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Abstract of the Thesis

Typed Self-Optimization

by

Matthew Scott Brown

Master of Science in Computer Science

University of California, Los Angeles, 2013

Professor Jens Palsberg, Chair

Researchers have studied how to type check self-applicable programs. For ex-

ample, papers by Rendel, Ostermann, and Hofer, and by Jay and Palsberg have

shown how to design two kinds of polymorphically typed self-interpreters. In this

paper we present the first polymorphically typed self-optimizer. In contrast to a

self-interpreter that often can implement each construct by itself, a self-optimizer

may replace a subterm with a rather different subterm, which complicates type

checking. Our language has combinators, a variant of Mitchell’s subtyping, proof

terms that help match types, and a novel approach to type check self-application.

Via syntactic sugar, we define a surface syntax with decidable type inference. Our

implementation has type checked and run our examples.
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1 Introduction

A self-optimizer is a program optimizer that can be applied to a representation

of itself.

The problem. What is the type of a self-optimizer? The classical answer

to such questions is to work with a single type for all program representations.

For example, the single type could be String or it could be SyntaxTree. The

single-type approach enables an optimizer to have a type such as (String →

String), where the input string represents source code and where the output

string represents target code. However, the single-type approach ignores that the

source program type checks, and it doesn’t guarantee that the output represents

a typed program, or that the type of the output program is related to the type of

the input program. In particular, self-application of an optimizer of type (String

→ String) must work with a representation of the optimizer of type String.

Our result. We present the first program optimizer that has the polymorphic

type

∀T.Exp[T ]→ Exp[T ]

where Exp[T ] is the type of a representation of a program of type T . The type

enables the optimizer to be applied to a representation of itself so we use the

name self-optimizer. The type says that the optimizer is type preserving: if the

input program type checks, then the output program has the same type as the

input program. Stronger type checking means better bug finding: if we check

that an optimizer has type ∀T.Exp[T ]→ Exp[T ], we will catch more bugs than

if we check that an optimizer has type (String → String).

Self-interpreters. The context for our result is the recent interest in poly-

morphically typed self-interpreters. Jay and Palsberg [11] identified two main
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forms of self-interpreters that they called self-recognizers and self-enactors. If ′e

denotes a representation of the program e, then a self-recognizer maps ′e to e,

while a self-enactor executes ′e to ′v, where v is the value of e. Self-recognizers

are much studied in λ-calculus [12, 4, 16, 17, 6, 5], and self-enactors are available

for Standard ML [23], Haskell [18], Scheme [3], JavaScript [8], Python [22] and

Ruby [30], and have been studied for λ-calculus [16, 6, 24] and other languages

[21, 14, 31]. Rendel, Ostermann, and Hofer [20] presented a self-recognizer with

type

∀T.Exp[T ]→ T

and Jay and Palsberg [11] presented a self-enactor with type

∀T.T → T

Jay and Palsberg’s result was possible because they equated Exp[T ] and T . We

improve on the latter result and present the first self-enactor that has type

∀T.Exp[T ]→ Exp[T ]

via an application of the techniques that led to our self-optimizer.

Self-optimizers. Our self-optimizer and our self-enactor are both type-

preserving program transformations and they have the same polymorphic type.

However, the problem to design a polymorphically typed self-optimizer is sub-

stantially harder than to design a polymorphically typed self-interpreter. To see

this point, let us first examine the self-enactor of Jay and Palsberg [11]. Their

self-enactor is largely meta-circular in that it implements almost every language

construct via a use of itself, as in this excerpt that implements the operator K

via a use of K itself:

B K x2 x1 −→ enact (K x2 x1)
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This line of code covers the case when the self-enactor encounters a representation

of K x2 x1. In this case, the self-enactor calls itself recursively on K x2 x1 and

relies on the underlying execution engine to reduce K x2 x1 to x2, eventually. Jay

and Palsberg give the two occurrences of K the same type, which is sufficient to

make their self-enactor type check. In particular, they don’t need to know details

of the type derivation for B K x2 x1.

In contrast, a self-optimizer may replace a subterm with a quite different sub-

term, which complicates type checking. For example, our self-optimizer replaces a

representation of SK with a representation of KI, where S,K, I have their usual

meanings in combinatory calculi. We can justify the optimization by noting that

each of SKxy and KIxy reduces to y in two steps. One heavy-weight approach

might be to work with a program representation that contains the entire type

derivation, though we leave that for future work. Instead, we use a light-weight

approach and work with a program representation that contains no type infor-

mation at all. Our self-optimizer works in any context and for any type of SK,

and has to discover details of type derivations at run time. In essence, the main

challenge is:

Main challenge: The optimizer must prove that the optimized term

has all the types of the input term.

The use of subtyping in type derivations is a major complication.

Our approach. We use a variation of Donnelly’s proof terms [7] to witness

subtype relationships and to build proofs at run time. The proof terms enable us

to map a typable term to an implicit representation of subtype constraints that

characterize all the input term’s types. Based on those constraints we build a

proof that the optimized term has all the types of the input term. In our language,

a proof term is much like a heap label in that both are constants that get their
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types from an environment. In the case of heap labels, such an environment is

usually known as a store type. Our proof terms generalize Donelly’s proof terms,

and we use proof terms in a novel way.

We present a light-weight framework that specifies a program skeleton for

how to program a type-preserving program transformation. We have used the

framework to program both a polymorphically typed self-optimizer and a poly-

morphically typed self-enactor. Programs contain proof terms but no types or

type derivations. Our language is a combinatory calculus with constructs for

program representation and operator equality, along with the proof terms. Our

type system uses two kinds of types, namely kind (∗ → ∗) and kind ∗, and also

type equivalence and an extension of Mitchell subtyping [15]. In slogan form:

Language = combinators + program representation +

operator equality + proof terms

Types = two kinds + equivalence + subtyping

Technique = programming with proofs

Our main theorem is the soundness of our type system: well-typed programs

cannot go wrong. We will state our lemmas and theorems in Section 7.5, and

provide proofs in an appendix.

We have designed a decidable fragment of our type system, along with a type

inference algorithm that we have used to type check both our self-optimizer and

our self-enactor. The full type system is needed to ensure that computation

preserves typing. Intuitively, we don’t use all the bells and whistles of the type

system to write interesting programs but we do need the entire type system to

type the programs that may arise during computation.

We have implemented our language and will show results from experiments.

The rest of the paper. In Section 2 we give an overview of our framework, in
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Section 3 we give an introduction to proof terms, in Section 4 we describe how to

program with proof terms, in Section 5 we show our representation of programs,

and in Section 6 we exhibit our self-optimizer. In Section 7 we formalize our

language, type system, and type soundness theorem, in Section 8 we describe

our type-inference algorithm, in Section 9 we describe our typed self-interpreter,

in Section 10 we explain our experimental results, and in Section 11 we discuss

related work.

Two appendices contain the proofs of our theorems and the code for three

optimizations that are part of our overall self-optimizer. The code for our self-

enactor is seven pages in this format and is available upon request. Sections 2-6

also serve as a gentle introduction to our language and type system.

2 Our Framework

We will now give an overview of how our framework works.

Our framework ensures that if an optimization is typable, then it is type pre-

serving. In essence, we want to type check the implementation of an optimization

e1 → e2 and have that imply that e1 → e2 is type preserving. Intuitively, we want

the type checker to guarantee that every type of e1 is also a type of e2.

Let us begin with a non-example, namely SK → I. Suppose we find that one

of the possible type derivations for SK assigns SK : T , where T is of the form

(U → U) → (U → U). We might also notice that we can derive I : T and be

tempted to think that SK → I is type preserving, though it isn’t. In fact we

want the type checker to reject an implementation of SK → I.

Let us next look at a type-preserving optimization, namely SK → KI, which

we will use as a running example throughout Sections 4–6. Again, we might
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notice that we can derive KI : T and be tempted to think that SK → KI is type

preserving, which it actually is! We might also find that a second possible type

derivation for SK assigns SK : T ′ where T ′ is of the form (V → W )→ V → V .

If V and W are distinct, then we cannot derive I : T ′ which shows that SK → I

isn’t always type preserving. On the other hand, we can also derive KI : T ′, so

again we are tempted to think that SK → KI is type preserving. How can a

type check of SK → KI imply that every type of SK is also a type of KI?

If we want to ensure our optimization is type preserving, we must reason

about all the possible type derivations of SK. We characterize all the types of

SK with a set of subtype constraints, which we represent implicitly with proof

terms . If KI can be assigned any type that satisfies those subtype constraints,

then we know that SK → KI is type preserving.

The implementation of SK → KI has the following structure:

1. analyzeSK: Look for an occurrence of SK in the input term and generate

an implicit representation of type constraints.

2. proveSK2KI: Build from those constraints a proof that

∀T, U.T → U → U is a subtype of any type of SK.

3. constructKI: Produce version of KI with the type

∀T, U.T → U → U .

This is the common structure for all our optimizations, though the details

vary. For example, there is no construct step for S(Ke)I → e, since the result

is a subterm of the input term. In this case analyze produces the resulting term

directly, along with the constraints.

In Section 4 we will explain how to program proveSK2KI, while in Section

5 we will explain how to program analyzeSK and constructKI.
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3 What is a proof term?

A proof term witnesses a subtype relationship. In this section we review the

literature on proof terms, and we discuss dynamic generation of proof terms,

which may be a new idea.

Many languages have a notion of subtyping that is a reflexive and transitive

relation ⊆ on types. The idea is that if a term e has type T , and T ⊆ U , then e

also has type U .

In some languages, subtyping can be applied implicitly via use of a subsump-

tion rule:

` e : T T ⊆ U
Type-Subsumption ` e : U

In other languages, such as O’Caml, F#, and the one in this paper, subtyping

must be applied explicitly. We follow Donnelly [7] and use a syntax that involves

a proof term p and a type-changing construct coerce:

` e : T ` p : T ≤̇U
Type-Coerce

` coerce(e, p) : U

Donnelly introduced the constraint type T ≤̇U to denote the type of p. If

` p : T ≤̇U , then we say that p witnesses the subtype relationship T ≤̇U . For

example, Donnelly’s proof term refl witnesses the subtype relationship T ⊆ T

for any type T , and we can write ` refl : T ≤̇T .

Constraint types enable us to compose proof terms in a straightforward way.

For example, one of Donnelly’s proof terms is trans (for transitivity) that com-

poses a proof term of type T1≤̇T2 and a proof term of type T2≤̇T3 into a proof term

of type T1≤̇T3. We can use trans to build proof terms such as trans(refl, refl),

which has type T ≤̇T . Such “programming with proofs” plays a major role in this

paper, as we will explain in a later section.
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Donnelly’s thesis [7] introduced ten proof constants, including refl and trans,

each with a particular type rule. In Donnelly’s Lemma 3.21, he proves that

“Subtyping is Equality”, that is, if a term p has type T ≤̇U , then T = U . We

have borrowed many of Donnelly’s proof terms and added others of our own.

Our proof terms satisfy a weaker lemma than Donnelly’s Lemma 3.21, namely

our Lemma 23 that says, intuitively, that if a value v has type T ≤̇U , then T ⊆ U .

All Donnelly’s proof terms are static in that his language defines ten specific

ones and assigns them particular types. For our application, we also need proof

terms that are dynamic in that we do dynamic generation of proof terms. Static

proof terms come with specified types, while the types of dynamic proof terms

depend on the context they are created within. For example, a key construct in

this paper is a proof term called eArrow which has this operational semantics:

eArrow v1 e→ e p1 p2 p3 where p1, p2, p3 are fresh

Here v1 is a proof term and e is a continuation. The above rule says that when

we execute eArrow, then we will dynamically generate three fresh proof terms

called p1, p2, p3.

The idea of dynamic generation of constants has a close analogy in dynamic

generation of heap labels in imperative languages. For example, the semantics

for an operator ref that generates new heap space might be of the form:

ref v2 → l where l is fresh

Here l is a fresh constant heap label, just like p1, p2, p3 are fresh constant proof

term in the rule for eArrow.

How do we type check dynamically generated proof terms? This problem is

closely related to the problem to type check dynamically generated heap labels.

Notice that the rules for eArrow and new place no restrictions on the types
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of p1, p2, p3 or l. A standard approach to solve this problem for dynamically

generated heap labels is known as store types [1]. A store type Γ assigns a type

Γ(l) to every heap label l. We borrow this approach and use a type environment

Γ to assign a type Γ(p) to every dynamically generated proof term p. The type

assigned to the heap label l will depend on the type of its initial contents v2, and

similarly the types of p1, p2, and p3 will be related to the type of v1, as defined

by the type of eArrow.

4 Programming with Proofs

Let us consider the optimization SK → KI and show how to program

proveSK2KI, first for a simplified notion of subtyping, and then for our full

subtyping relation. We use syntactic sugar for λ-abstraction, let binding, and let

rec binding.

4.1 Subtyping of Function Types

The input to proveSK2KI is a set of constraints for the term SK. Those con-

straints are closely related to any type derivation for SK, which in the case of

Subtyping of Function Types is of the form:

S : T1 → T K : T1
SK : T

Here we assume that SK has some type T and use the Inversion Lemma for

applications to conclude that there must exist a type T1 such that S : T1 → T

and K : T1. Our type system specifies types for S and K, called Ty[S] and

Ty[K]. When we match instantiations Ty[S] and Ty[T ] with the types in the

above type derivation, we have that there exist types U1, U2, U3, V1, V2 such that
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these constraints are satisfied:

(U1 → U2 → U3)→ (U1 → U2)→ U1 → U3 ⊆ T1 → T

V1 → V2 → V1 ⊆ T1

The first step of our optimization, analyzeSK, presents those two constraints

to proveSK2KI in the form of two proof terms pS and pK:

pS : (U1 → U2 → U3)→ (U1 → U2)→ U1 → U3≤̇T1 → T

pK : V1 → V2 → V1≤̇T1

We ensure a strong connection between proof terms and subtyping: if p : T ≤̇U

and p is a value, then T ⊆ U . The condition that p be a value is required to

prevent nonterminating proof terms from being used to prove false statements.

For these subtype derivations are based on the Sub-→ rule:

U1 ⊆ T1 T2 ⊆ U2
Sub-→

T1 → T2 ⊆ U1 → U2

Let us now program proveSK2KI.

To construct the proof for SK → KI, we first need to decompose the con-

straints to combine the constraints on T1. We rely on the inversion lemma for

Sub-→: For all types T1, T2, U1, U2, if T1 → T2 ⊆ U1 → U2, then U1 ⊆ T1 and

T2 ⊆ U2. We encode this lemma using an operator eArrow1:

eArrow1 : ∀T1, T2, U1, U2, T.

(T1 → T2≤̇U1 → U2)→

((U1≤̇T1)→ (T2≤̇U2)→ T )→ T
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The semantics of eArrow1 is:

eArrow1 p f −→ f p1 p2

Where p1 and p2 are fresh proof constants. The types of the fresh proof constants

are related to the type of p by the inversion lemma. In particular, if p : T1 →

T2≤̇U1 → U2, then p1 will have type U1≤̇T1 and p2 will have type T2 ⊆ U2.

Applying eArrow1 to pS will dynamically generate new proof constants p1 and

p2:

p1 : T1≤̇(U1 → T2 → U3)

p2 : (U1 → T2)→ U1 → U3≤̇T

Now our task becomes clearer: we need to show KI can be assigned any type

(U1 → T2) → U1 → U3. Then p2 will prove KI can be assigned T . We cannot

yet show KI has this type, so the next step is to combine pK and p1 in order to

derive constraints on U1, T2, and U3. We introduce a proof constructor trans to

encode the transitive subtyping rule, and use it to construct a new proof p3.

trans : ∀T1, T2, T3.(T1 ≤̇ T2)→ (T2 ≤̇ T3)→ (T1 ≤̇ T3)

l e t (p3 : (V1 → V2 → V1)≤̇(U1 → T2 → U3)) = trans pK p1

We define helper functions eBinary1 and expandK1. eBinary1 decomposes

p3 into three components using two applications of eArrow1, which expandK1

combines to produce the essential constraint needed from p3.

l e t eBinary1 =

λ(p : T1 → T2 → T3≤̇U1 → U2 → U3).

λ(f : (U1≤̇T1)→ (U2≤̇T2)→ (T3≤̇U3)→ V ).

eArrow1 p
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(λ(p1 : U1≤̇T1).λ(p2 : T2 → U2≤̇U2 → U3).

eArrow1 p2 (λ(p3 : U2≤̇T2).λ(p4 : T3≤̇U3). f p1 p3 p4))

l e t expandK1 = λ(p : (T1 → T2 → T1)≤̇(U1 → U2 → U3)) .

eBinary1 p (λ(p1 : U1≤̇T1).K (λ(p2 : T1≤̇U3).trans p1 p2))

l e t (p4 : U1≤̇U3) = expandK1 p3

We can begin to gain confidence that KI is in fact type preserving for this

restriction of SK : T . The proof term p4 proves that U1 must be a subtype of

U2. Therefore the type (U1 → U2) → U1 → U1, which is known to be a type of

KI, is also a subtype of (U1 → U2) → U1 → U3. In order to construct a proof

term of this fact, we need two more proof constructors:

refl : ∀T.T ≤̇ T

iArrow : ∀T1, T2, U1, U2.(U1 ≤̇ T1)→ (T2 ≤̇ U2)→

(T1 → T2 ≤̇ U1 → U2)

l e t (p5 : (U1 → U2)→ U1 → U1≤̇(U1 → U1)→ U1 → U3) =

iArrow refl (iArrow refl p6)

Now transitivity between p5 and p2 proves (U1 → U2) → U1 → U1 ⊆ T .

