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Abstract 

 
A cyber-infrastructure for the measurement and estimation of large-scale hydrologic processes 

 
by 
 

Branko Kerkez 
 

Doctor of Philosophy in Civil and Environmental Engineering 
 

University of California, Berkeley 
 

Professor Steven D. Glaser, Chair 
 
Water shortages, particularly evident in the state of California, emphasize the need for a better 
hydrologic understanding, and improved water management techniques. The majority of the 
state’s water originates in the Sierra Nevada as snow, melting throughout the year to meet the 
needs of various stakeholders. Current measurement techniques are unable to resolve variability 
of the snowpack at the basin scale, and snowmelt processes are not well captured by existing 
hydrologic models. A system-level solution is introduced to facilitate scientific understanding 
and water management decisions in basins of the Sierra Nevada. The core of this thesis focuses 
on expanding current sensing methods at the hydrologic catchment (1-2km2) scale to develop an 
improved understanding of the mountain water balance. It is shown that Wireless Sensor 
Networks (WSNs) offer an ultra low-power, cost-effective solution to instrument catchment-
scale regions. An explicit WSN deployment strategy is derived, leveraging in-situ network 
statistics of the Packet Delivery Ratio, and Received Signal Strength Indicator to optimize 
network performance. A hydrologic variability analysis is carried out on the dataset collected by 
the network, showing temporal stability in the variability of snowdepth at the catchment scale, 
and validating the use of a stratified sampling approach based on the even instrumentation of 
physiographic variables. To derive estimates of Snow Water Equivalent (SWE) at the larger 
basin scale, an estimation framework based on Gaussian Processes, and an optimal sampling 
strategy, which maximizes Mutual Information, is described. The sensor placement method 
outperforms a number of other sampling designs, reducing estimation error by up to 100mm. A 
computationally tractable, Hybrid System model of snow dynamics is introduced and shown to 
accurately reflect the various stages of snowmelt when compared to observations in the Sierra 
Nevada. The need for improved sensing and estimation procedures is highlighted by an analysis 
of the effects of improved SWE estimates on basin-scale streamflow forecasting methods. The 
use of historically reconstructed SWE data shows that streamflow forecasting error could be 
reduced by nearly 10% through improved SWE estimates. 
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Chapter 1: Introduction 
 
Traditional water systems were built to serve the “analog economy,” where various 

ownership and management boundaries are loosely interconnected to meet the needs of an 
oblivious water consuming public. Inefficiencies are inherent in such a system, since little or no 
coordination exists between stakeholders. Though significant strides have been made in Civil 
Engineering to study water networks, as well as the hydrologic systems that feed them, the tools 
necessary to tie this domain knowledge into a real-time, information-driven system are still 
lacking. This is especially evident in the state of California, where, by most metrics, the current 
water infrastructure is struggling to meet the requirements imposed by a growing population and 
a thriving agricultural sector [WEF, 2011; ACWA, 2011; Sierra Club, 2011]. Crippling droughts 
and devastating floods are one motivating example that informed decision-making will require 
new management techniques to ensure equitable and reliable distribution of water supplies. As 
the following sections will show, an improvement to current water supply forecasting, massive in 
scope and spanning various areas of science and engineering, has the potential significantly 
improve water resource management.   

As with all substantial infrastructure problems, a solution to large-scale water resource 
management cannot be addressed through an individual treatment of sub-domain problems, but 
must rather be tackled through a holistic and systemic approach. This thesis addresses one aspect 
of this system - the theoretical and practical underpinnings of a system-level architecture for 
deriving real-time water balance estimates in large-scale water basins. As with most complex 
systems, detailed spatial and temporal data, scientific domain knowledge, and robust estimation 
procedures are required to meet the needs of such a framework. This framework will be applied 
directly to water supply forecasting in California’s Sierra Nevada, showcasing the direct benefits 
of improved sensing, estimation, and modeling to short-term and long-term water supply 
forecasting. 

1.1 Water supply forecasting in California 
The current population of California is estimated at 36 million, and is expected to grow to 

60 million by 2050 [California Water Plan, 2009]. The state boasts one of the most productive 
agricultural sectors in the world, and contains a plethora of forest terrain and environmental 
habitats. Aside from weathering historic drought seasons, flood risks are growing due to aging 
levees, extreme weather scenarios, and climate change. California’s water infrastructure 
composes a broad, multi-use system that balances the water supply to meet goals of flood-control, 
irrigation, recreation, hydropower generation, and other uses. Water demands in the state are met 
by a combination of federal, state, and local management projects. The majority of the supply is 
dedicated to meeting agricultural irrigation needs, with a smaller fraction going to urban use. 
Historically, 10-30% of the state’s energy is also generated via hydropower. The major 
hydrologic parameter associated with hydropower production is snowfall [Aspen, 2005].  
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1.2 Current management practices 
It is estimated that seasonal snow cover is the primary source of water for over 60 million 

people in the western United States, and that melting snow is responsible for 80% or more of soil 
moisture and stream flow in semi-arid mountain basins [ACWA, 2011; Daly et al., 2001; Marks 
et al., 2001]. Globally, seasonal snowpack and glaciers provide water to more than one sixth of 
the world’s population and may be at risk in a changing climate [Barnett et al., 2005]. A closer 
look at the problem traces the origins of California’s water supply to the Sierra Nevada, a 
mountain range spanning a 600 km north-south transect of the state. Precipitation is deposited in 
the wintertime as snow, which acts as storage, and melts throughout the year to provide a steady 
supply of water through a network of streams and rivers. Significant state and federal resources 
are devoted annually to the monitoring of snow related phenomena in the Western US.  

Currently, the main source of snow data is provided by a network of manual and 
automated measurements managed by the US Department of Agriculture, the National Weather 
Service, and the National Resource Conservation Services (Figure 1.1) [California Cooperative 
Snow Surveys, 2012; Rice and Bales, 2010; SNOTEL, 2012]. The manual measurements are 
known as snowcourses, pre-selected locations where observations of snow-depth and snow water 
equivalent (SWE) are made by human surveyors on a monthly basis during the winter period. 
Snowcourses were selected to be representative of particular water-producing regions. These 
locations were chosen beginning in the 1930s through empirical means, with the main criteria of 
general accessibility and limited public disturbance [SNOTEL, 2012]. Automated measurements 
are also made by a number of permanently located snow pillows, large liquid filled pillows which 
convert the pressure exerted by accumulated snow to a representative SWE estimate.   
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Figure 1.1  Location of snow course, snow pillow, and SNOTEL sites across the Western US. 
Data source: Bales et al. (2006). 
 

Presently, operational water management decisions, and specifically those relating to 
control of reservoirs and dams, rely on two predictive models. The California Department of 
Water Resources (DWR) maintains an annual statistical forecast, leveraging snow course 
historical data, and correlations between previously observed snowdepth readings and stream 
runoffs [California Cooperative Snow Surveys, 2012]. This predictive method relies heavily on  
multivariate regression techniques to predict the total volume of the April-July streamflow based 
on the April 1st snowdepth surveys [Garen, 1992]. Recent warming trends are challenging the 
stationarity assumption of this statistical approach, suggesting that historical correlations may no 
longer be the best proxy for predicting future behavior [Bales et al., 2006].  

The second source of stream flow predictions is provided by the National Weather 
Service’s River Forecast Centers, which employ a physically-based process model to provide 
ensemble forecasts of river levels and reservoir inflows [Hartman et al., 2002]. The DWR and 
NWS predictions are used by various agencies and decision makers to allocate water resources 
and to dictate long-, and short-term reservoir releases. 

1.3 Limitations of current practices 
Two primary challenges arise in present water management in the American West: 

limited understanding of mountain hydrologic processes, and sparse data collection. While the 
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study of hydrologic phenomena is a relatively mature field, the hydrologic processes pertaining 
to water and energy fluxes in mountainous regions, where basins are largely dominated by 
snowmelt, are not well captured by current hydrologic models [Bales et al., 2006]. Statistical 
forecast models tend to perform well when predictions are made within an acceptable window 
around the historical mean. A continuation of the current warming trend could lead to significant 
deviation from this historical mean, and has the potential induce a significant amount of error 
into statistical forecasting methods. Aside from impacting model forecasts, further warming will 
shift the rain-snow transition zone to higher elevations, thus accelerating the snow melting 
process. Rapid melting of the snowpack could reduce the amount of water available during 
spring and summer months, and has the potential to reduce hydropower production between 8% 
to 50% [Aspen, 2005]. An improved hydrologic understanding hinges directly upon a broader 
scientific initiative to measure and understand the spatiotemporal coupling of snowmelt driven 
processes.   

While snow distribution is known to vary significantly spatially, even along short 
transects [Meromy et al, 2011; Meadows et al., 2010], current monitoring strategies still only 
provide very sparse spatiotemporal data. It has been shown that the combination of snow-course 
and snow-pillow infrastructure is unable to resolve SWE variability at a basin scale [Bales et al., 
2006; Molotch et al., 2005a], which adversely affects even the most advanced hydrologic models. 
These measurement locations were selected in part due to their ease of accessibility (flat terrain, 
for example) and thus suffer from a lack of the ability to capture the range of possible terrain 
seen in most basins. In some cases, point readings were found to be 200% greater than the their 
respective basin mean [Molotch et al., 2005b]. Dense, large-scale distributed measurements are 
thus required to capture the spatiotemporal variability of the snowpack.  

Developing an improved scientific understanding of mountain hydrologic processes, and 
thus improving real-time SWE estimates and supply forecasts is a two-part effort:  

1. Expanding and improving ground-based snow measurement methods to more 
accurately capture hydrologic variability. 

2. Upscaling and distributing these ground measurements to improve basin-scale 
estimates of water quantities. 

These two problems are equally important, inherently coupled, and must be solved in tandem.  

Scaling measurement campaigns to the size of hydrologic basins imposes unprecedented 
demands on sensing hardware, which must be met if the deployment scheme is to be effective 
and sustainable. This, in part, explains the sparse set of currently available measurements, since 
sensor network deployments at this scale are subject to significant constraints in energy, 
accessibility, sensor coverage area, and cost. Given the size and remote location of mountain 
basins, it is often challenging, and inconvenient, to physically collect cached data, readily detect 
faulty hardware, and alter equipment parameters. Additionally, when the utility of sensor data 
extends beyond scientific purposes, as it does in the case of water management, sensor data must 
be available in real-time. Many off-the-shelf data-logging components do not lend themselves to 
real-time data acquisition at this scale, as wiring runs are limited by cost, signal noise and the 
need to maintain acceptable levels of current. Transmission along wires is further complicated by 
heavy snow loads, and the proclivity of rodents to chew on cables. This renders a wired 
monitoring solution practically unfeasible. The use Wireless Sensor Networks (WSNs) offers a 
viable solution, by enabling distributed sensing of large regions in real-time and at extremely low 
power consumption. 
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1.4 Thesis contributions 
This thesis lays out a system-level approach to facilitate the sensing, estimation, and 

modeling of large-scale environmental phenomena, focusing specifically on snowmelt-driven 
hydrologic processes in the Sierra Nevada of California. My approach can be summed up 
through a set of core contributions, and will emphasize the need to treat small-scale (catchment) 
processes first, before expanding to the study of larger-scale (basin) phenomena: 

• Validation of wireless sensor network technology for real-time measurements of 
hydrologic processes 

o The successful design, deployment, and operation of an embedded sensor network 
(57 wireless nodes and over 300 sensors) to provide real-time measurements of 
catchment-scale snow depth and soil moisture in the Sierra Nevada of California.   

o The development a three-phase procedure to optimize the WSN deployment by 
focusing on the need to quantitatively evaluate in-situ network performance. 

o Introduction of the use of the packet delivery ratio and received signal strength 
indicator, as valuable a deployment metric for environmental WSNs. Using these 
metrics, we show that for our site conditions, a conservative 50-m node-to-node 
spacing ensures low-power, reliable, and robust network communications.  

• Improved scientific understanding of catchment-scale hydrologic processes 
o Demonstration that a stratified sensor placement approach can effectively capture 

the catchment-wide mean and variability of snow depth and soil moisture, when 
compared to three comprehensive gridded synoptic and LIDAR surveys.  

o The spatiotemporal analysis of snow depth variability, revealing that canopy 
cover is the major explanatory variable of snow depth, and that under-canopy 
measurements persistently show higher variability compared those in open terrain.  

o An analysis of soil moisture patterns, showing lower variability at deeper soil 
depth, and a correlation between mean soil moisture and variability for shallow 
soils.   

• Development of a sampling design and sensor placement framework for basin-scale 
hydrologic estimation 

o The introduction of the first comprehensive, quantitatively driven sensor 
placement (sampling design) strategy for basin-scale SWE estimation. The 
procedure uses Gaussian Process models to derive estimates of basin-wide SWE, 
and selects the optimal sensing locations by coupling rank-based clustering with 
Mutual Information-based optimization. 

o Use of an 11-year data set, reconstructed by carrying an energy balance on 
satellite data in the American River basin, to show that that our sampling design 
provided the best placement strategy, improving RMSE between 0 and 100 mm 
compared to a number of other placement approaches. 

o A comparison of rank-based clustering to geographically based clustering (sub-
basin delineation) to validate the existence of stationary covariance structures 
within the overall SWE dataset. 

• Development of a hybrid systems snowmelt model 
o The presentation of a direct application of Hybrid Systems for the modeling of the 

seasonal snowmelt cycle, showing that through the Hybrid Systems framework it 
is possible to significantly reduce the complexity offered by existing models. 
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o Demonstration that currently existing heuristics can be embedded into a coherent 
mathematical framework to enable powerful analytical techniques while 
preserving physical intuition about the system.  

o Modeling snowmelt as a three state hybrid automaton, representing the sub-
freezing, sub-saturated, and fully saturated physical states, and showing that the 
model accurately reproduces melt patterns, by simulating over actual data sets 
collected in the Sierra Nevada.  

• Study of the effects of improved SWE estimates on basin-scale streamflow 
forecasting  

o The sensitivity analysis of streamflow forecasting methods in the Sierra Nevada, 
showing that a given error in SWE estimates can manifest itself in a two-fold 
error in streamflow forecasting. 

o Demonstration on the effects of improved SWE data on current regression 
methods, showing that better SWE data can improve streamflow forecasting by 
nearly 10% compared to presently used methods.  

o The investigation of the effects of improved SWE data on a physical process 
model of the basin water balance, showing that the use of better SWE estimates 
can improve the precision of model outputs, while reducing error variance by 
50%. 

1.5 Organization  
The core of this thesis focuses on improving and expanding current sensing methods, 

while developing the tools necessary to utilize the resulting data for large-scale environmental 
modeling. The viability of wireless sensor networks as a distributed real-time, catchment-scale 
measurement platform will be investigated in Chapter Two. Larger-scale hydrologic systems will 
be addressed in Chapter Three, where a Gaussian Process estimation algorithm, along with an 
Information Theoretic sensor placement framework will be employed to derive better basin-scale 
SWE estimates. To facilitate streamflow forecasting, a physically-based snowmelt model will 
then be introduced in Chapter Four. Finally, to validate the need for an expanded sensing 
infrastructure, the benefits of improved SWE estimates on present forecasting methods will be 
investigated in Chapter Five. Concluding remarks will be offered on the performance of the 
discussed methods, and future work will be examined in the context of tying these methods into 
a formal systems framework that incorporates downstream operations and man-made 
infrastructure. 
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Chapter 2:  Wireless Sensor Networks for 
Catchment-scale Snow and Soil Moisture 
Measurements 
 

The Earth’s Critical Zone encompasses the complex interaction of near-surface biological 
and chemical processes, involving ecosystems, soil, water, and the atmosphere [Levia et al., 
2011]. Dynamics of hydrologic systems in large-scale mountain basins (1000 km2) are thus 
inherently guided much smaller-scale Critical Zone processes at the catchment level (1-2km2). 
The primary objective of this chapter is to describe new instrumentation techniques that can be 
employed to carry out long-term, real-time studies of these environments, and to investigate the 
spatial variability of snowdepth and soil moisture at the catchment scale. 

2.1 Introduction  
A comprehensive understanding of the mountain water cycle demands a deeper insight 

into the spatiotemporal coupling between various hydrologic processes at the headwater-
catchment, and larger-basin scales.  This is particularly true in the mixed-conifer zone of 
California’s Sierra Nevada, a productive ecosystem situated in the mid-elevation rain-snow 
transition zone, where rain falls at elevations below 1500 m, and snow accumulates above 2200 
m [Bales et al., 2006].  It has been noted that this transition zone is sensitive to annual 
temperature fluctuations, both in terms of the quantities of accumulated snow, as well as melt 
timing [Christensen et al., 2008].  A complete understanding of the links between snow cover 
and soil moisture on the forest water cycle is still lacking.  

One of the major challenges in hydrologic science relates to characterizing and 
understanding spatial variability [Bogena et al., 2010]. Spatial measurement of hydrologic 
processes at the catchment, and basin scales is subject to significant constraints in energy, 
accessibility, sensor coverage area, and cost.  Many off-the-shelf data-logging components do 
not lend themselves to real time data acquisition when sensors are spatially distributed at the km 
scale, as wiring runs are limited by prohibitive cost, signal noise and the need to maintain 
acceptable levels of current.  Transmission along wires is further complicated by heavy snow 
loads, and damage by wildlife.   Recent advances in sensing technology, particularly in the area 
of Wireless Sensor Networks (WSNs), now enable environmental monitoring in real time, and at 
unprecedented spatial and temporal scales. While access to real time data reduces site visits and 
inconvenience experienced during scientific research campaigns, a major benefit of distributed 
real time data relates to decision-making support and operational hydrology. Rice and Bales 
[2010] analyzed the performance of a prototype WSN and concluded that the technology can be 
effectively used to capture spatially representative measurement of snow depth with relatively 
few sensors. 

For most spatially distributed sensor deployments it is often challenging, and 
inconvenient, to physically collect cached data, readily detect faulty hardware, and alter 
equipment parameters.  While there are many commercial wireless systems that can transmit data 
between two points, such hardware generally use relatively high-powered radios and requires 
substantial energy for transmission.  Such point-to-point transmission systems operate 
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independently, and can interfere with each other if multiple links are deployed within a region.  
WSN technology offers an alternative for cost-effective instrumentation of extended regions with 
limited accessibility, while permitting real time data access to distributed sensors through a 
centralized communication architecture.  Given the nascent nature of low-power wireless, in 
particular for remote field applications, off-the-shelf performance cannot be guaranteed, and 
much work remains to be conducted to quantify the real-world performance of WSNs for 
hydrologic monitoring.   

The research reported in this chapter aims to develop techniques for efficient, scalable, 
and robust WSN deployments for monitoring hydrologic phenomena, while using methods that 
can readily be extended to many environmental monitoring applications.  We address four 
specific questions: First, what soil moisture and snow depth variability patterns are revealed by 
strategically distributed sensors in a densely instrumented mountain catchment, and how do these 
sensor readings compare to gridded surveys and LIDAR data?  Second, what is the performance 
of a large-scale, low-cost WSN built from off-the-shelf hardware, when exposed to the harsh 
conditions in the snow-covered Sierra Nevada?  Third, which metrics can be used to quantify 
WSN performance and to evaluate the design of the wireless monitoring system?  Fourth, what is 
an efficient approach to designing and deploying WSNs for long-term environmental monitoring 
campaigns, while maintaining robust and reliable network performance? 

2.2 WSN design principles  
The core component of a WSN is known as a mote - a tiny, ultra-low power radio 

operated by a micro-controller, and featuring analog and digital interfaces to which sensors can 
be connected. A mote exchanges information wirelessly with neighboring motes in a distributed 
network, which can relay this information to their neighbors, until the data reaches a central hub.  
Software optimization of power control (also known as duty cycling) allows some devices to 
operate for several years on a pair of AA batteries [Karl and Willig, 2005; Dust, 2006]; 
embedded software can be optimized to permit motes to remain in an extremely low-power state 
the majority of the time (powering the most necessary components, such as the clock and basic 
micro-controller features), waking up only periodically to transmit or receive data [Dust, 2011; 
IEEE, 2009].  The recent mass adoption of these devices, particularly for industrial applications, 
has made them an extremely cost-effective alternative to placing wires [Emerson, 2010; 
Honeywell, 2010; ISA, 2009; Song et al., 2008]. 

Depending on the implementation and protocols of the network stack (the general 
hardware and software architecture), motes can aggregate into a number of network topologies.  
The two most common are the star-, and the mesh-topology (Figure 2.1).  In a star configuration, 
each mote exchanges information only with a central base station.  In the majority of such 
implementations, the base station is programmed to keep its radio on continuously to listen for 
incoming transmissions, which results in high energy usage.  The span of a star-network is 
limited by the distance of a single link between a mote and its network manager.  The network 
manager is thus often placed in a central location.  While it is possible to increase transmission 
distance using more powerful radios, star networks are still limited by the lack of radio path 
redundancy and the need to communicate with one central location.  If the region being 
instrumented cannot be covered by a single star-network, the ZigBee Protocol specifies a hybrid 
topology, which enables router nodes to be added to the network to extend coverage [ZigBee 
Alliance, 2008; Bogena et al., 2010].  These nodes serve as range extenders, typically using more 
radio resources to listen for incoming transmissions from nearby nodes, and then forwarding this 
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data to the base station or other nearby router nodes.  Given their specialized function, and higher 
power consumption, most networks use limited router nodes, which limits path redundancy to 
the base station.   

 

 
Figure 2.1  WSN network topologies. (a) WSN star-topology: all motes have a direct link to the 
network manager; the span of this network is limited by the distance between a mote and the 
manager.  (b) WSN mesh-topology: motes exchange information with neighbors to create a 
redundant multi-hop network. 

 
In a mesh-based topology, motes communicate with multiple neighbors to create an 

internally redundant multi-hop network.  Multiple paths between network nodes allow data to be 
transmitted even if certain network links fail [Karl and Willig, 2005].  Although requiring a 
relatively larger software overhead, mesh networks can adapt their topology to reflect varying 
attenuation of radio signals caused by changes in the environment, or changing needs of the 
operator.  The mesh-topology thus allows the network to span much larger areas, compared to a 
star layout, as out-of-range motes can exchange data by transmitting, or hopping, it via any 
neighboring motes in the mesh.   

Data transmitted within WSNs is quantized into formatted data blocks called packets 
[Tanenbaum, 2003].  A successful transmission is achieved if the transmitting mote receives an 
acknowledgment from the receiving mote, notifying it that the transmitted data packet has been 
received correctly.  This acknowledgment redundancy, while not built into all available WSN 
platforms, ensures that packets reach their intended destination, even if retransmission is required.   

