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Direct Numerical Simulation (DNS) of simplified model problems is used to inves-

tigate the role of turbulence and internal waves in the Equatorial Undercurrents (EUC)

system. Prior observational studies of the Pacific EUC have established a strong cor-

relation between deep-cycle turbulence in the thermocline and internal waves. The

object of the thesis is to understand and quantify the dynamical processes underlying

turbulence and internal waves in the EUC. The investigation has three phases. In

the first phase, an idealized problem of a weakly-stratified shear layer located above a

thermocline is simulated to investigate internal waves excited by unstable shear. The

evolution of the shear layer consists of coherent Kelvin-Helmholtz (KH) rollers and

small-scale turbulence. Internal waves excited by the KH rollers are narrow-band and

of stronger amplitude that that of the broadband wave field generated by turbulence.

Internal waves are shown to carry significant amount of momentum and energy away

from the shear layer. In the second phase, the EUC is represented by a weakly strat-

ified shear layer on top of a stable stratified jet. The objective is to investigate the

interaction between the jet and the waves excited by the adjacent shear layer. Two

simulations are performed: one with the jet located far from the shear layer (far jet)

and the other with the shear layer on top of the jet (near jet). In the far jet, waves

excited by the KH rollers are reflected and trapped in the region between the shear

xx



layer and jet and lead to little dissipation. In the near jet, more representative of

the EUC configuration, waves with wavelength larger than that of the KH rollers are

found in and below the jet. Pockets of hot fluid associated with horseshoe vortices

that originate from the shear layer penetrate into the jet region, initiate turbulence

and disrupt the internal wave field. In the third final phase of the thesis, a stratified

jet situated below a well-mixed surface layer driven by a constant wind stress and

a surface buoyancy flux is considered. Turbulence is generated in the surface layer

and deepens into the jet upper-flank. Waves generated by the turbulent surface layer

propagate downward across the jet. The momentum flux and energy flux carried by

the waves are significantly weaker than the waves generated by the unstable shear in

the problem studied during the first phase. Intermittent patches of intense dissipation

inside the jet upper-flank are the result of ejections of fluid parcels.
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Chapter I

Introduction

Equatorial Undercurrents (EUC), eastward flows below westward surface currents

at the equator, constitute a major component of the current systems in the tropical

ocean. The EUCs are permanent in the Pacific and Atlantic oceans but seasonal in the

Indian ocean. The Pacific EUC has been described to be a “ribbon” (Stewart, 2004)

with a length of 13000 km, width of 300 km and depth of 200 m. The prevailing trade

winds drive a westward surface current which leads to an elevation of the sea surface

at the western boundary of the Pacific ocean basin. The resultant eastward horizontal

pressure gradient at the equator (Coriolis parameter, f = 0) is balanced in the surface

water by the westward wind stress but is unbalanced in subsurface waters where the

wind-generated stress decreases, leading to an eastward subsurface flow, the EUC. The

seasonal thermocline is deep in the western waters and shallow in the eastern waters

of the Pacific basin. The EUC plays a crucial role in the balance of the equatorial heat

budget and in the characteristics of the cold water tongue present off the equatorial

coast of South America. It is believed that variability in the EUC can affect the

surface temperature, modulate air/sea coupling, and thereby affect weather patterns

(Philander, 1980). Since vertical transport of momentum and heat by turbulence is an

important determinant of the upper ocean stratification and currents in response to

wind forcing, there have been sustained efforts since the 1980s into the description and

parameterization of the fine-scale structure of the EUC. The Tropic Heat experiments,

TH1 in November 1984 and TH2 in April 1987, and the Tropical Instability Wave

1
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Experiment (TIWE) in winter 1991 have provided data indicating a complex regime of

turbulence and internal waves in the Central Pacific, vicinity of 140◦W on the equator.

An observational campaign by investigators from Oregon and Washington was initiated

in 2008.

With recent advances in computational methods and infrastructure, numerical

models have emerged as powerful tools to complement and help interpret observational

data. The objectives of the present study are to use numerical approaches of high

accuracy to further characterize and understand small-scale processes in the EUC.

Model problems based on observations of oceanic background conditions are simulated

with focus on assessing the dynamics of turbulence and internal waves in the EUC

system. In the remainder of this chapter, a survey of prior relevant literature on the

EUC is given.

I.A Background conditions

During TH1 (November 1984) and TH2 (April 1987), intensive measurements of

velocities and temperature in the EUC were obtained at 0◦, 140◦W as reported by

Gregg et al. (1985), Peters et al. (1988), and Moum et al. (1989). Fig. I.1 shows a

typical vertical structure of the undercurrent zonal velocity and temperature. The EUC

system occupies approximately the upper 300 m of the ocean. The surface current is

usually westward (negative zonal velocity) with magnitude that depends on wind speed.

The eastward surface velocity, as in the 140W-1987 profile is atypical. At about 25-30

m depth, there is eastward flow, denoted by positive velocity, that intensifies with depth

as it reaches the maximum speed at a depth of about 110 m. The speed of the EUC

core can be as large as 1.5 m/s in the Pacific, while smaller values are observed in the

Atlantic and Indian oceans (Philander, 1980). Below the core, the undercurrents relax

down to near-zero velocity. The temperature profiles indicate three distinct regions

in the EUC system: the mixed/weakly-stratified region occupying the upper 25-30 m,

the thermocline located between depths of 30-100 m, and the strongly-stratified deep

region. In terms of stability, the profiles imply an upper region which is unstable with
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Figure I.1: Profiles of potential temperature and zonal velocities measured at the

equator. Profiles 140W-1984 are taken at 0230 UTC 28 November 1984

at 140◦W . Profiles 134W-1987 are taken at 0630 UTC 17 April 1987 at

134◦W . Profiles 140W-1987 are averaged data from 12 May - 11 June

1987 at 140◦W . Profiles are determined by linearly interpolating from the

observed data. Adapted from Skyllingstad & Denbo (1994)

.

gradient Richardson number, Rig = N2/S2, less than 0.25, where S is the shear and

N2 = −(g/ρ0)dρ/dz is the squared buoyancy frequency. The deep region is stable with

Rig > 2 while, in the thermocline, the stability is marginal (Peters et al., 1988) with

Rig between 0.25 and 0.35.

As shown in Fig. I.2, the background conditions of the EUC system show signif-

icant inter-annual variability. The EUC core velocity decreases from 1.5 m/s in 1984

to 1 m/s in 1987 resulting in a reduction of shear in the thermocline region. In 1987,

shortly after the peak of El Niño, the surface water was warmer and the stratification

in the thermocline was larger. Variation in both mean velocity and mean temperature

profiles leads to variation in the Richardson number profile, with potentially strong

effect on the the mixing dynamics. Presumably, factors such as wind direction and

speed, surface heat flux, and zonal pressure gradient lead to seasonal and annual vari-
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Figure I.2: Profiles of zonal velocities, meridional velocities and temperature, averaged

over the period from 12 May to 11 June from 1983 to 1987, at a surface

mooring. Adapted from McPhaden & Peters (1992).

ability of the EUC. The change in background conditions makes the EUC system hard

to typify; however, its complexity leads to different scenarios, rich with interesting fluid

dynamics.

Despite the variability in the vertical structure, the EUC system in the central

Pacific does exhibit common characteristics such as the velocity profile of a jet and

a shallow seasonal thermocline. Because of the diurnal cycle of the surface heat flux,

the mixed-layer depth (MLD) also shows diurnal behavior as shown in Fig. I.3. The

largest MLD is only 25 m. Other observations record greater depth such as in Lien et al.

(1996) and Moum et al. (1989) but still limited to the upper 40 m. The Richardson

number also shows diurnal modification as reported by Peters et al. (1988) and so

does the turbulent dissipation. The microstructure profiles in both TH1 and TH2

revealed an intriguing aspect, new to the oceanographic community at the time, that

large dissipation rates extend beyond the mixed-layer depth and into the stable region

during the night. This phenomenon is known as deep-cycle turbulence, further discussed

in the next section, whose understanding and parameterization is one of the objectives

of this study.
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Figure I.3: Observations taken during April 14-28, 1987. Hourly-averages of: surface

buoyancy flux; mixed-layer depth, MLD; squared shear, S2 and squared

buoyancy frequency, N2; gradient Richardson number, Rig; turbulent dis-

sipation, ǫ; and isotherm displacement, η. MLD is estimated as the depth

at which the density exceeds the surface value by 1%. Rig, ǫ and η are at

28 m depth. Adapted from Moum et al. (1992)

I.B Deep-cycle Turbulence

One of the most important observations in the EUC system is the induced dis-

sipation rate in the upper flank of the EUC core at night time. The peak nighttime

dissipation rate of the turbulent kinetic energy in the marginally-stable region exceeds
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(a)

(b)

Figure I.4: (a) Gradient Richardson numbers, Rig and (b) turbulent dissipation, ǫ, in

log scale. Adapted from Peters et al. (1988)

the corresponding daytime value by at least a factor of 10 as described by Lien et al.

(1996), Moum et al. (1989), and Peters et al. (1994), the so-called deep-cycle turbu-

lence. Fig. I.4 shows the deep-cycle turbulence observed by Peters et al. (1988) during

TH1. The figure shows bursts of turbulence from the upper weakly-stratified region

into the thermocline above the EUC core during night time.
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During TH1, Gregg et al. (1985) identify five zones within the EUC system with

respect to dissipation rate, ǫ: (1) the diurnal mixed layer, upper 10 to 30 m, has high

dissipation rate which is correlated with the surface heat flux; (2) the upper high-shear

zone, 30 to 90 m below the surface, has dissipation rate and turbulent flux that are

high although less than mixed layer values and decreases with depth as Rig increases.

In this zone, the dissipation rates vary by at least a factor of 10 during a diurnal cycle;

(3) the EUC core region, 90 to 120 m, where the zonal velocity peak lies, has low

dissipation rates; (4) the lower high-shear zone, 125 m to 150 m, has high dissipation

rate which the authors suggest to be due to the intrusions of the salinity maximum.

The high dissipation rate in the upper high-shear zone is suggested to correlate to

enhanced internal wave activity. It is suspected that internal waves, generated when

the turbulence is strong in the mixed layer, propagate down and “break” in the high

shear region leading to high nighttime dissipation rates in the upper shear zone. During

the day, the mixed zone is restratified, turbulence is suppressed resulting in little wave

activity in the shear zone.

Peters et al. (1988) further examine data from TH1 and attempt to parameterize

turbulence in the EUC system in terms of gradient Richardson number, Rig. They

define three vertical regions of the EUC: (1) the upper shear zone, from 23 m to 100

m below the surface, has low Rig, average of 0.35; (2) the EUC core, between 100 m

to 130 m, has Rig greater than 2.0; (3) the lower shear zone, below 130 m, has low

Rig, about 0.5. In region 1, athough the average over a 4.5 day period is Rig = 0.35,

about 40% of the data set shows values of Rig below the critical value 0.25. The value

of Rig exhibits a diurnal cycle only in the region above a depth of 50 m. A transition

dissipation rate, ǫtr = 25νN2, is used as a reference value to signify turbulence activity.

The dissipation rate in this upper-shear zone is as high as 1000 times the transition

value and varies diurnally by a factor of 100 between daytime and nighttime values.

The turbulent dissipation rate is low in regions 2 and 3.

The dataset of Moum et al. (1989), also taken during TH1, exhibits deep-cycle

turbulence too. The diurnal surface layer is weakly-stratified rather than truly well-

mixed. This layer is defined by the density step at its base which cycles between 10 m
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during daytime and 35 m during nighttime. The average dissipation is approximately

twice the surface buoyancy production of turbulent kinetic energy, and 3 times larger

than the expected value in a purely convective mixed layer suggesting that this layer is

not driven mainly by convective forcing. In the well-stratified thermocline, turbulent

“bursts” of 2 to 3 hours at night separated by several hours are observed. Although

the dissipation is intermittent at night, the rates are 100 to 1000 times larger than

during the day. The day-night cycle is stronger in the thermocline than in the surface

layer. The bursts are suspected to relate to internal waves generated at the mixed

layer base. One example of breaking internal waves is noted in the towed thermistor

chain measurement. The data shows induced dissipation when a wave packet, 15 m

in vertical displacement and 500 m in horizontal wavelength, breaks at night. Nearly

70% of the surface heat flux is transported vertically below 30 m by turbulent mixing,

and an insignificant amount penetrates the EUC core.

Wijesekera & Dillon (1991) use a wave dissipation model based on the observed

turbulent kinetic energy dissipation rate from TH1 to investigate the momentum bud-

get of the upper equatorial ocean. From the model’s results, they conclude that, after

sunset, internal waves are generated at the base of the mixed-layer as a result of convec-

tive overturns. As the waves propagate downward, they become unstable and generate

turbulent eddies above the EUC core where the local Rig is driven to be less than 0.25

due to the overlap of internal waves and EUC shear. The dissipation rate at the EUC

core is small because of the small shear. The model shows that the vertical length

scales of the wave field are greater than 100 m. The wave radiation stress is estimated

to be as large as the observed average wind stress and an order of magnitude larger

than the turbulent shear stress suggesting a higher efficiency of wave transport relative

to turbulent transport. The model also predicts that most of the wave stress at the

base of the mixed-layer penetrates below the EUC core. The prediction is not nullified

by results of TH1 because measurements are not available below the EUC core. Moum

et al. (1992) and later observations during TIWE by Lien et al. (1996) report that

there is low wave activity below the core. This is possibly the reason why Wijesekera

& Dillon (1991) cannot close the equatorial momentum budget. The authors indeed
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suggest that the internal wave must somehow deposit momentum in the region above

the EUC core in order to balance the zonal pressure gradient. Results from later ob-

servations of Hebert et al. (1992) show breaking of the internal waves into small-scale

turbulence.

I.C Internal Gravity Waves in a Stratified Shear

Flow: Linear theory

Since the present study involves internal gravity waves, it is necessary to introduce

the basic theory governing wave motion. A more detailed discussion can be found in

Nappo (2002) and Pedlosky (2003) . The two-dimensional Euler equations for irrota-

tional and inviscid flow in a non-rotating frame under the Boussinesq approximation

can be written as follows:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
,

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g,

∂u

∂x
+

∂w

∂z
= 0,

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
= 0. (I.1)

The above equations can be linearized as follows:

q (x, z, t) = q0 (z) + q1 (x, z, t) , (I.2)

where q0 (z) is the background field corresponding to horizontally uniform quantities

and q1 (x, z, t) denotes perturbations. Eqs. I.1 can be solved by assuming wave-like

solutions of the form

q1 (x, z, t) = q̂1 (z) ei(kx−ωt), (I.3)
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where k is the horizontal wavenumber and ω is apparent frequency of the waves in a

fixed coordinate system. Solving for ŵ, the result yields the Taylor-Goldstein equation:

d2ŵ

dz2
+

[
N2

(c − u0)
2 +

u′′
0

(c − u0)
− k2

]

ŵ = 0, (I.4)

where N2 = −(g/ρ0)dρ0/dz is the squared buoyancy frequency and c = ω/k is the ap-

parent horizontal phase speed. The terms inside the bracket are crucial in determining

the wave solution. When the bracket is positive, the solution consists of propagating

modes. In constrast, the waves are evanescent when the bracket is negative.

When the Taylor-Goldstein equation is interpreted in a reference frame moving

with speed u0, the frequency is Doppler-shifted,

ω = Ω + u0k, (I.5)

where Ω is the intrinsic frequency measured in the moving frame. Similarly, the intrinsic

horizontal phase speed is

cI =
Ω

k
= c − u0. (I.6)

An important property of an internal wave field is its group velocity defined as

ug =
∂ω

∂k
, wg =

∂ω

∂m
, (I.7)

where k, m denote the horizontal and vertical wavenumbers, respectively. The group

velocity quantifies the flux of energy carried by the internal waves. The direction of

the group velocity is perpendicular to the wavenumber vector, (k,m).

When there is no background velocity, u0 = 0, Eq. I.4 becomes

d2ŵ

dz2
+

[
k2N2

ω2
− k2

]

ŵ = 0. (I.8)

Solving the above equation yields the dispersion relation

ω =
kN

(k2 + m2)1/2
= Ncosθ, (I.9)

where θ is the angle that the group velocity makes with the vertical or the wavenumber

vector makes with the horizontal. It can be seen that, for a propagating mode, the

intrinsic wave frequency cannot be larger than the buoyancy frequency of the ambient.
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Since the stratification varies in the ocean, it is important to know how the change

affects wave propagation. Consider a two-layer problem with the lower layer stratified

with N1, the upper with N2, and no background flow. A monochromatic wave with

frequency ω propagates upward from region 1 to 2. At the interface, the wave can

transmit or reflect depending on the background stratification. The reflection coeffi-

cient, r, is defined as the ratio of the amplitude of the reflected downward wave to the

incident upward wave. According to linear analysis,

r =
m1 − m2

m1 + m2

, (I.10)

where m1 and m2 are the corresponding vertical wavenumbers. When r = 0, the wave

is totally transmitted. When |r| = 1, there is complete reflection and the wave is

trapped in region 1. In the case N2 < ω < N1, the wave propagates in region 1, is

evanescent in region 2, and suffers complete reflection at the interface. In contrast, in

the case N1 < ω < N2, a wave which is evanescent in region 1 can propagate in region

2 and the associated Reynolds shear stress can still transport momentum vertically

from region 1 into region 2. As shown by the Taylor-Goldstein equation, the ambient

velocity u0 can also change the sign of the bracket term thus affecting the wave modes.

At a velocity interface where u0 abruptly changes, wave reflection may occur, similar

to that at the interface between two levels of stratification.

An interesting scenario occurs when the bracket term in the Taylor-Goldstein equa-

tion becomes undefined with the wave phase speed c equal to the ambient velocity u0.

A layer at which such a condition prevails is called a critical layer. When internal

waves pass through the critical level, the wave stress is reduced significantly. Booker

& Bretherton (1967) show that the coefficient of reduction is e−2π
√

Rc−0.25 where Rc is

the Richardson number at the critical level. When Rc > 0.25, the wave is absorbed by

the mean flow. With Rc = 0.5, which is typical in the EUC core, less than 4% of the

wave stress can pass through the critical layer. When Rc < 0.25, the waves becomes

unstable and break into turbulence.
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I.D Observations of Internal Gravity Waves in the

EUC

To understand the physics of the deep-cycle turbulence, Moum et al. (1992) return

to the Pacific EUC in TH2. The temperature time record taken by a towed thermistor

shows intermittent occurrence in the thermocline of high-frequency narrowband bursts

whose characteristic frequency, upon conversion using λ = Uship/f , gives a wavelength

of 150−250 m. The results illustrate a strong correlation between turbulent dissipation

and internal waves in the thermocline below the mixed layer and above the EUC

core. In this region, both turbulence and internal waves display diurnal behavior with

nighttime values of the dissipation rates and wave potential energy 100 times larger

than at daytime. The authors conclude from the data that, in the low-Ri region of

the thermocline, breaking of internal wave packets is the main source of turbulence.

(However, we note that the shear was lower and stratification higher in TH2 relative to

TH1). The internal waves are generated locally and dissipated quickly. The timescale

for dissipation of the internal wave energy by turbulence is less than 1.0 hour indicating

that the waves cannot travel far in the horizontal direction and the absorption of wave

energy by the mean flow is as important as the dissipation of waves by turbulence. One

possible wave generation mechanism is suggested to be the “obstacle effect”. Waves

are generated by large-scale mixed-layer eddies impinging on the mixed-layer base. In

the presence of the EUC current, internal waves are excited as in the case of lee waves

by flow past hills in the atmosphere. These waves are anisotropic with a phase speed of

about the average velocity of the mixed-layer and unstable to both advective and shear

instabilities. Another source of waves is the Kelvin-Helmholtz shear instability since the

gradient Richardson number, Rig, is marginally critical in this region. The presence

of finite-amplitude internal waves in a stratified shear flow results in a reduction of

critical wave slope for which advective instabilities occur (Thorpe, 1978). Munk (1981)

in his review notes that region with Ri > 0.25 can be unstable to advective instability

(Thorpe, 1978) if the wave slope is sufficiently large. It is possible that the internal

waves are due to both the “obstacle effect” and shear instabilities; the observations are
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unable to distinguish between them.

Figure I.5: (Top) Temperature field exhibits an internal wave packet. Region within

the dotted box is expanded in the bottom figure showing wave overturning

event. Adapted from Hebert et al. (1992)

.

Also in the Tropic Heat II experiment, Hebert et al. (1992) report the details

of a single internal wave packet in which one of the waves exhibits an overturning

event. Figs. I.5, taken from their paper, shows the wave packet in the temperature

field. The packet consists of five distinct wave crests and six troughs, coherent over the

thermocline. The wave has horizontal wavelength of approximately 100 m, maximum
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Figure I.6: (Left) Gradient Richardson number computed by using hourly-average

zonal velocity profile and the average of the density profiles before and after

the wave packet. (Right) Turbulent dissipation profiles before, during and

after the wave packet offset by four decades. Values > 10−7 are hatched,

those > 10−6 are cross-hatched, and those > 10−5 are black. Adapted from

Hebert et al. (1992)

.

peak-to-peak amplitude of 20 m at depth 50 m. The frequency is expected to be

near the buoyancy frequency (N ≃ 0.01s−1 with corresponding time period of about

10 min). The middle wave crest of the packet is gravitationally unstable resulting

in overturning. Although Ri ≈ 0.3, according to Thorpe (1978), instability is still

inflicted because the middle wave has a larger wave slope relative to other waves in

the packet. Both advection and shear can be possible sources for intability. The two

wave crests and troughs to the left have high-frequency fluctuations suggesting that

turbulent mixing does occur. The two waves to the right shows no sign of mixing. The

dissipation rates within the patch of the overturning wave is at least three orders of

magnitude larger than outside the patch as shown in Fig. I.6. The wave signature

is coherent in both low and high-Rig regions, with the induced dissipation extending
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well into the high-Rig region. The Thorpe overturning scale is of the order of Ozmidov

buoyancy length scale, LO = (ǫ/N3)1/2, implying that the breaking wave energy can

be quickly dissipated within one buoyancy period.

Figure I.7: Time series of temperature measured at various depth. The nighttime

mixed-layer depth is 30-34 m. High-frequency fluctuations are observed at

sunrise. Adapted from McPhaden & Peters (1992)

.

McPhaden & Peters (1992) analyze temperature time series taken at an equatorial

surface mooring, 140◦W , including a special dataset with 1 min temporal resolution.

As shown in Fig. I.7 a strong diurnal cycle in temperature variance at frequencies

of 10-30 cycles per hour and coherent over a 31 m extending into the thermocline is

evident and attributed to an internal wave field. The local buoyancy frequency is 6-10
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cycles per hour. The authors suggest the following scenario for deep-cycle turbulence:

Internal waves are excited at the base of the nighttime mixed layer. As they propagate

downward, they are Doppler-shifted to frequencies higher than the local buoyancy

frequency by the EUC. In the thermocline, the vertical wave shear superimposed by

marginally-stable shear of the EUC triggers local shear instability. The local instability

grows and break down into small-scale turbulence. We note that, although plausible,

this scenario is not directly validated by the observations.

Figure I.8: Time series of velocities and momentum fluxes with a wave packet. The

wave packet is recorded on 8 November 1991. The vertical dotted lines in

(c) enclose the period of the wave packet. Adapted from Lien et al. (1996)

Lien et al. (1996) further confirm the correlation between internal waves and deep-

cyle turbulence by revisiting the Pacific EUC during the Tropical Instability Wave

Experiment (TIWE) in winter 1991. Moored measurements of horizontal velocities

and temperature shows nighttime enhancements of high-frequency temperature vari-

ance, vertical isotherm displacement variance and zonal velocity variance in the region

below the mixed-layer and above the EUC core. (The vertical isotherm displacement is

defined as η = −(T −〈T 〉)/∂zT where the bracket denotes the low-pass filtered temper-
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ature field.) The enhancements occur at frequencies close to and above the background

buoyancy frequency. Internal waves can have higher-than-N frequency when they are

Doppler-shifted by the EUC. Analysis of the energetics at 45 m depth shows the average

ratio between the hourly-average potential energy, 1
2
N2η2, and the horizontal kinetic

energy, 1
2
(u2 + v2), to be 0.76. The ratio between the dissipation rate and the shear

production is about 0.5. The buoyancy flux is estimated to be 2%-15% of the shear

production, leaving 35%-48% for transport, either through short-range turbulence pro-

cesses or through long-range internal wave radiation. The evolution of an internal wave

packet during the experiment is shown in Fig. I.8. The waves are found to propagate

downward and westward with wavelength larger than 200 m. The wave period is about

20 min comparable to the value of the local buoyancy period which varies between 8.5

min and 30 min at a depth of 45 m. The vertical coherence is at least 10 m, much

larger than the overturning scale of about 1 m at the mixed layer base, so that the

variability is associated with an internal wave and not overturning turbulence. The

wave signature is clear in the upper 45 m, becomes less obvious between 45 m and 80 m

and disappear below the EUC core. In the presence of the wave packet, the momentum

fluxes are enhanced in the upper 80 m and negligible below the EUC core. The shear

production is estimated to be of the same order as the dissipation rate.

Lien et al. (2002) revisit the Pacific EUC in 1998 to further strengthen the cor-

relation between internal waves and turbulence. Measurements are done in both La-

grangian and Eularian frames. The Lagrangian data are collected by neutrally-buoyant

floats moving with water motions. Mooring at 0◦, 140◦ W provides Eularian data. The

two data sets agree well when the Doppler-shift is used to relate the two reference

frames. The frequency spectra of vertical velocity, vertical acceleration and the time

rate of change of temperature computed from the data collected from the float de-

ployed at 45 m depth (surface mixed layer is shallower than 25 m) shows the presence

of near-N internal waves. These waves are found to propagate westward with a zonal

wavelength of approximately 360 m and a phase speed of 0.5 m/s. During deployment,

the float also encounters a shear instability event in which a strong turbulence burst

is recorded. The heat flux during the burst is more than 4000 W/m2 which is two
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orders of magnitude larger than the average values before and after the event. The

authors believe that the near-N internal waves are generated locally in the deep-cycle

layer through shear instability. The background condition is favorable with Richardson

number Ri of 0.19. Some of these waves break suppling energy to the turbulence. Some

radiate away forming the background near-N waves.

I.E Numerical models of small-scale processes in

the EUC

Both, two- and three-dimensional numerical investigations, are reviewed. However,

it is worth noting that the nonlinear evolution of the disturbances and the turbulent

dissipation rates are not expected to be accurate in the two-dimensional simulations.

Two-dimensional simulations

Skyllingstad & Denbo (1994) perform two-dimensional nonhydrostatic simulations

with background conditions taken from the data of Tropic Heat experiments to investi-

gate the role of internal waves in the EUC system. The domain size was 1280m×300 m

discretized with a 256 × 60 grid with a uniform grid spacing of 5m. An eddy viscos-

ity model with a Rig-based stability function was employed. The model was forced

with a wind stress and a heat flux that corresponds to daytime heating and nighttime

cooling and, during an initial period of a day, random fluctuations of the heat flux

were imposed to facilitate spinup. Internal wave packets are observed to propagate

downward and always westward or upstream relative to the jet velocity. For the pro-

file 134W-1987 in Fig. I.1, the peak wavelength is about 250 m and the frequency is

about 0.5 cph. Kelvin-Helmholtz (KH) instabilities are observed in the high-shear,

low Rig region and it is hypothesized (but not demonstrated) that the internal wave

packets are associated with the KH instabilities. For the profile 140W-1987 in Fig. I.1,

the horizontal wavelength of the internal wave packets is smaller, approximately 100

m and the frequency is higher. Furthermore, there is the possibility of critical layer
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dynamics associated with the wave phase velocity becoming equal to the local flow

velocity, since the surface velocity (assumed to be the phase velocity of the internal

waves) is eastward in this profile. The existence of critical layers in the EUC system

has not been confirmed by observations. A later study of Lien et al. (1996) shows wave

activity in the lower flank of the EUC; however, the possibility of a critical layer is not

discussed.

Sutherland (1996) solves the two-dimensional nonlinear equation of motions for in-

compressible Boussinesq flow to investigate if shear instability of the upper-flank of the

EUC can excite downward propagating internal waves of large amplitude. The velocity

profile U (z) and the squared buoyancy N2 (z) profile are approximated by hyperbolic

tangent functions. The inflectional points of the profiles are offset by a vertical distance

such that the shear layer resides above the thermocline. The stratification in the shear

layer is quantified by the parameter J0 = N2
0 /S2 where S = max (|dU/dz|). Similarly,

the stratification in the deep region is measured with a parameter Jd defined with the

deep value of N2. Two sets of simulations are interrogated: J0 = 0 (unstratified shear

layer) and 0.05 (weakly-stratified shear layer). In each set, values of Jd vary between

0.2 to 0.4. In both sets, strong internal excitation are observed in cases with Jd = 0.4,

and there is no excitation when Jd = 0.2. Internal waves are excited directly by the

growth of the most unstable normal mode of linear theory. The effect of the strati-

fication in the shear layer is to enhance the interaction between the wave and mean

flow by allowing the transfer of eddy energy between the forms of available potential

and kinetic energy. The author concludes that strong internal waves are excited when

J0 < 0.25 and Jd > 0.25. The momentum extracted from the mixing region causes the

mean flow to decelerate significantly. The author also speculates that internal waves

can travel to great depth where they become a source of momentum driving the zonal

countercurrent.

Sun et al. (1998) numerically solve the Taylor-Goldstein equation using the hourly-

averaged currents and stratification observed in TIWE experiment to investigate the

role of shear instability in maintaining deep-cycle turbulence. The results suggest

four regimes of instability based on the zonal current structure. The first regime
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consists of westward surface flow, and therefore, has phase velocity directed to the

west. The gradient Richardson number in this regime drops to nearly zero, suggesting

strong instability. However, the authors indicate that the instability can be damped

by boundary proximity effects. Smallest growth rate is observed here. The second

regime lies at the boundary between the surface westward current and the eastward

flow of the EUC where the local velocity is near zero. In this regime, the instabilities

are most energetic with the largest growth rate. The third regime resides on the

upper flank of the EUC with the instabilities having eastward phase velocity. This

regime is intermittently unstable with very small growth rate. The fourth regime is

associated with a thin shear layer at the bottom of the EUC near 180 m depth. Like

the third regime, the instability here is weak and intermittent. In terms of the entire

EUC system, the frequencies of the unstable modes with the largest growth rate are

a few cycles per hour. These modes have phase speed ranging from 0.3 m/s westward

to 0.4 m/s eastward with wavelengths between 100 to 400 m. The analysis of the

kinetic energy equation indicates that instabilites are capable of transporting energy

vertically. The authors find the temporal and spatial characteristics of the unstable

modes in this study to be consistent with the parameters of the observed internal

waves and, therefore, conclude that shear instability is responsible for the deep-cycle

turbulence.

Smyth & Moum (2002) perform stability analysis and nonlinear two-dimensional

simulations of an asymmetrically-stratified Bickley jet to study the possible instability

mechanism and wave propagation characteristics of internal waves in the EUC system.

The jet is stratified with the N2 profile having a step function. The stratification in the

upper and lower flanks of the jet is defined by JU and JL, respectively. Although the jet

with such a density profile is a highly idealized model flow relative to the undercurrent,

the study reveals important characteristics. In the case where the jet has a constant

value of N across its entire extent, there is no instability when JU = JL > 0.13. In the

cases with asymmetric stratification, the marginal stability curves show a range of J

between 0.17 and 0.22 so that if one of the J value falls below this range, the jet becomes

unstable. In the case of JU = 0.0 and JL = .09, three classes of unstable normal modes
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are found: the extended sinuous (S) and varicose (V) modes similar to ones seen in the

classical unstratified jet and a newly discovered mode, namely the R mode. When JL

increases to 0.25, the V mode is damped out but the R mode persists. The R mode can

grow despite the strong stratification in the lower-flank since it extracts energy from

the upper-flank where the stratification is weak. Nonlinear simulations of cases with

JU = 0.0 and 0.05, and the deep value of JL = 0.25 shows internal waves propagating

downward, away from the jet. Internal waves are not observed in the case JU = 0.0, JL

= 0.14. The internal waves excited by the R mode have larger wavelength and phase

speed compared to the observed values in the EUC. Strong ‘turbulence’ is observed in

the lower-flanks where strong stratification is present. The authors suggest that waves

are generated by weakly-stratifed shear in the upper-flank, propagate downward, and

break when they encounter the more strongly-stratified lower-flank.

Three-dimensional simulations

Wang et al. (1998) investigate the deep-cycle turbulence of the EUC using a three-

dimensional LES model. The model includes many large-scale flow terms: the EUC

currents, zonal pressure gradient, upwelling, horizontal divergence, zonal temperature

gradient and mesoscale eddy forcing. The model is forced with a constant easterly stress

and a surface heat flux with diurnal heating/cooling, and the subsequent evolution of

the flow variables is obtained. The subgrid model is an eddy viscosity model with a

equation for subgrid turbulent kinetic energy and Rig-based stability functions for the

vertical transport (Moeng, 1984; Sullivan et al., 1996). The domain size is 160m ×
160 m × 270 m with a grid of 32 × 32 × 270 points. The mixed layer depth (defined

by the z location where the density differs from the surface density by 0.01 kg/m3 )

shows a clear diurnal cycle between a minimum daytime value of approximately 5m to

a nighttime peak of 30m. During the night, the turbulence dissipation rate is observed

to penetrate to a depth of 80m, as much as 50 m below the mixed layer base. The

gradient Richardson number in the mixed layer and region right below can be lower

than 0.25. About 40 m below the mixed-layer base, the gradient Richardson number is

always greater than 0.25 but the flow is still turbulent. It is suggested that the deep-
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cycle turbulence is related to local shear instability. Nonetheless, the model does not

show propagating internal waves. The horizontal domain of the model is 160 m which

is comparable to only one wavelength of internal waves observed in previous studies.