Therefore, we have proven SK → KI to be type preserving in this simplification

of subtyping. The complete definition of proveSK2KI is:

l e t proveSK2KI =

λ(pS : (U1 → U2 → U3)→ (U1 → U2)→ U1 → U3≤̇T1 → T ).

λ(pK : (V1 → V2 → V1)≤̇T1).

eArrow1 pS

(λ(p1 : T1≤̇U1 → U2 → U3).

λ(p2 : (U1 → U2)→ U1 → U3≤̇T ).

l e t (p3 : V1 → V2 → V1≤̇U1 → U2 → U3) = trans pK p1 in
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l e t (p4 : U1≤̇U3) = expandK1 p3 in

l e t (p5 : (U1 → U2)→ U1 → U1≤̇(U1 → U2)→ U1 → U3)

= iArrow refl (iArrow refl p4) in

trans p5 p2

4.2 Full Subtyping

Let us generalize our consideration of the derivation of SK : T to include all of

subtyping. We allow quantified types, distribution of quantifiers of arrows, and

substitution which combines instantiation and generalization.

Sub-Dist-→ ∀~α.T → U ⊆ (∀~α.T )→ (∀~α.U)

Sub-Subst dom(θ) = ~α, ~β 6∈ FV (∀~α.T )
∀~α.T ⊆ ∀~β.Subst[θ]T

In the presence of full subtyping analyzeSK will produce the following sub-

type constraints for T1 → T and T1:

∀~α.(U1 → U2 → U3)→ (U1 → U2)→ U1 → U3 ⊆ T1 → T

∀~β.V1 → V2 → V1 ⊆ T1

As before, our first step will be to decompose the first constraint using inver-

sion for subtyping between quantified arrow types. The general inversion lemma

states that if ∀~α.T1 → T2 ⊆ ∀~γ.U1 → U2, there exist quantifiers ~β and a sub-

stitution θ such that U1 ⊆ ∀~β.θ(T1) and ∀~β.θ(T2) ⊆ U2. This implies that any

derivation of ∀~α.T1 → T2 ⊆ ∀~γ.U1 → U2 can be normalized to the form:
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∀~α.T1 → T2

= ∀~β,~γ.θ(T1 → T2) (Sub-Subst)

⊆ ∀~β.(∀~γ.θ(T1))→ (∀~γ.θ(T2)) (Sub-Dist-→)

⊆ ∀~β.U1 → U2 (Sub-→)

Adding quantifiers and substitutions leads to a new challenge: how do we

capture the relationship between ~α and ~β, ~γ, and θ? This is complicated by the

fact that sometimes one or more of ~α, ~β,~γ, and θ are unknown. In particular,

the inversion lemma above states there exist quantifiers ~β and a substitution

θ. We need to reason about such abstract quantifiers and substitutions. In

particular, we will need to use the Sub-Subst step to derive ∀~α.T ⊆ ∀~β,~γ.θ(T ) as

long as T satisfies the side condition of Sub-Subst. Our approach is to represent

quantifier sets and substitutions syntactically, using type constructors. This frees

us from having to encode substitutions themselves. Instead, we note that the side

condition guarantees that ~β and ~γ are introduced by θ. By α conversion, we can

assume that ~β and ~γ don’t occur elsewhere in the program. This allows us to

perform Sub-Subst steps when the quantifiers and substitution are unknown.

When particular quantifiers ~α are known, we use a type constructor ∀[~α].

For example ∀α.T → T can be written ∀[α](T → T ). When the quantifiers are

unknown, as in the case of ~γ above, we use a type variable of kind ∗ → ∗ to show

that some quantifier exists: ϕ(T → T ). We denote concatentation of two type

constructors ϕ1 and ϕ2 as ϕ1◦ϕ2. We represent substitutions similarly using type

variables σ, which also have kind ∗ → ∗. A type variable σ may be instantiated

to a concrete substitution Subst[θ], which performs substitution in our system.

Thus, we have explicit substitutions at the type-level. Since quantifiers and

substitutions are governed by different rules, we use sorts to distinguish between

them. For example, (σT )→ (σU) is equivalent to σ(T → U) if σ has sort Subst.
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This equivalence forms the basis of the proof constructor factor:

factor : ∀σ, T1, T2. σT1 → σT2 ≤̇ σ(T1 → T2)

Some rules are valid for both quantifiers and substitutions, for example con-

gruence and distribution over arrows. Rather than introduce separate proof con-

structors for distribution of quantifiers and substitutions, we use type variables ρ

to range over either sort. Congruence states that if T ⊆ U , then ρT ⊆ ρU , where

ρ is any substitution or quantifier set.

dist : ∀ρ, T1, T2. ρ(T1 → T2) ≤̇ ρT1 → ρT2

congr : ∀ρ, T1, T2.(T1≤̇T2)→ (ρT1≤̇ρT2)

Like eArrow1, eArrow constructs new proof constants from an existing proof

term. While the input of eArrow1 is a proof of subtyping between unquantified

arrows, eArrow accepts general proofs between quantified arrows. Therefore

eArrow must encode the general inversion lemma described above. eArrow cre-

ates three new proof constructors, which witness the Sub-Subst step and the

contravariant and covariant premises of the Sub-→ step. It is not necessary for

eArrow to introduce a proof of Sub-Dist, since it is available as an axiom via the

dist proof constructor.

eArrow : ∀T1, T2, U1, U2, T, ρ, ϕ1.

(ρ(T1 → T2)≤̇ϕ1(U1 → T2))→

(∀ϕ3, σ.(ρ≤̂(ϕ1 ◦ ϕ2 ◦ σ))→

(U1≤̇ϕ2σT1)→

(ϕ2σT2≤̇U2)→

T )→ T

The semantics of eArrow1 is:

eArrow1 p f −→ f p1 p2 p3
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Where p1, p2 and p3 are fresh proof constants. The constants p2 and p3 are much

like the proof constants produced by eArrow1. p1 is a witness of the Sub-Subst

step. If p : ρ(T1 → T2)≤̇ϕ1(U1 → T2), we will get the following types for the new

proof constants:

p1 : ρ≤̂(ϕ1 ◦ ϕ2 ◦ σ)

p2 : U1≤̇ϕ2σT1

p3 : ϕ2σT2≤̇U2

Proof Schemes The types ϕ2 and σ will be instantiated to skolem constants,

since they correspond to the existentially quantified ~γ and θ in the inversion

lemma’s conclusion. The proof constant p1 is an example of a proof scheme,

which have types of the form ρ1≤̂ρ2. A proof scheme of type ϕ1≤̂(ϕ2 ◦ ϕ3 ◦ σ)

represents a Sub-Subst step from a type ∀~α.T to ∀~β,~γ.θ(T ) if ϕ1 = Forall[~α],

ϕ2 = Forall[~β], ϕ3 = Forall[~γ], and σ = Subst[θ]. As with proof terms, we

maintain a strong connection between proof schemes and subtyping: if p : ρ1≤̂ρ2,

then ρ1T ⊆ ρ2T for any type T.

We can apply the Sub-Subst step for any such T without violating the side

conditions on the Sub-Subst step, by restricting the application of ρ1 to types

known to satisfy the side conditions. In effect, the presence of ρ1 applied to a

type T guarantees that the side condition holds. We can’t always derive a type

ρ1T from a type T , but if a term exists with type ρ1T , we can derive ρ2T . As with

proof terms, we define constructors to enable computing with proof schemes:

sTrans : ∀ϕ1, ϕ2, ϕ3.(ϕ1≤̂ϕ2)→ (ϕ2≤̂ϕ3)→ (ϕ1≤̂ϕ3)

sCongr : ∀ϕ1, ϕ2, ϕ3.(ϕ1≤̂ϕ2)→ (ϕ3 ◦ ϕ1≤̂ϕ3 ◦ ϕ2)

The constructor sCongr encodes the Sub-Congr for proof schemes. The proof

scheme constructor sTrans encodes transitivity of proof schemes.
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Figure 1 shows the final versions of eBinary and expandK. Note that in

eBinary, the quantified σ in the type of f will be instantiated to σ′ ◦ σ. The

definition of expandK is similar to expandK1, except that it calls eBinary instead

of eBinary1. As before, we need only the first contravariant and the covariant

proofs, so expandK discards the others.

Figure 2 shows the final version of proveSK2KI. The result of proveSK2KI

is again supplied via a continuation, though here the type includes substitution

σ. The relationship between the types of f and p16 demonstrates how we can

abstract away some of the irrelevant details of the type constraints.

5 Program Representations

Let us continue our study of the optimization Opt = SK → KI and show how

to program analyzeSK and constructKI. The challenge is to compute with

program representations.

Program Representations Our typed program representations distinguish

between programs and their representations, and can recover the type of a pro-

gram from the type of its representation. For example, if an expression e has

type T , its representation ′e will have type Exp[T ]. We use the constructors Q

and A to build program representations.

Ty[Q] = ∀T.T → Exp[T ]

Ty[A] = ∀T, U.Exp[T → U ]→ Exp[T ]→ Exp[U ]

We use G to deconstruct program representations by pattern matching. When

applied to an expression QO, G returns the underlying operator O. When applied

to a compound A e1 e2, G returns the components e1 and e2. The type of G
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corresponds to the inversion lemma for applications: if e1 e2 : T , there exists a

type T1 such that e1 : T1 → T and e2 : T1. The type T1 is unknown, so G passes

e1 and e2 to a continuation which can accept any T1:

G a b (A c d) −→ b c d

Here G requires the type of b to be ∀T1.Exp[T1 → T ] → Exp[T1] → U . The

type of G is:

∀T,U.(T → U)→

(∀T1.Exp[T1 → T ]→ Exp[T1]→ U)→

Exp[T ]→ U

When applied to a term t, Is[O] will test if t is equal to O. If so, we can

introduce a constraint on the type of t, namely that it is a supertype of Ty[O].

This is supported by the inversion lemma for operators, lemma 9. The reduction

of Is[O] generates a fresh proof constant as a witness for this subtype constraint,

just as eArrow does.

Is[O] O a b −→ a p O

If O has type T , then the proof constant p will have type Ty[O]≤̇T . The

continuation a is also passed a copy of O at the type Ty[O]. The operator IsIs

is self-applicative, in that it can be used to recognize itself. It tests if its first

argument t is any of Is[O] or IsIs, and otherwise behaves similarly to Is[O].

The proof constant introduced by IsIs proves that the type of t is a subtype of

one of Ty[Is[O]] or Ty[IsIs]. This is achieved by giving all such types a uniform

structure. The ability of IsIs to recognize itself “ties the knot”, thus avoiding

the potential infinite regress of operators Is[Is[O]], Is[Is[Is[O]]]. This is a key

aspect of the implementation of our typed self-interpreter described in section 9.

IsIs provides a copy of t at the type Ty[t], which can be used to implement t

metacircularly.
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Analyzing SK In order to recognize that an expression t =′ (SK), we use G

to test if t is an application of two operators o1 : T1 → T and o2 : T1. Then we

use Is[S] and Is[K] to test if o1 = S and o2 = K. If all these conditions are true,

we will have produced the proof terms pS : Ty[S]≤̇T1 → T and pK : Ty[K]≤̇T1

needed by the proveSK2KI function developed in the previous section.

We define helper functions matchAtom, matchApp, matchS1, and matchK0

that wrap G, Is[S], and Is[K] in order to clarify the code. Each has three

arguments: false and true continuations, and an expression to match against.

matchAtom matches an expression against Q x and returns x, while matchApp

matches against A x y and returns x and y. matchS1 matches an expression

against A (Q S) x and returns x and the proof from Is[S], and matchK0 matches

an expression against Q K and returns the proof from Is[K]. analyzeSK calls

matchS1 to get pS and x, then passes x to matchK0 to get pK, and returns pS

and pK via the continuation withIfSK.

The function constructKI defines an expression of ′(K I) with the type

∀ϕ, T, U.ϕ(T → U → U) which matches the proof computed by proveSK2KI.

The construction requires a distribution step on K to align the occurrences of ϕ.

This is an implementation detail; we would have been justified in constructing

(K I) with the type ∀T, U.T → U → U and introducing ϕ using the equivalence

rule E9. For simplicity, our typechecker only allows rule E9 to be used at atoms,

so so we compensate by adding the explicit dist coercion.

The function SK2KI assembles analyzeSK, proveSK2KI, and constructKI

into the complete optimization.
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l e t (eBinary : ∀ϕ, T, U, V, ϕ′, T ′, U ′, V ′, X.
(ϕ(T → U → V )≤̇ϕ′(T ′ → U ′ → V ′))→
(∀ϕ′′, σ.(ϕ≤̂ϕ′ ◦ ϕ′′ ◦ σ)→

(T ′≤̇ϕ′′σT )→ (U ′≤̇ϕ′′σU)→ (ϕ′′σV ≤̇V ′)→ X)→
X) =

λ(p1 : ϕ(T → U → V )≤̇ϕ′(T ′ → U ′ → V ′)). eArrow p1
(λ(p2 : ϕ≤̂ϕ′ ◦ ϕ′′ ◦ σ).

λ(p3 : T ′≤̇ϕ′′σT ).

λ(p4 : ϕ′′σ(U → V )≤̇U ′ → V ′).
eArrow p4

(λ(p5 : ϕ′′ ◦ σ≤̂ϕ′′′ ◦ σ′).λ(p6 : U ′≤̇ϕ′′′σ′U).λ(p7 : ϕ′′′σ′V ≤̇V ′) .

l e t (p8 : ϕ′ ◦ ϕ′′ ◦ σ≤̂ϕ′ ◦ ϕ′′′ ◦ σ′) = p5 in

l e t (p9 : ϕ≤̂ϕ′ ◦ ϕ′′′ ◦ σ′) = p2 p8 in

l e t (p10 : T ′≤̇ϕ′′′σ′T ) = trans p3 p5 in

λ(f : ∀ϕ′′, σ.(ϕ≤̂ϕ′ ◦ ϕ′′ ◦ σ)→
(T ′≤̇ϕ′′σT )→ (U ′≤̇ϕ′′σU)→ (ϕ′′σV ≤̇V ′)→ X).

f p9 p10 p6 p7))

l e t (expandK : ∀T, U, V.Ty[K]≤̇ϕ(T → U → V )→ (T ≤̇V )) =

λ(pK : Ty[K]≤̇ϕ(T → U → V )) .

eBinary pK (K (λ(p1 : T ≤̇ϕ2σ1X1).K (λ(p2 : ϕ2σX1≤̇V ).trans p1 p2)))

Figure 1: Implementations of eBinary and expandK
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l e t (analyzeSK : ∀T, U.
U → (∀T1.(Ty[S]≤̇T1 → T )→ (Ty[K]≤̇T1)→ U)→
Exp[T ]→ U) =

λ(ifNotSK : U).λ(ifSK : ∀T1.(Ty[S]≤̇T1 → T )→ (Ty[K]≤̇T1)→ U).
matchS1 ifNotSK

(λ(pS : Ty[S]≤̇T1 → T ).

matchK0 ifNotSK (λ(pK : Ty[K]≤̇T1). ifSK pS pK)) in

l e t (proveSK2KI : ∀T1, T, U.
((Exp[∀ϕ,U, V.ϕ(U → V → V )]≤̇Exp[T ])→ U)→
(Ty[S]≤̇T1 → T )→ (Ty[K]≤̇T1)→ U) =

λ(f : (Exp[∀ϕ,U, V.ϕ(U → V → V )]≤̇Exp[T ])→ U).

λ(p1 : Ty[S]≤̇T1 → T ). λ(p2 : Ty[K]≤̇T1). eArrow p1
(λ(p3 : ϕ1≤̂ϕ3 ◦ σ).

λ(p4 : T1≤̇ϕ3σ(B1 → B → C)).