Since remote wireless networks operate on battery power, overall power consumption 
becomes a critical constraint.  As radio transmissions consume more than 95% of a mote’s of 
power use [Dust, 2006] (not including sensors), it is important to design WSNs that will 
minimize retransmissions.  By optimizing use of radio resources, and ensuring low power use, 
motes can be added to an existing data logging infrastructure to provide real time wireless data 
access, without significantly increasing overall power consumption.  Extreme weather conditions, 
especially cold weather, can take significant tolls on hardware and batteries [Hasler et al., 2008; 
Mainwaring et al., 2002].  Successful design and operation of such a field-deployed WSN hinges 
upon a rational set of metrics that can be used to quantify performance.  
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Communication in WSNs is challenged by multipath radio propagation and narrow-band 
interference [Karl and Willig, 2005; Watteyne et al., 2010] where topography can result in radio 
signals bouncing off ambient surfaces, causing phase-shifted copies of the same signal to arrive 
at the receiver antenna.  This can lead to destructive interference, which cancels out the original 
signal, effectively eliminating the ability of certain mote pairs to communicate.  The adverse 
effects of multipath propagation on radio communications are a function of the deployment 
environment, and it has been shown that even slight changes in node-to-node distance (on the 
order of centimeters) can have significant impact on this behavior [Watteyne et al., 2009].   

The IEEE802.15.4 standard divides the 2.4 GHz band into 16 transmission channels (or, 
narrow-band sub-frequencies) that can be used to mitigate communication challenges posed by 
external interference and multipath propagation [IEEE, 2009].  Improper channel selection can 
cause data to be lost during transmission, leading to the need to retransmit data, and manifesting 
itself in much higher energy requirements on the network [Watteyne et al., 2009].  A common 
approach to address this issue is to conduct an expert survey, which entails a physical visit to the 
field to select the frequency channel on which the loss of transmitted packets will be minimized.  
This approach has major drawbacks, as research has shown that the optimal channel may vary 
over time [Kerkez et al., 2009; Watteyne et al., 2010].  It has been shown that in arboreal 
environments propagation of radio waves is adversely affected [Oestges et al., 2009], and 
fluctuations in the surrounding environment can cause poor performance on channels that 
originally performed well.  An option to address this time-varying behavior involves equipping 
WSNs with the ability to channel hop.  In such deployments, motes within the network randomly 
select one of the available channels every time a transmission occurs, rather than persistently 
transmitting information on a single channel.  While still an area of ongoing research [Kerkez et 
al., 2009; Watteyne et al., 2010], and requiring slightly larger implementation overhead, channel 
hopping has been shown to reduce the effects of multipath propagation and external interference, 
thus improving network reliability and battery lifetime 

A number of commercial WSN solutions are available [Dust, 2011; Ember, 2011; Jennic, 
2011; Libelium, 2011; Nevis, 2011; Sentilla, 2011], each offering distinct platforms with unique 
functionality, network stacks, and standards. The implementation of algorithms for network 
topology, routing, and channel hopping is a nontrivial task, but advances in WSN technology 
have alleviated, although not completely removed, many of these challenges.  No simple off-the-
shelf solution exists for environmental monitoring applications, and hardware performance can 
vary significantly depending on site conditions.   

Deployments of WSNs have ranged from data center HVAC control [Bell and Federspiel, 
2009] structural health monitoring [Kim et al., 2007; Rice and Spencer, 2008], and military 
applications [Culler et al., 2001].  Notable deployments for environmental monitoring purposes 
include habitat monitoring [Hart and Martinez, 2006; Mainwaring et al., 2002; Ramanathan et 
al., 2006], permafrost detection [Hasler et al., 2008], the study of mountain ranges [Ingelrest et 
al., 2010], and for purposes of snow depth monitoring [Rice and Bales, 2010].  A successful 
short-term deployment of a WSN for the monitoring of hydrologic phenomena was conducted by 
Trubilowicz et al. [2009], who noted that the technology they tested lacked ease of use and 
reliability.  Further examples of wireless deployments for ecological and environmental 
monitoring were conducted by Etzel and Braun [2005], Porter et al. [2005], and Szewczyk et al. 
[2004].  Most recently, the efficacy of a large ZigBee-based network for monitoring soil moisture 
variability was also verified by Bogena et al. (2010).  The hardware and software 
implementations in these studies varied significantly, making it difficult to gauge which 
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hardware, software, and network protocol implementation will perform the best for a given 
deployment.  The current lack of the out-of-the-box usability, coupled with the vast choice of 
available hardware and network protocols, has the potential to become a severe time drain for 
scientists designing an environmental monitoring system.   

2.3 Methods 
2.3.1 Network design 

Twenty-three locations were selected and instrumented to monitor water-balance 
variables in a remote, forested, headwater catchment along a 1.5-km transect in the Southern 
Sierra Critical Zone Observatory (CZO) (37o04′ N, 119o11′ W), which is co-located with the 
Kings River Experimental Watershed (KREW) [Bales et al., 2011; Levia et al., 2011].  KREW 
spans the rain-snow transition zone, with lower elevations receiving more precipitation as rain.  
The WSN is located in a northern, relatively higher elevation sub-catchment of KREW, where 
the majority of annual precipitation falls as snow.  Site elevations in the WSN-instrumented 
catchment range from 1950 to 2010 m, with landscape varying over dense mixed-conifer forest 
(76-99%), open meadows, and across mixed chaparral, and barren land cover.   

In the summer of 2009, sensors were placed at those 23 locations prior to WSN design 
(Figure 2.2).  The locations were selected in the field to reflect variability in catchment-wide 
physiographic parameters, such as aspect, elevation, and canopy cover.  Particular focus was 
given to previous studies [Faria et al., 2000; Molotch and Bales, 2005a; Musselman et al., 2008; 
Rice and Bales, 2010], which identified these major physiographic parameters as driving 
explanatory variables for snow depth.  Each location was instrumented with snow depth, solar 
radiation, and relative-humidity sensors (Table 2.1).  One-meter-deep soil pits were excavated at 
each location and the face of each pit was instrumented with soil moisture and matric potential 
sensors at 10, 30, 60, and 90 cm depths, unless physically prohibited by bedrock.  The soil 
moisture sensors were installed in undisturbed soil, and the matric potential sensors were 
installed in nearby disturbed soil at the same depth.  The soil profiles were then backfilled and 
hand compacted to maintain the original soil horizons and density as much as possible (see Bales 
et al., 2011 for more detail and Volumetric Water Content calibration procedure).  A Judd snow 
depth sensor was also mounted 3 m above ground surface on a 75-cm cantilever beam.  
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Figure 2.2  Site layout showing location of sensor nodes and synoptic survey sampling points. 
 
 

 
Parameter Sensor Manufacturer Accuracy 

Snow depth Ultrasonic Judd 
Communications ±1 cm 

Volumetric water content EC-TM Decagon ±3% VWC 

Matric potential MPS-1 Decagon 
Calibration 
dependent 

(max ±40%) 
Solar radiation LI-200 LI-COR ±5% 

Humidity and Temperature SHT15 Sensirion ±2%, ±0.5∘C 

Table 2.1 Sensor characteristics. 
 
Along with two additional temperature measurements, this provided over 15 sensors 

readings at each measurement node (Figure 2.3), giving a total of over 300 sensors for the entire 
network.  Our deployment makes a distinction between sensor nodes, which are motes interfaced 
with the sensors and data-logging infrastructure (Figure 2.3), and repeater nodes, which only 
contain motes and a power source, placed to ensure mesh redundancy, and to transfer data 
between locations which would otherwise be out of range. 
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Figure 2.3  Sensor node architecture. (1) Mote, (2) custom data-logger to interface the sensor 
array, (3) on-site memory storage, (4) 12V battery, (5) snow depth sensor, (6) humidity and 
temperature sensor, (7) solar radiation sensor, (8) 10W solar panel, (9) external 8dBi antenna, 
(10) four soil moisture, temperature, and matric potential sensors at varying depths.  

 
The WSN deployment was carried out in two steps. A smaller-scale prototype 

deployment was conducted in September 2009, relying on manufacturer-specified transmission 
distances as guide to mote placement (Figure 2.4).  This network was mainly composed of sensor 
nodes (red points in Figure 2.2) and a few repeater nodes.  Site-specific network statistics were 
collected to evaluate the performance of the WSN prototype.  An analysis of these statistics, 
using a set of WSN metrics, was then used to inform a network-wide redesign.  Further repeater 
nodes were then added to the network, and existing repeater nodes were re-located to ensure 
desirable network performance, establishing the final network configuration of 57 WSN nodes.  

2.3.2 Synoptic surveys and variability analysis 

To evaluate the ability of the WSN to capture catchment-scale hydrologic variability, 
data from gridded synoptic surveys were used to provide ground truth for the distribution of soil 
moisture and snow depth.  The surveys were carried out in the larger CZO, but this analysis will 
only focus on the measurements specific to the sub-catchment instrumented by the WSN.  The 
survey grid points were selected to evenly cover 125-m intervals (Figure 2.2).  The points were 
located in the field using a Magellan handheld GPS unit with 3-5 m accuracy.  A snow depth 
survey was carried out on April 7-9, 2010.  At each point, three depth measurements were taken 
5 m apart in a N-S transect using a snow depth probe.  When possible, each of the three 
measurements was taken under varying canopy cover (under canopy, canopy drip edge, and open 
terrain).  Two soil moisture surveys were also conducted on June 14-17, and September 6-10 
2010 using a hand-held Hydrosense soil moisture system.  Five synoptic measurements were 
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taken within a 30x30 cm area and average values were used.  Synoptic measurements were 
integrated over the top 20 cm of soil.  These readings were compared to the average of the 10 cm 
and 30 cm readings taken by the Decagon soil moisture probes in the network.  Prior to the 
survey, the Hydrosense system was calibrated to soil obtained from the site, and compared to the 
Decagon soil moisture probes.  It was determined that no significant difference in the 
measurement methods was apparent.  In few cases, field conditions and accessibility did not 
permit some survey points to be sampled.  

 

Figure 2.4  Snapshot of the prototype network.  Circles indicate locations of motes.  The figure 
lists path-specific RSSI values in dBm (decibels referenced to 1 mW).   

 
One-m2 resolution LIDAR data sets were also collected both for snow-on and snow-off 

conditions [Guo et al., 2010].  The snow-on LIDAR data set was collected on March 22-23, 2010, 
and the total snow cover was calculated by subtracting the snow-off raster from the snow-on 
raster in the ArcGIS software package.  To assess the ability of the LIDAR data set to capture 
catchment-wide snowdepth distribution, and to validate the use of the LIDAR data for purposes 
of this study, a comprehensive ground-truth survey was conducted on the day of the snow-on 
LIDAR flight. Manual snowdepth readings, spaced 10m apart in a cross-shaped transect, were 
taken at forty locations in a central part of the catchment and tagged via hand-help GPS units 
during the snow-on LIDAR survey. Along with the snowdepth readings taken at the sensor nodes, 
these points revealed an average error of less than 10 cm when comparing LIDAR-derived 
snowdepth data to ground-truth readings.  Furthermore, the snow-off LIDAR raster was used to 
delineate the catchment instrumented by the WSN using the Spatial Analyst toolbox in ArcGIS.  
The resulting delineation is shown in Figure 2.2 as a shaded relief map.  

An analysis was also carried out to investigate the temporal trends in snow depth and soil 
moisture variability.  The results were compared to previous studies, which evaluated forest 
canopy effects on snow depth variability [Jost et al. 2007], the effects of soil depth on volumetric 
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water content (VWC) variability (as measured by the Coefficient of Variation  - CV)  
[Famiglietti et al., 1998; Grant et al., 2004], as well as the dependence of VWC variability on 
mean VWC [Bogena et al., 2010; Famiglietti et al., 1998; Grant et al., 2004; Vereecken et al., 
2007; Wackerly et al, 2008].  A geostatistical analysis was also performed on the snow depth and 
soil moisture data sets [Bogena et al., 2010; Western et al., 2002; Deems et al., 2006] to evaluate 
effects of spatial scaling on sampling design.  

The distribution of aspect and slope captured by the network and synoptic surveys 
reflected those of the more comprehensive LIDAR survey (Figure 2.5), but the network did not 
capture some of the higher elevations (1990-2040m) located in the northern portion of the 
catchment (Figure 2.2).  These locations were excluded from the sensor placement in favor of 
sampling nearer the stream.  The sensor nodes were also positioned under various canopy covers, 
with 30% of nodes under canopy (UC), 30% in open terrain, and 40% at tree drip edge (DE). 

 

 
Figure 2.5  Comparison of physiographic parameters captured by LIDAR, against those covered 
by the sensor-nodes, and synoptic survey. 

2.3.3 Hardware 

The fluctuating humidity, heavy storms, and cold winter temperatures at the site called 
for special considerations during the design of the monitoring hardware.  Reliability 
requirements demanded specific attention to the underlying network-control algorithms, as well 
as the selection of the appropriate transmission frequencies.  The system uses wireless devices 
developed by Dust Networks [Dust, 2011], a company that primarily develops wireless data 
transfer technologies for industrial automation applications.  The hardware, in our case the 
M2135 mote, is rigorously tested at extreme environmental exposures to meet stringent industrial 
guidelines, motivating its use in the harsh conditions of the Sierra Nevada.  The core software 
backbone of the Dust WSN relies on the Time Synchronized Mesh Protocol (TSMP) architecture 
[Dust 2006; Pister and Doherty 2008], which closely follows a number of well-specified 
industrial wireless protocols [ISA 2009; Song et al. 2008].  An open source version of TSMP is 
also available for implementation on most hardware platforms [Watteyne et al., 2012]. 

These industrial protocols are built upon three main principles: time synchronization, 
channel hopping, and automated multi-hop smart mesh formation.  Motes within a TSMP 
network are synchronized to within sub-millisecond accuracy.  This enables accurate time 
stamping of sensor data, and permits motes to keep their radios off more than 99% of the time by 



	  

	  

16 

only communicating according to a dynamically determined scheduled.  While such tight time 
synchronization facilitates an extremely low radio duty cycle, and thus significantly lowers 
battery usage, it also permits for channel hopping.  Along with scheduling transmissions, motes 
in a TSMP network account for fluctuations in the radio space by scheduling a different 
frequency channel for each transmission.  This approach effectively utilizes all 16 available 
channels defined by IEEE802.15.4 [IEEE 2009].  This mitigates the previously mentioned 
effects of multipath fading and external radio interference by ensuring that no two mote pairs 
communicate on the same channel at the same time. This significantly differs from ZigBee based 
networks [ZigBee Alliance 2008], where one frequency channel is often used for the entire 
network, and limited synchronization can lead to intra-network radio interference due to lack of 
an explicit transmission schedule.  The TSMP protocol also features dynamic smart-meshing 
algorithms, which allow each mote to automatically join the network, and adaptively 
communicate with multiple neighbors, without the need for specialized router nodes seen in 
ZigBee networks.  The adaptive nature of this WSN also changes network paths (links, or node-
to-node routes) dynamically to reflect possible network interference from outside sources, or 
changing field conditions.  The availability of the TSMP features, all of which, to our best 
knowledge, are not implemented on other commercial platforms, motivated the decision to use 
Dust Networks hardware for this deployment.  Each mote is powered by a 3V battery and has a 
manufacturer-specified battery life of over two years.  

The WSN featured one base station, or network manager, that acted as a central network 
controller.  The network manager communicated with a low-power, embedded Linux computer 
via Ethernet and the two devices exchanged commands over an extended mark-up language 
(XML) interface to actuate motes within the network, log sensor readings, and gather network 
statistics.  The embedded computer was located at the base of a 50-m tower used for eddy 
correlation.  A cellular modem positioned 25m up the tower provided Internet connection for the 
transfer of real time data to an off-site location.  Power to the network manager, embedded Linux 
computer, and cellular modem was provided by a bank of 12V batteries and a 120 Watt solar 
panel. Careful selection of low-power components enabled battery-powered operation of the base 
station without the need for outlet power. 

Anomaly detection within the network was conducted by custom software that was 
written to interact continuously with the network manager to monitor network statistics and 
sensor readings, informing network operators of impending battery outages, sensor failures, or 
other events of interest.  To further improve transmission distance, physically hardened, high-
gain 8dBi antennas were mounted 3m above ground surface at each network node.   

While commonly used data logging components, such as the Campbell Scientific CR1000 
line [Campbell Scientific, 2012], could be interfaced with the wireless hardware, a more cost 
effective, and more customizable data-logging board was designed to control and power the 
sensor array, as well as to form the data into serial packets required for transmission by the Dust 
Networks mote.  The board is the EME Systems OWL2pe data logger [EME, 2011], and 
interfaces nine analog and twenty digital inputs, allowing for additional sensors to be attached in 
the future.  The board requires about 240 mW of power while actuating sensors, but spends 99% 
of its time in an efficient low-power mode.  The OWL2pe can be self contained, or controlled 
remotely via the WSN, and built in flash memory allows the assembly to log data locally in case 
the WSN becomes unresponsive.  Lack of accessibility to the physical network, especially during 
heavy snow periods, as well as the possibility of long-lasting diminution of solar radiation, 
played a significant role in the design of the power-management infrastructure.  Monitoring 
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requirements called for data to be collected on ten to fifteen minute intervals, and conservative 
preliminary calculations indicated that a 12 Volt, 7 Amp-hour lead-acid battery, and a 10 W solar 
panel, could reliably power the data logger and sensor assembly.  To mitigate the effects of 
extremely cold temperatures, the repeater nodes were equipped with 3.6V lithium thionyl 
chloride batteries.  The power consumption of network components is shown in Table 2.2.   

 
Component Voltage 

- V 

Current – A 

(idle) 

Duty Cycle (%) Avg. Current 

(A) 
Mote 3 0.02 (<2x10-5) <1 6x10-6 
Data logger 12 0.02 (2x10-4) 1 4x10-4 
Sensors 5-12 0.1  1 1x10-3 
Network manager 12 0.06 100 0.06 
Cellular modem 12 0.4 (<0.1) 50 0.2 
Embedded 

computer 

5 0.3 100 0.3 
Table 2.2  Power consumption of various components in the network assuming a 15-minute 
sampling interval. 

2.3.4 System Cost 

At the time of deployment the cost of each mote was under $50 USD, with an additional 
$500 for a sensor-node, including custom data logger, housing, mounting, and external antenna.  
Base-station components, including the network manager, Linux computer, cellular modem, 
enclosure, batteries and solar panel totaled about $3000.  Sensors used in the study comprised the 
biggest cost, varying in price from $25 to $600 each, the most expensive of which was the snow 
depth sensor.  

2.3.5 WSN Metrics 

The packet delivery ratio (PDR), and received signal strength indicator (RSSI) are two 
metrics that provide particular insight when evaluating WSN performance [Al Basset Almamou 
et al., 2009; Karl and Willig, 2005].  PDR is a metric that captures the overall communication 
efficiency of a link between two WSN nodes, and is defined as the number of successfully 
transmitted packets divided by the total number of transmitted packets.  It can be thought of as 
the probability that a transmission between two nodes will succeed.  Needless retransmission of a 
packet can take a significant toll on battery resources.  Conservation of network resources ideally 
demands a PDR of 100% on all links used by the network.  An understanding of the interplay 
between spatial network coverage and deployment-specific PDR characteristics is thus required.  
Since a primary motivation of using WSN hardware for environmental monitoring is the ability 
to span large areas, optimization of a field deployment demands a balance between the need to 
maximize battery life (power cost) while minimizing the number of required motes (capital and 
operational costs).   

RSSI, conventionally measured in decibels and referenced to 1 milliwatt (dBm), 
represents the power in a signal when it arrives at the receiving antenna.  As a general rule, the 
RSSI decreases as the distance between two nodes increases (inversely to the square of the 
distance between two nodes).  Given the logarithmic scale, every 3 dBm decrease reduces the 
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received power by approximately one half, and more negative dBm values correspond with 
lower signal strength. The true behavior of RSSI over node-to-node distance depends upon a 
number of factors, such as multipath radio propagation and environmental obstructions but can 
be roughly captured by an idealized Friis antenna propagation model [Friis, 1946; Friis, 1971; 
Kraus, 1988].  Since this theoretical propagation model is valid only in free space, and does not 
take into account the effect of multipath radio propagation, the model cannot, in most cases, be 
used to accurately predict the behavior of most real world phenomena.  Generally, WSN 
hardware has a manufacturer-predefined RSSI threshold (sometimes also referred to as receiver 
sensitivity) below which signals cannot be reliably decoded by the hardware.  Changes in the 
physical environment affect the received signal strength, thus causing RSSI to fluctuate over 
time.  The operational RSSI threshold (one that gives reliable performance in the field) can often 
exceed, or under-perform, manufacturer specifications, thus placing the onus of classifying link 
reliability onto the WSN operator.  Since RSSI threshold is often used to specify reliable 
transmission distances, optimizing network performance becomes the job of the network 
operator (researcher) and depends on understanding the link-specific RSSI behavior for any 
given deployment.  Improper determination of these thresholds can lead to network collapse and 
the need for reconfiguration during the actual deployment.  

Motes have the ability to enter any number of possible sleep states [Karl and Willig, 
2005; IEEE, 2009], where significant portions of the mote are shut off to conserve energy.  For 
example, when a mote is not transmitting or receiving data, it turns off its radio while placing the 
micro-processor into a low-power state. This significantly reduces power consumption on the 
battery.  A particular problem resulting from an extended lack of communication occurs when 
motes enter a deep-sleep, or hibernation, state.  In such cases, motes that have not been able to 
establish communications with the network manager through their neighboring motes for a 
period of time, power off the majority of resources, and wake up only sporadically to rejoin the 
network by listening to advertising beacons from neighbors.  This feature, although not standard 
on all platforms, was designed to conserve power in industrial mesh networks.  When 
implemented, field experience has shown that it can take significant portions of time (hours to 
days) for motes to rejoin the network upon entering the deep sleep state.  In relatively low node-
density networks, such as those used for environmental monitoring applications, a mote in a deep 
sleep state is effectively removed from the network, which has the potential to severely 
compromise the mesh topology, and can lead to outages of entire subsets of the network.  This 
behavior further underscores the need to understand path specific PDR and RSSI characteristics 
for ensuring network robustness, and avoiding network outages due to drops in connectivity.  

2.4 Results 
2.4.1 Prototype deployment 

During on-site evaluation of the motes it became apparent that the initial prototype 
network layout (Figure 2.4) did not perform up to manufacturer-provided specifications.  The 
specifications indicated an RSSI threshold of -89dBm, with a prescribed mote-to-mote spacing 
of up to 200-300 meters.  In practice, few reliable paths at such distances were observed, and 
RSSI values between -80 and -90 dBm were experienced for significantly shorter network links.  
Network statistics were collected over a 25-day period, beginning with 10 motes on September 
15, 2009 and expanding to 19 motes by September 18 (Figure 2.4).  RSSI and PDR value were 
averaged over 15-minute intervals for each path in the network, providing a range of values to 
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determine proper hardware thresholds and evaluate network performance.  Over this 25-day 
period, the number of paths (or links between nodes) varied as the WSN automatically adjusted 
the network topology to account for fluctuations in communication reliability (Figure 2.6).  
Generally, a larger number of paths are desirable since it permits for greater diversity of routes 
on which data packets can be transmitted.  The spike around September 18 corresponds to the 
deployment of the full 19-sensor prototype network.  As more motes joined the network, the 
number of paths increased correspondingly.  The average network RSSI dropped as a result, 
implying that the newly formed network paths possessed low connectivity.  This correlation was 
observed for the remainder of the 25-day evaluation of the network prototype.  Ideal 
performance would have kept average RSSI steady, regardless of the number of newly created 
network paths, indicating that all paths reflect similar communication reliability.  Further 
investigation into possible causes of network behavior showed that both the average network-
wide RSSI and the average relative humidity experienced fluctuations over time, but did not 
appear to be positively correlated (Figure 2.6).   

