
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
GroupSec: A New Security Model For The Web

Permalink
https://escholarship.org/uc/item/1dt2k843

Authors
Sevilla, Spencer
Garcia-Luna-Aceves, J.J.
Sadjadpour, Hamid

Publication Date
2017-05-21

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1dt2k843
https://escholarship.org
http://www.cdlib.org/

GroupSec: A New Security Model For The Web
Spencer Sevilla, J.J. Garcia-Luna-Aceves, Hamid Sadjadpour

{spencer, jj, hamid}@soe.ucsc.edu
UC Santa Cruz, Santa Cruz, CA

Abstract—The de facto approach to Web security today is
HTTPS. While HTTPS ensures complete security for clients and
servers, it also interferes with transparent content-caching at
middleboxes. To address this problem and support both security
and caching, we propose a new approach to Web security and
privacy called GroupSec. The key innovation of GroupSec is
that it replaces the traditional session-based security model with
a new model based on content group membership. We introduce
the GroupSec security model and show how HTTP can be
easily adapted to support GroupSec without requiring changes to
browsers, servers, or middleboxes. Finally, we present results of
a threat analysis and performance experiments which show that
GroupSec achieves notable performance benefits at the client and
server while remaining as secure as HTTPS.

I. INTRODUCTION

Today, Web publishers wishing to securely deliver their
content must do so using HTTPS. HTTPS refers to HTTP
layered on top of Transport Layer Security (TLS); TLS is
a session-oriented protocol that ensures data confidentiality,
integrity, and authentication by encrypting all communication
between the client and the server. HTTPS is used today for
slightly over half of all traffic flows [1] and adoption is rapidly
increasing, led by movements such as the Electronic Frontier
Foundation (EFF)’s call for “HTTPS Everywhere” [2].

Unfortunately, the strong security guarantees of TLS also
inhibit middleboxes from acting on HTTPS flows - this is
because from the perspective of TLS, any middlebox opera-
tion is a man-in-the-middle attack! This results in significant
consequences for end-users, publishers, and network operators
alike, including increased latency, bandwidth consumption,
CPU usage, and significant financial impact: Netflix alone
estimates that switching from HTTP to HTTPS will cost
upwards of $100M per year [3]!

Though middleboxes provide a wide range of services,
[1] identifies that the primary cost of TLS stems from pre-
venting transparent content caching. Transparent caching is
a technique used to reduce network bandwidth consumption,
and is incredibly effective because it exists at a powerful
intersection of motives and ability: First, transparent caches
can be deployed by ISPs and network operators without
requiring coordination with clients or publishers. Second, these
operators are the same entities with a true “birds eye” view
as to where network congestion occurs, and therefore best
equipped to combat congestion effectively. Finally, market
forces mean that these operators are also the most incentivized
to combat congestion in their networks.

To address this challenge, we introduce a radically new
approach to Web security and privacy that we call GroupSec.

GroupSec introduces a new, fine-grained security model based
on content group membership; this model also separates the
security requirements of publishers from those of clients.
Subsequently, GroupSec combines this model with a novel
mechanism for “offloading” Web content from an existing
HTTPS session to plaintext HTTP, thereby enabling transpar-
ent content caching to occur without compromising a client or
publisher’s security interests.

Section II surveys related work and discusses the short-
comings of prior approaches. Section III explains the new
security model of GroupSec in detail, including the assump-
tions we make regarding the motives and interests of clients
and publishers. Section IV provides specific implementation
details of GroupSec, which consists of minimal modifications
to HTML and no modifications to HTTP, TLS, or middleboxes.
Section V provides a comprehensive threat analysis of the
GroupSec security model, Section VI provides the results
of a preliminary performance evaluation, and Section VII
concludes the paper.

II. RELATED WORK

The challenge of integrating HTTPS with middleboxes has
attracted a substantial amount of attention in the research
community. Recent works [4], [5] propose altering TLS itself
to support specific middlebox operations on traffic flows.
However, these works appear to have focused exclusively
on adding support for qualitative middlebox features such
as intrusion-detection or content-filtering, and do not support
transparent content caching. This limitation stems from the
fact that such works enable middleboxes to alter existing TLS
sessions, whereas the goal of transparent caches is to prevent
an end-to-end flow from ever being established in the first
place.