λ(p5 : ϕ3σ((B1 → B)→ B1 → C)≤̇T ) .

l e t (p6 : ϕ2(T → U → T )≤̇ϕ3(σB1 → σB → σC)) =
trans (trans p2 p4) (congr dist2) in

l e t (p11 : σB1≤̇σC) = expandK p6 in

l e t (p12 : σB1 → σB1≤̇σB1 → σC) = iArrow refl p11 in

l e t (p13 : σB1 → σB1≤̇σ(B1 → C)) = trans p12 factor in

l e t (p14 : σ(B1 → B)→ σB1 → σB1≤̇σ(B1 → B)→ σ(B1 → C)) =
iArrow refl p13 in

l e t (p15 : σ(B1 → B)→ σB1 → σB1≤̇σ((B1 → B)→ B1 → C)) =
trans p14 factor in

l e t (p16 : ϕ3(σ(B1 → B)→ σB1 → σB1)≤̇T ) =
trans (congr p15) p5 in

f (iExp p16)) in

l e t (constructKI : Exp[∀ϕ, T, U.ϕ(T → U → U)]) =
A (Q (coerce K dist)) (Q I) in

l e t (SK2KI : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U) =
λ(ifNoOpt : U).λ(ifOpt : Exp[T ]→ U).
analyzeSK ifNoOpt

(proveSK2KI(λ(p : Exp[∀ϕ,U, V.ϕ(U → V → V )]≤̇Exp[T ]) .
ifOpt (coerce constructKI p)))

Figure 2: Implementation of SK2KI
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6 Our Self-optimizer

Figure 3 shows the core of our self-optimizer, consisting of 3 key functions. The

complete optimizer applies optimization steps eta, reduceK, and reduceS, in

addtion to SK2KI. The definitions of these optimization steps are listed in

Appendix B. Each is implemented in the same style as SK2KI, though the

specifics vary in each case. We will describe each new function in figure 3 in this

section.

The core of our framework consists of several high level functions useful for

implementing optimizers with type ∀T.Exp[T ]→ Exp[T ]. composeOpt composes

two optimization steps such as SK2KI into a larger step. The two arguments

and result of composeOpt have the type of a single optimization step in the

framework: ∀T, U.U → (Exp[T ] → U) → Exp[T ] → U . The first argument

of type U is returned if the optimization step fails to apply. The second is a

continuation which accepts the optimized program as input. The third is the

original program. The result of the optimization is either the first argument or

the result of calling the continuation.

The main driver of our framework is runOpt. It builds a complete optimizer

with type ∀T.Exp[T ] → Exp[T ] from a single optimization step, by applying it

repeatedly to an input program until no further optimizations can be applied.

It uses the function traverse to walk over the input, applying the step at each

subexpression. If an optimization is applied, the entire expression is reconstructed

and a new scan begins over the result.

Our full optimizer consists of three optimization steps other than SK2KI:

eta performs η reduction, and reduceK and reduceS implement the reduction

rules for K and S respectively.
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l e t (composeOpt : (∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)→
(∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)→
(∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)) =

λ(opt1 : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U).
λ(opt2 : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U).
λ(noOpt : U). λ(ifOpt : Exp[T ]→ U). λ(e : Exp[T ]).
opt1 (opt2 noOpt ifOpt e) ifOpt e in

l e t (traverse : (∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)→
(∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)) =

λ(f ′ : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U) .
l e t r e c (traverseF : ∀T.U → (Exp[T ]→ U)→ Exp[T ]→ U) =
λ(ifNoOpt : U). λ(ifOpt : Exp[T ]→ U). λ(e′ : Exp[T ]).
l e t (tryApp : U) = G (K ifNoOpt)

(λ(e1 : Exp[T ′ → T ]).λ(e2 : Exp[T ′]).
l e t (tryE2 : U) = traverseF ifNoOpt

(λ(newE2 : Exp[T ′]). ifOpt (A e1 newE2)) e2 in
traverseF tryE2 (λ(newE1 : Exp[T ′ → T ]).

traverseF (ifOpt (A newE1 e2))
(λ(newE2 : Exp[T ′]). ifOpt (A newE1 newE2))
e2) e1) e′ in

f ′ tryApp ifOpt e′ in

l e t (runOpt : (∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)→
Exp[T ]→ Exp[T ]) =

l e t r e c (runOpt1 : (∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)→
Exp[T ]→ Exp[T ]) =

λ(f : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U). λ(e : Exp[T ]).
traverse f e (runOpt1 f) e in

// SK2KI de f ined in Figure 2
l e t (SK2KI : ∀T.U → (Exp[T ]→ U)→ Exp[T ]→ U) = . . . in

// eta , reduceK , and reduceS de f ined in Appendix B
l e t (eta : ∀T.U → (Exp[T ]→ U)→ Exp[T ]→ U) = . . . in
l e t (reduceK : ∀T.U → (Exp[T ]→ U)→ Exp[T ]→ U) = . . . in
l e t (reduceS : ∀T.U → (Exp[T ]→ U)→ Exp[T ]→ U) = . . . in

runOpt (composeOpt4 SK2KI eta reduceK reduceS)

Figure 3: A Self-Optimizer
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7 Our Language

This section formalizes our term language and type system.

7.1 Syntax

Definition 1. Our core term language is defined by the grammar:

e ::= e1 e2 | atom | p | x
atom ::= O | P | Is[O] | IsIs

O ::= S | K | I | Y | Q | A | G | coerce | eArrow
P ::= refl | iArrow | iExp | eExp

| dist | distExp | factor | factorExp
| congr | sCongr | trans | sTrans

The term language is a combinatory calculus consisting of applications, atoms,

proof constants, and variables. This gives the property that all programs can be

uniformly represented as binary trees. We include term variables in order to

model syntactic sugar for lambda abstraction, let, and let rec.

The atoms consist of the operators O, a set of proof constructors P , Is[O], and

IsIs. Each operator O has a corresponding atom Is[O], which tests for equality.

Similarly, IsIs tests if its argument is one of Is[O] or IsIs. The operators

O include the traditional combinators S,K,I, and Y , as well as operators for

computing with program representations and proof terms. As shown in definition

2, we use Q and A to construct representations, and G to deconstruct them.

Definition 2. Quotation

′O = Q O
′(a b) = A ′a ′b

The atoms Is[O] and IsIs are similar to Church booleans, and additionally

introduce proof constants p in the true case. The proof constructors P , which
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Arity Atoms
0 refl, dist, distExp, factor, factorExp
1 I, Y, Q, iExp, eExp, congr, sCongr
2 K, A, coerce, eArrow, iArrow, trans, sTrans
3 S, G

Figure 4: Arities of Atoms

are similar to those given in Donnelly’s Master’s thesis [7], have no semantics

aside from their type. Their purpose is to construct proofs of the existence of

subtype relationships in terms of known axioms, and the dynamically generated

proof constants. Such a proof can be used by coerce to change the type of a term.

Similarly, eArrow effectively decomposes a proof term into three component proof

terms. Both coerce and eArrow validate proofs by evaluation.

7.2 Semantics

Our atoms consist of constructors and operators. A and Q construct representa-

tions of programs, while the proof constructors P construct proofs. Each atom

has an arity, as defined in figure 4. Proof constructors with arity 0 are also called

proof axioms. A proof constructor with arity > 0 is analogous to a deduction

with a number of premises equal to contructor’s arity, and the result type of the

constructor corresponding to the logical conclusion.

Definition 3. Value

v ::= atom e1 . . . ei, where i < arity(atom)

| Q e | A e1 e2

| P v1 . . . vi, where i = arity(P )

A value is either a partially applied operator, or a fully applied constructor.

Proof constructors are strict, so that their components are required to be fully

evaluated, while the expression constructors Q and A are lazy.
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S a b c −→ a c (b c)

K a b −→ a

I a −→ a

Y t −→ t (Y t)

G a b (Q c) −→ a c

G a b (A c d) −→ b c d

Is[O] O a b −→ a p O p fresh

Is[O] v a b −→ b if v 6= O

IsIs v a b −→ a p v p fresh, if v ∈ {Is[O], IsIs}
IsIs v a b −→ b otherwise

coerce e v −→ e

eArrow v e −→ e p1 p2 p3 where p1, p2, p3 are fresh

Figure 5: Operational Semantics

The operational semantics is given in figure 5. S,K, I, Y are fully lazy, while

G, coerce, Is∗ and eArrow are partially strict. In particular, G is strict in its

third argument, coerce is strict in its second argument, and eArrow and the Is∗

operators are strict in their first argument. Coerce and eArrow fully evaluate

their proof term argument in order to validate a corresponding subtype proposi-

tion. This prevents coercions based on nonterminating proofs terms, which could

otherwise be used to prove anything.

7.3 Types

Definition 4. Our type language is defined by the grammar:

T ::= α | T1 → T2 | Exp[T ] | ϕ | ∀[~α] | σ | Subst[θ] | ρ
| T1 T2 | T1≤̇T2 | T1≤̂T2 | T1 ◦ T2

We use ~α to denote sets of quantifiers T1, T2, . . . , Tn. Function values (atom

e1 . . . ei, where i < arity(atom)) are given arrow types of the form T1 → T2.
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An expression type Exp[T ] is assigned to a program representation ′e, if the

underlying program e has type T . The proof types T1≤̇T2 and proof type schemes

T1≤̂T2 are assigned to proof terms. A proof type T1≤̇T2 proposes the existence of

a subtyping relationship between T1 and T2. A proof type scheme T1≤̂T2 proposes

the existence of a subtype relationship between T1 T and T2 T for any type T .

As will be shown in lemmas 22 and 23, a proof value validates the proposition

corresponding to its type.

A sequence of type variables ~α are bound by the type constructor ∀[~α]. The

type constructor Subst[θ] contains a type substitution θ, which is a partial func-

tion from type variables to types as usual. A type application T1T2 applies a

type constructors to a type. The composition of two type constructors is denoted

T1 ◦ T2, and is itself a type constructor.

The type constructor Subst[θ] amounts to an explicit type substitution. The

usual definition of applying a type substitution to a type is now encoded using

type equivalence. We define standard equivalences such as α-equivalence, and

establish associativity for composition of type constructors.
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Definition 5. Bound and Free Type Variables

BV (α) = ∅
BV (T1 → T2) = ∅
BV (Exp[T ]) = BV (T )

BV (ϕ) = ∅
BV (∀[~α]) = ~α

BV (σ) = ∅
BV (Subst[θ]) = ∅

BV (ρ) = ∅
BV (T1 T2) = BV (T1) ∪BV (T2)

BV (T1≤̇T2) = ∅
BV (T1≤̂T2) = ∅
BV (T1 ◦ T2) = BV (T1) ∪BV (T2)

FV (α) = α

FV (T1 → T2) = FV (T1) ∪ FV (T2)

FV (Exp[T ]) = FV (T )

FV (ϕ) = ϕ

FV (∀[~α]) = ∅
FV (σ) = σ

FV (Subst[θ]) = FV (θ)

FV (ρ) = ρ

FV (T1T2) = (FV (T2)−BV (T1)) ∪ FV (T1)

FV (T1≤̇T2) = FV (T1) ∪ FV (T2)

FV (T1≤̂T2) = FV (T1) ∪ FV (T2)

FV (T1 ◦ T2) = (FV (T2)−BV (T1)) ∪ FV (T1)

We use ∀α1, . . . , αn.T as syntactic sugar for ∀[α1, . . . , αn](T ).

Definition 6.
(kinds)κ ::= ∗ | ∗ → ∗

K-ϕ ϕ :: ∗ → ∗

K-ρ ρ :: ∗ → ∗
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K-σ σ :: ∗ → ∗

K-TVar α :: ∗

K-∀ ∀[~α] :: ∗ → ∗

K-Subst
Subst[θ] :: ∗ → ∗

T1 : ∗ T2 : ∗
K-Arrow

T1 → T2 :: ∗

T1 :: ∗ → ∗ T2 :: ∗
K-App

T1 T2 :: ∗

T :: ∗K-Exp
Exp[T ] :: ∗

T1 :: ∗ T2 :: ∗
K-Proof

T1≤̇T2 :: ∗

T1 :: ∗ → ∗ T2 :: ∗ → ∗
K-SubstProof

T1≤̂T2 :: ∗

T1 :: ∗ → ∗ T2 :: ∗ → ∗
K-Compose

T1 ◦ T2 :: ∗ → ∗

Each type in our system is either of kind ∗ → ∗, the kind of proof constructors,

or the kind of types ∗. We use the convention that type variables ϕ, σ, ρ range

over kind ∗ → ∗, while all others range over kind ∗. An alternative approach

would be to store the kind of type variables in the context Γ.

Our definition of sorts differentiates between type constructors that repre-

sent quantifiers, those that represent substitutions, and those that represent a

composite of quantifiers and substitutions. In particular, a type ρ(T → U) is

equivalent to ρT → ρU if and only if ρ represents a substitution. We define a

least upper bound between sorts s1 t s2, where s1 t s2 = Any if s1 6= s2.
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Definition 7.
(sorts)s ::= Subst | Forall | Any

S-ϕ
ϕ ::: Forall

S-σ
σ ::: Subst

S-ρ
ρ ::: Any

S-∀ ∀[~α] ::: Forall

S-Subst
Subst[θ] ::: Subst

T1 ::: s1 T2 ::: s2S-Compose
T1 ◦ T2 ::: (s1 t s2)

We define equivalence between types. This forms the mechanism for applying

substitutions, and supports the types of several proof axioms. In particular:

distExp and factorExp correspond with E2, and dist for Subst sorts and factor

correspond with E3.
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Definition 8. Type Equivalence

(E1) Subst[θ]α ≡ T if θ(α) = T

(E2) ρExp[T ] ≡ Exp[ρT ]

(E3) σ(T → U) ≡ σT → σU

(E4) σ(T1≤̇T2) ≡ (σT1)≤̇(σT2)

(E5) σ(T1≤̂T2) ≡ (σT1)≤̂(σT2)

(E6) σ ◦ ∀[~α] ≡ ∀[~β] ◦ σ ◦ Subst[[~β/~α]]

where ~β are fresh.

(E7) ∀[~α] ≡ ∀[~β] ◦ Subst[[~β/~α]]

(E8) Subst[θ](αT ) ≡ U(Subst[θ]T )

if θ(α) = U

(E9) ∀[α](T ≤̇U) ≡ T ≤̇∀[α]U if α 6∈ FV (T )

(E10) (ρ1 ◦ ρ2)T ≡ ρ1ρ2T

(E11) ρ1 ◦ (ρ2 ◦ ρ3) ≡ (ρ1 ◦ ρ2) ◦ ρ3
(E12) ∀[~α, ~β] ≡ ∀[~β, ~α]

(E13) ∀[~α] ◦ ∀[~β] ≡ ∀[~α, ~β]

(E14) ∀[∅]T ≡ T

(E15) Subst[θ1 ◦ θ2] ≡ Subst[θ1] ◦ Subst[θ2]

Our type system extends Mitchell’s F-η subtyping for our type syntax.

Definition 9. Subtyping:

Sub-Refl
T ⊆ T

T ⊆ U U ⊆ V
Sub-Trans

T ⊆ V

T ′ ⊆ T U ⊆ U ′
Sub-→

T → U ⊆ T ′ → U ′

Sub-Dist-→ ∀~α.T → U ⊆ (∀~α.T )→ (∀~α.U)

T ⊆ U
Sub-Congr

ρT ⊆ ρU
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Sub-Subst dom(θ) = ~α, ~β 6∈ FV (∀~α.T )
∀~α.T ⊆ ∀~β.Subst[θ]T

T ⊆ U
Sub-Exp

Exp[T ] ⊆ Exp[U ]

Sub-Dist-Exp
ϕExp[T ] ⊆ Exp[ϕT ]

Sub-Dist-≤̇
ϕ(T ≤̇U) ⊆ ϕT ≤̇ϕU

Sub-Dist-≤̂
ϕ(T ≤̂U) ⊆ ϕT ≤̂ϕU

Sub-Proof-Inst
(ρ1≤̂ρ2) ⊆ (ρ1T ≤̇ρ2T )

The rules Sub-Refl, Sub-Trans, Sub-→, Sub-Dist-→, Sub-Congr are unchanged

from Mitchell’s formulation. Sub-Subst is adapted to our style of explicit type

substitutions. Sub-Exp establishes congruence for expression types. Sub-Dist-

Exp, Sub-Dist-≤̇, and Sub-Dist-≤̂ distributes type constructors of sort Forall

into expression types, proof types, and proof type schemes, respectively.

Well-formedness of Γ ensures that the types of all proof constants p contained

in Γ are valid. We rely on well-formedness in the proofs of lemmas 22 and 23,

and maintain it in the cases of theorem 24 for Is∗ and eArrow.

Definition 10. Well-formedness of type environment Γ.