In a subsequent study, Wang & Muller (2002) increase the domain size to 960m×
320 m× 270 m to allow internal waves, and employ a 192× 64× 270 grid. The authors

examine the effects of the EUC mean velocity profile upon the mixed layer turbulence

and the internal wave field. The important conclusion of Wang & Muller (2002) is that

the inclusion of the full EUC current profile is crucial to obtain deep-cyle turbulence

whose characteristics are consistent with observations. There is no wind stress in the

model; a constant surface cooling is the only forcing term so that it is convective

turbulence that is generated in the surface layer. The ambient flow is divided into two

regions: (1) The unstable upper mixed region from the surface to 30 m below (Rig <

0.25); (2) the stably-stratified EUC region below 30 m (Rig > 0.25). A simulation

with the full EUC velocity profile showed internal wave packets with a broad spectral

peak at about 320m and a frequency of about 1.2 cph. However, the disturbance

field was not directly interrogated to examine linear theory results for dispersion and

polarization of freely propagating internal waves. Turbulence penetrates up to 55 m

where the mean value of Rig is as large as 0.4. A simulation with the shear in region 1

removed shows that, relative to the full shear case, turbulence penetration is weaker,

the internal wave wavelength is larger and its amplitude smaller. Simulation with the

shear in region 2 removed also results in weak penetration of turbulence into the mixed

layer. However, the internal waves have a larger energy flux and their wavelength,

approximately 80 m, is smaller relative to the numerical experiment with the full

velocity profile. The thermal plumes in the surface layer, although necessary, are not

the primary mechanism for the generation of internal waves. Instead, the plumes

trigger shear instability resulting in the impingement of large-scale overturns at the

mixed-layer base. The internal waves are primarily excited by shear instability in the

mixed region and extend into the stable EUC region. The authors find that local shear

instability in the region below the mixed layer can occur when the mean Richardson

number is below 0.4.
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I.F Approaches and model problems

From the above observations and numerical studies, it is clear that deep-cycle

turbulence strongly correlates with intermittent internal waves with coherent phase

propagation is more complex than classical shear-driven turbulence. At the same time,

the propagating internal waves do not fit the simple picture of linearly evolving distur-

bances and a number of outstanding issues remain as discussed below. In the thesis,

the EUC problem will be revisited using DNS techniques. DNS will allow the inves-

tigation of internal wave transport and turbulence dissipation rates without recourse

to any subgrid model, albeit at modest values for the dimensional length scales and

nondimensional Reynolds number.

The literature survey shows that the mechanism underlying internal wave gen-

eration is unclear. The first hypothesis is that the waves are associated with linear

instability of the zonal current in the thermocline. Locally, a combination of increased

shear and decreased stratification leads to an instability of the mean profile that is man-

ifested as an internal wave packet. The local shear instabilites grow, evolve nonlinearly

and eventually result in deep-cycle turbulence. This hypothesis is supported by the

studies of Lien et al. (1996) and Lien et al. (2002). Additional support is provided by

the stability analysis and 2-dimensional calculations of Sutherland (1996) and Smyth

& Moum (2002) showing that a region with low Rig supports a linear instability that

propagates into the deeper region with high Rig. The second hypothesis suggests that

internal waves are generated by flow of the EUC jet relative to the corrugated base of

the mixed layer, analogous to internal wave generation by stratified flow over rough

topography. The corrugations are presumably caused by surface layer instabilities,

instabilities at the sheared interface, or by mixed layer turbulence. The downward-

propagating internal waves break down when they encounter strong shear in the upper

flank of the EUC leading to enhanced dissipation. Unlike the first hypothesis, the local

value of Rig in the thermocline does not have to become less than 0.25 to generate

internal waves. The studies of Peters et al. (1988), Moum et al. (1989), Wijesekera &

Dillon (1991), Skyllingstad & Denbo (1994), and Wang & Muller (2002) support this
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hypothesis. We note that the recent LES study of a stratified bottom boundary layer

by Taylor & Sarkar (2007) and Taylor & Sarkar (2008) show internal waves generated

by broadband turbulence that develop a peak near N/
√

2 in the propagation region.

There is no external shear in the model problem preventing any subsequent nonlinear

evolution of the internal wave packets. The contribution of the internal wave field to

momentum transport into the interior and to local dissipation is not clear. The thesis

research will help quantify these quantities as a function of environmental parameters.

The study consists of the following subproblems:

1. DNS of a weakly-stratified shear layer above a thermocline. Results of this study

presented in Chapter III characterize the internal waves and turbulence associated

with shear instabilities at the base of a weakly-stratified region.

2. The simulations in problem 1 are re-examined to investigate the wave fluxes at

higher Reynolds number. Results of this study presented in Chapter IV also

provide details of turbulence and mixing inside the shear layer as well as their

parameterizations.

3. DNS of a stratified jet patterned on the EUC profile with an upper weakly strat-

ified sheared region. Results of this simulation presented in Chapter V shed light

on the interaction of internal waves (generated by shear instabilities as in problem

1) with the external shear present in a jet to result in turbulence.

4. DNS of a stratified jet subject to surface windstress and buoyancy forcing. Results

of this study presented in Chapter VI highlight the roles of the surface forcing as

well as the fine-scale response of the jet.



Chapter II

Numerical Method

II.A Governing Equations

The conservation equations for mass, momentum and density for an unsteady,

incompressible flow under the Boussinesq approximation are solved numerically. These

equations are:

Mass:

∂uj

∂xj

= 0, (II.1)

Momentum:

∂ui

∂t
+

∂ (ujui)

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

+ Fi, (II.2)

Density:

∂ρ

∂t
+

∂ (ujρ)

∂xj

= κ
∂2ρ

∂xj∂xj

. (II.3)

Here, ν is the kinematic viscosity, κ is the molecular diffusivity, and Fi are terms of

external forcing such as gravity or horizontal pressure gradient. The asterisks denote

dimensional quantities. Since the Boussinesq approximation is employed, the density

is decomposed into a constant reference density, ρ0 and a small departure which is

further split into a mean component, 〈ρ〉, and a fluctuating component, ρ′:

ρ = ρ0 + 〈ρ〉 (z) + ρ′ (xi, t) . (II.4)

The hydrostatic contribution of the reference density, ρ0, and mean component, 〈ρ〉,
to the pressure is subtracted from the total pressure so that the dynamic pressure is

25
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solved for, and it is only the fluctuating component of the density field that contributes

to the buoyancy effect in the momentum equation. Eq. II.2 reduces to

∂ui

∂t
+

∂(ujui)

∂xj

= − ∂p

∂xi

+ ν
∂2ui

∂xj∂xj

+
ρ′

ρ0

gi + Fi. (II.5)

II.B Boundary conditions

Specific boundary conditions used in the simulations are given in each following

chapters depending on the model setup. In general, periodic boundary conditions are

used in the stream-wise (x) and spanwise (y) directions for all variables. In the cross-

stream direction (z), a combination of Dirichlet and Neumann boundary conditions

coupled with a sponge region are employed.

The sponge region is employed at the top and bottom boundaries for the simula-

tions in Chapter III-V and only at the bottom boundary for the simulation in Chapter

VI to control spurious reflections of internal waves propagating out of the domain. The

velocities and density in the sponge region are relaxed by adding to the right-hand-side

of Eqs.(II.5) and (II.3) a term of the form

− φ (z) [ui (xi, t) − 〈u〉i (z, t = 0)] ,

− φ (z) [ρ (xi, t) − 〈ρ〉 (z, t = 0)] .

, respectively. Here, Ui,∞ and ρ∞ are, respectively, the free stream velocities and

density. These are set based on the initial values of the mean velocity and density

at t = 0. The function φ (xi) is constructed such that it increases quadratically from

φ = 0 to φ = A in a region of thickness a. The amplitude A and thickness a are varied

in different simulations.

II.C Numerical Implementation

A detailed description of the numerical method can be found in Basak (2005) and

Brucker (2009). Briefly, Eqs. II.1, II.5 and II.3 are solved using a second-order central

difference scheme for spatial discretization on a staggered grid where vector quantities
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are stored at the cell faces and scalar quantities are stored at the cell centers. A multi-

grid Poisson solver is employed to accelerate the convergence rate for the pressure field.

In simulations of free shear flows such as those in Chapter III, IV and V, a low-storage

third-order Runga-Kutta method is used for temporal integration. In simulations in-

volving surface forcing in Chapter VI, Crank-Nicolson time marching scheme is used to

advance the viscous term in order to achieve time steps larger than the Runga-Kutta

method. The code employs a domain decomposition method, implemented using MPI

libraries, to handle the memory and CPU requirements for large simulations.



Chapter III

Dynamics of a stratified shear layer

above a region of uniform

stratification

III.A Objectives

Stratified shear flow away from boundaries has been the subject of many studies,

employing both experimental and numerical techniques. Nevertheless, there are only

a handful that study the dynamics of a stratified shear layer in the presence of an

external stratification where internal waves may be supported. Such a scenario can

occur in the natural environment when the stratification extends continuously beyond

the shear layer, and will be the focus of the current study.

Laboratory experiments, for example, Thorpe (1973) and Koop & Browand (1979),

were the earliest systematic studies of instability and turbulence in a stratified shear

layer. In those studies, the shear zone was between two layers of constant density and

the mean shear was inflectional. Rohr et al. (1988) performed experiments of homo-

geneous shear flow turbulence (constant value of shear S and stratification N) using

a salt-stratified water channel. Piccirillo & VanAtta (1997) studied the same problem

using a thermally stratified wind tunnel, and numerical simulations were performed by

28
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Gerz et al. (1989); Holt et al. (1992); Kaltenbach et al. (1994); Jacobitz et al. (1997);

Jacobitz & Sarkar (2000); Diamessis & Nomura (2004). Numerical simulations of the

stratified shear layer (or mixing layer) between two streams with a velocity difference

have been performed using small-amplitude initial perturbations to understand the role

of stratification by Staquet & Riley (1989); Caulfield & Peltier (1994, 2000); Staquet

(2000); Smyth & Moum (2000a,b); Smyth et al. (2001) and, more recently, by Brucker

& Sarkar (2007) who examined buoyancy effects when the initial perturbations are

turbulent. A stratified shear layer may have horizontal shear in contrast to the ver-

tical shear common to all the aforementioned studies. The constant-shear example of

horizontal shear was studied numerically by Jacobitz & Sarkar (1999) while Basak &

Sarkar (2006); Deloncle et al. (2007) have studied the case of inflectional horizontal

shear.

Internal waves generated by unstable velocity shears have been observed in previ-

ous atmospheric and oceanic studies. Wind shear is believed to be one of the principal

sources of internal waves excitation in the lower atmosphere (Einaudi et al., 1978/79).

Internal waves observed in the mesosphere (Holton et al., 1995) and in the upper

stratosphere (Rosenlof, 1996) are excited by nonorographic sources, for example the

Kelvin-Helmhotz instability, since orographic waves can not reach these altitudes. Be-

low the surface of the equatorial oceans, alternating eastward and westward currents

(Luyten & Swallow, 1976; Eriksen, 1982; Firing, 1987) are observed. Eriksen (1982)

has observed large-scale structures of the countercurrents persisting for a long period of

time. Moum et al. (1992) and Sun et al. (1998) suggest that internal waves associated

with the Equatorial Undercurrent can be the main source of mixing in the thermocline.

Since internal waves can transport and redistribute momentum and energy (Eliassen &

Palm, 1960; Andrew & McIntyre, 1978; Fritts, 1982), it becomes necessary to examine

the transport of the internal waves excited by unstable shears.

A stratified shear layer with weak stratification of value J0, nondimensionalized

with the maximum shear, that overlies an adjacent region with stronger stratification

Jd has been investigated using linear theory and 2-dimensional nonlinear simulations by

Sutherland (1996). Internal waves are found to radiate downward from the shear layer
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and propagate in the deep far-field. It is found that internal waves are generated by

the most unstable linear mode and, from the 2-D simulations that track the evolution

of a KH billow, it is concluded that strong internal waves are excited when J0 < 0.25

and Jd > 0.25. Sutherland (2006) examined the evolution of a shear layer (also a jet)

with asymmetric stratification, using linear theory and 2-D simulations. The distance,

δ, between the shear layer and the top of the stratified region was varied along with the

values of Jd. For small δ, the shear layer instability mode was found to directly couple

to the internal wave mode and its subsequent nonlinear evolution was significantly

modified. Simulations of a jet with asymmetric stratification have been performed in

two dimensions by Skyllingstad & Denbo (1994); Smyth & Moum (2002) to model

aspects of the equatorial undercurrent and using three-dimensional DNS by Tse et al.

(2003) as a model for the jet at the atmospheric tropopause. Skyllingstad & Denbo

(1994) in a problem forced with wind stress and buoyancy flux identify local instabilities

as well as internal wave packets. Smyth & Moum (2002) consider a Bickley jet with low

stratification, JU , in the upper half and high stratification, JL, in the lower half. Their

simulations of cases with JU = 0.0,0.05, and JL = 0.25 show energetic internal waves

directed downward away from the jet. Tse et al. (2003) perform three-dimensional

simulations where the velocity and temperature profiles of the base flow, constructed

to model a jet in the atmospheric tropopause, are forced. A quasi-equilibrium jet

results with strong shear-forced turbulence in the core of the jet where the gradient

Richardson number, Rig << 0.25. The edges of the jet, with moderate-to-large values

of Rig, have patchy turbulence, attributed to nonlinear wave activity. Propagation

of internal waves in the jet far field is not significant. It is found that the change

of the fluctuations from mechanical turbulence in the core to stratified turbulence at

the edges can be effectively characterized through length scales and through budget

equations for the velocity and temperature variances.

The effect of internal waves on the deepening of a mixed layer in a stratified fluid

was studied by Linden (1975). An oscillating grid was used to generate a turbulent

mixed layer on top of a layer with a constant density gradient. As the mixed layer

deepened, the density gradient was observed to increase to a maximum in the thermo-
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cline. Internal waves were observed to propagate away from the mixed layer. These

waves caused a loss of energy available for mixing. The experiment estimated up to

50% reduction in the mixing rate due to the presence of internal waves. A similar study

carried out by E & Hopfinger (1986) compared the deepening rate between a two-layer

and a constant density gradient system. Internal waves radiating energy away from

the interface only occurred in the latter case. The energy radiation was found not to

significantly affect the mass entrainment rate, defined by E = (1/u)dD(t)/dt with D

the mixed layer depth and u the r.m.s. velocity fluctuation. The coefficients K and n

in the entrainment rate relation E = KRi−n were found to be the same in both cases,

independent of the presence of internal waves.

Internal wave propagation was also observed in the experiments of Strang & Fer-

nando (2001) designed to study turbulent entrainment and mixing at a sheared density

interface. A shear layer separated a light, upper well-mixed turbulent layer from a lower

quiescent layer which was either constant density or linearly stratified. Internal waves

only appeared in the latter case. When the lower layer was linearly stratified, ‘interfa-

cial swelling’ in the shear layer was observed and argued to be responsible for internal

wave excitation. The buoyancy flux and the entrainment rate were higher when in-

ternal waves do not propagate into the lower layer. The mass entrainment rate was

reduced by as much as 50% in the presence of internal waves. The ratio of the wave

energy flux to the rate of change of potential energy due to mixed-layer deepening was

found to be approximately 48%.

Sutherland & Linden (1998) quantified the effects of internal waves in an experi-

mental investigation of stratified fluid with shear that flows over a thin barrier. In the

experiment, the upper region was lightly stratified while the lower region had a higher

density gradient. Vortices, shed in the wake of the thin barrier, disturbed the base

of the sheared, mixing region and internal waves were observed to radiate downward.

The propagating waves made angles to the vertical in range of 45− 60◦. The Reynolds

stress was measured and it was found that approximately 7% of the average momentum

across the shear depth was lost due to wave transport. A 2-D numerical simulation was

also performed. The simulation showed a higher value of the momentum extraction



32

(a) (b)

U(z) ρ(z)

Jd cases

z = δω,0

z = 0

z = -δω,0

2-layer

-0.5∆U

0.5∆U

Figure III.1: (a) Initial mean profiles. Each case has a temporally evolving shear layer

between two streams with velocity −∆U/2 and ∆U/2, and initial vorticity

thickness, δω,0. The maximum shear is at z = 0. The 2-layer density

variation corresponds to a tangent-hyperbolic profile with J(0) = 0.1.

The other density profiles correspond to a moderate linear stratification,

Js = 0.05, in the shear layer above a bottom region, z < −2.5δω,0, with

uniform deep stratification that takes the values: Jd = 0.1, 0.25 and

1.0. The initial value of bulk Richardson number, Rib,0 = 0.1, is the

same for all cases. (b) Cartoon of internal wave excitation by shear layer

instabilities. The indicated group and phase velocity are relative to the

lower free-stream.

from the mean flow. The authors proposed that internal waves propagating at near

45◦ angle with the vertical were preferred since, through nonlinear interaction, they

were capable of modifying the mean flow in a manner which fostered their continual

generation.

In the present study, we use direct numerical simulations (DNS) to investigate the

problem of an inhomogeneous stratified shear layer located between a weakly stratified

upper layer and strongly stratified lower layer (schematic in Fig. III.1). Unlike previous

simulations of this shear layer configuration, the present three-dimensional study allows

the examination of internal wave dynamics in the presence of realistic turbulent mixing.

The flow is seeded with small-amplitude perturbations. The deep stratification is varied
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to elucidate its effect on the evolution of both the sheared region and the internal wave

field. We examine the DNS results to help answer the following questions: How does the

thickening of the shear layer depend on deep stratification? Does linear theory provide

guidance to characterize the internal waves in these fully nonlinear, three-dimensional

simulations? What are the relative roles of Kelvin-Helmholtz rollers and small-scale,

three-dimensional turbulence insofar as internal waves? Are the mass flux, momentum

flux and energy flux carried away by the internal waves significant?

III.B Problem Formulation

Fig. III.1 is a schematic of the simulated shear layer between two layers of fluid

moving in opposite directions with a velocity difference ∆U∗ and a vertical density

stratification owing to a temperature variation. The flow evolves temporally with

statistics that are homogeneous in the streamwise (x) and spanwise (y) directions.

The horizontal velocity varies continuously in the vertical cross stream direction (z)

with a hyperbolic tangent profile,

〈u∗〉 = −∆U∗

2
tanh

(
2z∗

δ∗ω,0

)

,

where the initial vorticity thickness is defined by δ∗ω,0 = ∆U∗/(d 〈u∗〉 /dz∗)max. Here,

the superscript * denotes dimensional quantities. The squared buoyancy frequency is

defined by N∗2 = − (g∗/ρ∗
0) d 〈ρ∗〉 /dz∗ and a nondimensional measure of the stratifica-

tion is the Richardson number, J(z) = N∗(z∗)2δ∗2ω,0/∆U∗2. Two types of density profile

are considered. A two-layer density variation, corresponding to the classical Thorpe

problem, is defined with a tangent-hyperbolic profile obtained by replacing ∆U∗ in the

mean velocity profile with the density change, ∆ρ∗. The value of ∆ρ∗ is chosen to set

J(z = 0) = 0.1. The second type of density profile corresponds to a weakly strati-

fied shear layer above a region of deep stratification. The fluid above and inside the

shear layer region is linearly stratified with Richardson number, Js = 0.05. At depth

z∗ = −2.5δ∗ω,0 the stratification changes to the value of the Richardson number speci-

fied in the deep region, Jd. Three simulations are performed with deep stratification,



34

Jd = 0.1, 0.25 and 1. According to linear analysis, the smallest Jd case does not permit

propagating internal waves while the other two do. The density profiles are chosen so

that the value of the bulk Richardson number, Rib, defined by Eq. (III.4) for a shear

layer, has the same initial value for all four simulations.

The initial vorticity thickness, δ∗ω,0, the density jump, ∆ρ∗
0, across twice the initial

vorticity thickness, and the velocity difference, ∆U∗, are used for nondimensionaliza-

tion. Henceforth, u, x, y, z, p, ρ, t will denote nondimensional variables and, with the

Boussinesq approximation, the governing equations can be written as follows:

∂uk

∂xk

= 0 , (III.1)

∂ui

∂t
+

∂ (ukui)

∂xk

= − ∂p

∂xi

+
1

Re0

∂2ui

∂xk∂xk

− Rib,0ρ
′δi3 , (III.2)

∂ρ

∂t
+

∂ (ukρ)

∂xk

=
1

Re0Pr

∂2ρ

∂xk∂xk

, (III.3)

where

Re0 =
∆U∗δ∗ω,0

ν∗ , Rib,0 =
g∗∆ρ∗

0δ
∗
ω,0

ρ∗
0∆U∗2 = g

∆ρ∗
0

ρ∗
0

, P r =
ν∗

κ∗ . (III.4)

Here, ν∗ is the kinematic viscosity, and κ∗ is the molecular diffusivity. The initial bulk

Richardson number can be interpreted as a nondimensional reduced gravity. Subscript

0 denotes a value at initial time. All simulations are run with Re0 = 1280, Pr = 1 and

Rib,0 = 0.1. Although thermally stratified water has Pr = 5 − 10 depending on water

temperature, we choose Pr = 1 to avoid the increase in computational resources,

necessary at high Pr. The evolution of the shear layer at different values of Jd is

examined. Three simulations are performed with Jd = 0.1, 0.25 and 1.0. A two-

layer stratified shear layer is also simulated at the same initial Re0, Pr and Rib,0 for

comparison.

The domain size is 51.6 x 17.2 x 96.57 and the numbers of gridpoints in x, y, z

directions are 384 x 128 x 512, respectively. The grid is uniform in the streamwise

and spanwise directions with a spacing of 0.134. In the vertical direction the grid is

uniform in the region −7.5 6 z 6 2.5 with a spacing of 0.0756. Outside this region

the grid is mildly stretched at ratio of 2% giving a maximum spacing of 0.475. A

second-order finite difference method on a staggered grid is used for spatial derivatives



35

and a third-order low storage Runge-Kutta method is used for time advancement. The

flow is initialized with low amplitude velocity perturbations. These fluctuations have

an initial broadband spectrum given by

E (k) ∝ k4exp

[

−2

(
k

k0

)2
]

,

where k0 is set such that the spectrum peaks at 1.7. The initial velocity fluctuations

are introduced in the shear layer with the peak values set at 1% (∆U). The noise is

restricted in the shear region with the shape function, A (z), where

A (z) = exp
(
−z2

)
.

Periodic boundary conditions are used in the streamwise and spanwise directions.

Dirichlet boundary conditions are enforced for horizontal velocities and pressure while

vertical velocity and density have Neumann conditions:

u (zmin) =
1

2
, u (zmax) = −1

2
,

v (zmin) = v (zmax) = 0 ,

p (zmin) = p (zmax) = 0 ,

∂w

∂z
(zmin) =

∂w

∂z
(zmax) = 0 ,

∂ρ

∂z
(zmax) = −Js

g
,

∂ρ

∂z
(zmin) = −Jd

g
.

A sponge region is employed at the top (z > zt
max = 15) and the bottom (z <

zt
min = −50) boundaries to control spurious reflections of internal waves propagating

out of the domain. The test domain of interest, zt
min < z < zt

max, excludes the sponge

region. The velocities and density in the sponge region are relaxed by adding to the

right-hand-side of Eqs. (III.2) and (III.3) a term of the form

− φ (z) [ui (xi, t) − 〈u〉i (z, t = 0)] ,

− φ (z) [ρ (xi, t) − 〈ρ〉 (z, t = 0)] .

The damping function, φ (z), increases quadratically from φ = 0 to 1.0 in a region of

thickness 15 utilizing 30 gridpoints at each boundary. Flow instabilities, notably KH
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Figure III.2: (a) Vorticity thickness, δω. (b) Bulk Richardson number, Rib, (c) Mo-

mentum thickness, δθ. (d) Bulk Richardson number, Rib,θ.

rollers, form followed by a transition into small-scale, three-dimensional turbulence.

Simulations are continued until most of the fluctuation energy inside the shear layer

is dissipated, roughly at tf = 250 time units (δ∗ω,0/∆U∗). Details of the numerical

methods used in this study can be found in Basak & Sarkar (2006) and Brucker &

Sarkar (2007).

III.C Evolution of the Shear Layer

The Kelvin-Helmholtz (KH) instability mode is initially amplified, KH rollers de-

velop, secondary instabilities follow and, finally, there is breakdown to three-dimensional

turbulence (Thorpe, 1973; Koop & Browand, 1979; Staquet & Riley, 1989; Caulfield
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& Peltier, 2000; Smyth & Moum, 2000b). In the following text, we show the strong

influence of the deep stratification on the flow statistics starting with overall quantities:

the thickness of the shear layer and the bulk Richardson number Rib followed by an

account of how the mean profiles develop in time.

Fig. III.2(a) shows the evolution of the vorticity thickness δω(t) = 1/(d 〈u〉 /dz)max,

a typically used measure of the thickness of the sheared region while Fig. III.2(b) shows

the evolution of the bulk Richardson number defined by

Rib(t) =
g∗∆ρ∗(t)δ∗ω(t)

ρ∗
0∆U∗2) =

g∆ρ∗
0

ρ∗
0

∆ρ(t)δω(t) , (III.5)

where ∆ρ(t) is the density difference across z = −δω(t) and z = δω(t). Fig. III.2(a)

shows that the thickness growth rate is initially smaller in the two-layer case since the

value of centerline Richardson number, J(0) = 0.1, is larger than the corresponding

value of J(0) = 0.05 in the cases with deep stratification. The thickness evolves in

three different stages. The stage from t = 0 to 30 is not a focus of the discussion since

the evolution of the shear layer during this period is identical in all cases. After this

initial period, there is a second stage where visualization of the vorticity field shows

the the formation of distinct and dominant KH rollers which increase in size by pairing

or amalgamation. We denote this period as the KH regime. Later, when rollers break

down, the shear layer enters a third regime, turbulence, wherein small-scale, three-

dimensional features dominate the vorticity field. The transition time between the

second and third regimes is different among cases. In the two-layer case, the transition

time occurs late at t = 130 while it is earlier, approximately t = 100, in Jd cases. To

ease the discussion, from this point we indicate t = 100 as the transitional time for all

Jd cases. This is the time when the vorticity thickness exhibits a small reduction in

size before the growth rate increases due to turbulent stirring. In the KH regime, the

vorticity thickness δω grows at slightly higher rate in the Jd cases than in the two-layer

case. The growth rate, dδω/dt, is 0.045 in the Jd cases and 0.036 in the two-layer case.

In the turbulent regime, there is a qualitative difference between the two-layer case

and the cases with ambient stratification: the shear region in the former approaches

an approximately constant thickness while the shear region continues to grow in the
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latter, see Fig. III.2(a). The asymptotic thickness in the two-layer case corresponds to

Rib ≃ 0.38, a value within the range measured in previous numerical and experimental

studies as reviewed by Smyth & Moum (2000a). In the Jd cases, there is a secondary

growth that is linear as in the KH regime but at a more moderate rate, approximately

dδω/dt = 0.004, with little variation among the different Jd cases. Viscous growth is not

the primary cause since a laminar shear layer whose thickness is proportional to
√

t/Re

does not grow linearly and the numerical value of the viscous growth rate is smaller than

the observed value. The secondary growth in the turbulence regime strongly influences

the evolution of the bulk Richardson number Rib as shown in Fig. III.2(b). Rib grows

vigorously in case Jd = 1.0 showing a strong effect of the deep stratification. In all

cases the velocity difference does not vary in time so that, according to Eq. (III.5),

a growth in the thickness δω or in ∆ρ can cause the observed growth in Rib. Case

Jd = 0.10 has a larger thickness than case Jd = 1.0; however, it is the latter that has

the larger value of Rib, nearly twice the corresponding value in the former case. The

difference is entirely due to a stronger density gradient across the layer. Thus, the

small thickness growth at late time, amplified by a strong external density gradient,

results in substantial growth in Rib.

Another measure of shear layer thickness is the momentum thickness, δθ, defined

by

δθ =

∫ zu

zl

(
1

4
− 〈u〉2

)

dz . (III.6)

Depths zu and zl are upper and lower bounds of the shear layer where the turbulence

production is approximately zero but the Reynolds shear stress 〈u′w′〉 is not necessarily

zero. Compare Fig. III.2 (a) to (c), the evolution of δω and δθ are similar in the two-

layer case, but the Jd cases show strong difference. The secondary growth that was

exhibited by δω is much smaller in δθ. An analog of Rib(t) is Rib,θ(t) obtained by

substituting δω(t) on the r.h.s of Eq. (III.5) by 4δθ(t) and letting ∆ρ(t) be the density

change over 4δθ(t). The factor of 4 ensures that Rib and Rib,θ have the same value

for a tangent-hyperbolic velocity profile. Fig. III.2(d) shows the evolution of Rib,θ(t).

Similarly to Rib, the quantity Rib,θ continues to grow at late time but at a significantly

smaller rate. Here, the small but non-zero secondary growth, barely visible in the
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Figure III.3: Profiles of squared buoyancy frequency N2 for Jd = 0.25 (a) in KH

regime, (b) in turbulence regime.

evolution of δθ, is magnified by the density difference across the shear layer.

As the shear layer evolves in time, pycnoclines (regions with large N) are observed

at the edges of the layer. The development of an overshoot in density gradient is shown

with profiles of nondimensional squared buoyancy frequency N2 in Figs. III.3(a,b). The

pycnoclines begin to form as soon as the shear layer starts stirring the ambient strati-

fication profile. At first, the formation is similar at both edges. Later, the pycnocline

at the bottom edge merges into the strong background density gradient in the bottom

region, while the one at the top persists for a long period of time. The density gradient

in the pycnocline is unsteady, growing at first, and then decaying due to the buoyancy

induced reduction in vertical mixing. The formation of a pycnocline, a result of the

mixing of a density gradient by inhomogeneous turbulence, has been observed in pre-

vious studies (Linden, 1975; Sutherland & Linden, 1998; Taylor & Sarkar, 2007). The

evolution of the mean shear is plotted in Fig. III.4. The evolution during the initial

period, t < 60, is typical of a shear layer, namely, the profile thickens and the peak

shear at z = 0 diminishes. However, as shown in Fig. III.4(b), later the mean shear

develops local peaks at the upper and lower flanks. The reason is that the enhanced

values of N2 (pycnoclines) at the flanks inhibit the mixing of momentum relative to

the center of the shear layer allowing mean shear at the flanks to be larger than at the

centerline. The bottom peak of mean shear is reminiscent of the elevated shear seen at
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Figure III.4: Mean shear profiles in case Jd = 0.25 (a) in KH regime, (b) in turbulence

regime.
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Figure III.5: Gradient Richardson number, Rig, profiles in case Jd = 0.25.

the base of the mixed layer in observations of the transition layer in the upper ocean

(D’Asaro et al., 1995; Weller & Plueddemann, 1996; Johnston & Rudnick, 2009).

The gradient Richardson number, Rig(z) = N2/(d 〈u〉 /dz)2, is plotted at several

times for case Jd = 0.25 in Fig. III.5. The profiles of N2 and d 〈u〉 /dz were earlier

shown in Figs. III.3 and III.4, respectively. The double hump in the velocity gradient

profile is also seen in the Rig profile at late times. The late time behavior of the gradient

Richardson number is governed by the velocity gradients. The downward shift of the

shear peak can lead to a reduction in the gradient Richardson number at the edges of

the shear layer at late times. In ocean and atmospheric models, the turbulent mass and

momentum transport are typically parametrized in terms of the gradient Richardson

number. Specifically, the mixing of mass and momentum due to turbulence is set to
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zero once the gradient Richardson number reaches a critical value, usually between

0.25− 1.0. When this type of parametrization is utilized the shear layer can no longer

grow. The spatial profiles of d 〈u〉 /dz and N2 and hence Rig are fixed. By fixing these

spatial profiles the secondary (late-time) growth seen in Rib, Fig. III.2(b), would be

missed as would be late-time evolution of Rig(z).

III.D Visualization of the Shear Layer Evolution

Visualizations of the spanwise vorticity and the full density field for the two-layer

and Jd = 0.25 cases illustrate the strong effect of deep stratification on the evolution

of the shear layer. Comparisons are also made to the stratified two-layer case of Koop

& Browand (1979); Smyth & Moum (2000a,b).

The spanwise vorticity in the two-layer case on the plane y = 8.5 at t = 70,

100, 120, and 160 are shown in Figs. III.6(a-d), respectively. At t = 70 the roll-

up is just beginning, and by t = 100 there is evidence of pairing. At t = 120 the

pairing has completed and the vortices start to break down into small-scale turbulence.

Finally, at t = 160 there is little evidence of large scale vortical structures, which have

been replaced with a largely disordered field of turbulent motion with smaller length

scale. The visualizations presented here are qualitatively similar to the computations

of Smyth & Moum (2000a), and to the spatially evolving shear layer studied by Koop

& Browand (1979). The roll-up, pairing, and breakdown phases in the x−z plane look

very similar to Koop & Browand (1979). The coherence in the braid region visualized

in the x− y plane, not shown, also shows good qualitative agreement with their study.