 

 
Figure 2.6  Network behavior over a 25-day period, starting on September 15, 2009.  Network 
resets are evident as the sudden spikes in number of network paths.  The average RSSI of nodes 
in the network dropped as more paths were created (more nodes joined the network).  A 
rainstorm, evident around October 3, coincided with a significant drop of paths from the network.  

 
The western portion of the prototype network experienced a complete outage on 

September 19, leaving only a few network paths operational (Figures 1.4, 1.6); no prior 
indication of an impending network outage was evident.  During the outage, the total number of 
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paths in the network dropped significantly and abruptly.  This can be attributed to a bottleneck 
effect within the network.  In a meshed topology, child nodes far from the network manager need 
to transmit data through neighboring parent nodes (nodes closer to the network manager), which 
in turn pass the data further along the mesh until it reaches the network manager.  On September 
19 critical parent nodes in the mesh drifted into a hibernation state due to a drop in connectivity 
(most likely due to low RSSI values exhibited by network paths in the center of Figure 2.4), and 
child nodes that depended on these connections lost connectivity to the network manager.  Child 
nodes in the western portion of the network were thus forced to enter a hibernation state as well.  
To avoid this bottleneck phenomenon, redundancy and robustness needed to be built into the 
network to ensure that no single outages can cause the remainder of the network to fail.  This 
bottle-necking behavior further explains why average network RSSI was inversely proportional 
to the number of paths.  Following this outage, only stable links with high RSSI values remained 
in the network.   

The mote hibernation state was designed to conserve power during network 
communication outages, since transmission during such instances of low connectivity can 
significantly shorten battery life.  Once in the hibernation state, it could take days for the mote to 
rejoin the network depending on field conditions, and a physical reset was required to bring 
motes out of hibernation, and to re-establish the entire WSN mesh.  Once the network hardware 
was reset a week into the prototype deployment, the number of network paths increased and 
stayed constant for the following two-week period.   

Relative humidity did not seem to affect the overall behavior of the network (Figure 2.6), 
but a rainstorm around October 3, 2009 coincided with another network collapse and a 
significant drop of nodes from the network.  To mitigate future network collapse, the TSMP 
protocol settings could be modified to lower the threshold for entering the hibernation state, or 
additional repeater motes could be added to ensure that required RSSI thresholds would be met.  
It was deemed that the low-power sleep mode was necessary for efficient network operations, 
and that a redesigned network layout would offer a better alternative.  This was again confirmed 
when noticing a significant drain on mote battery life after forced resets.   

Part of the pre-deployment site analysis involved determining the field RSSI as a function 
of node-to-node distance.  Figure 2.7 presents a logarithmic plot of RSSI vs. path distance for the 
prototype deployment, and for comparison, the idealized Friis propagation model [Friis, 1946], 
which governs how the hardware-specific RSSI between two nodes should change assuming 
perfectly isotropic antenna and free space conditions.  The measured relationship was not 
monotonic, nor sharply delineated, and showed considerable uncertainty, which was most likely 
a function of multipath effects on radio propagation.  The in situ network statistics showed a 
significant reduction in transmission distance compared to the manufacturer-specified 200-300 m 
outdoor range.  As expected, the observed average RSSI decreased as the distance between nodes 
increased, but a significant spread existed around the mean (shown by an estimate of the 95% 
confidence bounds).  The mean RSSI reached the manufacturer specified threshold of -89 dBm 
at a transmission distance of 150 m, but a portion of paths performed below this threshold at the 
same distance.  At 115-120 m separation, a portion of network paths had the tendency to drop 
below this threshold, under-performing manufacturer specifications of a 200 m range.  For 
distances below 25 m, the network links outperformed the predictions made by the Friis 
propagation model but mean RSSI significantly deviated from the idealized Friis model after the 
25-m mark.   
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Figure 2.7  Plot of RSSI vs. path distance collected over a 25 day period.  The RSSI decreased 
with an increase in path distance, and significantly fluctuated around the mean.  A number of in 
situ radio links experienced RSSI values below the manufacturer-specified -89 dBm threshold at 
approximately 100-120 m.  

 

 
Figure 2.8  A plot of PDR as a function of RSSI.  Gray points reflect observed behavior, while 
the solid black line represents an idealized waterfall fit.  Most packets are transmitted 
successfully for an RSSI above -80 dBm, after which there is a sudden drop in PDR.  The dashed 
line provides a conservative, and lower bound design curve. 
 

Figure 2.8 presents another, and perhaps better, indicator of network performance - an 
analysis of PDR (%) as a function of RSSI (dBm).  Although fluctuations of PDR around 
specific RSSI values existed, it is evident that for values of RSSI over -80 dBm, the PDR 
remained around 100%, implying high reliability and that few, or no retransmissions were 
required to successfully deliver network packets to their destination.  For values below this RSSI 
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threshold, paths experienced sudden drops of PDR, falling entirely to 0% for RSSI values of -
90dBm and lower.  This sudden drop is often referred to as waterfall behavior when describing 
to the effect of RSSI on PDR.   
 

2.4.2 Post-deployment analysis 

Following the prototype deployment, an analysis of network metrics was used to inform a 
re-design.  More repeater nodes were added to the network, and existing repeater nodes were re-
located to improve performance and prevent network outages, leading to the final network 
configuration shown in Figure 2.9.  After re-design, the network did not experience any more 
outages.  A histogram of 30 days of PDR values for all paths in the network (Figure 2.10) a 
month after network reconfiguration, shows that about 80% of total PDR values were within a 
desirable 85-90% performance range, with more than half of all paths experiencing 100% PDR 
(particularly nodes spaced less than 50 m apart).  Nodes communicated not only with their 
closest neighbors, but also with more distant nodes to maintain the mesh network topology.  In 
the final deployment, network nodes had, at all times, a stable connection to at least two 
neighbors located 50 m or closer, and the average network-wide PDR remained within an 85-
95% window for the remainder of the network lifetime. 

 

 
Figure 2.9  Final wireless sensor network layout.  The base station, located at an eddy flux tower, 
houses a network manager and acts as a central data aggregation point. 

 
 
To illustrate more some short-term dynamics of the network, Figure 2.11 shows a sample 

of PDR evolution for three randomly selected paths in the final network configuration.  Though 
average network PDR remained high, path A exhibited a sudden drop at the four-hour mark, only 
to recover within one hour.  Path B exhibited fluctuations of PDR for the entire sample period.  
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While requiring multiple retransmissions of the packets, this path did not drop from the network 
and its PDR never dropped below 80%.  The figure also shows a new network path C being 
established during this 24-hour window, which is a positive indication that the self-healing 
network algorithms dynamically allocated paths to take advantage of more stable connections, 
thus alleviating otherwise relatively less stable connections and creating further redundancy.  
The formation of new paths between nodes was caused by fluctuation in the radio space, and is 
further motivation for using an adaptive, self-healing network.   

 
Figure 2.10  A histogram of PDR values for all paths in the network following a reconfiguration 
of the network.  About 80% of all network paths are performing within the desired 85-90% 
design value, and over 50% of all paths are at 100% PDR. 
 

During network operation, there were some instances of paths longer than 200 m 
experiencing RSSI values greater than -60dBm, while some paths less than 50 m operated with 
RSSI values of -80dBm.  This behavior was not consistent across the network, and could not be 
directly attributed to physiographic features of terrain (such as elevation differences, or line of 
sight), thus further underscoring the unpredictability of the wireless environment.  

 
Figure 2.11  The fluctuations of PDR over time for three specific paths in the network over a 24-
hour period. 
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2.4.3 Network measurement validation 

The mean snow depth measured by the network on March 22-23, 2010, was 139cm, 
versus a 145-cm mean from the LIDAR data (Figure 2.12a).  On April 7, 2010, the network 
measured a mean snow depth of 142cm, versus 140 cm for the synoptic survey.  Although the 
network and LIDAR data showed a similar cumulative distribution for March 22, the network 
measurements of snow depths varied between 70-242cm, while the LIDAR snow depths varied 
between 0-300cm.  The cumulative distributions of snow depth for the March LIDAR, March 
Network and April Networks shared a similar, near-normal shape, while the cumulative 
distribution of the April 7 survey was biased towards relatively high depth values.  

 

 
Figure 2.12  Cumulative distribution functions comparing network readings of a) snow depth, 
and b) soli moisture to those obtained by synoptic and LIDAR surveys. 

 
For the June soil moisture study, the network VWC measured a mean of 0.23 (Stdev. 

0.14), and synoptic survey measured 0.25 (Stdev. 0.09).  The cumulative distributions in Figure 
2.12b show the close resemblance between VWC values recorded during the June survey and the 
June Network measurements.  For September 2010, the network reported a mean VWC of 0.15 
(Stdev. 0.12), compared to the 0.09 (Stdev. 0.03) in the synoptic survey (Figure 2.12b).  Three 
network readings, in particular, showed relatively high VWC during the September survey.  The 
respective cumulative distribution of VWC showed a close correspondence between the 
September survey and network reading up until the inclusion of those relatively higher VWC 
values captured by the network.  These three specific sensor nodes were located in flat-aspect 
terrain, in open meadows.  

A histogram of snow depth distribution, based on the March 22 LIDAR point-cloud, 
shows that snow depth was near-normally distributed (Figure 2.13).  This distribution was 
obtained after removing a small set of outliers (< 0.1%); i.e. negative values, and extremely large 
positive values (depths > 3.5m).  Given this near-normal distribution of snow depth, as well 
previously observed tendencies of spatial VWC to follow a normal distribution [Grant et al., 
2004; Famiglietti et al., 1998; Western et al., 2002], a two-sample t-test, and two-sample f-test 
[Wackerly et al, 2008], were carried out at a 5% significance level (α=0.05) to assess the equality 
of the means and standard deviations between the surveys and network readings.  With the 
exception of the September soil moisture study, these test confirmed null hypothesis H0  (namely, 
the equality of the mean and standard deviation between survey and network data).  The 
difference between the September soil moisture survey and network data was deemed 
statistically significant, with attained significance values (p-values) of p=0.046 and p<0.0001 for 
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the mean, and standard deviations tests, respectively.  A non-parametric Wilcoxon rank sum test 
[Wackerly et al, 2008] was also conducted, yielding p=0.0625 for the comparison of the 
September data sets. 

 

 
Figure 2.13  Total snow cover calculated from a snow-off and snow-on LIDAR data sets at 1m2 
resolution (March 22-23, 2010).  White squares indicate location of sensor nodes.  The yellow 
stars indicate locations of the three sensor-nodes that persistently recorded snow depth values 
closest to the mean of both the LIDAR-, and synoptic-survey.  Histogram of snow depth values 
calculated from LIDAR data is also shown.  Partitioned regions indicate low, and high values not 
captured within the range the WSN measurements.   

 
Figure 2.13 also draws a distinction between those portions of the LIDAR data that fell 

below and above the respective minimum and maximum measurements captured by the network.  
These extreme readings, although not captured fully by the sensors nodes, did not have a 
significant impact on the overall mean.  The majority of locations with snow depth values below 
those captured by the network were located in the northwestern portion of the network (Figure 
2.13).  Larger patches with snow depth values above those captured by the network were located 
in the centrally situated, open meadow (Figure 2.13).  The distribution of physiographic 
attributes of un-instrumented locations, for which the set of depth values fell below those 
captured by the network, did not show signification deviations from those observed on the 
overall site (data not shown).  In the case of both the LIDAR and synoptic surveys, three 
particular sensor-node locations (13, yellow stars), situated in a north-facing aspect, and across 
varying canopy cover, reflected measurements very close to the catchment mean  (+ 9 cm).   

2.4.4 Snow depth variability  

The majority of snow depth readings for water year 2010 (WY2010, starting in October 
2009) reached an average peak accumulation of 160cm in April of 2010, although a subset of 
nodes experienced this same average peak in the middle of January (Figure 2.14a).  Snowmelt 
timing showed notable variability, with a three-week span between first and final melt-out dates 
at sensor-node locations.  Nodes located on flat facing aspects generally saw faster melt rates 
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than those on north- and south-facing aspects, while average accumulation showed little 
variability across different aspects.   

 

 
Figure 2.14 Temporal snowdepth trends October 2009 to October 2010. a) Average snow depth 
(one standard deviation shown in in gray, individual sensors indicated by dashed lines), b) 
average snow depth for various canopy covers (open, drip edge, and under canopy), c) 
Coefficient of variation over time for snow depth and various canopy covers. 

 
Forest cover was the major explanatory variable of snow depth variability across the 

catchment.  Sensor nodes located under canopy, measured 40cm less than those located under 
drip-edge, and 80cm less for open-cover (Figure 2.14b).  Under-canopy snow depth showed 
greater variability, as measured by CV, compared to nodes located in open terrain (Figure 2.14c).  
This trend in variability exhibited temporal stability, with under-canopy nodes persistently 
reflecting relatively higher variability throughout the entire season.  The group of nodes located 
along tree drip-edge reflected almost identical variability patterns compared to under-canopy 
nodes during the snow accumulations seasons.  During snowmelt, however, snow depth 
variability at drip-edge nodes began to diverge from that of under-canopy nodes, until matching 
the variability exhibited by nodes located in open terrain.  

2.4.5 Soil moisture variability 

At most sensor nodes, peak VWC levels of 0.31 to 0.32 were reached at the beginning of 
June 2010, coinciding with the melt-out of the snowpack (Figure 2.15a).  A subset of nodes 
experienced peak VWC in the middle of an October 2009 rainfall event.  The remainder of VWC 
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fluctuations corresponded with the snowmelt cycle.  On average, sensor nodes located on flat 
aspects experienced VWC 5%-10% greater than those situated on north and south facing aspects.  
The major contribution to this higher VWC was from sensor nodes placed in the flat meadow 
regions, where catchment melt water accumulated and some locations experienced VWC of up to 
0.60.  On average, nodes placed under canopy and in open areas reflected similar VWC behavior, 
while nodes placed along the drip-edge exhibited relative larger VWC (by 0.05).  

 

 
Figure 2.15 Temporal VWC behavior October 2009 to October 2010. a) Average soil moisture 
across various solid depths, b) VWC coefficient of variation at various soil depths. 

 
In general, average variability (CV) of soil moisture increased with decreasing mean 

VWC following snowmelt (Figure 2.15b).  Shallower soils showed greater VWC fluctuations 
during the snowmelt season, with VWC fluctuations attenuating with increased soil depth.  At a 
10cm depth the relationship between mean soil moisture and the coefficient of variation showed 
the convex-down pattern (peak at 20%VWC) seen in other studies [Bogena et al., 2010; 
Famiglietti et al., 1998; Western et al., 2002; Vereecken et al., 2007] (data not shown).  The 
same analysis showed that no clear relationship between mean VWC and CV was apparent for 
deeper soils.  

During snow accumulation and melt, soil moisture variability increased with soil depth, 
with soils at 10cm exhibiting lower variability relative to deeper soils (Figure 2.15b).  Following 
snowmelt, soil moisture variability of the shallow soils exhibited a more pronounced increase in 
variability.  As average soil moisture decreased towards the end of the water year, deeper soils 
once again exhibited greater variability.  

2.4.6 Geo-statistical Analysis 

The snow depth values extracted from the March LIDAR data showed a very well 
defined experimental variogram, with a range of 30m and a sill of γ2=0.2m2 (data not shown).  
This snow depth variogram was very similar to that seen in Deems et al. (2006).  The variogram 
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for the April 7 snow depth survey showed no pronounced support, with a constant sill of 
γ2=0.2m2.  Variograms were also generated over time for all snow depth readings recorded by 
the network.  While the sill of the sensor node variogram changed over time to reflect depth 
fluctuations during the season, a support of 30-40m was evident throughout the analysis.  The sill 
of the variograms generated by the network data also matched that of the LIDAR and synoptic 
surveys during the respective analysis periods.  The same variogram analysis was carried out for 
soil moisture surveys and networks readings.  Even after de-trending for various physiographic 
parameters, the analysis did not find a clear spatial relationship between lag and VWC variability, 
such as those seen in previous studies [e.g. Bogena et al. 2010; Famiglietti et al. 2008]. 

2.5 Discussion 
2.5.1 Wireless sensor network 

We define an optimal network deployment as the one that maximizes PDR, while 
minimizing RSSI (implying greater transmission distances).  On average, the need to retransmit 
data will then be reduced, while spatial coverage of the network will be maximized.  Based on 
this design criterion, Figure 2.8 shows that this value corresponds approximately to -80dBm 
(although there begins to be a significant spread of PDR for values below -70dBm).  This 
waterfall behavior is a further indicator that a manufacturer-specified RSSI receiver sensitivity 
threshold dBm should not be employed as a proxy for reliability.  In the case of this study, it is 
apparent than no packets can be received beyond the manufacturers specified threshold of -89 
dBm, but PDR begins to exhibit non-desirable qualities well before this threshold.  As such, the 
manufacturer specified RSSI threshold thus presents a worst-case performance indicator, rather 
than serving as a guide for reliable communications.  A deployment-specific waterfall plot will 
however go a long way towards helping to design a reliable WSN.  

For our deployment -70 dBm was chosen as a conservative, but reliable, RSSI threshold 
to account for adverse effects due to unexpected wintertime fluctuations.  Given the measured -
70 dBm needed for acceptable communications reliability, a design path distance was then 
extracted from Figure 2.7.  For further reliability, the lower 95% confidence bound, rather than 
the mean RSSI, was used as the design criteria.  For the installation, this resulted in the 
derivation of a conservative 50-m mote-to-mote spacing.  Realistically, however, our redesign 
could have employed a larger node-to-node spacing (100-120m), and still performed well, since 
we did observe reliability for such path distances in the final network.  Given the expectations of 
a harsh winter season, and the possibility of nodes getting damaged during heavy snowstorms, 
we chose a 50m node-to-node spacing to alleviate any concerns of potential network outages.  
While our approach is conservative in this regard, we expect that a more temperate, but equally 
large catchment could be instrumented efficiently with significantly fewer repeater nodes.  

It is evident from Table 2.2 that the mote is the smallest power consumer of the entire 
sensor node assembly.  The choice of snow depth sensor, which consumed a major portion of 
power at each node, was based on the sensor performance and reliability during a number of 
previous studies [Bales et al., 2011].  A lower-powered ultrasonic sensor alternative (such as the 
one in Varhola et al., 2010), could have reduced battery size and solar panel requirements, in 
which case radio power consumption would begin to play a larger role in overall energy 
efficiency.  

The current availability of power at each sensor node would have made it possible to 
employ higher powered radios, and thus reduce the number repeater nodes.  Given the radio 
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propagation characteristics described previously however, increasing transmission power 
significantly affects energy consumption, but does not proportionally increase transmission 
distance [Friis, 1971; Kraus, 1988].  It can be shown that in many cases, the use of lower-
powered radios and efficient repeater nodes consumes overall less power than a system with 
higher powered radios but fewer repeaters [Karl and Willig, 2005]. This becomes a major 
motivating factor when considering the need to power the entire wireless network on batteries in 
remote locations with limited access.  In our case, the low cost of repeater nodes, along with their 
long battery life (potentially five years on two AA batteries) and low maintenance continues to 
motivate our use of the present WSN system.  Such low power use and reliability is a particular 
benefit of the TSMP protocol, with its tight time synchronization and extremely low duty cycle.  

We propose a three-step design procedure to optimize a WSN deployment (Figure 2.16).  
A WSN deployment can be separated into pre-deployment, deployment, and post-deployment 
phases, which, when carried out properly, will ensure robust and reliable network 
communications while maximizing battery lifetime and transmission distances (and thus 
reducing the number of required motes). 

 

 
Figure 2.16  The three phases of a WSN deployment. 

 
First, in the pre-deployment phase, a prototype network (or a subset of the actual 

network) should be deployed a priori to gauge the actual performance of the wireless hardware 
under operating conditions.  The pre-deployment analysis should be carried out in environments 
similar to those of, or preferably at, the actual deployment site, with an attempt to cover a range 
of terrain parameters.  Networks statistics, specifically RSSI and PDR, should be collected for 
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several days, or longer, to capture possible fluctuations in performance.  This will place 
manufacturer specified performance thresholds into context and will permit site-specific network 
behavior to be evaluated prior to a full-scale deployment.  A waterfall plot of the effects of RSSI 
on PDR (such as the one in Figure 2.8) should be constructed to extract the site-specific RSSI 
threshold.  The primary design objective entails maintaining stable network links (high PDR 
values) and ensuring robust network performance.  This will prevent network outages and 
collapse due to the inability of motes to communicate.  While maximizing network-wide PDR 
will reduce re-transmissions, and thus also prolong battery life, there is a monetary and labor 
trade-off associated with placing many repeater nodes.  A PDR of 100% is thus not desirable, 
and may, in fact, be physically unattainable.  Calculations should be conducted to evaluate the 
effect of average PDR on site-specific battery resources, but in most cases a PDR value of 85-
90% provides a realistic performance goal.  Such an analysis will maximize node-to-node 
spacing, while reducing drain on battery resources, and will facilitate robust and reliable network 
links.  It is critical to develop a statistically meaningful RSSI threshold from the PDR behavior to 
account for possible fluctuations in performance.  This threshold can then be used to determine 
transmission distances (in this case from Figure 2.7), and will provide a reliable estimate of the 
number of nodes that will be required to cover the sensing region.   

Second, the deployment phase of the final network (placement of sensing nodes, repeater 
nodes, or star-layout) should be carried out based on the previous analysis of network statistics, 
keeping in mind that these statistics provide only a bound on performance behavior.  Signal 
attenuation and multipath propagation characteristics may adversely affect specific network links.  
Brief field checks during the actual placement of nodes should be made to ensure that each 
network path meets the desired RSSI threshold.  Often, simply moving nodes by a few meters 
will establish a more robust link.   

Third, in the post-deployment phase, collection of network statistics should be continued 
as long as necessary to evaluate the in situ performance of the network and to capture possible 
fluctuations in connectivity.  Depending on the observed behavior, these statistics should be 
further analyzed, and adjustments to the network can be made to achieve a desired performance, 
by adding, removing, or re-locating WSN nodes.   

In our case, the data obtained through the analysis of the network prototype was used to 
gauge the future behavior and provided a set of valuable thresholds upon which to re-design the 
network.  Analysis of such results would have saved a significant amount of time if conducted 
prior to the deployment of the network.  A network design procedure using the above steps will, 
in most cases, regardless of hardware choice or manufacturer, ensure that WSN performance will 
meet the demands of an environmental monitoring application, by maximizing path reliability, 
battery life, and spatial coverage. 