` Γ T ⊆ U
` Γ, (p : ∀~α.(T ≤̇U))

` Γ σ1T ⊆ σ2T for any T
` Γ, (p : ∀~α.(σ1≤̂σ2))

` Γ
` Γ, (x : T )
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Operators

Ty[S] =∀T, U, V.(T → U → V )→ (T → U)→ T → V

Ty[K] =∀T, U.T → U → T

Ty[I] =∀T.T → T

Ty[Y ] =∀T.(T → T )→ T

Ty[Q] =∀T.T → Exp[T ]

Ty[A] =∀T, U.Exp[T → U ]→ Exp[T ]→ Exp[U ]

Ty[G] =∀T, U.(T → U)→ (∀V.Exp[V → T ]→ Exp[V ]→ U)→
Exp[T ]→ U

Ty[coerce] =∀T, U.T → (T ≤̇U)→ U

Ty[eArrow] =∀ρ, ϕ, T, U, T ′, U ′, V.(ρ(T → U)≤̇ϕ(T ′ → U ′))→
(∀ϕ1, σ.(ρ≤̂(ϕ ◦ ϕ1 ◦ σ))→ (T ′≤̇ϕ1σT )→ (ϕ1σU≤̇U ′)→ V )→
V

Ty[Is[O]] =∀T, U.T → ((Ty[O]≤̇T )→ Ty[O]→ U)→ U → U

Ty[IsIs] =∀T, U.T → ((IsTy≤̇T )→ IsTy → U)→ U → U

where IsTy = ∀T, U, V.T → ((V ≤̇T )→ V → U)→ U → U

Proof Axioms

Ty[refl] =∀T.(T ≤̂T )

Ty[dist] =∀ρ, T, U.(ρ(T → U)≤̇ρT → ρU)

Ty[distExp] =∀ρ, T.(ρExp[T ]≤̇Exp[ρT ])

Ty[factor] =∀σ, T, U.(σT → σU≤̇σ(T → U))

Ty[factorExp] =∀ρ, T.(Exp[ρT ]≤̇ρExp[T ])

Proof Constructors

Ty[iArrow] =∀T, U, T ′, U ′.(T ′≤̇T )→ (U≤̇U ′)→ (T → U≤̇T ′ → U ′)

Ty[iExp] =∀T, U.(T ≤̇ U)→ (Exp[T ] ≤̇ Exp[U ])

Ty[eExp] =∀T, U.(Exp[T ] ≤̇ Exp[U ])→ (T ≤̇ U)

Ty[congr] =∀ρ, T, U.(T ≤̇ U)→ (ρT ≤̇ ρU)

Ty[sCongr] =∀ρ, T, U.(T ≤̂ U)→ (ρT ≤̂ ρU)

Ty[trans] =∀T, U, V.(T ≤̇ U)→ (U ≤̇ V )→ (T ≤̇ V )

Ty[sTrans] =∀ρ1, ρ2, ρ3, ρ4.(ρ1≤̂ρ2 ◦ ρ3)→ (ρ2≤̂ρ4)→ (ρ1≤̂ρ4 ◦ ρ3)

Figure 6: Atom Types
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Definition 11 shows the type rules. The types of atoms Ty[atom] are defined in

figure 6. The rules for variables and applications are standard. The Type-Subtype

rule additionally checks that the subtyping step results in a well formed type of

kind ∗. As mentioned previously, our syntactic kind rules for type variables allow

us to check U :: ∗ without a kind context.

Definition 11. Type Rules

Type-Atom
Γ ` atom : Ty[atom]

x : T ∈ ΓType-Var
Γ ` x : T

p : T ∈ Γ
Type-Proof-Constant

Γ ` p : T

Γ ` e1 : T → U Γ ` e2 : T
Type-App

Γ ` e1 e2 : U

Γ ` e : T T ⊆ U U :: ∗
Type-Subtype

Γ ` e : U

7.4 Lambda Abstraction and Let-Terms

For the purpose of practical programming, particularly of our self-optimizer and

self-enactor, we use three forms of syntactic sugar:

• λ-abstraction, written λ(x : T ).e

• let binding, written let (x : T ) = e1 in e2 and

• let rec binding, written let rec (x : T ) = e

We desugar terms with such constructs before executing them. Desugaring maps

closed terms to closed terms.
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One of the oldest results on computability is that λ-abstraction can be defined

by SKI-terms (e.g. [9]). The definition of λx.e is as follows.

λx.x = I

λx.e = K e if e avoids x

λx.(e1 e2) = S(λx.e1) (λx.e2) otherwise .

Lemma 1. For all terms e1 and e2 and variable x there is a reduction

(λx.e1) e2 −→∗ [u/x]e .

Lemma 2. The following rule can be derived for abstractions

Γ, x : T ` e : U

Γ ` λx.e : T → U
.

Corollary 3. Mitchell’s Abs∀ rule [15, p.127] can be derived:

Γ, x : T ` e : U

Γ ` λx.e : ∀~α.T → U
~α 6∈ FV (Γ)

We desugar the syntax let x = e1 in e2 to (λx.e2)e1 and we de-sugar let rec x =

e to Y (λx.e), as usual.

Lemma 4. The following rules can be derived for let-terms

Γ ` e1 : T1 Γ, x : T1 ` e2 : T2

Γ ` let x = e1 in e2 : ∀~α.T2
~α 6∈ FV (Γ)

Γ, x : T ` e1 : T

Γ ` let rec x = e1 : ∀~α.T
~α 6∈ FV (Γ)

Lemma 5. If α ∈ FV (T ) and T ⊆ U , then α ∈ FV (U).

7.5 Soundness

Lemma 6. If T ⊆ U and α 6∈ FV (T ), then T ⊆ ∀[α]U .

Lemma 7. The following ∀-intro rule is admissable:

Γ ` e : T∀-intro ~α ∩ FV (Γ) = ∅
Γ ` e : ∀[α]T
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Lemma 8. Any type T of the form ~σ(T1 → T2), where ~σ is closed (closed in this

context means each σ in ~σ is either ∀[~β] or Subst[θ], i.e. not a type variable),
there exists ~α, θ such that T ≡ ∀[~α].(Subst[θ]T1)→ (Subst[θ]T2).

Lemma 9. If Γ ` O : T , then Ty[O] ⊆ T

Lemma 10. If Γ ` e e1 : T , then there exists a type T1 such that Γ ` e : T1 → T
and Γ ` e1 : T1.

Lemma 11. If Γ ` e e1 . . . en : T , then there exist types T1, . . . , Tn such that:
Γ ` e : T1 → · · · → Tn → T , and Γ ` ei : Ti for i ∈ [1, n].

Lemma 12. If ∀[~α](T → U) ⊆ ∀[~β](T ′ → U ′), there exist a substitution θ and
quantifiers ~γ such that: dom(θ) = ~α, T ′ ⊆ ∀[~γ]Subst[θ]T , and ∀[~γ]Subst[θ]U ⊆
U ′.

Lemma 13. If ∀[~α](T1 → · · · → Tn → T ) ⊆ U1 → · · · → Un → U , then there

exist quantifiers ~β and subsitution θ such that dom(θ)=~α, Ui ⊆ ∀[~β]Subst[θ]Ti
for i ∈ [1, n], and ∀[~β]Subst[θ]T ⊆ U .

Lemma 14. If T ⊆ U , then for any substitution θ and quantifiers ~γ, ∀[~γ]Subst[θ]T
⊆ ∀[~γ]Subst[θ]U .

Lemma 15. If ∀[~α](σ1≤̂σ2) ⊆ ∀[~α′](σ′1≤̂σ′2), there exist quantifiers ~β and a sub-

stitution θ such that σ′1 = ∀[~β] ◦ Subst[θ] ◦ σ1 and σ′2 = ∀[~β] ◦ Subst[θ] ◦ σ2.

Lemma 16. If σ1T ⊆ σ2T for any T, and ∀[~α](σ1≤̂σ2) ⊆ ∀[~β](σ′1≤̂σ′2), then
σ′1T ⊆ σ′2T for any T.

Lemma 17. If ∀[~α](T ≤̇U) ⊆ ∀[~β](T ′≤̇U ′), there exist a substitution θ and quan-
tifiers ~γ such that: T ′ = ∀[~γ]Subst[θ]T and U ′ = ∀[~γ]Subst[θ]U .

Lemma 18. If T ⊆ U and ∀[~α](T ≤̇U) ⊆ ∀[~β](T ′≤̇U ′), then T ′ ⊆ U ′.

Lemma 19. If ∀[~α](σ1≤̂σ2) ⊆ ∀[~β](T ≤̇U), there exist a type V , a substitution θ,
and quantifiers ~γ such that: T = ∀[~γ]Subst[θ]V and U = ∀[~γ]Subst[θ]V .

Lemma 20. If Γ ` T ::: Subst, then (TU → TV ) ≡ T (U → V ).

Lemma 21. If Exp[A] ⊆ Exp[B], then A ⊆ B.

Lemma 22. If ` Γ and Γ ` v : (σ1≤̂σ2) and v is a value, then for any type T ,
σ1T ⊆ σ2T .

Lemma 23. For all types T,U: If ` Γ and Γ ` v : T ≤̇U and v is a value, then
T ⊆ U .
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Theorem 24. Preservation.
If ` Γ, Γ ` e : T and e −→ e′, then there exists Γ′ ⊇ Γ such that ` Γ′ and
Γ′ ` e′ : T .

Lemma 25. If Γ ` e : Exp[T ] and e is a value, then either e = Q O or e =
A e1 e2.

Theorem 26. Progress.
If Γ ` e : T , then either e is a value, or there exists e′ such that e −→ e′.

Theorem 27. Type Soundness.
If Γ ` e : T and e −→∗ e′, then either e′ is a value or there exists an e′′ such that
e′ −→ e′′.

8 Type Inference

We now describe a decidable fragment of our type system. The type inference

algorithm is a straightforward extension of Dan Leijen’s algorithm for a variant

of System F [13, Appendix B]. We have implemented the algorithm and used it

to type check our self-optimizer and self-enactor. The subset is given by these

restrictions of the definitions in Section 6:

• Syntax: we don’t use the proof term of the form p.

• Types: we don’t use type of the form Subst[θ].

• Subtyping: Like in System F, we allow only two forms of subtyping, namely

substitution, ∀~α.T ⊆ σT , and Mitchell’s Abs∀ rule.

The net effect is that our subset is closely related to System F plus an extra

kind (∗ → ∗) of types and a nontrivial notion of type equivalence. Our algorithm

extends Dan Leijen’s algorithm [13, Appendix B] with a straightforward notion of

type normalization that enables us to decide type equivalence. The main benefit

of the type inference algorithm is that the programmer doesn’t have to specify

uses of substitution and Abs∀.
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9 A Self-Interpreter

Our techniques for typing self-optimization can also be used to implement a typed

self-interpreter, as shown in Appendix C. Self-interpretation has a different set

of challenges than self-optimization. For example, the proofs needed for a self-

interpreter are simpler, in that we don’t need to combine proof terms introduced

by multiple Is-operators. This is because identifying a redex usually requires only

matching an application of a single operator to the correct number of arguments.

While the implementation of G requires that we identify whether it’s third ar-

gument is headed by Q or A, this doesn’t introduce any new constraints on the

possible types of input term. On the other hand, we must be able to match

and implement the Is-operators, and some care is needed to avoid the potential

for infinite regress in introducing Is[Is[O]], Is[Is[Is[O]]], . . . operators to do so.

In this section we will describe our self-interpreter, including how we solve the

problem of infinite regress.

We match redexes similarly to matching expressions for optimizations. The

functions enact1, enact2, and enact3 match operators with arity 1,2, and 3 re-

spectively. These in turn dispatch to enact[O] functions, for example enactK

and enactS which are also used in our optimizer. Each of the operators S,K,I,

and Y is implemented directly, by replacing each redex with its reduct. The

Is-operators are handled together: an Is-redex is matched by IsIs, and imple-

mented metacircularly by the function enactIs. When an Is-redex is matched,

IsIs provides a proof term that reflects that the operator is an Is-operator. In

particular, if the occurrence of the operator has type T , then the proof term will

have type IsTy≤̇T . As shown in Figure 6, IsTy is an abbreviation for:

∀T, U, V.T → ((V ≤̇T )→ V → U)→ U → U
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which generalizes the types of Is[O] and IsIs by quantifying V . IsIs provides

a copy of the matched Is-operator at the type IsTy, which enactIs uses to perform

metacircular reduction step. This uniformity of the types and semantics of the Is-

operators is key to “tying the knot” in our self-interpreter, avoiding the problem

of infinite regress.

Our self-interpreter enact evaluates a representation e to the Head Normal

Form O e1 . . . en, where n < arity(O) and ei are representations of arbitrary

expressions. The semantics of coerce and eArrow require that their proof term

argument be fully evaluated to a proof value, so some extra work is needed to

fully evaluate the proof term reducing a coerce or eArrow redex. A proof term

in Head Normal Form is of the form c e1 . . . en, where c is a proof constructor.

In order to evaluate this to a proof value, we must evaluate each ei to a proof

value. This is achieved via the enactStrict function defined within enact. After

fully evaluating a proof representation, it is unquoted to obtain the underlying

proof. This is then used to implement coerce and eArrow metacircularly.

10 Experimental Results

We have implemented type inference, desugaring, and the semantics. The input

to our tools is the Latex source that we use to display programs.

Our implementation of type inference confirms that both our self-optimizer

and self-interpreter type check with the expected types. Type inference was

tremendously helpful during the development.

We desugar our self-optimizer and self-enactor before execution. The opti-

mizer in sugared form is 274 lines of code, while the desugared version consists of

7457 atoms. The enactor in sugared form is 354 lines of code, while the desugared

version consists of 7692 atoms.
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Our implementation of the semantics confirms that both our self-optimizer

and self-enactor work correctly. We have applied them to many microbenchmarks,

to themselves, and to each other.

Let us illustrate the amount of optimization that the self-optimizer can achieve.

Define e = S(S(K(SK))I)I and notice that e can be optimized to I.

We found that enact ′(optimize ′e) executes in 33.4 seconds, while

unquote (optimize ′enact)
′((unquote (optimize ′optimize)) ′e)

executes in 11.8 seconds. This demonstrates that our system can be used to

implement optimizations that provide significant performance improvements.

11 Related Work

This paper presents the first polymorphically typed self-optimizer. Our self-

optimizer builds on a wide variety of related work, particularly on self-optimization,

polymorphically typed self-interpreters, subtyping, inversion, proof terms, and

explicit substitutions.

Self-optimization. Our self-optimizer is inspired by Hudak and Kranz’ 1984

paper [10] on a combinator-based compiler for a functional language. The first

phase of Hudak and Kranz’ compiler [10] generates combinator expressions and

simplifies those expressions as they are constructed. For example, one of their

simplification rules is SK → KI. Our paper shows how to implement such a

simplification step as a polymorphically typed self-optimizer.

Polymorphically typed self-interpreters. Pfenning and Lee wrote in

their 1991 paper about metacircularity in the polymorphic lambda-calculus that

“metacircularity seems to be impossible” [19]. Still, their paper presented worth-

while techniques. In a breakthrough paper in 2009, Rendel, Ostermann, and
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Hofer [20] presented the first polymorphically self-recognizer. In 2011, Jay and

Palsberg presented the first polymorphically self-enactor [11]. We have been un-

able to use the techniques in those papers to program a polymorphically typed

self-optimizer, so our paper uses both a novel expression language and a novel

type system.

Subtyping. We follow Jay and Palsberg’s 2011 paper [11] and work with

a combinatory calculus and a type system with subtyping, though the details

are different. At the core of both paper’s definitions of subtyping are ideas from

Mitchell’s notion of subtyping [15] (which he calls containment). Wells showed in

two papers in 1995 and 1996 that Mitchell subtyping is undecidable [28] and that

type inference for Mitchell’s calculus is undecidable [29]. Our notion of subtyping

agrees with Mitchell’s notion of subtyping for function types and polymorphic

types, hence it is undecidable.

Inversion. For simply typed λ-calculus, the inversion lemma for the case of

function calls says that if we can derive a judgment Γ ` e1e2 : T , then there exists

a type S such that we also can derive judgments Γ ` e1 : S → T and Γ ` e2 : S.

For Mitchell’s notion of subtyping, we can view part of Wells’ Theorem 3.2 [28]

as an inversion lemma that says that if we can derive that two polymorphic

function types are subtype-related, then certain items exist such that we can also

derive two other subtype-relationships. Our paper uses the proof term eArrow

to compute the results of inversion at run time.

Proof terms. Subtyping and explicit coercions are related and both have

been studied at least since the 1990s. For example, Tannen et al. [25, 26] showed

in the late 1990s how to define and compute with coercions, and Palsberg et

al. [27] showed how to use explicit coercions to prove strong normalization for a

calculus with subtyping. We adapted our approach to coercions and proof terms
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from Donnelly’s Master’s thesis [7]. Donnelly used T ≤̇U to denote the type of a

proof term that witnesses that T is a subtype of U . In his Lemma 3.21, he proves

that “Subtyping is Equality”, that is, if a term p has type T ≤̇U , then T = U .

We have borrowed many of Donnelly’s proof terms and added others of our own.

Our proof terms satisfy a weaker lemma than Donnelly’s Lemma 3.21, namely

our Lemma 23 that says, intuitively, that if a value v has type T ≤̇U , then T ⊆ U .

Explicit substitutions. Abadi et al. defined a λ-calculus with explicit sub-

stitutions [2]. Their calculus treated substitutions as typed first-class values. In

their case, a substitution replaces a program variable with a value. Our types of

the form Subst[θ] are a form of explicit substitutions at the type level. In our

case, a substitution has kind ∗ → ∗, and replaces a type variable with a type.

In contrast to Abadi et al.’s paper [2], we define most of what can be done by a

substitution via type equivalence.