The evolution of the spanwise vorticity for the Jd = 0.25 case is shown in Figs. III.7(a-

d) at similar times to those in the two-layer case. In Fig. III.7(a) there is already

evidence of smaller scale disorder, x ≈ 38. Fig. III.7(b) shows no evidence of pairing,

but rather a breakdown, not seen until much later in the two-layer case. The vorticity

in Fig. III.7(b) looks more similar to Fig. III.6(c) rather than III.6(b). The edges of

the layer containing significant vorticity in the Jd = 0.25 case remain much flatter,

with respect to z, than the two-layer case. Clearly, the presence of the lower strati-
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Figure III.6: Spanwise vorticity, ω2, in x-z plane at y = 8.5 in two-layer case.
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Figure III.7: Spanwise vorticity, ω2, in x-z plane at y = 8.5 in case Jd = 0.25.
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Figure III.8: Density field, ρ, in x-z plane at y = 8.5 in two-layer case.
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Figure III.9: Density field, ρ, in x-z plane at y = 8.5 in case Jd = 0.25.
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fication leads to significantly different vertical structure than the two-layer case. The

explanation is as follows: Since the fundamental frequency of the most unstable mode,

by linear theory, is affected little by the presence of the deep stratification (Drazin

et al., 1979) the difference must be in the non-linear portion of the evolution. The first

non-linear process to occur in the two-layer case is pairing. As noted above pairing is

evident in Fig. III.6(b) and has been disrupted in Fig. III.7(b). This lack of pairing

was also observed by Strang & Fernando (2001) who were investigating the upper limit

of KH formation in terms of the bulk Richardson number. Their stratification was so

strong as to eventually suppress the formation of KH rollers. Here, the rollers form

but are unable to pair because the lower fluid is too heavy to be displaced above the

upper fluid. Like the two-layer case, the thin braid like regions extend throughout the

entire spanwise domain until the rollers begin to breakdown at which time the spanwise

coherence is lost.

The density field provides a perspective on mixing by the flow instabilities and

turbulence. The full density field is visualized for the two-layer and Jd = 0.25 cases in

Figs. III.8 and III.9, respectively. Figs. III.8(a) and III.9(a) show the density field in

the early stage of KH roller formation. As previously mentioned, the deep stratification

has little effect on the disturbance wave length. However, breakdown to small-scale

mixing occurs earlier in the presence of deep stratification. This breakdown is clearly

evident at x ≈ 38 in III.9(b) where regions of mixed fluid have replaced the pairing

that occurs in the two-layer case at similar time, Fig. III.8(b). In Figs. III.8(b-c) there

are regions of mixed fluid that have been completely submersed in regions of higher

density, this behavior is absent in Jd = 0.25 case. The deep stratification prevents

the heavy fluid from being lifted above the lighter fluid. At late time the interface

between the two fluids is thinner and much smoother in the Jd = 0.25 case relative to

the two-layer case (compare Fig. III.9(d) to III.8(d) ).



47

(a) Jd = 0.1, t = 80 (b) Jd = 0.1, t = 150

(c) Jd = 0.25, t = 80 (d) Jd = 0.25, t = 150

(e) Jd = 1.0, t = 80 (f) Jd = 1.0, t = 150

Figure III.10: Slices of ∂w′/∂z in the x-z plane at y = 8.5. Strong waves are observed

in case Jd = 0.25 (c,d) and Jd = 1.0 (e,f). The left panels correspond

to time in the KH regime; the right panels correspond to time in the

turbulence regime. In the case of Jd = 0.1, the internal wave field is

negligible in the KH regime, (a), but noticeable in the turbulence regime,

(b). The dashed lines in (c,e) shows the propagating angles predicted by

linear wave theory. The scale ranges from −0.01 (black) to 0.01 (white).
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Figure III.11: Spanwise-averaged power spectra of the vertical velocity on the hori-

zontal center-plane, z = 0, and at the bottom edge of the shear layer,

z = −2.5δω,0, in case Jd = 0.25. Two different times are shown.

III.E Internal Wave Field

Internal gravity waves that propagate into the stratified region beneath the shear

layer are observed during the KH stage in the two cases with Jd = 0.25 and 1.0 and,

during the later turbulent stage, internal waves are observed in all three cases. The

internal wave field is visualized with instantaneous x − z slices of ∂w′/∂z at various

times in Fig. III.10. Since the top region is weakly stratified, Js = 0.05 in all cases,

the propagation of internal waves above the shear layer is insignificant. At the base of

the shear layer, the phase lines are directed downward and to the left, thus opposing

the free stream. The phase lines move upward and, consistent with internal gravity

waves, the wave energy moves downward. Phase lines are parallel to the wave group

velocity vector, cg, relative to the bottom free stream velocity. In the present study,

cg transports energy away from the shear region into the bottom deep region.

During the KH regime, waves are excited by KH rollers, analogous to waves excited

by flow over a surface corrugation of prescribed wavelength. Let θ be the angle made

by the phase lines (equivalently, cg) with the vertical. Figs. III.10(c,e) show that, in

the KH regime, there is a preferred value for θ: 32 − 38◦ when Jd = 0.25 and 62− 68◦

when Jd = 1.0. In Fig. III.11, the horizontal wavenumber spectrum at early time,

t = 50, in the center of the shear layer shows a strong peak at kδω,0 = 0.85 ± .06
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Figure III.12: Case Jd = 0.25: (a) Time series of ∂w/∂z at a streamwise probe, z =

−10, y = 8.5, in the stationary frame; (b) the wave field in (a) limited

to the KH regime and mapped to a frame moving with the bottom free-

stream velocity; (c) power spectrum of the field in (b); (d) similar to wave

field in (b) but in the turbulence regime; (e) power spectrum of the field

in (d). The scale in (a,b,d) is from -0.01 (black) to 0.01 (white). The

contours in (c,e) are in log scale. The dashed lines in (c,e) indicate the

buoyancy frequency; the diagonal lines show the relation Ω = (∆U/2) k.
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Figure III.13: Case Jd = 1.0: see caption in Fig. III.12.
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Figure III.14: Case Jd = 0.1: see caption in Fig. III.12.
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which corresponds to λKH = 7.4 ± 0.5δω,0, comparable to the wavelength of the most

unstable mode 7.2δω,0 obtained by linear, inviscid theory (Monkewitz & Huerre, 1982).

(The error bar reported in the wavenumber, k, is the ratio of π over the sampling

period.) The spectrum at depth z = −2.5δω,0, a location at the edge of the shear layer,

and at t = 50 also shows a peak at the same wavenumber, showing a strong coupling

between the internal waves outside the shear layer and the coherent KH rollers inside

the shear layer. Since the rollers are spanwise coherent, the streamwise wavenumber

can be considered to represent the horizontal wavenumber for both the rollers and

the KH-excited internal waves. The horizontal wave number spectra at later time,

t = 100, are also shown in Fig. III.11. The late-time spectrum inside the shear layer is

broadband without a discrete peak at the KH mode. Note that the dependence of the

most unstable wavelength on the stratification in the shear layer, Js, is weak (Hazel,

1972) and on the deep stratification is also weak (Drazin et al., 1979). Therefore, the

wavelength 7.4 ± 0.5δω,0 is taken to be representative of all simulated cases.

Linear stability theory that gives the value of the most unstable KH mode in the

generation region, combined with linear internal wave theory, can explain the preference

for a characteristic angle of the early-time waves shown in Figs. III.10(c,e) as will be

demonstrated now. Since the bottom stream moves with a fluid velocity of 0.5∆U , the

apparent frequency, ω, measured in the simulation frame (stationary in this study) is

related to the intrinsic frequency, Ω, measured in the frame moving with the free-stream

fluid in the bottom region by

ω = Ω + 0.5∆Uk . (III.7)

The mean streamwise velocity at z = 0 is 〈u〉 = 0 so that the KH rollers can be

approximated to be stationary, i.e. ω = 0, then

Ω = −0.5∆UkKH = 0.43 ± 0.03
∆U

δω,0

, (III.8)

where kKH is chosen to be negative corresponding to waves propagating in the negative

x direction with respect to the bottom free stream.

According to linear theory, internal gravity waves will propagate in a medium if

the magnitude of the intrinsic frequency, Ω, is less than the buoyancy frequency, N , of
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that medium. Eq. (III.8) then implies that KH-produced internal waves are possible

only if the ambient stratification satisfies the following condition:

Jd > 0.18 . (III.9)

Consistent with the above condition, internal waves are not observed during the KH

regime in the Jd = 0.10 case shown in Fig. III.10(a). In contrast, there is strong

excitation of internal waves in cases with Jd = 0.25 and 1.0 as shown by Figs. III.10(c,e).

In order to calculate the internal wave phase angle, we combine Eq. (III.8) with the

linear dispersion relationship for internal gravity waves to obtain,

cos(θ) =
Ω

N
=

0.43 ± 0.03√
Jd

. (III.10)

According to the prediction of linear theory, Eq. (III.10), the angle made by the phase

lines with the vertical is θ = 31 ± 7◦ when Jd = 0.25 and θ = 65 ± 2◦ when Jd = 1.0.

Figs. III.10(c,e) shows phase lines with θ in the range of 32 − 38◦ and 62 − 68◦ for

cases Jd = 0.25 and Jd = 1.0, respectively. Evidently, there is very good quantitative

agreement between the prediction of linear theory and the internal wave angles observed

in the present fully nonlinear simulations.

The temporal frequency and wavenumber content of the observed internal waves

is further quantified as follows. Part (a) of Figs. III.12 - III.14 show the time series of

∂w/∂z measured on a streamwise line located at y = 8.5δω,0 and z = −10δω,0 for cases

with Jd = 0.25, 1.0 and 0.1, respectively. The time series is recorded in the stationary

simulation frame. Clearly, the initial wave field during 40 < t < 100 due to KH-rollers

is stationary and thus the apparent frequency, ω, is zero. In part (b) of these figures,

the ∂w/∂z field is mapped into the frame moving at the free-stream velocity in the

bottom region by

x′ = x − 〈u〉 · t . (III.11)

where 〈u〉 at this location is close to 0.5∆U . The power spectra of the mapped field

is computed to obtain the intrinsic frequency, Ω, and the results are shown in part

(c) of Figs. III.12-III.14. Both cases Jd = 0.25 and 1.0 show a strong peak at kδω,0 =

0.85± .06, which is identical to the wavenumber of the most unstable KH mode, kKH .
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The temporal frequency peaks at Ω = 0.43 ± 0.05 and 0.41 ± 0.05∆U/δω,0 in case

Jd = 0.25 and 1.0, respectively. The error bars in the wavenumber and frequency are

due to the finite values of spatial length and temporal period in the data that is available

to compute the spectra. The diagonal solid line in part (c) of the figures represents the

dispersion relation Ω = 0.5∆Uk. For cases, Jd = 0.25 and 1.0, these diagonal lines pass

through the (Ω, k) location of peak power spectrum, and are consistent with the shape

of the Ω − k contours. Thus, the computed frequencies agree well with the frequency

predicted by linear theory, Eq. (III.8).

Although the KH rollers cannot excite internal waves in case Jd = 0.1 as dis-

cussed previously, the thickening of rollers by diffusion and during the pairing process

generates disturbances at smaller wavenumber, i.e. larger wavelength such that the

radiation condition is met. Fig. III.14(a) shows the presence of such internal waves.

The power spectrum shown in Fig. III.14(c) shows a peak at kδω,0 = 0.61 ± 0.06 and

Ω = 0.25±0.06∆U/δω,0, resulting in θ = 38±18◦. The dispersion relation also holds in

this case. The solid line slightly deviates from the peak location because the wave pack-

ets have a small positive x-velocity in the stationary frame as shown in Fig. III.14(a).

At later time, in the turbulence regime, internal waves continue to be generated

by the shear layer. However, as shown by the right panels of Fig. III.10, the phase lines

in the vicinity of the shear layer become less structured and the amplitudes are smaller

compared to those generated by the rollers. Since the turbulence has a broadband

spectrum, turbulence-generated waves are excited over a broad range of angles as shown

in Figs. III.10(b,d,f) in the region beneath the shear layer. The wavenumber spectrum,

earlier shown in Fig. III.11, indicates that late-time fluctuations are broadband without

a discrete peak at the fundamental KH mode. Turbulence generated internal waves

are often observed to eventually propagate at a narrow band of angles around θ = 45◦,

although they might span a wide frequency range in the region of generation. The

narrow band of propagation angles has been observed in laboratory experiments of a

shear layer (Sutherland & Linden, 1998) and grid turbulence (Dohan & Sutherland,

2003), and in a numerical simulation of a turbulent bottom boundary layer by Taylor

& Sarkar (2007). The phase lines of the turbulence generated waves observed at later
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Figure III.15: Density variation, ∆tρ defined in Eq.(III.13), in two-layer case.

time in the Jd = 0.1 case also cluster around 45◦ in the deep region, as shown by

Fig. III.10(b). Taylor & Sarkar (2007) offer the following explanation for their boundary

layer generated waves that is based on frequency-specific viscous decay: both, high-

and low-frequency waves, have low vertical group velocity, larger time of flight to a

given vertical level, and large viscous attenuation leaving behind mid-frequency waves

clustered around θ = 45◦.

Figs. III.12 - III.14(e) give the power spectra of the late-time internal waves in

a frame moving with the free-stream velocity. The peak intrinsic frequencies in cases

Jd = 0.1, 0.25, and 1.0 are 0.21 ± 0.04, 0.31 ± 0.04 and 0.47 ± 0.04∆U∗/δ∗ω,0, which

correspond to θ = 48± 10◦, 52± 6◦, and 62± 3◦, respectively. The range of wavenum-

bers in the power spectra is broader than the early-time spectra in part (c) of these

figures. Furthermore, the solid diagonal line, Ω∗ = (∆U∗/2)k∗ is not consistent with

the observed power spectrum, showing that the theory that was demonstrated for the

KH-generated waves does not work for the late-time turbulence generated waves.

III.F Mass Transport

Linear wave theory predicts that there is no net mass transport by internal waves

over a wave period; however, we observe an accumulation of mass in the region near

the shear layer. We will show below that the observed mass gain is due to molecular

diffusion. The density gradient at the bottom is more negative than at the top surface

resulting an accumulation of mass in the shear layer.
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Figure III.16: Density variation, ∆tρ defined in Eq.(III.13), in case Jd = 0.25 (a) in

KH regime, (b) in turbulence regime.

Take the horizontal average of the density equation, Eq.(III.3),

∂ 〈ρ〉
∂t

= −∂ 〈ρ′w′〉
∂z

+
1

Re0Pr

∂2 〈ρ〉
∂z2

, (III.12)

where 〈·〉 denotes average quantity. The density change in time, ∆tρ, can be defined

by

∆tρ = 〈ρ〉 (z, t) − 〈ρ〉 (z, t = 0) , (III.13)

and the net mass accumulation, ∆tm, is the spatial integral of ∆tρ from z = zl to zu.

The depths zl and zu are chosen away from the shear layer where the mean density

gradient does not vary in time. Integration of Eq.(III.12) in space and time results in

∆tm =

∫ zu

zl

∆tρ dz =

∫ t

0

〈ρ′w′〉 (zl) dt +
1

Re0Pr

∆U2

gδω,0

(Jd − Js) t , (III.14)

where the vertical mass flux, 〈ρ′w′〉, at zu is negligible. The left-hand-side of Eq.(III.14)

gives the net mass gain, ∆tm, in the shear layer. Fig. III.15 shows profiles of ∆tρ at

various times in the two-layer case. As the shear layer evolves, the upper portion gets

heavier while the lower portion gets lighter as result of mixing. The spatial integration

of any of the profiles in this figure, i.e. the left-hand-side of Eq.(III.14), yields zero

mass gain. This agrees with the right-hand-side since there is neither mass flux, 〈ρ′w′〉,
nor density gradient outside the shear layer.

In the Jd cases, the mixing in the shear layer is similar but there is an accumulation

of mass in the transition region where Js merges with Jd. Fig. III.16(a) shows the
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Figure III.17: (a) Vertical mass fluxes at z = −5. (b) Net mass gain inside the shear

layer in case Jd = 0.25. The dots show the net mass gain in the shear

layer. The dash line denotes the diffusive contribution.

density variation profiles in case Jd = 0.25 during the KH regime. The figure shows

mass change, ∆tρ, due to shear mixing around the shear center, z = 0, accompanied

by mass change due to viscous diffusion in the transition region around z = −2.5.

At t = 40, the variation due to diffusion is larger than that due to shear mixing.

As the shear layer evolves, the mixing region thickens until it reaches the transition

region. The growth of the mixing region is restrained by the presence of the transition

region when compared to the 2-layer case. The transition region exhibits insignificant

thickness growth in time. In the turbulence regime, as shown in Fig. III.16(b), the

mixing due to shear becomes steady but the viscous mass diffusion into the transition

region continues. The density variation due to diffusion outgrows the effect of mixing at

late time. It is noted that, according to the diffusive term in Eq.(III.14), the region of

maximum accumulation has the largest difference in density gradient across the region.

Thus, the transition region indeed shows the maximum density variation.

According to linear wave theory, internal waves do not transport mass, i.e. the

integration of vertical mass flux, 〈ρ′w′〉, over a wave period is zero. Fig. III.17(a)

shows the time evolution of the mass flux across depth z = −5 in the Jd cases. The

profiles show an upward flux trailed by a downward flux. However, the upward flux

is stronger than the downward resulting a net upward flux. The imbalance is due to
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Figure III.18: Momentum thickness: (a) upper portion, δθ,u, (b) lower portion, δθ,l.

the unsteady decaying source in the shear layer. Although there is a mass transport

due to internal waves, the gain is small relative to the diffusive mass accumulation as

shown in Fig. III.17(b). In the figure, the dots represent the net mass gain in the shear

layer, ∆tm, calculated using the left-hand-side of Eq.(III.14). The dashed line shows

the gain due to the diffusive term on the right-hand-side. In the computation, we take

zl = −5 and zu = 5 where the density gradient does not vary in time. It is obvious

that the mass accumulation inside the shear layer is mainly contributed by diffusion.

The effect from the internal waves during the period t = 60 to 130 when the wave flux,

〈ρ′w′〉, is strong leads to no net mass gain.

III.G Momentum Transport

Internal waves provide a viable route for momentum transport from a region with

instabilities and turbulence to an external, quiescent region. In order to quantify the

momentum loss due to wave excitation, we examine the evolution of the momentum

thickness of the shear layer. The momentum thickness, δθ, was defined previously by

Eq. (III.6). Since the stratification in the top and bottom regions is different, Eq. (III.6)

is split into upper and lower portions,

δθ = δθ,u + δθ,l =

∫ z0

zl

(
1

4
− 〈u〉2

)

dz +

∫ zu

z0

(
1

4
− 〈u〉2

)

dz , (III.15)
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Figure III.19: (a) Reynolds stress 〈u′w′〉 at depth zl = −5. (b) Variation in the mean

velocity profile, ∆tu, in case Jd = 0.25.

where z0 is the location of zero velocity. Figs. III.18(a,b) show the time evolution of the

momentum thickness in the upper and lower portions, respectively. It is evident that

the shear layer grows asymmetrically. The asymmetry is related to the stratification

intensity in the deep layer. In case Jd = 0.10, the upper and lower portions grow

similarly. When Jd increases, the lower portion grows significantly less. In case Jd =

0.25 where strong internal waves are observed in the bottom region, the top portion

grows exactly as in case Jd = 0.10. However, the bottom portion is nearly 15% smaller.

Comparing case Jd = 1.0 to case Jd = 0.25, it is observed that the thickness growth

is less in both upper and lower portions. Stratification decreases overall turbulence

production in the core of the shear layer but enhances Reynolds shear stress at the

boundaries by allowing internal waves. In order to distinguish between these two

features, it is necessary to make precise the quantities that contribute to the thickness

growth. Differentiating each portion of (III.15) in time yields

dδθ,u

dt
= −

∫ zu

z0

d 〈u〉2
dt

dz ,

dδθ,l

dt
= −

∫ z0

zl

d 〈u〉2
dt

dz . (III.16)
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When the x-component of the momentum equation is averaged in the horizontal direc-

tions and the result is multiplied with the mean velocity 〈u〉, we obtain

1

2

d 〈u〉2
dt

= 〈u′w′〉 d 〈u〉
dz

− d

dz
[〈u〉 〈u′w′〉]− 1

Re0

(
d 〈u〉
dz

)2

+
1

Re0

d

dz

[

〈u〉 d 〈u〉
dz

]

. (III.17)

Substitution of the above result into Eq.(III.16) leads to the following expression for

the temporal rate of change of momentum thickness:

dδθ,u

dt
= 2

∫ zu

z0

[

P +
1

Re

(
d 〈u〉
dz

)2
]

dz − 〈u′w′〉 (z = zu) ,

dδθ,l

dt
= 2

∫ z0

zl

[

P +
1

Re

(
d 〈u〉
dz

)2
]

dz − 〈u′w′〉 (z = zl) . (III.18)

Here, P = −〈u′w′〉 (d 〈u〉 /dz) is the turbulence production. We have used the condi-

tions that 〈u〉 = −1/2, 0, 1/2 at z = zu, 0, zl, respectively. The last terms in Eq. (III.17)

can be ignored since the velocity gradient at depths zu and zl is relatively small. Inte-

grating (III.18) from time t0 to t, the expression for momentum thickness as a function

of time takes the form

δθ,u (t) = δθ (t0) + 2

∫ t

t0

∫ zu

z0

[

P +
1

Re0

(
d 〈u〉
dz

)2
]

dz dt −
∫ t

t0

〈u′w′〉 (z = zu) dt ,

δθ,l (t) = δθ (t0) + 2

∫ t

t0

∫ z0

zl

[

P +
1

Re0

(
d 〈u〉
dz

)2
]

dz dt −
∫ t

t0

〈u′w′〉 (z = zl) dt .

(III.19)

The growth of momentum thickness is the result of a positive contribution from the tur-

bulence production in the shear layer and a negative contribution from the momentum

flux 〈u′w′〉 at the edges of the shear layer. The viscous contribution can be neglected

at high Reynolds number. Since the stratification is weak in the top region, we focus

our discussion on the bottom region where the fluid is strongly stratified. Fig. III.19(a)

shows the time evolution of the momentum flux 〈u′w′〉 at depth zl = −5 for the three

cases. The flux is strongest in case Jd = 0.25, and weakest in case Jd = 0.10. Although,

less momentum is transported away in case Jd = 1.0 relative to case Jd = 0.25, δθ is

smaller in the former. This is a result of the reduction in turbulence production owing

to buoyancy. It is of interest to compare the radiated momentum flux in the shear layer
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with other configurations. The peak value of 〈u′w′〉 ≃ 2× 10−3 in Fig. III.19(a) for the

internal wave momentum flux is larger than the corresponding value of 〈u′w′〉 ≤ 10−4

observed in a jet by Smyth & Moum (2002).

In order to estimate the efficiency of momentum transport by internal waves, we

compare the time integrated momentum flux in Eq.(III.19) to the initial momentum in

the shear layer, which is 1 (∆U∗δ∗ω,0, dimensionally). The time integration from t = 0

to 250 indicates approximately 10% (Jd = 0.25), 7% (Jd = 1.0), and 3% (Jd = 0.10) of

the initial momentum can be extracted by the internal waves. In their study of a shear

layer formed by flow over a vertical barrier, Sutherland & Linden (1998) report slightly

higher values from their two-dimensional simulations. This is typical since velocity fluc-

tuations are more correlated in two-dimensional flows. In their laboratory experiments,

7% is the maximum value that is observed for the momentum propagated away by the

internal waves. As the internal waves propagate downward with significant amount of

momentum, the mean flow decelerates as noted by Fritts (1982). Fig. III.19(b) shows

the variation in the mean velocity profile, ∆tu (z, t) = 〈u〉 (z, t) − 〈u〉 (z, t = 0). The

deceleration magnitude can be 1% near the shear layer and reduces to a smaller value

as the waves travel away owing to local viscous diffusion.

III.H Energy Transport

The amount of fluctuation energy transported away from the shear layer by internal

waves is quantified and found to be substantial. The shearing event generates fluctua-

tion kinetic energy and waves carry the energy into the deep layer. Therefore, velocity

fluctuations measured by the turbulent kinetic energy, tke, denoted by K = 1/2 〈u′
iu

′
i〉,

accumulate outside the shear layer. (Although we use the terms turbulent kinetic en-

ergy and fluctuation kinetic energy interchangeably, nonzero K well outside the shear

layer is wave energy and not turbulence.) The amount of energy transported is ob-

tained by subtracting the amount of energy inside the shear zone from the total amount

present in the simulated domain. Integration of K from z = −δω to δω provides a good

measure of the tke inside the shear zone. Figs. III.20(a,b) show the spatially integrated
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Figure III.20: Integrated turbulent kinetic energy (a)Jd = 0.25 (b)Jd = 1.0 —, over

test domain; −−−, over the shear layer.

K as a function of time for cases Jd = 0.25 and 1.0, respectively. The dashed lines in-

dicate the energy inside the shear layer and the solid lines shows the energy in the test

domain that excludes the sponge regions. The difference between the two curves yields

the amount of energy transported outside the layer by the internal waves. Transport to

the exterior starts at t = 50, shortly after the KH rollers begin to develop. Fluctuation

energy associated with instabilities and turbulence progressively builds up inside the

shear layer and, correspondingly, more energy is pumped into the deep region below

the shear layer. At late time, the energy inside the shear layer vanishes owing to the

dissipative nature of turbulence, but energy remains present outside where the vis-

cous dissipation is relatively weak. Outside the shear layer, the energy resides mainly

in the bottom region where the ambient stratification supports internal waves. From

Fig. III.20(a), approximately 0.02 ∆U2 has been transported (the difference between

the two lines at late time). Relative to the initial mean kinetic energy inside the shear

layer, the transported energy is roughly 15% in case Jd = 0.25, 7% in case Jd = 1.0,

and 3% in case Jd = 0.10. The initial mean kinetic energy is calculated by integrating

1/2 〈u〉2 at time t = 0 from z = −δω,0 to δω,0.

It is desirable to describe the “efficiency” of energy transport in light of the tke

budget. The evolution equation for the turbulent kinetic energy is

dK

dt
= P − ε + B − ∂Ti

∂xi

. (III.20)
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Figure III.21: Vertical profiles of tke budget in case Jd = 0.25 at (a) t = 83, (b) t =

160.
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Figure III.22: (a) Balance of tke budget for Jd = 0.25. The production, dissipation

and buoyancy flux are integrated from zmax to z = −5. 〈p′w′〉 is at

z = −5. (b) Internal wave flux, 〈p′w′〉, at z = −5 compared among

different cases.
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Here, K is the turbulent kinetic energy defined previously, P is the production rate,

defined as

P ≡ −
〈
u′

iu
′
j

〉 ∂ 〈ui〉
∂xj

= −〈u′w′〉 d 〈u〉
dz

,

ε is the dissipation rate, defined as

ε ≡ 2

Re0

〈
s′ijs

′
ij

〉
; s′ij =

1

2

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)

,

B is the buoyancy flux, defined as

B ≡ −Rib,0 〈ρ′w′〉 ,

∂Ti/∂xi is the transport of tke, defined by

Ti ≡
1

2

〈
u′

iu
′
ju

′
j

〉
+ 〈u′

ip
′〉 − 2

Re0

〈
u′

js
′
ij

〉
.

For the present flow, the transport term simplifies to ∂T3/∂z with

T3 =
1

2
[〈w′u′u′〉 + 〈w′v′v′〉 + 〈w′w′w′〉] + 〈p′w′〉 − 2

Re0

[〈u′s′31〉 + 〈v′s′32〉 + 〈w′s′33〉] .

Figs. III.21 (a,b) show the profile of each term in the tke budget in case Jd = 0.25

at time t = 83 and 160, respectively. At t = 83, the production and dissipation are

large but restricted to the shear region. The presence of propagating internal waves

external to the shear layer is shown by the extension of profiles of the buoyancy flux,

transport (essentially d 〈p′w′〉 /dz) and dK/dt into the deep region. At time t = 160,

the production is negligible and, in the shear region, the dissipation rate is balanced

by dK/dt. The internal gravity waves continue to transport energy into the deep

region. The profiles at t = 160 show that, in the deep region, approximately half of the

transport goes into changing the fluctuation kinetic energy and half into the buoyancy

flux, i.e. changing the fluctuation potential energy.

We now characterize the energetics of the fluctuations during the entire evolution

rather than at the two specific times of Fig. III.21. Integrating Eq. (III.20) from depth

z⋆ to the top boundary zt
max of the test region yields

∫ zt
max

z⋆

dK

dt
dz =

∫ zt
max

z⋆

P dz −
∫ zt

max

z⋆

ǫ dz +

∫ zt
max

z⋆

B dz + 〈p′w′〉 (z⋆) . (III.21)
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Fig. III.22(a) shows the time evolution of terms in Eq. (III.21) for case Jd = 0.25. The

spatial integration includes the upper region excluding the sponge region, the shear

layer and the bottom region down to depth z⋆ = −5. As the vortices roll up, there

is significant energy extraction from mean shear by fluctuations through the turbulent

production, some of which is used to increase turbulent kinetic energy. Also in the

presence of the rollers, the buoyancy flux reaches its maximum value since larger eddies

have the capability to lift up heavy fluid. The peak dissipation rate occurs at later

time when the flow turns turbulent. The term 〈p′w′〉, called the pressure transport

term in the turbulence literature and the internal wave flux in the literature on waves,

is significant and occurs at a time between the occurrence of peak production and

peak dissipation. When z⋆ is far away from the shear layer, the internal wave (IW)

flux, 〈p′w′〉, dominates the other transport terms. Fig. III.22(b) shows the energy flux

〈p′w′〉 at z = −5 for the three simulated cases. Similar to the momentum flux, the IW

flux depends strongly on the stratification in the deep region. For weak stratification

(Jd = 0.1) the wave excitation is negligible and so is the IW flux. Case Jd = 0.25 has

the strongest IW flux, not Jd = 1.0. The dependence of internal wave flux on Jd is

non-monotone because increasing the stratification, on one hand, increases the flux for

a given amplitude of vertical velocity fluctuation but, on the other hand, decreases the

vertical velocity fluctuations in the generation region. In the shear layers simulated

here, the net IW flux due to the rollers is significantly higher than the flux due to

small-scale turbulence.

An overall quantification of the efficiency of IW flux is obtained by integration of

Eq. (III.21) from time t = 0 to late time tf when turbulent kinetic energy inside the

shear layer vanishes. This procedure is convenient since the temporal peak values of

the various terms in the tke balance occur at different times. Table III.1 shows the

efficiency of energy transport by waves relative to other terms in the energy budget.

Strang & Fernando (2001) estimate the ratio of IW flux to the rate of change of

potential energy as approximately 48%, slightly smaller than the values of 75% and

57% for IW/(−B) in Table III.1. The production, P , measures the extraction of tke

from the mean shear flow by the Reynolds shear stress of the fluctuations. It is useful to
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Table III.1: Energy flux efficiency, energy partition and mixing efficiency. The terms

in the tke budget are integrated in both time and space (from z = −5 to

zt
max) to calculate the tabulated values.

Jd IW/P IW/ǫ IW/(−B) ǫ/P (−B)/P Γ Γd

0.1 0.05 0.08 0.18 0.6 0.28 0.46 0.46

0.25 0.17 0.33 0.75 0.53 0.23 0.44 0.44

1.0 0.14 0.25 0.57 0.55 0.24 0.44 0.43

quantify the partition of the extracted energy into the various sinks of the tke balance

as done in columns 2, 5 and 6 of Table III.1. In case Jd = 0.25, 53% of the production

is dissipated, 23% used for stirring the density field, and 17% is transported away by

internal waves. In the same order, the values are 55%, 24%, 14% for case Jd = 1.0 and

60%, 28%, 5% for case Jd = 0.1. As the numbers show, internal waves can considerably

alter the energetics inside the shear layer.

The quantity, Γ = −B/ǫ, the so-called mixing efficiency is an important quan-

tity that is often used by oceanographers to infer the eddy diffusivity of mass, Kρ,

from the dissipation rate obtained by microstructure measurements or estimated by

measurement of the Thorpe scale. If Γ is known, the expression Kρ = Γǫ/N2 can be

used without further approximation to obtain the eddy diffusivity (Osborn, 1980). The

quantity, Γd = ǫρ/ǫ, can be measured directly in the ocean from temperature gradient

and velocity shear data, and is used as a surrogate for the mixing efficiency (Oakey,

1985). Here, ǫρ is defined by

ǫρ =
1

PrRe0

g

ρ0|dρ̄/dz|
∂ρ′

∂xk

∂ρ′

∂xk

. (III.22)

The quantity, ǫρ, signifies irreversible loss of turbulent potential energy to the back-

ground density field. The last two columns of Table III.1 give the overall mixing

efficiency where the buoyancy, viscous and scalar dissipation are integrated in time

before the ratios are taken. Although, Γ = Γd = 0.2 is often employed, the value can

depend on the type of flow, the age of the flow in non-stationary examples, as well as
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other parameters such as Reynolds number, Richardson number, and Prandtl number.

Here, both Γ and Γd are approximately 0.44 for all Jd cases, somewhat smaller than

the value of 0.6 reported by Smyth et al. (2001) where they simulate a two-layer case

at Re = 1965 and Rib = 0.08.

III.I Implications

The direct numerical simulations conducted here show that the presence of an

ambient region with uniform stratification substantially changes the evolution of a

stratified shear layer from the typically studied situation of shear between two layers,

each with constant density that differ. Three cases with different strengths of strati-

fication in the deep region (Jd = 0.10, 0.25, and 1.0) and with uniform stratification,

Js = 0.05, in the shear zone were compared with a two-layer case. All four cases have

the same overall bulk Richardson number, Rib = 0.10.

