differentiability of the dual cost function. This
enables faster convergence in the procedure of dual decomposition [9].

The concept of dual decomposition traces back to the 70’s [83], and it has been extensively
studied since then [9, 113]. The QP derived from the proximal minimization algorithm is a
separable convex optimization problems and therefore the gradient of the dual problem can
be calculated in a distributed fashion, and the dual variables can be optimized separately by
using gradient or subgradient based approaches. The primal optimal solution then can be
reconstructed from the dual variables.

To summarize, the optimal solution to Problem (4.6) is obtained through three nested
iterative algorithms. The outer iteration solves the original nonlinear optimization prob-
lem (4.6) by solving a sequence of QPs, the second and third levels of iteration solve the
QP in a distributed fashion by using proximal minimization and dual decomposition, respec-
tively.

The details of the proposed algorithms are described next. Problem (4.6) is time-variant
because of the disturbance load profile w. With abuse of notation and for the sake of
simplicity, in the rest of the chapter the lower indices “t+ k|t” is denoted as “k”.

Level 1: Modified Sequential Quadratic Programming

At the SQP iteration ns, problem (4.6) is linearized by replacing the nonlinear system dy-
namics (4.6b) with the linearized ones (4.5) at a candidate solution T ns = (Uns ,Xns). The
cost function (4.6a) is approximated by a quadratic function around T ns while neglecting
the off-diagonal terms. The resultant optimization problem (4.7) is convex.

min
dU,dX

dJ(dU,dX) =

N−1∑

k=0

{∑

j∈V

(
1

2
duj

k

T
Qj

kdu
j
k + cjk

T
duj

k

)
+

1

2
duc

k

T

Qc
kdu

c
k

+cck
Tduc

k

}
(4.7a)

subject to:

T j
kdx

j
k+1 + Aj

kdx
j
k +Bj

kdu
j
k +Bc

kdu
c
k + f e,j

k +

∑

i∈N j

Ej
i

dxi
k+1 + dxi

k

2
= 0, ∀j ∈ V, k = 0, 1, . . . , N − 1, (4.7b)

Gc
kdu

c
k +

∑

j∈V
G+

j,kdx
j
k+1 +

∑

j∈V
Gx

j,kdx
j
k +

∑

j∈V
Gu

j,kdu
j
k + gek = 0,

k = 0, 1, . . . , N − 1, (4.7c)

dxj
k ∈ dX j, ∀j ∈ V, k = 1, . . . , N, (4.7d)

duj
k ∈ dU j , duc

k ∈ dU c, ∀j ∈ V, k = 0, . . . , N − 1, (4.7e)
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where Qc
k and Qj

k are diagonal matrices obtained by removing the off-diagonal terms of the
hessian of (4.6a) at candidate solution T ns. The vector dU = (du1

0, . . . , du
1
N−1, . . . , du

Nv

0 , . . .
, duNv

N−1, du
c
0, . . . , du

c
N−1) collects control input difference from the candidate solution Uns,

and the vector dX = (dx1
1, . . . , dx

1
N , . . . , dx

Nv

1 , . . . , dxNv

N ) collects system state deviations

from the trajectory Xns. The constraint sets dX j = X j − xj
k

ns

, dU j = U j − uj
k

ns

, and dU c =
U c−uc

k
ns define the feasible state variations dX and control input variations dU, respectively.

The optimal solution dT ⋆ = (dX⋆, dU⋆) to problem (4.7) is computed by the iterative
algorithms at level 2 and level 3 described next. The vector dT ⋆ is used to update the
candidate solution as

T ns+1 = T ns + α · dT ⋆.

In this thesis, a constant step length α is applied. At the SQP iteration ns + 1, the process
of linearizing problem (4.6) and solving problem (4.7) is repeated. The SQP algorithm is
terminated if

‖dT ⋆‖ ≤ κ, (4.8)

where κ is a predefined convergence tolerance.

Remark 1 The convergence of the proposed SQP algorithm for general non-convex programs
is not guaranteed. Extensive numerical tests have failed in finding an instance of the problem
considered in this chapter where the proposed algorithm would not converge. The convergence
rate of SQP procedure can be improved when an adaptive step length α is selected using an
advanced line search algorithm [104].

Level 2: Proximal Minimization

The iterative algorithm at the second level solves problem (4.7) by using the proximal min-
imization algorithm proposed in [9]. The quadratic objective in Problem (4.7) is positive
semi-definite. Its solution is obtained by optimizing a sequence of subproblems obtained by
adding a quadratic term to the original cost. At the proximal minimization iteration np, we
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consider the subproblem

min
dÛ,dX̂

dĴnp(dÛ,dX̂) =

N−1∑

k=0

{∑

j∈V

(
1

2
dûj

k
TQj

kdû
j
k + cjk

T
dûj

k

)
+

1

2
dûc

k
TQc

kdû
c
k + cck

Tdûc
k

}

+
ρ

2

(
‖dÛ− dÛnp−1‖22 + ‖dX̂− dX̂np−1‖22

)
(4.9a)

subj. to:

T j
kdx̂

j
k+1 + Aj

kdx̂
j
k +Bj

kdû
j
k +Bc

kdû
c
k + f e,j

k

+
∑

i∈N j

Ej
i

dx̂i
k+1 + dx̂i

k

2
= 0, ∀j ∈ V, k = 0, 1, . . . , N − 1, (4.9b)

Gc
kdû

c
k +

∑

j∈V
G+

j,kdx̂
j
k+1 +

∑

j∈V
Gx

j,kdx̂
j
k +

∑

j∈V
Gu

j,kdû
j
k + gek = 0,

k = 0, 1, . . . , N − 1, (4.9c)

dx̂j
k ∈ dX j, ∀j ∈ V, k = 1, . . . , N, (4.9d)

dûj
k ∈ dU j , dûc

k ∈ dU c, ∀j ∈ V, k = 0, . . . , N − 1, (4.9e)

where ρ > 0 is a strictly positive constant predetermined such that the resulting cost (4.9a)

is positive definite.
(
dX̂np−1, dÛnp−1

)
is the optimal solution to Problem (4.9) at iteration

np − 1. When np = 1, let dX̂0 = 0, dÛ0 = 0.

The optimal solution (dX̂
⋆
,dÛ

⋆
) to problem (4.9) is computed by the algorithm at level

3. We set dX̂
np

= dX̂
⋆
and dÛ

np

= dÛ
⋆
, and terminate the iterative algorithm if

‖d̂U
np

− d̂U
np−1

‖2 ≤ κ, ‖d̂X
np

− d̂X
np−1

‖2 ≤ κ. (4.10)

It has been proved in [9] that if the optimization problem (4.7) is convex, then the vector

(dX̂
np

, dÛ
np

) converges to an optimum (dX⋆, dU⋆) of problem (4.7).

Level 3: Dual Decomposition and Fast Gradient Method

The dual decomposition algorithm is used to solve problem (4.9) by solving its dual problem.
The dual problem of the QP (4.9) is formulated by assigning dual variables λj

k and µk to the
constraints (4.9b) and (4.9c), respectively. The dual problem can be formulated as follows:

max
λ,µ free

min
dÛ,dX̂

dĴnp + Lc + Lf (4.11a)

subj. to

dx̂j
k ∈ dX j, ∀j ∈ V, k = 1, . . . , N, (4.11b)

dûj
k ∈ dU j , ∀j ∈ V, k = 0, . . . , N − 1, (4.11c)

dûc
k ∈ dU c, ∀k = 0, . . . , N − 1, (4.11d)
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where d̂J
np

is the cost defined in (4.9a). The term

Lc =

N∑

k=1

µT
k

(
Gc

kdû
c
k +

∑

j∈V
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j,kdx̂
j
k+1 +

∑

j∈V
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j,kdx̂
j
k +

∑

j∈V
Gu

j,kdû
j
k + gek

)

is the dual term corresponding to constraint (4.9c). The term

Lf =
∑

j∈V

N∑

k=1

λj
k

T

(
T j
kdx̂

j
k+1 + Aj

kdx̂
j
k +Bj

kdû
j
k +Bc

kdû
c
k + f e,j

k +
∑

i∈N j

Ej
i

dx̂i
k+1 + dx̂i

k

2

)

is the dual term for constraint (4.9b).
In [90], the dual problem is solved by a projected subgradient method with a constant

step size, which suffers from relatively slow convergence. The algorithm convergence speed
can be improved by applying the fast gradient method since the dual function becomes
Lipschitz-smooth when a proximal terms is added [103, 115].

We note that the cost function (4.11a) and the constraints of the inner minimization
problem (4.11) are separable. This special structure allows us to solve problem (4.11) using
the fast gradient method in a distributed way as described next.

Three sets of variables are updated in the fast gradient method [115], namely the dual
variables λ and µ, the auxiliary variables λ̄ and µ̄ of the same dimension as the dual variables,
and a parameter γ controlling the step size β. They are initialized as λ0 = λ⋆np−1, µ0 =
µ⋆np−1, λ̄0 = λ0, µ̄0 = µ0, and γ0 =

√
5−1
2

. Note that for np = 1, we set λ⋆np−1 = 0 and
µ⋆np−1 = 0.