12 Conclusion

We have demonstrated how to write a polymorphically typed self-optimizer. We

wrote it in a decidable fragment of a type system with types of kinds (∗ → ∗) and

∗. Our experiments confirm our theoretical results. Our result is a step towards

better bug finding for any kind of self-applicable software.
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APPENDIX A

Proofs

This appendix contains the proof of each theorem, lemma, and corollary stated

in section 7.

Proof of Lemma 1. The proof is by induction on the structure of the term e1. If

e1 is x then (λx.e1)e2 = I e2 −→∗ e2 = [e2/x]e1. If e1 avoids x then (λx.e1)e2 =

K e1 e2 −→ e1 = [e2/x]e1. Otherwise, if e1 is of the form e3e4 then

(λ.e1)e2 = S(λx.e3)(λx.e4)e2

−→ (λx.e3)e2((λx.e4)e2)

−→∗ [e2/x]e3([u/x]e4)

= [e2/x]e1

by two applications of induction.

Proof of Lemma 2. The proof is by induction on the structure of the type deriva-

tion for e. If the last step in the derivation is Type-Subtype, then there exists

a type T1 such that Γ, x : R ` e : T1 and T1 ⊆ T . By induction, we can derive

Γ ` λx.e : R → T1. Now Sub-→ derives R → T1 ⊆ R → T , and Type-Subtype

derives Γ ` e : R → T . The remaining possibilities follow the structure of e. If

e is x then R ⊆ T . ∀[α](α → α) ⊆ R → R ⊆ R → T , so λx.x = I : R → T as

required. If x is not free in e then λx.e = K e and Γ ` K e : R→ T as required.

Otherwise, if e is an application e1 e2 then there are types T1 and T2 such that

Γ ` e1 : T2 → T and Γ ` e2 : T2. By two applications of induction, it follows that
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Γ ` λx.e1 : U → T2 → T and Γ ` λx.e2 : U → T2 whence λx.t = S(λx.e1)(λx.e2)

has type U → T as required.

Proof of Corollary 3. This follows from Lemmas 2 and 7.

Proof of Lemma 4. Straightforward.

Proof of Lemma 5. By straightforward induction on the derivation of T ⊆ U .

Proof of Lemma 6. By induction on the structure of T ⊆ U .

If α 6∈ FV (U), then α is a redundant quantifier, and the result holds by

Sub-Subst. Therefore, assume α ∈ FV (U).

Case T ⊆ U derived by Sub-→. We have T = T1 → T2, U = U1 → U2, U1 ⊆

T1, and T2 ⊆ U2. Since α 6∈ FV (T1), lemma 5 states α 6∈ FV (U1). Therefore,

α ∈ FV (U2). By induction, T2 ⊆ ∀[α]U2. Now α is redundant in U1 → ∀[α]U2, so

Sub-Subst derives U1 → ∀[α]U2 ⊆ ∀[α](U1 → ∀[α]U2), and a combination of Sub-

Congr, Sub-Arrow, and Sub-Subst derives ∀[α](U1 → ∀[α]U2) ⊆ ∀[α](U1 → U2).

The result follows from Sub-Trans.

The remaining cases are straightforward.

Proof of Lemma 7. By induction on the structure of Γ ` e : T .

Case Γ ` e : T derived by rule Type-Atom. T = Ty[atom], which is closed for

all atoms. Therefore α is a redundant quantifier, so Sub-Subst derives T ⊆ ∀[α]T .

Case Γ ` e : T derived by rule Type-Subtype. We have Γ ` e : T ′ and

T ′ ⊆ T . If α ∈ FV (T ′), then the induction hypothesis gives Γ ` e : ∀[α]T ′. Now

Sub-Congr derives ∀[α]T ′ ⊆ ∀[α]T as required. If α 6∈ FV (T ′), then T ′ ⊆ ∀[α]T

by lemma 6.

Proof of Lemma 8. Straightforward.
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Proof of Lemma 9. By induction on the structure of Γ ` O : T .

Case Type-Atom: Immediate.

Case Type-Subtype: We have Γ ` O : U and U ⊆ T . By induction, Ty[O] ⊆

U , and Ty[O] ⊆ T follows by Sub-Trans.

Proof of Lemma 10. By induction on the derivation of Γ ` e e1 : T .

Case Γ ` e e1 : T derived by Type-App: Immediate.

Case Γ ` e e1 : T derived by Type-Subtype: We have Γ ` e e1 : T ′ and

T ′ ⊆ T . By induction, there exists a type T1 such that Γ ` e e1 : T1 → T ′ and

Γ ` e1 : T1. Now Sub-→ derives T1 → T ′ ⊆ T1 → T from Sub-Refl and T ′ ⊆ T .

By Type-Subtype, Γ ` e : T1 → T as required.

Proof of Lemma 11. By induction on the number of applications n.

Case n = 1. Follows from lemma 10.

Case n > 1. By lemma 10, there exists a type Tn such that Γ ` e e1 . . . en−1 :

Tn → T and Γ ` en : Tn. By induction, there exist types T1, . . . , Tn−1 such that

Γ ` e : T1 → · · · → Tn−1 → Tn → T and Γ ` ei : Ti for i ∈ [1, n− 1] as required.

Proof of Lemma 12. By induction on the structure of the derivation ∀[~α](T →

U) ⊆ ∀[~β](T ′ → U ′).

Case Sub-Refl: We have ~α = ~β, T ′ = T , and U ′ = U . Holds with ~γ = ∅,

θ = [].

Case Sub-→: Holds with ~γ = ∅, θ = [].

Case Sub-Dist: We have ~β = ∅ and ~γ = ~α. Holds with θ = [].

Case Sub-Subst: We have T ′ = Subst[θ]T and U ′ = Subst[θ]U . Holds with

~γ = ∅.
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Case Sub-Congr: We have ~α = ~α1, ~α2, ~β = ~α1, ~β2, and ∀[~α2](T → U) ⊆

∀[~β2](T ′ → U ′). By induction there exist quantifiers ~γ and a substitution θ′

such that dom(θ′) = ~α2 and T ′ ⊆ ∀[~γ]Subst[θ]T and ∀[~γ]Subst[θ]U ⊆ U ′. Holds

θ = [~α1/~α1] ◦ θ′.

Case Sub-Trans: We have ∀[~α](T → U) ⊆ ∀[~δ](T ′′ → U ′′) ⊆ ∀[~β](T ′ →

U ′). By induction, there exist quantifiers ~γ1, ~γ2 and substitutions θ1, θ2 such

that dom(θ1) = ~α, dom(θ2) = ~δ, T ′′ ⊆ ∀[~γ1]Subst[θ1]T , ∀[~γ1]Subst[θ1]U ⊆ U ′′,

T ′ ⊆ ∀[~γ2]Subst[θ2]T ′′, and ∀[~γ2]Subst[θ2]U ′′ ⊆ U ′.

Now ∀[~γ2] ◦Subst[θ2] ◦ ∀[~γ1] ◦Subst[θ1] ≡ ∀[~γ2, ~γ′1] ◦Subst[θ2 ◦ [~γ′1/vecγ1] ◦ θ1].

Holds with ~γ = ~γ2, ~γ
′
1 and θ = θ2 ◦ [~γ′1/vecγ1] ◦ θ1.

Proof of Lemma 13. By induction on n.

Case n = 1: Follows from lemma 12.

Case n > 1: By lemma 12, there exist quantifiers ~β1 and a substitution θ1

such that U1 ⊆ ∀[~β1]Subst[θ1]T1 and ∀[~β1]Subst[θ1](T2 → · · · → Tn → T ) ⊆ U2 →

· · · → Un → U . By induction, there exist quantifiers β2 and a substitution θ2

such that Ui ⊂ ∀[β2]Subst[θ2]Subst[θ1]Ti for i ∈ [2, n], and ∀[~β2]Subst[θ2]T ⊆ U .

Let ~β = ~β2, θ = θ2 ◦ θ1. Sub-Subst derives ∀[~β1]Subst[θ1]T1 ⊆ ∀[~β]Subst[θ]T1,

and U1 ⊆ ∀[~β]Subst[θ]T1 follows by Sub-Trans.

Proof of Lemma 14. Follows by two steps of Sub-Congr.

Proof of Lemma 15. By induction on the derivation ∀[~α](σ1≤̂σ2) ⊆ ∀[~α′](σ′1≤̂σ′2).

Case Sub-Subst:

There exist quantifiers ~β and a substitution θ such that ∀[~α](σ1≤̂σ2) ⊆ ∀[~α′]

Subst[θ](σ1≤̂σ2) Holds with ~β = ∅.

Case Sub-Dist-≤̂:
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Holds, with ~α = ~α′, ~β, and θ = [].

Case Sub-Trans:

There exist quantifiers ~α′′ and types σ′′1 , σ
′′
2 such that ∀[~α](σ1≤̂σ2) ⊆ ∀[~α′′]

(σ′′1≤̂σ′′2) and ∀[~α′′](σ′′1≤̂σ′′2) ⊆ ∀[~α′](σ′1≤̂σ′2). By induction, there exist quantifiers

~β1, ~β2 and substitutions θ1, θ2 such that: σ′′1 = ∀[~β1] ◦ Subst[θ1] ◦ σ1, σ′′2 = ∀[~β1] ◦

Subst[θ1]◦σ2, σ′1 = ∀[~β2]◦Subst[θ2]◦σ′′1 , and σ′2 = ∀[~β2]◦Subst[θ2]◦σ′′2 . Therefore,

σ′1 = ∀[~β2] ◦ Subst[θ2] ◦ ∀[~β1] ◦ Subst[θ1] ◦ σ′1 and σ′2 = ∀[~β2] ◦ Subst[θ2] ◦ ∀[~β1] ◦

Subst[θ1] ◦ σ′2.

Let ~β = ~β2, ~β
′
1, where ~β′1 are fresh. Let θ = θ2 ◦ [~β′1/

~β] ◦ θ1. Now σ′1 ≡

∀[~β] ◦ Subst[θ] ◦ σ1 and σ′2 ≡ ∀[~β] ◦ Subst[θ] ◦ σ2 as required.

Proof of Lemma 16. By lemma 15, there exist quantifiers ~γ and a substitution θ

such that σ′1 = ∀[~γ]◦Subst[θ]◦σ1 and σ′2 = ∀[~γ]◦Subst[θ]◦σ2. The result follows

from lemma 14.

Proof of Lemma 17. Similar to proof of lemma 15.

Proof of Lemma 18. By lemma 17, there exist quantifiers ~γ and a substitution θ

such that T ′ = ∀[~γ]Subst[θ]T and U ′ = ∀[~γ]Subst[θ]U . The result follows from

14.

Proof of Lemma 19. By induction on the derivation of ∀[~α](σ1≤̂σ2) ⊆ ∀[~β](T ≤̇U).

Case Sub-Congr: Holds by the induction hypothesis.

Case Sub-Proof-Inst: Holds with ~γ = ∅ and θ = [].

Case Trans: We have ∀[~α](σ1≤̂σ2) ⊆ A and A ⊆ ∀[~β](T ≤̇U).

If A = ∀[~α′](σ′1≤̂σ′2), then by lemma 15, there exist quantifiers ~γ1 and a

substitution θ1 such that σ′1 = ∀[~γ1]◦Subst[θ1]◦σ1 and σ′2 = ∀[~γ1]◦Subst[θ1]◦σ2.
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Now by the induction hypothesis, there exist quantifiers ~γ2, a substitution θ2,

and a type V such that T = ∀[~γ2]Subst[θ2]∀[~γ1]Subst[θ1]σ1V and U = ∀[~γ2]

Subst[θ2] ∀[~γ1] Subst[θ1]σ2V . Now let ~γ = ~γ2, ~γ
′
1 and θ = θ2 ◦ [~γ′1/~γ1] ◦ θ1. Now

T ≡ ∀[~γ]Subst[θ]V and U ≡ ∀[~γ]Subst[θ]V .

If A = ∀[~α′](T ′≤̇U ′), then by the induction hypothesis, there exist quan-

tifiers ~γ1, a substitution θ1, and a type V such that T ′ = ∀[~γ1]Subst[θ1]σ1V

and U ′ = ∀[~γ1]Subst[θ1]σ2V . Now by lemma 17, there exist quantifiers ~γ2

and a substitution θ2 such that T = ∀[~γ2]Subst[θ2]∀[~γ1]Subst[θ1]σ1V and U =

∀[~γ2]Subst[θ2]∀[~γ1]Subst[θ1]σ2V . Now let ~γ = ~γ2, ~γ
′
1 and θ = θ2 ◦ [~γ′1/~γ1]◦θ1. Now

T ≡ ∀[~γ]Subst[θ]V and U ≡ ∀[~γ]Subst[θ]V .

Proof of Lemma 20. By induction on the structure of Γ ` T ::: Subst.

Case S-TVar: T = θ. Holds by equivalence rule (θU → θV ) ≡ θ(U → V ).

Case S-Subst: T = Subst[θ]. Holds by equivalence rule

Subst[θ](T1≤̂T2) ≡ (Subst[θ]T1)≤̂(Subst[θ]T2).

Case S-Compose: We have T = T1 ◦ T2, Γ ` T1 ::: s1, Γ ` T2 ::: s2, and s1 t s2 =

Subst. Therefore, s1 = Subst and s2 = Subst. Now θT → θU ≡ T1T2T → T1T2U .

By induction, T1T2T → T1T2U ≡ T1(T2T → T2U) ≡ T1T2(T → U) ≡ θ(T → U)

as required.

Proof of Lemma 21. By straightforward induction.

Proof of Lemma 22. By induction on v.

Case v = pfl: We have Γ ` pfl : ∀[~α](σ′1≤̂σ′2) and ∀[~α](σ′1≤̂σ′2) ⊆ (σ1≤̂σ2).

` Γ ensures σ′1T ⊆ σ′2T for any T . Result follows from lemma 16.

Case v = refl: By lemma 9, ∀[A](A≤̂A) ⊆ (σ1≤̂σ2). Sub-Refl derives AT ⊆

AT for any type T, and the result follows from lemma 16.
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Case Type-App: Proceed by case analysis on the structure of v.

Case v = sCongr v1. By lemma 11, there exists a type V1 such that Γ `

sCongr : V1 → (σ1≤̂σ2), Γ ` v1 : V1. By lemma 9, ∀[T, U, V ]((U≤̂V ) → (T ◦

U≤̂T ◦ V )) ⊆ V1 → (σ1≤̂σ2). Therefore, there exist quantifiers ~α and types

T, U, V such that V1 ⊆ ∀[~α](U≤̂V ) and ∀[~α](T ◦ U≤̂T ◦ V ) ⊆ (σ1≤̂σ2). By

induction, UA ⊆ V A for any type A. By Sub-Congr, TUA ⊆ TV A. σ1T ⊆ σ2T

follows from lemma 16.

Case v = sTrans v1 v2: By lemma 11, there exist types V1, V2 such that

Γ ` sTrans : V1 → V2 → (σ1≤̂σ2), Γ ` v1 : V1, and Γ ` v2 : V2. By lemma 9,

∀[σ3, σ4, σ5, σ6]((σ3≤̂σ4 ◦ σ5)→ (σ4≤̂σ6)→ (σ3≤̂σ6 ◦ σ5)) ⊆ V1 → V2 → (σ1≤̂σ2).

Therefore, there exist quantifiers ~α and types σ3, σ4, σ5, σ6 such that:

V1 ⊆∀[~α](σ3≤̂σ4 ◦ σ5)

V2 ⊆∀[~α](σ4≤̂σ6)

∀[~α](σ3≤̂σ6 ◦ σ5) ⊆(σ1≤̂σ2)

By induction, σ3T ⊆ σ4σ5T for all types T, and σ4U ⊆ σ6U for all types U. In

particular, σ4σ5T ⊆ σ6σ5T for all types T. Therefore, lemma 16 gives σ1T ⊆ σ2T

for all types T as required.

Proof of Lemma 23. By induction on the structure of v.

Case v = p : We have p : S ∈ Γ and S ⊆ T ≤̇U . Now S is either of the form

∀[~α](T ′≤̇U ′), or else ∀[~α]∀[α](σ1α≤̂σ2α).

In the first case, ` Γ implies T ′ ⊆ U ′, and the result follows from lemma 18.
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In the second case, T = (σ′1A and U = σ′2A for some σ′1, σ
′
2, A. By lemma 22,

T ⊆ U as required.

Case v = refl: We have Γ ` refl : S, and S ⊆ T ≤̇U . By lemma 9, ∀[X].X≤̂X ⊆

S. By lemma 19, there exist a substitution θ and quantifiers ~γ such that T =

∀[~γ]Subst[θ]X and U = ∀[~γ]Subst[θ]X. Therefore, T ⊆ U by Sub-Refl.

Case v = dist: We have Γ ` dist : S, and S ⊆ T ≤̇U . By lemma 9, ∀[σ,X, Y ]

(σ(X → Y )≤̇σX → σY ) ⊆ S. Sub-Dist-→ derives σ(X → Y ) ⊆ σX → σY , and

T ⊆ U follows from lemma 18.