The thickness of the shear zone measured with the vorticity thickness, δω, increases

with increasing time. The thickness, δω, is smallest in the case with strongest stratifi-

cation, Jd = 1.0. Unlike the 2-layer case where the thickness asymptotes at late time,

δω has a secondary growth stage at late time with a moderate but noticeable growth

rate. This secondary growth leads to a vigorous growth in bulk Richardson number,

Rib because the shear layer entrains heavier fluid at the bottom edge. At the end of

the Jd = 1.0 simulation, Rib ≃ 4, an order of magnitude larger than the asymptotic

value of Rib = 0.32±0.06 observed in the two-layer problem. Another measure of shear

layer thickness is the momentum thickness, δθ. The Jd cases have significantly smaller

δθ with respect to the two-layer situation. Furthermore, the secondary growth of δθ in

the Jd cases is much smaller than that of δω. The shear layer stirs and mixes up the

density field and, consequently, pycnoclines (regions with a strong change in density

gradient) are formed at the edges of the layer. At the bottom edge, the pycnocline

grows and then merges into the strong background stratification. The pycnocline at

the top edge grows and then depletes in time. The deep stratification leads to an im-

portant qualitative difference in the profile of mean shear with respect to the two-layer
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case. The position of maximum shear shifts from its initial position at the center of the

shear layer downward toward the center of the thermocline in contrast to the two-layer

case where the maximum shear remains at the center. Lower-momentum fluid that is

transported to the pycnocline by stirring is unable to exchange its momentum with

the higher-momentum fluid because of the large stable stratification in the pycnocline

and, as a result, the shear in enhanced. Even with the enhanced shear, the gradient

Richardson number is much larger than the critical value of 0.25 in the pycnocline and,

consequently, shear instabilities are prohibited. In the presence of a deep stratification

the coherent structures break down shortly after their formation because the non-linear

pairing process, observed in the two-layer case, is inhibited.

The shear layer excites strong internal waves in the cases with Jd = 0.25 and 1.0.

Waves are excited during both the early-time stage of Kelvin-Helmholtz (KH) instabil-

ity and the late-time stage of three-dimensional turbulence. The early-time generation

of internal waves is especially strong and their characteristics can be explained by linear

theory: the horizontal wave number is given by the most unstable wavelength i.e. the

KH mode, the temporal frequency is that due to the bottom free-stream moving over

the approximately stationary KH rollers, and the linear dispersion relationship for in-

ternal gravity waves predicts the observed angle of the phase lines (equivalently group

velocity). In particular, the phase lines are observed to tilt at approximately θ =32-38◦

(Jd = 0.25) and 62-68◦ (Jd = 1.0) to the vertical. The power spectrum of the early-

time internal waves as function of temporal frequency and wave number is also found

to be consistent with linear theory. Jd > 0.18 is the condition for the KH instability to

excite propagating internal waves. Consequently, KH-generated internal waves are not

observed when Jd = 0.10. However, the late-time turbulent stage does permit internal

waves that are observed to span a wide range of wave numbers, frequencies and phase

angles in the generation region. The linear theory that was found to work well at early

time does not explain the characteristics of the late-time waves. In agreement with

previous laboratory and numerical studies of turbulence-generated waves, the phase

lines in the deep propagation region cluster in a narrow band, approximately around

45◦.
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Internal waves, observed here to propagate in the bottom interior region, do not

transport mass away or into the shear layer, consistent with linear wave theory, but are

shown to constitute a significant pathway for energy transfer into the interior. The net

mass gain, observed here, is the result of the molecular diffusive flux associated with

the density gradient external to the shear layer. Nonetheless, internal waves extract

momentum from the shear layer. Therefore, the evolution of the momentum thickness

δθ shows asymmetry: the thickness grows less in the bottom portion where strong in-

ternal waves are generated. The extraction is most efficient in the case with Jd = 0.25.

Measures of Reynolds stress in the deep region shows that internal wave can carry up

to 10% of the initial momentum inside the shear layer. The significant drag causes the

bottom part of the shear layer to decelerate. Along with momentum, waves also trans-

port energy to the ambient. The internal wave energy flux is examined by comparing

the terms in the vertically integrated turbulent kinetic energy equation. Case Jd = 0.25

shows the strongest energy flux and not Jd = 1.0 implying that there is a buoyancy

frequency which is optimal with respect to wave energy flux. Integration of the kinetic

energy budget over the simulated time shows that the internal waves are important

to the energetics of the shear layer. The contribution of the wave energy flux can be

up to 17% of the production, 33% of the dissipation and 75% of the buoyancy flux.

Therefore, internal waves provide an important route for transport of fluctuation en-

ergy from shear flow instabilities into the stratified interior with potentially important

implications for energy pathways in the ocean and in the atmosphere.

The contents of this chapter have been published in the Journal of Fluid Mechanics:

Pham, H. T., Sarkar, S. and Brucker, K. A., “Dynamics of a Stratified Shear Layer

Above a Region of Uniform Stratification”, J. Fluid Mech., 630, 191-223 (2009). The

dissertation author is the primary researcher and the research supervisor and Kyle A.

Brucker are the co-author of the paper.



Chapter IV

Transport and mixing of density in

a continuously stratified shear layer

IV.A Objectives

In the past decades, turbulent mixing in a stratified fluid driven by a background

shear has been one of the focal research topics in terms of understanding the mechanism

of mixing as well as its parametrization in models of large-scale environmental flows.

Although there has been much progress (Fernando., 1991; Peltier & Caulfield, 2003;

Ivey et al., 2008), a number of unresolved questions remain including the following:

(i) The interaction of internal gravity waves, that can transport significant amount

of momentum and energy to the ambient, with local mixing, and (ii) the influence

of Reynolds number. These issues are addressed by the current study that utilizes

three-dimensional Direct Numerical Simulation (DNS) to investigate turbulent mixing

in a high Re shear layer in a continuously stratified ambient where internal waves are

supported.

Turbulent mixing in homogeneous flows has been thoroughly investigated includ-

ing parametrization schemes for mixing. Jacobitz et al. (1997) use 3D-DNS to study

turbulence mixing in a periodic box with constant vertical shear S in a linearly strat-

70
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ified ambient where stratification is measured by squared buoyancy frequency N2 =

(−g/ρ0) d 〈ρ〉 /dz. The turbulence evolution is found to strongly depend on the gradi-

ent Richardson number Rig = N2/S2, the Reynolds numbers defined using the Taylor

micro-scale, and the shear number SK/ε where K is the turbulent kinetic energy

(TKE) and ε is the dissipation rate. Riley & deBruynKops (2003) investigate the

properties of turbulent mixing driven by Taylor-Green vortices. The mixing efficiency

is large initially and settles down to the value of approximately 0.4 during the turbu-

lence decay period. Shih et al. (2005) investigate the parametrization of eddy viscosity

and eddy diffusivity using simulations of homogeneous shear flow with stratification.

The evolution of the eddy diffusivity is found to consist of three regimes: energetic,

intermediate and diffusive mixing. There is a strong dependence of eddy diffusivity on

the turbulence activity ε/νN2, also known as buoyancy Reynolds number Reb. Other

parametrization using the parameters ReFr2
k and Re/Rig are also shown to describe

the evolution of eddy diffusivity. Here, Re = qΛ/ν where q =
√

(2K), Λ is the integral

length-scale, and Frk = ε/ (NK) is the local Froude number.

Turbulent mixing a two-layer shear flow with hyperbolic tangent density and ve-

locity profiles has received significant attention. Caulfield & Peltier (2000) use stability

analysis and 3D-DNS to identify, in addition to the primary Kelvin-Helmholtz (K-H)

shear instability, a secondary instability wherein streamwise vortices are formed at the

braids, interact with each other, and thus drive the mixing. The secondary instability

is also observed in the 3D-DNS of Werne et al. (June 2005). Staquet (2000) from

3D-DNS studies describes three stages of mixing: the first stage of primarily 2-D K-H

instability with high mixing efficiency, the second stage of small-scale three-dimensional

instability as in the work of Caulfield & Peltier (2000), and the final stage of turbu-

lence generation and decay in which the flux Richardson number approaches the value

approximately 0.25. In the final stage, the eddy diffusivity exhibits an inverse depen-

dence on the gradient Richardson number Rig defined using the sorted background

density profile as introduced by Winters et al. (1995). Smyth & Moum (2000b,a);

Smyth et al. (2001) investigate the effect of Reynolds number Re and Prandtl number

Pr upon the evolution of the mixing event and further contrast their 3D-DNS results
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to the observed mixing data in the Equatorial Undercurrents. Upon comparison, they

conclude that the DNS results agree well with data from field observations. They

further state that the age of an turbulent mixing event can be described by the ratio

ROT = LO/(L
3/4
E L

1/4
T ), where L0, LE, and LT are the Ozmidov, Ellison, and Thorpe

scales, respectively. The mixing efficiency is found to be in the range of 0.2 − 0.6.

Turbulent mixing with a background shear and a density profile different from the

two-layer problem has been studied. Strang & Fernando (2001) perform a laboratory

experiment to investigate the turbulent entrainment at a sheared density interface. The

background condition is a stratified shear layer situated between a well-mixed turbulent

upper layer and a quiescent linearly stratified lower layer. The flow evolution includes

K-H instability and a secondary Hölmböe wave instability whose interactions with each

other can cause breaking and intense mixing. Internal waves are observed to propagate

into the lower region. The ratio of the wave energy flux to the rate of change of potential

energy due to mixed-layer deepening is approximately 48%. Tse et al. (2003) uses 3D-

DNS to study the evolution of stratified turbulence in a forced jet, a model for the

atmospheric tropopause. The jet is maintained at quasi-equilibrium state with strong

turbulence in the core, patchy turbulence and nonlinear internal waves at the edges. It

is found that spatial variation in turbulence activity across the jet can be characterized

through length scales and budget equations for the velocity and density variances.

Internal waves excited by an unstable shear layer have been observed to carry sig-

nificant momentum flux. Sutherland & Linden (1998) perform a laboratory experiment

in which a thin vertical barrier is put inside a water channel and partially obstructs

the incoming flow. The fluid is lightly stratified in the upper region while the lower

region is strongly stratified. Vortices, shed in the wake of the barrier, excite internal

waves. The waves propagating into the lower region are found to carry approximately

7% of the average momentum across the shear depth. Pham et al. (2009) investigate

the properties of the internal waves through 3D-DNS of a stratified shear layer at

Re = 1280. The internal waves are excited by an unstable shear layer located between

a weakly stratified region and a region with stronger stratification. The internal waves

are found to carry up to 10% of the initial momentum in the shear layer. Integration
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of the TKE budget over the shear layer and time shows that the wave energy flux can

be up to 17% of the turbulent production, 33% of the dissipation rate and 75% of the

buoyancy flux. The mixing efficiency is approximately 0.4.

Different from the work of Pham et al. (2009) whose focus is on the properties

of the large-scale internal waves radiated by the shear layer, the current investigation

focuses on turbulent mixing inside the shear layer. The Reynolds number, Re = 5000

is nearly 4 times larger relative to Pham et al. (2009). Furthermore, in the current

work, the largest turbulent activity ε/νN2 is as large as 200 so that the turbulent

mixing spans the entire three regimes according to Shih et al. (2005). Specifically,

we aim to answer the following questions: (1) How does the presence of the external

stratification and the excitation of internal gravity waves affect transport and mixing

inside the shear layer ? (2) How well can parametrization schemes in homogeneous

stratified flows be applied toward parametrizing inhomogeneous stratified turbulence ?

IV.B Problem Formulation

(a) (b)
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Figure IV.1: (a) Schematics of initial mean velocity and density profiles. (b) Initial

gradient Richardson number Rig. The dashed line indicates the marginal

value, Rig = 0.25, for shear instability.

Three-dimensional Direct Numerical Simulations are employed to describe the evo-
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lution of inhomogeneous stratified turbulence that originates from shear instability.

The flow is a temporally-evolving shear layer with the initial velocity having the fol-

lowing profile at t = 0:

〈u∗〉 (z, t = 0) =
−∆U∗

2
tanh

(
z∗

0.5δ∗ω,0

)

,

where ∆U∗ is the velocity difference across the shear layer and δ∗ω,0 is the initial vorticity

thickness defined as δ∗ω,0 = ∆U∗/ (d 〈u∗〉 /dz∗)max. Subscript 0 indicates quantities at

initial state, superscript ∗ denotes dimensional quantities and the bracket 〈·〉 indicates

horizontal x-y average. Two types of initial density profiles are targeted. The first,

namely the two-layer (2L) case, corresponds to the classical Thorpe experiments with

the following profile at t = 0,

〈ρ∗〉 = 〈ρ∗
0〉 −

∆ρ∗

2
tanh

(
z∗

0.5δ∗ω,0

)

,

where ∆ρ∗ is the density difference across twice the initial vorticity thickness δ∗ω,0. The

second, namely the Jd case, is continuously stratified with the following stratification

profile at t = 0:

J (z) =
Js + Jd

2
+

Js − Jd

2
tanh

(
z∗ + 2.5δ∗ω,0

δ∗ω,0

)

.

Here, J (z) = N (z)∗2 δ∗2ω,0/∆U∗2 is the non-dimensional Richardson number with the

buoyancy frequency N∗2 = − (g∗/ρ∗
0) d 〈ρ∗〉 /dz∗. Js is chosen such that the density

difference, ∆ρ∗
0, across 2δω,0 is the same for both cases and Jd is equal to 5Js. The

initial velocity and density profiles are shown in figure IV.1(a). The two-layer profile has

been studied previously (Smyth & Moum, 2000b,a; Caulfield & Peltier, 2000; Staquet,

2000) and the corresponding mixing efficiency has been discussed at length (Smyth

et al., 2001) and will be used as a base case for comparison in the current study. The

Jd profile is typical to numerous observations in the ocean pycnocline as well as in

the atmospheric inversion in which the background density stratification varies with

depth/height.

The governing equations are the incompressible Navier-Stokes equation with Boussi-

nesq approximation with dependent variables: velocity u, v, w, pressure p and density
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ρ in a non-rotating Cartesian coordinates with independent variables: x, y and z. The

variable p denotes deviations from the mean hydrostatic pressure. The density is de-

composed into a reference density ρ0 and a departure which is composed of a mean

and fluctuation as follows:

ρ = ρ0 + 〈ρ〉 (z) + ρ′ (x, y, z, t) .

The apostrophe indicates the fluctuation from the planar mean value. In the current

study, fluctuations can represent both waves and turbulence. The Boussinesq approx-

imation supposes that the variations in density are ignored in the inertial terms in

the momentum equations but they contribute to the gravitational force. Using δ∗ω,0,

∆U∗, ρ∗
0, and ∆ρ∗

0 as the characteristic scales for length, velocity, density, and den-

sity difference in the momentum equation, respectively, the non-dimensional governing

equations take the following form:

∇ · u = 0 , (IV.1)

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re0

∇2u − Rib,0ρ
′δi3 , (IV.2)

∂ρ

∂t
+ (u · ∇) ρ =

1

Re0Pr
∇2ρ , (IV.3)

where

Re0 =
∆U∗δ∗ω,0

ν∗ , Rib,0 =
g∗∆ρ∗

0δ
∗
ω,0

ρ∗
0∆U∗2 , P r =

ν∗

κ∗ . (IV.4)

Here, ν∗ and κ∗ are the kinematic viscosity and molecular diffusivity, respectively.

Both datasets are generated with Re = 5000, Pr = 1 and Rib,0 = 0.1. It is noted that

although the bulk Richardson number Rib,0 are the same, the gradient Richardson

number Rig (z) = N2 (z) / (d 〈u〉 /dz)2 at the centerline in the two-layer case is twice

larger than that in the Jd case as shown in figure IV.1(b).

The initial value of Re is sufficiently large such that the initial instability is nearly

inviscid and the separation between the largest and smallest length scales is approxi-

mately three orders of magnitude assuming the separation scales as Re−3/4 . The initial

Rib is chosen to be less than the critical value of 0.25 for shear instability (Hazel, 1972).

The parameters used in this study are relatively low for environmental applications.
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Nonetheless, Smyth et al. (2001) has simulated a 3D-DNS of a mixing layer with the

two-layer profile with Re = 4978, Pr = 1 and Rib = 0.08 and compared the computed

mixing efficiency to the values from measurements in turbulent patches observed off

the California coast and at the equator. They concluded that the parameters in their

DNS is high enough to approximate a high Reynolds number limit and further increase

in Re would not significantly alter their DNS results.

The numerical method is similar to that in our previous work (Basak & Sarkar,

2006; Brucker & Sarkar, 2007). Briefly, a second-order finite difference method on

a staggered grid is used for spatial discretization and the simulation is marched in

time with third-order low-storage Runga-Kutta. The current DNS utilizes parallel

computing with MPI to handle the computational needs of simulating high Reynolds

number flows. The domain size is 30.75×15.39×93.6 and the grid has 1024×512×768

points in the x, y, z directions, respectively, for a total of 402 million gridpoints. The

domain length Lx is chosen to accommodate approximately four wavelengths of the

primary K-H instability. The grid is uniform in the streamwise (x) and spanwise (y)

directions with a spacing of 0.03. In the vertical direction, the grid is uniform in the

region −4.5 < z < 3 with a spacing of 0.03 while the grid is stretched at the rate of

1% outside. Low amplitude velocity perturbations with a broadband spectrum,

E (k) ∝

(
k

k0

)4

exp

[

−2

(
k

k0

)2
]

,

are added to initialize the flow. Here, k0 is set such that the spectrum peaks at 1.7.

Fluctuations are introduced only in the shear layer with the shape function,

A (z) = exp
(
−z2

)
.

and with a maximum amplitude of 1% ∆U .

Periodic boundary conditions are used in the streamwise and spanwise directions.
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In the Jd case, the top and bottom faces of the domain have the following conditions:

u (zmin) =
1

2
, u (zmax) = −1

2
,

v (zmin) = v (zmax) = 0 ,

p (zmin) = p (zmax) = 0 ,

∂w

∂z
(zmin) =

∂w

∂z
(zmax) = 0 ,

∂ρ

∂z
(zmax) =

−Js

Rib,0
,

∂ρ

∂z
(zmin) =

−Jd

Rib,0
.

In the two-layer case, the velocity boundary conditions are the same but the density

ρ has a no-flux condition. Since internal waves can propagate far away from the

shear layer, a sponge region is added at the top (z > 15) and the bottom (z < −50)

boundaries to control spurious reflections of internal waves. More details about the

numerical methods can be found in Basak & Sarkar (2006); Brucker & Sarkar (2007);

Pham et al. (2009).

IV.C Evolution of the Shear Layers
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Figure IV.2: Evolution of (a) the momentum thickness δθ and (b) the gradient Richard-

son number Rig at the centerline of the shear layer z = 0. The dash line

indicates the critical value of Rig = 0.25 for shear instability.
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The evolution of the shear layer which consists of shear instability, formation of

K-H rollers, their breakdown into three-dimensional turbulence and finally the decay

of turbulence can be described with the growth of the momentum thickness δθ defined

as

δθ =

∫ zu

zl

(

1

4
− 〈u〉2

∆U2

)

dz

where the depths zu and zl are taken to be 5 and −5, respectively. The depths are

locations at which the background shear d 〈u〉 /dz is approximately zero over time

although the momentum flux 〈u′w′〉 due to internal waves can be large due to internal

waves. The growth of δθ shown in figure IV.2(a) indicates three evolutionary regimes

for both cases. During the early stage approximately 0 < t < 25, the shear layer

adjusts to the initial conditions and the growth is similar between the cases. The

second regime is the shear instability regime in which the instability develops into the

KH rollers and the shear layers thicken at strong linear rate. The linear growth rate

is similar between the two cases although it starts and ends earlier in the Jd case. As

the results, δθ in the Jd case is significantly smaller at end of the second regime when

the K-H rollers can no longer grow and small-scale turbulence dominates the shear

layer. The transition from the second regime to the third regime in which the shear

layer is dominated by decay of turbulence is sharper in the Jd case. In the two-layer

case, during the transition the turbulent shear layer thickens although at significantly

smaller rate compared to the growth observed in the second regime. In the third regime

as the turbulence decays the growth of δθ becomes asymptotic at a value which is more

than 25% larger in the two-layer case.

The evolution of Rig computed at the center of the shear layer z = 0 is shown in

figure IV.2(b). In both cases, Rig grows at similar rate during the formation of the

K-H rollers and exhibits strong fluctuations during the transition to turbulence. After

that, Rig asymptotes to a constant value. Although the initial value of Rig is half of

that in the two-layer case, the value during the turbulence decaying stage is larger in

the Jd case. The asymptotic value is approximately 0.45 in the two-layer case and 0.5

in the Jd case.
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IV.D Turbulence Evolution

In the previous section we have described the evolution of the mean flow, in the

section we focus on the evolution of turbulence in the shear zone which consists of

two stages: the generation of turbulence through shear instability and the decay of

turbulence through molecular mixing and spatial transport to the ambient. Although

the stages are the same between the two cases, there are differences which affect the

turbulent mixing rate. We elaborate on the differences with the visualization of the

shear layer, the TKE budget, the budget of density variance, and the evolution of

relevant length scales as well as some non-dimensional turbulence parameters.

IV.D.1 Visualization of the turbulent fields

(a) Two-layer, t = 60 (d) Jd, t = 60

(b) Two-layer, t = 79 (e) Jd, t = 80

(c) Two-layer, t = 102 (f) Jd, t = 100

Figure IV.3: Density field on a vertical xz plane at y = 3.9.

Cross sections of the density fields in the simulated flows are shown in figure IV.3.

Figures IV.3(a-c) correspond to the two-layer case while figures IV.3(d-f) correspond to
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the Jd case. In both cases, the primary shear instability is the same as shown in figures

IV.3(a,d) with the horizontal domain consisting of four K-H rollers. The vertical extent

of the largest rollers, located at the far left, is also similar. The pairing of K-H rollers

is absent in both cases. The presence/absence of pairing influences the evolution of the

vertical length scales and consequently affects the amount of potential energy available

for mixing. In the two-layer case, the two rollers to the right are breaking in figure

IV.3(a). Four isolated patches of small-scale turbulence in figure IV.3(b) corresponding

to the four rollers in figure IV.3(a) indicates evidence of breaking without pairing. The

braid between the first and second rollers as well as one between the third and the

fourth rollers in figure IV.3(b) are still coherent even though the cores of the rollers

show significant disintegration. In the Jd case, all four rollers in figure IV.3(d) exhibit

high frequency fluctuations in the roller cores. Figure IV.3(e) shows the shear layer at

t = 80 already consists of small-scale turbulence. Pham et al. (2009) observed pairing

in the two-layer case but not in the Jd case. Their physical explanation is that, in the

Jd case, strong internal waves carry a significant amount of energy outside the shear

layer and thus the rollers in the shear layer become too weak to pair. In the current

study in which the Reynolds number is approximately four times larger, low viscosity

allows for small-scale growth; therefore, the K-H rollers, even in the 2-layer case, tend

to break down before they can pair. At approximately t = 102, the turbulence in the

shear layer in the two-layer case shown in figure IV.3(c) becomes more homogeneous

in the horizontal extent compared to that in figure IV.3(b). The braids between the

turbulent patches in figure IV.3(b) can no longer be identified in figure IV.3(c). In

the Jd case, at t = 100, the turbulence in the shear layer in figure IV.3(f) is already

decaying. Comparison of the shear layer in figure IV.3(e) to that in figure IV.3(f) shows

that the former has stronger fluctuations and larger vertical extent. Between the two

cases, the turbulence in the two-layer case in figure IV.3(c) spreads to a greater vertical

extent than that in the Jd case in figure IV.3(e).

Figure IV.4 illustrates the TKE dissipation field, ε = (2/Re0)
〈
s′ijs

′
ij

〉
where s′ij

is the fluctuating strain rate, corresponding to the density fields shown in figure IV.3.

Here, the fluctuations from the planar mean can represent both internal waves and
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(a) Two-layer, t = 60 (d) Jd, t = 60

(b) Two-layer, t = 79 (e) Jd, t = 80

(c) Two-layer, t = 102 (f) Jd, t = 100

Figure IV.4: Turbulent kinetic energy dissipation rate ε on a vertical xz plane at y =

3.9.

turbulence although the latter has broader energy spectra and larger dissipation rate

(Pham et al., 2009). During the generation period of the KH-rollers, intense dissipation

occurs in the braid regions where the strain is large. As the flows transitions into

turbulence, small-scale fluctuations raise the dissipation rate inside the roller cores as in

figure IV.4(b,d). The breaking rollers transform into localized patches of dissipation. In

figures IV.4(c,e) the shear layers are fully turbulent. The dissipation patches observed

at earlier time merge with each other. The fluctuations at the center of the shear layers

become homogeneous in the horizontal extent in figures IV.4 (c,e,f).

Figure IV.5 shows the dissipation rate, χρ = 2/(Re0Pr)
〈
(∂ρ′/∂xi)

2〉, of the density

variance. This quantity is related to the rate at which the turbulent potential energy

is lost. An inverse correlation between the spatial distribution of the χρ and ε fields

of the K-H rollers is observed when comparing figures IV.5(a,d) to figures IV.4(a,d)

. The K-H roller at the far left in figure IV.5(a) has χρ small in the core and large
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(a) Two-layer, t = 60 (d) Jd, t = 60

(b) Two-layer, t = 79 (e) Jd, t = 80

(c) Two-layer, t = 102 (f) Jd, t = 100

Figure IV.5: Density variance dissipation rate χρ on a vertical xz plane at y = 3.9.

in the envelope. In contrast, figure IV.4(a) shows ε large in the core and small in

the envelope. The observation is consistent with the fact that the envelope has larger

instantaneous density gradient and thus larger χρ. Similar behavior is observed when

the shear layer becomes turbulent. While ε is usually not large at the edges, figures

IV.4 (e,f), χρ is large at the edges of the shear layer as in figures IV.5(e,f). Evidence of

internal waves is seen in figures IV.5(d,e,f). The wave phase lines have mild χρ, only a

magnitude of order larger than the background value.

In addition to the primary K-H instability in the spanwise direction, we also ob-

serve the secondary instability in the streamwise direction that has been discussed

previously by Caulfield & Peltier (2000). Figures IV.6(a,b) show the field of stream-

wise vorticity ω1 on the yz cross-section at x = 15.4. The cross-section is a cut through

the braid region shown in figure IV.3. In the two-layer case, shown in figure IV.6(a),

the braid consists of vortex streaks. The secondary instability is observed at four dif-

ferent y locations on the braid. A pair of counter-rotating vortices pinches off the braid
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(a) Two-layer, t = 60 (d) Jd, t = 47

Figure IV.6: Streamwise vorticity ω1 on a vertical transverse plane at x = 15.4.

at y ≈ 2.5 while at y ≈ 5 a group of smaller vortices are observed. At y ≈ 10, a larger

pair of counter-rotating vortices floats upward while a smaller pair cleaves off in the

opposite direction. Another vortex pair is at y ≈ 12.

In the Jd case, shown in figure IV.6(b), the instability is observed at y ≈ 8, 9

and 10. The pair at y ≈ 8 floats upward, the pair at y ≈ 9 sinks downwards, and

the pair at y ≈ 10 is largest. A group of incoherent vortices are observed in the re-

gion 11 < y < 14. The instability in the current study is not as coherent as shown

in the study of Werne et al. (June 2005) because the initial fluctuations employed

here have broadband spectrum in contrast to the flow initialization with primary K-H

instability (Werne et al., June 2005) which subsequently triggers the secondary insta-

bility. Caulfield & Peltier (2000) suggest that the secondary instability triggers three-

dimensional perturbations which transition the flow from a two-dimensional quasi-

laminar state to three-dimensional turbulence. In other words, turbulence is initiated

from the braids of the K-H rollers, spreads toward the core and cause the breakdown

of the rollers in the earlier low-Re DNS. In the current study, due to the high Re and

broadband nature of the initial low-amplitude fluctuations, we observe that the gener-

ation of turbulence at the braid and at the core of the rollers is independent. Figure

IV.4(b) shows the braid at x ≈ 7 is still coherent while the cores of the rollers to the

left and right of the braid already contain three-dimensional fluctuations.

The properties of the internal wave field generated by an unstable shear layer has

been discussed at length by Pham et al. (2009). Here, we provide a short discussion of

the internal wave field for completeness and also since Re is approximately four times
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Figure IV.7: Jd cases: (a) Internal wave field shown in the xz cross section at y = 3.9

of the fluctuating vertical velocity w′ field at t = 80; (b) Wave energy flux

〈p′w′〉 across the horizontal plane z = −5.

larger in the current simulations. Figure IV.7(a) shows the anatomy of the wave field

with the cross section of the fluctuating vertical velocity w′ field, while figure IV.7(b)

shows the internal wave flux to be discussed later. The narrow-band waves are linear

with the horizontal wavelength equal to the wavelength of the K-H rollers in the shear

layer. The wave phase lines tilt downward and upstream at angle between 32− 38◦ to

the vertical. The direction of propagation can be explained using linear wave theory

based on the Doppler-shifted frequency of the K-H mode (Pham et al., 2009). With an

increase in Reynolds number, we do not observe a change in the mechanism of wave

excitation.

IV.D.2 Turbulence Budgets

The TKE budget for the simulated flows is described by the following equation,

dK

dt
= P − ε + B − dT3

dz
, (IV.5)

where, K = 1/2 〈u′
iu

′
i〉 is the TKE. P is the production rate, defined as

P = −〈u′w′〉 d 〈u〉
dz

,
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Figure IV.8: TKE budgets in the vertical direction z: (a) in the two-layer case at t =

102, and (b) in the Jd case at t = 100.

ε is the previously defined dissipation rate, and B is the buoyancy flux, defined as

B = −Rib,0 〈ρ′w′〉 .

The transport term dT3/dz is defined as

T3 =
1

2
[〈w′u′u′〉 + 〈w′v′v′〉 + 〈w′w′w′〉] +

〈p′w′〉
ρ0

− 2

Re0

[〈u′s′31〉 + 〈v′s′32〉 + 〈w′s′33〉] .

Figures IV.8(a,b) show the budgets for the two-layer case at t = 102 and Jd case at

t = 100, respectively. At this time, the shear layers are fully turbulent. In both cases,

the budgets in the shear layer show the dominant balance between the dissipation ε

and production P . In the two-layer case, the buoyancy flux is positive in the upper

half of the shear layer and negative in the lower half indicating B can be both a source

and a sink of energy. In the Jd case, B is the source of energy across the shear layer

and the profiles of the buoyancy flux B, the transport −dT3/dz and the transient

term dK/dt extend far into the region below the shear layer where internal waves are

present. For the wave field, the production and dissipation are insignificant. Total

energy transported by the wave fields is balanced by the rate of change of TKE in time

and the rate at which TKE is converted to potential energy, i.e. buoyancy flux B.

The wave field in the current study is compared to one reported in Pham et al.

(2009) in term of energetics. The wave energy flux 〈p′w′〉 across the horizontal plane

z = −5 was shown earlier in figure IV.7(b). The peak energy flux at t ≈ 75 is half of

the value reported in the previous study. Integrating the energy budget, i.e. equation
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IV.5, from z = −5 to the upper bound of the domain excluding the sponge region and

also in time yields the bulk energy partitions in the balance of integrated TKE. The

total wave energy flux is found to be approximately 9% of the integrated production,

17% of the integrated dissipation and 38% of the integrated buoyancy flux. Pham

et al. (2009) reports values of 17%, 33%, and 75%, respectively. The wave field in the

current study is weaker owing to the effects of high Reynolds number upon the source

region of the waves. At high Re, the energy balance in the TKE budget is in favor of

the dissipation over the transport. The energy at the large scale (K-H mode) cascades

into the smaller scales at a faster rate. The K-H rollers at high Re lose more energy

to small-scale motion and therefore the amount of energy available to excite internal

waves is reduced.
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Figure IV.9: Evolution of TKE production, dissipation and buoyancy flux measured

at center of the shear layer z = 0 in time: (a) in the two-layer case; (b)

in the Jd case.

Figures IV.9(a,b) show the time evolution of the production, the dissipation and

the buoyancy fluxes at the center of the shear layer z = 0 in the two-layer and Jd case,

respectively. Overall, the evolution starts earlier and ends earlier in the Jd case while

the evolution has a longer duration in the two-layer case. The production rate peaks

earlier in the Jd case although the peak values are comparable between the two cases.

Integrated over time, the net TKE production is larger in the two-layer case despite the

initial gradient Richardson Rig being twice as large. Thus, the production and Rig do

not have direct correlation; rather, the spatial transport of the Reynolds stress 〈u′w′〉
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plays an important role in quantifying the rate at which TKE is generated. The peak

buoyancy flux B has a larger value so that more TKE is transferred to potential energy

in the two-layer case. At t = 100, B changes signs in figure IV.9(a) indicating available

potential energy is converted back to TKE. Different from B, the peak dissipation rate

ε is larger in the Jd case. In both cases, B is larger than ε during the rise of P but

smaller during the decay of P . After approximately t = 100 in the two-layer case and

t = 80 in the Jd case, the TKE budget shows a balance mainly between P and ε. The

effect of the buoyancy flux is small suggesting the decaying turbulence at the center of

the shear layer is in a homogeneous state.
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Figure IV.10: Density variance budgets in the vertical direction z (a) in the two-layer

case at t = 102, and (b) in the Jd case at t = 100.

The equation for the budget of the density variance 〈ρ′2〉 is

d

dt

〈
ρ′2〉 = Pρ − χρ −

dTρ

dz
, (IV.6)

where the scalar production Pρ is defined as

Pρ = −2 〈ρ′w′〉 d 〈ρ〉 /dz ,

and the scalar dissipation χρ is defined as

χρ = (2/PrRe0)
〈

(∂ρ′/∂xi)
2
〉

.

The transport term is

dTρ

dz
=

∂ 〈ρ′2w′〉
∂z

− 1

PrRe0

∂2 〈ρ′2〉
∂z2

.
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Figures IV.10(a,b) show the vertical profiles of the terms in the density variance budgets

corresponding to the TKE budgets shown in figure IV.8. In both cases, the dissipation

inside the shear layer is mainly balanced by the transient term indicating the shear

layers are in a state of decaying stratified turbulence. In the two-layer case, all terms

in the region z < −3δω,0 are zero. In contrast, there is significant buoyancy flux up

to z = −15δω,0 in the Jd case, albeit without mixing (χρ ≃ 0). The sign of the

production Pρ and the sign of B shown in figure IV.8(a) are opposite; recall that

Pρ = 2B/Rib,0d 〈ρ〉 /dz and the stable density gradient has a negative sign. Therefore,

B and Pρ represent energy transfer between the TKE budget and the density variance

budget. In the Jd case the production is balanced by the transient term in the region

below the shear layer where internal waves propagate. The time evolution of Pρ and
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Figure IV.11: Evolution of production and dissipation of density variance measured at

center of the shear layer z = 0 in time:(a) in the two-layer case; (b) in

the Jd case.