The optimal solution
(
λ⋆np−1, µ⋆np−1

)
to the dual problem at the second level iteration

np − 1 is used as a warm start for faster convergence.
At the third level iteration nd, the dual and auxiliary variables are updated by using the

fast gradient method as follows [115]:

λj,nd

k = λ̄j,nd−1
k +

1

L
h
λ
j
k
(λ̄j,nd−1

k ), ∀j ∈ V, ∀k = 1, 2, . . . , N, (4.12a)

µk
nd = µ̄k

nd−1 +
1

L
hµk

(µ̄nd−1
k ), ∀k = 0, 1, . . . , N − 1, (4.12b)

γnd =
γnd−1

2

(√
(γnd−1)2 + 4− γnd−1

)
, (4.12c)

β =
γnd−1(1− γnd−1)

(γnd−1)2 + γnd

, (4.12d)

λ̄j,nd

k = λj
k

nd
+ β(λj

k

nd
− λj

k

nd−1
), ∀j ∈ V, ∀k = 1, 2, . . . , N, (4.12e)

µ̄k
nd = µk

nd + β(µk
nd − µk

nd−1), ∀k = 0, 1, . . . , N − 1, (4.12f)

where L is the Lipschitz constant of the dual gradient calculated as in [115]. h
λ
j
k
(λ̄j,nd−1

k )

and hµk
(µ̄nd−1

k ) are the gradients of the dual cost function (4.11a) at λ̄j
k
nd−1 and µ̄k

nd−1,
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respectively, The fast gradient method algorithm is terminated if

‖h
λ
j

k
(λ̄j,nd

k )‖2 ≤ κ, ∀j ∈ V, k = 1, 2, . . . , N, (4.13a)

‖hµk
(µ̄nd

k )‖2 ≤ κ, k = 1, 2, . . . , N. (4.13b)

The computation of the gradients h
λ
j

k
(λ̄j,nd

k ) and hµk
(µ̄nd

k ) is the most time consuming

step of the algorithm. The proposed algorithm uses the following approach.
First, we compute the primal variables in (4.11) associated to the set of dual variables(

λ̄nd, µ̄nd

)
:

dx̂⋆ j
k

nd = ΠdX j

(
dx̂

j,np−1
k +

1

ρ
(−G+

j,k

T
µ̄nd

k−1 −Gx
j,k

T µ̄k
nd −Aj

k

T
λ̄j
k

nd
− T j

k

T
λ̄j,nd

k−1

−
∑

i∈N j

Ei
j

T λ̄
i,nd

k−1 + λ̄i
k

nd

2
)

)
, ∀j ∈ V, ∀k = 1, 2, . . . , N, (4.14a)

dû⋆ j
k

nd = ΠdUj

(
(ρI +Qj

k)
−1(ρdûj

k
np−1 − cjk −Gu

j,k
T µ̄k

nd − Bj
k

T
λ̄j
k

nd
)
)
,

∀j ∈ V, ∀k = 0, 1, . . . , N − 1, (4.14b)

dû⋆ c
k

nd = ΠdUc

(
(ρI +Qc

k)
−1(ρdûc

k
np−1 − cck −Gu

c,k
T µ̄k

nd −
∑

j∈V
Bc

k
T λ̄j

k

nd
)

)
,

∀k = 0, 1, . . . , N − 1, (4.14c)

where ΠS (⋆) is the operation of projecting ⋆ onto the convex set S.1 Then, the gradients of
the dual cost function (4.11a) at (µ̄nd, λ̄nd) can be computed as follows [115]:

h
λ
j
k
(λ̄j,nd

k ) = T j
kdx̂

⋆ j
k+1

nd + Aj
kdx̂

⋆ j
k

nd +Bj
kdû

⋆ j
k

nd +Bc
kdû

⋆ c
k

nd + f e,j
k

+
∑

i∈N j

Ej
i

dx̂⋆ i
k+1

nd + dx̂⋆ i
k

nd

2
, (4.15a)

∀j ∈ V, ∀k = 0, 1, . . . , N − 1,

hµk
(µ̄nd

k ) = Gc
kdû

⋆ c nd

k +
∑

j∈V
G+

j,kdx̂
⋆ j nd

k+1 +
∑

j∈V
Gx

j,kdx̂
⋆ j nd

k

+
∑

j∈V
Gu

j,kdû
⋆ j nd

k + gek, (4.15b)

∀k = 0, 1, . . . , N − 1.

In summary, the proposed MPC problem is solved locally by three nested levels of itera-
tions: the outer iteration solves the original nonlinear optimization problem (4.6) by solving
a sequence of QPs (4.7). The second and third levels of iteration solve the QP (4.7) in a

1Note that as Qj
k and Qc

k are diagonal matrices, the matrix inversion in (4.14b) and (4.14c) can be easily
evaluated. The projection is easy to calculate as dX j , dUj , and dUc are box constraints.
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distributed fashion by using proximal minimization and dual decomposition. Algorithm 2
summarizes the main steps of the proposed distributed model predictive control (DMPC)
scheme.

Algorithm 2 (DMPC for building control)
Initial: Let U1, X1 be initial guesses for primal variables for Problem (4.6). Set the

SQP iteration index to ns = 1.
Step 1: Let ns be the current SQP iteration index. Linearize the system model (4.4)

at (Uns, Xns) to obtain the coefficients in (4.7). Let np = 1, and set d̂U
0
= 0

and d̂X
0
= 0 in (4.9). Also let λ⋆0 = 0 and µ⋆0 = 0.

Step 2: Let np be the current proximal minimization iteration index, and set nd = 1.

Initialize λ̂1 = λ1 = λ⋆ np−1 and µ̂1 = µ1 = µ⋆ np−1

Step 3: Let nd be the current dual decomposition iteration index. Update primal vari-

ables (d̂U
⋆
, d̂X

⋆
) as in the distributed algorithm (4.14).

Step 4: Exchange the updated primal variables and calculate the gradients (4.15) for
the dual function.

Step 5: Update the dual sequences λnd+1, µnd+1, λ̂nd+1, λ̂nd+1, and γnd+1 as in the
distributed algorithm (4.12).

Step 6: If condition (4.13) is satisfied, go to the next step. Otherwise, set nd = nd + 1
and go to Step 3.

Step 7: Update d̂U
np

= d̂U
⋆ nd

and d̂X
np

= d̂X
⋆ nd

. If condition (4.10) is satisfied, go
to the next step. Otherwise, set np = np + 1 and go to Step 2.

Step 8 Set dU⋆ = d̂U
np

and dX⋆ = d̂X
np

. If condition (4.8) is satisfied, terminate and
the optimal control sequence is Uns. Otherwise, update Uns+1 = Uns +α · dU⋆

and Xns+1 = Xns + α · dX⋆, set ns = ns + 1, and go to Step 1.

4.4 Simulation Results

This section presents a numerical example to show the effectiveness of the proposed controller
design methodology.

We compare the proposed control methodology with a baseline control logic (BC), which
is a simplified version of a production control logic. The BC works as follows. When all
the room temperatures are within the comfort range, the mass flow rate of the supply air
(ṁj

s) is set to its minimum and the valves of cooling and heating coils are closed. When a
room temperature hits the lower bound, the air mass flow rate to the room is maintained
at its minimum, and the supply air temperature will be adjusted by the heating coil in the
corresponding VAV box so that the room temperature stays at the lower bound value. When
a room temperature violates the upper constraints, the AHU supply air temperature is set
to its minimum, and the mass flow rate of the supply air is controlled so that the room
temperature is within the comfort range.
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Table 4.1: Parameters for the numerical example.

param value param value param value param value

ṁ 0.005 kg/s ṁ 5 kg/s ηc 0.7 ηh 0.8

∆Tc 0 K ∆Tc 8 K Pf 0.08 α 0.25

∆Th 0 K ∆Th 8 K δ 0 δ 0.8
COPc 5 COPh 0.9 N 48 κ 1× 10−3

The numerical example considers a network of 10 rooms. All the rooms have the same
model parameters as in Table 2.1. The undirected graph describing the topology of the room
network is G = (V,A), where V = {1, 2, . . . , 10}, and A = {(1, 2), (2, 3), . . . , (9, 10)}. The
weather information is downloaded from July 2nd to July 3rd, 2009 at UC Berkeley, and
the temperature profile is plotted in Figure 4.1. Because of the warm weather, only cooling
is critical in the considered scenario. Figure 4.2 depicts the nominal internal load profile
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Figure 4.1: Ambient temperature (Toa).
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Figure 4.2: Internal load profile (Pdn).

(Pdn) in our simulations. We assume that during 15:00 and 8:00 the next day, the rooms are
empty without occupancy, leaving a minimum internal load of 0.01 kW due to lighting or
other electrical devices. We use an internal load profile different for each room. In particular,
we compute the internal load for room j as

Pd
j = (1 + 0.2j)Pdn, j = 1, 2, . . . , 10.

In our simulations, the parameters for controllers in Section 4.3 are listed in Table 4.1. The
sampling time ∆t is chosen to be thirty minutes, and the prediction horizon is one day
(N = 48). The comfort constraints are defined as [21, 25]◦C from 6:00 to 18:00 when there
is occupancy in the buildings, and the comfort set is relaxed to [19, 27]◦C when offices are
unoccupied.

Figure 4.3 shows the simulation results for the network of rooms controlled by the baseline
controller. Figure 4.3(a) shows that all the room temperatures are within the comfort range
defined by the dotted lines. During early morning till 04:00, all zone temperatures are within
the comfort range. As a result, the supply fan only maintains the minimum required air mass
flow rate to each zone, and the valve of the cooling coils in the AHU is fully closed. The
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occupancy load at noon results in a peak total air mass flow rate of 7.2 kg/s. The cooling
coils are operating at maximum capacity as soon as one of the zone temperatures hits the
upper constraints so that the thermal comfort can be guaranteed. The return air damper
position is fully closed to take advantage of free cooling when the ambient temperature is
lower than the zone temperature.

The performance of the proposed DMPC controller is reported in Figure 4.4. It cools
down the room temperature to the lower bounds of the comfort range during the early morn-
ing (Figure 4.4(a)) while the baseline controller remains inactive until the room temperature
hits the upper bounds around 4:00 (Figure 4.3(a)). This precooling saves energy, since dur-
ing the early morning the lower ambient temperature enables free cooling. The free cooling
is illustrated in Figure 4.4(d). The MPC algorithm decides to open the cooling coil valve
from 8:00, which is three hours later than the schedule proposed by baseline control logics
in Figure 4.3(d).

Moreover, it is noted that instead of cooling all zones simultaneously, MPC cools down
zones consecutively as Figure 4.4(a) illustrates. This feature significantly reduces the peak
total air flow rate from 7.2 kg/s of BC to 5.8 kg/s (Figure 4.4(b)), and thus saves fan
energy consumption (note that we use a quadratic penalty of total supply air mass flow rate
in (4.6a)). The simulation results suggested that the pre-cooling and consecutive cooling
strategies induced by DMPC enable a 43.5% energy saving compared to the baseline.

DMPC Algorithm Complexity

The proposed DMPC Algorithm 1.1 can be implemented in a network of embedded processors
with low computational capacity since Step 3 and Step 4 of Algorithm 1.1 require only a
few algebraic operations and simple projections. Figure 4.5 shows that a large number of
iterations is required. This imposes a requirement for high network communication speed.