Case v = distExp:

We have Γ ` distExp : S, and S ⊆ T ≤̇U . By lemma 9, ∀[σ,A](σExp[A]

≤̇ Exp[σA]) ⊆ (T ≤̇U). Sub-Refl derives σExp[A] ⊆ Exp[σA] with σExp[A] ≡

Exp[σA], and T ⊆ U follows from lemma 18.

Case v = factor:

By lemma 9, ∀[θ,X, Y ](θX → θY ≤̇θ(X → Y )) ⊆ (T ≤̇U). Since Γ ` θ :::

Subst, Γ ` θX → θY ≡ θ(X → Y ), so θX → θY ⊆ θ(X → Y ) is true by

Sub-Refl. Now T ⊆ U follows from lemma 18.

Case v = factorExp

We have Γ ` factorExp : S, and S ⊆ T ≤̇U . By lemma 9, ∀[σ,A](Exp[σA]

≤̇ σExp[A]) ⊆ (T ≤̇U). Sub-Refl derives Exp[σA] ⊆ σExp[A] with σExp[A] ≡

Exp[σA], and T ⊆ U follows from lemma 18.

Case v = iArrow v1 v2 v3

By lemma 11, Γ ` iArrow : V1 → V2 → V3 → (T ≤̇U), Γ ` v1 : V1, Γ ` v2 : V2,

and Γ ` v3 : V3. By lemma 9, Ty[iArrow] ⊆ V1 → V2 → V3 → (T ≤̇U). Therefore,

there exist types σ1, Q2, Q3, θ,X, Y,X
′, Y ′ and quantifiers ~α such that:
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V1 ⊆ ∀[~α](σ1≤̂Q2Q3θ)

V2 ⊆ ∀[~α](X ′≤̇Q3θX)

V3 ⊆ ∀[~α](Q3θY ≤̇Y ′)

∀[~α](σ1(X → Y )≤̇Q2(X
′ → Y ′)) ⊆ (T ≤̇U)

By lemma 22, σ1Z ⊆ Q2Q3θZ for all Z. In particular, σ1(X → Y ) ⊆

Q2Q3θ(X → Y ). By the induction hypothesis, X ′ ⊆ Q3θX and Q3θY ⊆ Y ′.

Now we have:

σ1(X → Y )

⊆Q2Q3θ(X → Y )

⊆Q2(Q3θX → Q3θY ) By Sub-Congr, Sub-Dist-→

⊆Q2(X
′ → Y ′) By Sub-Congr, Sub-→

By lemma 17, there exist a substitution θ1 and quantifiers ~β such that T =

∀[~β]Subst[θ]σ1(X → Y ) and U = ∀[~β]Subst[θ]Q2(X
′ → Y ′). By lemma 14,

T ⊆ U as required.

Case v = iExp v1

By lemma 11, Γ ` iExp : V1 → (T ≤̇U) and Γ ` v1 : V1. By lemma 9,

Ty[iExp] ⊆ V1 → (T ≤̇U). Therefore, there exist types A,B and quantifiers ~β

such that V1 ⊆ ∀[~β](A≤̇B) and ∀[~β](Exp[A]≤̇Exp[B]) ⊆ (T ≤̇U).

Since v1 is a value, the induction hypothesis gives A ⊆ B. By Sub-Exp,

Exp[A] ⊆ Exp[B]. T ⊆ U follows from lemma 18.
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Case v = eExp v1

By lemma 11, Γ ` eExp : V1 → (T ≤̇U) and Γ ` v1 : V1. By lemma 9,

Ty[eExp] ⊆ V1 → (T ≤̇U). Therefore, there exist types A,B and quantifiers ~β

such that V1 ⊆ ∀[~β](Exp[A]≤̇Exp[B]) and ∀[~β](A≤̇B) ⊆ (T ≤̇U).

Since v1 is a value, the induction hypothesis gives Exp[A] ⊆ Exp[B]. By

lemma 21, A ⊆ B. T ⊆ U follows from lemma 18.

Case v = congr v1

By lemma 11, Γ ` congr : V1 → (T ≤̇U) and Γ ` v1 : V1. By lemma 9,

Ty[congr] ⊆ V1 → (T ≤̇U). Therefore, there exist types A,B, σ and quantifiers ~β

such that V1 ⊆ ∀[~β](A≤̇B) and ∀[~β](σA≤̇σB) ⊆ T ≤̇U .

Since v1 is a value, the induction hypothesis gives A ⊆ B. By Sub-Congr,

σA ⊆ σB. T ⊆ U follows from lemma 18.

Case v = trans v1 v2

By lemma 11, Γ ` trans : V1 → V2 → S, Γ ` v1 : V1, Γ ` v2 : V2, and S ⊆

T ≤̇U . By lemma 9, Ty[trans] ⊆ S. Therefore, there exist quantifiers ~α and types

X, Y, Z such that V1 ⊆ ∀[~α](X≤̇Y ), V2 ⊆ ∀[~α](Y ≤̇Z), and ∀[~α](X≤̇Z) ⊆ (T ≤̇U).

Now Γ ` v1 : ∀[~α](X≤̇Y ) and Γ ` v2 : ∀[~α](Y ≤̇Z), so the induction hypothesis

yields X ⊆ Y and Y ⊆ Z. X ⊆ Z follows from Sub-Trans, and T ⊆ U from

lemma 18.

Proof of Theorem 24. By case analysis on e −→ e′.

Case G f g (Q O) −→ f O: By lemma 11, there exist types T1, T2, T3 such that

Γ ` G : T1 → T2 → T3 → T , Γ ` f : T1, Γ ` g : T2, and Γ ` QO : T3. By

lemma 9, ∀[A,B]((A→ B)→ ∀[C](Exp[C → A]→ Exp[C]→ B)→ Exp[A]→

B) ⊆ T1 → T2 → T3 → T . By lemma 13, there exist quantifiers ~α and types

A,B such that T1 ⊆ ∀[~α](A→ B), T2 ⊆ ∀[~α]∀[C](Exp[C → A]→ Exp[C]→ B),
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T3 ⊆ ∀[~α]Exp[A], and ∀[~α]B ⊆ T . By 10, there exists a type T4 such that Γ ` Q :

T4 → T3 and Γ ` O : T4. By 9, ∀[X](X → Exp[X]) ⊆ T4 → T3. By 12, there exist

quantifiers ~β and a type X such that T4 ⊆ ∀[~β]X and ∀[~β]Exp[X] ⊆ T3. By Sub-

Trans, ∀[~β]Exp[X] ⊆ ∀[~α]Exp[A]. By equivalence, Exp[∀[~β]X] ⊆ Exp[∀[~α]A].

By 21, ∀[~β]X ⊆ ∀[~α]A. By Type-Subtype, Γ ` O : ∀[~α]A. By Sub-Dist-→,

∀[~α](A → B) ⊆ ∀[~α]A → ∀[~α]B, so Type-Subtype derives Γ ` f : ∀[~α]A →

∀[~α]B. Therefore Γ ` f O : ∀[~β]B, and Type-Subtype derives Γ ` f O : T as

required.

Case G f g (A p q) −→ g p q: By lemma 11, there exist types T1, T2, T3 such

that Γ ` G : T1 → T2 → T3 → T , Γ ` f : T1, Γ ` g : T2, and Γ ` QO : T3.

By lemma 9, ∀[A,B]((A → B) → ∀[C](Exp[C → A] → Exp[C] → B) →

Exp[A] → B) ⊆ T1 → T2 → T3 → T . By lemma 13, there exist quantifiers ~α

and types A,B such that T1 ⊆ ∀[~α](A → B), T2 ⊆ ∀[~α]∀[C](Exp[C → A] →

Exp[C] → B), T3 ⊆ ∀[~α]Exp[A], and ∀[~α]B ⊆ T . By lemma 11, there exist

types T4, T5 such that Γ ` A : T4 → T5 → T3, Γ ` p : T4, and Γ ` q : T5. By

lemma 9, ∀[X, Y ](Exp[X → Y ] → Exp[X] → Exp[Y ] ⊆ T4 → T5 → T3. By

lemma 13, there exist quantifiers ~β and types X, Y such that T4 ⊆ ∀[~β]Exp[X →

Y ], T5 ⊆ ∀[~β]Exp[X], and ∀[~β]Exp[Y ] ⊆ T3. By Sub-Trans, ∀[~β]Exp[Y ] ⊆

∀[~α]Exp[A]. By equivalence, Exp[∀[~β]Y ] ⊆ Exp[∀[~α]A]. By lemma 21, ∀[~β]Y ⊆

∀[~α]A. Therefore ∀[~β]Exp[X → Y ] ⊆ Exp[∀[~β]X → ∀[~α]A], so Type-Subtype

derives Γ ` p : Exp[∀[~β]X → ∀[~α]A]. Without loss of generality, assume ~α 6∈

FV (∀[~β]X). Now ∀[~α]∀[C](Exp[C → A] → Exp[C] → B) ⊆ Exp[∀[~β]X →

∀[~α]A] → Exp[∀[~β]X] → ∀[~α]B. Type-Subtype derives Γ ` g : Exp[∀[~β]X →

∀[~α]A]→ Exp[∀[~β]X]→ ∀[~α]B, so Γ ` g p q : ∀[~α]B, and Type-Subtype derives

Γ ` g p q : T as required.

Case Is[O] O t f −→ t p O: By lemma 11, there exist types T1, T2, T3 such
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that: Γ ` Is[O] : T1 → T2 → T3 → T , Γ ` O : T1, Γ ` t : T2, and

Γ ` f : T3. By lemma 9, Ty[Is[O]] ⊆ T1 → T2 → T3 → T . By lemma 13,

there exist quantifiers ~α and a substitution θ such that: T1 ⊆ ∀[~α]Subst[θ]X,

T2 ⊆ ∀[~α]Subst[θ]((Ty[O]≤̇X) → Ty[O] → Y ), and ∀[~α]Subst[θ]Y ⊆ T . Note

that since Ty[O] is closed, Subst[θ]((Ty[O] ≤̇X) → Ty[O] → Y ) ≡ (Ty[O]

≤̇ Subst[θ]X) → Ty[O] → Subst[θ]Y . Again by lemma 9, Ty[O] ⊆ T1 ⊆

∀[~α]Subst[θ]X. Therefore, let Γ′ = (Γ, pfl : Ty[O] ≤̇ ∀[~α]Subst[θ]X). Note that

since ~α ∩ FV (Ty[O]) = ∅, Ty[O] ≤̇ ∀[~α]Subst[θ]X ≡ ∀[~α](Ty[O] ≤̇ Subst[θ]X).

By two distributions of ∀[~α], T2 ⊆ (Ty[O] ≤̇ ∀[~α]Subst[θ]X) → Ty[O] →

(∀[~α]Subst[θ]Y ). Now Γ′ ` t pfl O : ∀[~α]Subst[θ]Y , and the result follows from

∀[~α]Subst[θ]Y ⊆ T .

Case eArrow p e −→ e pl1 pl2 pl3: By lemma 11, there exist types T1 and T2

such that Γ ` eArrow : T1 → T2 → T , Γ ` p : T1, and Γ ` e : T2. By lemma

9, Ty[eArrow] ⊆ T1 → T2 → T . By lemma 13, there exist quantifers ~α, ~β,~γ

and types A,B,A′, B′, C such that: T1 ⊆ ∀[~γ](∀[~α](A → B)≤̇∀[~β](A′ → B′)),

T2 ⊆ ∀[~γ](∀Q, θ.(∀[~α]≤̂∀[~β] ◦ Q ◦ θ) → (A′≤̇QθA) → (QθB≤̇B′) → C), and

∀[~γ]C ⊆ T .

By lemma 23, ∀[~α](A → B) ⊆ ∀[~β](A′ → B′). Now by lemma 12, there

exist fresh quantifiers ~δ and a substitution θ1 such that dom(θ1) = ~α, A′ ⊆

∀[~δ]Subst[θ1]A and ∀[~δ]Subst[θ1]B ⊆ B′. Now let Γ′ = (Γ, pl1 : ∀[~γ](∀[~α]≤̂∀[~β] ◦

∀[~δ] ◦ Subst[θ1]), pl2 : ∀[~γ](A′≤̇∀[~δ]Subst[θ1]A), pl3 : ∀[~γ](∀[~δ]Subst[θ1]B≤̇B′)).

Note that ` Γ′ holds.

By instantiating Q to ∀[~δ] and θ to Subst[θ1] and distributing ∀[~γ] three times,

we can derive:
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∀[~γ]((∀[~α]≤̂∀[~β] ◦Q ◦ θ)→

(A′≤̇QθA)→

(QθB≤̇B′)→

C)

⊆(∀[~γ](∀[~α]≤̂∀[~β] ◦ ∀[~δ] ◦ Subst[θ1]))→

(∀[~γ](A′≤̇∀[~δ]Subst[θ1]A))→

(∀[~γ](∀[~δ]Subst[θ1]B≤̇B′))→

(∀[~γ]C)

Now since ∀[~γ]C ⊆ T , we get Γ′ ` e pl1 pl2 pl3 : T as required.

Case coerce e v −→ e: By lemma 11, we have Γ ` coerce : T1 → T2 → T ,

Γ ` e : T1, and Γ ` v : T2. By lemma 9, Ty[coerce] ⊆ T1 → T2 → T . Therefore,

there exist quantifiers ~α and a substitution θ such that T1 ⊆ ∀[~α]Subst[θ]X, T2 ⊆

∀[~α]Subst[θ](X≤̇Y ), and ∀[~α]Subst[θ]Y ⊆ T . Note that ∀[~α]Subst[θ](X≤̇Y ) ≡

∀[~α](Subst[θ]X≤̇Subst[θ]Y ) ⊆ ∀[~α]Subst[θ]X≤̇∀[~α]Subst[θ]Y . By lemma 23,

∀[~α]Subst[θ]X ⊆ ∀[~α]Subst[θ]Y . Therefore, Γ ` e : T as required.

Proof of Lemma 25. By contradiction. Assume Γ ` e : Exp[T ] and e is a value.

Then either e = O e1 . . . ei, where i < arity(O), or e = P v1 . . . vi, where

i = arity(P ) and each vj is a value.

In the first case, lemma 11 states there exist types T1, . . . , Ti such that Γ `

O : T1 → · · · → Ti → Exp[T ]. By lemma 9, Ty[O] ⊆ T1 → · · · → Ti → Exp[T ].

Since i < arity(O), there exist quantifies ~α and types U1, U2 such that ∀[~α](U1 →

U2) ⊆ Exp[T ], a contradiction.

In the second case, lemma 11 states there exist types T1, . . . , Ti such that Γ `
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P : T1 → · · · → Ti → Exp[T ]. By lemma 9, Ty[P ] ⊆ T1 → · · · → Ti → Exp[T ].

Since i = arity(P ), there exist quantifiers ~α and types U1, U2 such that either

∀[~α](U1≤̇U2) ⊆ Exp[T ] or ∀[~α](U1≤̂U2) ⊆ Exp[T ]. Either case is a contradiction.

Proof of Theorem 26. By induction on the structure of e.

Case e = G e1 e2 e3. If e3 is not a value, then by induction e′3 −→ e′3 and

e −→ G e1 e2 e
′
3. Otherwise, by lemma 25, e3 = Q O or e3 = A e4 e5. In the first

case, e −→ e1 O. In the second, e −→ e2 e4 e4.

Case e = O e1 . . . ei, where i = arity(O), O 6= G. Since O is fully applied,

the appropriate reduction rule applies.

Proof of Theorem 27. Follows from theorems 24 and 26.
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APPENDIX B

Optimizations

Included in this appendix are the three optimization steps which together with

SK2KI form our complete optimizer. We also define several helper functions

to increase the readability of our optimizer. These fall into three categories.

Matching functions (matchAtom, matchApp, . . . ) use G and the Is-operators to

match particular compound expressions. For example, matchS1 is used to match

an expression of the form A (Q S) e, that is, an application of S to a single

argument.

The functions trans2 and dist2 can be understood as derived proof construc-

tors, defined in terms of other proof constructors. For example, trans2 combines

two trans steps into a larger composite.

The function expandI is similar to expandK listed in figure 1. Given a proof

term introduced by IsI, expandI returns the essential consequence of the proof.

The optimization steps reduceK and reduceS evaluate K and S redexes in the

input term. They use the enactK and enactS functions from our self-interpreter

(discussed in section 9 and listed in appendix C), without the recursive call to

enact.

The Eta optimization step performs the equivalent of η-reduction for our

combinator calculus. η-reduction is defined for the λ calculus as follows:
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λx.e x −→ e, if x 6∈ fv(e)

Desugaring λx.e x yields S (K e′) I, where e′ is the result of desugaring e.

We can see that this term is equivalent to e′:

S (K e′) I x −→ K e′ x (I x) −→ e′ (I x) ≡ e′ x

The function proveEta constructs the proof for the Eta optimization step,

which proves that the type of e′ must be a subtype of the type of S (K e′) I.

l e t (composeOpt4 : (∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)→

(∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)→

(∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)→

(∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)→

(∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U)) =

λ(opt1 : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U).