Meanwhile, policy-based solutions [6], [7], [8] propose
leaving TLS unchanged and “splitting” a TLS session into two
separate connections: one from the client to the middlebox,
and another from the middlebox to the server. However, since
these proposals require the caching entities to be trusted either
by root CAs and/or browsers, they completely break end-to-
end authentication, and have thus met widespread resistance
by the Web community [9], [10], [11].

There exists a set of “secure content delegation” proposals
[12], [13], [14] that enable publishers to host content at a
(presumably untrusted) CDN by providing clients with keys
needed to verify and/or decrypt the content over a separate
(out-of-band) HTTPS session. However, these approaches in-
cur significant overhead (both in bandwidth and latency) by

relying on redirection to obtain the location of the resource
at the CDN. More importantly, this approach only supports
explicitly configured CDNs and proxies, not transparent or
opportunistic caches.

The most crucial limitation of all these works is that they
treat middleboxes as trustworthy entities that can and should
be authorized to read and write content. Remarkably absent
from prior work are discussions regarding new approaches to
security, new models that reexamine or redefine the security
requirements of Web users and publishers, or models that
support transparent caching without trusting middleboxes.

III. CONTENT GROUP SECURITY

The key innovation of GroupSec is a new security model
based on group membership. In this model, clients are defined
as being in a “content group” together if they are authorized by
the publisher to view the same content object. Content groups
exist separately for each content object, and may overlap.
Figure 1 provides a simple example, where users a and b are
in two content groups together (groups f1 and f2), and user
b is also in a third content group (f3) with user c.

Compared to TLS, GroupSec relaxes the security restraints
on content groups in two key ways. First, nodes within
the same content group are allowed to infer each other’s
membership with respect to that particular group (i.e. if a node
is authorized to view a content object, it can also deduce when
other clients are viewing the same content object). Second,
nodes outside the group may see that clients are in a unique
group together, but cannot deduce anything about the nature
of the group. Continuing the example in Figure 1, user a can
see that user b is able to access files f1 and f2. Likewise,
user c can see that users a and b are in two distinct content
groups together, but cannot access either file or its filename.

While content groups represent a new conceptual model,
they do not require extra storage or processing power. Pub-
lishers simply respond to client requests for Web objects,
identically to the current model, and the corresponding privacy
rules and relaxations (described in Section IV) serve to create
the model of the client group.

A. Asymmetric Privacy Models

The group membership security model is carefully designed
to meet the concerns of publishers distributing a file to
multiple clients. Specifically, GroupSec is designed around the
observation that in this scenario, publishers and clients have
asymmetric privacy concerns! From the perspective of content
publishers, privacy refers to the nature of the file itself (i.e. its

Fig. 1. Content Group Membership

name and contents) that the publisher is serving. Conversely,
from the perspective of clients, privacy refers to the nature of
the file, but also the fact that the client requested that specific
file.

Subdividing privacy in this manner is a crucial part of
the GroupSec design, because it enables minimal leaking of
information while still supporting transparent caching: for a
transparent cache to operate, it only needs to know when
multiple clients request the same content object. The core goal
of the GroupSec privacy model is to expose this information,
and only this information, while still protecting the name and
content of the cached files even from the caches themselves!

1) Publisher Privacy: From the perspective of content
publishers, GroupSec achieves a level of privacy equivalent to
HTTPS: the only clients that can decrypt and view a specific
content object are those that are specifically authorized by the
content publisher. All other nodes are completely unable to
discern any information about the content object, including its
name.

2) Client Privacy: In contrast to the publishers, GroupSec
clients see a significant privacy downgrade when compared
to HTTPS. Whereas HTTPS offers clients assurance that no
one but the publisher knows anything about their request,
GroupSec relaxes this restriction in two ways: (1) other nodes
in a client’s content group can see that the client has requested
the file, and (2) nodes outside the content group can identify
the members of a unique content group by IP address.

This relaxation raises significant client-privacy concerns.
Because of these concerns, GroupSec represents itself to
clients as a completely non-private connection. That is to say,
end clients using GroupSec can be assured of the integrity
of the content, yet are given no assurances at all about the
confidentiality of their request.