The DMPC Algorithm 1.1 was coded in Matlab R© and runs on a single PC with Intel
Core Duo CPU 3.00GHz. The runtime of the DMPC algorithm is estimated based on
the assumption that the computation of Step 3 and Step 4 in Algorithm 1.1 are executed
in parallel on Nv + 1 units including the controller units equipped on each VAV box and
the AHU unit, and that the communication time is neglected. The results are reported
in Figure 4.6 for different numbers of thermal zones considered. The dashed line shows the
runtime of DMPC algorithm when implemented on Nv+1 CPUs in parallel, and the solid line
depicts the time required to solve Problem (4.6) by the Interior Point OPTimizer (IPOPT)
interfaced via AMPL on one CPU. Both the DMPC algorithm and the IPOPT start from
the same initial guess of optimal solutions. One can notice that when the number of zones
is less than three, IPOPT is faster than DMPC on a single PC. As the number of zones and
the size of problem (4.6) increase, one can notice that DMPC could be implemented with a
faster control sampling rate than IPOPT.

Figure 4.7 plots the variations of the optimal cost J⋆
DMPC obtained by Algorithm 1.1

relative to the optimal cost J⋆
IPOPT by IPOPT when solving MPC problem (4.6) with different
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numbers of zones Nv. It is noted that DMPC results in slightly higher optimal costs than
IPOPT. The reasons for this include the selection of convergence tolerance κ in Table 4.1.

Fast Gradient Method Improvement

The advantage of applying the fast gradient method instead of the projected subgradient
method in level 3 of the DMPC scheme is illustrated in Figure 4.8. We focus on the MPC
problem (4.6) at t = 0. The modified SQP algorithm converged in 301 iterations. The
dashed line in Figure 4.8 depicts the total number of iterations

∑np

i=1 n
i
d required to solve the

subproblems generated from the SQP algorithm when the fast gradient method in Section 4.3
is applied. The solid line depicts the number of iterations for the projected subgradient
method with constant step size.

In this thesis, ni
d is the number of iterations to solve the i-th subproblem (4.9) obtained in

the proximal minimization level. If the fast gradient method is used, the number of iterations
required to satisfy the stopping criterion is, on average, about four times less than for the
projected subgradient method.

4.5 Summary

In this chapter, a distributed model predictive control is designed to regulate thermal comfort
while minimizing energy consumption. A three-level iterative algorithm is presented for the
solution of the nonlinear MPC problem. The key advance of this approach is the ability to
solve the nonlinear MPC problem in a distributed manner and also in parallel. The resulting
scheme is suitable for being implemented on a set of distributed low-cost processors. Sim-
ulation results show interesting behavior and short computation time. Future research will
focus on analyzing stability issues of the resultant nonlinear MPC controller and improving
the convergence rate of the proposed algorithm using adaptive step length and parameters.
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s ), and the
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Figure 4.3: System behavior for simplified
baseline control logics.
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s ), and the
solid line is the total mass flow rate ṁfan.

00 03 06 09 12 15 18 21 00

0

0.5

1

re
tu

rn
 d

am
pe

r 
po

si
tio

n

(c) Return air damper position (δ).

00 03 06 09 12 15 18 21 00
0

2

4

6

8

co
ol

in
g 

co
il 

[o C
]

(d) Temperature difference across cooling
coil (∆Th).

Figure 4.4: System behavior for dis-
tributed model predictive control.
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Chapter 5

Stochastic Model Predictive Control

5.1 Introduction

In the past years there has been a renewed interest in modeling and predictive control for
energy conversion, storage, and distribution in commercial buildings [94, 64, 92, 93, 95, 74,
75, 76, 106, 19, 102, 5]. The majority of existing model predictive control (MPC) schemes has
the objective of minimizing energy consumption while satisfying occupant thermal comfort
using predictive knowledge of weather and occupancy (the building “load”). Simulative and
experimental results have shown that closed-loop energy savings and comfort depend on the
load predictions that are often different from actual realizations [95].

In this chapter, a stochastic predictive control (SMPC) design is proposed for the afore-
mentioned problem. In particular, we make use of stochastic information of weather and
load learned from historical data, and minimize average energy consumption while bounding
the probability of comfort violations. For commercial buildings of medium size, the simplest
models reach the complexity of hundreds of states and control inputs. The complexity of
the resulting SMPC problem motivates our research.

The following finite time stochastic optimization problem will be used to present the
SMPC design.

min
πt|t,...,πt+T−1|t

E

(
k=T−1∑

k=0

Energy(xt+k|t, ut+k|t, dt+k|t)

)
(5.1a)

subj. to xt+k+1|t = f(xt+k|t, ut+k|t, dt+k|t), ∀k ∈ NT−1, (5.1b)

ut+k|t = κt+k|t(xt+k|t), ∀k ∈ NT−1, (5.1c)

ut+k|t ∈ U , ∀k ∈ NT−1, (5.1d)

P
(
xt+k|t ∈ X

)
≥ 1− ǫ, ∀k ∈ NT , (5.1e)

xt|t = x(t), (5.1f)

where the symbol vt+k|t is the random variable v at time t + k predicted at time t, E(v)
denotes the expected value of v, P (v ∈ V) is the probability of the event v ∈ V, NT is the set
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of integers {0, 1, . . . , T}, x is the system state, u is the control input, and d is the uncertain
load. The functions Energy(x, u, d) and f(x, u, d) define the energy consumption and system
dynamics, respectively. Problem (5.1) seeks a set of control feedback laws κt+k|t ∈ U that
minimizes the expected energy consumption (5.1a), and that has small probability of state
constraint violation x 6∈ X .

The solution to the stochastic MPC problem (5.1) requires four main steps: (i) the
translation of the optimization over control polices κ(·) into a finite-dimensional optimization
problem, (ii) the propagation of the stochastic system states over the prediction horizon,
(iii) the translation of probabilistic constraints into deterministic constraints, and (iv) the
solution of the resulting mathematical program.

With the exception of linear systems and special classes of distributions (e.g., normal
distributions), steps (i)-(iii) are non-trivial and affect the complexity of the mathematical
problem at step (iv) and the conservatism of the resulting control policy [84, 130, 109, 28,
71]. Step (i) has different solutions [6]. Open-loop prediction schemes are conservative since
they look for one optimal open-loop control sequence that has to cope with all possible
future disturbance realization, without taking future measurements into account. Closed-
loop formulations overcome this issue but they can quickly lead to intractable problems.
A compromise consists in fixing the control structure (e.g. affine state-feedback policies or
affine disturbance feedback), parameterizing the control sequence in the feedback gains, and
optimizing over these parameters [79, 80].

The chance constraints (5.1e) in step (iii) are translated into deterministic ones by en-
forcing tightened constraints on expected values of states and inputs. The tightening offset
is computed based on the tails of the disturbance probability distributions [70, 123]. In
practice, the distribution of the ambient temperature and occupancy load in buildings are
finitely-supported and non-Gaussian. In addition, the simplified control oriented models for
buildings are bilinear systems [95, 73, 106, 58]. The bilinear terms arise from the multiplica-
tion of supply air mass flow rate and temperature to compute the cooling and heating energy
delivered to thermal zones. Exact solutions to stochastic MPC problem (5.1) for nonlinear
systems subject to non-Gaussian disturbances is, in general, computationally intractable for
real-time implementation in HVAC systems. Obtaining computationally tractable approxi-
mation to this problem is crucial for the real-time implementation of stochastic MPC. The
authors in [106] proposed to compute the nonlinear SMPC problem by solving a sequence of
tractable subproblems. For each subproblem, the nonlinear dynamics are linearized around
the simulated trajectory, and the tightening offsets for chance constraints are computed by
bounding the tails of Gaussian distributions. The resulting problems are second order cone
programs if the linear disturbance feedback gain is optimized, and the problems become
quadratic programs if the controller feedback gain is determined off-line.

Non-Gaussian and finitely-supported disturbances have been studied in [32, 29, 80, 79,
23, 27] in the context of SMPC. The authors in [32, 29] use a tube-based method to translate
the chance constraints. The work in [80, 79] suggests to translate the chance constraints to
deterministic ones by using tightening offsets. The offsets are computed off-line using numer-
ical approximations of convolution integrals. Sample-based methods provide an alternative
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approach to transform the chance constraints for non-Gaussian random variables [23, 22,
27]. The approach consists in transforming the chance constraints (5.1e) into deterministic
counterparts by evaluating them at a large number of disturbance samples.

In this thesis, we build on the work in [80, 79, 27] to design SMPC algorithms for net-
works of bilinear systems subject to non-Gaussian disturbances while retaining computa-
tional tractability. In particular, the bilinear system (5.1b) is linearized by using feedback
linearization. The chance constraints (5.1e) then are transformed to deterministic ones by
using two techniques: discrete convolution integrals and sample-based method. The com-
plexity of both approaches is studied as a function of the problem size. The resulting nonlin-
ear program is solved using Ipopt, a software package for large-scale nonlinear optimization
problems [135].

The state feedback linearization proposed in this paper has several advantages. In par-
ticular, it allows us to easily optimize over feedback policy. Also, the transformation of
the chance constraints into deterministic ones does not depend on the linearized systems
dynamics as in [106].

The proposed SMPC design is carefully analyzed and compared with existing approaches.
In particular, in Section 5.4 we discuss the tradeoff between performance, conservatism, and
complexity. We will also try to shed some lights on the following questions.

(i) Does one need a stochastic MPC formulation, or nominal MPC expected forecasts
provides “good” results for HVAC systems?

(ii) Is there value in using nonlinear probability distribution functions or Gaussian approx-
imations work well and what is the price one has to pay for it?

(iii) Can the proposed approach be implemented on large scale buildings?

(iv) Should one transform the chance constraints by using convolution integrals or sample-
based methods?

The effectiveness of the proposed approach will be demonstrated by using simulation and ex-
periments. In both simulative and experimental studies, models and probability distribution
functions of prediction uncertainties are generated by using measured historical data.