λ(opt2 : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U).

λ(opt3 : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U).

λ(opt4 : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U).

composeOpt opt1 (composeOpt opt2 (composeOpt opt3 opt4)) in

l e t (matchAtom : ∀T, U.U → (T → U)→ Exp[T ]→ U) =

λ(ifNotAtom : U).λ(ifAtom : T → U).G ifAtom (K (K ifNotAtom)) in

l e t (matchApp : ∀T, U.U → (∀T1.Exp[T1 → T ]→ Exp[T1]→ U)→

Exp[T ]→ U) =

λ(ifNotApp : U).
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λ(ifApp : ∀T1.Exp[T1 → T ]→ Exp[T1]→ U).

G (K ifNotApp) ifApp in

l e t (matchS1 : ∀T, U.U → (∀T1.(Ty[S]≤̇T1 → T )→ Exp[T1]→ U)→

Exp[T ]→ U) =

λ(ifNotS1 : U).λ(ifS1 : ∀T1.(Ty[S]≤̇T1 → T )→ Exp[T1]→ U).

matchApp ifNotS1 (matchAtom (K ifNotS1)

(λ(ek : T1 → T ).IsS ek (λ(p : Ty[S]≤̇T1 → T ).K (ifS1 p))(K ifNotS1))) in

l e t (matchK0 : ∀T, U.U → ((Ty[K]≤̇T )→ U)→ Exp[T ]→ U) =

λ(ifNotK0 : U).λ(ifK0 : (Ty[K]≤̇T )→ U).

matchAtom ifNotK0

(λ(ei : T ).IsK ei (λ(p : Ty[K]≤̇T ).K (ifK0 p)) ifNotK0) in

l e t (trans2 : ∀T, U, V,W.(T ≤̇U)→ (U≤̇V )→ (V ≤̇W )→ (T ≤̇W )) =

λ(p1 : T ≤̇U).λ(p2 : U≤̇V ).λ(p3 : V ≤̇W ).trans p1 (trans p2 p3) in

l e t (dist2 : ∀ρ, T, U, V.ρ(T → U → V )≤̇ρT → ρU → ρV ) =

trans dist(iArrow refl dist) in

l e t (matchApp2 : ∀T, U.U →

(∀T1, T2.Exp[T1 → T2 → T ]→ Exp[T1]→ Exp[T2]→ U)→

Exp[T ]→ U) =

λ(ifNotApp2 : U).

λ(ifApp2 : ∀T1, T2.Exp[T1 → T2 → T ]→ Exp[T1]→ Exp[T2]→ U).

matchApp ifNotApp2 (matchApp (K ifNotApp2) ifApp2) in
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l e t (matchApp3 : ∀T, U.U →

(∀T1, T2, T3.Exp[T1 → T2 → T3 → T ]→

Exp[T1]→ Exp[T2]→ Exp[T3]→ U)→

Exp[T ]→ U) =

λ(ifNotApp3 : U).

λ(ifApp3 : ∀T1, T2, T3.Exp[T1 → T2 → T3 → T ]→

Exp[T1]→ Exp[T2]→ Exp[T3]→ U).

matchApp ifNotApp3 (matchApp2 (K ifNotApp3) ifApp3) in

l e t (matchS2 : ∀T, U.U → (∀T1, T2.(Ty[S]≤̇T1 → T2 → T )→

Exp[T1]→ Exp[T2]→ U)→

Exp[T ]→ U) =

λ(ifNotS2 : U).

λ(ifS2 : ∀T1, T2.(Ty[S]≤̇T1 → T2 → T )→ Exp[T1]→ Exp[T2]→ U).

matchApp2 ifNotS2 (matchAtom (K (K ifNotS2))

(λ(es : T1 → T2 → T ).

IsS es (λ(p : Ty[S]≤̇T1 → T2 → T ). K (ifS2 p)) (K (K ifNotS2)))) in

l e t (matchS3 : ∀T, U.U → (∀T1, T2, T3.(Ty[S]≤̇T1 → T2 → T3 → T )→

Exp[T1]→ Exp[T2]→ Exp[T3]→ U)→

Exp[T ]→ U) =

λ(ifNotS3 : U).

λ(ifS3 : ∀T1, T2, T3.(Ty[S]≤̇T1 → T2 → T3 → T )→

Exp[T1]→ Exp[T2]→ Exp[T3]→ U).

matchApp3 ifNotS3 (matchAtom (K (K (K ifNotS3)))

(λ(es : T1 → T2 → T3 → T ).
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IsS es

(λ(p : Ty[S]≤̇T1 → T2 → T3 → T ).

K (ifS3 p)) (K (K (K ifNotS3))))) in

l e t (matchK1 : ∀T, U.U → (∀T1.(Ty[K]≤̇T1 → T )→ Exp[T1]→ U)→

Exp[T ]→ U) =

λ(ifNotK1 : U).

λ(ifK1 : ∀T1.(Ty[K]≤̇T1 → T )→ Exp[T1]→ U).

matchApp ifNotK1 (matchAtom (K ifNotK1)

(λ(ek : T1 → T ).

IsK ek (λ(p : Ty[K]≤̇T1 → T ). K (ifK1 p)) (K ifNotK1))) in

l e t (matchK2 : ∀T, U.U →

(∀T1, T2.(Ty[K]≤̇T1 → T2 → T )→

Exp[T1]→ Exp[T2]→ U)→

Exp[T ]→ U) =

λ(ifNotK2 : U).

λ(ifK2 : ∀T1, T2.(Ty[K]≤̇T1 → T2 → T )→ Exp[T1]→ Exp[T2]→ U).

matchApp2 ifNotK2 (matchAtom (K (K ifNotK2))

(λ(es : T1 → T2 → T ).

IsK es (λ(p : Ty[K]≤̇T1 → T2 → T ). K (ifK2 p)) (K (K ifNotK2)))) in

l e t (matchI0 : ∀T, U.U → ((Ty[I]≤̇T )→ U)→ Exp[T ]→ U) =

λ(ifNotI0 : U).λ(ifI0 : (Ty[I]≤̇T )→ U).

matchAtom ifNotI0

(λ(ei : T ).
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IsI ei (λ(p : Ty[I]≤̇T ). K (ifI0 p)) ifNotI0) in

l e t (analyzeEta : ∀T, U.U →

(∀T1, T2, T3.Exp[T3]→ (Ty[S]≤̇T1 → T2 → T )→

(Ty[K]≤̇T3 → T1)→ (Ty[I]≤̇T2)→ U)→

Exp[T ]→ U) =

λ(ifNotEta : U).

λ(ifEta : ∀T1, T2, T3.Exp[T3]→ (Ty[S]≤̇T1 → T2 → T )→

(Ty[K]≤̇T3 → T1)→ (Ty[I]≤̇T2)→ U).

matchS2 ifNotEta

(λ(pS : Ty[S]≤̇T1 → T2 → T ). λ(e1 : Exp[T1]). λ(e2 : Exp[T2]).

matchK1 ifNotEta

(λ(pK : Ty[K]≤̇T3 → T1). λ(e3 : Exp[T3]).

matchI0 ifNotEta (λ(pI : Ty[I]≤̇T2). ifEta e3 pS pK pI) e2) e1) in

l e t (expandI : (Ty[I]≤̇ϕ(T → U))→ T ≤̇U) =

λ(pIsI : Ty[I]≤̇ϕ(T → U)).

eArrow pIsI

(λ(p1 : ϕ1≤̂ϕ ◦ ϕ2 ◦ σ1). λ(p2 : T ≤̇ϕ2σ1X). λ(p3 : ϕ2σX≤̇U).

trans p2 p3) in

l e t (proveEta : ∀T1, T2, T3.(Ty[S]≤̇T2 → T1 → T )→ (Ty[K]≤̇T3 → T2)→

(Ty[I]≤̇T1)→ T3≤̇T ) =

λ(pS : Ty[S]≤̇T2 → T1 → T ).

λ(pK : Ty[K]≤̇T3 → T2).

λ(pI : Ty[I]≤̇T1).
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eBinary pS

(λ(p1 : ϕ1≤̂ϕ2 ◦ σ1).

λ(p2 : T2≤̇ϕ2σ1(X1 → X2 → X3)).

λ(p3 : T1≤̇ϕ2σ1(X1 → X2)).

λ(p4 : ϕ2σ1(X1 → X3)≤̇T ).

l e t (p5 : Ty[I]≤̇ϕ2(σ1X1 → σ1X2)) = trans pI(trans p3 (congrdist)) in

l e t (p6 : σ1X1≤̇σ1X2) = expandI p5 in

eArrow pK

(λ(p7 : ϕ3≤̂ϕ4 ◦ σ2).

λ(p8 : T3≤̇ϕ4σ2V1).

λ(p9 : ϕ4σ2(V2 → V1)≤̇T2).

l e t (p10 : ϕ4σ2(V2 → V1)≤̇ϕ2(σ1X1 → σ1X2 → σ1X3)) =

trans2 p9 p2 (congr dist2) in

eArrow p10

(λ(p11 : ϕ4 ◦ σ2≤̂ϕ2 ◦ ϕ5 ◦ σ3).

λ(p12 : σ1X1≤̇ϕ5σ3V2).

λ(p13 : ϕ5σ3V1≤̇σ1X2 → sigma1X3).

l e t (p14 : T3≤̇ϕ2ϕ5σ3V1) = trans p8 p11 in

l e t (p15 : T3≤̇ϕ2σ1X2 → sigma1X3) = trans p14 (congr p13) in

l e t (p16 : σ1X2 → sigma1X3≤̇σ1(X1 → X3))

= trans (iArrow p6 refl) factor in

l e t (p17 : T3≤̇T ) = trans2 p15 (congr p16) p4 in

p17))) in

l e t (Eta : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U) =

λ(ifNoOpt : U). λ(ifOpt : Exp[T ]→ U).
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analyzeEta ifNoOpt

(λ(e3 : Exp[T ′3]).

λ(pS : Ty[S]≤̇T ′1 → T ′2 → T ).

λ(pK : Ty[K]≤̇T ′3 → T ′1).

λ(pI : Ty[I]≤̇T ′2).

ifOpt (coerce e3 (iExp (proveEta pS pK pI)))) in

l e t (enactK : ∀T1, T2, T3.(Ty[K]≤̇T1 → T2 → T3)→

Exp[T1]→ Exp[T2]→ Exp[T3]) =

(λ(pIsK : Ty[K]≤̇T1 → T2 → T3) .

λ(e1 : Exp[T1]).λ(e2 : Exp[T2]).

eBinary pIsK

(λ(p1 : ϕ≤̂ϕ′ ◦ σ) .

λ(p2 : T1≤̇ϕ′σX) .

λ(p3 : T2≤̇ϕ′σZ) .

λ(p4 : ϕ′σX≤̇T ) .

l e t (p5 : T1≤̇T ) = trans p2 p4 in

l e t (p6 : Exp[T1]≤̇Exp[T ]) = iExp p5

in coerce e1 p6)) in

l e t (reduceK : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U) =

λ(notK : U).λ(ifK : Exp[T ]→ U).

matchK2 notK (λ(p : Ty[K]≤̇T1 → T2 → T ).λ(e1 : Exp[T1]).λ(e2 : Exp[T2]).

ifK (enactK p e1 e2)) in
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l e t (enactS : ∀T1, T2, T3, T4.(Ty[S]≤̇T1 → T2 → T3 → T4)→

Exp[T1]→ Exp[T2]→ Exp[T3]→ Exp[T4]) =

λ(p : Ty[S]≤̇T1 → T2 → T3 → T4).

λ(e1 : Exp[T1]), (e2 : Exp[T2]), (e3 : Exp[T3]).

eTernary p

(λ(p1 : ∀[X1, X2, X3]≤̂(ϕ ◦ σ)).

λ(p2 : T1≤̇ϕσ(X1 → X2 → X3)).

λ(p3 : T2≤̇ϕσ(X1 → X2)).

λ(p4 : T3≤̇ϕσX1).

λ(p5 : ϕσX3≤̇T4).

l e t (p′2 : T1≤̇ϕσX1 → ϕσX2 → ϕσX3) = trans p2 dist2 in

l e t (p′3 : T2≤̇ϕσX1 → ϕσX2) = trans p3 dist in

l e t (e′1 : Exp[ϕσX1 → ϕσX2 → ϕσX3]) = coerce e1 (iExp p′2) in

l e t (e′2 : Exp[ϕσX1 → ϕσX2]) = coerce e2 (iExp p′3) in

l e t (e′3 : Exp[ϕσX1]) = coerce e3 (iExp p4) in

coerce (A (A e′1 e
′
3) (A e′2 e

′
3)) (iExp p5)) in

l e t (reduceS : ∀T, U.U → (Exp[T ]→ U)→ Exp[T ]→ U) =

λ(notS : U).λ(ifS : Exp[T ]→ U).

matchS3 notS (λ(p : Ty[S]≤̇T1 → T2 → T3 → T4).

λ(e1 : Exp[T1]).λ(e2 : Exp[T2]).λ(e3 : Exp[T3]).

ifS (enactS p e1 e2 e3)) in
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APPENDIX C

A Self-Interpreter

Our self-interpreter enact can be used to evaluate a representation of any expres-

sion in our language, including itself. We discuss the self-interpreter in detail in

section 9.

l e t (unquote : ∀X.Exp[X]→ X) =

l e t r e c (unquote : ∀X.Exp[X]→ X) =

G I (λ(e1 : Exp[T1 → T ]).λ(e2 : Exp[T1]).unquote e1 (unquote e2)) in

l e t r e c (enact : ∀T.Exp[T ]→ Exp[T ]) =

l e t (enactK : ∀T1, T2, T3.(Ty[K]≤̇T1 → T2 → T3)→

Exp[T1]→ Exp[T2]→ Exp[T3]) =

(λ(pIsK : Ty[K]≤̇T1 → T2 → T3) .

λ(e1 : Exp[T1]).λ(e2 : Exp[T2]).

eBinary pIsK

(λ(p1 : ϕ≤̂ϕ′ ◦ σ) .

λ(p2 : T1≤̇ϕ′σX) .

λ(p3 : T2≤̇ϕ′σZ) .

λ(p4 : ϕ′σX≤̇T ) .

l e t (p5 : T1≤̇T ) = trans p2 p4 in

l e t (p6 : Exp[T1]≤̇Exp[T ]) = iExp p5
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in enact(coerce e1 p6))) in

l e t (enactS : ∀T1, T2, T3, T4.(Ty[S]≤̇T1 → T2 → T3 → T4)→

Exp[T1]→ Exp[T2]→ Exp[T3]→ Exp[T4]) =

λ(p : Ty[S]≤̇T1 → T2 → T3 → T4).

λ(e1 : Exp[T1]), (e2 : Exp[T2]), (e3 : Exp[T3]).

eTernary p

(λ(p1 : ∀[X1, X2, X3]≤̂(ϕ ◦ σ)).

λ(p2 : T1≤̇ϕσ(X1 → X2 → X3)).

λ(p3 : T2≤̇ϕσ(X1 → X2)).

λ(p4 : T3≤̇ϕσX1).

λ(p5 : ϕσX3≤̇T4).

l e t (p′2 : T1≤̇ϕσX1 → ϕσX2 → ϕσX3) = trans p2 dist2 in

l e t (p′3 : T2≤̇ϕσX1 → ϕσX2) = trans p3 dist in

l e t (e′1 : Exp[ϕσX1 → ϕσX2 → ϕσX3]) = coerce e1 (iExp p′2) in

l e t (e′2 : Exp[ϕσX1 → ϕσX2]) = coerce e2 (iExp p′3) in

l e t (e′3 : Exp[ϕσX1]) = coerce e3 (iExp p4) in

enact(coerce (A (A e′1 e
′
3) (A e′2 e

′
3)) (iExp p5))) in

l e t (enactStrict : ∀T.Exp[T ]→ Exp[T ]) =

l e t r e c (f : ∀T.Exp[T ]→ Exp[T ]) =

G Q (λ(e1 : Exp[T1 → T ]).λ(e2 : Exp[T1]).A (f e1) (f (enact e2))) in

l e t (enactG : ∀T1, T2, T3, T4.(Ty[G]≤̇T1 → T2 → T3 → T4)→

Exp[T1]→ Exp[T2]→ Exp[T3]→ Exp[T4]) =

λ(pIsG : Ty[G]≤̇T1→ T2→ T3→ T4) .
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λ(e1 : Exp[T1]).λ(e2 : Exp[T2]).λ(e3 : Exp[T3]) .

l e t (error : Exp[T4]) = A (A (A (Q (coerce G pIsG)) e1) e2) e3 in

l e t (mkFQ : ϕ(Exp[U1→ U2]→ Exp[U1]→ Exp[U2])) = A in

l e t (mkFA : ϕ((∀U3.Exp[Exp[U3→ U1]→ Exp[U3]→ U2])→

(∀U3.Exp[Exp[U3→ U1]]→ Exp[Exp[U3]]→ Exp[U2])))

= λ(x1 : ∀U3.Exp[Exp[U3→ U1]→ Exp[U3]→ U2]) .