Defining a connection as non-private at a single side of the
connection is a significant departure from all prior security
models. However, such a definition is not only a good fit for
the Web, it is remarkably easy to convey. Whereas publishers
manage the security of their website via the technologies they
implement, clients must look for the “lock” icon in their
browser. This asymmetry, combined with the observation that
Web users most often use “secure” to mean “private” [15],
[16], means that GroupSec can achieve such asymmetry by
simply identifying GroupSec content as insecure with this
icon.

B. HTTP-Centric Security

Instead of layering plaintext HTTP traffic on top of a
TLS session, GroupSec enacts security within HTTP itself,
by encrypting the filename and contents separately though an
out-of-band process similar to [17]. Once encrypted, the HTTP
requests and responses are layered directly over plaintext TCP.
Figure 2 illustrates this process and shows which specific fields
of the HTTP request and response are encrypted.

The decision to shift security from TLS into HTTP is
an absolutely crucial part of our design. By encrypting the
Request-URL and Message Body fields separately, GroupSec

Fig. 2. Encrypted Requests and Responses

allows intermediate nodes to (1) identify HTTP traffic and
(2) view and modify HTTP header fields. While this can be
seen as “relaxing” the TLS security model, this shift comes
with minimal drawbacks and many key benefits. First, even
when TLS is used, an attacker can infer that two nodes
are exchanging HTTP traffic simply by observing the port
numbers and communication pattern. Second, we note that
HTTP Request header modification is a powerful bandwidth-
saving technique employed by transparent caches to encourage
content reencoding for mobile devices [1].

C. Middleboxes and Trust

A vital drawback of prior work [4], [5] is that they ex-
plicitly authorize certain middleboxes to view and/or modify
content. This design is fundamentally at odds with a common
observation that middleboxes are not trustworthy, and in some
cases (e.g. ISPs injecting additional advertisements) should
be considered malicious. Thus, rather than opening debate or
proposing mechanisms to separate “good” middleboxes from
“bad” ones, GroupSec assumes a much simpler trust model
wherein clients trust content publishers and no one else.

IV. HTTP-GROUPSEC

For the GroupSec privacy model to be feasibly deployable
in the Internet today, it must be implementable with minimal
changes to browsers and servers, and must not depend on alter-
ations to middleboxes themselves. Under these constraints, we
found that four key requirements dictated our protocol design.
Formally, a GroupSec content object must (1) be decryptable
by the intended clients, (2) not be decryptable by other nodes,
(3) be cacheable by intermediate entities, and (4) fully mask
the name of the object.

A. Content Object Encryption

Our solution, which we call HTTP-GroupSec (HTTP-GS),
starts with the assumption that a HTTPS session exists
between a client and publisher, and that this session was
used to load a preexisting page, which we call the linking
page. Through the inclusion of two new HTML attributes,
http-gs-key and http-gs-salt, the linking page indi-
cates to the browser that certain elements (either embedded
or linked) are HTTP-GS powered. The browser then retrieves
these specific elements over HTTP (not HTTPS), decrypts
them, and renders them in the page accordingly.

Before they are linked or embedded in a page, each HTTP-
GS object is encrypted with its own public-private keypair.
In keeping with recommended best practices [18], [19], [20],
[21], [22], [23], [24] we use a 2048-bit RSA key, but stress that

HTTP-GS can support any form of asymmetric encryption.
Each object is encrypted with its own key to support fine-
grained object-level security and enable different groups to
emerge for each individual object. The public key is transmit-
ted in the linking page under the http-gs-key attribute;
this enables clients to be assured of both the integrity and
confidentiality of the key itself.

B. Request URL Hashing

HTTP URLs are comprised of two parts: the Host-
name (e.g. www.example.com) and the Path (e.g.
/videos/v1.mpg). Both fields are transmitted in a HTTP
request, and therefore must be disguised in order to ensure
client privacy. We use two different techniques to encrypt each
component separately.

The Path requested by the client is generated by hashing
the URL provided by the linking page; we call this value
the name-hash. In generating this hash, we have two goals:
First, nodes that are not members of the content group must
not be able to reverse the name-hash to the original URL.
Second, the name-hash must be consistent so that multiple
clients requesting the same content object generate the same
name-hash.