5.2 System Model

HVAC System

The main equipments used to produce and distribute cold or hot air in a building are depicted
in Figure 2.2. Detailed model descriptions have been presented in Chapter 2. In order to
improve its readability and to facilitate the presentation of the control design approach later
in this chapter, we briefly include main relevant findings in Chapter 2.
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The air handling unit (AHU) recirculates return air from building spaces, and mixes it
with fresh outside air. The proportion of return air to outside air is controlled by damper
positions in the AHU. The mixed air is cooled by the cooling coils that extract the cooling
energy from chilled water produced by chillers. The air temperature after the cooling coil
depends on the cooling coil valve position, the temperature of the chilled water, the tem-
perature of mixed air entering the cooling coil, the mass flow rate of the mixed air, and
the physical characteristics as well as thermal effectiveness of the cooling coil. Cool air is
delivered to building spaces by electrical fans. Before reaching a given space, the air goes
through variable air volume (VAV) boxes. At each VAV box the mass flow rate of the air
supplied to the space is adjusted by a damper position. In addition, air temperature can
be increased using reheat coils installed in the VAV box when needed. Space served by one
VAV box is denoted by a thermal zone. The delivered air enters a zone through diffusers
that are designed to fully mix the incoming air with the air in the thermal zone.

In this chapter, a network of thermal zones is described by an undirected graph G =
(V,A), and the thermal dynamic of a thermal zone is described by a bilinear regression
model presented in Chapter 2,

T i
t+1 =

q=qd∑

q=0

(
pi1,qToa,t−q + pi2,qI

i
t−q

)
+ pi3

(
T i
s,t − T i

t

)
ṁi

s,t+

+

q=qx∑

q=0


pi4,qT

i
t−q +

∑

j∈N i

pi5,q,jT
j
t−j


+ pi6 + P i

d,k, ∀i ∈ V, (5.2)

where T i
k is the temperature of zone i at time k. For zone i at time k, ṁi

s,k is the supply
air mass flow rate, T i

s,k is the supply air temperature, P i
d,k is the internal thermal load, Toa,k

is the ambient temperature, I ik is the solar radiation intensity. The supply air mass flow
rates and temperatures ṁi

s and T i
s are control inputs. In (5.2) T i are system states, and

P i
d, Toa and I i are exogenous signals. In (5.2) qx and qd are the autoregressive order and

moving average order, respectively. The selection of qx and qd affects the complexity and the
accuracy of the model. The bilinear term (T i

s(t)−T i(t))ṁi
s(t) in (5.2) is introduced to match

first-order energy-balance equations. The bilinear regression model (5.2) is identified using
data collected from unoccupied hours when the internal load Pd is minimal. Given historical
measurements of zone temperatures, ambient temperature, solar radiation intensity, and
recorded control inputs, the model parameters can be computed by solving a linear regression
problem.

We remark that the SMPC framework presented later in this chapter can be easily
adopted to RC-based bilinear building models (2.27) with minor modifications.

Next we provide more details on the generation of forecasts for thermal load P i
d, ambient

temperature Toa, and solar radiation intensity I i in (5.2).
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Load Models

The internal thermal loads are calculated as follows. The zone model (5.2) is first identified
using data from unoccupied hours. By comparing occupied hour data to the model predic-
tions, we can capture thermal load by occupants. We define a load profile as the difference
in temperature between a local model prediction and the measurements:

P i
d,t−1 =

(
T i
meas,t − T i

t

)
, ∀i ∈ V, (5.3)

where P i
d is the load for zone i, T i

meas,t is the measured temperature of zone i at time t,
and T i

t is the zone i temperature prediction with the identified model (5.2) using data at
time-step t−1. To illustrate the effectiveness of the approach, next we report the results for
a classroom of the Bancroft library at UC Berkeley (labeled as VAV C-2-15 in Figure 2.14).
Figure 5.1 reports the estimated occupancy load profile from May 2011 to February 2012.
Figure 5.1 overlays all the estimated load (dotted lines) by day-of-the-week. The solid line
is the weekly mean occupancy load over the whole period (May 2011 to February 2012).
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Figure 5.1: Occupancy load.

In Figure 5.1 we observe that during weekdays the average occupancy load profile has
a peak load of 0.15◦C, and there is no significant occupancy load during weekends. This
phenomenon matches the occupancy schedule of the classroom. The model (5.3) is used
to generate uncertainty map for an occupancy load predictor. The occupancy loads are
predicted using a look up table with period of one week,

P i
d,k+t|t = P̂ i

d,k+t|t + P̃ i
d,k+t|t, ∀i ∈ V, (5.4)

where P i
d,k+t|t is the predicted occupancy load at time t+ k when the prediction starts from

t, P̂ i
d,k+t|t is the mean of the internal load prediction at time t + k plotted as the solid line

in Figure 5.1, and P̃ i
d,k+t|t is the prediction uncertainty described by a probability density



CHAPTER 5. STOCHASTIC MODEL PREDICTIVE CONTROL 83

function (PDF) with finite support. The finitely-supported probability density function can
be computed from samples of P i

d estimated through (5.3) by using simple piecewise constant
approximation or kernel density estimation [122].

The solar load for each zone is computed as the sun radiation intensity projected onto
the normal vector to the outside wall. Figure 5.2 reports the computed daily sun load for
an office room (labeled as VAV C-2-5 in Figure 2.14) from December 01, 2011 to January
31, 2012 in DOE library at UC Berkeley. In Figure 5.2, the dots are the computed daily sun
load samples, and the solid line denotes the mean value of the computed daily solar load. We
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Figure 5.2: Solar load for a classroom labeled as VAV C-2-5 in Figure 2.14.

use a periodic solar load I ik+t|t in zone i prediction model with period of one day. The mean

Î ik+t|t and the probability density function of the prediction uncertainty Ĩ ik+t|t are calculated
from historical data.

The ambient temperature at time t+ k predicted at t is

Toa,k+t|t = T̂oa,k+t|t + T̃oa,k+t|t (5.5)

where T̂oa,k+t|t is weather forecast obtained from the local weather station, and T̃oa,k+t|t is
weather forecast uncertainty. The weather forecast error is defined as the difference between
historical weather measurements and archived weather forecast data, and the probability
density function of the ambient temperature prediction uncertainty T̃oa is modeled from
historical weather forecast errors. In our study, the prediction uncertainty T̃oa is learned
from archived weather prediction and measurements from May 20, 2012 to July 07, 2012.
Figure 5.3 shows the probability density functions of the weather forecast uncertainty for
four selected prediction times k. As expected, the measured ambient temperature forecast
uncertainty increases with longer prediction horizon k.

Remark 2 The approach presented in this section to forecast the building loads and to es-
timate their uncertainty might sound simplistic. The control design methodology presented
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Figure 5.3: Ambient temperature prediction error.

in the following section does not depend on the specifics of the forecast algorithms. It only
requires probability distribution function of forecasted loads. Different methods could be used
to obtain more accurate predictions.

Energy Model

The AHU and VAV components that use energy are dampers, supply fans, and heating coils.
The supply fan needs electrical power to drive the system, the heating coils consume the
energy of hot water, and the power to drive the dampers is assumed to be negligible. The
power models for supply fan and coils have been reported in Chapter 2. In particular, the
fan power is approximated as a second order polynomial function of the total supply air mass
flow rate (ṁ =

∑
i∈V ṁ

i
s) driven by the fan.

Pfan = c0 + c1ṁ+ c2ṁ
2, (5.6)

where c0, c1, c2 are parameters to be identified by fitting recorded data. Heating and cooling
coils are air-water heat exchangers, and the power consumption of the coils are derived from
the energy conservation law,

Pc =

∑
j∈V ṁ

j
scp(Tm − Tc)

ηcCOPc

, P j
h =

cpṁ
j
s(T

j
s − Tc)

ηh COPh

, (5.7)
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where Pc (Ph) is the power used by the cooling (heating) coils to deliver supply air with
temperature T i

s , COP∗ and η∗ are model parameters, Tc is the air temperature after the AHU
cooling coil, and Tm is the mixed air temperature before the cooling coil (see Figure 2.2).
The mixed air temperature is computed as

Tm = δToa + (1− δ)

∑
i∈V ṁ

i
sT

i

∑
i∈V ṁ

i
s

, (5.8)

where δ is the mixing ratio between the outside air and return air. It is assumed that the
return air temperature is a weighted sum of the zone temperatures with weights being the
mass flow rates supplied to the corresponding zones. Both δ and Tc can be controlled through
the AHU cooling coil and return damper. The total electricity power consumption of the
HVAC system at time t then is calculated as

Ptot = (Ph + Pc + Pfan). (5.9)

Constraints

The HVAC system is subject to thermal comfort constraints and operational constraints
defined next.

C1- P
{
T i
k ≥ T i

k

}
> 1 − ǫ, P

{
T i
k ≤ T

i

k

}
> 1 − ǫ, ∀i ∈ V. The probability that zone

temperatures at time step k are within the comfort bounds is greater than 1−ǫ. Comfort

bounds T i
k, T

i

k and allowed violation probability ǫ are design parameters.

C2- T i
s,k ∈

[
T i

s,k, T
i

s,k

]
, ∀i ∈ V. The supply air temperature is limited by the chilled water

temperature through the coils and the physical characteristics of coils.

C3- ṁi
s,k ∈

[
ṁi

s,k, ṁ
i

s,k

]
, ∀i ∈ V. Allowed mass flow rate for the supplied air. The lower

bounds ṁi
s,k are strictly positive to meet minimum ventilation requirement.

C4-
∑

i∈V ṁ
i
sTc ≤

∑
i∈V ṁ

i
sTm. The air temperature after the cooling coil Tc cannot be

warmer than the mixed air temperature Tm.

C5- ṁi
sTc ≤ ṁi

sT
i
s , ∀i ∈ V. The air temperatures across the heating coil can only increase.

Model Summary

The bilinear ARMAX model (5.2) for all zones and the energy model (5.9) can be compactly
rewritten as

xk+1 = f(xk, u
nl
k , wk), wk ∈ Wk, (5.10a)

T i
k = C ixk, ∀i ∈ V, (5.10b)

Ptot,k = Ptot(xk, u
nl
k , wk), (5.10c)
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where xk = [T 1
k , T

1
k−1, T

1
k−2, . . . , T

Nv

k , TNv

k−1, T
Nv

k−2] ∈ R
nx×1 is the system state, unl

k = [ṁ1
s,k, T

1
s,k,

. . . , ṁNv

s,k, T
Nv

s,k , Tc,k, δk] ∈ R
nu×1 is the control input, and wk = [P 1

d,k, . . . , P
Nv

d,k , I
1
k , I

1
k−1, I

1
k−2, . . .

, INv

k−1, I
Nv

k−2, Toa,k, Toa,k−1, Toa,k−2] ∈ R
nd×1 is the system load. The forecasts of wk are obtained

as discussed in Section 5.2. The state vector xk collects the state of the ARMAX model (5.2)
at every zone of the building. The input vector uk collects the supply air mass flow rate ṁs,k

and the supply air temperature Ts,k to each zone, as well as the air temperature after the
AHU cooling coil and the mixing ratio between the outside air and return air.