While the outlined methods apply to a broad range of available WSN platforms, initial 
hardware selection should still be strongly guided by built-in network features.  The choice of 
WSN hardware for this deployment was based on the ability of the TSMP protocol to facilitate 
long battery life, as well as the ability to channel hop and to set up and maintain an adaptive self-
healing, multi-hop mesh network.  Regardless of its major benefits, the complexity of this 
protocol has prevented many manufacturers of WSN hardware from its implementation.  There is 
a significant cost if the direct user is required to design and implement low-level control of the 
WSN hardware, as well as the complex algorithms necessary for efficient channel hopping and 
mesh topologies.  While lower frequencies (e.g. 900MHz) can also be used for WSN operations, 
and may increase transmission distance, availability of these products is trending downward due 
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to regulations in Europe and Asia. Transmission distances can be improved by using high-gain 
antennas to replace the more traditional mote whip antennas.  Close attention to details, such as 
maintaining sufficient battery voltage at each mote, will additionally help to avoid network 
blackouts in winter.  As most battery chemistries are adversely affected by colder weather, 
battery specifications should be checked to ensure the minimum amount of current required by 
the mote can at all times be drawn from the battery, regardless of external temperature. 

2.5.2 Snow depth and soil moisture variability 

This study further confirms the importance of canopy cover as a major explanatory 
variable of catchment-scale snow depth distribution.  More so, it validates the claim that snow 
depth variability is highest under canopy [Jost et al., 2007].  While those authors investigated the 
influence of forest cover on snow distribution during a number of surveys, analysis of the 
spatiotemporally dense data obtained during our study shows that there is a clear temporal 
stability in this canopy-dependent variability – under-canopy snow depth variability was 
persistently higher than that of open sites throughout WY2010.   

Due to effects of partial canopy cover, sensor nodes located at drip edges of trees showed 
relatively high snow depth variability during the accumulation season, similar to that of under-
canopy nodes.  These nodes likely experienced lower long-wave radiation than under-canopy 
nodes, and but were exposed to higher short wave radiation in the spring.  This further validates 
the claim by Jost et al., (2007) that it is important to consider detailed forest inventory, rather 
than the binary variable of forest cover, to derive better estimate of snow cover variability. 

Our findings on the effect of soil depth on VWC variability are contrary to those of 
Bogena et al. (2010), but agree with Grant et al. (2004), who noted an increase in variability at 
deeper soil depths in a comparably sized mountain catchment.  Similar to Grant et al. (2004), we 
attribute this effect to increased heterogeneity of soil properties at greater depths.  We also share 
agreement with Grant et al. (2004) on the lack of a correlation between mean VWC and 
variability (CV), except for near surface measurements.  This agreement suggests that there are 
unique characteristics of VWC variability in mountain catchments that do not follow common 
findings in a number of other studies [Famiglietti et al., 1998; Western et al., 2002; Bogena et al., 
2010]. 

2.5.3 Network measurement validation and sampling design  

The ability of the WSN to capture catchment-wide snow depth mean and variability has 
been confirmed through statistical and qualitative comparisons with the data obtained by the 
LIDAR and synoptic surveys.  Given this agreement, it is reasonable to suggest that a stratified 
placement strategy based on evenly instrumenting major physiographic parameters performs well 
with regard to characterizing the distribution of catchment-wide snow depth at the km2 scale.  
Some discrepancies between the snow depth data sets can be attributed to general sensor 
calibration error.  Reflection due to canopy cover may also have introduced noise into the 
LIDAR data set.   

The approximate 30-40 m support of the snow depth variogram resulting from the 
geostatistical analysis of both LIDAR and network data explains why snow depth surveys did not 
yield distinct variograms.  The 125m spacing between survey locations did not capture smaller 
scale variability.  If similar length variogram support is validated through future plot-scale 
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surveys, the resulting finding will underscore sampling design: to optimize placement of snow 
depth sensors, a stratified sampling strategy should be used to cover the range of physiographic 
parameters on the site, but nodes should not be placed within a variogram range (in this case 
30m) of each other since values within this range can be confidently estimated through 
geostatistical methods (e.g. Kriging).  

Given the near-normal distribution of snow depth exhibited in the LIDAR data set 
(Figure 2.13), an under-sampling of the catchment would not likely capture the extreme values of 
snow depth.  Although the mean and variance estimates were not significantly affected, an 
example of such under-sampling is given by WSN measurements on March 22, which did not 
capture the relatively low values in the northwestern region of the catchment, and relatively high 
values in some of the open meadow regions (dark and light locations in Figure 2.13).  Future 
placement of a set of sensor nodes in these areas is expected to minimize this bias in coming 
studies.  The nature of WSN technology will permit for the seamless integration of these sensing 
locations into the existing network.  Application of non-linear classification techniques [Balk and 
Elder, 2000; Molotch et al., 2005b] could also reveal if the un-instrumented regions can be more 
accurately predicted from the instrumented subset of the catchment.  

The existence of three sensor-node locations (Figure 2.13, yellow stars) that consistently 
reflected snow depth mean suggests that it may be possible to identify key measurement 
locations which capture mean snow depth across the catchment.  This notion has been addressed 
in previous studies [Molotch and Bales, 2005], but analysis of multi-year data is required to 
validate this claim.  These points are not associated with any particular physiographic features 
that could explain this behavior, suggesting that specific spatial coordinates, rather than 
physiographic attributes, could also serve as indicators of the overall catchment mean. 

The discrepancies between the distributions of soil moisture for the synoptic survey and 
network data were likely influenced by effects of spatial scaling.  If the network readings 
represent the catchment wide VWC distribution, then VWC variability increases over time as the 
soil begin to dry out after snowmelt.  This increase in variability may not have been captured by 
the 125m spacing of the synoptic survey.  This is particularly true in the case of the September 
VWC study, in which the network captured high VWC values in meadow regions, thus shifting 
the estimate of the mean, and increasing overall variability.  The layout of the synoptic survey 
may have under-sampled the wet meadow regions, while the spacing between survey locations 
may have missed the short-scale variations in VWC.  Sampling error could also have been 
introduced by the hand-held GPS units used in the study.  

  Although discrepancies exist between the VWC values captured by the network 
and synoptic surveys, results suggest that a strategically placed sensor network can effectively 
characterize the distribution of catchment-wide soil moisture at the km2 scale.  This follows in 
agreement with Grant et al. (2004), who noted that catchment-wide soil moisture could 
effectively be characterized by few samples.  As Western et al. (2002) noted however, it may be 
of more interest to understand the detailed spatial arrangement of VWC, and effects of 
physiographic parameters on soil moisture.  Such a detailed spatio-temporal analysis [Famiglietti 
et al., 1998; Williams et al., 2009; Bogena et al. 2010] requires a more spatially dense synoptic 
data collection.  

2.6 Conclusions 
When compared to synoptic surveys and dense LIDAR data, a sensor-placement strategy 

based on coverage of physiographic parameters can effectively capture the mean and variability 
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of snow depth across a catchment.  Snow depth was also shown to vary significantly based on 
canopy cover.  This variability exhibited temporal stability when comparing under-canopy and 
open terrain measurements.  VWC variability increased significantly following snowmelt, 
making it difficult to gage sampling design given the density of the synoptic survey VWC data.  
While the network appeared to capture this increase in variability in the springtime, more 
detailed plot-scale surveys will be carried out in the future to validate this behavior.  A weighted 
sampling approach, based on the relevance of physiographic parameters and physically based 
soil moisture, and snowmelt dynamics, may be more suitable for characterizing the VWC 
behavior at the km2 scale.  

Although WSN technology is continuously improving, no off-the-shelf solution exists for 
the harsh conditions experienced during most environmental monitoring campaigns.  
Additionally, few detailed findings are available in previous WSN studies to make conclusive 
statements regarding their observed performance.  Results gathered from the 57-node WSN mesh 
described in this chapter partially fill that gap, by demonstrating a cost-effective means by which 
to instrument a large, and remote area in complex terrain.  Low-power and reliable performance 
can be achieved by proper evaluation of hardware behavior in the specific field conditions.  This 
deployment successfully covered a 1.5-km transect with a conservative 50 m node-to-node 
distances, and continues to reliably transmit data from more than 300 sensors every 15 minutes.   

The sheer scale of future monitoring campaigns will demand many network nodes, 
making it impractical to optimize every single link.  In situ network behavior must be quantified 
to derive average indicators of performance.  Gathered over a span of several days, PDR and 
RSSI should be sufficient to estimate operational path behavior.  It is expected that these network 
characteristics will vary based on site-specific terrain.  Unless obvious physical obstacles exist 
(e.g. large rock outcroppings or metal surfaces blocking a path), the average maximum 
transmission distance extracted from such an analysis should be sufficient to inform network 
design. 

An open mindset to current limitations of the hardware, and monitoring of network 
statistics lead to an iterative deployment approach, which can be split into three distinct phases. 
Since maintaining reliable network performance is the most important design imperative, trading 
transmission distance for a robust, hardened network is the proper decision.  More repeater nodes 
can be added to improve connectivity and increase connection redundancy, but only collection 
and analysis of network statistics can shed light on actual causes of network failure, and lead to 
rational strategies for improving performance.  Using this approach, the network presented in 
this study experienced significant boosts in performance, and no further collapses. 

The implementation of the above deployment strategies should lead to successful WSN 
deployments of up to 100 nodes, and spanning 1-2 km2.  Environmental monitoring deployments 
of networks beyond this size should use multiple network managers, each responsible for 
networks of up to 100 motes.  This will reduce the likelihood of large-scale network outages 
caused by bottleneck effects, while simplifying the identification and management of network 
behavior.  Such architecture permits for manageable approach to scaling, when considering the 
instrumentation of large areas such as entire basins, or mountain ranges.  The network described 
in this chapter is a prototype for monitoring such large areas, and future work will investigate the 
feasibility and methods of scaling this deployment strategy to cover significantly larger areas.  
Using these heuristics, deployment time can be significantly reduced, thus allowing more 
resources to be devoted to the actual scientific program. 
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Chapter 3: Sensor Placement Strategies for SWE 
Estimation in the American River Basin 

 
The previous chapter validated the ability of distributed WSNs to resolve snowdepth 

variability across catchment-scale regions. When scaling this approach to monitor much larger 
basin-scale areas, individual networks should be deployed independently, and the resulting data 
from each network must be integrated to resolve hydrologic processes across the basin. As 
described previously, the deployment of clusters of networks ensures a manageable operational 
approach. In this sense, each network cluster can be abstracted as a single sensor at the basin 
scale, providing estimates of hydrologic variables for each catchment. These catchment-wide 
readings can then be weighted accordingly to derive a basin-wide estimate. The purpose of this 
chapter is to develop a sampling methodology (or sensor placement strategy) by which 
individual sensor network locations can be selected to most optimally derive the state of a 
hydrologic parameter across the wider basin. Of primary interest will the measurement and 
estimation of snow water equivalent across the American River Basin in the Sierra Nevada of 
California.  

3.1 Introduction 
Water managers often rely on a few point estimates of snow water equivalent (SWE) in a 

given mountain basin to inform streamflow forecasting. Accurate estimation of SWE across a 
basin, and thus forecasting of snowmelt runoff, particularly in a changing climate, is impeded by 
both limited on-ground measurements and high inter-annual variability in snow accumulation 
and ablation. Snowpack variability is driven by the intersection of climate variability with 
complex physiographic spatial patterns [Bales et al., 2006]. 

Though SWE is measured at more than 1700 points across the western U.S. through a 
combination of automated snow sensors and manual snow courses, these measurements are 
insufficient to resolve SWE variability at the basin scale [Bales et al., 2006; Rice and Bales, 
2010]. Deployed with the intent of informing statistical streamflow predictions, the majority of 
current snow courses and snow sensors are placed in easily accessible, flat, open, and relatively 
mid-elevation locations where snow cover is persistent. These physiographically homogeneous 
locations result in redundant observations that may not reflect basin behavior as a whole. 
Moreover, it has been shown these sensors are not representative of immediately surrounding 
areas [Molotch and Bales, 2006], and that the bias between the surrounding terrain and snow 
sensors are of greater magnitude during the ablation period [Meromy et al., in press]. This 
strategy under samples high elevations where snow can linger into the summer months, and low 
elevations where melting can occur throughout the winter [Bales et al., 2006]. Current 
operational locations do not reflect the actual spatial distribution patterns of SWE, nor the spatial 
behavior of snowpack accumulation or ablation patterns.  

Ideally, SWE can be estimated at a resolution that reduces the subgrid heterogeneity to a 
level where the majority of variability can be modeled explicitly [Blöschl, 1999]. Smaller-scale 
(<100 km2) SWE-distribution approaches, using various geostatistical techniques such as binary 
regression trees and Kriging, have been implemented successfully, but require dense 
measurements which are typically confined in space and time [Balk and Elder, 2000; Erikson et 
al., 2005; Erxleben et al., 2002].  
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Satellite-derived snow-covered area (SCA) measurements aid in distributing ground 
measurements at the basin scale, and are appealing from a real-time operational hydrology 
perspective [Painter et al., 2009; Rice et al., 2011]. Remotely sensed SCA products have been 
used in conjunction with ground-based SWE measurements via various interpolation strategies to 
build spatial SWE estimates [Fassnacht et al., 2003; Molotch et al., 2004; Harshburger et al., 
2009]. These estimates have proven reliable for predicting existing snow stations, but do not 
create representative estimates of basin-wide SWE distribution due to the inherent bias in ground 
measurements. It is also not known to what extent the improvements in water balance estimates 
will quantitatively affect basin-scale water forecasting. 

Energy-balance and precipitation-based models have been implemented on the basin 
scale and shown to compare well to snow-sensor measurements [Shamir and Georgakakos; 
2006]. Reconstruction models provide an energy-balance based retrospective tool for estimating 
SWE distribution without using ground observations [Cline et al., 1998; Molotch and Margulis, 
2009; Rice et al., 2011]. These models use satellite derived melt-out dates and SCA time series 
to back calculate SWE using an energy balance for each grid element. While this method does 
provide a retrospective, unbiased, and independent estimate of SWE historical distribution, it can 
not be used to make real-time SWE estimate. 

Sensor placement falls under the larger umbrella of sampling design, a robust and 
growing field within statistics and computer science that has seen limited reported application to 
snow hydrology. Expanding the current snowpack sensing infrastructure requires the 
determination of how many sensors (or sampling locations) are required and where they should 
be placed within the basin to maximize the amount of captured information.  Molotch and Bales 
(2005) and Rice and Bales (2010) searched for optimal sensor placements that capture the mean 
and variability of SWE across a larger grid element, but did not evaluate potential resulting 
placement error or the amount of information captured by would-be placements. While it is 
generally acknowledged that improved strategic sampling is needed to build better large-scale 
sensor deployments and SWE estimates [Bales et al., 2011], no quantitative methods or 
performance metrics have been proposed.  

This chapter will use a multi-year historical reconstruction of SWE for the American 
River basin in California's Sierra Nevada to identify sensing locations for accurate, real-time 
estimation of basin-wide SWE. This research addresses three questions. First, what properties of 
basin-wide SWE distribution are temporally stationary? Second, how can we use these properties 
to inform sensor placement? Finally, can we develop a quantitative sampling method to generate 
sensor placements based on historical SWE observations?  A more general aim is to develop a 
ground-based sampling strategy that will become a core element of a larger water-information 
system for the Sierra Nevada and other mountain basins. 

3.2 Background 
3.2.1 Sampling strategies  

Given a large set of observable locations, selection of the “most informative” subset is a 
problem faced within numerous disciplines. Selecting ideal sensing locations for observation of 
spatial phenomena, in our case SWE, is a direct instance of this problem. One sensor-placement 
approach is to assume that sensors exhibit disk-shaped sensing regions, and to search for a set of 
sampling locations that provides ideal spatial coverage; this approach is formalized as the “art 
gallery problem” in the computer science literature [Gonzalez-Banos and Latombe, 2001]. 
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Within snow hydrology, the concept of circular impact areas has been applied to estimate 
unobserved locations through the use of inverse distance weighting (IDW), optimal distance 
averaging (ODA), and Kriging [Fassnacht et al., 2003; Carroll, 1995]. These techniques are 
often combined with methods such as linear regression against elevation to derive more robust 
estimates of SWE [Carroll and Cressie, 1996]. While these studies have validated the efficacy of 
these approaches for estimation purposes, these principles have not been applied to sampling 
design.  

It is well documented that SWE and snow depth vary with physiographic variables, such 
as elevation, aspect, slope, and canopy cover [e.g., Fassnacht et al., 2003]. A reasonable 
sampling strategy would be to “evenly sample” across each predictor variable. Such strategies 
have been described within Computer Science. (see Latin hypercube sampling [Mackay et al., 
1979]). Unfortunately, it is difficult to quantify the effectiveness of such a placement scheme 
since evenly sampling physiographic features may not adequately capture the relative importance 
of any given feature. 

An alternative approach is to couple sensor placement with modeling. This involves 
developing a statistical model of a phenomenon based on previous observations, and then 
designing a placement scheme that improves model performance. The statistics community has 
addressed the question of maximizing the quality of parameter estimates in linear models 
through sampling design [e.g., Atkinson, 1988]. Algorithms have also been developed to select 
sampling locations to yield the best possible “error reduction” in linear models [Das and Kempe, 
2008].  

A specific modeled-based approach, developed by Cressie [1991], involves developing a 
Gaussian Process model for an underlying spatial phenomena, either from expert knowledge or a 
pilot deployment.  Use of this inference framework assumes underlying Gaussian distributed 
data. The power of this Bayesian technique stems from its ability to provide variance estimates 
for predictions made at un-instrumented locations, allowing us to frame a sensor placement 
approach by selecting those locations which most reduce model uncertainty across the estimated 
field. The following section will layout a detailed derivation of this framework. 

3.2.2 Spatial Estimation of SWE 

Given measurements provided by a sparse set of sensors, a common problem in distributed 
sensing deals with the estimation of a process at the set of remaining uninstrumented locations. 
In our example of SWE sensing, this involves using SWE measurements from a number of 
deployed WSNs to estimate SWE values in the remainder of the basin. One common approach is 
to use simple linear regression [Wackerly, 2008; Fassnacht et al., 2003]. These formulations, 
however, do not stress the uncertainty of the prediction, or the underlying covariance structure of 
the data. As will soon become evident, for sampling design it desirable to obtain these 
uncertainty estimates along with the prediction. A powerful way to obtain a prediction of a 
spatial phenomenon, as well as its corresponding uncertainty, is through the use of a Gaussian 
Process (GP) model [Rasmussen, 2006], which can be derived by embedding the standard linear 
model into a Bayesian framework. 
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3.2.3 The Bayesian Linear Model 

Begin with a training set D  containing n  observations, 
 

D ={(xi , yi ) | i =1,...,n},  (1) 
 

where x  is an input vector of dimension D , and y  is the observed one-dimensional dependent 
(output) variable. If all input vectors are part of a nD×  design matrix, and the corresponding 
outputs are collected in the vector y , the training set can be written as D = (X , y ) . The 
Bayesian linear regression model is then given by 

 
f (x ) = x Tw , y = f (x )+!  (2) 

 
where yxf →:  maps an input vector to an output value, and w  is the parameter (weight) 
vector. In this formulation it is assumed that the observed values of y  contain an additive 

normally distributed noise ε  of mean zero and variance ! n
2
 such that 

 
! ~ N (0," n

2 ),  (3) 
 
where N(!,!)  denotes a normal distribution. Rasmussen (2006) shows that through this noise 
assumption, when given the parameters and design matrix, the probability density function of the 
observation (also known as the likelihood) takes the form 

 
p ( y | X ,w ) = N (X Tw ,! n

2I ).  (4) 
 
In this case, a zero mean prior, with covariance pΣ  is placed over the weight vectors, such that 

 
w ~ N (0,! p ).  (5) 

 
The application of Baye’s rule allows for the calculation of the posterior distribution of the 
weights, once the set of input and output vectors has been observed. It can be shown that the 
resulting relation takes the form of a Gaussian distribution: 

 

p (w | X , y ) ~ N ( 1
! n
2
A !1Xy ,A !1)  (6) 

 
where 12= −− Σ+ p

T
n XXA σ . Now it is possible to make a prediction for a test input *x  by 

calculating a weighted average over all possible parameter values. The predictive distribution is 
given by 
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p ( f * | X , y ,x*) = ! p ( f * | x*,w ) p (w | X , y )dw = N ( 1
! n
2
x*
T A "1Xy ,x*

T A "1x*).     (7) 

 
Equation 7 not only provides a prediction for a given input, but it is now also possible to derive a 
confidence estimate for this prediction. 

3.2.4 Function Space Projections and Gaussian Processes 

A Gaussian process (GP) is a collection of random variables, any number of which have a 
joint Gaussian distribution. The previously described regression technique can be posed as GP 
regression to reconstruct an underlying signal f  given measurements with noise ε . Given a 
process f (x ) , the GP is fully described by it’s mean function m(x )  and covariance function 
k (x ,x ') : 

m(x ) = E [ f (x )]  
 

k (x ,x ') = E ( f (x )!m(x ))( f (x ')!m(x '))"# $%.     (9) 

 
To denote the distribution over functions, the GP is written as 
 

f (x ) ~GP m(x ),k (x ,x ')( ).     (10) 

 
In our example application, f (x )  will be the estimated SWE, and the input vector x  is 

the observation of SWE made by a WSN. Without loss of generality, the mean function can be 
taken to be zero. Then, the previously presented Bayesian linear regression model is a GP 
described by 

 
E f (x )!" #$=m(x ) = x

T E w!" #$= 0  

 
E f (x ) f (x ')!" #$= cov( f (x ), f (x ')) = k (x ,x ') = x

T E wwT!
"

#
$x ' = x

T % p x '.   (11) 

 
For more information on GP’s see Rasmussen (2006). 

3.2.5 Near-optimal Sensor Placement 

When choosing from a set of possible sensing locations, a quantitative sampling design 
seeks to identify those sampling locations that maximize the amount of acquired information 
(minimize the overall uncertainty). The mathematical framework of Information Theory is one 
means by which to quantify the amount of uncertainty that can be informed within a process 
[Shannon, 1948]. A direct measure of uncertainty is given by Entropy [Pierce, 1980]. 

Adapting the notation of Krause et al. (2007), the problem can be formulated as finding 
the n  best sensing locations, given a finite subset V of possible locations, and a finite set of 
already instrumented indices A . The Entropy of this placement depends on the probability 



	  

	  

39 

structure, and more specifically the covariance, of the underlying sensing space. The conditional 
entropy of the unobserved locations V \ A  after placing the sensors at locations A  is given by 

 
H (XV \A | X A ) = ! " " p (xV \A ,xA )log p (xV \A | xA )dxV \AdxA       (12) 

 
where XA and XV\A are sets of random variables at locations A  and V \ A . Minimizing this 

property has the effect of finding the set of sampling locations A *  which are most uncertain 
about each other [Kemppainen et al., 2008; Lee and Queyranne, 1995]. More formally, 

 
A * = argminA!V :|A |=n H (XV \A | X A )      (13) 

 
This optimization problem is also known an D-optimal Design, and has been shown to be 

NP-hard [Karuse et al., 2007]. The main drawback to this approach is that the selection process 
favors locations which are most uncertain about each other, to the extent that it places sensors so 
far away from each other as to push them near the boundary of the sensing region. Sensing near 
boundary regions of a sampling space has the tendency to waste information, since it may not 
fully utilize the entire coverage area of a sensor. 