The name-hash is generated by including a second attribute,
http-gs-salt, in the HTML of the linking page. This
attribute has two values, the salt itself (a randomly-generated
number provided by the publisher) and an expiration date.1

The browser verifies that the salt is within the expiration date,
and then creates the name-hash by adding the salt, the key, and
the URL together, and then calculating an md5 hash of this
value as in Equation 1. After creating this hash, the client then
issues a HTTP GET request for it, as illustrated in Figure 3.

name hash = md5(url + key + salt) (1)

Hashing the URL in this manner ensures request consistency
across all clients, since every client receives the same URL,
key, and salt from the publisher. Meanwhile, the salt ensures
forward-secrecy by effectively placing an expiration date on
the name-hash. If an eavesdropper possesses the content ob-
ject’s key, either by compromising a previous HTTPS session
or having been previously authorized to receive the content, it
still cannot create the name-hash without the current salt. This
enables sufficient client privacy, performance optimization,
DRM, and key revocation.

C. Hostname Stripping

HTTP-GS requests replace the Hostname field with the
host’s IP address; this decision comes from several mo-
tives. First, the hostname cannot be included in plaintext,
since it leaks valuable information about the content the
client is requesting. However, hashing the hostname sepa-
rately for each web object, the way the name-hash is gener-
ated, risks a cross-domain hash collision at the caches (e.g.

1Choosing a good salt refresh-rate is left to the discretion of the publisher,
since it dictates a tradeoff between client privacy and cache efficiency; this
value should be closely coordinated with the Cache-Control header.

Fig. 3. HTTP-GS URL Hashing

domain1.com/fileX and domain2.com/fileY both
hash to the same value). Such a collision poses a serious
problem, because it disrupts client access to the content (i.e. a
client requests one file and the cache provides the other), yet
this behavior would be completely undetectable by the content
publishers themselves.

To prevent these cache collisions, each domain must have a
unique namespace to generate their hashes under; this makes
hash-collisions trivial to identify and correct. However, this
design poses an alternate security leak: if a hash used to mask
a domain name is consistent for every object named under
the domain, an attacker can discover the Hostname hash value
simply by visiting any public-facing page under the domain.

By replacing a publisher’s hostname with it’s IP address,
we resolve both problems at once. The consistent value of the
IP address removes the threat of hash collisions at caches,
yet does not expose any information that was not already
visible in the IP header. Furthemrore, in the case of colocation
facilities that host multiple domain names under a single
physical IP address, these collisions are just as trivial to
identify and correct, and actually serve to further obfuscate the
name of the content object requested: a request of the form
ip:content_hash leaks no information at all if ip is the
address of a server known to host several different websites.

D. Transparent Caching

Transmitting requests and responses over plaintext HTTP
enables Web caches to consistently identify, store, and serve
HTTP-GS content in response to future requests. Additionally,
leaving the HTTP headers unprotected allows these same
caches to (1) read and act on relevant cache-specific HTTP
headers such as Cache-Control and (2) add specific head-
ers to outgoing HTTP requests, such as requesting a mobile-
specific version of the object if one exists.

E. Cross-Domain Linking

One of the key benefits of public-private keypairs, as
opposed to symmetric keys, is to support HTTP-GS link-
ing and re-hosting across domains. Specifically, because the
http-gs-key attribute is a public key, a page loaded over
HTTPS can securely embed or link to elements outside of
its domain. This enables integrated support for personalized
content or aggregator sites (e.g. Reddit or Google News)
and highlights the strength of HTTP-GS. While the initial
personalized or aggregated site must be loaded over HTTPS,

every subsequent linked or embedded object can be loaded
over cacheable HTTP-GS! Given the rising trend of such
aggregators, we anticipate this specific use model to account
for a large portion of the network benefits of HTTP-GS.

For cross-domain linking to work, the http-gs-salt
attribute must either be (1) set to a sufficiently large value or
(2) updated by the publisher every time it changes. However,
a simple update service (e.g. RSS) could support this feature
automatically for established relationships across known web-
sites. More importantly, similar to key revocation for clients,
this design puts an “expiration date” on cross-linking websites,
since a publisher can revoke access by simply denying a
linker’s request for the current salt.