The constraints C1–C5 are compactly written as

P

{
hjTxk ≤ gjk

}
> 1− ǫ, ∀j ∈ NNc

(5.11a)

G(xk, u
nl
k , wk) ≤ 0, ∀wk ∈ Wk, (5.11b)

where Nc = 2Nv is the number of state inequality constraints, NNc
is the index set

{0, 1, . . . , Nc}, and vT is the transpose of a vector v.

5.3 Stochastic Model Predictive Control

Consider the building model (5.10) and its constraints (5.11). We formulate the following
stochastic optimization problem with chance constraints for comfort constraints:

min
Xt,Ut

∑

k∈NT−1

Ptot(x̂k|t, û
nl
k|t, ŵk|t)∆t, (5.12a)

subj. to:

xk+1|t = f(xk|t, u
nl
k|t, wk|t), ∀k ∈ NT , (5.12b)

P
{
hj Txk|t ≤ gjk

}
> 1− ǫ, ∀j ∈ NNc

, ∀k ∈ NT , (5.12c)

G(xk|t, u
nl
k|t, wk|t) ≤ 0, ∀wk|t ∈ Wk|t, ∀k ∈ NT−1, (5.12d)

x0 = x(t), (5.12e)

where Xt = {x0|t, . . . , xT |t} and Ut = {unl
0|t, . . . , u

nl
T−1|t} are the optimization variables and

∆t is the sampling time. We use the notation vt+k|t to denote the value of the variable v
at time t + k predicted at time t. Similarly, v̂t+k|t is the expected the value of the random
variable v at time t + k predicted at time t.

A stochastic model predictive controller solves problem (5.12) at each time step t. In
particular, let X⋆

t = {x⋆
0|t, . . . , x

⋆
T |t} and U⋆

t = {unl
0|t

⋆
, . . . , unl ⋆

T−1|t} be the optimal solution of

problem (5.12) at time t. Then, the first element of optimal control sequence is implemented
to the system (5.10a),

unl
t = unl

0|t
⋆
.

The optimization problem (5.12) is repeated at t = t+∆t, with the updated state x0 = xt+1.
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The formulation (5.12) has the following features; (i) the power consumption at ex-
pected values of states, inputs, and disturbances is minimized in (5.12a), (ii) chance con-
straints (5.12c) are used for temperature bounds, (iii) constraint C2-C5 are robustly enforced
for all admissible disturbances realizations in (5.12d). As it will be clear from the results pre-
sented later in this chapter, this formulation will enable complexity reduction (by avoiding
the computation of nonlinear probability distribution functions) while reducing the conser-
vatism typically associated to the use of simple linear models, gaussian uncertainty, and
robust temperature bound satisfaction.

The next section presents the main contributions of this chapter.

1. Propose a computationally tractable approach to solve stochastic MPC problem while
reducing conservatism. We first implement state feedback linearization to linearize
the bilinear system model (5.12b), and this enables the computation of the state error
distribution using numerical methods. The chance constraints then can be reformulated
as deterministic constraints by bounding the distribution tails. The resulting non-
convex optimization problem is solved using Ipopt, a software package for large-scale
nonlinear optimization developed by [135].

2. Analyze the complexity and conservatism of discretization method and sampled-based
method when computing the tightening offset for the chance constraints (5.12c).

3. Carry out extensive simulation tests to demonstrate the effectiveness of the proposed
SMPC scheme compared with alternative MPC designs. The proposed SMPC method
is compared with existing SMPC approach that assumes Gussian disturbances [106],
and the simulation results show that the proposed SMPC method is less conservative
than existing SMPC reported in [106].

Remark 3 With abuse of notation and for the sake of simplicity, in the rest of the chapter,
the notation xk+t|t will be replaced with xk.

System Linearization

The bilinear dynamic model (5.12b) is linearized by introducing deterministic virtual inputs
ui
s and ui

z for each zone i,

ui
s,k = ṁi

s,kT
i
s,k, ∀i ∈ V, (5.13a)

ui
z,k = ṁi

s,kT
i
k, ∀i ∈ V, (5.13b)

to obtain the linear model

xk+1 = Axk +Buk +Dwk, wk ∈ Wk, (5.14)

T i
k = C ixk, ∀i ∈ V, (5.15)
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where the new control input vector uk is uk =
[
u1
s,k, u

1
z,k, . . . , u

Nv

s,k, u
Nv

z,k, Tc,k, δk
]
. For a given

virtual input vector uk, the input signals unl
k can be uniquely determined if T i 6= 0, ṁi

s 6=
0, ∀i ∈ V. Any feasible system trajectory satisfies these two constraints (see Section 5.2).

In model (5.14) wk is a random variable with bounded support Wk. Model (5.14) implies
that the dynamics of state mean x̂ and state error x̃ = x− x̂ are

x̂k+1 = Ax̂k +Buk +Dŵk, (5.16a)

T̂ i
k = C ix̂k, (5.16b)

x̃k+1 = Ax̃k +Dw̃k, (5.16c)

T̃ i
k = C ix̃k, (5.16d)

x̃0 = 0. (5.16e)

The linear system (5.16) can be used in the optimization problem (5.12) instead of the
nonlinear dynamics (5.12b). The new control variables ui

z,k in (5.13) can be interpreted as a
deterministic state-feedback gain linking mass air flow rate ṁi

s and supply air temperature
T i
s to room temperature T i:

ṁi
s,k = ui

z,k

1

T i
k

, ∀i ∈ V. (5.17a)

T i
s,k = ui

s,k

1

ṁi
s,k

=
ui
s,k

ui
z,k

T i
k, ∀i ∈ V. (5.17b)

Therefore, while the optimization in the virtual inputs ui
s and ui

z is over open-loop policies [6],
the variable substitution (5.13) provides state-feedback policies. These advantages come with
a price. In fact, the energy models in Section 5.2 and constraints defined in Section 5.2 have
to be rewritten as a function of the virtual inputs uk. By using the change of control
variables (5.13) the energy models for supply fan (5.6), cooling and heating coils (5.7) are
rewritten as

Pfan = c0 + c1
∑

i∈V

ui
z

T i
+ c2

(∑

i∈V

ui
z

T i

)2

, (5.18)

Ph = ph
∑

i∈V

(
ui
s −

ui
z

T i
Tc

)
, (5.19)

Pc = pc
∑

i∈V

(
ui
z

T i
δToa + (1− δ)ui

s −
ui
z

T i
Tc

)
, (5.20)

Ptot = (Pfan + Pc + Ph) = Ptot(x, u, w). (5.21)

The constraints on supply air temperature C2 are rewritten as the following bilinear
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constraints,

max
w̃0,...,w̃k−1

ui
s,kT

i
k = ui

s,kC
ix̂k + ui

s,kT̃
i
k,max ≤ T

i

su
i
z, ∀i ∈ V (5.22)

min
w̃0,...,w̃k−1

ui
s,kT

i
k = ui

s,kC
ix̂k + ui

s,kT̃
i
k,min ≥ T i

su
i
z, ∀i ∈ V. (5.23)

The constraints on supply air mass flow rate C3 are rewritten as the following robust
constraints

ui
z,k ≤ min

w̃k∈Nk−1

ṁ
i

s,kT
i
k = ṁ

i

s,kC
ix̂k + ṁ

i

s,kT̃
i
k,min, ∀i ∈ V, (5.24)

ui
z,k ≥ max

w̃k∈Nk−1

ṁi
s,kT

i
k = ṁi

s,kC
ix̂k + ṁi

s,kT̃
i
k,max, ∀i ∈ V, (5.25)

where

T̃ i
k,min = min

w̃0,...,w̃k−1

C i

(
x̃0 +

k−1∑

i=0

AkDw̃k−1−i

)
, (5.26)

T̃ i
k,max = max

w̃0,...,w̃k−1

C i

(
x̃0 +

k−1∑

i=0

AkDw̃k−1−i

)
. (5.27)

The robust constraints C4 on the air temperature after the cooling coil in AHU Tc can
be conservatively robustified as follow

max
w̃0,...,w̃k−1

(∑

i∈V

[
ui
z,k

T i
k

(Tc,k − δk Toa,k) + (δk − 1)ui
s,k

])

≤
∑

i∈V

[
ui
z,k

C ix̂k + T i
k,min

Tc,k − δk T oa,k

ui
z,k

C ix̂k + T i
k,max

+ (δk − 1)ui
s,k

]

≤ 0, (5.28)

where T oa,k is the lower bound of Toa,k. The constraints C5 on the air temperature after the
cooling coil in AHU Tc become

ui
zTc ≤ min

w̃0,...,w̃k−1

ui
sT

i = ui
sC

ix̂k + ui
sT̃

i
k,min, ∀i ∈ V. (5.29)

In summary, the constraints (5.24)–(5.29) can be compactly rewritten as the following
deterministic nonlinear constraint

GFL(x̂k, uk, ŵk) ≤ 0, ∀k ∈ NT . (5.30)
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Solving Chance Constraints

In this section, we show the approach we used to transform the chance constraints (5.12c) to
convex deterministic ones with tightening offsets [36]. We denote by πj

k the univariate random

variable hjTxk. The chance constraints (5.12c) then can be reformulated as deterministic
ones [39]

π̂j
k ≤ gjk − αj

k, ∀j ∈ NNc
, ∀k ∈ NT , (5.31)

where π̂j
k is the expected value of πj

k, and the offset αj
k is calculated as follows

∫ ∞

α
j
k

pdf
π̃
j
k
(y)dy = 1− cdf

π̃
j
k
(αj

k) = ǫ, ∀j ∈ NNc
, ∀k ∈ NT , (5.32)

where pdf
π̃
j
k
(y) is the probability density function of π̃j

k = πj
k − π̂j

k evaluated at y, and

cdf
π̃
j

k
(αj

k) = P
{
π̃j
k ≤ αj

k

}
is the cumulative density function of π̃j

k evaluated at αj
k. A solution

to (5.31) is also a solution to (5.12c).
The univariate random variable π̃j

k can be expressed as a linear function of previous
disturbances

π̃j
k = hjT x̃k = hjT x̃0 +

k−1∑

i=0

hjTAkDw̃k−1−i. (5.33)

If the measurement of the state x0 is exact, i.e. x̃0 = 0, then equation (5.33) is compactly
written as

π̃j
k = φj

k

T
W̃k−1, ∀j ∈ NNc

, ∀k ∈ NT , (5.34)

where W̃k−1 =
[
w̃T

0 , w̃
T
1 ; . . . ; w̃

T
k−1

]T
is a column vector of lengthNw = nd k. The disturbances

error W̃k−1 is finitely-supported with lower bound W̃ k−1 and upper bound W̃ k−1.