This approach can be augmented by reformulating the problem to search for the subset of 
sensor locations that most significantly reduce the uncertainty about estimates in the remainder 
of the space. Let the space of discrete locations be V = S !U , where S  is the set of positions 
where placement is allowed, and U  is the set of locations where no placement is possible. The 
goal then is to select sampling locations to reduce uncertainty at uninstrumented locationsV \ A . 
Formally, this equates to computing the optimal set A *  where 

 
A * = argmaxA!S :|A |=n H (XV \A )"H (XV \A | X A ).       (14) 

 
This approach has the intended effect of maximally reducing the entropy of the 

uninstrumented space. The above expression was introduced by Guestirn et al. 2005, and is 
equivalent to maximizing the Information Theoretic quantity of Mutual Information (MI). 
Krause et al. (2007) prove that the problem of maximizing Mutual Information is NP-hard, but 
provide a alternative polynomial time near-optimal algorithm with a constant factor guarantee. 
Algorithm 3.1 is greedy, adding sensors in a sequence by choosing the next sensor to maximally 
increase the mutual information of the placement. More formally, the goal is to select a sensor y  
to maximize 

 
MI (A! y )"MI (A )  (15) 

 
which the authors show to be equivalent to  
 

H ( y | A )!H ( y |V \ (A" y )).  (16) 
 

such that 
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 A * = argmaxA!S :|A |=n H ( y | A )"H ( y |V \ (A# y )).      (17) 
 
In general, model-based sampling design presents a difficult computational problem, in 

many cases leaving little alternative than the use of greedy sensor placement algorithms. Rather 
than finding the optimal set of sensor locations, greedy algorithms place sensors one at a time, 
with each step incrementally maximizing the Mutual Information of a placement. Although 
greedy algorithms cannot guarantee a truly optimal solution, they are considered near-optimal, 
and provide performance guarantees, ensuring that algorithm performance in no worse than some 
fraction of the optimal solution [Guestrin et al., 2005; Krause et al., 2007]. 
 

input: VVΣ  (covariance matrix), n (number of sensors), V = S !U  
(locations) 
A!"  
for 1=j  to n  do !A  

for y ! S \ A  do ! y !
" y
2 "# yA#AA

"1 #Ay
" y
2 "# y !A# !A !A

"1 # !Ay
 

y *! argmax y"S \A ! y  
A! A" y  

 
Algorithm 3.1: Greedy algorithm for maximizing mutual information [Karuse et al. 2007]. For 
notational convenience, !A =V \ (A! y ) . Mutual information is calculated using elements of the 
covariance matrix of the locations.  

3.2.6 Regionalization (clustering) of data  

In certain conditions the parameterization of a single statistical model may not be 
sufficient to explain the variability of an entire data set. In the case of SWE, it may be necessary 
to use multiple models, each of which describes a subset of the observed data. Effective grouping 
of data into homogenous subsets has been shown to improve model performance [Chipman et al., 
2002; Hannah and Dunson, 2011], and is a common pre-analysis step within hydrology 
investigations [Serreze et al., 1999; Clark et al., 2001]. Observations are often grouped by 
geographic proximity [Moore and McKendry, 1996], but more complex statistical methods have 
also been applied to snow data such as principal component analysis [McGinnis, 1997; Cayan, 
1996], and self-organizing maps [Fassnacht el al., 2010].  

Wu and Lui [2012] searched for statistically similar regions within soil moisture data 
using a coarse-grained ordering approach. This method assumes that while overall moisture 
levels will vary significantly throughout space and time, certain locations will typically be drier 
or wetter than others. This phenomenon is measured by sorting from least to greatest, by wetness, 
all locations at each time step and analyzing the stability of this ordering over time. Such 
ordering is ultimately used to divide the study area in homogeneous regions, or clusters, roughly 
corresponding to wetter and drier areas which can be explained by separate statistical models. 
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3.3 Methods 
An eleven-year spatially distributed SWE data set for the American River basin, with a 

grid size of 500 x 500 m, was used to determine fixed measurement locations for estimating 
SWE during snowmelt under a range of inter-annual climate conditions. The eleven years of data 
were then divided into training and testing sets, the first eight years (2001-2008) were used to 
train the sensor placement algorithm and to develop a historical SWE covariance matrix, and the 
next three years (2009 -2011) were used for evaluation of the placement algorithms.  

3.3.1 Study area   

The American River flows westward from the crest of the Sierra Nevada, with its three 
forks emptying into Folsom Reservoir. Basin elevations range from 200 m at Folsom reservoir to 
over 3000 m in the Desolation Wilderness of the Eldorado National Forest. Snowfall typically is 
greatest and persists the longest at higher elevations.  Of the 4741 km2 above Folsom, 2155 km2 
is above 1500 m, and 242 km2 is above 2400 m. Pixels with mean elevations below 1500 m were 
not used in the analysis, as these elevations do not significantly contribute to overall SWE in the 
American River basin (Figure 3.1). 

 

 
Figure 3.1 The American River Basin above 1500 m elevation, divided into approximately 7000 
500-m square pixels. Snow-pillow and snow-course locations are obtained from California 
Cooperative Snow Survey. Optimal sensing locations selected through the method proposed in 
this paper are shown as green squares. 
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3.3.2 Data  

The spatial SWE dataset used in this analysis was developed using a pixel-by-pixel 
energy-balance reconstruction of snowmelt, summed back in time from when snowcover 
disappeared to the beginning of seasonal snowmelt.  Methods are summarized below, with 
details given in Rittger et al. [2011] and Rittger [2012].  

The reconstruction method combines the satellite-derived snow-cover-depletion record of 
the melt rate to retrospectively estimate how much snow had existed at every pixel. The 
technique has been validated in the Sierra Nevada [Cline et al., 1998; Rittger et al., 2011] and 
applied to large basins at multiple scales [Molotch and Margulis, 2008; Rice et al., 2011]. SWE 
was estimated using a snowmelt model that combines both energy-balance and temperature-
index methods [Brubaker et al., 1996]. Air temperature and incoming solar and longwave 
radiation were downscaled from 1/8° NLDAS2 reanalysis data [Cosgrove et al., 2003] to adjust 
for elevation, topography and vegetation [Dubayah, 1992; Dozier and Frew,1990; Garen and 
Marks 2005]. Reflected solar radiation was estimated using MODSCAG albedo [Painter et al., 
2009] and outgoing longwave radiation was estimated using the Stefan-Boltzmann equation 
assuming the snow temperature was the minimum of air temperature and 0° C. 

Fractional SCA used to scale the potential melt estimate for each pixel was derived from 
the MODSCAG model [Rittger et al., 2012; Dozier et al., 2008]. Validation of maximum SWE 
was performed in a 3x3 grid cell region around each snow pillow and snow course by calculating 
the mean error in the nine cells and the best cell within that region. For snow pillows the error 
RMSE was 242 mm and 186 mm with a mean difference of 19 mm and 3mm. For snow courses 
the RMSE was 296 mm and 230 mm with a mean difference of 77 mm and 18 mm. Snow 
pillows are considered a better validation because they measure snow daily or hourly, while 
snow courses only measure SWE on the first of each month. The MODIS satellite became 
operational in the year 2000, limiting the present work to 11 years of reconstructed data. Figure 
3.2 shows the reconstruction product in the American River Basin through the 2006 melt season. 
Prior to modeling, SWE training data were standardized each day by subtracting the pixel mean 
and dividing by the standard deviation. Since mean SWE varied significantly each season, this 
standardization step was necessary to extract stationary features of SWE variability. Historical 
monthly snow-course and daily snow-sensor data were obtained from the California Data 
Exchange Center (http://cdec.water.ca.gov). There are 12 snow pillows and 26 snow courses in 
the basin (Figure 3.1). 
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Figure 3.2 (a) Snow course, snow pillow, and interpolation product over 2006 melt season (b) 
Time slices of interpolation product shown for May 1, May 15, and June 1.  

 

3.3.3 Clustering analysis  

Multiple clustering methods were performed, investigating the existence of stationary 
subsets to inform sensor placement within the American River SWE data. The first and simplest 
method, called global clustering, treated the entire American River basin as one cluster on which 
to conduct sensor placement. The second method, geographic clustering, intended to capture 
smaller-scale SWE variability by delineating the larger basin into six third-order sub basins. The 
third method, rank clustering, clustered similar regions in space through the analysis of historical 
behavior of each SWE pixel. Daily SWE data were ordered from least to greatest, resulting in a 
“rank” for each pixel for every day studied. The sum of ranks was taken for all days studied, and 
pixels were then clustered based on sum rank values using a K-means algorithm as the number of 
clusters used was varied between two and eight. K-means is a simple clustering algorithm that 
minimizes the Euclidean distance between each clusters’ centroid in K-dimensional space and 
the data within that cluster [Mackay, 2003]. K-means used here was one dimensional, as a simple 
tool to ensure that the most similarly ranked pixels were assigned to the same clusters. Rank 
stability was evaluated by plotting histograms of pixel rank  [Wu and Lui, 2012]. It was observed 
that although ranking were not necessarily stable throughout the year, rankings during melt 
seasons were relatively stable (Figure 3.3). It is difficult to establish a consistent “melt-season” 
definition year to year; during our analysis simply using April 15- June 1 produced the stability 
needed to carry out our analyses.  
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Figure 3.3 (a) One pixel chosen randomly from each elevation band (b) time series SWE for 
each pixel (c) Ranks across melt season. 

 

3.3.4 Dimensionality reduction   

Both GP modeling and a number of other placement schemes rely heavily on the 
covariance matrix of the input data. Performing the needed operations with covariance matrices 
requires the matrix to be well-conditioned and close to full rank. Poorly conditioned or rank 
deficient covariance matrices can result from two or more pixels having SWE time series that are 
too similar. If all the information known about one pixel is very close to that of another, it 
becomes computationally impossible to store the difference within a covariance matrix that must 
describe the entire space. This results in covariance matrices that require computationally 
impossible numerical precision to be operated on. 

A solution to this problem is to reduce the dimension of the input data – group highly 
statistically similar pixels together, and use representative pixels from each independent group in 
modeling and placement algorithms. Dimensionally-reduced data are at the core of our 
placement and modeling algorithms, and then projected back onto the full space for final 
predictions. A K-means algorithm was applied to all the clusters resulting from the previous 
section, isolating sufficiently independent time series, from which a historical covariance matrix 
could then be constructed. It should be noted that unlike the K-means approach that was used 
above to build rank based clusters, K-means was used here in a higher dimensional space to find 
and group pixels with the most similar time series. While we are analyzing approximately 7000 
pixels, the nature of the input data allows us to effectively operate on 50-300 representative 
pixels per cluster. An important implication here is that the nature of the underlying dataset 
ultimately determines the precision with which sensors can be placed.  
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3.3.5 Sensor Placement 

Sensor-placement algorithms were applied within clusters, and constructed under the 
premise of maximizing information from historical data. The approach was evaluated by placing 
sensors using historical training data for 2001-2008, and evaluating the placements on data sets 
in years 2009-2011. It is important to note that years 2009-2011 were used strictly for validation 
of the placement approach, and were not in any way used to inform the placements or 
estimations. Two sensor-placement schemes were compared: Mutual Information (MI) based 
placement and random placements chosen from the dimensionally reduced subset described in 
the previous section. A MATLAB toolbox for Submodular Function Optimization was used to 
carry out the optimization problem for the MI-based placement [Krause et al., 2010]. 

In the current analysis, “sensor” refers to an instrumented 500 × 500 m pixel assuming 
that the average SWE in that area is accurately measured by the sensor.  In practice, a “sensor” of 
this scale consists of 10-20 individual, fixed snow-measurement nodes (see chapter two) that 
strategically sample the pixel and are combined to give a pixel-scale SWE value [Rice et al., 
2011; Bales et al., 2011]. When comparing global placement to cluster-based placements, one 
must decide in what order to add sensors to clusters. Here, sensors were simply added 
numerically by cluster number (e.g. for 5 clusters and 12 total sensors placed, clusters 1 and 2 
each have three sensors, and clusters 3 through 5 each have two sensors).  

3.3.6 Modeling   

To evaluate potential placements, Gaussian Process models were used to make 
predictions of SWE based on historical observations as well as observed locations selected for 
each placement scheme. The 2001-2008 data were used to build covariance matrices, effectively 
“training” the Gaussian Processes model. The covariance matrix was then used in conjunction 
with the locations selected by each sensor placement to derive predictions for years 2009-2011 at 
un-instrumented locations using equation (1). Predictions were then back-standardized using the 
sample mean and variance of observed locations from the training set. This constraint meant that 
it was necessary to place at least two sensors within each cluster, in order to calculate a sample 
standard deviation.  

3.3.7 Evaluation  

The root mean square error (RMSE) between the original SWE product (years 2009-
2011) and model output was used to evaluate the efficacy of a given placement. RMSE was used 
to compare placement approaches, the effect of adding more sensors, as well as the effect of 
varying the number of clusters. To evaluate placements across multiple time steps, average 
RMSE was calculated as:  

AvgRMSE =   
1
J

1
T

(x! − x!)!!
!!!

n

!

!!!

!

!!!

 
(18) 

 

Where  ! is the number of trails conducted, ! is the number of time slices used, ! is the 
number of pixels analyzed, !  is estimated SWE, and !  is actual SWE. This formulation of RMSE 
permitted us to cumulatively evaluate RMSE across three years. RMSE was only calculated for 



	  

	  

46 

pixels with actual SWE above ten mm, with the assumption that nearly snow free pixels can be 
realized real time via satellite SCA products. For random placements, ten trials were conducted 
and mean RMSE was computed (! = 10), while MI based placements required RMSE only to be 
computed once (! = 1). 

3.4 Results 
3.4.1 Rank-cluster analysis   

Rank-based clustering behavior was consistent throughout the eight-year analysis period. 
Figure 3.4 shows results from the 2006 season, which was comparable to those seen in other 
years. Rank-based clustering resulted in clusters that roughly followed basin elevation bands 
(Figure 3.4a). Higher variability was typically observed in higher-elevation clusters (Figure 3.4b). 
On April 1st, 2006 (shown here to be representative of the beginning of melt) standard deviations 
varied between approximately 400 mm for the highest SWE cluster (cluster 5, 2100 mm peak 
SWE) to 150 mm for the lowest SWE cluster (cluster 1, 700 mm peak SWE). In the 2006 season, 
each cluster exhibited a noticeably unique melt-out date ranging over a two-month span from late 
April to late June. Rank-based clusters divided the bimodal SWE distribution of the whole basin 
(April 15, 2006) into near-Gaussian distributions of various spreads (Figure 3.4c). Rank-based 
clusters divided physiographic predictor variables primarily by elevation (Figure 3.5), generating 
near-Gaussian distributions of elevation, with the exception of the lowest elevation-cluster, 
which was cut off at 1500 m as described in the methods section. No notable correlation was 
seen between elevation and aspect within clusters. 

 

 
Figure 3.4 (a) Five rank based clusters (b) Cluster mean and standard deviation over 2006 
season (c) Histograms of SWE by cluster for April 15. 
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Figure 3.5 Histograms of physiographic variables divided by rank-based cluster.  

 
Inter-annual differences between rank-based clusters ranged from 22 to 41%, with a 

median value of 31% (Table 2.1). This is a measure of stationarity that evaluates if a pixel 
retained its cluster assignment between these two periods. Differences were larger when 
comparing results for fifteen day periods within one year, with values of 0.13-0.67 and a median 
near 0.5 (Table 2.2). Cluster assignments varied significantly when comparing different periods 
during a single season, but agreed when comparing multiple seasons to each other.  
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Apr 15-30 May 1-15 May 15-31 June 1-15  
0.322 0.548 0.634 0.671 Apr 1-15 
 0.443 0.551 0.592 Apr 16-30 
  0.196 0.281 May 1-15 
   0.132 May 16-31 
     

Table 3.2 Intra-melt-season cluster difference, fraction of pixels in a different cluster between 
periods 

3.4.2 Modeling Results  

Analysis of sensor placement methods showed that average RMSE over the three years 
studied (2009-2011) decreased with the number of sensors placed (Figure 3.6). Diminishing 
returns occurred between 20 and 30 sensors placed, after which placing further sensors, or taking 
additional samples, yielded little improvement in RMSE. 

 

 
Figure 3.6 Average RMSE vs. sensors placed , averaged over 2009-2011 melt seasons. Rank-
based results shown for 5 clusters. 

 
Sensor placement within a rank-based clustering approach outperformed geographic 

clustering and global placement. Within each clustering method, MI based sensor placements 
generally offered improvements in RMSE when compared to random placements within the 
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between 0 and 150 mm compared to a random approach, while MI-based placements within 
rank-based clusters yielded between 30 mm greater and 30 mm lower RMSE than random 
placements.  

To investigate temporal RMSE behavior, and taking the 2009 season as a typical year, 
daily RMSE for rank-based and geographic clustered placements showed a general decrease 
approaching melt-out of the snowpack. Global placement showed unstable and high RMSE 
values (Figure 3.7). Rank-based cluster RMSE was consistently below 200 mm, while geo 
clustering had RMSE values below 500 mm. Rank-based clustering, along with MI-based sensor 
placement showed the best RMSE performance throughout the season. 

 
Figure 3.7 (a) 5, 50, and 95th percentiles of SWE across whole basin (b) RMSE over 2009 melt 
season. Rank-based cluster results shown for five clusters. 

 
Given the performance of a rank-based clustering approach, an analysis was carried out 

to determine the effect on RMSE when varying the number of clusters while keeping the number 
of sensors per cluster steady.  RMSE generally decreased as more rank-based clusters were used 
in the placement (Figure 3.8), where the use of one cluster is equivalent to a global clustering 
approach. RMSE decreased from a range of 400-600 mm in the case of global placement, to less 
than 200 mm when using eight clusters. Diminishing returns in RMSE became apparent in the 
three to six cluster range, after which further rank-based clustering offered no significant 
improvement in RMSE. MI-based placement offered slight improvements over random 
placement. 
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Figure 3.8 Average RMSE vs. number of rank based clusters. At lease two sensors are required 
per cluster. 

 
Figure 3.9 shows the final proposed sensing regions resulting from coupling rank-based 

clustering with MI-based sensor placement. As discussed, the nature of the input data limits the 
precision of the covariance structure. Once optimal locations were selected using the placement 
algorithm, they were back projected from the dimensionally reduced data set into the original, 
higher-dimensional data set. Thus, rather than calculating single optimal locations, the algorithm 
produces optimal sensing areas where each pixel is considered equivalent. In Figure 3.9 each 
round corresponds to placing one sensor within each cluster; all locations indicated in a single 
round are equally valuable. 
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Figure 3.9 Recommended regions for placements in three rank-based clusters using Mutual 
Information based placement algorithm. Round one is the most informative placement, round 
two the second most and so on. One sensor should be placed within a given region each round. 
All proposed locations within a given region are equally valuable.  
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to make use of historical observations for sensor placement. It is well known that SWE is 
correlated to a number of stationary physiographic variables such as elevation, slope, aspect, and 
vegetation [Fassnacht et al., 2003]. However, this does not mean that the correlation between 
SWE and its physiographic predictors is stationary. As an example, Figure 3.10 shows perhaps 
the most common correlation metric used when studying SWE, the slope of the regression line 
taken between SWE and elevation. While this relationship may be robust over a single time step, 
it is temporally non-stationary, both inter- and intra-melt season. This non-stationarity impedes 
the use of these model parameters for purposes of sensor placement. 

 

 
Figure 3.10 Elevation vs. SWE regression parameter computed daily across each melt season for 
American River Basin. 

 
Rather than finding absolute trends in the data, rank-based clustering isolates subsets of 

that data that exhibit relatively similar behavior through time. Tables 3.1 and 3.2 show that rank-
based clustering consistently isolated common clusters between years, with worst-case inter-
annual cluster differences not exceeding 41%, while other measures of basin-wide SWE, such as 
regression against elevation (Figure 3.10), vary more than one order of magnitude inter-annually. 
Although SWE itself is quite variable, certain locations have consistently higher or lower SWE 
than others – this phenomenon is well exploited by rank-based clustering. This provided a strong 
starting point for sensor placement efforts.  While Table 3.2 does show higher intra-annual 
differences, these can largely be attributed to the melt out of pixels toward the end of a season: 
48% of pixels with snow during the April 1-15 period had no snow by June 1. Implementing 
cluster analysis on a multi-year data set maximizes the use of all historical data while providing a 
balance between long-term trends and inter-seasonal variability.  

Figure 3.5 indicates that rank-based clusters divide primarily on elevation, a reasonable 
result considering the strong correlation broadly seen within the literature [Fassnacht et al., 2003, 
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Bales et al., 2006]. Of interest here is that elevation is not simply binned into bands, but divided 
into overlapping near-Gaussian distributions. A similar result is observed when examining SWE 
histograms for each cluster, which also exhibit near-Gaussian distributions (Figure 3.4). This 
trend may have strong implications for sensor placement, and could partially explain why a 
random sensor-placement approach performed well.  

3.5.2 Placement strategy within clusters   

Dividing the sampling space using rank-based clustering is the first step of the placement 
approach described here. Within the derived clusters, further steps were taken to identify sensors 
placements that best inform future predictions. Dimensionality reduction, a computationally 
necessary step, is inherently part of the placement process. Typical clusters (1000-7000 pixels) 
were reduced to approximately 50 representative pixels to form computationally workable 
covariance matrices. It is within this reduced space that MI and random placement methods were 
carried out. Allowing selection exclusively from this subset means that we are already 
guaranteed reasonably independent observations, regardless of how placements are chosen in the 
reduced space. In practice, working in this reduced (and standardized) space limits the potential 
benefits of a MI placement approach, explaining the inconsistent RMSE improvements generated 
by MI placement over random placement seen in Figures 3.6, 3.7, and 3.8. Similar results were 
observed by Wu and Lui [2012] on soil-moisture data. 

While MI based placement did not always necessarily outperform random placement, the 
approach does offer other benefits. Perhaps the most significant is a performance guarantee. The 
RMSE results of random sampling approaches were the mean of many trials, spanning a range of 
good and poor placements. It may be entirely feasible that a real-world random sampling 
approach could select one such poor placement. On the other hand, mutual-information-based 
placements are unique for a given covariance matrix, and will always select the same sensor 
locations in the same order, consistently guaranteeing the indicated performance. A second 
benefit of the MI-based sensor-placement approach is the ability to start with existing snow-
pillow and snow-course sites, and then select additional sites through the placement algorithm. 
This should further improve estimation performance by maximizing the utility of data obtained 
from existing sites. The validation of the proposed algorithms used a historical covariance 
structure to predict SWE at future years based on observations made though relatively sparse 
sensing locations. Given the statistical nature of the modeling approach, it is feasible to update 
the covariance structure through real-time observations, and to add more sensors as needed. 
Given reported RMSE performance and consistent near-optimal placement guarantees, we 
recommend an MI-based approach.  