λ(x2 : Exp[Exp[U3→ U1]]) .

λ(x3 : Exp[Exp[U3]]) .

A (A x1 x2) x3 in

l e t (fG : ϕ((Exp[U1]→ Exp[U2])→

(∀U3.Exp[Exp[U3→ U1]]→ Exp[Exp[U3]]→ Exp[U2])→

Exp[Exp[U1]]→ Exp[U2])) =

λ(fQ : Exp[U1]→ Exp[U2]) .

λ(fA : ∀U3.Exp[Exp[U3→ U1]]→ Exp[Exp[U3]]→ Exp[U2]) .

G (λ(z : Exp[U1]). error)

(λ(e4 : Exp[U4→ Exp[U1]]) . // (Q Q) or (A (Q A) p ’ )

λ(e5 : Exp[U4]) . // ’ o

G (λ(e′4 : U4→ Exp[U1]) . // Q

IsQ e′4

(λ(p7 : Ty[Q]≤̇U4→ Exp[U1]) .

λ(unusedQ : Ty[Q]) .

eArrow p7

(λ(p8 : ϕ2≤̂ϕ3 ◦ σ1) .

λ(p9 : U4≤̇ϕ3σ1U5) .

λ(p10 : ϕ3σ1Exp[U5]≤̇Exp[U1]) .

l e t (p11 : ϕ3σ1U5≤̇U1) =
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eExp (trans factorExp p10) in

l e t (p12 : Exp[U4]≤̇Exp[U1]) =

iExp (trans p9 p11) in

fQ (coerce e5 p12)))

error)

// Q A

(λ(e6 : Exp[U5→ U4→ Exp[U1]]) .

λ(e7 : Exp[U5]) .

G (λ(e′6 : U5→ U4→ Exp[U1]) .

IsA e′6

(λ(p13 : Ty[A]≤̇U5→ U4→ Exp[U1]) .

λ(unusedA : Ty[A]) .

eBinary p13

(λ(p14 : ϕ4≤̂ϕ5 ◦ σ2) .

λ(p15 : U5≤̇ϕ5σ2Exp[U6→ U7]) .

λ(p16 : U4≤̇ϕ5σ2Exp[U6]) .

λ(p17 : ϕ5σ2Exp[U7]≤̇Exp[U1]) .

l e t (p18 : U5≤̇Exp[ϕ5σ2U6→ ϕ5σ2U7]) =

trans p15 (trans distExp (iExp dist)) in

l e t (p19 : U4≤̇Exp[ϕ5σ
′U6]) = trans p16 distExp in

l e t (p20 : ϕ5σ
′U7≤̇U1) =

eExp (trans factorExp p17) in

l e t (p21 : U5≤̇Exp[ϕ5σ
′U6→ U1]) =

trans2 p18 distExp (iExp

(iArrow refl (eExp (trans factorExp p17)))) in

l e t (e′7 : Exp[Exp[ϕ5σ
′U6→ U1]]) =
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coerce e7 (iExp p21) in

l e t (e′5 : Exp[Exp[ϕ5σ
′U6]]) =

coerce e5 (iExp p19) in

fA e′7 e
′
5))

error) // IsA f a i l e d

(K (K error)) // e 6 = A x y

e6)

e4) in

eTernary pIsG

(λ(p2 : ϕ≤̂ϕ1 ◦ σ) .

λ(p3 : T1≤̇ϕ1σ(U1→ U2)) .

λ(p4 : T2≤̇ϕ1σ(∀U3.Exp[U3→ U1]→ Exp[U3]→ U2)) .

λ(p5 : T3≤̇ϕ1σExp[U1]) .

λ(p6 : ϕ1σU2≤̇T4) .

l e t (mkFQ′ : ϕ1σExp[U1→ U2]→

ϕ1σ(Exp[U1]→ Exp[U2])) =

coerce mkFQ (trans p2 dist) in

l e t (fQ′ : ϕ1σ(Exp[U1]→ Exp[U2])) =

mkFQ′ (coerce e1 (trans (iExp p3) factorExp)) in

l e t (mkFA′ : ϕ1σ(∀U3.Exp[Exp[U3→ U1]→ Exp[U3]→ U2])→

ϕ1σ(∀U3.Exp[Exp[U3→ U1]]→

Exp[Exp[U3]]→ Exp[U2])) =

coerce mkFA (trans p2 dist) in

l e t (fA′ : ϕ1σ(∀U3.Exp[Exp[U3→ U1]]→

Exp[Exp[U3]]→ Exp[U2])) =

mkFA′ (coerce e2 (trans (iExp p4) factorExp)) in
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l e t (fG′ : ϕ1σ(Exp[U1]→ Exp[U2])→

ϕ1σ(∀U3.Exp[Exp[U3→ U1]]→

Exp[Exp[U3]]→ Exp[U2])→

ϕ1σExp[Exp[U1]]→

ϕ1σExp[U2]) =

coerce fG (trans p2 (trans dist (iArrow refl dist2))) in

l e t (e′3 : Exp[ϕ1σExp[U1]]) = enact (coerce e3 (iExp p5)) in

l e t (e : ϕ1σExp[U2]) = fG′ fQ′ fA′ (coerce e′3 factorExp) in

l e t (p′6 : ϕ1σExp[U2]≤̇Exp[T4]) = trans distExp (iExp p6) in

enact (coerce e p′6)) in

l e t (enactIs : ∀T1, T2, T3, T4.(TyIs≤̇T1 → T2 → T3 → T4)→ TyIs→

Exp[T1]→ Exp[T2]→ Exp[T3]→ Exp[T4]) =

(λ(p1 : TyIs≤̇X → Y → Z → T4) .

λ(o′ : TyIs) .

l e t (mkIs : U1→ (U2→ U3→ Exp[U4])→ Exp[U4]→ Exp[U4]→

Exp[U1]→ Exp[U2→ U3→ U4]→ Exp[U4]→ Exp[U4])

= λ(isO : U1→ (U2→ U3→ Exp[U4])→ Exp[U4]→ Exp[U4]) .

λ(o′′ : Exp[U1]) .

λ(eTrue : Exp[U2→ U3→ U4]) .

λ(eFalse : Exp[U4]) .

G(λ(a : U1) .

isO (unquote o′′)

(λ(p : U2).λ(t : U3).A (A eTrue (Q p)) (Q t))

eFalse)

(K (K eFalse))
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(enact o′′) in

l e t (is : ϕ(Exp[U1]→ Exp[U2→ U3→ U4]→ Exp[U4]→ Exp[U4]))

= (coerce mkIs dist) o′ in

eArrow p1

(λ(p2 : ϕ≤̂ϕ1 ◦ σ1) .

λ(p3 : T1≤̇ϕ1σ1U1) .

λ(p4 : ϕ1σ1(U2→ U3→ U4)→ U4→ U4≤̇T2→ T3→ T4) .

λ(e1 : Exp[T1]) .

l e t (is1 : (ϕ1σ1Exp[U1])→

(ϕ1σ1Exp[U2→ U3→ U4]→ Exp[U4]→ Exp[U4])) =

coerce is (trans p2 dist) in

l e t (is2 : ϕ1σ1Exp[U2→ U3→ U4]→ Exp[U4]→ Exp[U4]) =

is1(coerce e1 (trans (iExp p3) factorExp)) in

eBinary p4

(λ(p5 : ϕ1 ◦ σ1≤̂ϕ3 ◦ σ3) .

λ(p6 : T2≤̇ϕ3σ3(U2→ U3→ U4)) .

λ(p7 : T3≤̇ϕ3σ3U4) .

λ(p8 : ϕ3σ3U4≤̇T4) .

λ(e2 : Exp[T2]), (e3 : Exp[T3]) .

l e t (is3 : ϕ3σ3Exp[U2→ U3→ U4]→

ϕ3σ3Exp[U4]→ ϕ3σ3Exp[U4]) =

coerce is2 (trans p5 dist2) in

l e t (e : ϕ3σ3Exp[U4]) =

is3 (coerce e2 (trans (iExp p6) factorExp))

(coerce e3 (trans (iExp p7) factorExp)) in

enact (coerce e (trans distExp (iExp p8)))))) in
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l e t (enactY : ∀T1, T2, T3.(Ty[Y]≤̇T1 → T2 → T3)→

Exp[T1]→ Exp[T2]→ Exp[T3]) =

λ(p1 : Ty[Y]≤̇T1 → T2 → T3).

λ(e1 : Exp[T1]).λ(e2 : Exp[T2]).

eBinary p1

(λ(p2 : ∀[X1, X2]≤̂ϕ ◦ σ).

λ(p3 : T1≤̇ϕσ((X1 → X2)→ X1 → X2)).

λ(p4 : T2≤̇ϕσX1).

λ(p5 : ϕσX2≤̇T3).

l e t (e′1 : Exp[ϕσ(X1 → X2)→ ϕσX1 → ϕσX2]) =

coerce e1 (iExp (trans p3 dist2)) in

l e t (y : ϕσ((X1 → X2)→ (X1 → X2))→ ϕσ(X1 → X2)) =

coerce Ydist in

l e t (e : Exp[ϕσX1 → ϕσX2]) =

A e′1 (A (Q y) (coerce e1 (iExp p3))) in

enact (coerce (A e(coerce e2 (iExp p4))) (iExp p5))) in

l e t (enactCoerce : ∀T1, T2, T3.(Ty[coerce]≤̇T1 → T2 → T3)→

Exp[T1]→ Exp[T2]→ Exp[T3]) =

λ(pIsCoerce : Ty[coerce]≤̇T1 → T2 → T3) .

l e t (f : Exp[U1]→ Exp[U1≤̇U2]→ Exp[U2]) =

λ(a1 : Exp[U1]) .

λ(a2 : Exp[U1≤̇U2]) .

coerce a1 (iExp (unquote (enactStrict (enact a2)))) in

eBinary pIsCoerce
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(λ(p1 : ϕ≤̂ϕ′ ◦ σ′) .

λ(p2 : T1≤̇ϕ′σ′V1) .

λ(p3 : T2≤̇ϕ′σ′(V1≤̇V2)) .

λ(p4 : ϕ′σ′V2≤̇T3) .

λ(e1 : Exp[T1]) .

λ(e2 : Exp[T2]) .

l e t (f ′ : ϕ′σ′Exp[V1]→ ϕ′σ′Exp[V1≤̇V2]→ ϕ′σ′Exp[V2]) =

coerce f (trans p1 dist2) in

l e t (e′1 : ϕ′σ′Exp[V1]) =

coerce e1 (trans (iExp p2) factorExp) in

l e t (e′2 : ϕ′σ′Exp[V1≤̇V2]) =

coerce e2 (trans (iExp p3) factorExp) in

l e t (e : ϕ′σ′Exp[V2]) = f ′e′1e
′
2 in

enact (coerce e (trans distExp (iExp p4)))) in

l e t (enactEArrow : ∀T1, T2, T3.(Ty[eArrow]≤̇T1 → T2 → T3)→

Exp[T1]→ Exp[T2]→ Exp[T3]) =

λ(pIsEArrow : Ty[eArrow]≤̇T1 → T2 → T3) .

l e t (f : ϕ(Exp[ϕ1(U1 → U2)≤̇ϕ2(V1 → V2)]→

Exp[∀ϕ3, θ3.(ϕ1≤̂ϕ2 ◦ ϕ3 ◦ θ3)→

(V1≤̇ϕ3θ3U1)→ (ϕ3θ3U2≤̇V2)→ C]→

Exp[C])) =

λ(q1 : Exp[ϕ1(U1 → U2)≤̇ϕ2(V1 → V2)]) .

λ(g : Exp[∀ϕ3, θ3.(ϕ1≤̂ϕ2 ◦ ϕ3 ◦ θ3)→

(V1≤̇ϕ3θ3U1)→ (ϕ3θ3U2≤̇V2)→ C]) .

eArrow (unquote (enactStrict (enact q1)))
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(λ(q2 : ϕ1≤̂ϕ2 ◦ ϕ3 ◦ θ3) .

λ(q3 : V1≤̇ϕ3θ3U1) .

λ(q4 : ϕ3θ3U2≤̇V2) .

A (A (A g (Q q2)) (Q q3)) (Q q4)) in

eBinary pIsEArrow

(λ(p1 : ϕ≤̂ϕ′ ◦ θ′) .

λ(p2 : X≤̇ϕ′θ′(ϕ1(U1 → U2)≤̇ϕ2(V1 → V2))) .

λ(p3 : Y ≤̇ϕ′θ′(∀ϕ3, θ3.(ϕ1≤̂ϕ2 ◦ ϕ3 ◦ θ3)→

(V1≤̇ϕ3θ3U1)→ (ϕ3θ3U2≤̇V2)→ C)) .

λ(p4 : ϕ′θ′C≤̇T ) .

λ(ex : Exp[T1]).λ(ey : Exp[T2]).

l e t (f ′ : ϕ′θ′Exp[ϕ1(U1 → U2)≤̇ϕ2(V1 → V2)]→

ϕ′θ′Exp[∀ϕ3, θ3.(ϕ1≤̂ϕ2 ◦ ϕ3 ◦ θ3)→

(V1≤̇ϕ3θ3U1)→ (ϕ3θ3U2≤̇V2)→ C]→

ϕ′θ′Exp[C]) =

coerce f (trans p1 dist2) in

l e t (e′x : ϕ′θ′Exp[ϕ1(U1 → U2)≤̇ϕ2(V1 → V2)]) =

coerce ex (trans (iExp p2) factorExp) in

l e t (e′y : ϕ′θ′Exp[∀ϕ3, θ3.(ϕ1≤̂ϕ2 ◦ ϕ3 ◦ θ3)→

(V1≤̇ϕ3θ3U1)→ (ϕ3θ3U2≤̇V2)→ C]) =

coerce ey (trans (iExp p3) factorExp) in

l e t (e : ϕ3θ3Exp[C]) = f ′ e′x e
′
y in

enact (coerce e (trans distExp (iExp p4)))) in

l e t (enactI : ∀T1, T2.(Ty[I]≤̇T1 → T2)→ Exp[T1]→ Exp[T2]) =

λ(p : Ty[I]≤̇T1 → T2).
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λ(e1 : Exp[T1]).

eArrow p

(λ(p1 : ∀[X]≤̂(ϕ ◦ σ)).

λ(p2 : T1≤̇ϕσX).

λ(p3 : ϕσX≤̇T2).

enact (coerce e1 (iExp (trans p2 p3)))) in

l e t (enact3 : ∀T1, T2, T3, T4.(T1 → T2 → T3 → T4)→

Exp[T1]→ Exp[T2]→ Exp[T3]→ Exp[T4]) =

λ(o : T1 → T2 → T3 → T4).

IsS o (λ(p : Ty[S]≤̇T1 → T2 → T3 → T4).λ(s : Ty[S]).enactS p) (

IsG o (λ(p : Ty[G]≤̇T1 → T2 → T3 → T4).λ(g : Ty[G]).enactG p) (

IsIs o enactIs (

λ(e1 : Exp[T1]).λ(e2 : Exp[T2]).λ(e3 : Exp[T3]).A(A(A(Qo)e1)e2)e3

))) in

l e t (enact2 : ∀T1, T2, T3.(T1 → T2 → T3)→ Exp[T1]→ Exp[T2]→ Exp[T3]) =

λ(o : T1 → T2 → T3).

IsK o (λ(p : Ty[K]≤̇T1 → T2 → T3).λ(k : Ty[K]).enactK p)(

IsY o (λ(p : Ty[Y]≤̇T1 → T2 → T3).λ(o′ : Ty[Y]).enactY p)(

IsCoerce o (λ(p : Ty[coerce]≤̇T1 → T2 → T3).λ(o′ : Ty[coerce]).

enactCoerce p)(

IsEArrow o (λ(p : Ty[eArrow]≤̇T1 → T2 → T3).λ(o′ : Ty[eArrow]).

enactEArrow p)(

λ(e1 : Exp[T1]).λ(e2 : Exp[T2]).A (A (Q o) e1) e2

)))) in

l e t (enact1 : ∀T1, T2.(T1 → T2)→ Exp[T1]→ Exp[T2]) =
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λ(o : T1 → T2).

IsI o (λ(p : Ty[I]≤̇T1 → T2).λ(o′ : Ty[I]).enactI p)(

λ(e1 : Exp[T1]).A (Q o) e1

) in

G Q

(λ(e1 : Exp[T1 → T ]).

G(λ(o : T1 → T ).enact1 o)

(G(λ(o : T2 → T1 → T ).enact2 o)

(G(λ(o : T3 → T2 → T1 → T ).enact3 o)

(λ(x1 : Exp[T4 → T3 → T2 → T1 → T ]).

λ(x2 : Exp[T4]).λ(x3 : Exp[T3]).λ(x4 : Exp[T2]).λ(x5 : Exp[T1]).

A (A (A (A x1 x2) x3) x4) x5)))

(enact e1))
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