χρ at z = 0 for the two-layer and Jd cases are shown in figures IV.11(a,b), respectively.

The peak value of Pρ is significantly larger in the two-layer case while the peak value

for χρ is the same for the two cases.

IV.D.3 Length Scales

The growth of the following length scales: energy-containing scale LEN , Ellison

scale LE, Ozmidov scale LO and Kolmogorov scale LK are now discussed. Their defi-
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Figure IV.12: Evolution of length scales (a) in the two-layer case and (b) in the Jd

case.

nitions (Smyth & Moum, 2000b,a; Smyth et al., 2001) are given as follows,

LEN =

(
2
3
k
)3/2

ε
,

LE =
ρrms

d 〈ρ〉 /dz
,

L0 =
( ε

N3

)1/2

,

LK =

(
ν3

ε

)1/4

.

The evolution of these length scales is shown in figures IV.12(a,b) for the two-layer

case and Jd case, respectively.

The energy-containing scale LEN is calculated using the TKE and the dissipation
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rate. In both cases, LEN peaks early corresponding to the moment when the K-H rollers

reach their largest size. At this time, the TKE reaches its peak while the dissipation

has not yet evolved. The two-layer case has larger peak value of LEN since the KH-

rollers are larger. As rollers break and the shear layer turns turbulent, LEN decreases

corresponding to an increase in dissipation as shown in figure IV.9. At later time when

turbulence decays LEN is approximately equal to 1.

In both cases, the evolution of the Ellison scale LE and Ozmidov scale LO are

similar despite a difference in the magnitude. The two length scales grow and decay

similarly and also peak at the same time. The decay is exponential in time. The decay

rate in the Jd case is larger than that in the two-layer case. The minimum value for the

Kolmogorov scale LK is nearly equal between the two cases. The value is approximately

0.01 which is a third of the grid spacing. The time at which LO decreases to the value

of 10η marks the buoyant-inertial-viscous (BIV) transition after which the inertial and

buoyancy effects are damped out so that the fluctuations decay mainly due to viscosity.

The transition occurs early in the Jd case at t = 120 and later in the two-layer case at

t = 180. The time period of active turbulence indicated by LO > 10 LK is shorter in

the Jd case, 35 < t < 120, than that in the two-layer case, 55 < t < 180.

IV.D.4 Non-dimensional Turbulent Parameters
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Figure IV.13: Evolution of (a) buoyancy Reynolds number, Reb = ǫ/νN2, and (b) local

turbulent Reynolds number ReT = qLE/ν. Both are at the shear center.

The evolution of the buoyancy Reynolds number Reb = ǫ/(νN2), an indicator of
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turbulent activity, at the center of the shear layer is shown in figure IV.13(a) for the

two simulated cases. During the period of the formation of the K-H rollers, Reb is

larger in the Jd case although the growth rate of Reb is the same between the cases.

The peak value of Reb in the Jd case is approximately twice that in the two-layer case.

The larger Reb is due to smaller value of the squared buoyancy frequency N2, recalling

the initial Rig at the center of the shear layer is twice smaller in the Jd case as shown in

figure IV.1(b). According to the criterion by which Shih et al. (2005) differentiate the

mixing regimes, both of our simulations span all three regimes. The time period during

which energetic mixing occurs, Reb > 100, is longer in the two-layer case. Note that

since Reb = (LO/LK)∧ (4/3), the condition Reb > 100 is equivalent to L0/LK > 31.

The decay rate is the same for the intermediate mixing regime and the diffusive regime

in both cases.

An alternative measure of turbulent activity is ReT = qLE/ν where q =
√

2k (Shih

et al., 2005). Different from Reb where information at the small scale, i.e. dissipation

rate ε, is required, ReT can be estimated using only information at the large scale, thus

ReT is more convenient to modelers. LE is preferred to LO despite their similar evo-

lution because L0 involves the dissipation rate in its definition. Figure IV.13(b) shows

the evolution of ReT qualitatively captures the shape of the evolution of Reb in figure

IV.13(a) in both cases. The magnitude and the decay rate show some differences. The

peak value of ReT is an order of magnitude larger than the peak value of Reb. Also, the

peak value of ReT is larger in the two-layer case; the opposite is observed in Reb. The

decay rate of ReT is smaller than that of Reb. During the intermediate mixing regime,

the exponential decay rate for Reb is −0.027 in the two-layer case and −0.039 in the

Jd case. For ReT , the values in the two cases are −0.02 and −0.03, respectively. Fol-

lowing Shih et al. (2005), it is possible to relate Reb to ReT by the following argument:

Reb ∼ ReT q2/ (L2
EN2) ∼ ReT /Rig using the dimensional arguments of ε ∼ q3/LE and

q2
∼ S2L2

E. In the next section, we will examine whether the ratio ReT /Rig, which is

defined only using large-scale information, can be used to parametrize the evolution of

the eddy diffusivity in place of Reb.
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IV.E Eddy Diffusivity
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Figure IV.14: Evolution of (a) eddy diffusivity Kρ and (b) mixing efficiency Γ at the

center of the shear layer.

The eddy diffusivity is defined as

Kρ =
−〈ρ′w′〉
d 〈ρ〉 /dz

=
−B

N2
. (IV.7)

Kρ is a ‘reversible’ estimate since B can be both positive and negative in the evolution

of the TKE budget. The evolution of Kρ is shown in figure IV.14(a). Overall, Kρ is

significantly larger during the period of K-H roller formation compared to later time

when there is broadband turbulence. The increase of Kρ in the Jd case begins earlier

but Kρ has larger peak values in the two-layer case. Kρ has negative value at t = 100

in the two-layer case. In the oceanic community, Kρ is often inferred from the mixing

efficiency defined as Γ = −B/ε through the relationship: Kρ = Γε/N2. The value of

Γ = 0.2 is typically used in combination with the measurements of the dissipation rate

obtained by micro-structure profilers to deduce Kρ. Figure IV.14 shows the evolution

of Γ. In both cases, Γ is much larger than 0.2 when the rollers are forming but it

reduces to the proximity of 0.2 during the turbulence decay.

We now examine how Kρ varies with respect to Reb. The variation is shown in

figure IV.15(a), and the mixing regimes shown in the figure are determined by the

criteria of Shih et al. (2005). The arrows indicate the time progression in which the

simulations proceed. In both cases, there is not a direct one-to-one relationship as in

decaying stratified homogeneous turbulence; rather, the evolution of Kρ exhibits four
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Figure IV.15: (a) Kρ vs Reb; (b) same as in (a) zoomed on to the intermediate mixing

regime during the decay of the flow. Arrows indicate progress in time.

Note the abscissa is given in logarithmic scale in (a) and linear scale in

(b).

distinct stages. The first is the generation stage, 1 < Reb < 50 for both cases, during

which Kρ grows with an approximately linear dependence on Reb corresponding to the

formation of the K-H rollers. Kρ is twice that in the two-layer case at the end of this

stage. The second stage is the transition to turbulence, 50 < Reb < 90 in the two-layer

case and 50 < Reb < 200 in the Jd case, during which Kρ is approximately constant.

The third is the collapse stage during which Reb (equivalently turbulence dissipation

rate) cannot grow further and Kρ exhibits a sharp drop. The collapse is smoother in the

Jd case in which Kρ drops at constant Reb. In the two-layer case Kρ rises and falls many

times within a small range of Reb. Finally, the fourth stage corresponds to turbulence

decay during which Reb and Kρ decreases simultaneously. The evolution of Kρ in the

two cases during this stage is similar suggesting the turbulence now independent of

the initial and background flow conditions. The shear layer turbulence evolves as in

the flows of homogeneous decaying stratified turbulence in which eddy diffusivity is

directly related to Reb (Shih et al., 2005). Figure IV.15(b) shows a zoom on to the

intermediate mixing regime. Even though Kρ shows fluctuations, the best-fit lines are

similar between the two cases. Recall that the ratio of Kρ/κ and Reb with Pr = 1

is the mixing efficiency Γ. The slopes of the best-fit lines indicate Γ ≈ 0.35 which is

higher than 0.2, the value typically used by the oceanic community.
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Figure IV.16: (a) Kρ vs ReT ; (b) same as (a) zoomed on to the intermediate mixing

regime during the decay of the flow. Arrows indicate progress in time.

Note the abscissa is given in logarithmic scale in (a) and linear scale in

(b).

The evolution of Kρ with respect to ReT is shown in figure IV.16(a). The evolu-

tion of Kρ depicted by ReT also consists of four stages similar to when Reb is used.

The general shapes of the evolution in figure IV.15(a) and IV.16 in both cases are

considerably similar. Both Reb and ReT span two-order-of-magnitude range but ReT

is approximately an order of magnitude larger. Compared to figure IV.15, figure IV.16

shows a smaller difference during the generation stage between the two cases. The

collapse stage in the Jd case occurs at larger Reb but at smaller ReT relative to the

two-layer case. Figure IV.16(b), a surrogate to figure IV.15(b), indicates the slope dur-

ing the intermediate mixing regime is 0.077 in the two-layer case and 0.099 in the Jd

case when ReT is used in place of Reb. The normalized difference in the slopes between

the two cases is larger than that computed using Reb. Overall, ReT can be used as a

qualitative surrogate to Reb only in terms of depicting the evolutionary processes but

parametrizing Kρ using ReT is not promising since the dependence of Kρ on ReT is

not universal, i.e. case dependent, even during the turbulence decay.

Different from ReT , the evolution of Kρ with respect to the ratio ReT /Rig shown in

figure IV.17(a) is not the same as one with respect to Reb in figure IV.15(a). ReT /Rig

fails to depict the evolution of Kρ during the generation, transition and collapse stage

although it does well during the final turbulence decay stage. The expansion of the
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Figure IV.17: (a) Kρ vs ReT /Rig; (b) same as (a) zoomed on to the intermediate mixing

regime during the decay of the flow. Arrows indicate progress in time.

Note the abscissa is given in logarithmic scale in (a) and linear scale in

(b).

decay stage in figure IV.17(a) is shown in figure IV.17(b). The best-fit lines show a

slope of 0.038 in the two-layer case and a slope of 0.039 in the Jd case. The difference

between the two values is significantly smaller than those computed based on ReT

alone. Consider ReT /Rig is an order of magnitude larger than Reb, the mixing efficiency

computed using 10ReT /Rig in place of Reb is approximately 0.38−0.39 which provides

a close agreement with the value of 0.35 shown in figure IV.15(b).

IV.F Eddy Diffusivity Estimated Using Irreversible

Mixing

When the transient and the transport terms in equation (IV.6) are negligible, the

estimated eddy diffusivity can be defined in terms of χρ, the dissipation rate of the

density variance, as follows:

K̃ρ =
χρ

2 (d 〈ρ〉 /dz)2 .

The evolution of K̃ρ shown in figure IV.18(a) is similar between the two cases. K̃ρ

grows exponentially during the K-H roller formation and decays exponentially after

the shear layer becomes turbulent. Different from Kρ whose peak value is larger in the

two-layer case, the peak values of K̃ρ are comparable between the two cases. In the
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Figure IV.18: Evolution of (a) estimated eddy diffusivity K̃ρ and (b) irreversible mixing

efficiency Γd (b). Arrow indicates progress in time. Note the abscissa is

given in logarithmic scale in (a) and linear scale in (b).

two-layer case, K̃ρ increases to its peak value, momentarily decreases at t = 70, then

increases again before the exponential decay. The secondary growth is absent in the Jd

case resulting in smaller K̃ρ during the decay. When K̃ρ is used in place of Kρ in the

definition of the mixing efficiency Γ = Kρε/N
2, the corresponding mixing efficiency is

Γd = 0.5N2/ (d 〈ρ〉 /dz)2 (χρ/ε) and its evolution is plotted in figure IV.18(b). Overall,

Γd is larger than the value 0.2 used in the oceanic community. During the time 80 <

t < 160, Γd is approximately 0.4 which agrees with the results from the DNS of the

two-layer case of Smyth et al. (2001) and also with the results of decaying turbulence

generated by Taylor-Green vortices of Riley & deBruynKops (2003).

Different from the evolution of Kρ with respect to Reb where four distinct stages

are observed, the evolution of K̃ρ with respect to Reb shown in figure IV.19(a) consists

of only two stages: generation and decay. In the Jd case, the two stages lay on top of

each other. In the two-layer case, there is an offset in Reb between the two stages. The

decay stage of the two-layer case also coincides with that of the Jd case. The difference

in the generation stage between the two cases is due to the difference in the background

N2 value during this period. During the decay stage, with N2 approximately equal

between the two cases, the TKE dissipation ε and the scalar dissipation ερ are directly

related by the constant mixing efficiency Γd. Figure IV.19(b) shows the expansion of

the intermediate regime in figure IV.19(a). The slopes of the best-fit lines indicate the
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Figure IV.19: (a) K̃ρ vs Reb, (b) same as (a) zoomed on to the intermediate mixing

regime during the decay of the flow. Arrows indicate progress in time.

Note the abscissa is given in logarithmic scale in (a) and linear scale in

(b).

mixing efficiency of Γd = 0.4 for both cases, slightly larger than the values of Γ shown

in figure IV.15(b). Also, the standard deviations of the fits are considerably smaller

for K̃ρ when compared to that for Kρ.
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Figure IV.20: (a) K̃ρ vs ReT , (b) same as (a) zoomed on to the intermediate mixing

regime during the decay of the flow. Arrows indicate progress in time.

Note the abscissa is given in logarithmic scale in (a) and linear scale in

(b).

The evolution of K̃ρ with respect to ReT is shown in the figure IV.20(a). Figure

IV.20(a) shows the generation and decay stages of K̃ρ similar to that in figure IV.19(a).

In the Jd case, the generation and collapse stages do not fall on top of each other as

when Reb is used. Also, in figure IV.16(a), at a fixed value on the abscissa, Kρ in both
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Figure IV.21: (a) K̃ρ vs ReT /Rig, (b) same as (a) zoomed on to the intermediate mixing

regime during the decay of the flow. Arrows indicate progress in time.

Note the abscissa is given in logarithmic scale in (a) and linear scale in

(b).

cases is larger during the generation stage, but in figure IV.20(b), K̃ρ in both cases

is larger during the decay stage. Figure IV.20(b) shows a zoom of figure IV.20(a) on

to the decay stage of the flow. The collapse between the two cases shown in figure

IV.19(b) is not observed here. The slopes of the best-fit lines in figure IV.20(b) are

0.088 in the two-layer case and 0.11 in the Jd case. When ReT /Rig is used to depict the

evolution of K̃ρ as shown in figure IV.21(a), the difference in the abscissa between the

generation and decay stages is larger relative to that shown in figure IV.20(a). Shown

in figure IV.21(b), the mixing efficiency Γd calculated using 10ReT /Rig in place of Reb

is equal to 0.43 in the two-layer case and 0.44 in the Jd case, which are slightly larger

than the value 0.4 calculated using Reb.

IV.G Implications

We have used 3D-DNS to investigate the evolution of turbulent mixing in a strat-

ified shear layer with a relatively high Reynolds number, initially Re = 5, 000. Two

cases with different background stratification are considered: (i) two layers of fluid

with different density (two-layer case), and (ii) a continuously stratified background

(Jd case). The latter has internal waves that propagate away from the mixing layer.
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The evolution of the shear layer consists of shear instability, formation of Kelvin-

Helmholtz rollers, transition to turbulence, establishment of fully-developed turbulence

and, finally, decay towards a laminar state. In previous DNS, transition to turbulence

occurs via secondary instability of the braids between the rollers (Peltier & Caulfield,

2003). At the higher Re of the present simulations, not only is there a braid instability

but also the vortex core independently becomes turbulent.

When plotted against Reb and the ratio ReT /Rig, the evolution of the eddy dif-

fusivity is different between the two cases during the early stages when turbulence is

established. The eddy diffusivity and the mixing efficiency are the same between cases

during the later turbulence decay stage. During this stage, the mixing efficiency de-

fined by the ratio of −B/ε, is approximately 0.35 while the dissipation-based mixing

efficiency defined using the scalar dissipation χρ, is approximately 0.4. Parametriza-

tion of eddy diffusivity using Reb and ReT /Rig is shown to be a possibility during the

decaying turbulence stage of the stratified shear layer.

Comparison of the current DNS at Re = 5, 000 with the results of Pham et al.

(2009) who performed the simulations at Re = 1280 indicates that an increase in Re

does not alter the mechanism by which internal waves are excited. The direction at

which the waves propagate agrees well with the previous study although the wave

energy flux is reduced by approximately 50%. The weaker wave field observed in the

current study is due to the earlier breakdown of the K-H rollers to turbulence in the

shear layer owing to a high-Re effect.

The contents of this chapter have been published in the Journal of Turbulence:

Pham, H. T., and Sarkar, S., “Transport and mixing of density in a continuously

stratified shear layer”, J. Turbulence, 11, No. 24, 1-23 (2010). The dissertation

author is the primary researcher and the research advisor is the co-author of the paper.



Chapter V

Internal Waves and Turbulence in a

Stratified Jet

V.A Objectives

The excitation of shear instability, i.e. Kelvin-Helmholtz (KH) rollers, and its

subsequent nonlinear evolution is one important source of turbulence and mixing in

the stratified natural environment. Linear theory gives Rig = N2/S2 < 0.25, where

Rig is the gradient Richardson number, N the buoyancy frequency and S the shear in

the vertical direction, as a necessary condition for shear instability. The evolution of a

unstable shear flow between two layers of homogeneous fluid with different density has

been well studied using both laboratory experiments and numerical simulations, e.g.

Thorpe (1973); Koop & Browand (1979); Smyth & Moum (2000a); Caulfield & Peltier

(2000); Brucker & Sarkar (2007). If one of the layers has continuous stratification, it

can support propagating internal waves and also influence the evolution of the shear

layer instability as described in the studies of Sutherland & Linden (1998); Strang &

Fernando (2001); Tse et al. (2003); Mahalov et al. (2007); Pham et al. (2009). For

instance, Pham et al. (2009) in their three-dimensional direct numerical simulation

(DNS) study find that the wave energy flux is a significant fraction of the turbulent

production and dissipation rate suggesting that internal waves provide an important

100
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Figure V.1: Typical temperature profile and zonal currents in the EUC system

(Skyllingstad & Denbo, 1994).

route of fluctuation energy from shear instabilities to the ocean interior. In the papers

cited above, the waves are excited and propagate in stratified background with no

shear. However, in geophysical flows, the unstable stratified region is often adjacent

to a stratified background with shear that is stable (Rig > 0.25). The objective of the

current work is to characterize and understand the internal wave field and turbulent

mixing in a nominally stable sheared region by simulation of a simple model problem:

a stable jet adjacent to an unstable shear layer.

Equatorial Undercurrents (EUC) provide an important example where internal

waves and turbulence have been observed in a region of stable shear contiguous to a

small region of unstable shear as described by Gregg et al. (1985); Peters et al. (1988);

Moum et al. (1992); Lien et al. (1996). The EUC are eastward jet-like flows below

wind-driven westward surface currents. Typical temperature and streamwise velocity

profiles are shown in figure V.1. Internal waves are observed in the EUC and believed

to be related to the enhanced deep-cycle turbulence in the upper-flank of the EUC

jet. The peak night time dissipation rate of the turbulent kinetic energy (TKE) in the

marginally-stable region exceeds the corresponding day time value by at least a factor

of 10 (Moum et al., 1992; Lien et al., 1996). Hebert et al. (1992) capture a wave packet

that is gravitationally unstable resulting in wave-breaking. The dissipation rate within
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the patch of the overturning wave was found to be at least three orders of magnitude

larger than outside the patch. Skyllingstad & Denbo (1994) used two-dimensional non-

hydrostatic simulations with the background profiles shown in figure V.1 with forcing

of wind stress and a heat flux at the surface. In the model, internal wave packets

were observed to propagate downward and upstream relative to the jet velocity and

the waves were shown to correlate with KH instabilities. Sun et al. (1998) performed

linear stability analysis using the hourly-averaged current and stratification profiles

and, from the computed positive growth rates in the regions with Rig < 0.25, inferred

a connection between deep-cycle turbulence and shear instability.

Turbulence and internal waves in a stratified jet has been studied previously. Tse

et al. (2003) use three-dimensional DNS to simulate a forced jet in quasi-equilibrium

modeling of the tropopause jet. The buoyancy frequency in the upper-flank of the jet is

taken to be twice that in the lower-flank. The jet is maintained at low Rig. Turbulence

is observed in the jet core while patchy turbulence and nonlinear evanescent waves

are seen at the edges. Mahalov et al. (2007) investigate a similar tropopause jet in

a much larger domain than used by Tse et al. (2003) by using numerical viscosity

for the unresolved scales. Internal waves propagating into region above the jet with

stronger stratification are observed and characterized. Sutherland (2006) also models

the tropopause jet but uses a piece-wise linear shear profile so that the upper flank of the

jet is locally unstable while the lower flank is strongly stratified. Internal waves radiated

from the upper-flank are found to carry significant momentum into the region above the

jet. Waves also propagate downward into the lower-flank where they encounter a critical

layer. Smyth & Moum (2002) employ linear stability analysis and two-dimensional

DNS to study a Bickley jet that has a weak stratification in all of the upper-flank and

a strong stratification in the lower flank. They find that internal waves, generated by

the dynamic instability of the weakly stratified upper flank, propagate downward and

break upon encountering the critical level present at the more strongly stratified lower

flank. Turbulence due to interaction between propagating waves and mean shear at

a critical layer where the wave phase speed and the mean velocity is equal has been

studied by Winters & D’Asaro (1994). In our model problem, a critical layer is absent
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Figure V.2: (a) Initial mean profiles. The velocity profile corresponds to a shear layer

on top of a jet. The jet center is at depth z = -15 δω,0 in the far jet and

at depth z = -6.5 δω,0 in the near jet. (b) Initial stratification profiles J(z)

used in both cases. (c) Initial 1/Rig(z) profiles.

by design.

Different from the three-dimensional simulations of Tse et al. (2003) and Mahalov

et al. (2007) where the entire jet is unstable (Rig < 0.25) and the two-dimensional

simulations of Smyth & Moum (2002) and Sutherland (2006) where a large portion of

the jet is unstable, we use three-dimensional DNS to investigate internal waves and

turbulence inside a stable jet (Rig > 0.25) located adjacent to an unstable shear layer.

Our setup has the feature of a stratified stable jet contiguous to a unstable shear layer in

common with the EUC but is simplified by the absence of wind forcing and diurnal cycle

of heat flux. Our objectives are to provide a better understanding of some dynamical

processes related to EUC mixing by answering the following questions in the model

problem: (1) Can internal waves excited from an adjacent region of unstable shear

propagate downward into a stably stratified jet? (2) Is there significant dissipation

in the jet despite its stable stratification? (3) What is the connection between the

propagating internal waves and turbulence in the jet?

V.B Problem Formulation

The flow corresponds to a weakly stratified shear layer situated on top of a strongly-

stratified jet. A schematic is given in Fig. V.2. The shear layer has a hyperbolic tangent
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profile with velocity difference ∆U ,

〈us〉 = −∆U

2
tanh

(
2z

δω,0

)

,

where the initial vorticity thickness is defined by δω,0 = ∆U/(d 〈us〉 /dz)max. The

angled brackets denote a x-y plane average.

A jet with peak velocity 2∆U and half-width 3δω,0 is added to the region below

the shear layer and has the following profile:

〈uj〉 = 2∆Uexp

[

−
(

z − Dj

3δω,0

)4
]

,

where Dj is the distance between the shear layer center and the jet center. The

complete velocity profile consists of the shear layer and the jet, 〈u〉 (z) = 〈us〉 (z) +

〈uj〉 (z). Using the squared buoyancy frequency defined as N2 (z) = − (g/ρ0) d 〈ρ〉 /dz,

the stratification is described with a non-dimensional Richardson number, J (z) =

N2 (z) δ2
ω,0/∆U2. The initial stratification in the shear layer is Js = 0.05 whereas at

z = −2.5δω,0 the stratification transitions to Jj = 0.25 in the deep jet region. The

complete initial stratification profile is given by

J (z) =
Js + Jj

2
+

Js − Jj

2
tanh

(
z + 2.5δω,0

0.5δω,0

)

.

The stratification is chosen such that the gradient Richardson number Rig shown in

figure V.2 (c) corresponds to field measurement in the EUC system. Peters et al. (1988)

reports three vertical regions of the EUC jet: (1) the upper shear zone, from 23 m to

100m below the ocean surface, has low Rig, average of 0.35; (2) the core, between 100

m and 130 m, has Rig > 2; (3) the lower shear zone, below 130 m, has Rig ≈ 0.5.

In our model, the jet has constant stratification such that the initial Rig in the upper

shear region is approximately 0.25 slightly less than the value 0.35 reported in the field

data. The smaller value is taken because Rig in this region approaches the field value,

due to viscous effects, by the time that the unstable shear layer has fully-developed

KH-rollers.

The initial shear layer vorticity thickness δω,0, the density jump ∆ρ0 across twice

the initial vorticity thickness, and the velocity difference ∆U are used for nondimension-
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alization. We solve the Navier-Stokes equations under the Boussinesq approximation:

∂uk

∂xk

= 0 , (V.1)

∂ui

∂t
+

∂ (ukui)

∂xk

= − ∂p

∂xi

+
1

Re0

∂2ui

∂xk∂xk

− Rib,0ρ
′δi3 , (V.2)

∂ρ

∂t
+

∂ (ukρ)

∂xk

=
1

Re0Pr

∂2ρ

∂xk∂xk

, (V.3)

The nondimensional parameters are Reynolds number Re0 = ∆Uδω,0/ν, Prandtl num-

ber Pr = ν/κ, and bulk Richardson number Rib,0 = (g∆ρ0δω,0) / (ρ0∆U2). Here, ν is

the kinematic viscosity, and κ is the molecular diffusivity. Two simulations are per-

formed with varying jet distance: Dj = 6.5δω,0 (near jet) and 15δω,0 (far jet). Both

simulations are run with Re0 = 1280, Pr = 1 and Rib,0 = 0.1. The near jet models the

typical velocity profile of the EUC system while the far jet has a shear-free region with

distinct internal wave propagation that help understand the more complex physics in

the near jet.

The initial velocity perturbations (u′, v′, w′) have an amplitude of 0.1% ∆U and a

broadband spectrum given by

E (k) ∝ k4exp

[

−2

(
k

k0

)2
]

,

where k0 is set such that the spectrum peaks at 1.7δω,0.

Periodic boundary conditions are used in the streamwise (x) and spanwise (y)

directions. Boundary conditions in the vertical direction (z) are set as follows:

u (zmin) =
1

2
, u (zmax) = −1

2
,

v (zmin) = v (zmax) = 0 ,

p (zmin) = p (zmax) = 0 ,

∂w

∂z
(zmin) =

∂w

∂z
(zmax) = 0 ,

∂ρ

∂z
(zmax) = −Js

g
,

∂ρ

∂z
(zmin) = −Jj

g
.
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The domain size is 50.4δω,0 x 16.8δω,0 x 55.0δω,0 and the grid has 384 x 128 x 512

points. The grid is uniform in the horizontal with spacing of 0.13125δω,0. The vertical

grid size is 0.075δω,0 in the region −19 < z < 3.5δω,0. Outside this region, the grid is

mildly stretched at 2%. A second-order finite difference method on a staggered grid is

used for spatial derivatives and a third-order low storage Runga-Kutta method is used

for time advancement.

A sponge region is employed at the top (z > 12δω,0) and the bottom (z < −26δω,0)

boundaries to eliminate wave reflections. The velocities and density in this sponge

region are relaxed by adding to the right-hand-side of Eqs. (V.2) and (V.3) a term of

the form

− φ (z) [ui (xi, t) − 〈u〉i (z, t = 0)] ,

− φ (z) [ρ (xi, t) − 〈ρ〉 (z, t = 0)] .

The damping function, φ (z), increases quadratically from φ = 0 to 1.0.

The evolution of the shear layer includes shear instability, formation of the KH

rollers and their breakdown into small-scale three-dimensional turbulence. Simulations

are continued until most of the fluctuations are dissipated, roughly at tf = 350 time

units (δω,0/∆U). Details of the numerical methods can be found in Basak & Sarkar

(2006), Brucker & Sarkar (2007), and Pham et al. (2009).

V.C Far Jet

As the shear layer evolves, KH rollers form and excite waves. The waves behave

linearly similar to the ones analyzed in our previous work, Pham et al. (2009). Nonethe-

less, there are inherent differences due to the presence of the jet, a feature that was

absent in Pham et al. (2009). In this section we examine the wave characteristics as

well as their role in the TKE budget.
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Figure V.3: Far jet. Instantaneous wave field in the x-z plane at y = 8.4δω,0: (a)

∂w′/∂z at t = 100; (b) ∂w′/∂z at t = 150; (c) ∂w′/∂z at t = 200; (d) ε

at t = 100; (e) ε at t = 150; (f) ε at t = 200. Dashed lines in (a) indicate

propagation angle predicted by linear wave theory.
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Figure V.4: Far jet. (a) Horizontally-averaged power spectra of the vertical velocity w

on the horizontal plane z = −10δω,0 at various times. (b) Squared vertical

wavenumber m2 at t = 100 computed using kδω,0 = 0.87 and ca = 0.

Figure V.5: Far jet. Instantaneous w field in the x-t plane at y = 8.4δω,0 and z =

−6δω,0
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Figure V.6: Far jet. Instantaneous w field in the z-t plane at x = 25.2δω,0 and y =

8.4δω,0.

V.C.1 Internal Wave Field

Figures V.3(a-c) give the visualization of the wave field through the instantaneous

fields of ∂w′/∂z at different times t = 100, 150 and 200. The coherent lines of constant

phase in figure V.3(a) are parallel to the wave group velocity and are inclined at an

angle of 28 − 34◦ to the vertical. Later in time when the waves enter the jet region,

approximately at z = −10δω,0, they are restrained from penetrating the jet and are

reflected back toward the shear layer as shown in figures V.3(b,c). The region between

the shear layer and the jet has overlapping phase lines of the incident and reflected

waves. Figures V.3(d-f) show the turbulent dissipation, ε, at corresponding times; their

discussion is deferred until later.

The waves shown in figure V.3(a) are observed to lock on to the KH instability

mode. They have horizontal wavenumber kδω,0 = 0.87 according to figure V.4 (a),

corresponding to horizontal wavelength λh = 7.2δω,0 which is equal to the wavelength

of the most unstable mode, equivalently the spacing between KH rollers in the shear

layer. The x-t diagram of the vertical velocity field w at y = 8.4δω,0 and z = −6δω,0 in
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figure V.5 indicates the waves are stationary in the simulated frame during the time

period between t = 75 and 150. Therefore, the apparent phase speed of the wave is

ca = 0. Between t = 150 and 200, the waves are still stationary but exhibit a phase

shift. The positive wave crests (white) become negative troughs (black) and vice versa.

Beyond t = 200, waves with shorter wavelength and non-zero phase speed are also

present, being excited by smaller-scale turbulence in the shear layer.

The waves excited by the KH rollers exhibit linear behavior and, therefore, the

propagating angle can be predicted by linear wave theory. In the simulation frame,

the KH rollers have zero convective velocity 〈u〉 = 0 while the convective velocity is

〈u〉 = 0.5∆U in the region between the shear layer and the jet. This setup resembles

the problem of a flow of constant velocity over stationary surface corrugations which

can be solved explicitly. Owing to a Doppler shift, the wave intrinsic speed in the

region between the shear layer and the jet is ci = ca + 0.5∆U = 0.5∆U giving the

wave intrinsic frequency Ω = cik = 0.435∆U/δω,0. Linear wave theory predicts that

Ω relates to the ambient stratification N by Ω = Ncos θ where θ is the angle between

the wave phase line and the vertical. θ is computed to be 30◦ using N =
√

Jj = 0.5.

The numerical value predicted by linear wave theory agrees well with the visualization

shown in figure V.3(a).

Since the vertical direction is non-periodic in our simulation, we cannot directly

compute the vertical wavenumber m using a Fourier transform. Nonetheless, we can

estimate m using linear wave theory. The Taylor-Goldstein (TG) wave equation is

d2w

dz2
+ m2w = 0, (V.4)

where,

m2 =
N2

(ca − 〈u〉)2 +
d2 〈u〉 /dz2

(ca − 〈u〉) − k2.

The squared vertical wavenumber m2 is a key determinant of wave properties: when

m2 > 0, the solution consists of propagating modes and, in contrast, the waves are

evanescent when m2 < 0. The vertical profile of m2, plotted in in figure V.4(b), shows

that the region between the shear layer and the jet allows wave propagation since

m2 > 0. The vertical wavenumber is computed to be m ≈ 0.5δ−1
ω,0 giving a vertical
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wavelength λv ≈ 12.6δω,0 which is longer than the distance between the shear layer

and the top edge of the jet (the far jet starts at z = −10δω,0). The z-t diagram of the

vertical velocity field w at x = 25.2δω,0 and y = 8.4δω,0 in figure V.6 can be used to

substantiate the vertical wavenumber m predicted by linear wave theory. Prior to t

= 150, the waves are stationary with a distinct trough with negative (black) velocity

and a positive (white) crest. The vertical extent of the wave trough is approximately

6δω,0 which is comparable to half of the vertical wavelength λv predicted by linear wave

theory. It is noted that the vertical extent of the trough is longer than that of the crest

below it since the propagating region m2 > 0 between the shear layer and the jet is

less than one complete wavelength as shown in figure V.4(b).