In some cases the RMSE slightly increased though the addition of more sensors (Figure 
3.6). These perturbations can be explained through the real-world nature of the data set. RMSE is 
not a monotonic function, and the validation data set may contain noise or outliers. Existence of 
outliers or data-set noise can adversely affect the RMSE behavior.  

3.5.3 Number of Clusters   

Figure 3.8 shows that three to eight clusters should be sufficient to model SWE and 
conduct sensor placement within the American River basin. Modeling with more clusters does 
not improve RMSE performance significantly. Furthermore, from the perspective of good 



	  

	  

54 

statistical practice, it is desirable to reduced model complexity to avoid the possibility of over 
fitting. With the current historical data sets we thus propose that three to five rank-based clusters 
are an optimal choice for the American River. The number of available sensor should then be 
divided equally throughout each cluster, or added proportionally to the variance of clusters, as 
done by Wu and Lui (2012). 

3.5.4 Overall Sampling Approach   

Based on the RMSE performance of the placement approaches implemented here, we are 
confident that one pixel in each of the regions shown in Figure 3.9 should be instrumented to 
derive better spatial estimates of SWE. In practice, specific points can be chosen within each 
proposed area based on accessibility or site preference. Figure 3.1 shows one such ideal 
placement resulting form our proposed method. 

The method proposed in this chapter is designed to select sensing locations across a large 
area (over 1000 km2). Each sensor location was treated as a 500 ×500 m pixel. It was assumed 
that instrumenting a pixel provides a noise-free representative measurement for that area. The 
locations selected in this paper should be thought of as strategically placed sets of individual 
nodes, with the set of nodes together forming the spatial sensor. Realistically, SWE is known to 
vary significantly at small scales. As such, it is unlikely that a single measurement within a 500-
m cell will accurately represent mean SWE of the area [Molotch and Bales, 2005; Rice and Bales, 
2010]. Multiple sensors (low cost depth sensors coupled with pillow measurements) will be 
required to reliably instrument one pixel. Sensor-placement strategies for smaller-scale areas thus 
need to be considered as part of a basin-scale design.  Thus the overall strategy involves a 
hierarchical placement: i) optimal locations at the large scale (more than one square kilometer) 
should be selected based on the methods presented in this paper, and ii) estimates of mean SWE 
at each one of these locations should be derived though a secondary placement scheme at the 
smaller scale to capture local variability in aspect, vegetation, and energy balance. Each of the 
locations selected in this paper can then be thought of as a spatial sensor made up of a set of 
individual sensor nodes. We are confident that this presents the most realistically manageable 
sensor placement approach when considering the future instrumentation of large basins such as 
that of the American River. The blending of these strategically placed on-the-ground 
measurements with broad-coverage satellite and aircraft measurements will offer unprecedented 
estimates of snowpack, soil moisture, vegetation state and energy balance, and snowmelt [Rice et 
al., 2009]. 

3.6 Conclusions 
The approach in this paper provides a sampling strategy that uses historical data to select 

sensing locations that will be most informative for future real-time estimation of SWE in the 
American River basin. While the spatio-temporal  SWE patterns are a non-stationary process, a 
rank-based clustering approach derives a set of regions that remain relatively stable over time. 
Following standardization of the annual SWE data, the variability of SWE within rank-based 
clusters was explained through a stationary covariance structure. This covariance structure was 
used to inform a quantitative placement scheme, by greedily placing sensors to maximize Mutual 
Information within each cluster. By splitting the existing data set into a training and test subsets, 
our approach reduces the RMSE of the estimation as a function of the number of sensors placed 
and outperforms non rank-based clustering approaches. Furthermore, there is a point of marginal 
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returns, after which placing more sensors does not improve estimation performance significantly. 
We recommend the use of rank-based clustering, coupled with placement based on MI, as the 
near-optimal choice to determine the number of required sensors, and their respective locations. 
Our future work will focus on deploying sensor network clusters in the locations proposed in this 
paper, and will evaluate the efficacy of these networks to estimate SWE in the American River 
basin.  
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Chapter 4: A Hybrid System Model of Seasonal 
Snowpack Water Balance 

 
The measurement and estimation of basin-wide SWE is the first step toward informing 

water resource operations in mountain basins. These areal estimates of SWE must also be 
projected into the future to develop insights into the resulting snowpack runoff, snowpack states, 
and basin-wide streamflow. It is expected that improved data gathered by hydrologic WSNs will 
open the door to a new suite of physically-based models. One such model is introduced in this 
chapter. 

4.1 Introduction  
We presents a direct application of hybrid systems for the modeling of a natural 

phenomenon, and shows that through the hybrid systems framework it is possible to model 
extremely complex system dynamics, such as hydrologic process in mountains basins, as set of 
much simpler switched dynamics. We derive a mathematical model for the dynamics of snow, 
and show how hybrid systems can be used to blend heuristics and physical laws within a 
coherent mathematical framework. Our model is motivated by water supply shortages in the 
western United States, and provides a powerful new tool to aid in critical water management 
decisions. 

The physical snowpack is known to be a highly nonlinear system which, to be modeled 
properly, requires solutions to nonlinear partial differential equations (PDEs). This often leads to 
comprehensive, but highly parameterized models with many state variables. We show, however, 
that it is possible to cast the problem in the framework of hybrid systems, allowing us to describe 
the evolution of the snowmelt process as a decoupled system of three regimes. We will highlight 
how a hybrid system model can simplify the complex dynamics of offered by similar PDE 
approaches without sacrificing model accuracy. Casting our model in this framework brings a 
new sense of intuition to the modeling process, something which is lost in more complex PDE or 
heuristic approaches. In the past, successful applications of hybrid systems theory have ranged 
from studies of bio-molecular networks, control of electronic vehicle management systems, and 
cognitive radio networks [Ripaccioli et al., 2009; Alur et al., 2001; Ghosh and Tomlin, 2001; 
Borri et al., 2010]. Our model not only brings further mathematical rigor, and new analytical 
tools to hydrologic sciences, but validates the appropriateness of hybrid systems for the modeling 
of real-world phenomena.  

4.2 The Physics of Snow 
4.2.1 Physical Behavior  

The physical snowpack is an inherently unstable system, continuously subject to fluxes in 
mass, energy, and momentum. Mass and energy are introduced into the system in the form of 
water, in either a solid (snow), liquid (rain), or vapor form. Additionally, energy is exchanged 
with the snowpack through evaporation, soil heat flux, as well as solar and thermal radiation. As 
energy is introduced onto the snowpack, the surface melts, and the subsequently produced liquid 
water, compelled by gravitational forces, begins to flow through the snow matrix. Depending on 
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the temperature and physical characteristics of the snow below the melt surface, this water may 
either refreeze onto the snow grains below, or flow into or onto the underlying soil surface. As 
water melts on the surface and moves into the underlying snow matrix, the latent heat generated 
by the refreezing of the water is used to heat the snow below the melt surface. It is thus possible 
to classify the bulk equations governing snowmelt using standard conservation laws, along with 
constitutive relations for water flux through porous media [Bear, 1988; Turns, 2006]. 

At a basic level, snowmelt is thus governed by a coupled interaction between energy and 
mass balance components: 

 

 ))(),((= tEtMf
dt
dE  (1) 

 
 

 )))(),((= tEtMg
dt
dM  (2) 

 
where  and  reflect specific mass1 and energy components. It is also customary to 

introduce a momentum conservation relation, which tracks the movement of water and 
deformation of the snow matrix. Since our main goal is to model snow water equivalent, rather 
than track front propagation within the snow matrix, we take the approach of Marks et al. (1998), 
and model compaction in a prescribed, rather than explicit, manner. An energy balance governs 
the flux of energy into the system, usually in the form of solar and thermal radiation, latent heat 
transfer, and soil and evaporative fluxes. General conduction theory along with the heat equation 
can be used to model the temperature evolution through the snowpack. Realistically, temperature 
distribution in the snowpack is non-uniform, but due to the inability to sense these distributions, 
most authors assume an isothermal snowpack (e.g., [Colbeck, 1972; Colbeck, 1980]). 

Water flow through snow is a non-linear process, complicated not only by microscopic 
characteristics of the snow pack, but also by the tendency of the water to refreeze as it flows 
through the snow matrix. Water flow through porous media, described in detail by [Bear, 1988], 
can be broadly classified into two regimes: saturated flow, and unsaturated flow. Water flow near 
the surface of a melting snowpack, where a layer of wet snow exists, is governed by Darcy’s law 
[Bear, 1988]. The flow is proportional to the gravitational pressure gradient, as well as 
microscopic properties of the snow grains. Once water leaves this region, flow in the dry region 
can be modeled by the nonlinear Richard’s PDE [Bear, 1988], which is highly dependent on 
microscopic properties, and for which a closed form solution does not exist. It can thus be seen 
how the coupling of all these interactions has the potential to make the proper modeling of 
snowpack a non-trivial process. Prior to engaging the inner workings our proposed model, it will 
be advantageous to discuss previous efforts from the snowmelt modeling literature. 

4.2.2 Previous Work  

A number of authors have explored the empirical and mathematical modeling of 
snowmelt processes. A series of notable works was published by Colbeck, in which the author 
explored both the thermodynamic phenomena guiding snowmelt, as well as water flow through 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Mass	  per	  unit	  area.	  It	  should	  be	  noted	  that	  from	  here	  on,	  any	  references	  or	  calculations	  involving	  mass	  are	  to	  be	  taken	  as	  references	  to	  
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the snow matrix [Colbeck, 1971; Colbeck, 1980; Colbeck, 1978; Colbeck, 1972; Colbeck, 1975]. 
In these papers, snow was treated as a porous medium consisting of ice, water and air. A mass 
balance approach along with a model for water flow through porous media, was used to arrive at 
a PDE that guides the evolution of the pack, and whose solution depended upon a finite 
difference approach. Various other authors extended this work by realizing that snow is a 
medium in which the ice matrix and the water phases are, depending in the energy input, 
interchangeable. Sellers showed, by building upon [Kelley et al., 1986; Morland et al., 1990], 
that snow can be modeled as a phase-changing porous medium, where the water resulting from 
melt, is interconvertible with the rigid ice matrix [Sellers, 2000; Sellers, 2001]. Additionally, the 
author developed a method by which to track the propagation of the melting snow surface and 
the percolating interior boundary, by noting that the problem can be formulated as a generalized 
Stefan condition (or, a free moving boundary) [Crank, 1984]. Tseng et al., guided by a model for 
water flow through subfreezing snow by Illangasekare et al. (1990), arrived at a similar solution, 
but formulated the problem using volumetric supply terms [Tseng and Illangasekare, 1994]. 
More recent work on the subject was conducted in a comprehensive three part paper by Bartelt 
and Lehing, in which the authors modeled all the phenomena described in the previous section 
by making simplifying assumptions about snow micro-structure. The complexity of their 
extensive model, however, warranted a solution only by a finite element approach [Bartelt and 
Lehning, 2002]. Currently, two popular point based modeling packages exist: SNOBAL, and 
SNTHERM [Marks et al., 1998; Jordan, 1990]. The former is a two layer heuristic model that 
tracks mass and energy fluxes well, while the latter is a highly parameterized 20 state PDE 
model that tracks the compaction and formation of layers within the snow-matrix in detail. Our 
approach, however, offers an elegant hybrid solution, preserving the motivating heuristics, while 
retaining mathematical rigor. 

4.3 Modeling the Snowpack 
The complexity of the previously described PDE approaches has the tendency to remove 

general intuition regarding the physics of the snowmelt process. The procedures usually entail 
lengthy mathematical derivations along with a high degree of parameters, arriving at a solution 
that is difficult to intuitively comprehend. Additionally, many of the inputs into these models are 
not readily available (e.g. snow grain diameter), and must be estimated. Our proposed model 
addresses these concerns by splitting the snowmelt process into stages, each of which is 
governed by relatively simple dynamics. The evolution of the entire pack in time can then be 
modeled as a switched system between these stages. A number of reasonable assumptions will 
justify simplified dynamics in each of the three proposed regimes. The snowpack is at all times 
assumed to have a uniform bulk temperature  (see section 4.4.1 for details). Furthermore, we 
assume that the snowpack can be modeled as a single-layer homogeneous mixture of ice, water 
and air with bulk density . Most authors have taken a multilayer approach to model melt over 
long periods of time [Marks et al., 1998; Jordan, 1990], but since this model aims to forecast 
weekly SWE values rather than track long-term structural metamorphosis, a single layer was 
deemed to be adequate. Model validation will show this assumption to be appropriate. The 
following sections will decouple the snowmelt process into three regimes, and will derive the 
necessary equations to describe the dynamics of the snowpack in each regime. 
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4.3.1 The Sub-freezing Snowpack  

During this stage no liquid water is present within the snow matrix. The snowpack is 
completely frozen and the volume occupied by the system is strictly filled with ice and air. We 
denote  as the energy introduced into the system. A positive energy input will heat the surface 
of the pack until it reaches a temperature of , upon which the ice at the surface will begin to 
melt and percolate into the snow matrix. The water will then refreeze, and the latent heat released 
by refreezing will in turn raise the temperature of the surrounding snow. This process steadily 
progresses until the water front eventually reaches the bottom of the snow pack. At this point, the 
entire snowpack is assumed to be at a bulk temperature . Since the primary purpose of 
our analysis is to model the water content of the snowpack, it is not necessary to track the 
evolution of this interior saturation boundary, but rather to identify the point at which the 
snowpack reaches a bulk temperature of . Following the approach of [Illangasekare et 
al., 1990] and using general conduction theory [Turns, 2006], it is possible to identify the point 
in time at which the snowpack will reach an isothermal state at . The relation giving the 
change in temperature of the snowpack during this regime can be given by 

 

 
dt
dTCM

dt
dE

ss=  (3) 

 
where  is the energy input into the system,  is the mass of snow, and  is the 

specific heat of snow. We take a proscribed approach to snow pack metamorphosis, merging 
approaches of [Marks et al., 1998; Martinec and Rango, 1991] and note that during this stage of 
snowmelt, change in snowpack height is governed by an exponential decay model. Analysis of 
field data shows this to be a reasonable assumption. 

The change in density of the snowpack is given by: 
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where  is the bulk density of the snowpack, and  and  are easily obtained model 

parameters. We derive (4) in Appendix 4.8.1. When the bulk temperature of the snowpack 
reaches , the system jumps into the second regime of snowmelt described next. 

4.3.2 The Isothermal Sub-saturated Snowpack 

At this stage the snowpack has reached an isothermal state, where the bulk temperature is 
 throughout. It is physically impossible for the bulk temperature to climb beyond this value. 

Therefore, any energy input into the system at this point is used to convert (melt) snow at  
to water at . Two more equations can now be added to reflect that ice is being converted to 
water at a rate proportional to the energy input: 
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dt
dE

dt
dML i

f −=  (5) 

 
 

 
dt
dE

dt
dML w

f =  (6) 

 
where  and  are the mass constituents of ice and water of the pack, and the mass of snow 
is given by .  is the latent heat of fusion of ice. Water is still not exiting the 
snowpack because it is held in place by capillary action within the ice matrix [Bartelt and 
Lehning, 2002]. The volumetric water content of snow , the volume of water over the total 
volume of snow, is given by 
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where  and  are the density of water, and snow, respectively.  has to climb above the 
threshold value  (typically 1%) for water to begin flowing out of the snowpack [Marks and 
Dozier, 1992]. Thus, in our model the snow pack begins to drain once the volumetric water 
content condition has been satisfied, or 

 
 rw θθ ≥  (8) 

 
or, equivalently, when 
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4.3.3 The Isothermal Saturated Snowpack  

At this stage, the volumetric water content has reached the critical threshold value, and 
water can begin to flow out of the snowpack. Similarly, if the volumetric water content drops 
below  the system relapses back into the second regime. Snowpack density and change in the 
ice mass are still evolving according to the relations in the previous regime. The amount of water 
that can now leave the system is equal to the amount of ice being melted along with the amount 
being discharged due to any excess volumetric water content. The relation giving the change in 
water content of the snowpack is given by 
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We show in Appendix 4.8.2 that eq. (10) can easily be derived using the volumetric water 

requirement of regime three. Intuitively, the above relation accounts for the fact that as density of 
the snowpack is changing, the volumetric water content changes accordingly, and water must 
leave the system to ensure . 

4.4 Hybrid Systems Modeling 
The previous section showed that is it possible to separate the natural process of 

snowmelt into three regimes, each reflecting physical states of the snowpack. As such, a hybrid 
systems model of snowmelt is an appropriate means by which to formalize the interaction 
between the above dynamics. Formulating the problem in this framework will allow for a model 
whose solution is dependent on a series of switched ordinary differential equations (ODEs). Our 
hybrid model captures the behaviors of more complex models, while ensuring that a sense of 
intuition regarding the snowmelt process is preserved. More information on hybrid systems can 
be found in [Tomlin et al., 2000]. 

4.4.1 Preliminaries  

We base our definition of hybrid systems on a class of hybrid systems given in 
[Tomlin et al., 2000].  Definition: 

An autonomous hybrid automaton  is a collection  
  
where 

 is a set of discrete states; 
 is the continuous state space; 

 is a set of initial states; 
 is a set of continuous input variables; 

 is a vector field; 
 is a domain; 

 is a reset relation; 
 is a collection of continuous output variables.  

 A hybrid time set is a finite or infinite sequence of intervals  such that 
 for all ; and . 

if  then either  or   

A hybrid trajectory  consists of a hybrid time set  and two 

sequences of functions  and  with  and .  
An execution of a hybrid automaton  is a hybrid trajectory,  which satisfies: 
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Discrete Evolution:  
Continuous evolution: for all , 
1.  is constant over , that is,  ; 

2.  is the solution to the differential equation  
over  starting at ; and, 

3. , .  

4.4.2 A Hybrid System Model of Snow 

Using the above definition, it is now possible to model the physical snowmelt process 
as a hybrid system: 

  
•  is the set of discrete states, corresponding respectively to each 

regime of snowmelt.  
 

•  is the set of continuous states, where for  we have 
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where  and  are the mass of ice and water in the snowpack,  is the density of 

the snowpack, and  is the bulk temperature of the snowpack.  
 

• The set of initial states 

  

where  is the same as in (4).  
 

• The domains are given by  
 

 

 

 
• The system dynamics for each state are given by 
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and all other terms are constants as defined previously. The continuous input 

 represents the amount of energy input into the system (given in ). The 
continuous output of the hybrid automaton is, at all times, given by , 
reflecting the SWE of the snowpack.  
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 if  

 if  

 if  

 otherwise. 
 
A graphical representation of the hybrid automaton is given in Figure 4.1. 
   

 
Figure 4.1 A visual representation of the snowmelt hybrid automaton. State  is the first stage 
of snowmelt, where the entire snowpack exists at below freezing temperatures, and no liquid 
water is present. State  represents the isothermal snowpack at . Ice begins to melt, 
but water can not leave the snow matrix because it is held in place by capillary forces. Once the 
water content  of the snowpack reaches a value greater than or equal to a threshold , water 
begins to exit the system and flow into the soil below. A negative energy input in  causes 
existing water to refreeze. If all the water in state  freezes, the system relapses into the sub-
freezing state . 

4.5 Model Validation  
Due to the relatively straightforward nature of the discrete mode dynamics, a detailed 

analysis of the system would not offer more information than is provided by a qualitative 
overview: 

State : The steady state behavior of the hybrid automaton during this discrete mode 
reflects only densification of the snow pack, as an energy input is required for the temperature to 
be affected. During this state, the density of the snowpack, , is evolving towards a terminal 
density value , given in (4). Introduction of an energy flux  evolves the temperature 
of the snowpack proportional to the sign and magnitude of the energy input.  
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State : The evolution of  and  is equal in magnitude, and opposite in sign, and is 
proportional to the energy input into the system. The continuous state , the temperature of the 
snowpack, does not evolve and remains at a steady , since ice and snow can not exist in 
solid form beyond this region. 

State : With a steady positive energy flux, the snowpack will eventually melt and the 
dynamics of state  will ensure that the mass of ice and water go to zero. In , the steady state 
behavior does affect mass balance, since densification of the snowpack , changes the system’s 
volumetric water content. As the snowpack density approaches the terminal value , the steady 
state contribution of the  dynamics to overall mass balance becomes negligible. Given a 
positive energy influx, the dynamics of  evolve to ensure that the volumetric water content of 
the snowpack  is at all times equal to the threshold value . 

4.5.1 Initial Conditions and Parameterization 

Values, such as the amount of liquid water, and the temperature of the snowpack, are 
difficult to measure in the field. Since these values are embedded in our state space, it becomes 
important to develop a proper approach to confidently estimate their initial conditions. The 
hybrid automaton was initialized with night-time values following a fresh snow-fall event. This 
maximized the likelihood of capturing the system during state , as we assume the snowpack 
temperatures to be below freezing during such events. We believe that this method allows us to 
estimate initial states confidently, by assuming that at this stage, the temperature of the snowpack 
is equal to the air temperature, and the mass of liquid water in the system is zero. The density 
was initialized using physical measurements, and the mass of ice was calculated using density 
and snow height measurements. The free parameters, or physical constants, of the model are 
given in Appendix 4.8.3, and are based on commonly available physical constants, as well as 
known properties of snow in the Sierra Nevada. The model shows no significant sensitivity to 
initial conditions and parameters when they are constrained to physically realistic values. 
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a) Observed SWE vs. Modeled SWE for a site in the Sierra Nevada during the 2004 snow season. 

 

 
b) Observed SWE vs. Modeled SWE for a different site in the Sierra Nevada during the 2006 
snow season. 
 
Figure 4.2 Plots of Snow Water Equivalent (SWE) at two different sites during 2004 and 2006. 
Snow water equivalent is the height of water that would result if the whole snowpack were to 
melt instantaneously. Step-like features in the time series are indications of discrete mode 
switches of the hybrid automaton.  

! " # $ % &! &" &#
!

"!!

#!!

$!!

'()*+,-./01

2
3
4
+,
)
)
1

+

+

56-*7*-

890*:;*-

! " # $ % &! &" &#
!<!

!

<!

'()*+,-./01

4
::
6
:+
,)
)
1

! " # $ % &! &" &# &$ &%
!

"!!

#!!

$!!

%!!

'()*+,-./01

2
3
4
+,
)
)
1

+

+

56-*7*-

890*:;*-

! " # $ % &! &" &# &$ &%
!<!

!

<!