V. THREAT MODEL ANALYSIS

We examined GroupSec and compared it to HTTPS with
respect to a range of common attack vectors. We primarily
consider two attack models: an on-path attacker that is not
part of a client’s content group, and an on-path attacker that
is part of the client’s content group (i.e. the attacker possesses
the current salt and key). We explicitly do not consider
attack vectors that lie orthogonally or out-of-band with respect
to HTTP-GS and HTTPS (e.g. an attacker gaining physical
access to a server or breaking public-key cryptography) since
such vectors are out of the scope of our approach.

A. Unauthorized File Access

The primary privacy concern of publishers is that unau-
thorized clients will access their content. However, since the
content is encrypted with the publisher’s private key prior
to distribution, and the public key is only distributed over
HTTPS, an attacker without the public key will be unable to
decrypt HTTP-GS content. To claim otherwise is to say that
either (1) the attacker was able to obtain the key by hijacking
an HTTPS session or (2) the attacker was able to break public
key encryption.

An attacker that was previously able to access the content
(i.e. its access was revoked) will already have the content
name and key, but not the current salt. Even with both the
name and key, the attacker will still not be able to create the
correct name-hash to request the content object. Additional
techniques may be necessary to further obfuscate the name
hash and protect it from brute-force attacks, but we leave
such techniques (and further analysis of this attack) to a future
work.

B. Client Requests

The primary concern of clients is that an attacker will learn
that the client requested a specific file. In these cases, the
attacker’s ability to do so hinges on membership in the content
group.

In the cases where the attacker is not a member of the
content group, we can assume that the attacker is not in
possession of the filename, key, or salt. It follows that without
at least two of these values, the process of reversing a
name hash to a {filename, salt, key} tuple is fundamentally

impossible, even if the hash function used is broken! This is
because even if the attacker can break the hash function, the
attacker will simply obtain the sum of these three variables,
without any information as to which value is which.

In the case where the attacker is a member of the content
group, the process of identifying the file requested by the
client is trivial: by creating the current name hashes for each
file it can access, an on-path attacker can immediately detect
whenever such a file is requested by a client. However, this
case is explicitly allowed by the security model, and therefore
not a violation.

More abstractly, GroupSec addresses this threat by portray-
ing GroupSec content to clients as non-private, and relying on
prior works [25], [26], [27] which have found that Web users
alter their behavior based on privacy indicators. We anticipate
that publishers will use GroupSec primarily to “upgrade” the
security of relatively non-private content (e.g. movies, news
articles, etc.) in a way that protects the publisher’s interests
(i.e. DRM and client authentication). We stress that HTTP-
GS is a poor fit and not intended for private or sensitive
communication (e.g. email), in that it does not guarantee the
same degree of client privacy as TLS.

C. Content Spoofing

In a content spoofing attack, on-path attackers respond to
intercepted content requests with a fake piece of content. For
such an attack to work on HTTP-GS content, the fake content
must have been encrypted with the correct key, or else client-
side deencryption will fail. Since HTTP-GS uses asymmetric
keys, and the publisher’s private key is never even transmitted
over the network, this attack cannot succeed unless the attacker
either breaks public-key encryption or obtains the publisher’s
private key through some form of offline attack.

D. Cache Poisoning

A cache poisoning attack is similar to a content spoofing
attack, except that the goal of the attacker is simply to disrupt
client access to content by populating a cache with incorrect or
false objects. Even if clients detect that the content is spoofed,
cache poisoning can still occur because if a cache stores this
incorrect object, it will respond to all subsequent requests with
the same incorrect content.

HTTP-GS protects against cache poisoning attacks that seek
to disrupt access to a specific content object by ensuring that
attackers cannot generate the name-hash for a specific content
object; without access to the name-hash, attackers cannot pick
out the specific piece of content to attack. Wide-range cache
poisoning attacks (wherein an on-path attacker replies to every
HTTP request with a fake content object) are still possible,
yet unlikely: for far less resources, attackers can achieve the
same result by silently dropping all HTTP request packets (i.e.
executing a traditional DoS attack).