Next we present and compare two numerical methods to compute the offset αj
k computed

by (5.32) given the probability density function for the disturbances error w̃.

Discrete Convolution Integral Method

If the disturbance errors w̃ are statistically independent, the probability density function of
π̃j
k in (5.34) can be computed recursively as follow

pdfi+1

π̃
j
k

= pdfi
π̃
j
k

∗ pdfw(i+1)
, (5.35)

pdf0
π̃
j

k

= pdfw(0)
, (5.36)

pdf
π̃
j
k
= pdfNw

π̃
j

k

, (5.37)

where pdfw(n)
is the probability density function for nth element of diag(φj

k)W̃k−1 in (5.34).
The operator ∗ denotes the convolution integral,
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In general, there is no analytical solution for convolution integrals (5.35). Numerical
algorithms to approximate the convolution integrals (5.35) can be found in [79, 80, 33]. We
used the approach in [79]. The probability density function pdfw(n)

in (5.35) is first discretized

over Ns evenly distributed samples from [π, π] with discretization interval ∆π = π−π

Ns
.

The upper bound π and lower bound π of the discretization range is computed as

πj
T = max

W̃T−1≤W̃T−1≤W̃T−1

(φj
T )

T W̃T−1, ∀j ∈ NNc
, (5.38a)

πj
T = min

W̃T−1≤W̃T−1≤W̃T−1

(φj
k)

T W̃T−1, ∀j ∈ NNc
, (5.38b)

π = max
j∈NNc

πj
T , π = min

j∈NNc

πj
T . (5.38c)

Within the discretization interval, the probability density function pdfw(n)
is kept constant

pdfw(n)
[k] = pdfw(n)

(πj
k + k ∆π), ∀k ∈ NNs

, ∀n ∈ NNw
. (5.39)

The convolution integral (5.35) is then approximated by discrete convolution,

(
pdfi

π̃
j
k

∗ pdfw(i+1)

)
[k] =

∑

l∈NNs

pdfi
π̃
j
k

[l] pdfw(i+1)
[k − l]∆π, ∀k ∈ NNs

. (5.40)

The probability density function pdf
π̃
j
k
in (5.35) is then obtained by approximating each

convolution integral in (5.35) using discrete convolution (5.40). Once pdf
π̃
j
k
in (5.35) is

computed, the tightening offsets αj
k in (5.32) are computed as

αj
k = πj

k + imin∆π, imin = min{i ∈ NNs
|

n=i∑

n=0

pdf
π̃
j
k
[n] ≥ 1− ǫ}. (5.41)

The discrete convolution integral method to compute the tightening offsets αj
k in (5.31)

is summarized as follow.

Algorithm 3 (Discrete method)
Initial: Compute the upper and lower bounds of discretization range as in (5.38),and

select the sample number Ns.
Step 1: Discretize the probability density function w(n), ∀n ∈ NNw

as in (5.39).
Step 2: Approximate the probability density function pdf

π̃
j
k
by discrete convolutions as

in (5.40).
Step 3: Compute the tightening offsets αj

k as in (5.41).
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Sample-based Method

The sampling-based approach1 to single-stage chance constrained problems (CCP) has been
studied in [23], [22], [27], while recently it has been extended to multiple-stage chance con-
strained problems [120]. It provides an alternative solution to the computation of the offset
αj
k in (5.32). The sampling-based approach transforms the chance constraints (5.12c) into a

deterministic ones by generating for each individual constraint a large number N j
s,k of inde-

pendent identically distributed disturbance samples w̃j,1
k , w̃j,2

k , ..., w̃
j,N

j
s,k

k (usually referred to
as scenarios) according to the probability density function of the disturbance. We use (5.33)
and replace the chance constraints (5.32) with

hjT x̂k +
k−1∑

i=0

hjTAkDw̃j,l
k−1−i ≤ gjk, ∀j ∈ NNc

, ∀k ∈ NT , , ∀l ∈ N
N

j
s,k
. (5.42)

For a sufficiently large N j
s,k, the satisfaction of (5.42) guarantees that each chance con-

straint in (5.12c) is satisfied with the high probability 1− βj
k.

Such an approach introduces significant conservatism, since a solution satisfying the con-
straints for “many” disturbance realizations is close to a worst-case solution (i.e. ǫ in (5.12c)
is close to zero). In order to reduce the conservatism of the solution, a certain number of
generated samples N j

r,k can be removed from the set of samples without a significant loss of

reliability (1-βj
k) of the solution. The link between the number of original samples N j

s,k, the

removed ones N j
r,k, the allowable violation probability ǫ and the reliability parameter βj

k has
been studied in [23], [22], [27], [120]. Here we use the inequality [120]:

(
N j

r,k + ζjk − 1

N j
r,k

)N
j
r,k

+ζ
j
k
−1∑

l=0

(
N j

s,k

l

)
ǫl(1− ǫ)N

j
s,k

−l ≤ βj
k, (5.43)

where ζjk is the support rank of each individual constraint in (5.12c). The support rank
of a chance constraint is the dimension of the vector space spanned by the constraint. In
summary the chance constraint (5.12c) is transformed into

hjT x̂k ≤ gjk − αj,l
k , ∀l ∈ I

N
j

s,k \ IN
j

r,k , ∀k ∈ NT , and ∀j ∈ NNc
, (5.44)

with offsets αj,l
k calculated as:

αj,l
k =

k−1∑

i=0

hjTAi
clDw̃l

k−1−i, (5.45)

1This section is partially extracted from Jadranko Matuško’s contribution to the paper titled ”Scenario-
Based Approach to Stochastic Linear Predictive Control” in IEEE Conference on Decision and Control,
December 2012.
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where I
N

j
s,k = {1, ..., N j

s,k} and I
N

j
r,k ⊆ I

N
j
s,k is a set containing the indices of N j

r,k removed
samples.

Since the support rank of the constraints (5.44) is ζjk = 1, inequality (5.43) reduces to:

N
j
r,k∑

l=0

(
N j

s,k

l

)
ǫl(1− ǫ)N

j
s,k

−l ≤ βj
k. (5.46)

In order to ensure that the solution to the overall optimization problem is a feasible solution
to the original optimization problem with high probability 1−β, the βj

k for the j-th constraint
and the k time index have to will be selected to satisfy

∑

j∈NNc

∑

k∈NT

βj
k < β. (5.47)

From the equation (5.44), one can easily notice that the optimal sample removal strategy
corresponds to the removal of the N j

r,k largest offsets αj,l
k (notice that for fixed j ∈ NNc

and
k ∈ NT all constraints in (5.44) are parallel), resulting in the least conservative approximation
of the corresponding individual chance constraint in (5.12c). Finally, the offsets αj

k in (5.32)
are calculated as:

∀k ∈ NT , and ∀j ∈ NNc
, αj

k = max(αj,l
k ), l ∈ I

N
j
s,k \ IN

j
r,k (5.48)

The algorithm to compute IN
j

s,k\IN
j

r,k in (5.44) and the corresponding offsets αj
k is summarized

next.

Algorithm 4 (Sampling-based method)

Initial: ∀k ∈ NT and ∀j ∈ NNc
compute the number of samples to generate N j

s,k and

to remove N j
r,k that satisfy inequalities (5.46) and (5.47).

Step 1: ∀k ∈ NT , ∀j ∈ NNc
and ∀l ∈ N

j
s,k do

S1.1 Generate the set of samples W̃j
k = {w̃j,l

k }.

S1.2 Calculate the set of the offsets {αj,l
k } using (5.45).

S1.3 Sort the set of the offsets to obtain ordered set of the offsets {ᾱj,l
k }

Step 2: ∀k ∈ NT and ∀j ∈ NNc
do

S2.1 Remove N j
r,k largest offsets from the set {ᾱj,l

k }.

S2.2 Calculate the offsets αj
k using (5.48).
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Optimization Problem

With the change of variables presented in Section 5.3, and the transformation of chance
constraints in Section 5.3, the stochastic MPC problem (5.12) is transformed into the deter-
ministic nonlinear optimization problem

min
x̂k∈NT

,uk∈NT−1

∑

k∈NT−1

Ptot(x̂k, uk, ŵk)∆t, (5.49a)

subj. to:

x̂k+1 = Ax̂k +Buk +Dŵk, ∀k ∈ NT , (5.49b)

hjT x̂k ≤ gjk − αj
k, ∀j ∈ NNc

, ∀k ∈ NT , (5.49c)

GFL(x̂k, uk, ŵk) ≤ 0, ∀k ∈ NT−1, (5.49d)

x̂0 = x(0). (5.49e)

We compute the optimal solution u∗
k∈NT

to Problem (5.49) by using Ipopt [135]. We remark
that the steps presented in the previous section are crucial for obtaining a resulting prob-
lem (5.49) which is computationally tractable and whose solution is not too conservative. In
the next section we will provide metrics from conservatism and computational tractability.
We will also present results which confirm the effectiveness of our approach.

5.4 Results

The stochastic MPC algorithm solving (5.49) at every time step k is analyzed in this section.
For the class of building HVAC systems studied in this thesis, we will investigate the following
questions:

(i) Does one need a stochastic MPC formulation or nominal MPC with expected forecasts
provides “good” results?

(ii) Is there value in using nonlinear probability distribution functions or Gaussian approx-
imations work well and what is the price one has to pay for it?

(iii) Can the proposed approach be implemented on large scale buildings?

(iv) Should one transform the chance constraints by using convolution integrals (Section 5.3)
or sample-based methods (Section 5.3)?

Although the answers depend on the HVAC system and the level of uncertainty, the next
sections will shed some light on the aforementioned questions by simulation and experiments.
In both simulation and experiments study, models and probability distribution functions of
forecasts uncertainty are generated by using measured historical data.
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Bancroft Library Simulations

Simulation Setup

We present closed loop simulation of several MPC algorithms for the second floor of the
Bancroft library at UC Berkeley. The second floor plan of the Bancroft library is depicted
in Figure 2.14 and consists of classrooms, offices, and conference rooms. The HVAC system
has a single duct configuration shown in Figure 2.2, and it is controlled and monitored using
WebCTRLr developed by Automated Logic Corporation.