'()*+,-./01

4
::
6
:+
,)
)
1



	  

	  

67 

 

4.5.1 Validation Results and Analysis 

By inspection of Figure 4.2, very close correspondence between modeled and observed 
SWE values becomes evident. Maximum error for a two week prediction of SWE, for both years, 
did not exceed 50mm of SWE. A measurement error in the range of 20mm is known to exist for 
the snow-depth sensor that was deployed in the study. Given the week long time horizon 
requirement imposed on this model, we regard these results to be indicative of very good model 
performance. The accuracy of the model is further validated by the fact that it is able to correctly 
identify values and trends in SWE for two different sites, and snow seasons. The point at which 
complete melt occurs is identified correctly as well. Overall, the model performs extremely well 
within the desired seven day prediction window, and is able to capture high-frequency daily 
variations in SWE. Figure 4.2a shows a slight model undershoot at the five day mark. At this 
time the observed SWE value displays an actual increase, indicating a snow fall event has 
occurred. This is an acceptable behavior, since our main aim is to forecast SWE given only 
current snowpack conditions. It is assumed that during the operational phase, the model will be 
used as a moving window to incorporate changes in incoming meteorological forecasts. The step 
like response of the SWE plot in Figure 4.2, indicates switching of the discrete system dynamics, 
and further intuitively validates the switched dynamics approach of our model. 

4.5.2 Comparison to Existing Simulators 

To fully identify the advantages of the proposed approach, a rigorous quantitative 
analysis and comparison with existing simulators is warranted. Given the currently available 
validation data, as well as the high dimensionality and parameterization requirements of both the 
SNOBAL [Marks et al., 1998] and SNTHERM [Jordan, 1990] models, such an analysis was 
deemed beyond the scope of this particular paper. A series of test runs using SNOBAL found the 
model predictions of SWE to be inconsistent with the ground truth data. SNOBAL performed 
along the same error margin as the hybrid automaton simulation for the first four days of the melt 
cycle, only to significantly diverge through the remainder of the simulation period, predicting 
total melt with an error of seven days. This behavior is largely attributed to the model’s apparent 
sensitivity to parameterization and snow layer initialization. It should also be noted that the 
source code of the SNOBAL model had to be modified to allow for inputs of solar radiation that 
were physically measured, but deemed unreasonable in the original model design. The 
SNTHERM model is, to our knowledge, one of the most comprehensive snowmelt simulator 
available. As such, it requires more inputs and parameters that were available to this study. 
Assumptions regarding these parameters could not be justified given the available data sets. A 
data set currently being collected in the Sierra Nevada, however, will permit for a more 
comprehensive error analysis of the proposed hybrid system model, along with providing 
confident estimates of model parameters for SNTHERM and SNOBAL. 

Compared to existing simulators, computational tractability along with model 
analyzability stand out as the two main benefits gained by casting the snowmelt process in a 
hybrid systems framework. As mentioned previously, the primary aim of the proposed model is 
to reliably forecast weekly SWE given real-time data acquired by densely deployed wireless 
sensor networks. Spatial variation in snow cover will be accounted for by the distribution of 
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network nodes, and separate snowmelt simulations will need to be carried out for each 
measurement location. The relatively simple structure of the proposed model allows it to run 
extremely fast on a standard personal computer, and offers promise in terms of scalability. 
Compared to existing simulators, the proposed model also lends itself to a number of potential 
hybrid systems analysis techniques. The model originated with the aspiration to control dams in 
the California mountains based on the input of real-time meteorological and snow cover data. 
Casting the snowmelt process in hybrid systems framework will allow for investigation of 
controller synthesis methods for such purposes. Additionally, hybrid system estimation, and 
reachability analyses can be carried out to provide water management officials with valuable 
information regarding water storage and snowmelt runoff. 

4.6 Conclusions and Future Work  
In this paper, we derived a hybrid system model of the seasonal snowmelt water balance. 

This model is part of a larger project scope to control water management infrastructure and 
forecast available water supplies in the state of California. The main contribution of our paper 
hinges not only on its performance, but rather also on showing that it is possible to accurately 
model an extremely complex natural phenomenon using a system of simple switched dynamics. 
Compared to other approaches, our model significantly reduces the number of required state 
variables while delivering a high level of intuition to the modeling process. The approach also 
makes it possible to incorporate well known heuristics into a coherent mathematical framework. 
Dimensionality reduction is one of the main appealing features of the approach, when compared 
to traditional PDE models. It is believed that the dimensionality of the system could be further 
reduced in the future by taking into account that in each discrete mode, certain continuous states 
experience zero change. As (12), (13) and (14) show, the system could be modeled as a hybrid 
automaton with switching between state spaces of different dimensions. Future work will explore 
the choice of a new coordinate system which takes further advantage of known physical 
behaviors of snowmelt. 

From a hydrologic perspective, future work will focus on investigating to which extent 
the model can accurately predict spatial distribution of SWE. Our current analysis was limited to 
point-wise forecasting of a monotonically decreasing SWE based on energy input measured at 
the exact location of the SWE estimate. To broaden the impact to flood and agricultural planning, 
our approach will be expanded to treat the spatial variation of the snowpack throughout a 
drainage basin. This approach will entail the interaction of multiple automata, each governing 
snowmelt in a specific region of the basin. Minor modifications to the current snowmelt 
automaton will account for thermodynamic interaction between the automata, and will permit 
water to flow into soil as well as into neighboring automata. New data sets are currently being 
collected, which will be used to validate the model over long-term freeze-thaw snowmelt cycles. 
The variability of energy fluxes on the model area, as well as appropriate terrain gridding 
techniques will be investigated. This model was designed to utilize real-time data provided by 
wireless sensor networks, which are currently being deployed. Estimation techniques will also be 
developed to ensure that the incoming input data is a valid representation of actual environmental 
conditions. 
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4.7 Derivations 
4.7.1 Derivation of Bulk Density Evolution Equation 

 
We are given the empirical observation [23] that the density of aging snow can be 

determined through the half saturation equation: 
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where A  is the maximum saturation level (in 3/mkg ) and B  is the time at which half-

saturation is achieved (days). We would like to derive a relation for the change in snow density, 
given the current density, from this relation. Given a density, we solve (17) for the corresponding 
time 
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and then take the derivative with respect to t  of (17) to get 
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after substituting (18) into (19) we get the desired relation in (4). 
 

4.7.2 Derivation of Change in Water Mass Relation 

When the system is in the saturated isothermal regime the mass of water in the snowpack 
at any time can be given by solving (7) for wM  to yield 
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Taking the derivative of (20) with respect to t  gives 
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Substituting with the relation in (5) and rearranging gives (10). 
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4.7.3 Model Parameterization 

KkgJCC o
ices /102.05== 3×  

0.01=rθ  
kgJLf /10334= 3×  
3/1000= mkgwρ  

3/450= mkgA  
20=B  days 
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Chapter 5: Impacts of Improved Snow Water 

Equivalent Estimates on Water Resource Operations 

in the American River Basin 
The previous chapters introduced improvements for the measurement and estimation of 

snowmelt driven processes in remote mountain basins. While it is expected that these methods 
will enable improved scientific understanding of the spatiotemporal coupling of catchment-, and 
basin-scale hydrologic processes, a motivating example has still to showcase the downstream, 
societal impacts of the proposed methods. A convincing case of the benefits of improved SWE 
data has to be made to private and public stakeholders if investments into a more advanced snow 
monitoring infrastructure are to continue 

A step towards motivating the future adoption of these techniques beyond the scientific 
community is to analyze the potential impact of improved snowpack estimates on large-scale 
water forecasting. This chapter reviews the current state of basin-scale streamflow forecasting in 
the American West, focusing especially on the American River basin of California (see Chapter 
Three). A forecast skill analysis will be carried out to evaluate the efficacy of currently used 
methods over the past decade, and it will be shown that improved snow water equivalent 
estimates will play a significant role in improving these predictions in the future.   
 

5.1 Introduction 
The allocation and use of water resources in the American West is heavily depended 

upon seasonal water forecasts made by a set of large agencies and smaller groups. Such 
predictions aim to provide long-term streamflow forecasts based on a combination of various 
models, streamflow observations, and hydrologic and meteorological datasets [Hartmann et al. 
2002]. Three closely watched forecasts are currently made by the National Weather Service  
(NWS), the Natural Resource Conservation Service (NRCS), and the California department of 
Water resources (DWR) [California Cooperative Snow Surveys, 2012; Rice and Bales, 2010; 
SNOTEL 2012]. Each of these forecasts combines current and historical streamflow 
measurements, with data obtained from the set of available snow pillow and snow course 
measurement (Figure 1.1). The NRCS uses their own network of snow pillow observations, 
known as SNOTEL, while the other agencies rely on snow course depth measurements and snow 
pillow data provided by the California Cooperative Snow Surveys (CCSS) [Bales et al. 2006]. 
Depending on the agency, each forecast is derived through methods ranging from simple 
multivariate regression to complex physical process models. These forecasts are summarized in 
table 5.1. 
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Agency Method Data Forecast offered 

Natural Resource 
Conservation Service 

Multivariate 
regression 

Precipitation, 
streamflow, SNOTEL 
sites 

Reservoir storage; 
Seasonal inflow; 70% 
and 30% exeedance 
probabilities 

National Weather 
Service 

Physical, process-
based model for snow, 
soil, and flow routing 

Precipitation, 
temperature, 
streamflow, and 
CCSS snow pillow 
sites 

Ensemble streamflow 
predictions; 
minimum, maximum, 
and probable flows; 
exeedance 
probabilities  

California 
Department of 
Water Resources 

Multivariate 
regression 

CCSS Snowcourses, 
precipitation, 
streamflow 

Reservoir storage; 
Seasonal inflow; 

Table 5.1 Water forecasting in the Western-US. Observed streamflow inputs for each method is 
provided by the United States Geological Survey (USGS).  

5.1.1 Regression Techniques 

 Presently, the inputs used in the regression forecasts vary between agencies, but each 
agency typically agrees on the need to use SWE or snowdepth data, monthly precipitation, 
historical streamflow, and streamflow leading up to the month of the forecast date [Garen 1992; 
McFadden 2011]. There is an inherent assumption of stationarity in such predictions, as future 
streamflow forecasts are heavily dependent upon historical observations. This, in part, explains 
why these forecasts tend to have high errors during wet and dry periods, when observed 
snowmelt and precipitation are above the historical mean [Bales et al. 2006]. Additionally, many 
of the measurements of SWE and snowdepth are made in easy to access locations, which 
typically exhibit similar topographic features. As such, the input datasets become correlated, 
reducing the amount of information available to simple multiple regression models. While not 
used in official forecasts, Garen (1992) suggested an improved method based on Principal 
Component Regression [Hastie et al., 2001], with the aim of creating a new set of independent 
inputs variables that are a linear combination of the original inputs. Using this method, the author 
showed a notable improvement to forecast predictions, while maintaining month-to-moth 
forecast consistency. This method is currently being used effectively at a smaller scale by 
McFadden (2011) in forecasting natural runoff and stream accretion at watersheds supplying 
eight powerhouses in the Upper American River basin. 

5.1.2 Physical Model 

 Due to historically poor performance of regression models in extreme wet or dry years, 
the NWS shifted to the use of conceptual hydrologic and hydraulic models to predict the melt of 
the snowpack, and to route the corresponding runoff downstream [Day, 1985]. While a number 
of distributed, physically-based snowmelt and hydrologic models exist (see Chapter Four) the 
de-facto standard for large-scale river and streamflow forecasting is the Extended Streamflow 
Forecast Model used by the NWS [Curtis and Schaake 1979]. Parameterized on historical data, 
and taking the inputs precipitation and temperature, the model facilitates the interaction between 
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multiple smaller sub-models including soil moisture accounting, snow accumulation and ablation 
and channel routing. Aside from the final output of streamflow, the model tracks all internals 
states for analytical purposes. 
 As a more general framework, the NWS model is composed of two main systems: the 
calibration system, and the operational forecast system. The former uses historical data to 
calibrate the model, with the assumption that the physically-based model parameters maintain 
stationarity across the calibration and modeling intervals. The latter provides the streamflow 
predictions which are then made available to public stakeholders. A probabilistic framework has 
also been added to the model, enabling the use of ensemble predictions to provide confidence 
intervals and exeedance probabilities. One major driving force behind the adaptation of this 
model was its ability to predict abnormal water years, such as the 1976-1977 California drought 
[Curtis and Schaake 1979]. 

5.1.3 Performance Analyses 

Each forecasting agency conducts annual performance analyses (skill assessments), 
comparing observed streamflow at a set of major locations to the streamflow predicted by their 
respective models. Since these reports are only published for major basins, a number of other 
studies have also conducted more thorough skill assessments. Of major interest are the seasonal 
forecast, which attempt to predict the total volume of runoff between April 1st  and July 31st. 
Pagano et al. (2004) analyzed the data from 4841 historical forecasts made primarily by the 
NRCS’s regression models. The forecasts were compared to USGS streamflow data, using a 
normalized score, focusing specifically on forecasts made between January 1st – April 1st. The 
authors noted considerable improvement in forecast accuracy between these two periods (Nash-
Sutcliffe score from 0.32 to 0.7), especially in regions of California, where January-March 
precipitation presents 46% of the annual total. The authors also call on cooperation between 
forecasters, by presenting a historical overview of the conflicts between NRCS (regression) and 
NWS (physical model), presenting studies by the two groups to show the superiority of each 
method.  

Morrill et al. (2011) conducted a more advanced statistical skill assessment from 136 
locations over a five decade span across the Western US. The authors found that below-average 
water-year flows are often over predicted, while above average flows are under predicted. They 
show a general improvement in forecast skill over this time period, but less that the 10% reported 
by previous studies. Additionally, the accuracy of each forecast was heavily dependent on region, 
with Arizona having an largest error of 55% on the April 1st forecast, and Wyoming the lowest 
with 20%. Schaake and Peck (2005) noted that by subdividing various sources of error (climate, 
data, and model), it is possible to improve overall forecast error by up to 30%. A long-standing 
attitude on improving regression forecast error, however, notes that large improvement in their 
accuracy could not be expected through any further refinement of the technique [Shafer and 
Huddleston, 1984]. 

Forecast verification in operational hydrology has been limited to date. This is especially 
true for the NWS physically-based model, making it difficult to gauge its performance over the 
past few decades. Given the complexity of this model compared to regression techniques, 
Demargne et al. (2009) lay out a framework for conducting skill analyses within the NWS model, 
noting specifically that the system needs to evaluate the quality of inputs and outputs at each step 
of the forecast process.  
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Franz et al. (2003) conducted an analysis of the NWS’s physically-based model, 
generating forecasts for 40 years on the Colorado River Basin, which was sub-divided into an 
upper and lower basin. Results showed that forecast accuracy improved in later portions of the 
season. The upper basin forecast performed better. The authors attributed this performance to 
smaller hydrologic variability at higher elevations. The authors also underlined the need for 
further investigation to better understand the relative importance of the snowpack and its initial 
states on the forecast accuracy. It has also been shown that the snowmelt components of the 
NWS model is extremely sensitive to model inputs of precipitation and temperature, at times 
reaching errors of 70-80% [Shamir and Georgakakos, 2005]. He at al. (2012) showed that 
incorporating real-time SWE measurements can improve the performance of the NWS model, 
but theses measurements were still estimated from the sparse set of available snow pillow sites. 

5.1.4 Impact of SWE Uncertainty 

While the above studies have carried out skill assessments of the two forecasting 
frameworks, there has been considerably little emphasis on the value of spatially representative 
and more accurate snowpack data on the overall streamflow forecasts. Considering that the 
majority of streamflow in the state of California results from the snowpack, such an analysis is 
still needed. This chapter tries to fill that gap by evaluating the explicit benefit of improved 
snowpack data on reducing overall forecast error and uncertainty. An anticipated improvement to 
SWE estimates is expected to arise as a result of the implementation of the methods described in 
previous chapters.  

The reconstructed SWE dataset from Chapter Three will be used as a ground truth 
estimate of SWE in the study area. In particular, we aim to answer four questions. Can forecast 
error of regression techniques and the NWS’s physically-based model be improved through more 
accurate, spatially distributed SWE data? How does snowmelt modeled by the physically-based 
model compare to ground truth snowmelt? What is the sensitivity of the physically-based 
forecast model to errors in the SWE estimate? How does the physically-based forecast change 
when modeled snowmelt is replaced with observed, ground truth snowmelt? The study area and 
methods will be discussed and a skill assessment of previous forecasts for will be carried out. 
 

5.2 Study Area 
 The North Fork of the American River comprises nearly one fifth of the total area of the 
larger American River basin. The American River basin was also the focus of the near-optimal 
sensor placement study in Chapter Three. As such, this chapter is a direct continuation of that 
study, focusing instead, however, on the impacts the improved SWE estimates on streamflow 
forecasting. The North Fork sub-basin was selected for analysis for two primary reasons: 1) there 
are no upstream reservoirs, thus allowing the analysis to focus on natural, un-buffered flow only, 
and 2) the operational parameters of the NWS forecast model for this basin were provided to us 
directly from its operators [Hartman R., personal correspondence].  
 The North Fork of the American River basin is located in the northwestern Sierra Nevada 
of California (Figure 5.1). It comprises approximately 800 square kilometers, and spans an 
elevation gradient of 200 m to 2800 m. Beyond an approximate rain-snow elevation of 1500m, 
most precipitations falls in the wintertime as snow. The North Fork basin drains into the larger 
American River basin, whose topography is described in Chapter Three. 
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Figure 5.1 Study location. The north fork of the American River in the Sierra Nevada of 
California. The North Fork is delineated as a sub-basin of the larger American River basin 
(green). 
 

5.3 Data 
The spatial SWE dataset used in this analysis was derived from the pixel-by-pixel 

historical energy-balance reconstruction of snowmelt described in Chapter Three [Rittger et al., 
2011; and Rittger, 2012]. After careful consideration, it was decided that this spatially distributed 
data set offered the best independent ground truth of SWE across years 2000 to 2011. Using the 
ArcGIS software package, the data set was delineated for the North Fork basin to obtain daily 
values of snowmelt for 500m x 500m pixels. This historically reconstructed data set was treated 
for rest of the analysis as the ground truth snowmelt, assuming that such data will be available in 
real-time in the coming years, as more WSNs are deployed across the American River.  

The drainage of the basin is instrumented by a USGS stream gauge (NFDC1, see Figure 5.1), 
which provided daily streamflow data over the past decade. Five decades of mean areal 
precipitation (MAP), and mean area temperature (MAT) were also obtained through personal 
corresponded with the NWS. 

For purposes of evaluating the effects of improved snowpack data on regression methods, 
data from over thirty snow courses, made available by the CCSS, was assembled (Figure 5.2). 
Given the sparsity of these measurements in the North Fork basin, it was necessary to collect 
snow course data across the entire American River basin. For comparison with observed 

0 10 20 30 405

Kilometers

±

Elevation (m)

subbasrast

Value

High : 2747.4

Low : 218.676

Hisotgram of elevation (m)

220

200

180

160

140

120

100

80

60

40

20

0

For subbasin

0 10 20 30 405

Kilometers

±

Elevation (m)

subbasrast

Value

High : 2747.4

Low : 218.676

Hisotgram of elevation (m)

220

200

180

160

140

120

100

80

60

40

20

0

For subbasin

Elevation (m) 

NFDC1 longitude, degrees west

la
tit

ud
e,

 d
eg

re
es

 n
or

th



	  

	  

76 

streamflow, the past decade of official predictions of the DWR regression forecast for the North 
Fork were obtained from the department’s website2.  

 

 
 

Figure 5.2 Snow course locations used to obtain snowdepth data. The drainage of the North Fork 
basin is circled (NFDC1). 

5.4 Methods 
An initial assessment of the forecast skill in the basin was carried out by comparing 

predicted values made by the DWR’s regression forecast and by the NWS’s physically-based 
model, to those observed by the USGS streamflow gauge at the basin drainage point (see NFDC 
Figure 5.1). While historical DWR forecasts were available, there was no historical records of 
the NWS forecasts. The predictions of the NWS forecast had to be explicitly modeled for the 
period of 2001-2011. 

5.4.1 Principal Component Regression  

The DWR regression forecasts rely on historical observations of stream flow (output), 
and corresponding historical observations of snow courses and precipitation (inputs). The 
problem can be formulated as: 

 
 (1) 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Available at http://www.water.ca.gov/ 

miles
km

40
70

ijji xy ββ ∑+0=

miles
km

40
70

NFDC1 



	  

	  

77 

where  is a vector of streamflow observations,  is the corresponding matrix of input 
variables, and  is the vector of model parameters. To make predictions, the model parameters 

 must be learned. In the case of most current water forecasts, this is done by solving the Least 
Squares problem [Hastie et al., 2001]. Problems may arise in the above formulation if portions 
of the input matrix  are highly correlated, leading to poor predictions, or in some cases 
making it impossible to carry out the matrix inversion that is necessary to solve for the model 
parameters. Highly collinear input variables are very evident in the snowcourse locations of the 
American River basin. Figure 5.3 plots the snowdepth observed at a number of selected 
snowcourses from Figure 5.2, showing highly correlated measurements. 

 

 
Figure 5.3 Correlation between the SWE measurements for five given stations. 
 

To overcome this high correlation in the snow course data set, Garen (1992) proposed the 
use of principal component regression (PCR). Based on Principal Component Analysis (PCA), 
the method transforms the input data into an independent set of principal components, which are 
then used in the regression. The first step of this procedure entails carrying out PCA on the input 
matrix , effectively projecting the inputs into a lower dimensional state, such that: 
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where  and is chosen based on an analysis of the loading factors. In the case of the snow 
course inputs, this extra step in the regression will have the effect of maximizing the variance of 
the input data to improve the overall predictions. For more information on PCA and PCR please 
see Hastie et al., (2001). 

5.4.2 NWS Forecast Model 

The two primary components of the physically-based NWS model [Day, 1985] are the 
snow accumulation and ablation model (SNOW-17) [Anderson, 1973], and the Sacramento Soil 
Moisture Accounting and runoff model (SAC-SMA) [Burnash et al., 1973]. By coupling the two 
models it is possible to develop estimates of SWE dynamics in hydrologic basins, and to project 
the corresponding melt patterns into the runoff model for the derivation of streamflow at the 
basin discharge point. Note that the Hybrid System snowmelt model that was developed in the 
previous chapter could also be coupled with SAC-SMA. The purpose of this chapter, however, is 
to develop insights into operational hydrologic procedures, thus warranting the use of SNOW-17.  

Reflecting the NWS’s operational use of the model, our model subdivides the larger 
North Fork basin into an upper and lower basin (Figure 5.4). The delineation occurs at around a 
1500m elevation, which is the approximated annual rain-snow-transition elevation. The upper 
basin comprises 38-39% of the total basin area, and historically receives most of its precipitation 
as snow. 

  
Figure 5.4 Delineations of the upper and lower basins used in the implementation of the NWS 
model. 

5.4.3 Snow-17 Component 

SNOW-17 is an areal model of snow deposition and snow melt. The model takes as its inputs the 
mean areal precipitation and temperature. Based on the areal temperature, precipitation is either 
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accumulated as snow, or partitioned directly into runoff. Energy exchange at the snow-air 
interface, liquid water storage, and ground melt are governed by first order relations, similar to 
those seen in Chapter Four of this thesis. 