Figure V.4 (b) further shows that the jet region −10 < z < −20δω,0 has m2 < 0 and

thus the waves in this region are evanescent with an amplitude that decays sharply with

depth. This agrees well with the visualization in figures V.3(b,c) and V.6 suggesting the

applicability of linear theory to characterize KH-excited internal waves in this problem.

V.C.2 Turbulent Kinetic Energy Budget

The evolution equation for the turbulent kinetic energy is

dK

dt
= P − ε + B − ∂Ti

∂xi

. (V.5)

Here, K is the turbulent kinetic energy defined as K = 1/2 〈u′
iu

′
i〉, P is the production

rate, defined as

P ≡ −
〈
u′

iu
′
j

〉 ∂ 〈ui〉
∂xj

= −〈u′w′〉 d 〈u〉
dz

,

ε is the dissipation rate, defined as

ε ≡ 2

Re0

〈
s′ijs

′
ij

〉
; s′ij =

1

2

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)

,

B is the buoyancy flux, defined as

B ≡ − g

ρ0

〈ρ′w′〉 ,

∂Ti/∂xi is the transport of tke, defined as

Ti ≡
1

2

〈
u′

iu
′
ju

′
j

〉
+ 〈u′

ip
′〉 /ρ0 −

2

Re0

〈
u′

js
′
ij

〉
.
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Figure V.7: Far jet. TKE budget at (a) t = 118 and (b) t = 183.

For the present flow, the transport term simplifies to ∂T3/∂z with

T3 = Tt + Tp + Tv, (V.6)

where the turbulent transport Tt is defined as

Tt =
1

2
[〈w′u′u′〉 + 〈w′v′v′〉 + 〈w′w′w′〉] ,

the pressure transport Tp is defined as

Tp =
〈p′w′〉

ρ0

,

and the viscous transport Tv is

Tv = − 2

Re0

[〈u′s′31〉 + 〈v′s′32〉 + 〈w′s′33〉] .

Since the current problem involves both internal waves and turbulence, TKE and K

are understood to be ‘fluctuating’ kinetic energy comprised of energy due to both waves

and turbulence.

We now examine the role of the internal waves in the evolution of TKE. The

terms in the TKE budget are shown in figure V.7 (a) at t = 118. When the KH rollers

are present in the shear layer, TKE is extracted from the mean velocity leading to the

production P . The buoyancy flux B in the shear layer is significant because the rollers

are large-scale, two-dimensional structures capable of entraining the heavier fluid from

the bottom region into the shear layer. Owing to the lack of three-dimensional fine

scales at this time, the turbulent dissipation, ε, in the shear layer is somewhat smaller
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than B. While the production and the dissipation rate are limited in extent to the shear

layer, the buoyancy flux, the transport dT3/dz and the transient term dK/dt extend

far into the bottom region reaching the top edge of the jet at z ≈ −10δω,0. Thus, the

signature of internal waves propagating in a stratified shear-free background can be

seen in the TKE budget through nonzero values of dK/dT , dT3/dz and B. Since there

is no background shear, internal waves do not lead to production of TKE and they are

substantially less dissipative than the perturbations inside the shear layer. All terms in

the TKE budget rapidly decrease to zero in the jet region below z = −10δω,0 because

the internal waves are evanescent in this region as discussed previously. Although the

jet has background shear, there is neither jet instability nor shear production because

the jet is strongly stratified (Rig > 0.25 in the jet). Linear inviscid wave theory states

that internal waves exhibit energy equipartition, i.e. half of the energy carried by the

waves is fluctuating kinetic energy TKE while the other half is in fluctuating potential

energy TPE defined as TPE = (g2 〈ρ′2〉) / (2ρ0N
2). The negative of the buoyancy flux,

−B, is equal to the rate of change of TPE which, because of equipartition, is equal

to the rate of change in turbulent kinetic energy, dK/dt, and inserting B = −dK/dt

in the TKE equation leads to the total rate of TKE transport, −dT3/dz = 2dK/dt.

The waves in the region −3 < z < −10δω,0 in figure V.7 (a) approximately follow this

property of linear inviscid waves in a shear-free background.

At t = 183, the shear layer is turbulent with the dissipation as the dominant term

of the TKE budget as shown in figure V.7 (b). At this time, the region between the

shear layer and jet has waves that propagate both upward and downward. Again, the

production and the dissipation in this region outside the shear layer are significantly

smaller than the other terms. The instantaneous dissipation field ε shown in figures

V.3(d-f) further emphasizes that ε is large solely in the shear layer. The wave prop-

agation region between the shear layer and the jet has substantially lower ε, at least

three orders of magnitude less than the peak value in the shear layer.

We now discuss the transport term T3 in equation (V.6) which redistributes fluc-

tuation energy in physical space. Integration of equation (V.5) across the region of

interest from depth z⋆ = −5δω,0 to zmax, the maximum vertical location in the test
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Figure V.8: Far jet. Components of transport T3 at (a) t = 118 and (b) t = 183.

domain (excluding the sponge region), we obtain

∫ zmax

z⋆

dK

dt
dz =

∫ zmax

z⋆

P dz −
∫ zmax

z⋆

ε dz +

∫ zmax

z⋆

B dz + T3 (z⋆) . (V.7)

Note that T3 at zmax is found to be zero. Equation (V.7) indicates the rate of change

of TKE in the region of interest is influenced by the rate of TKE transport, T3, across

the lower boundary z = z⋆. According to Equation (V.6), the total transport T3 has

three contributions: turbulent Tt, pressure Tp and viscous Tv. Figures V.8(a,b) shows

profiles of T3 and its components. At t = 118, when the KH rollers are dominant, Tp

is the largest component of the total transport. Tv is substantially smaller while Tt

is significant only in the shear layer. In the region −10 < z < −3δω,0 all the TKE

transport comes from pressure transport consistent with the picture that linear internal

waves are responsible for the transport of fluctuation energy to the region external

to the shear layer. Figure V.8(b), corresponding to a time when the shear layer is

turbulent, shows that Tt extends down to z = −10δω,0, a larger depth than at t = 118.

Tt in the region −10z < −3δω,0 has alternating signs inferring small-amplitude high-

frequency internal waves excited by turbulent shear layer. Nevertheless, Tp dominates

the total transport. Furthermore, Tp is positive, changing sign with respect to t = 118,

showing that internal waves reflected from the jet transport energy upward towards

the shear layer. Thus, it is feasible to spatially differentiate a turbulent region from a

region with propagating linear waves in the flow using the turbulent transport term; a

turbulent region has both Tp and Tt comparably contributing to T3 while a wave region
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solid line: Integrated TKE across the test domain. (b) Terms in the

TKE budget integrated from z⋆ to zmax.

has a dominant contribution from Tp to T3.

To illustrate the significance of the TKE carried by the wave field, we track the

evolution of TKE in two separate regions: one from z⋆ to zmax and the other over the

entire test domain. The result is shown in figure V.9 (a) where the solid line indicates

integration of K over the test domain and the dashed line indicates integration from

z⋆ to zmax. The location of z⋆ is chosen to be −5δω,0 because Tt at this depth is

relatively small over the duration of the simulation. The difference between the solid

and dashed lines correspond to TKE in the region below the shear layer. Prior to t

= 100, TKE is generated inside the shear layer and then transported into the region

below z⋆ by internal waves. TKE is not transported into the region above the shear

layer because this region do not support KH-excited waves and turbulence-excited

waves are significantly weaker in term of energy transport (Pham et al., 2009). At t

= 170 when TKE inside the shear layer reaches its maximum value, TKE carried by

internal waves can be as large as 30% of the maximum value inside the shear layer.

TKE is transported back into the shear layer between t = 250 and 300 leading to a

noticeable lessening of rate of TKE decay during that time interval.

The role of TKE transport by internal waves can be further quantified by tracking

the time evolution of the terms indicated in equation (V.7) as shown in figure V.9 (b).

The term dT3/dz is spatially integrated instead of taking T3 at z⋆ as in equation (V.7)

although both provide the same results. In the figure, prior to t = 180 the transport
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term is negative indicating TKE is carried outside the shear layer. After that, it

changes sign so that TKE is transported upward into the domain of integration. The

peak value of the transport is as large as the peak values of the buoyancy flux and

the dissipation in the current study and somewhat larger that the peak value of the

transport reported in Pham et al. (2009) which was about 33% of the peak dissipation

and 75% of the peak buoyancy flux. The difference between the two studies is due

to the constructive interference between incident and reflected waves in the current

investigation. Although energy carried by the internal waves is large compared to

other terms in the integrated TKE budget, the wave energy is lost only due to the

viscous dissipation, ε, whose structure was shown earlier in figures V.3 (d-f). The

value of ε in the jet is small relative to that in the shear layer. There is no signature

of induced ‘deep-cycle turbulence’ in the stratified jet that has been observed in the

EUC system.

V.D Near Jet

The evolution of the fluctuations in the near case is significantly different from that

in the far case. First, internal waves are observed in and below the jet. Second, ‘hot

pockets’ of fluid are observed to penetrate into the cold jet region and are precursors

to coherent patches of strong induced dissipation, much larger than in the far jet. In

the following text, we elaborate on these remarks.

V.D.1 Internal Wave Field

Instantaneous fields of ∂w′/∂z are shown in figures V.10(a,b) at time t = 125 and

150 to visualize the internal wave field. In figure V.10(a) the wave phase lines are not

clear in the jet region −2.5 < z < −10δω,0 but there are four ellipse-shaped lobes in

the vicinity of z = −10δω,0 with alternating signs implying two crests and two troughs.

In figure V.10(b) phase lines which originate from the lobes are clear. The propagation

angle θ is between 74 − 78◦ to the vertical. Waves of horizontal wavelength larger

than that observed in the far case are excited by larger-wavelength disturbances in the
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Figure V.10: Near jet. Internal wave field is visualized through a slice of ∂w′/∂z in

the x-z plane at y = 8.4δω,0 at time (a) t = 125 and (b) t = 150
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Figure V.11: Near jet. (a) Horizontally-averaged power spectra of the vertical velocity

w on the horizontal plane z = −4δω,0 at various times. (b) Squared

vertical wavenumber m2 at t = 150 computed using ca = 0 and two

values of horizontal wavenumber: kδω,0 = 0.25 based on the peak of

energy spectrum at t = 145 in (a) and kδω,0 = 0.87 based on the KH

mode.
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Figure V.12: Near jet. (a) Instantaneous vertical velocity field w in the x-t plane at

y = 8.4δω,0 and z = −4δω,0. (b) Instantaneous dissipation field ε on the

same plane. The white dashed lines denotes 〈u〉 = dx/dt ≈ 1.7∆U .

shear layer that occur owing to the nonlinear interaction, including pairing, of the KH

rollers. It is noted that, in the present study, the jet is strongly stratified, well above

the limit, J(z) ≈ 0.13 (Sutherland & Peltier, 1992), for linear instability, suggesting

that the fluctuations in the jet are not a result of jet instability.

The horizontally-averaged power spectra of the vertical velocity w measured at

z = −4δω,0, a location outside the shear layer, are shown in figure V.11(a). The

spectrum at t = 145 shows a distinct peak at kδω,0 = 0.25 implying the waves are

not excited by KH-rollers but rather by smaller-wavenumber disturbance in the shear

layer. The contour plot of the vertical velocity w in the x-t plane at y = 8.4δω,0

and z = −4δω,0 shown in figure V.12 further characterizes the internal waves in the
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jet. The x-wavelength increases from the KH value after t = 100 to a wavelength

approximately equal to 25δω,0 yielding the wavenumber kδω,0 = 0.25 in good agreement

with the spectral peak shown in figure V.11(a). Figure V.12(b) shows the dissipation

field corresponding to the field shown in figure V.12(a) and will be discussed later.

Linear wave theory can be used to explain why the KH rollers cannot excite internal

waves. Profiles of m2, the term in square brackets in equation (V.4), are shown in

figure V.11 (b) with two different values of horizontal wavenumber kδω,0 = 0.25 and

0.87. The former corresponds to the spectral peak in figure V.11(a) and the latter is

the wavenumber for KH instability. Clearly, m2 < 0 over the whole jet for kδω,0 = 0.87

and m2 > 0 in the region −4 > z > −9δω,0 of the jet for kδω,0 = 0.25. As the result,

KH-excited waves cannot propagate inside the jet. The four distinct lobes observed

at z ≃ −10δω,0 in figures V.10(a,b) are consistent with the transition from m2 > 0 to

m2 < 0 in the solid line of figure V.11(b) at z ≃ −10δω,0 . The observation of lobes

here is analogous to the lobes in the far case shown in figure V.3(b) at z = −10δω,0

where there is a similar change in the sign of m2. However, different from the far case,

freely propagating waves are observed in the near jet below the evanescent region with

m2 < 0 because they can tunnel through the evanescent region which is thinner relative

to the far jet. Internal wave tunneling through a stratified shear region is possible, for

example, see Brown & Sutherland (2007).

The internal waves propagating in the region below the jet are observed to be

linear, similar to those in the far case. The propagation angle θ can be predicted as in

the previous section. Taking the apparent phase speed ca = 0 gives the intrinsic phase

speed in this region as ci = 0.5∆U . With the horizontal wavenumber k = 0.25δω,0,

linear theory yields the intrinsic frequency Ω = 0.13∆U/δω,0 and propagation angle

θ = 75◦. This agrees well with the visualization given in figure V.10 (b). It is worth

noting that, different from the studies of Smyth & Moum (2002) and Sutherland (2006),

a critical layer does not exist in our simulated jet. The observed waves have phase speed

in the opposite direction of the jet such that there is no location at which the wave

phase speed is equal to the free-stream velocity. The value of m2 is finite in the jet

as shown in figure V.11 (b) in contrast to a critical layer which would have an infinite
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Figure V.13: Near jet. Isocontours in the density field in the x-z plane at y = 8.4δω,0.

(a-c) corresponds to t = 150, 170 and 185, respectively. Arrow indicates

‘hot pocket’.

value of m2.

V.D.2 ‘Hot Pockets’

During the time period between t = 140 and 200, we observe distinct events of a

‘light’, equivalently ‘hot’, pocket of fluid entrained into the cold jet region as shown

in figures V.13 (a-c). The figures show the density isocontours in the vertical x-z

plane at y = 8.4δω,0 at various times. A ‘hot pocket’ is observed in the upper-flank of

the cold jet region at x ≈ 10δω,0 in figure V.13(a). The pocket is swept downstream



121

and stretched by the background jet shear. The fluctuations in the vicinity of the

pocket gain intensity and their spatial extent increases. Figure V.13(b) shows that,

eventually, the region −4 < z < −2δω,0 and 20 < x < 35δω,0 contains numerous small-

scale structures indicating turbulence activity. At x ≈ 2δω,0 in figure V.13(b), there

appears another ‘hot pocket’, which induces turbulence in the vicinity of x ≈ 15δω,0

later, as shown in figure V.13(c). The ‘hot pocket’ also leads to fluctuations which

penetrate into the deeper region, down to z = −5δω,0. The horizontal extent of the

fluctuation regions left by the pockets are similar in both the events and comparable

to half the wavelength of the internal waves observed in figures V.10(b).

Figure V.14(a) provides the three-dimensional structure of these ‘hot pockets’.

Two isopycnal surfaces at t = 162 are plotted: the darker isopyncal of ρ = 1.0 which is

equal to the initial mean density at z = 0 and the lighter isopycnal of ρ = 1.07 which

is equal to the initial mean density at z = −4.7δω,0. The HS symbols denotes the

horseshoe-like density structures, which appear as the ‘hot pockets’ in figures V.13(a-

c). These structures originate from the shear layer where they are coherent and extends

into the jet where they are mixed by the background shear. The structure at x ≈ 15δω,0

penetrates deep into the jet core, impinges the lighter isopyncnal causing localized

region of intense fluctuation. The impingement of the density structures are carried

by horseshoe vortices as shown in figure V.14(b). Here, vortex structure is defined

using ∆ criterion as in Jeong & Hussain (1995). The isosurface of ∆ = 5 distinctively

identifies the horseshoe vortex which coincides with the density structure at x ≈ 15δω,0

shown in figure V.14(a). As the horseshoe vortex penetrates the jet, it gets elongated

in the x direction by the background shear and finally diminishes after intense mixing.

V.D.3 Induced Dissipation

Figures V.15 (a-c) illustrate the instantaneous dissipation field ε corresponding to

the density field shown in figures V.13 (a-c), respectively. Clearly, the ‘hot pockets’

in the former figures correlate with the coherent patches that have large dissipation

in the later figures. The patch of turbulence that originates from the ‘hot pocket’ in
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Figure V.14: Near jet. (a) Isopycnal surfaces at t = 162: the darker isopycnal is of

ρ = 1.0 corresponding to the initial mean density at z = 0; the lighter

isopycnal is of ρ = 1.07 corresponding to the initial mean density at z

= −4.7δω,0. HS indicates horseshoe-like density intrusions. The lighter

isopycnal is blanked in the range 0 < y < 5δω,0. (b) Isosurface of ∆ = 5 at

t = 162 shows the horseshoe vortices. In this figure, positive z direction

points downward.
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Figure V.15: Near jet. Isocontours in the dissipation field in the x-z plane at y =

8.4δω,0. (a-c) corresponds to t = 150, 170 and 185, respectively. Arrow

indicates ‘hot pocket’.



124

Figure V.16: Near jet. Instantaneous dissipation field ǫ field in the z-t plane at x =

25.2δω,0 and y = 8.4δω,0. Solid lines are isopycnals.

figure V.15(a) intensifies in figure V.15(b), which coincides with the strong fluctuation

regions shown in figure V.13(b). At time t = 185, the dissipation in the upper-flank of

the jet is stronger than in the shear layer. The value of ε in the near jet has values up to

three orders of magnitude larger than the dissipation in wave propagation region in the

far jet. These turbulence patches move with the free-stream velocity u as shown in x-t

diagram of figure V.12(a). The patches with the strongest dissipation shown in black

convect in the positive x direction with the slope dx/dt equal to the local value of 〈u〉.
Therefore, these patches have the apparent phase speed ca = 〈u〉 moving downstream

and thus intrinsic phase speed ci = 0, in contrast to the internal waves shown by the

contour plot of w field during the time period t = 100 and 150 in figure V.12(b) that

have ca = 0 and ci = 〈u〉 moving upstream. The dissipation in the internal wave field

prior to t = 100 in figure V.12 (a) is substantially smaller than in the induced patches

that occur at later time. The horizontally-averaged power spectrum at z = −4δω,0 and

at time t = 185 shown in figure V.11 indicates the jet is broadband turbulent with no
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Figure V.17: Near Jet. TKE budget at (a) t = 143 and (b) t = 171.

distinct peaks. The peaks seen in the spectrum at earlier time t = 145 prior to the

‘hot pocket’ penetration have disappeared.

Figure V.16 shows a contour plot of the instantaneous dissipation field along with

isopycnals in the z-t plane at x = 25.2δω,0 and y = 8.4δω,0. Two patches of induced

turbulence are observed approximately at t = 170 and 191. The latter penetrates to

greater depth compared to the former. Both patches are accompanied by fluctuations

in the isopycnals. To the left of the regions with strongest dissipation (ε > 10−3), high-

amplitude low-frequency waves are observed while to the right are low-amplitude high-

frequency fluctuations. Distinct wave packets are observed direct below the patches in

the bottom three isopycnals. The packets occur at a time interval small compared to

the buoyancy time period.

V.D.4 Turbulent Kinetic Energy Budget

As shown in the previous section, the penetration of the ‘hot pockets’ into the cold

jet region starts the chain of events that culminates in patches of induced dissipation.

The internal waves observed to propagate inside the jet disappear after the penetration.

In this section, we analyze the TKE budget to elucidate the energy pathways that feed

the dissipation patches. Figures V.17(a,b) present the TKE budgets at time t = 143

before the first ‘hot pocket’ begins to penetrate the jet and at t = 171 corresponding

to figure V.13(b) and V.15(b) in which the induced dissipation in the jet is observed.

When internal waves propagate in a quiescent background, the rate of energy transport
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Figure V.18: Near Jet. Components of TKE transport T3 at (a) t = 143 and (b) t =

171.

dT3/dz is equipartitioned between the time rate of change in turbulent kinetic energy

dK/dt and the buoyancy flux B as shown previously in the far case. Here, at time t

= 143 the production P balances the transport dT3/dz in the region between depth

z = −4δω,0 to the jet center. The production in this region is different from that

observed in the shear layer. The latter is the result of energy extraction from the

unstable mean shear, namely turbulent production, while the former originates from

the interaction between the momentum flux carried by the internal waves and the

background stable jet shear, namely wave production. The dissipation ε is insignificant

at this time consistent with the low dissipation behavior of the propagating internal

waves shown in figure V.12(b). The buoyancy flux B is relatively smaller than P and

dT3/dz because the effect of mean shear, that is involved in the definition of P and

contributes to the source of the pressure equation and thereby the pressure transport

component of T3, is stronger on P and T3 than on B. Here, the TPE carried by the

waves is less than the TKE, which is different from the far jet where the TPE is equal

to TKE. At time t = 171, in the region −5.5 < z < −4.5δω,0, the buoyancy flux B

changes sign and locally becomes a TKE source, a signature of counter-gradient heat

flux. The available potential energy carried by the ‘hot pockets’ is released into kinetic

form. Nonetheless, this energy source is significantly smaller than the energy lost to

the induced dissipation.

To examine the role of the waves in the TKE budget of the jet, the contributions

to the transport term T3 are analyzed. As explained previously, the contributions are
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Figure V.19: Near Jet. Dashed line indicates integrated TKE in the region −2.5 <

z < zmax. Solid line indicates integrated TKE over entire test domain.

The difference between the two lines is the TKE outside the shear layer

and in the jet.

viscous diffusion Tv, turbulent transport Tt and pressure transport Tp. Figures V.18

(a,b) show the contributions to the total transport at time t = 143 and 171, respectively.

In figure V.18 (a), there are clearly two distinct regions: a wave-dominated region

(z < −4δω,0) with little turbulence and a region with stronger turbulence (z > −4δω,0).

Tp and T3 are equal in the wave-dominated region, i.e. all the contribution to the

transport is due to pressure. On the other hand, the transport in the turbulent region

has significant contribution from Tt. The turbulent region −3.5δω,0 < z < 0 in figure

V.18(a) thickens to −5δω,0 < z < 0 in figure V.18(b) as evidenced by the drop of

Tp and the increase in Tt to become the dominant component of transport. In other

words, part of the wave-dominated region in part (a) becomes turbulence-dominated

in part (b) of the figure. The inference is that the internal wave field has evolved into

turbulence.

How large is the wave energy contribution to the TKE that resides in the jet and

external to the shear layer? Figure V.19 illustrates the time evolution of the integrated

TKE over two spatial regions: one from −2.5 < z < zmax shown by the dashed line

and the other across the entire test domain shown by solid line. The evolution consists

of three significant periods of time. The first period is between t = 100 and 150 when

internal waves transport energy outside the shear layer. Figure V.17 (a) and V.18(a)

indicate energy accumulation during this period is from wave production and wave



128

100 125 150 175 200 225
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5x 10
-3

-ε
dK/dt B

P

-dT
3
/dz

t

Figure V.20: Near Jet. Integrated TKE budget. The terms are spatially integrated

in the jet upper-flank −6.5 < z < −2.5δω,0.

transport. During the second period between t = 150 and 200, there are significant

fluctuations outside the shear layer which, being quickly dissipated over the period, is

indicative of turbulence. The amount of energy accumulated inside the jet during the

first period is smaller than amount observed during the second period. Possible sources

of energy accumulation in the jet are from the transport (both wave and turbulence),

the production (both waves and turbulence) and counter-gradient buoyancy flux. As

shown earlier, the counter-gradient heat flux is local and weak compared to other terms

in the budget. The wave transport and wave production are too small to account

for the larger TKE accumulation relative to that seen during the first period. This

leaves turbulence transport and turbulent shear production as contributors to the large

amount of energy observed during the time period 150 < t < 200. It is worth noting

that this is the time period in which the ‘hot pockets’ are active in the jet. In the

third period, t > 200, there is a small difference between the two lines as in the

first period. The time evolution of the spatially integrated TKE budget is given in

figure V.20 to further elucidate the energy pathways leading to the enhanced TKE

and dissipation in the near jet. The terms in the TKE budget are spatially integrated

over the jet upper-flank −6.5 < z < −2.5δω,0. Prior to the penetration of the first

‘hot pocket’ at t ≈ 145, there is no dissipation in the region. The transport is mostly

from the pressure transport, Tp. Positive dK/dt indicates an accumulation of TKE,

mainly due to the positive wave production associated with wave momentum flux 〈u′w′〉
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Figure V.22: Near Jet. Rig profiles.

interacting with the stable background shear. At t ≈ 145, the ‘hot pocket’ penetrates

the region causing the buoyancy flux to become less negative due to the positive effect

of counter-gradient heat flux. The ‘hot pocket’ also arrives with turbulence transport

Tt causing the transport term, −dT3/dz, to become positive, i.e. a source of energy.

Nonetheless, the largest source of TKE is the production. The production and the

dissipation peaks twice corresponding to the two ‘hot pocket’ penetrations. The overall

evolution of the budget indicates that most of the TKE accumulated in the region is

due to shear production by interaction with both internal waves and turbulence. The

counter-gradient heat flux resulting from the ‘hot pockets’ can be a source locally in

space; however, overall the buoyancy flux is an energy sink. Integrating over time, the

energy lost to the induced dissipation is mainly contributed by the production.

In the current study where both waves and turbulence are involved, it is not

straightforward to identify during which time period 〈u′w′〉 represents wave momentum
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Figure V.23: Near jet. Local gradient Richardson number R̂ig field at y = 8.4δω,0 and

t = 100, 145 and 175.
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flux and when is it due to turbulent Reynolds shear stress. One way to differentiate

between the two is to perform a spectral analysis of the u′w′ field. The horizontally-

averaged co-spectrum measured at z = −4δω,0 shown in figure V.21 indicates the peak

value of the wave momentum flux (at t = 145) is an order of magnitude weaker than

that of the Reynolds stress (at t = 180). The spectrum for the wave momentum

flux clusters at low wavenumber while the turbulent Reynolds stress has broadband

spectrum. Thus, the time evolution of the integrated production P shown in figure V.20

consists of two regimes: wave production prior to t = 145 and turbulence production

during t = 145 and 200. The latter is significantly larger than the former.

The gradient Richardson profile Rig(z), computed using horizontal averages of N

and vertical shear S, that is plotted in figure V.22 indicates that linear shear instability

in the jet is infeasible because Rig(z) > 0.25. At early time, the value of Rig is less

than 0.25 only in the shear layer. The value of Rig at z = −4δω,0 increases in time

even during the time period when the ‘hot pockets’ are active. Nonetheless, the fields

of local R̂ig, computed on the x-z plane at y = 8.4δω,0 and shown in figures V.23(a-c)

at t = 100, 145 and 150, indicate the potential for local shear instability. Here, R̂ig is

defined as

R̂ig(x, y, z, t) =
(−g/ρ0)dρ/dz

du/dz
,

where u and ρ are instantaneous values. In figure V.23(a), there are three visible bands

with low R̂ig values: the shear layer, the upper- and lower-flank of the jet. The shear

layer has R̂ig < 0 shown in white and R̂ig < 0.25 shown in black. The KH rollers

have a black region surrounded by a white region while the braid is covered in black.

At t = 100, the upper-flank of the jet has 0.25 < R̂ig < 0.5 shown in grey, not small

enough to support linear instability. In figure V.23(b), at t = 145, the ‘hot pocket’

marked by a black region below a white region visible at x = 10δω,0 right below the

shear layer begins to penetrate the jet. In figure V.23(c), at t = 175, a large portion

of the jet upper-flank is covered in black and white indicating that shear instability is

now supported. Energy indeed can be extracted from the jet shear at this time.

From the discussion in this section, it is evident that the energy feeding into the

induced dissipation originates from shear production of TKE. However, it is crucial
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Figure V.24: Near jet. Expanded-view of the density fields with the aspect ratio Lz:Lx

= 1:35.

to distinguish turbulent production from wave production. The time evolution of the

integrated production shown in figure V.20 indicates the wave production is significant

less than the turbulent production. Using t = 145 as a marker that separates the two

types of production, over the entire simulation the wave production contributes 17%

to the total production while the contribution of turbulent production is 83%.

It is of interest to visually illustrate how the internal waves contributes energy to

the induced dissipation. The breakdown of the wave field is shown by the visualization

in figure V.24 where the vertical scale is increased relative to the horizontal by a factor

of 35 to amplify the wave amplitude. The lower four isopycnals in figure V.24(a)

indicate that the internal waves present in the jet have an approximate wavelength of

25δω,0 with the strongest peak-to-trough amplitude of 0.4δω,0. The simulated domain

contains two wavelengths starting with a crest at the far left and ending with a trough

at the far right. The waves are coherent between depth z = −3δω,0 and z = −5δω,0.



133

150 160 170 180 190 200
0

0.5

1

1.5
shear
jet

(a)

t

Γ

150 160 170 180 190 200
0

0.2

0.4

0.6

0.8

1
z = 0
z = -4

(b)

t

Γd

Figure V.25: Near Jet. Mixing efficiency. (a) Γ. (b) Γd. The dotted line shows the

value Γ = Γd = 0.2.

The ‘hot pocket’ visible at x = 10 δω,0 between −3 < z < −2δω,0 causes a distortion of

the left wave crest increasing its steepness. To assess the impact of ∂ρ/∂x caused by

the penetration of the ‘hot pocket’, it is useful to write an evolution equation for the

vertical density gradient. The background shear contributes a term as follows,

D

Dt

(
∂ρ

∂z

)

∼ −d 〈u〉
dz

∂ρ

∂x
(V.8)

According to (V.8), since the background shear is negative, a positive value of ∂ρ/∂x

causes a positive change to the background negative vertical density gradient. There-

fore, the local magnitude of stable stratification is reduced and local shear instability

is allowed. Figure V.24(b) shows the convection of the wave crest in part (a) by the jet

velocity. The wave distortion, now at x ≈ 17δω,0, intensifies and is surrounded by steep

features in the isopycnals. The wave crest is completely digested by strong small-scale

fluctuations in figure V.24(c) confirming that the nonlinear breakdown of wave energy

contributes to the observed dissipation.

It is useful to compare the mixing efficiency between the turbulent patches in the

jet and the ones in the shear layer. One way to quantify the mixing efficiency is with

the quantity Γ defined as

Γ (t) =
−
∫

V
B dz

∫

V
ε dz

,

where V is the region of interest. Figure V.25 (a) shows the evolution of Γ over the time

period during which the turbulent patches in the jet are active. The solid line represents

the value of Γ computed by integration over the shear layer with V from z = −2.5δω,0
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to zmax, while the dashed line corresponds to integration over the jet upper-flank,

−6.5 < z < −2.5δω,0. In many oceanic application, Γ is typically taken to be the

constant value of 0.2 (Smyth et al., 1996). In our simulation, Γ is close to this value

only in turbulent shear layer. In the jet turbulence, Γ exhibits substantial fluctuations

owing to the occasional penetration of the ‘hot pockets’ and is substantially larger than

the value of 0.2 during 150 < t < 165. Later in time, after turbulence develops and

the dissipation rate increases, Γ becomes closer to 0.2. Another measure of mixing

efficiency is the quantity Γd (z, t) = ε/ερ where

ǫρ (z, t) =
1

PrRe0

g

ρ0|dρ̄/dz|
∂ρ′

∂xk

∂ρ′

∂xk

.

Here, ερ denotes the irreversible loss of available turbulent potential energy to the

background density. The evolution of Γd is shown in figure V.25(b) in which the

solid and dashed lines indicate the values at z = 0 and z = −4δω,0, respectively. Γd

in the shear layer, z = 0, has a value of approximately 0.6 during the time period

150 < t < 180. This value is also observed by Smyth et al. (2001) who characterize

mixing efficiency in turbulence patches formed by the breakdown of KH billows. Γd

in the turbulent patches in the jet has a smaller value, about 0.4, over the same time

period.

V.E Implications

We have investigated the interaction between an unstable shear layer and a stably

stratified (Rig > 0.25) jet in two situations: a far jet where the distance between the jet

and shear layer is large and a near jet where the distance is small relative to the shear

layer thickness. Our focus is on the internal wave field and turbulence that ensues in

the jet.

In the far case, internal waves with distinct phase lines are excited by KH rollers

and broadband turbulence. The KH-excited waves follow linear wave theory so that

the propagation angle observed in the simulations can be analytically predicted. These

waves cannot penetrate the jet and are reflected because the squared vertical wavenum-
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ber m2 in the Taylor-Goldstein (TG) equation is negative in the jet. There is a buildup

of fluctuation kinetic energy in the region between the shear layer and jet owing to the

pressure transport or, equivalently, the internal wave flux. However there is little tur-

bulence in this region and, consequently, the turbulent dissipation rate is small, three

orders of magnitude below that in the shear layer.

In the near jet, internal waves are also observed but their excitation is not by KH

rollers since the associated value of m2 in the jet region adjacent to the shear layer is

negative. Instead, as the KH rollers interact non-linearly and pair, internal waves with

smaller wavenumber are excited and found to penetrate the jet since the corresponding

m2 > 0. These waves are found to follow linear wave theory as well. There is a region of

m2 < 0 in the lower flank of the jet, but the internal waves are able to tunnel through

and propagate below the jet. ‘Hot pockets’ of fluid from the upper shear layer are

entrained into the stably stratified jet. The pockets initiate turbulence and disrupt the

wave field in the upper-flank of the jet. Coherent patches of small-scale turbulence in

the stable jet that are convected by the local mean flow are observed. The dissipation

in these patches is comparable to the value observed in the turbulent shear layer and

up to three orders of magnitude larger than in the propagating wave field in the far jet

case.

The fluctuation field in the stratified near jet consists initially of internal waves.