The original stochastic nonlinear control problem (5.12) is not real-time feasible for this
system by using current desktop capabilities. The goal of this section is to study the com-
promise between complexity, performance, and conservatism of different approximations
to (5.12), including the one proposed in this chapter.

We call the control logic implemented by WebCTRLr the baseline control (BC). The BC
has been fine-tuned by professional and implements a “trim and respond” control algorithm.
Details on the BC algorithm can be found in [78]. The main idea is to control the heating
coil valve position command and the airflow set point as a function of the difference between
zone temperature and the bounds on comfort level. When the zone temperature is within the
comfort range, the VAV box maintains the minimum ventilation level. If a zone violates the
thermal comfort upper-bound, a cooling request is triggered. If a zone violates the thermal
comfort lower-bound, a heating request is triggered. The total number of cooling requests
and heating requests is then used to control the AHU unit.

We compare the measured BC performance with the following MPC algorithms.

L1 Perfect MPC control (PMPC). A model predictive controller with perfect knowledge
of disturbance prediction, i.e. the disturbance prediction error w̃t = 0, and the mean
value of the predicted disturbance over the horizon ŵt is equal to the future disturbance
realization. This is not physically implementable but will be used as reference for what
could be potentially achieved without uncertainty.

L2 Certainty equivalent MPC (CMPC). A nominal model predictive controller which uses
the mean of the predicted disturbance ŵt (modeled in Section 5.2). Clearly, in closed-
loop simulations the nominal disturbance prediction might be different from the actual
disturbance realization.

L3 Stochastic MPC (ESMPC) solving (5.49) with chance constraints approximated using
the discrete convolution method in Section 5.3.

L4 Stochastic MPC (SSMPC) solving (5.49) with chance constraints approximated using
the sample-based method in Section 5.3.

L5 Stochastic MPC (GSMPC) with disturbances probability density function approximated
as Gaussian distributions [106].
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We focus on eight zones in the second floor of Bancroft library from December 1, 2011
to February 1, 2012. The eight zones are subject to negligible thermal interaction between
each other. The zone model parameters are identified by linear regression using historical
weekend data from December 2011 to February 2012.

In our simulations, the control parameters for the SMPC controllers (5.12) are set as
follow. The control sampling time ∆t is 15 minutes, the comfort constraint is allowed to
violate with a chance of ε = 5%, the prediction horizon is T = 20 (5 hours).

The thermal comfort constraints (T
i

t and T i
t) are zone dependent and have a period of

one day. Rather than using the original system comfort constraints, we will use what the BC
actually achieved. This approach allows us to properly compare the MPC and BC control
performances. In particular, for each zone, the comfort constraints are defined as the 95%
envelop of the zone temperatures controlled by BC from December 2011 to February 2012. In
other words, the chosen thermal comfort lower bounds are violated by the BC controller with
probability of 5% at each time instant. Our simulation focuses HVAC systems (Figure 2.2)
operating on heating seasons, thus only the lower comfort bounds are of interest, and the
upper bounds are always satisfied for well-controlled HVAC systems. We also remark that
by enlarging these constraints, any of the five MPC controllers will improve its performance
compared to the BC.

Figure 5.4(a) and Figure 5.4(b) illustrate the comfort bounds for two of the eight zones
in Bancroft library at UC Berkeley. The dots in Figure 5.4 represents the daily historical
zone temperatures, and the solid lines are the computed comfort bounds (5% of the dots are
outside the comfort sets at each time step).
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Figure 5.4: Thermal comfort bounds.

The constraints on supply air mass flow rate and supply air temperature are also learned
from historical data from December 2011 to February 2012. The upper bounds and lower
bounds of supply air mass flow rate are computed as the point-wise max and min of the
historical profiles. The lower bounds of airflow rates guarantee minimum ventilation levels
during occupied hours. The maximum achievable supply air temperature is limited by the
hot water temperature through heating coils and the physical characteristics of coils. It is
assumed to be constant for each VAV box.
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Comparison Metrics

The performance of the model predictive controllers L1–L5 is evaluated by closed-loop sim-
ulation with system model (5.10a) for fifty five days. In the simulation, the disturbance
realizations are recorded measurements from December 2011 to February 2012. Three met-
rics are proposed to compare L1–L5 with the baseline control logic.

• Closed-loop energy savings compared to baseline control

S⋄ =
EBC

tot − E⋄
tot

EBC
tot

, (5.50)

where S⋄ is the energy saving for controller ⋄, and Etot is the total energy consumption

Etot =

tf∑

ts

Ptot (xt, u
∗
t , wt)∆t, (5.51)

where ts is the simulation start time, tf is the simulation end time, u∗
t is the imple-

mented control input at time t, and wt is the disturbance realization at time t in
closed-loop simulation.

• Total comfort improvement compared to baseline control

∆⋄ =
V BC
tot − V ⋄

tot

V BC
tot

, (5.52)

where ∆⋄ is the comfort improvement for controller ⋄, and Vtot is the total comfort
violation

Vtot =

tf∑

ts

∑

i∈V
max(T i(t)− T i(t), 0)∆t. (5.53)

• Thermal efficiency of the HVAC system η

η =
Ethermal

tot

Etot

, (5.54)

where Ethermal
tot is the total thermal energy delivered by HVAC system, defined as

Ethermal
tot =

tf∑

ts

(PcηcCOPc + PhηhCOPh)∆t. (5.55)
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Table 5.1: Simulation results.

Controller PMPC CMPC GSMPC ESMPC SSMPC
Energy savings S (%) 22.54 22.43 20.39 20.33 19.93
comfort improvement ∆ (%) 96.25 -121.91 17.26 88.07 93.97

Simulation Results

Table 5.1 summarizes the results of our tests. Table 5.1 compares the comfort improvement
∆ and the total energy savings S. The tradeoff between performance, conservatism, and
complexity is clear. With perfect knowledge of future predictions, PMPC presents the high-
est comfort improvement while achieving maximum energy savings of 22.54%. The simplest
MPC controller to implement, CMPC, achieves comparable energy savings of 22.43%. How-
ever, the zone temperature regulated by CMPC violates the comfort constraints 121.17%
more than the baseline control. CMPC ignores the disturbance uncertainty at the design
stage and this lead to the incapability of the CMPC to maintain the comfort constraints.

The performance of the ESMPC and SSMPC proposed in this paper is not too far from
the PMPC. This confirms the effectiveness of our approach. We notice that the ESMPC
consumes less energy than SSMPC at the cost of more comfort violations. This is due to a
more conservative approximation of chance constraints in the SSMPC approach presented
in Algorithm 3 compared to sample-based algorithm 4.

GSMPC is computationally simpler than ESMPC and SSMPC. Compared to SSMPC
and ESMPC proposed in Section 5.3, GSMPC achieves similar energy savings while violat-
ing more comfort constraints. The coarse Gaussian approximations of disturbance is the
reason for this. The approximation error of load probability distribution function is illus-
trated in Figure 5.5. In particular, Figure 5.5(a) depicts the load Gaussian model (dashed
lines) compared to load model which uses finitely-supported density approximation (solid
lines) using Gaussian kernels [122]. Figure 5.5(b) shows the cumulative density function of
the PDF in Figure 5.5(a). The horizontal dash-dotted line Figure 5.5(b) indicates the 95%
confidence level. With a 95% confidence level, the cumulative density function of the Gaus-
sian model underestimates the tail. This leads to an underestimation of the tightening offsets
α in (5.32) and thus a higher probability of comfort violations than that specified by chance
constraints (5.12c).

In ESMPC and SSMPC controllers the energy savings compared to baseline control can
be explained as follows. The main reason is that the zone temperatures controlled by ESMPC
and SSMPC are closer to the lower bounds (this can be observed in Figure 5.6). The dots in
Figure 5.6(a) and 5.6(b) are the zone temperatures controlled by BC, the cross markers in
Figure 5.6(a) and 5.6(b) represent the zone temperatures controlled by ESMPC and SSMPC,
respectively.

The ESMPC and SSMPC controllers also optimize the combination of supply airflow rate
and supply air temperature so that the required heating energy is delivered with minimum
energy consumption. Table 5.2 listed the thermal efficiency of the HVAC system controlled
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Figure 5.5: Gaussian approximations for disturbances.
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(a) Explicit stochastic MPC.
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(b) Sample based stochastic MPC.

Figure 5.6: Daily temperature for Zone 2.

by L1–L5. It can be noticed that the coordination aspects of the energy-savings in MPC is
minimal, and the BC controller has similar performance.

Table 5.2: Thermal efficiency of HVAC systems.

BC PMPC CMPC ESMPC SSMPC GSMPC
80.08% 80.38% 80.30% 80.37% 80.42% 80.45%

The results in Table 5.1 show the advantages of stochastic MPC formulation compared to
nominal MPC with expected forecasts. Next we show that this depends on the uncertainty
level. We compare the energy consumption and comfort violation of CMPC and SSMPC
with increasing level of load uncertainty. At the design stage, CMPC ignores the uncer-
tainty of the load prediction, and only consider the mean value of predictions. On the other
hand, SSMPC seeks control signals to guarantee the level of comfort satisfaction while re-
specting the uncertain load predictions. In this section, the load uncertainty level is scaled
by the parameter ϑ as follow. For SSMPC, we scale the independent disturbance samples

{w̃j,1
k , w̃j,2

k , ..., w̃
j,N

j
s,k

k } extracted from the probability density function of the load uncertainty

as {ϑw̃j,1
k , ϑw̃j,2

k , ..., ϑw̃
j,N

j
s,k

k }. The scaled set of samples is used to compute the tightening
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offsets in Algorithm 4. For CMPC, the resulting control policy is independent from the scal-
ing of load uncertainty as CMPC only takes into account the mean value of load prediction
at design stage. The load realizations in close-loop simulation have to be scaled accordingly,

w(t)ϑ = ŵ(t) + ϑ(w(t)− ŵ(t)), (5.56)

where w(t)ϑ is the scaled load realization, w(t) is the original load realization, and ŵ(t) is
the weekly mean load computed as Figure 5.1 in Section 5.2.