VI. PERFORMANCE EVALUATION

We implemented a GroupSec prototype in client-side
Javascript, designed a basic webpage that uses this code

Fig. 4. Server Load

to serve ten pictures, and deployed it on a simple testbed,
consisting of two laptop computers connected over ethernet.
We then used this testbed to compare GroupSec to HTTP and
HTTPS in two key metrics: sustainable load at the content
server and page load latency at the client. We chose these two
metrics and evaluation because (1) load and latency are the
two metrics most important to Web publishers and (2) they
compare GroupSec at its absolute worst (i.e. no transparent
caching).

A. Sustainable Load

Though the key benefit of GroupSec is to enable transparent
content caching, GroupSec must not incur additional load
when caches are not on the network path. We recorded the
sustainable load at the server, measured in requests-per-second,
by running a standard Apache Benchmark test from the client
to the server; this test repeatedly requests the same URL over
HTTP, HTTPS, or HTTP-GS. Figure 4 contains our results
for two filesizes: the Apache2 default page (∼10 KB), and
a larger file (∼2 MB) chosen to reflect the current average
Web object size [28]. To provide a platform- and filesize-
independent comparison metric, we normalized the results by
the baseline values collected over regular HTTP (8084 RPS
for the 10K file and 1161 RPS for the 2M file).

These results show that the load of serving a HTTP-
GS object is roughly equivalent to serving a regular HTTP
object; this is unsurprising, given that HTTP-GS objects are
transmitted over regular HTTP. More importantly, Figure 4
also shows that HTTP (and HTTP-GS) both vastly outperform
HTTPS, by 20x and 10x, respectively! We therefore conclude
that HTTP-GS can dramatically increase the sustainable load
on a publisher’s server even when transparent caching is not
employed.

B. Latency

Client-perceived latency is generally considered the most
important metric for content publishers [29]. We explored
the effects of HTTP-GS on page load latency by creating a
webpage with ten separate images, hosting it on the server, and
migrating the images one-by-one from HTTPS to HTTP-GS.
Figure 5 compares the GroupSec total latency (i.e. loading the
initial page over HTTPS, fetching the elements over GroupSec,
and decrypting the content out-of-band) to the “flat” cases
where the same page was loaded entirely over HTTPS or
HTTP.

Unsurprisingly, the downward trend of HTTP-GS content
is explained by the fact that the initial HTML (and therefore

Fig. 5. Page Load Time

all non-migrated elements) is served over HTTPS; as a result,
migrating an element to HTTP-GS decreases the latency at
the client. Notably, after all elements on a page are migrated
from HTTPS to HTTP-GS, the end page load latency closely
resembles the latency of loading the entire page over HTTP!
As above, this shows that migrating content from HTTPS
to HTTP-GS results in substantial performance benefits even
when transparent caching is not accounted for.

VII. CONCLUSION

In this paper we introduced a new security model for
Web content delivery, GroupSec. GroupSec redefines the Web
security model from session-based to group-based, and is the
first security model to separate the privacy needs of clients
from those of publishers. We provided strong arguments for
why the GroupSec model better fits Web content delivery
today and enables transparent caching while still meeting the
privacy needs of both clients and publishers. We explained
how HTTPS content can be easily adapted to GroupSec
with minimal protocol changes, and showed that GroupSec
is resilience against a wide range of attack-vectors. Finally,
preliminary performance evaluations show that GroupSec out-
performs HTTPS and approaches HTTP performance across
multiple metrics, even in cases where transparent caching is
not employed.

GroupSec has the potential to redefine Web content delivery
in a wide range of cases. More importantly, it represents a
fundamental shift in how Web security is perceived. This shift
invites future work and debate on a wide range of topics,
including additional analysis on GroupSec-specific threats,
GroupSec-related performance optimizations and integration
within HTTP(S), and additional security models inspired by
the GroupSec approach.

REFERENCES

[1] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste. The cost of the S
in HTTPS. Proc. ACM CoNEXT, 2014.

[2] HTTPS everywhere. https://www.eff.org/https-everywhere.
[3] It wasn’t easy, but Netflix will soon use HTTPS to secure

video streams. http://arstechnica.com/security/2015/04/
it-wasnt-easy-but-netflix-will-soon-use-https-to-secure-video-streams/.