There is a number of changes in the fluctuation field that occur later, immediately

after the penetration of hot pockets, that signify turbulence: the spectrum of vertical

velocity, w, and the co-spectrum of uw change from narrow-band with a discrete peak to

broadband; the shear production of TKE and the dissipation rate increase sharply; the

TKE transport is dominated by turbulent transport instead of the pressure transport

(internal wave flux). The local gradient Richard Richardson number based on the

local buoyancy frequency and shear becomes sub-critical, less than 0.25, showing the

potential for shear instability. The terms contributing to the TKE integrated over the

upper flank of the stratified jet are evaluated as a function of time. Most of the TKE

accumulation in the jet is due to production by the interaction of jet shear with both

internal waves and turbulence and not due to the transport term in the TKE equation.
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Furthermore, the contribution of the wave momentum flux to the shear production of

TKE is small (17 % of the net shear production) relative to that by turbulence. The

counter-gradient heat flux is a source of TKE locally; however, overall, the buoyancy

flux is an energy sink.

For the conditions of the model problem, we are able to answer the questions

with which the introduction section ended. (1) Internal waves excited by an unstable

shear layer propagate into a stable jet when the jet is near, not when it is far. The

presence/absence of internal waves can be predicted by the sign of m2 in the Taylor-

Goldstein equation. (2) In the near jet, there are patches of significant dissipation with

magnitude larger than in the unstable shear layer although the jet is linearly stable.

(3) The turbulence in the jet is not primarily due to breakdown of the internal wave

field.

The simulations suggest that the turbulence observed in our model jet is mainly

contributed from local generation of TKE in the jet upper-flank where the background

shear is marginally stable. Nonetheless, the role of internal waves should not be over-

looked in the EUC. In our study, the waves excited by the pairing of the KH-rollers in

the near jet are significantly weaker than the waves directly excited by the KH-rollers

in the far jet. The observation of Hebert et al. (1992) show large-amplitude inter-

nal waves. With a modest variation in either background shear or stratification, the

m2 profile can be changed such that the jet can support KH-excited waves. Forcing

by wind and diurnal heat flux can also force instabilities and energetic waves. Thus,

there are situations where the internal wave energy flux can contribute more to the

‘deep-cycle turbulence’ than in the model jet considered here. A parametric study

with systematic variation of background conditions and forcing is necessary to further

decipher the complex dynamics of fine-scale fluctuations in the EUC system.

The contents of this chapter have been published in the Journal of Fluid Mechanics:

Pham, H. T., and Sarkar, S., “Turbulence and internal waves in a stable stratified jet”,

J. Fluid Mech., 648, 297-323 (2010). The dissertation author is the primary researcher

and the research supervisor is the co-author of the paper.



Chapter VI

Mixing events in a stratified jet

subject to surface wind and

buoyancy forcing

VI.A Objectives

Many environmental flows have jet-like velocity profiles such as the Equatorial

Undercurrents (EUCs) and the Equatorial deep jets in the ocean, and the tropospheric

jet in the atmosphere. These jets occur in a background with nonuniform continuous

stratification. Observations (Gregg et al., 1985; Moum et al., 1992; Lien et al., 1996),

linear stability analysis (Sun et al., 1998), two-dimensional simulations (Skyllingstad &

Denbo, 1994; Sutherland, 2006; Smyth & Moum, 2002), and three-dimensional Large

Eddy Simulations (Wang et al., 1998; Wang & Muller, 2002) have been utilized to

study aspects of these flows. However, there are only a handful of studies using three-

dimensional (3D) Direct Numerical Simulation (DNS) (Tse et al., 2003; Pham & Sarkar,

2010) in which all scales of motion are resolved. In the current study, 3D-DNS will be

utilized to investigate the fine-scale response of a stratified jet subject to surface wind

stress and buoyancy forcing.

The EUCs, jet-like eastward flows below westward surface currents, play an impor-
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tant role in the balance of the equatorial heat budget. It is believed that variability in

the EUCs can affect the surface temperature, modulate air/sea coupling, and thereby

affect weather patterns (Philander, 1980). Therefore, it is important to understand

and ultimately quantify the fine-scale processes in the EUCs. Observations in the Pa-

cific EUC have shown nightly occurrences of intermittent highly-dissipative turbulence

patches along with narrow-band high-frequency oscillations in the EUC upper-flank

where the background gradient Richardson number is larger than the critical value of

0.25 for linear shear instability. However, the mechanism responsible for these dissipa-

tive patches remains unclear. One possible explanation is that, at night, the deepening

of the surface layer allows formation of a shear-unstable region. Another possible ex-

planation is that the high-frequency oscillations are gravity waves which overturn in

the high shear region of the jet. Hebert et al. (1992) has recorded an overturning of

a wave packet; nonetheless, in a recent study Smyth et al. (2010) apply linear stabil-

ity analysis to the observed mean background velocity and density to infer that the

oscillations could result from instabilities that are unrelated to gravity waves. In our

previous work (Pham & Sarkar, 2010), we find that Kelvin-Helmholtz instabilities as-

sociated with an unstable shear region above a stable stratified jet lead to both internal

waves and patches of turbulent dissipation. The patches are associated with horseshoe

vortices originating from the unstable shear layer and not breaking internal waves.

A number of studies using 2D simulations have been used to investigate dynamical

processes inside the EUC jets. The first 2D simulation performed by Skyllingstad &

Denbo (1994) using field-observed velocity and density profiles, surface wind-stress and

heat flux showed the presence of internal waves propagating downward and upstream.

The waves are suggested to be related to Kelvin-Helmholtz instability; however, no

patches of dissipation are observed and wave breaking is not discussed. Smyth & Moum

(2002) perform simulations of a Bickley jet which has stratification in the upper flank

weaker than that in the lower flank. With the low stratification, the shear instability

in the upper flank is allowed resulting in formation of vortex structures. Internal

waves are observed to propagate from the upper flank to the lower flank where they

break after encountering a critical layer. Although not specifically targeting the EUCs,



139

the simulations of Sutherland (2006) also show that internal waves can be generated

when a portion of a jet is linearly unstable such that vortex structures are formed.

Nonetheless, the formation of vortex structures with vertical extent as large as the jet

thickness in those simulations is not applicable to the observation of turbulence limited

to the upper flank of the EUCs. Discussion of turbulence inside the jet is absent in the

aforementioned 2D studies.

A 3D-DNS motivated by turbulence in the tropospheric jet was carried out by Tse

et al. (2003). The jet is weakly stratified and the background shear is maintained by

forcing. Turbulence is observed in the core of the jet while nonlinear waves are ob-

served at the edges of the jet. In a subsequent study where numerical viscosity is used,

Mahalov et al. (2007) finds propagating waves in the region above the jet when the

stratification there is increased. Since Tse et al. (2003) and Mahalov et al. (2007) did

not intend to study the EUCs, the background conditions of the simulations are differ-

ent and the simulated turbulence in the jet deviates from EUC observations. Pham &

Sarkar (2010) perform 3D-DNS to investigate a linearly-stable stratified jet adjacent to

a linearly-unstable shear layer. The shear layer is subject to Kelvin-Helmholtz shear

instability. Internal waves are observed to propagate upstream and downward from the

the shear layer across the jet toward the region below. Intermittent highly-dissipative

patches of turbulence are observed in the jet upper-flank where the gradient Richardson

number is larger than 0.25. The turbulence patches are found to correlate to horseshoe-

like vortex structures formed inside the Kelvin-Helmholtz rollers that extend downward

deep inside the jet.

All the studies targeting the EUCs mentioned above have been helpful to decipher

the small-scale dynamical process in the EUCs and related stratified shear flows but

at the same time important questions remain unanswered. For example, (1) previ-

ous studies have shown that internal waves are strongly related to large-scale vortex

structures that result from shear instability in a small region of the jet. Can internal

waves be found inside the jet in the absence of such large-scale vortex structures ?

(2) Pham & Sarkar (2010) have indicated that the turbulence inside the jet is driven

by the formation of horseshoe vortices which originate from a spanwise instability of
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Figure VI.1: (a) Initial mean profiles. The velocity profile consists of a stratified jet

below a wind-driven mixed layer. The jet center is at depth z = -5/3 δ0.

(b) Initial squared shear profile S2, squared buoyancy frequency profile

N2 normalized by U2
j /δ2

0, and gradient Richardson number profile Rig.

The vertical dotted line indicates the critical value Rig = 0.25 for shear

instability. Thus, only the thin surface region, −0.33 < z < 0, has linearly

unstable shear.

Kelvin-Helmholtz rollers. Can similar vortex structures be formed in the absence of

the large-scale Kelvin-Helmholtz rollers ? (3) Except in Skyllingstad & Denbo (1994),

most studies have assumed some form of shear instability inside the jet neglecting the

turbulent mixed layer. What role does surface forcing of the mixed layer play relative

to shear instability inside the jet ? In the current study, we will address these issues

by using 3D-DNS to investigate the interaction of a surface layer driven by a constant

wind stress and surface cooling with a linearly-stable stratified jet.

VI.B Problem Formulation

Consider a subsurface jet with peak velocity Uj and thickness δ0 centered at z =

−5/3δ0:

〈uj〉 (z) = Ujexp

[

−
(

z + 5/3δ0

δ0

)4
]

,

where the brackets 〈·〉 indicates horizontal x-y average. A free surface shear layer of

thickness δm = δ0/3 driven by a constant wind stress of τw = −6.67 × 10−4 ρ0U
2
j with
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the following profile:

〈uw〉 (z) = −1.76Uj

{(

1 + 2

(
z

δm

)2
)

erfc

(
z

δm

)

− 2

π

z

δm

exp

[

−
(

z

δm

)2
]}

,

is added to the jet velocity. Here, ρ0 is a reference density. The negative sign of the

wind stress indicates that the wind blows opposite to the jet. The exerted wind stress

corresponds to the frictional velocity uτ =
√

(τw/ρ0) = 0.026Uj. The complete initial

velocity profile 〈u〉 = 〈uj〉 + 〈uw〉 is shown in figure VI.1(a).

The vertical density profile consists of a well-mixed surface layer that transitions to

a linearly stratified jet region and the region below. The corresponding non-dimensional

stratification profile, J (z) = N2δ2
0/U

2
j , is given by

J (z) =
Jj

2
− Jj

2
tanh

(
z + δm

0.5δm

)

,

where N2 = −g/ρ0d 〈ρ〉 /dz is the squared buoyancy frequency, g is gravity, Jj is a

measure of stratification in the jet layer that is set to 0.68. The initial mean profiles

of S2, J and Rig are shown in figure VI.1(b). Rig < 0.25 only in a thin surface region

−0.33 < z < 0 and Rig > 0.25 everywhere in the jet and the region below. A constant

surface cooling of Qs = 3.87 × 10−5 U3
j /δ0 is imposed at z = 0.

Using δ0, Uj and δ0d 〈ρ〉 /dz|−∞ as the characteristic length, velocity and density,

the non-dimensional, non-hydrostatic governing equations with the Boussinesq approx-

imation are:
∂uk

∂xk

= 0 , (VI.1)

∂ui

∂t
+

∂ (ukui)

∂xk

= − ∂p

∂xi

+
1

Re

∂2ui

∂xk∂xk

− Jjρ
′δi3 , (VI.2)

∂ρ

∂t
+

∂ (ukρ)

∂xk

=
1

RePr

∂2ρ

∂xk∂xk

, (VI.3)

The non-dimensional parameters are Reynolds number Re = Ujδ0/ν and Prandtl num-

ber Pr = ν/κ. It should be noted that p is the dynamic pressure and ρ does not

include the reference density ρ0 as shown in figure VI.1. Hereafter, all parameters are

discussed in non-dimensional units. In the current study, Re = 18, 000 while Pr = 1.

The Reynolds number, Reτ = uτδm/ν, based on the wind stress is 156. Table VI.1
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compares the imposed parameters to those observed in the fields. Although the shape

of the velocity and the stratification profiles are similar resulting in similar values of

Rig, the jet Reynolds numbers and non-dimensional heat flux are significantly smaller

in the DNS.

The initial velocity perturbations have a broadband spectrum given by

E (k) ∝

(
k

k0

)4

exp

[

−2

(
k

k0

)2
]

,

where wavenumber k0 is set such that the spectrum peaks at 5.1δ0. The fluctuations

introduced only in the surface layer have r.m.s values that peak at the surface at

(u′, v′, w′) of 7% Uj and rapidly decrease with depth.

Periodic boundary conditions are used in the streamwise (x) and spanwise (y)

directions. Boundary conditions in the vertical direction (z) are set as follows:

∂u

∂z
(z = 0) = Reτw , u (zmin) = 0 ,

∂v

∂z
(z = 0) =

∂v

∂z
(zmin) = 0 ,

∂p

∂z
(z = 0) =

∂p

∂z
(zmin) = 0 ,

w (z = 0) = w (zmin) = 0 ,

J (z = 0) = RePrQs ,

J (zmin) = Jj .

The domain size is 8/3π x 2/3π x 10 and the grid has 768 x 256 x 320 points. The

grid is uniform in the horizontal with spacing of 0.011 in the x-direction and 0.008 in

the y-direction. The vertical grid size is stretched from a value of 0.002 at the surface

to a value of 0.011 at depth z = −0.33. In the region −1.5 < z < −0.33 the grid is

uniform with spacing of 0.011. Below this region, the grid is mildly stretched at 3%.

Corresponding to the wall unit δ+ = ν/u∗ = 0.0022, the grid spacing is 5.5δ+ and 4δ+

in the x- and y-direction, respectively. The minimum vertical grid spacing is 1δ+ at

the surface and 5.5δ+ in the jet upper-flank.

A second-order finite difference method on a staggered grid is used for spatial

derivatives and a third-order low storage Runga-Kutta method is used for time ad-

vancement except for the viscous term which is advanced by a Crank-Nicolson scheme.
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A sponge region is employed at the bottom boundary (z < −8.6) to eliminate spurious

wave reflections. The velocities and density in this sponge region are relaxed by adding

to the right-hand-side of Eqs. (VI.2) and (V I.3) a term of the form

− φ (z) [ui (xi, t) − 〈u〉i (z, t = 0)] ,

− φ (z) [ρ (xi, t) − 〈ρ〉 (z, t = 0)] .

The damping function, φ (z), increases quadratically from φ = 0 to 1.0. Further details

of the numerical method can be found in Basak & Sarkar (2006) and Brucker & Sarkar

(2007).

In subsequent sections, the evolution equation for turbulent kinetic energy is used

extensively for discussion; therefore, it is convenient to introduce the notation here.

The equation is:
dK

dt
= P − ε + B − ∂T3

∂z
. (VI.4)

Here, K is the turbulent kinetic energy defined as K = 1/2 〈u′
iu

′
i〉. The prime indicates

deviation from the horizontally averaged quantity as in u′
i = u−〈u〉. P is the production

rate, defined as

P ≡ −
〈
u′

iu
′
j

〉 ∂ 〈ui〉
∂xj

= −〈u′w′〉 d 〈u〉
dz

,

ε is the dissipation rate, defined as

ε ≡ 2

Re

〈
s′ijs

′
ij

〉
where s′ij =

1

2

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)

,

B is the buoyancy flux, defined as

B ≡ −Jj 〈ρ′w′〉 ,

∂T3/∂z is the transport of tke, defined as

T3 = Tt + Tp + Tv, (VI.5)

where the turbulent transport Tt is defined as

Tt =
1

2
[〈w′u′u′〉 + 〈w′v′v′〉 + 〈w′w′w′〉] ,
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Table VI.1: Comparison of parameters between simulations and observations. Obser-

vational data in the first column is taken from Moum et al. (1992) in which

the jet center velocity is Uj, the jet thickness is δ0 and mixed layer depth

is δm. Values of N2, S2, and Rig are measured at depth z = 28 m in the

observational data while they are computed at z = −0.5 in the current

study.

Parameters Observation Current study

Uj 1 m s−1 1

δ0 80 m 1

δm 20 m 0.33

N2 1.3 × 10−4 s−2 0.6

S2 4.2 × 10−4 s−2 1.4

Rig 0.31 0.43

τw −0.02 N m−2 −6.7 × 10−4

uτ 0.0045m s−1 0.026

Qs 6.4 × 10−8 W kg−1 3.9 × 10−5

Pr 7 1

Re 8 × 107 1.8 × 104

Reτ 8.9 × 104 156

Qsδm/u3
τ 14.0 0.75
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Figure VI.2: Time evolution of (a) surface velocity 〈us〉 at z = 0, and (b) stirring depth

δs and the corresponding Rig,s. The dotted lines indicate the critical value

of Rig = 0.25

the pressure transport Tp is defined as

Tp =
〈p′w′〉

ρ0

,

and the viscous transport Tv is

Tv = − 2

Re
[〈u′s′31〉 + 〈v′s′32〉 + 〈w′s′33〉] .

VI.C Evolution of the mean flow

As the wind stress and the buoyancy flux are applied at the surface, the mixed

layer deepens and turbulence penetrates the jet. Significant changes in profiles of

the mean quantities such as velocity and density are observed and discussed in this

section. Although the wind exerts a constant momentum flux at the surface at z = 0,

the surface velocity 〈us〉 rapidly decreases owing to mixing of momentum as shown in

figure VI.2(a). From the beginning of the simulation to t = 20, 〈us〉 decelerates by

more than 50%. The decrease in 〈u〉 is similar to the results of Tsai et al. (2005). It will

be demonstrated later that the rapid initial deceleration is due to the drag caused by

the extraction of Reynolds turbulent stress from the mean shear provided in the initial

velocity profile 〈u〉 in the surface layer. Figure VI.2(b) shows the deepening of the

surface mixed layer as the simulation progresses. In this figure, δs is the stirring depth

measured by the distance between z = 0 and the stirring boundary defined by the
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location at which the maximum r.m.s value of the density fluctuation ρ′ is recorded.

The initial stirring boundary is located at z = −0.22 at the transition between the

surface mixed layer and the linearly stratified region below. The simulation is initialized

with velocity fluctuations peaking at the surface and decaying with depth. However,

stronger velocity fluctuations near the surface do not stir the density field because the

background condition is well-mixed. Rather, the peak density fluctuation is observed

in the transition region where the density stratification is present despite the weaker

velocity fluctuations relative to the region above. After the initial adjustment period

0 < t < 2, δs increases approximately from 0.22 to 0.9δ0 at t = 20 and then fluctuates

about this value after that. The increase in δs signifies the deepening of the turbulence-

active mixed layer into the quiescent linearly stratified jet region. The increase of δs

up to 0.9δ0 also indicates that the turbulence is active in most of the jet upper-flank

(−1.67 < z < 0) for 0 < t < 20. After t = 20, stirring, weaker with respect to earlier,

continues to occur at the location z = −δs but the turbulence in the region above

this location decays except in the thin surface region driven by the wind stress and

the surface heat flux. As discussed in a later section, the turbulence generated by the

surface forcing is relatively weak compared to that extracted from the mean background

velocity. Figure VI.2(b) also shows the values of the gradient Richardson number Rig,s

measured at the stirring boundary z = −δs. As δs increases, Rig,s also increases. At

t = 20 when δs ceases to increase, Rig,s asymptotes at the critical value of 0.25. This

suggests that no further stirring can be achieved when the gradient Richardson number

exceeds the critical value, which agrees with the prediction of linear stability theory of

parallel shear flows.

The profiles of the mean streamwise velocity 〈u〉 and mean shear S in the surface

layer and the jet upper-flank at different times are shown in figures VI.3(a,b), respec-

tively. The surface velocity at z = 0 decreases initially as discussed above. As the

surface layer deepens, the wind stress exerts drag on the layer causing the region with

negative velocity to widen. The positive velocity in the upper-flank of the jet also

decreases in time indicating significant amount of momentum is lost from the mean

flow. The momentum lost is observed in the jet region as deep as z = −1.1δ0 where
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Figure VI.3: Vertical mean profiles at various time: (a) streamwise velocity 〈u〉, (b)

shear rate d 〈u〉 /dz.

there is insignificant background shear. The profiles of shear S in figure VI.3(b) show

significant variations in time except in the thin viscous layer, −0.1 < z < 0, at the

surface. The initial shear in the surface layer, −0.33 < z < 0, is reduced rapidly. From

t = 5 to t = 10, the magnitude of S is reduced by nearly half and continues to decrease

after that. In contrast, the shear in the region, −1.2 < z < −0.75, of the jet upper-

flank increases in time although the velocity in this region is reduced as shown in figure

VI.3(a). From t = 5 to 45 the magnitude of S approximately doubles at depth z = −1.

The S profile at t = 5 consists of two distinct regions of strong shear in addition to the

surface shear that are denoted by two local maxima in the profile: one with relatively

larger magnitude of S at z = -0.25 in the surface layer and one at z = -0.75 in the

jet upper-flank. At the end of the simulation at t = 45, the former region disappears

while the latter persists with stronger magnitude. The dynamic transformation of the

mean velocity and mean shear suggests that the mean background condition has an

important role in the momentum and the energy budgets of the flow.

The evolution of the mean density 〈ρ〉 and the squared buoyancy frequency N2

are shown in figures VI.4(a,b), respectively. Except in the thin region near the surface

where the density profile is gravitationally unstable due to the positive surface buoy-

ancy flux, the profiles at all time show that the mean density increases with depth.

Over time, the surface layer gets heavier and the jet upper-flank gets lighter. The

stirring of the background density, although co-gradient with the molecular diffusion,

is active since the corresponding background shear changes significantly. Neglecting
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Figure VI.4: Vertical mean profiles at various time: (a) density 〈ρ〉 and (b) squared

buoyancy frequency N2.

the molecular diffusion effects, the surface layer get heavier due to two sources: the

surface flux injects heavier fluid downward and from the jet where heavier fluid is lifted

upward. The time variation of shear profiles suggest that the latter dynamical process

is related to shear instability. The profiles of N2 in figure VI.4(b) indicate that the

effect of the surface flux is limited to a region as thin as 0.1δ0 near the surface. It

should be noted that, by definition, a negative N2 corresponds to a positive unstable

density gradient. The variation among the N2 profiles is more significant in the region

below the surface layer than at the surface. In the surface layer, −0.33 < z < 0, the

stratification increases in time suggesting that the initial mixed state cannot be main-

tained despite the surface forcing. In other words, re-stratification inside the surface

layer, even at early time, implies that uplifting of heavier fluid from the jet upper-flank

is more important than the downward injection of the positive buoyancy flux at the

surface. As the surface layer deepens, the fluid in the region below is stirred resulting

in a significant decrease in stratification. For example, from t = 5 to 45, the strat-

ification at z = -0.5 is reduced by a factor of approximately six. Below the stirring

region, N2 increases sharply to values larger than the ambient value Jj before dropping

down toward Jj similar to the observations of the ocean pycnocline capping the surface

mixed layer. The overshooting value of N2 at z = -1 and t = 45 can be more than 50%

larger than Jj. The formation of a pycnocline adjacent to a region of active stirring has

been observed in other studies such as mixing in a turbulent boundary layer (Taylor
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Figure VI.5: Vertical profiles of the vertical gradient Richardson number Rig at various

time.

& Sarkar, 2008; Gayen et al., 2010) and mixing via shear instability (Sutherland &

Linden, 1998; Pham et al., 2009).

It is remarkable that, despite significant variations in the shear and squared buoy-

ancy profiles both in time and in space, the values of the gradient Richardson profiles

Rig after t = 5 tend to converge toward the critical value 0.25 in the region where

stirring occurs as shown in figure VI.5. The Rig profile at t = 5 shows that the region

with Rig < 0.25 extends from the surface down to z = −0.4. The local minimum at

z = −0.75 results from the maximum in the jet shear at that location as shown in

figure VI.3(b). Stirring causes the entire surface layer and part of the jet upper-flank

to become linearly unstable, i.e. Rig < 0.25 as observed at t = 20. The t = 20 profile

indicates three distinct regions: the thin viscous region, −0.1 < z < 0, in which Rig

increases monotonically from the surface value, the stirring region, −0.9 < z < −0.1,

in which Rig is maintained in a narrow band, 0.175 < Rig < 0.25, of near-critical

values and the quiescent region, z < −0.9, where Rig becomes larger than 0.25 and

sharply increases toward infinity (due to zero shear at the center of the jet). At t =

30 and 45, the stirring region deepens and the Rig values in this region moves closer

to the critical value of Rig = 0.25 as stirring subsides. Recall the shear and squared

buoyancy frequency profiles in figure VI.3(b) and VI.4(b), respectively. Locally, i.e.

at different depths, the shear S can increase or decrease in time; nonetheless, mixing

alters the squared buoyancy frequency accordingly such that Rig converges toward the

critical value. The convergence of Rig toward the critical value along with the even-
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Figure VI.6: Internal wave fields are shown with the vertical fluctuating velocity field

w′ in the x-z plane at y = 1.1.

tual decay of stirring suggests the core dynamical process in the current study is shear

instability according to linear stability theory. The convergence to Rig ≈ 0.25 after

t = 20 substantiates the typical use of Rig > 0.25 as a cutoff for turbulent mixing in

many environmental models. However, the significant mixing between t = 5 and t = 10

would be missed by such a simple mixing model.

VI.D Internal Waves

In the previous section, we have shown that mean background conditions have

changed throughout the simulation indicating significant transfer between mean and

fluctuating fields. In the current investigation, the fluctuating quantities can signify

the presence of either internal gravity waves or turbulence or both. In this section,

we present observations of the internal waves field, excited by the wind-driven surface
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layer, that propagates across the region with background jet shear.

Figure VI.6(a-d) show snapshots of the instantaneous fluctuating vertical velocity

fields w′ in the x-z plane at y = 1.1 at various times. In all figures, two distinct regions

are observed: the turbulence region above and the wave region below. The region

with turbulence shows small-scale fluctuations corresponding to high wavenumber while

the wave region exhibits more coherent fluctuations which are at significantly larger

wavelength. The wave regions have alternate black and white lobes in the horizontal

direction corresponding to the negative wave troughs and the positive wave crests.

As the simulation progresses, the turbulence layer penetrates to greater depth. The

internal wave region changes noticeably in time. The wave field in figure VI.6(a) has

smaller wavelength than those in other figures. The waves in figures VI.6(b-d) extend

across the jet with the phase lines oriented in the vertical direction. Recall that the jet

spans the region −3 < z < −0.33; the wave field in the region below the jet has phase

lines that tilt upstream as shown in figures VI.6(b,d). The change in the propagating

direction of the wave phase lines is due to the change in the background shear. Similar

to observations in the study of Pham & Sarkar (2010) in which the vertical wavenumber

m of the internal waves is governed by the Taylor-Goldstein equation, m is dependent

on the horizontal wavenumber k, the background shear S and stratification N2. In the

region below z = −1.25 where N2 is constant but the jet shear S varies with depth,

the vertical wavenumber m also varies with depth resulting in the change in the wave

phase lines.

In a previous study, Pham et al. (2009) reported that the internal waves excited

by Kelvin-Helmholtz rollers have wavelength equal to that of the rollers. Pham &

Sarkar (2010) further showed that, in the presence of a stratified jet with EUC-type

shear and stratification, the rollers cannot excite internal waves since the background

shear and stratification do not allow propagating waves with positive values of m.

Nevertheless, internal waves with larger horizontal wavelength were observed inside

and below the jet because the smaller wavenumber k has positive m such that waves

propagate. In both studies, the excited waves were found to be closely related to the

coherent structures in the unstable shear layer. The waves were nearly two-dimensional
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(a) t = 5

(b) t = 10

Figure VI.7: Internal waves are shown with 3D isocontours in the density field at (a)

t = 5 and (b) t = 10. The lighter isosurface denotes ρ = 0.048 while the

darker denotes ρ = 0.144.
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Figure VI.8: Horizontally-averaged kx spectra of the vertical fluctuating velocity field

w′ at various time: (a) at z = −0.33 and (b) at z = −1.

and could be described by linear wave theory. In the current study, while there is a

stratified jet as was in Pham & Sarkar (2010), the coherent rollers are absent and

replaced by broadband turbulence in the upper mixed layer. Nonetheless, the wave

excitation mechanism has similarities. Although the turbulence in the surface layer

is broadband, there exist fluctuations at low wavenumber k which in combination

with appropriate background conditions results in positive m for propagating internal

waves. Figure VI.7(a) shows the internal waves through the density isocontour surfaces

of ρ = 0.048 and 0.144 at t = 5. Unlike in previous studies where the internal waves

are two-dimensional, i.e. x-z plane waves, the wave field shown in the isocontour of

ρ = 0.048 at t = 5 is highly three dimensional with distinct crater-like structures rather

than lines of wave crests and troughs. The three-dimensional features of the wave field

suggest that these waves are correlated with the low wavenumber fluctuation of the

broadband turbulence in the region above. The isocontour of ρ = 0.144 shows no wave

signature at early time. Figure VI.7(b) shows the same isocontours but at later time

when the waves propagate toward greater depth. The waves shown in the isocontours

of ρ = 0.144 have larger wavelength and smaller amplitude with less three-dimensional

structures than those in the isocontour of ρ = 0.048 in figure VI.7(a). At t = 10, the

isocontour of ρ = 0.048 shows the distinct features of turbulence especially in terms

of larger amplitude and broader wavenumber spectrum than in the waves observed at

t = 5.
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The horizontally-averaged kx spectra at z = -0.33 and -1 at various time are shown

in figures VI.8(a,b), respectively. In figure VI.8(a), the spectrum at t = 2 is narrow-

band at low wavenumber and sharply drops off at wavenumber kx > 10. At t = 10, the

spectrum becomes broadband with a energy containing range, inertial subrange and

dissipation range indicative of turbulence. The difference in amplitude between the

energy containing range and the dissipation range is 4 orders in magnitude. The peak

magnitude in the spectrum at t = 2 is small suggesting that the internal waves present

at this time are significantly weaker than the low-wavenumber fluctuations present

during later time when there is broadband turbulence . Figure VI.8(b) shows similar

evolution of the spectra at depth z = -1 inside the jet upper-flank. The narrow-band

spectra at t = 5 and 10 are indicative of internal waves arriving from the surface layer

above. At later time t = 20 and 45 the spectra become broadband and the turbulence

is relatively weaker than that observed at similar time at z = -0.33.

While figure VI.8 shows that the peaks in the internal wave spectra are relatively

smaller than those of the turbulence spectra, figures VI.9(a-f) further compare the

magnitudes of the wave fluctuations with that of the turbulence fluctuations in terms

of the r.m.s values of streamwise velocity u′, spanwise velocity v′, vertical velocity w′,

density ρ′, cross-correlation 〈u′w′〉 and pressure-velocity correlation 〈p′w′〉 at different

time in the simulation. In these figures, there are two distinct regions: the turbulent

region with larger fluctuations above (approximately −1.25 < z < 0) and the wave

region with smaller fluctuations below (approximately z < −1.25). The peak velocity

fluctuations in figure VI.9(a-c) in the wave region is an order of magnitude less than

those in the turbulent region. Thus, the fluctuating kinetic energy carried by the

waves is significantly smaller compared to the turbulent kinetic energy present in the

surface layer and upper portion of the jet. The wave fluctuations have larger u′ and w′

components than the v′ components. The ρ′ field shows a smaller difference between

the wave and the turbulence region. It is noted that the location of the upper peak

in ρ′ indicate the approximate bottom boundary of turbulence and, thus, the stirring

depth δs as discussed in previous section. The lower peak in ρ′ occurs at the jet center

where there is internal wave reflection. The cross-correlation 〈u′w′〉 in the wave region
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Figure VI.9: Horizontally-averaged profiles of the fluctuating fields at various time: (a)

streamwise velocity urms, (b) spanwise velocity vrms, (c) vertical velocity

wrms, (d) density ρrms, (e) Reynolds stress 〈u′w′〉 and (f) wave energy flux

〈p′w′〉. The horizontal dotted lines indicates the center of the jet. The

upper zero-velocity point of the jet is at approximately z = −0.4 after t

= 10.
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Figure VI.10: Contributions to the transport at (a) t = 10 and (b) t = 20. The dotted

lines indicate center of the jet.

is substantially smaller than that in the turbulent region and thus the momentum flux

carried by the waves is insignificant compared to the turbulent Reynolds stress. The

pressure-velocity correlation 〈p′w′〉, representative of the amount of fluctuating energy

carried by waves, shows stronger downward energy transport at t = 10 compared to

later time.

It is important to emphasize that the wave energy flux, Tp, in the current study is

significantly weaker than turbulence transport, Tt, defined in Eq.(VI.5). The vertical

profiles of the three components of the transport term at t = 10 and t = 20 are plotted

in figure VI.10(a,b), respectively. In figure VI.10(a), the domain consists of two regions:

turbulence region above z = −0.75 in which Tt dominates the total transport and the

wave region below z = −0.75 in which Tp, i.e. wave energy flux, dominates. In the

turbulence region, Tt is positive in the surface layer indicating upward transport while

Tt is negative in the jet upper-flank denoting downward transport. In the wave region,

the negative Tp indicates downward wave energy flux which is significant smaller than

the Tt values in the turbulence region. At later time, the turbulence region deepens to

depth z = −1.1 as shown in figure VI.10(b). Both Tt and Tp are smaller than the values

at earlier time indicating weaker turbulent diffusion and weaker wave flux. Tp changes

signs across the center of jet showing upward wave flux for the wave region above.

The reason is that some of the internal waves cannot penetrate past the center of the

jet and thus reflect upward. Internal wave reflection due to changes in the ambient

velocity has been observed by Brown & Sutherland (2007); Pham & Sarkar (2010).
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(a) t = 6.7

(b) t = 6.9

Figure VI.11: Downward ejection in the circled region is shown in the vertical x-z

slices of the density field at y = 1.1.