Figure 5.7 reports the simulation results of CMPC and SSMPC for eight zones in the sec-
ond floor of Bancroft library from December 1, 2011 to February 1, 2012. Figure 5.7(a) shows
the energy consumption ration ECMPC

tot /ESSMPC
tot with increasing level of load uncertainty,

and Figure 5.7(b) shows the comfort violation ration V CMPC
tot /V SSMPC

tot with increasing level
of load uncertainty. It is observed that with low level of load uncertainty (ϑ < 5), SSMPC is
able to improve the comfort satisfaction compared to CMPC while consuming comparable
energy. However, for load uncertainty scaling factor ϑ > 5, SMPC loses its advantage, and
CMPC shows comparable performance to SSMPC despite its simplicity at design stage.

0 5 10 15 20 25

0.85

0.9

0.95

1

E
ne

rg
y 

co
ns

um
pt

io
n 

ra
tio

 (
E

to
t

C
M

P
C

/E
to

t
S

S
M

P
C

)

Load uncertainty scale (ϑ)
(a) Energy consumption vs load uncertainty

0 5 10 15 20 25
0
1
2

4

6

8

10

12

14

16

18

C
om

fo
rt

 v
io

la
tio

n 
ra

tio
 (

V
to

t
C

M
P

C
/V

to
t

S
S

M
P

C
)

Load uncertainty scale (ϑ)
(b) Comfort violations vs load uncertainty

Figure 5.7: Performance of CMPC and ESMPC with varying load uncertainty.

Complexity Analysis for SSMPC and ESMPC

This section focuses on the complexity of SSMPC and ESMPC. In particular we focus on the
complexity of the transformation of the chance constraints (5.12c) into the corresponding
deterministic ones (5.31). Computational demands of Algorithms 3 and 4 are analyzed with
respect to the three problem size parameters: number of thermal zones Nv, prediction horizon
length T and number of samples Ns.

The discrete convolutions in Step 2 are the most computational demanding operations in
Algorithm 3. The complexity of discrete convolution is O(N2

s ), where Ns is the number of
samples used to discretize the probability density functions in (5.40). The number of discrete



CHAPTER 5. STOCHASTIC MODEL PREDICTIVE CONTROL 101

convolutions needed to approximate the probability density function pdf
π̃
j
k
is a linear function

of NvT , where Nv is the number of zones and T is the number of prediction steps. Algorithm
3 is repeated for Nc = 2NvT number of chance constraints in (5.12c), thus the complexity
of the discrete method to compute the offsets in (5.12) is of the order O(N2

sN
2
vT

2).
If we assume that the Nv thermal zones are, in the worst case, fully coupled, Algorithm

4 has complexity O(N2
v ) (see Step S1.2 of Algorithm 4). Similarly, the algorithm complexity

as a function of the prediction horizon T is O(T 2). With respect to the number of samples
Ns, the most computationally demanding step of Algorithm 4 is sorting the offsets αj,l

k in
(5.45). This has complexity of O(Ns logNs), if a quick-sort algorithm is used. Taking all
above mentioned into account we can conclude that overall complexity of Algorithm 4 is
O(Ns logNsN

2
vT

2) while the complexity of Algorithm 4 is O(N2
sN

2
vT

2).
Figures 5.8 shows the execution times associated with the formulation of ESMPC and

SSMPC as functions of the prediction horizon length T . Similar results can be obtained
if we increase the number of zones Nv. In Figure 5.8, the solid line represents the average
computational time for discrete method (Algorithm 3), and the dashed line represents the
average computational time for sample-based method (Algorithm 4).

While the ESMPC behaves as expected, the SSMPC shows a super-linear relationship
between the SSMPC execution time and the prediction horizon length. The reason for
such the discrepancy between theoretical and simulation results is thought to be linked to
the sparsity of the matrices involved in calculation of the constraint offsets in Step S2.2 of
Algorithm 4. On the other hand, a discrete convolution operation in Step 3 of Algorithm
3 involves a dense matrix-vector multiplication and thus, the complexity of this operation
is O(T 2), regardless of the potential system sparsity. We remark that ESMPC and SSMPC
solve the same optimization problem (5.49) with the exception of the tightening offset αj

k.
For the size and complexity of problems considered in this thesis, the average time to solve
Problem (5.49) with Ipopt is on the order of seconds.
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Figure 5.8: Computational time for ESMPC and SSMPC.
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Experimental Results

The proposed ESMPC controller has been implemented to control the MPC lab at UC
Berkeley. The MPC lab resides on the underground floor of Etcheverry building, it has
no windows, and thus is subject to negligible solar radiation. The dimension of the lab is
9m× 9m× 3.5m, and it hosts fourteen students with fourteen desktop PCs running during
weekdays. The VAV box serving the lab is depicted in Figure 5.9. The inlet air is the cool or
warm air supplied by the central air handling unit in the Etcheverry building, and we do not
control its temperature. The VAV box in the lab consists of an inlet air damper to control
the inlet air flow rate, a set of cooling/heating coils to cool down or warm up the supply air,
a supply fan to maintain the static pressure in the duct, a supply air damper to regulate the
supply air flow rate, and a return air damper to balance the air pressure in the lab.

return air 

return air 

damper 

inlet air 

damper 

temperature 

sensors 
filter 

cooling coil heating coil 

supply fan 

supply air 

damper 

inlet air  Supply air 

Figure 5.9: Scheme plot for HVAC system in the lab.

The lab is equipped with a modern digital control panels shown in Figure 5.10 which
allows us to monitor and analyze the performance of the HVAC systems remotely, and
implement advanced control logics. In the following sections, we present the system identi-
fication results for the lab, the implementation details for the ESMPC controller, and some
experimental results.

System Identification

The thermal dynamic of the lab is modeled by the bilinear regression model (5.2) with
qx = qd = 2. The regression parameters are fitted using historical data from weekend hours
on September 27 and September 28, 2012, when there is negligible occupancy load during
weekends in the lab. Figure 5.11 depicts the identification results, where the dash dot line is
the predicted lab temperature and the solid line represents the measured lab temperature.
The identified model parameters are reported in Table 5.3. The load uncertainty model is
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Figure 5.10: ALC control panel in the lab.

09 12 15 18 21 00 03 06

20

22

24

26

time

Z
on

e 
te

m
pe

ra
tu

re
 [o C

]

 

 
measurement
prediction

Figure 5.11: Identification results for the lab model.

Table 5.3: Model parameters for the lab.

p1,0 p1,1 p1,2 p3 p4,0 p4,1 p4,2 p6
0.0362 -0.0628 0.0331 0.0485 3.9244 0.9459 -0.1275 0.0150

computed as explained in Section 5.2. Figure 5.12 shows the estimated weekly disturbance
loads from April 1 to July 21, 2012. In Figure 5.12, the dots are the realizations of the
loads while the solid lines is the mean value of the weekly disturbance load. The samples in
Figure 5.12 are used to learn the statistics of the load model.

We use the ambient temperature uncertainty prediction model (5.5) where the probabil-
ity density function is depicted in Figure 5.3 and the mean value of the ambient temperature
prediction is downloaded from services provided by National Oceanic and Atmospheric Ad-
ministration (NOAA).
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Figure 5.12: Lab thermal load model.

ESMPC Implementation

We use a sampling of 5 minutes, and a prediction horizon of 5 hours. At time t, the ESMPC
is implemented as follows

1. Obtain the lab temperature sensor readings.

2. Downloads the weather predictions from the weather forecast services (NOAA).

3. Obtain the uncertain load predictions P i
d,k. The uncertain load prediction is modeled

as a look-up table learned from samples in Figure 5.12. The load uncertainty model is
updated when new measurements become available.

4. Solve the stochastic MPC problem (5.49) to obtain the optimal set point for the supply
air mass flow rate and supply air temperature. The optimization problem is solved
using Ipopt on a single PC with Intel Core Duo CPU 3.00GHz.

5. Send the optimal set point to low-level PID controllers which regulates the coil valve
positions and the fan speed to track the set points.

Experimental Results

Figure 5.13 reports the lab temperature controlled by ESMPC (solid line) from August 07
to August 20, 2012. In Figure 5.13 the dashed lines are the upper bound and lower bound
of the comfort region.

In Figure 5.14, the solid line is the supply air temperature delivered to the lab, the dash-
dot line is the inlet air temperature delivered by the central AHU in Etcheverry building, and
the dashed line is the lower-bound on supply air temperature. It is observed that the supply
air temperature satisfies the lower bound, and is kept lower than the inlet air temperature,
which is required by constraints C4 in Section 5.2.

The supply air mass flow rate is depicted in Figure 5.15. The lab requires a minimum of
800 cfm supply air flow rate to meet the minimum ventilation requirement.
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Figure 5.13: Lab temperature.
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Figure 5.14: Lab supply air temperature.

Figure 5.16 reports the daily electricity energy consumptions for the operation of VAV
box in the lab. In Figure 5.16 the blue bars are the energy consumed by cooling coils, and
the red bars are the energy consumed by the supply fan.

5.5 Summary

In this chapter, a stochastic model predictive control (SMPC) design methodology is pre-
sented for HVAC systems. The SMPC uses uncertain prediction of weather conditions and
buildings loads to minimize the expected energy consumption, satisfy the robust operational
constraints, and provide guarantees on the probability of comfort violations. We have shown
how to modeled the building thermal zones as a network of bilinear systems. The uncertainty
models for occupancy load and weather predictions have been modeled as finitely-supported
probability distribution functions learned from historical data. In order to reduce the con-
servatism of the stochastic MPC scheme while retaining the computational tractability, we
proposed a feedback linearization scheme. The chance constraints then are transformed to
deterministic ones by using two techniques: discrete convolution integrals and sample-based



CHAPTER 5. STOCHASTIC MODEL PREDICTIVE CONTROL 106

Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon
600

800

1000

1200

ai
rf

lo
w

 r
at

e 
[c

fm
]

Figure 5.15: Lab supply air mass flow rate.

Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon
0

10

20

30

40

E
ne

rg
y 

co
ns

um
pt

io
n 

[k
w

h]

 

 
Cooling Coil
Fan

Figure 5.16: Electricity consumption of VAV box in the lab [kwh].

method.
Simulation and experiments have shown the effectiveness of the proposed approach. In

particular, we have highlighted the tradeoff between performance, conservatism, and com-
plexity of model predictive control algorithms for HVAC systems.
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