[4] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn,
D. López, K. Papagiannaki, P. Rodriguez, and P. Steenkiste. multi-
context TLS (mcTLS): Enabling secure in-network functionality in TLS.
Proc. ACM SIGCOMM, 2015.

[5] J. Sherry, C. Lan, R. Popa, and S. Ratnasamy. Blindbox: Deep packet
inspection over encrypted traffic. Proc. ACM SIGCOMM, 2015.

[6] S. Loreto, J. Mattsson, R. Skog, H. Spaak, G. Gus, D. Druta, and
M. Hafeez. Explicit trusted proxy in HTTP/2.0. IETF Standards-Track
Internet-Draft, 2014.

[7] R. Peon. Explicit proxies for HTTP/2.0. IETF Informational Internet-
Draft, 2012.

[8] D. McGrew, D. Wing, Y. Nir, and P. Gladstone. TLS proxy server
extension. IETF Informational Internet-Draft, 2013.

[9] HackerNews discussion: explicit trusted proxy in HTTP/2.0. https://
news.ycombinator.com/item?id=7296128.

[10] Explicit trusted proxy in HTTP/2.0 or... not so much.
https://isc.sans.edu/forums/diary/Explicit+Trusted+Proxy+in+HTTP20+
ornot+so+much/17708/.

[11] Evil or benign? ‘Trusted proxy’ draft debate rages on.
http://www.theregister.co.uk/2014/02/25/evil or benign trusted proxy
draft debate rages on.

[12] M. Thomson, G. Eriksson, and C. Holmberg. An architecture for secure
content delegation using HTTP. IETF Standards Track Internet-Draft,
2016.

[13] J. Reschke and S. Loreto. ’Out-Of-Band’ content coding for HTTP.
IETF Standards Track Internet-Draft, 2016.

[14] M. Thomson, G. Eriksson, and C. Holmberg. Caching secure HTTP
content using blind caches. IETF Standards Track Internet-Draft, 2016.

[15] C.W. Turner, M. Zavod, and W. Yurcik. Factors that affect the per-
ception of security and privacy of e-commerce web sites. International
Conference on Electronic Commerce Research, 2001.

[16] D.M. Kline, L. He, and U. Yaylacicegi. User perceptions of security
technologies. Privacy Solutions and Security Frameworks in Information
Protection, 2012.

[17] M. Thomson. Encrypted content-encoding for HTTP. IETF Standards
Track Internet-Draft, 2016.

[18] RSA laboratories: What key size should be used? http://www.emc.com/
emc-plus/rsa-labs/standards-initiatives/key-size.htm.

[19] So you’re making an RSA key for an SSL certificate. What key size do
you use? https://certsimple.com/blog/measuring-ssl-rsa-keys.

[20] How big an RSA key is considered secure to-
day? http://crypto.stackexchange.com/questions/1978/
how-big-an-rsa-key-is-considered-secure-today.

[21] OpenSSL. https://www.openssl.org/.
[22] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation

for key management part 1: General. NIST Special Publication, 2006.
[23] E. Barker and A. Roginsky. Transitions: Recommendation for transition-

ing the use of cryptographic algorithms and key lengths. NIST Special
Publication, 2011.

[24] W. Ford and Y. Poeluev. An efficient certificate format for
ECC. http://csrc.nist.gov/groups/ST/ecc-workshop-2015/presentations/
session2-ford-warwick.pdf.

[25] R. LaRose and N. Rifon. Promoting i-safety: effects of privacy warnings
and privacy seals on risk assessment and online privacy behavior.
Journal of Consumer Affairs, 2007.

[26] N. Rifon, R. LaRose, and S. Choi. Your privacy is sealed: Effects of web
privacy seals on trust and personal disclosures. Journal of Consumer
Affairs, 2005.

[27] M. Eltoweissy, A. Rezgui, and A. Bouguettaya. Privacy on the web:
Facts, challenges, and solutions. IEEE Security and Privacy, 2003.

[28] The HTTP Archive. http://httparchive.org.
[29] J. Hamilton. The Cost of Latency. http://perspectives.mvdirona.com/

2009/10/the-cost-of-latency/.