VI.E Mixing and generation of intermittent turbu-

lence

As the surface layer deepens, we observe intermittent patches of turbulence in

the upper flank of the jet where the background gradient Richardson number is larger

than 0.25. In this section we examine the density field to elucidate the mixing mecha-

nisms leading to turbulence in the jet. The patches of turbulence are correlated with

the formation of gravitationally unstable density ‘pockets’. The formation is due to

downward ejections in which lighter fluid is ejected downward into the quiescent region

with heavier fluid, upward ejections in which heavier fluid from the quiescent region

is ejected upward into the region with lighter fluids, and finally isopycnal overturns.

Evidence of these mechanisms is presented in the following text.
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Downward ejections are evident in figure VI.11 which shows snapshots of the in-

stantaneous density field in the x-z plane at y = 1.1 at t = 6.7. In figure VI.11(a), as

the surface layer deepens the isopycnals in the interface region lying between the tur-

bulence region above and quiescent region below are distorted. The distortions mainly

consist of large-scale undulations. When the distortion has large amplitude as in the

region 3 < x < 5, lighter fluid in the turbulence region extends deep into the the quies-

cent region with significantly heavier fluid. The isopycnals at the tip of the distortion

at x = 4.7 and z = -0.6 in the circled region are compressed against each other denoting

stronger density gradients in both horizontal and vertical directions compared to the

ambient gradient. Figure VI.11(b) shows the subsequent evolution of figure VI.11(a) at

later time t = 6.9. The tip of the distortion shown in figure VI.11(a) detaches from the

isopycnal to evolve into individual ‘pockets’ of light fluid surrounded by heavier fluid

in figure VI.11(b). The ‘pockets’ are swept downstream by the jet, i.e. the relative

velocity is directed toward the positive x direction as they are ejected downward.

Figure VI.12 illustrates upward ejections. As shown in the circled region in figure

VI.12(a), the fifth and sixth isopycnals from the bottom indicate the upward ejection

of heavier fluid in the region 1 < x < 1.5. The ejections resemble finger-like structures

pointing upstream, i.e. in the negative x direction. The ejections occur at depth z =

-0.9 which is more than half of the total depth of the jet upper-flank. In figure VI.12(b)

which shows the subsequent evolution, the ejections are swept downstream by the jet

velocity. The ejection in the sixth isopycnal from the bottom has disappeared; the

ejection in the fifth isopycnal has evolved to become a separate ‘pocket’ surrounded

by lighter fluid. The ‘pocket’ here is relatively smaller than those observed in the

downward ejections, and it moves in the opposite direction. The orientation of the

upward ejections is governed by the direction of mean spanwise vorticity ω2. Since

the background shear is negative and the positive y axis direct into the page in figure

VI.12, the negative ω2 rotates fluid counter-clockwise and so do the upward ejections.

Figure VI.12 also presents evidence of isopycnal overturns in the rectangular region

7 < x < 8. The fourth and fifth isopycnals from the bottom in figure VI.12(a) indicates

two adjacent distortions which are about to overturn. The distortion to the right is
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(a) t = 18.7

(b) t = 18.9

Figure VI.12: Upward ejection in the circled region and isopycnal overturn in the

rectanglular region are shown in the vertical x-z slices of the density

field at y = 1.1.
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(a) t = 44.0

(b) t = 44.3

Figure VI.13: Upward ejection in the circled region, downward ejection in the rectan-

gular region, and isopycnal overturning in the oval region are observed

in the vertical x-z slices of the density field at y = 1.1.

of larger scale and the overturn direction is counter-clockwise. In figure VI.12(b),

the distortions have been swept downstream and the one to the right has already

overturned resulting a ‘pocket’ of light fluid surrounded by heavier fluid. The ‘pocket’

here is relatively larger than the one resulting from upward ejections.

The three mechanisms are presented again through snapshots at different time in

figure VI.13 to emphasize their frequent occurrence in the jet upper-flank. Figures

VI.13(a,b) show density contour plots near the end of the simulation at t = 44.0

and 44.3, respectively. Signatures of upward ejections are the abundant finger-like

structures with counter-clockwise rotation in the isopycnals in the region −0.8 < z <

−0.4. For example, the finger-like structure in the circled region in figure VI.13(a) at

x = 2.4 and z = −0.5 is in process of ejecting heavier fluid upward; the ejection is
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Figure VI.14: Ejections of light fluid are shown with 3D isocontours in the density field.

Up in this figure corresponds to down in physical space. Horseshoe-like

vortex tube ejecting fluid from the stirring surface downward in physical

space at t = 18. The darker isosurface denotes ρ = 0.144 while the

lighter one corresponds to ρ = 0.197. The negative z direction points

upward in this figure.

completed in figure VI.13(b) in which a ‘pocket’ can be seen. The downward ejection

is observed in the rectangular region at x = 5.7 and z = −0.8. The second isopycnal

from the top is distorted over a large vertical extent, −0.8 < z < −0.5, in figure

VI.13(a). In figure VI.13(b), the bottom tip of the distortion detaches to become

a separate ‘pocket’ which is advected further downward in the positive x direction.

Finally, isopycnal overturn is evident as shown in the fifth isopycnal from the bottom

in the oval region at x = 3.5. Figure VI.13(a) shows the distortion ready to overturn

while figure VI.13(b) shows the completed overturn with a detached ‘pocket’. Out of

the three mechanisms, the downward ejections generate turbulence over larger spatial

extent as well as longer duration in time compared to the other two mechanisms.

The drivers of the observed ejections are vortex tubes as shown in figures VI.14

and VI.15. In figure VI.14, three-dimensional isopycnal surfaces are used to visualize

the downward ejection observed at t = 18. It is noted that the vertical axis has been



162

Figure VI.15: Ejections of heavy fluid are shown with 3D isocontours in the density

field. Breaking horseshoe-like vortex tube denoted by circle A and single

vortex tube denoted by circle B show ejections from the stirring surface

upward toward the free surface at t = 45. The isosurface corresponds to

ρ = 0.048.
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flipped for visualization, i.e. up in physical space is directed downward in the figure so

that the surface layer is at the bottom of the figure. Two isopycnal surfaces are shown:

the darker corresponds to ρ = 0.144 while the lighter corresponds to ρ = 0.197. The

ejection in the middle of the figure shows a horseshoe-like vortex originating from the

darker surface extending toward the lighter surface. The vortex is slightly swept in the

positive x direction as it penetrates upward in the figure (downward in physical space).

A horseshoe-like vortex tube has been reported in Pham & Sarkar (2010); however,

there the vortex tube was a result of a secondary instability of a Kelvin-Helmholtz

rollers that interacted with the mean shear of a laminar jet. In figure VI.15, the three-

dimensional feature of the upward ejections is shown with the isopycnal surface of

ρ = 0.048 at t = 45. The positive z axis is directed upward in this figure consistent

with physical space. A horseshoe-like vortex tube is observed in the circle A. Unlike

the one shown in figure VI.14, the vortex tube extends upward and leans toward the

negative x direction and it is in the process of breaking into two smaller tubes. A

completed upward ejection of heavy fluid by a single vortex tube is shown in circle B.

Again, the ejection is upward and toward negative x direction. The separated portion

of the tube which looks like a ‘pocket’ in the x-z plane shows the rotational feature of

a vortex.

Figure VI.16(a) shows the deepening of turbulence through a z-t diagram of den-

sity, analogous to a record taken by a density profiler, at fixed horizontal location,

x = 1.3 and y = 1.1. The deepening occurs prior to t = 20 and penetrates to depth

z = −1 which is well inside the jet upper-flank. During the deepening, two downward

ejections are observed: one at t = 15 and z = −0.75, and the other at t = 18 and

z = −1.1. The ejections cause isolated short-lived dips in the density associated with

fluid that is ejected downward. The second ejection penetrates to greater depth relative

to the first. The dip due to the first ejection is seen in two consecutive isopycnals while

the second ejections affects three consecutive isopycnals. After t = 20, the density

shows continuous high-frequency fluctuations in region −1 < z < −0.75 in contrast

to region −1.25 < z < −1 where the density exhibits intermittent dips corresponding

to downward ejections of fluid, for example, at t = 28, 33 and 38. The ejections that
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(a)

(b)

Figure VI.16: z-t diagrams of (a) the density field and (b) dissipation field measured at

x = 1.3 and y = 1.1. Arrows indicate the effect of downward ejections.
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occur after t = 20 are weaker than those that occur prior with respect to the vertical

penetration. The corresponding z-t diagram of the dissipation at the same profiler is

presented in figure VI.16(b). As the surface layer deepens, the turbulence region can

penetrate as deep as z = −1 below which the dissipation rate sharply drops at least

three orders of magnitude in a short vertical extent. The ejections in figure VI.16(a)

are correlated with strong bursts of dissipation in figure VI.16(b). The bursts at t = 15

and 18 have dissipation at least three orders of magnitude larger than the surrounding

values. The former burst causes strong dissipation, on the order of 10−2, in the region

−1.2 < z < −1 in which the gradient Richardson number Rig based on the mean

profiles is significantly larger than 0.25 as shown in figure VI.5. It is evident that the

dissipation observed in this region is not initiated by ‘local’ shear instability. Rather,

the dissipation is initiated by the density ejections from the region above that then

interact with the background shear.

VI.F Momentum budget

In section VI.C we have shown that the mean streamwise velocity 〈u〉 changes

considerably throughout the simulations suggesting that the momentum budget of the

jet has changed in time. In this section, we analyze the momentum budget to show

that the momentum loss inside the jet is due to the drag of the applied wind stress τw

as well as the drag from the Reynolds stress 〈u′w′〉 extracted from the imposed mean

shear in the surface layer with the latter providing the dominant contribution.

Consider the horizontally-averaged x-momentum equation after Reynolds decom-

position:
∂ 〈u〉
∂t

=
1

Re

∂2 〈u〉
∂z2

− ∂ 〈u′w′〉
∂z

. (VI.6)

Integrating the above equation from z1 to z2 yields:

∂

∂t

∫ z2

z1

〈u〉 dz

︸ ︷︷ ︸

M1

=
S (z2)

Re
︸ ︷︷ ︸

M2

−S (z1)

Re
︸ ︷︷ ︸

M3

−〈u′w′〉 (z2)
︸ ︷︷ ︸

M4

+ 〈u′w′〉 (z1)
︸ ︷︷ ︸

M5

, (VI.7)

where S is used in place of d 〈u〉 /dz. Eq.(VI.7) indicates the time rate of change of
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Table VI.2: Momentum budget: Equation VI.7 integrated over the time of simulation.

Domain M1 M2 M3 M4 M5

−0.33 6 z 6 0 0.098 -0.030 0.003 0.0 0.126

−1.67 6 z 6 −0.33 -0.127 -0.003 0.0 -0.126 0.001
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Figure VI.17: In the surface layer −0.33 < z < 0: (a) the initial and final mean

streamwise velocity 〈u〉; (b) Viscous drag, M2 at z = 0 and M3 at z =

-0.33, and turbulence/wave drag, M4 at z = 0 and M5 at z = -0.33, as a

function of time.

momentum inside a domain M1 is equal to the net effect of viscous stresses, M2 and

M3, and Reynolds stresses, M4 and M5.

Lets apply Eq.(VI.7) to the surface layer with z1 = −0.33 and z2 = 0. Figure

VI.17(a) shows the mean streamwise velocity 〈u〉 in the region at initial time t = 0 and

at final time t = 45. In the region −0.22 < z < 0 the velocity magnitude decreases

considerably while it increases slightly in region −0.33 < z < −0.22 so that the surface

layers exhibits a net loss of its initial (negative) momentum. The time evolution of

the terms on the right-hand-side of the Eq.(VI.7) is plotted in figure VI.17(b). At the

surface z2 = 0, M2 is the applied wind stress τw taken to be constant in time. M4 is

equal to zero since no vertical velocity is allowed at the surface and M3 is insignificant

due to weak shear at z1 as well as the large value of Re. The dominant term is M5,

the drag due to the Reynolds turbulent stress at z1. M5 increases sharply to its peak

value during the early time when the background shear in the region is large. As the
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Figure VI.18: In the jet upper-flank −1.67 < z < −0.33: (a) the initial and final mean

streamwise velocity 〈u〉; (b) Viscous drag, M2 at z = -0.33 and M3 at

z = -1.67, and turbulence/wave drag, M4 at z = -0.33 and M5 at z =

-1.67, as a function of time.

mean shear in the region decreases, M5 also decreases. At the end of the simulation, the

magnitude of M5 is as small as that of the applied wind stress M2. Integrating Eq.(VI.7)

over the time of simulation yields the bulk evolution of the momentum budget, and

results are tabulated in table VI.2. Overall, the momentum loss in the background

velocity M1 is balanced by the wind drag M2 at the surface and the turbulent drag M5

at the bottom of the surface layer. Furthermore, M5 is the largest term in the budget

and it is the cumulative effect of both M1 and M2. In other words, the net turbulent

drag at the base of the surface layer is the sum of the wind drag and the momentum

extracted from the background velocity. The former is approximately 30% of the latter

as shown in table VI.2. Therefore, the background velocity provides a significantly

larger contribution to the total drag than the wind stress.

Similar analysis is performed for the jet upper-flank with z1 = −1.67 and z2 =

−0.33. Figure VI.18(a) presents two profiles of the background velocity 〈u〉 at time

t = 0 and 45. The difference between the two profiles indicates the momentum loss.

Significant drag is observed in the top half of the jet upper-flank; for example, the

velocity at z = −0.75 is reduced by nearly half over the simulation. Figure VI.18(b)

shows the time evolution of the terms on the right-hand-side of Eq.(VI.7). The viscous

drag M2 and M3 are relatively small due to weak shear and large Reynolds number
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effect. The wave drag M5, i.e. 〈u′w′〉, at the bottom of the region is small as discussed

in section VI.D. The only noticeable term is M4 which is the drag due to the turbulent

stress at the top of the jet. The results of integrating Eq.(VI.7) in time are included on

table VI.2 which indicates a direct balance between M1 and M4. The jet upper-flank

loses significant amount of momentum due to the turbulent drag at the upper surface,

z2 = −0.33. The net momentum loss in the jet upper-flank is 25% larger than that

in the surface layer. Combining the two analyses above yields the net effect of the

wind stress and the initially imposed shear in the surface layer upon the jet. In bulk

numbers, the wind stress contributes approximately 25% of the total drag on the jet;

the other 75% is contributed by the background shear in the surface layer via turbulent

extraction.

VI.G Kinetic Energy Budgets

Analysis of the momentum budget, given in the preceding section, indicates that

the wind stress plays a smaller role in terms of momentum drag upon the jet when

compared to turbulent momentum fluxes in the subsurface sheared region. In this sec-

tion, the budgets of the mean kinetic energy, mke, and the turbulent kinetic enery, tke,

are examined to show that the mean energy input by the wind stress τw is also smaller

than the amount of energy extracted from background shear. Also, the energy input

by surface cooling is minuscule relative to the dominant terms in the tke budget. Most

of the energy lost to dissipation in the jet upper-flank is localized to the region. The

turbulent energy flux from the surface layer above provides a smaller net contribution

but serves as an essential catalyst for mixing in the jet.

When Eq.(VI.6) is multiplied by 〈u〉, the evolution equation for the mke is ob-

tained:
∂ mke

∂t
=

∂

∂z

[

〈u〉
(

S

Re
− 〈u′w′〉

)]

− V − P , (VI.8)

where mke = 1/2 〈u〉2, S is the shear rate, V = S2/Re is the viscous dissipation of

the mean flow, and P = −〈u′w′〉S is the amount of mke feeding into the turbulence.

Integrating the above equation from the center of jet zj = −1.67 to the surface z = 0
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Figure VI.19: (a) Mean kinetic energy at t = 0 and 45; (b) Energy input by the

wind stress, 〈us〉 τw, and energy converted to turbulent kinetic energy P

integrated over the region −1.67 < z < 0.

yields:

∂

∂t

∫ 0

zj

mke dz = 〈us〉 τw −
∫ 0

zj

V dz −
∫ 0

zj

P dz , (VI.9)

where the shear rate S at zj and the Reynolds stresses 〈u′w′〉 at zj and 0 are neglected.

Eq.(VI.9) indicates two sources and two sinks for mke during the simulation. The two

sources are the energy available in the mean velocity at initial time and the energy

input by the wind stress. The two sinks are the viscous dissipation and the energy

conversion to the turbulent kinetic energy.

Figure VI.19(a) plots the vertical profiles of the mke at the initial time t = 0 and

the final time t = 45. The substantial difference between the two profiles indicates a

significant amount of the mke is lost over the simulation especially in the surface layer.

At the surface z = 0, despite continuous supply of energy by the wind, the mke at the

final time is 8 times smaller than that at initial time. The jet upper-flank also loses a

considerable amount of mke. Figure VI.19(b) contrasts the time evolution of the wind

stress term and the production term on the right-hand-side of Eq.(VI.9). While the

wind stress exerts a constant momentum drag over time upon the surface as discussed

in the previous section, its energy input varies in time due to the decreasing surface

velocity 〈us〉. The maximum energy input is at t = 0 and drops toward a constant

at later time. The turbulence production term P is insignificant at time t = 0 but

rises quickly to its peak followed by a decrease as the background shear decreases. The
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Figure VI.20: TKE budgets at (a) t = 5 and (b) t = 20.

peak value of P is nearly 10 times larger than the peak energy input by the wind.

At the end of the simulation, the two terms are approximately equal. Integrating the

terms of the right-hand-side of Eq.(VI.9) over the time of the simulation gives the total

energy input by the wind equal to 0.023 and the total energy converted to the tke equal

to -0.144. The left-hand-side yields the total lost of mke from the initially imposed

background velocity equal to -0.13. Thus, the total amount of energy converted to

the tke is the sum of the energy input by the wind and the mke lost from the mean

velocity subtracting the relatively small viscous dissipation. The wind energy input

only contributes 16% of the energy converted to the tke, and the reservoir of mean

kinetic energy in the surface layer and the jet makes the major contribution.

Figures VI.20(a,b) plot the tke budgets at t = 5 when the surface layer is deepening

and at t = 20 when the deepening ceases, respectively. At t = 5 the dominant terms

in the budget are the production P and the dissipation ε; the buoyancy flux B is small

relative to other terms. The transport term consisting of both positive and negative

values indicates that tke is transported both upward and downwards. It is noted that it

is the negative of dT3/dz that is plotted in figure VI.20. At the surface, tke generated by

the wind stress is transported downward. From −0.35 < z < −0.1, tke is transported

upward since large amount of tke is generated in the region of peak production. The

peak production and dissipation occurs inside the sheared region, not at the surface,

suggesting that more tke is extracted from the mean shear than that input by the wind

stress. At the base of the surface layer, positive dK/dt indicates tke accumulation due
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Figure VI.21: (a) Vertical profiles of the buoyancy flux B at various time; (b) The time

evolution of B at different depth.

to the downward negative energy transport. The production and dissipation at t = 20

in figure VI.20(b) are approximately an order of magnitude smaller than those at earlier

time in figure VI.20(a). Over the surface layer and the jet upper-flank, the production

is balanced by the dissipation and the buoyancy flux. The peaks of the production

and dissipation at t = 20 are further away from the surface when compared to those

at t = 5 in figure VI.20(a). At the surface, the production locally peaks but the peak

value is less than half of the peak value in the jet upper-flank. Thus, even when the

surface layer ceases to deepen, the larger energy input to the tke budget is from the

background shear in the jet, not from the wind stress.

Although the buoyancy flux B in figures VI.20(a,b) is smaller than the production

and the dissipation, its magnitude is substantially larger than the surface cooling Qs.

Figure VI.21(a) shows vertical profiles of B normalized by Qs at different time in

the simulations in the surface layers. Near the surface z = 0, B carries positive sign

denoting generation of tke from potential energy. At the bottom portion of the layer, B

changes to negative sign consistent with loss of tke in stirring the background density.

The magnitude of the negative B is significantly larger than that of the positive B

at any time. Figure VI.21(b) illustrates the time evolution of B normalized by Qs

at different depths: z = −0.05 just outside the thin viscous layer, z = −0.33 at the

base of the surface layer and z = −1.1 inside the jet upper-flank. At z = −0.05,

B has positive value over the period 0 < t < 15 with magnitude significantly larger

than later values. The peak value of B occurs at t = 3 and is approximately 5 times
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Figure VI.22: Integrated TKE budget over the upper-flank of the jet −1.67 6 z 6

−0.33.

larger than Qs. At z = −0.33, B is negative over the entire simulation with the peak

magnitude substantially larger than the value recorded at depth z = −0.05. Also,

B at z = −0.33 is greater than Qs at all time after t = 3. At z = −1.1, B has

alternating signs with amplitude of order Qs suggesting the presence of weak internal

waves. The temporal and spatial evolution of B in figures VI.21(a,b) supports the

notion that the energy input by surface cooling is minimal compared to the energy

lost to stirring the background density, B, which in turn is significant smaller than the

turbulent production and dissipation.

To track the energy pathway to the turbulence observed in the jet upper-flank, we

integrate Eq.(VI.4) across the region −1.67 < z < −0.33 to give the time evolution of

the tke budget, which is shown in figure VI.22. The evolution begins at t = 7 prior to

which turbulence is contained in the surface layer. At t = 7, the dK/dt and transport

terms rise followed later by a rise in the production. Therefore, at the beginning

of the evolution, tke is transported from the surface layer into the jet upper-flank,

only subsequently is energy extracted from the mean background jet shear. The peak



173

0 5 10 15 20 25 30 35 40 45
-1.5

-1.0

-0.5

0.0

0.5

1.0
T

p

T
t

T
v

x 10
-3(a)

z

0 5 10 15 20 25 30 35 40 45

-0.10

-0.05

0.00

0.05

0.10
T

p

T
t

T
v

x 10
-3(b)

z

Figure VI.23: Amount of turbulent kinetic energy carried by the pressure transport

Tp, turbulent transport Tt and viscous transport Tv across depth: (a)

z = −0.33 and (b) z = −1.67.

downward transport that occurs at t = 12 is as large as 40% of the peak production

as t = 19. The downward transport continues until t = 15 after which for a period of

time the transport direction is reversed, i.e. tke is pumped from the jet back to the

surface layer. During this period, the surface layer ceases to deepen and the production

in the surface layer decreases to values smaller than the production in the jet as was

shown in figure VI.20(b). Overall, the evolution shows that two sources of tke are

the production and transport while two sinks are the dissipation and buoyancy flux.

Integrating the evolution over time gives the following values: net production of 0.02,

transport of 0.0016, dissipation of −0.012, and buoyancy flux of −0.0049 and a surplus

tke of 0.0024 inside the jet upper-flank at the end of the simulation. The production

is more than 12 times larger than the transport indicating the major source of tke is

local.

Although the net transport integrated over time is substantially smaller that the

integrated production, the two term are comparable during the deepening of the sur-

face layer 5 < t < 20 as shown in figure VI.22. Therefore, it is important to identify

which component of transports, i.e. Tp or Tt or Tv, is responsible for the energy delivery

during deepening. The amount of energy transported by each component across the

top boundary z = −0.33 and the bottom boundary z = −1.67 of the jet upper-flank

is plotted in figures VI.23(a,b), respectively. In figure (a), the viscous transport Tv

is substantially smaller than the other components throughout the simulation. The
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pressure transport Tp begins to pump energy downward first via internal waves but

quickly reverses direction at the same time that downward turbulent transport Tt com-

mences. The peak downward Tt is more than three times larger than the peak upward

Tp. Over the simulation, Tt is the largest component of transport, and therefore, tke

transported downward from the surface layer by turbulent diffusion is larger than that

by internal waves. In figure VI.23(b), Tt is significantly smaller than Tp because there

is no turbulence activity at the center of the jet. Weak internal waves propagate across

this depth toward the region below the jet. The peak value of Tp is approximately 10

times smaller than the peak of Tt in figure VI.23(a). The net result of the transport

over the region −1.67 < z < −0.33 is an accumulation of tke as discussed above.

Even though the accumulation through the transport term is small compared to the

production, it is the catalyst for turbulence extraction from the background shear. It

should be emphasized that while wave energy enters the jet before turbulent trans-

port by vortex structures, turbulence is not generated at that time, i.e. there is no

evidence of internal wave breaking. As soon as a small amount of turbulence arrives

through turbulent transport, it triggers energy extraction from the background shear

even though the nominal gradient Richardson number is larger than 0.25.

VI.H Implications

In the current study, we have examined internal waves and turbulence in a linearly-

stable stratified jet subject to the forcing of wind stress and surface cooling. The

simulation begins with a symmetric jet situated below a surface shear layer driven by

a constant wind stress. The surface layer is well mixed while the jet is stably stratified

such that the gradient Richardson number inside the jet is larger than the critical value

for linear shear instability.

Turbulence initiated by finite-amplitude broadband fluctuations is generated in

the surface layer and deepens into the jet upper-flank. Internal waves generated by the

turbulent surface layer are observed to propagate downward across the jet. The wave

momentum flux is significantly smaller than the Reynolds turbulent stress extracted
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from the background velocity. Similarly, the wave energy flux is insignificant compared

to other terms in the balance of turbulent kinetic energy.

Intermittent patches of intense dissipation are observed inside the jet upper-flank

where the background gradient Richardson number is larger than 0.25. The dissipation

in the patches is at least three orders of magnitude stronger than the ambient value.

The patches are the result of ejections of fluid parcels. The ejections are observed to be

directed both upward and downward and driven by the formation of horseshoe vortices

and vortex tubes.

Mixing leads to strong variation in both space and time of the mean shear, S, and

the mean buoyancy frequency, N . Remarkably, the associated gradient Richardson

number, Rig = N2/S2, evolves from both large and small values towards the critical

value of Rig = 0.25 so that the region spanning the upper flank of the jet and the

lower part of the surface layer is characterized by Rig ∼ 0.25. The turbulent buoyancy

flux, B, takes large negative values with magnitude as as large as 30 times the surface

buoyancy flux and to significant turbulent dissipation rate, ε, in the jet that is 3 orders

of magnitude larger than the surface buoyancy flux. The subsurface mixing events lead

to values of ε at locations deep in the upper flank of the jet that are comparable to the

peak surface value at that time.

The momentum budget shows significant drag on the jet. The drag due to the

wind stress is approximately 3 times smaller than the drag caused by turbulent stress

inside the surface layer. The total energy input by the surface stress is 16% of the net

amount lost in mean kinetic energy over the simulation. The constant energy input by

surface cooling is insignificant compared to the turbulent production and dissipation

in the surface layer at any time during the simulation.

The analysis of the tke budget over the jet upper-flank indicates that the major

sources of turbulence in the region are the energy extraction from local mean shear

and the downward turbulent transport from the surface layer. Turbulent transport

occurs prior to turbulent production but is significantly smaller. Therefore, the role

of surface forcing is to provide the finite-amplitude fluctuations that then draw energy

from the background shear resulting in turbulence generation and intermittent patches
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of dissipation in the stratified jet.

The contents of this chapter are under review for publication in the Journal of

Fluid Mechanics: Pham, H. T., and Sarkar, S., “Mixing events in a stratified jet

subject to surface wind and buoyancy forcing”, J. Fluid Mech., submitted (2010). The

dissertation author is the primary researcher and the research supervisor is the co-

author of the paper.



Chapter VII

Conclusions

A series of Direct Numerical Simulations have been used to investigate turbu-

lence and internal waves in the simplified EUC models. Some important results are

summarized here.

The simulations of a weakly stratified shear layer in the presence of a strongly strat-

ified region beneath it are considered in Chapter III. Both, coherent Kevin-Helmholtz

(KH) rollers and small-scale turbulence, are observed during the evolution of the shear

layer. The deep stratification measured by the Richardson number, Jd, is varied to

study its effect on the dynamics. In all cases, a pycnocline is found to develop at the

edges of the shear layer. The region of maximum shear shifts downward with increas-

ing time. Internal waves are excited, initially by KH rollers, and later by small-scale

turbulence. The wave field generated by the KH rollers is narrow-band and of stronger

amplitude than that of the broad-band wave field generated by turbulence. Linear

theory based on Doppler-shifted frequency of the KH mode is able to predict the angle

of the internal wave phase lines during the direct generation of internal waves by KH

rollers. Waves generated by turbulence are relatively weaker with a broader range of

excitation angles which, in the deep region, tend towards a narrower band. The linear

theory that works for the internal waves excited by KH rollers does not work for the

turbulence generated waves. The momentum transported by the internal waves into

the interior can be large, about 10% of the initial momentum in the shear layer, when

Jd ≃ 0.25. Integration of the turbulent kinetic energy budget in time and over the

177
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shear layer thickness shows that the energy flux can be up to 17% of the turbulent pro-

duction, 33% of the turbulent dissipation rate and 75% of the buoyancy flux. These

numbers quantify the dynamical importance of internal waves. In contrast to linear

theory where the effect of deep stratification on the shear layer instabilities has been

found to be weak, the present nonlinear simulations show that the evolution of the

shear layer is significantly altered because of the significant momentum and energy

carried away by the internal waves.

Scalar transport and mixing by active turbulence in high-Reynolds-number time-

dependent inhomogeneous stratified shear flows are investigated in Chapter IV. Two

density profiles are considered: two layers of homogeneous fluid with different density,

namely two-layer case, and a continuously stratified background ambient, namely the

Jd case. The evolution of the mixing layer includes shear instability, formation of

Kelvin-Helmholtz rollers, and transition to turbulence followed by its decay. In the Jd

case, internal gravity waves carrying momentum and energy are observed to propagate

away from the shear layer. The turbulent kinetic energy budgets indicate a larger peak

value of the buoyancy flux at the shear center in the two-layer case and therefore a

larger production in the budget of the density variance. The peak values of outer length

scales such as the momentum thickness, the energy-containing scale and the Ellison

scale are larger in the two-layer case while those of Ozmidov and Kolmogorov scale

are similar. The eddy diffusivity and mixing efficiency take similar values between the

two cases during the turbulence decay. In both cases, the mixing efficiency computed

based on the buoyancy flux is approximately 0.35 while the mixing efficiency estimated

from the scalar dissipation is approximately 0.4.

The interaction between a stably stratified jet and internal gravity waves from an

adjacent shear layer with mild stratification is considered in Chapter V. Results from

two simulations are presented: one with the jet located far from the shear layer (far

jet) and the other with the shear layer right on top of the jet (near jet). The near jet

is more representative of EUC conditions. In the far jet, internal waves excited by the

Kelvin-Helmholtz rollers do not penetrate the jet. They are reflected and trapped in

the region between the shear layer and the jet and lead to little dissipation. In the near
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jet, internal waves with wavelength larger than that of the KH rollers are found in and

below the jet. Pockets of hot fluid that originate from the shear layer penetrate into

the jet region, initiate turbulence and disrupt the internal wave field. Coherent patches

of enhanced dissipation moving with the mean velocity are observed. The dissipation

in the stably stratified near jet is large, up to three orders of magnitude stronger than

that in the propagating wave field or the jet of the far case.

Finally, the fine-scale response of a subsurface stable stratified jet subject to the

forcing of surface wind stress and surface cooling is investigated in Chapter VI. A

linearly-stable symmetric jet situated below a well-mixed surface layer driven by a

constant wind stress is considered. The gradient Richardson number inside the jet is

larger than the critical value for linear shear instability. Broadband finite-amplitude

fluctuations are introduced into the surface layer to initiate the simulation. Turbulence

is generated in the surface layer and deepens into the jet upper-flank. Internal waves

generated by the turbulent surface layer are observed to propagate downward across

the jet. The momentum flux carried by the waves is significantly smaller than the

Reynolds shear stress extracted from the background velocity. The wave energy flux

is also smaller than the turbulence production. Fluid ejections by vortex tubes cause

intermittent patches of intense dissipation inside the jet upper-flank where the back-

ground gradient Richardson number is larger than 0.25. The momentum budget shows

significant drag on the jet. The drag due to the wind stress is smaller than the drag

caused by turbulent stress inside the surface layer. The energy input by the surface

forcing is also smaller than the energy extracted from the initially imposed background

shear in the surface layer.

The model problems leads us to the following conclusions regarding internal waves

and ‘deep-cycle turbulence’ in the EUC:

1. Large-amplitude internal waves can be excited by shear instability and its sub-

sequent formation of Kelvin-Helmholtz rollers. Internal waves generated by the

broadband turbulence in the mixed layer are significantly weaker.

2. The interaction between internal waves and the EUC jets depend strongly on the
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length scale of the waves and the background velocity and stratification. In our

model problems, internal waves are observed inside the jets but the breaking of

internal waves due to the wave/mean interaction is not observed.

3. Intermittent patches of strong dissipation in a nominally stable stratified jet are

observed in the simulations similar to observations of ‘deep-cycle turbulence’

inside the EUC jet. The patches result from vortex tubes originating from the

mixed layer penetrating into the jet.

4. Ejections of fluids driven by vortex tubes inside the jet upward toward the mixed

layer and isopycnal overturning are observed to also cause mixing and turbu-

lence in regions of EUC jet where the nominal gradient Richardson number is

marginally stable. The events are possibly related to local shear instability and

subject to further investigation.

The assertions above are in line with the recent studies by Moum et al. (2010)

and Smyth et al. (2010). Their analysis on the new observation data of the Pacific

EUC suggests that the narrow-band oscillations are not internal waves. They suggest

the near-N oscillations are the indication of random shear instability. In our mod-

els, the oscillations in the isopycnals due to the ejection of fluids have significantly

shorter wavelength and higher frequency than that of propagating internal waves. Al-

though the vortex tubes discussed in chapter VI are yet affirmed to be related to shear

instability, those discussed in chapter V are correlated to a secondary instability of

Kelvin-Helmholtz rollers. While formation of vortex tubes are yet to be confirmed

in the field observations, full-scale simulations using Large Eddy Simulation with re-

alistic input data will be an useful step in confirming the presence of vortex tubes.

Such simulations are also important in making precise role of gravity waves in vertical

mixing since our simplified model problems have weaker surface forcing than potential

scenarios in the EUC.
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