One major difference between SNOW-17 and the Hybrid System snowmelt model is that 
SNOW-17 models accumulation explicitly using a parameterized rain-snow transition elevation, 
which coincides with the average temperature that separates rain from snow. The density of the 
new snow  (  is a function of air temperature and is given by the following relation: 

 

 
       (4) 

 
where  is the ambient temperature during snowfall. More information on the SNOW-17 
dynamics is given in Anderson et al. (1973). 

5.4.4 SAC-SMA Component 

The Sacramento Soil Moisture Accounting Model is a lumped soil moisture accounting 
model that uses mean areal precipitation and temperature as inputs. It can also be provided with a 
number of optional inputs, such as snow covered area and evaporation. The model subdivides the 
incoming precipitation into impervious runoff, and pervious runoff, which is further subdivided 
into an upper (soil) and lower zone (long-term soil moisture and groundwater) to calculate base 
flows. Each layer of the model separates the water into free water, and water in tension. The total 
soil moisture budget is given by: 

 

 (5) 

 
where  is the soil water content at time ,  is the mean precipitation,  is the mean 
evaportranspiration,  is the net streamflow divergence, and  is the loss to groundwater. 
The surface runoff  and base flow component  combine to give the total divergence: 

 
 (6) 

 
Each of the budget components is governed by explicit dynamics set forth by physically 

guided operational hydrologic forecast procedures. Details on these dynamics, as well as a 
detailed explanation of model parameters is given in Huang et al. (1996).  

5.4.5 Flow Routing and Model Implementation 

To transform the outputs of SNOW-17 and SAC-SMA into a final hydrograph for the 
North Fork basin, a number of routing components had to be implemented. A rain-snow 
elevation component (RSNELEV) was developed to obtain a time dependent rain snow elevation 
from the mean areal temperature data. Since the upper and lower basins were modeled explicitly, 
each output was weighed through a separate module (WEIGHT-TS) relative to the area of each 
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basin before being passed to a unit hydrograph module (UNIT-HG). The unit hydrograph 
converted the SAC-SMA discharge (height of water) to a mean basin discharge (flow per unit 
time). The parameters for the unit hydrograph were obtained from operational parameters from 
NWS through direct correspondence. The resulting instantaneous discharge was then passed 
through a lag and attenuation model (LAG-K), before being averaged (MEAN-Q) to obtain six-
hour mean discharge hydrographs. The final implemented model, along with all model inputs is 
shown in Figure 5.5.  

The model source code was obtained from NWS3 along with operational parameters for 
the past five decades. The SNOW-17, SAC-SMA, and UNIT-HG models were implemented in 
the JAVA programing language. Wrappers were written in the Python language to tie all the 
components together into one executable procedure.  

5.5 Results 
5.5.1 Regression Skill Assessment 

A skill assessment of streamflow forecasting for the North Fork basin (made on April 1st 
for the total April-July runoff volume) shows that the DWR forecasts had similar behavior seen 
in a number of other basins [Morrill et al., 2011] (Figure 5.6, Figure 5.7). On average the mean 
absolute forecast error for the April-July runoff decreased over the forecast season, improving 
closer to the final forecast date. The mean error for the February forecasts was 30%, decreasing 
to an average of 5% in May. Evident in figure 5.6 is the below-zero median of the error 
distribution, indicating the tendency of the forecast to underestimate the full April-July 
streamflow. 

Of most interest in regard to operational forecasting is the April 1st forecast, showing a 
mean absolute error of 26.3%. The total runoff was overestimated during dry, below average 
years, while the method under-predicted the total streamflow during wet years (Figure 5.7). The 
forecast error was largest during these abnormal wet and dry periods, at times reaching as much 
as 50-60%.  
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Figure 5.5 Modeling chain for NFDC1 streamflow forecast point. 
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Figure 5.6 Comparison of the February-May forecasts for the April-July runoff using the DWR 
regression methods (2001-2011). Red lines indicate the median, blue boxes are one standard 
deviation. 
 
 

 
Figure 5.7 Comparison of April-July streamflow observations (yellow) to those derived on April 
1st by DWR regression methods for years 2001-2011. Dry, below average, years are denoted 
with a red background, while wet years are denoted with a blue background. 
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5.5.2 Effects of Increasing the Number of Sampling Locations on 
Regression Error  

The aim of this part of the study was to implement a complete regression forecast 
framework and to test the sensitivity these commonly used regression methods to the addition of 
snowdepth data samples. Stated simply, the aim was to determine if regression methods can 
improve with the availability of more data (e.g. more WSN deployments). Given the input 
collinearity discussed earlier, as well as the desire to use a more robust framework than just 
simple multiple linear regression, principal component regression was implemented.  

A PCA analysis carried out on the snowcourse locations (Figure 5.2) revealed that the 
first principal component accounted for 83% of the variation in the data. The second and third 
component accounted for 6.3 and 3.7% of the variation of the data, respectively. To ensure that 
the components were stable in composition, a bootstrap method, as suggested by Efron and 
Tibshirani (1993), was implemented. The available years of data were resampled with 
replacement and the relative bootstrapping error and loadings of the principal components were 
computed. It was once again found that only the first principle component had non-significant 
error, with the mean error of the loadings strictly less than the magnitude of the loadings. The 
first component was thus the only used in the remainder of the PCR procedure. 

To understand the impact of snow course selection, as well as the number of stations 
required to make robust predictions, we implemented a remove-3 cross validation, consisting of 
using an exhaustive set of replicates of eight years of training data, and three years of testing data 
(2001-2011). Exhaustive sets of snow courses readings on April 1st, starting from one course per 
set, up to 25 courses per set, were then selected. A PCR model was built, and April-July runoff 
error calculated.  

The results show that, on average, the forecast error decreased as more snow courses 
were added to the PCR model (Figure 5.8). On average, the median error dropped notably after 
incorporating the first two snow course locations into the model, after which the error leveled off 
and stayed consistent near 48 kaf. The variance of the error did however decrease notably as 
more sampling locations were added to the model. Figure 5.9 shows the two stations that 
consistently provided the best predictions across the bootstrapping procedure. These two 
snowcourses were some of the most physically distant from the actual streamflow forecast point. 
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Figure 5.8 The effects of adding more snowcourses on the overall error of a PCR forecast model. 
 

 
Figure 5.9: Two snowcourse locations which consistently provided the best streamflow 
predictions through PCR. 

5.5.3 Use of Reconstructed SWE Data in Regression Framework 

Using the reconstructed SWE data set, a simple linear regression showed a clear 
relationship between the mean basin-wide SWE on April 1st, and the April-July runoff volume 
(Figure 5.10). The basin-wide mean SWE was relatively low since the elevations below 1500m, 
which comprise the majority of the overall basin, typically experience no snow on April 1st.  
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Figure 5.10 Runoff as a linear function of reconstructed (ground truth) SWE. 
 
 An exhaustive bootstrapping procedure was then carried out to determine the mean 
absolute error of the April-July forecast when using the linear model based basin-wide mean 
SWE estimates derived from the reconstructed dataset. The mean absolute error obtained when 
conducting forecasts using the reconstructed SWE data was 18.5% (Figure 5.11). Compared to 
the distribution of the DWR forecast errors, the predictions based on the reconstructed SWE data 
revealed a shift in the median toward zero, indicating less of a tendency to under predict the 
streamflow. Furthermore the variance of the errors decreased compared to the errors obtained 
from the DWR forecasts. 

 
Figure 5.11 Plot of mean absolute error distribution for the April-July runoff forecast, 
comparing the DWR forecast, to a linear model based on the reconstructed SWE data set. Red 
lines indicate the median, blue boxes are one standard deviation. 
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5.5.4 Physical model sensitivity analysis 

 A sensitivity analysis was carried out to investigate the effects of snowmelt error on 
SAC-SMA, including the routing components leading up to the modeling of the final basin 
discharge. The parameterized SNOW-17 model produces as its output a melt time series, which 
is then routed to the soil accounting model. This time series was taken as the base case for years 
2001-2011. The soil moisture accounting model and downstream routing modules were then re-
run for a the full 2001-2011 time period, starting at 75% of the total base-case melt, and going up 
to 125% of the base-case melt in 1% increments. The total change in the predicted April-July 
basin outflow was computed for each case. While there was a linear relationship between the 
change in snowmelt and total basin discharge on an annual basis, this relationship varied year to 
year (Figure 5.12). A 20% difference in the snowmelt estimate corresponded with a difference of 
18%-45% for the total streamflow output of the basin. This error range also became more 
pronounced as the change in snowmelt became larger, as seen by the bounding conical shape in 
Figure 5.12, showing that the nonlinearities of the model can cause even minor changes in the 
estimate of SWE to significantly impact the modeled basin discharge. 
 A similar analysis was carried out higher in the modeling tool chain, varying the modeled 
base-case of the rain-snow-elevation (RESELEV), showing a nearly 3:2 correspondence between 
change in outflow against a change in the rain snow elevation. Since the rain-snow-elevation was 
strictly computed using a point-wise measurement of temperature, the sensitivity of model output 
to RESELEV effectively reflected both errors in the estimate of the real rain-snow-elevation, as 
well as the estimate of mean areal temperature. 
 

 
 
Figure 5.12 The effect of changing the snowmelt quantity (SNOW-17 output) on the effect on 
overall April-July basin discharge. Each line indicates a model year (2001-2011). 

5.5.5 Use of reconstructed SWE data within the physically-based model 

 Reconstructed runoff, computed from the reconstructed, delineated and averaged SWE 
for the upper basin, was compared to the upper basin runoff generated by SNOW-17, showing an 
average of 25% more runoff produced in the April-July season through the reconstructed SWE 
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data (Figure 5.13). The melt quantities agreed the most in years 2004, and 2006, but no general 
correlation between the annual precipitation (wet or dry) was evident in the difference between 
the two runoff estimates. Each model year’s relative melt dynamics agreed more in April-May, 
diverging however significantly in some cases for the May-July period. In particular, there 
appeared to be significant differences in melt-out timing, with the reconstructed runoff showing, 
on average, sooner melt-out, and relatively less melt toward the end of the snowmelt season. 
 Given the results from the sensitivity analysis, particularly those seen in figure 5.12, it 
was evident that the difference between the reconstructed runoff, and modeled SNOW-17 runoff 
would produce significant overestimates in the overall basin streamflow when forwarded to 
SAC-SMA and other routing components. While a thorough comparison of the reconstructed 
SWE data with snow pillow sites showed no bias in the overall reconstructed data [Rittger et al, 
2011], it did appear from the presented data that there was a tendency to overestimate SWE 
values above 1500mm, and under estimate those below. Furthermore, a comparison carried out 
by the same authors with a separate SWE dataset, interpolated from nearby snow-pillow sites, 
showed that the snow pillow-based method yielded on average 68% less total water volume 
when compared to the energy reconstructed SWE data. Since our modeling tool chain was 
calibrated on nearby snow pillows, this adjustment factor was first applied to the melt output of 
the reconstructed snowmelt before it was routed to the SAC-SMA. 

A 15% mean absolute error was computed for the April-July period for both the modeled 
basin discharge based on the SNOW-17 output, as well as that modeled discharge based on the 
adjusted, reconstructed SWE dataset (Figure 5.13). The model based on the reconstructed SWE 
data set, outperformed the SNOW-17 model in about half the cases, showing especially close 
correspondence with observed streamflow in 2001 through 2004. The model based on the 
reconstructed SWE data was also very effective at recreating the correct steam flow conditions 
during the May-June period, during which on numerous occasions the modeled snowmelt and 
reconstructed snowmelt showed significantly different melt out dates and quantities. This was 
also observed by Rittger et al., (2011), who noted distinct melt-out for the reconstructed SWE 
data set when compared to other reconstruction products. 

A breakdown into monthly distributions of error for total flow remaining throughout July, 
showed that the model based on the SNOW-17 output had a median closer to zero when 
compared to the model driven by the reconstructed SWE data (Figure 5.14), which showed a 
consistent median near -12%. The error variance of the SNOW-17 driven model was however 
significantly greater than that of the model driven by the reconstructed SWE data. Thus, while 
the reconstructed SWE data model under predicted total seasonal streamflow each month, it did 
so consistently, and with less than half the error variance. 
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Figure 5.13 Comparison of modeled runoff from snowpack (SNOW-17) against runoff obtained 
from the reconstructed dataset (2001-2010). The percentages above each plot indicate difference 
between the reconstructed runoff, and modeled runoff, with a positive percentage indicating 
more melt produced by the reconstructed data set.  
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Figure 5.14 Comparison of modeled April-July streamflow against streamflow obtained from 
the reconstructed dataset (2001-2010).  
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Figure 5.15 Comparison of monthly forecasts of seasonal flow comparing modeled streamflow 
against streamflow obtained from the reconstructed dataset (2001-2010).  

5.6 Discussion 
An analysis of historical DWR regression forecasts for the North Fork of the American 

River further underlines the need to carefully examine the role of snow course data in streamflow 
forecasts, specifically focusing on the stationarity assumption that is made on an annual basis. As 
figure 5.7 showed, there is significant tendency to under predict streamflow volumes during wet 
years, and over predict them during dry years. This behavior is closely tied to the nature of the 
modeling framework, which tends to drive the predictions closer to a historical mean. Simply 
increasing the number of predictions does not improve the performance of these models, even 
when implementing more complex Principal Component Regression. As figure 5.8 showed, 
adding more snowcourse observations did not noticeably improve the overall prediction. A 
primary reason for this behavior is given by the co-linearity of the input data set, which features 
closely correlated snow course observations. These observations, while made at different 
elevation transects, do not capture the variability of snowdepth that is governed by other 
physiographic features [Molotch et al., 2006]. This lack of sampling diversity, which was also 
addressed in chapter three, appears to impose a limit to improvement of these methods. This 
agrees with some traditional findings, which noted that while these forecasts continue to be 
important, overall large improvement in their accuracy could not be expected through any further 
refinement of the technique [Shafer and Huddleston, 1984].  

While linear regression methods may posses some inherent limitations due to their 
simplicity, a large portion of the prediction error is caused by the input dataset. As figures 5.10 
and 5.11 showed, a simple, non PCR-based regression relating basin-wide SWE and April-July 
runoff, was able to reduce the forecast error by nearly 9%, while lowering the prediction 
variance and reducing the tendency to under-predict seasonal forecasts. While the reconstructed 
SWE data set may have been biased, as stated previously, the relative relationship between 
basin-wide SWE and streamflow remained consistent. The improvement of the forecast was a 

April May June 
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result of the variability captured by the reconstructed SWE dataset, something that was stressed 
in Chapter Three, and is currently not captured by the selection of current snow courses. 
 It was shown that the NWS model is noticeably sensitive to changes in SWE inputs, 
indicating the SWE estimation error could propagate through the modeling tool chain to induce 
significant changes to the overall forecast prediction (up to two-fold in some cases, with a 10% 
snowmelt error causing a 20% forecasting error). This is inherently connected to the non-
linearities of the model and underscores the need for establishing consistency in the snowmelt 
estimates, as large fluctuations in the estimates will result in large variance of the forecasts.  
 While there was a notable difference between modeled SWE and reconstructed SWE 
(Figure 5.13), further investigation is needed to determine the ability of either approach to 
represent true basin-wide snow quantities. A comparison could be drawn with nearby snow 
pillows, but there are not enough measurements available to ascertain basin-wide variability. 
Deployments of future WSNs in the regions will determine the efficacy of each approach in the 
coming years.  

Since the NWS model was calibrated to the outputs of SNOW-17, an adjustment-, or 
scaling-factor, obtained from published records in Rittger et al. (2011), had to be applied for 
meaningful streamflow outputs to be obtained. While this adjusted the total snowmelt, it did so 
only with regard to total SWE quantity, while retaining the relative variability and melt 
characteristics of the data set. The final results (Figure 5.15) indicate that while the errors 
obtained by using modeled snowmelt against reconstructed snowmelt were similar, the total 
variance of the errors was significantly improved through the use of the reconstructed data set. It 
is expected that this consistency will offer the opportunity to approach model re-parameterization 
with a more focused fashion in the future. 

5.7 Conclusions 
 Given the large socioeconomic implication of water resources in the American West, a 
convincing case of the benefits of improved SWE data has to be made to private and public 
stakeholder to continue the investment into more advanced snowpack monitoring techniques. 
This chapter discussed the potential role of improved SWE estimates on the two de-facto water 
forecasting frameworks currently used in California’s Sierra Nevada: DWR regression 
techniques, and the NWS physically-based streamflow forecast model. Our analysis used the 
same decade-long SWE dataset that was used in Chapter Three. While this data set may not be 
the exact ground truth of SWE during this period, it is currently the only data set of its kind, 
offering truly independent, spatiotemporally dense distributions of SWE. Use of this dataset 
during the April-July snowmelt season showed that forecasts based on regression techniques 
could directly benefit from improved SWE data, with a reduction in nearly 9% of mean error, as 
well as a reduction in error variance. It was also shown that while the output of the physical 
model was not directly improved through the use of the SWE dataset, the consistency of the error 
predictions did improve by two-fold, providing a good starting point upon which to base model 
re-parameterization. Future work will focus on conducting such re-parameterizations, and 
investigating ensemble estimation frameworks to more optimally employ real-time data from 
WSNs into the operational model.  
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Chapter 6: Thesis Conclusions and Future Work 
 
The previous chapters outlined a system-level approach towards developing an improved 

understanding of snowmelt driven processes in the Sierra Nevada, and outlined methods that can 
be used to incorporate these estimates into streamflow forecasts. The thesis showed that 
improvements to large-scale water forecasting begin at the smaller-scale, where better 
measurements and scientific understating can be expanded to infer system behavior at the larger 
basin scale. It is expected that the implementation of the above methods could play a significant 
role in enhancing hydrologic understanding, while improving large-scale water resource 
management. The major conclusions of this thesis can be summed up as follows: 

• Distributed Wireless Sensing  
o It was shown that a well-defined deployment strategy can be used to effectively 

instrument catchment-scale regions using extremely low power wireless sensor 
network technology. 

o An extension to the proposed method should investigate the feasibility of scaling 
such deployment strategy to cover significantly larger, basin-scale regions. This is 
presently being conducted in the American River basin, where thirty smaller-scale 
networks will be deployed to estimate SWE over the coming years. 

• Variability of catchment-scale hydrologic processes 
o Given the quantity of data acquired by our WSN deployment, we confirmed the 

temporal stability of snowdepth variability across the melt season, suggesting that a 
stratified placement strategy based on evenly instrumenting major physiographic 
parameters performs well with regard to characterizing the distribution of catchment-
wide snow depth at the km2 scale.    

o An analysis of data acquired by the network over the coming years will solidify our 
findings on the variability of soil moisture across the snowmelt season. An 
investigation into variability of evapotranspiration, and groundwater distribution will 
also be required to begin closing the loop on a truly physically-based water balance 
estimate. 

• Formal abstractions of natural systems 
o A computationally tractable, Hybrid System model of snowmelt was introduced and 

shown to accurately reflect the various stages of snowmelt when compared to 
observations in the Sierra Nevada. 

o This model should be investigated in a larger context of water supply forecasting, by 
coupling it with WSN data to forecast melt conditions in a large mountain basin. 

• Sensor placement, sampling design, and spatial estimation  
o A quantitative sensor placement strategy, coupling Statistical Learning with an 

optimization over Information Theoretic variables was developed and shown to 
improve SWE estimation error by up to 100mm compared to a number other 
methods. 

o As the proposed method was performed on a historical data set, future work should 
focus on evaluating its real-world performance by evaluating the ability of the 
proposed locations to estimate SWE in the American River basin using the WSNs 
that twill be deployed in the coming years. 
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• Effects on improved SWE estimates on basin-scale water resource management 
o It was shown that present forecasting methods are sensitive to both parameters and 

inputs. The use of historically reconstructed SWE data showed that streamflow 
forecasting model precision was improved that total forecast error could be reduced 
by nearly 10% when using improved SWE estimates. 

o An investigation on the downstream effects of these improved forecasts should be 
carried out, focusing especially on the benefits to the control and optimization of 
reservoir releases and hydropower production. 

While this thesis advocates a systemic solution to address basin-scale water forecasting, 
there exist a number of open problems to address how the resulting data and forecasts could be 
used within a real-time water management framework. Even if present methods did permit for 
the full state of a water basin to be estimated, an appropriate system-level architecture does not 
exist to close the control loop between natural system and physical infrastructure. Future water 
grids will compose an amalgam of natural systems, infrastructure, sensors, actuators, 
stakeholders, models, control algorithms, and decision makers. An appropriate architecture must 
be designed to achieve interoperability between these entities, which is essential for scalable and 
reliable operations, as well as for the overall feasibility of real-time operations. Such an 
architecture will ensure that addition or removal of any of the other components occurs 
seamlessly, and without disruption to the performance of the overall system. For example, 
adding a new sensor to the network must not affect the overall operations of downstream 
operations, or decision support strategies. Additionally, modularization and decentralized 
operations will be key, as the change of any of the other components must not affect the 
operation of the other services. This formal architecture will include, but will not be limited to, 
routing real-time data feeds, automatically registering sensors and clients, forwarding modeling 
outputs to the control algorithms, and resolving multi-client conflicts. In essence, such a solution 
will be the operating system upon which all of the other components will interact.  

A possible template for such an architecture could be inspired by the modularized 
structure of the Internet, an extremely complex system of many components that interact 
according to a set of closely followed standards. Such standards must be developed for water 
networks, taking into account the physical input-output nature of the system. The result standards 
will result in a formal architecture for scalable, and reliable information exchange within water 
systems. Instrumented watersheds will become only one component in this massive cyber 
physical architecture. To connect these natural phenomena into the grid, one must first 
represented them as formal system components. A step toward this direction is the development 
of formal models of both natural and man made systems. An example of such a system is the 
hybrid snowmelt automaton introduced in Chapter Four of this thesis. Such abstractions should 
be moved to other components in the water grid, focusing initially on dams and reservoirs, to 
show that it is possible to effectively exchange information between physical infrastructure and 
natural systems. This will open the door to a suite of never before conceived control and 
optimization problems. 

With all components formally represented in the proposed architecture, it will be 
possible to control the system as a whole, rather than focusing on individual components, as is 
the case in current water operations. Such an architecture will likely draw on control theory, and 
dynamical systems to develop policies that can be used to optimally guide reservoirs releases in 
real-time. Primary control objectives could center on increasing hydropower production, while 
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mitigating floods, and reducing overall water spillage. With an initial focus on upstream 
operations, such research presents a manageable task, split into two breaths, one focusing on 
formalizing the cyber-physical information architecture, and the other developing real-time 
hydrologic models and control strategies to guide reservoir releases. It will then be possible to 
expand the scope of the system to instrument and control down-stream, urban-scale arterial water 
networks as well, thus opening the door to a truly all-encompassing, intelligent water grid. 
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