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Abstract Many scheduling problems in practice involve
rescheduling of disrupted schedules. In this study, we show
that in contrast to fixed processing times, if we have the
flexibility to control the processing times of the jobs, we
can generate alternative reactive schedules considering the
manufacturing cost implications in response to disruptions.
We consider a non-identical parallel machining environment
where processing times of the jobs are compressible at a cer-
tain manufacturing cost, which is a convex function of the
compression on the processing time. In rescheduling it is
highly desirable to catch up the original schedule as soon as
possible by reassigning the jobs to the machines and com-
pressing their processing times. On the other hand, one must
also keep the manufacturing cost due to compression of the
jobs low. Thus, one is faced with a tradeoff between match-
up time and manufacturing cost criteria.

We introduce alternative match-up scheduling prob-
lems for finding schedules on the efficient frontier of this
time/cost tradeoff. We employ the recent advances in conic
mixed-integer programming to model these problems effec-
tively. We further provide a fast heuristic algorithm driven
by dual prices of convex subproblems for generating ap-
proximate efficient schedules.

M.S. Aktürk (�) · S. Gürel
Department of Industrial Engineering, Bilkent University,
06800 Bilkent, Ankara, Turkey
e-mail: akturk@bilkent.edu.tr

S. Gürel
e-mail: sgurel@bilkent.edu.tr

A. Atamtürk
Industrial Engineering & Operations Research Department,
University of California, Berkeley, CA 94720-1777, USA
e-mail: atamturk@berkeley.edu

Keywords Parallel machine rescheduling · Match up
times · Controllable processing times · Second-order cone
programming

1 Introduction

Expediting jobs by compressing processing times is a criti-
cal aspect in making reactive decisions against unexpected
disruptions to a schedule. Considering processing time com-
pression decisions at the same time with scheduling deci-
sions, such as sequencing or allocation, enables one to gen-
erate alternative schedules with varying manufacturing cost
and scheduling performance, and hence brings flexibility in
reactive scheduling. In this study, we present how reschedul-
ing and processing time decisions can be made at the same
time to react against a machine breakdown on a given sched-
ule.

Given a machine breakdown on a schedule being exe-
cuted, match-up scheduling aims at finding a new schedule
which matches up with the preschedule at some point in the
future, called the match-up time. At the match-up time, the
new schedule is in the same state as the preschedule. Most
of the rescheduling studies in the literature, including the
match-up scheduling approach, assume planned idle time
periods in preschedules so that a disruption can be absorbed.
This assumption simplifies the rescheduling problem, but it
reduces the utilization of the expensive machines for a dis-
ruption that may or may not occur during the given plan-
ning period. With controllable processing times, even if the
preschedule is a non-delay schedule, i.e., no idle time exists
in the schedule, we can still reschedule to match up with the
preschedule. It may be possible to match up soon after the
disruption by compressing the jobs which immediately suc-
ceed the breakdown. However, catching up sooner implies
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incurring more compression cost. Therefore, considering the
match-up time and the manufacturing cost objectives at the
same time, it is critical to make appropriate rescheduling and
processing time decisions.

A well known example for controllable processing times
is the CNC turning operation where processing times can be
controlled via setting machining parameters such as machin-
ing speed and feed rate. Decreasing the processing time of
an operation requires incurring additional compression cost.
In the CNC machining example, this additional cost is due
to higher tooling cost as a result of increased cutting speed
and feed rate. Compression cost is a convex function of the
amount of compression on the processing time. Nonlinearity
of the cost function makes the rescheduling problem harder
to solve by using commercial solvers. In this paper, we also
show how recent advances in conic quadratic programming
can be used to overcome this difficulty.

A predictive approach in coping with disruptions is to
leave idle time periods in schedules so that any unexpected
event, such as breakdown or new job arrival, can be handled
without much disruption. Mehta and Uzsoy (1998) were the
first to propose including inserted idle times in a job shop
schedule so as to reduce the impact of disruptions. They first
find a job sequence and then apply a heuristic approach to
insert idle times into the schedule. For the maximum tar-
diness problem, Jensen (2001) proposed minimizing maxi-
mum lateness instead, so that the achieved schedule has im-
proved rescheduling performance due to the idle time left
at the end of the schedule. In a recent work, Leus and Her-
roelen (2007) considered minimizing expected weighted de-
viation between actual and planned job starting times in a
single machine scheduling problem with common deadline
for all jobs. They find the optimal job sequence and the op-
timal length of idle time following each job in the schedule
when exactly one job deviates from its expected duration.
However, when the processing times are controllable, insert-
ing idle times into the schedules requires selecting smaller
processing times which causes higher manufacturing cost
for the schedule. If no disruption occurs, the machines will
be under-utilized.

For a survey of different approaches in the reschedul-
ing literature we refer the reader to a Vieira et al. (2003).
Briand et al. (2007) give an approach to characterize the set
of optimal solutions to the single machine maximum late-
ness problem. Their approach is also used to characterize set
of optimal solutions with a worst case performance bound
under some execution scenarios regarding the release times
and due dates. In the literature, there exist few match-up
scheduling studies such as Bean et al. (1991) and Aktürk
and Görgülü (1999), which consider heuristic approaches to
find match-up times. It is important to note that in flow shop
scheduling problems (such as Aktürk and Görgülü 1999)
there might be an idle time in the final schedule due to the

differences in operational processing times and the prece-
dence relationships.

Scheduling problems with controllable processing times
have received significant interest in the literature. Shabtay
and Steiner (2007) give an extensive survey on the topic.
Gürel and Aktürk (2007) consider minimizing total manu-
facturing cost subject to a given bound on the makespan ob-
jective in non-identical parallel CNC machine environment.
Yedidsion et al. (2007) study a single machine scheduling
problem to minimize maximum lateness and resource con-
sumption simultaneously. To the best of our knowledge,
controllable processing times have not been considered in
match-up scheduling problems before.

In this study, we present match-up scheduling problems
with controllable processing times which demonstrate the
tradeoff between match-up time and manufacturing cost ob-
jectives. We give exact and heuristic solution approaches for
the considered problems. We propose alternative reschedul-
ing approaches with controllable processing times on non-
identical parallel machines. We consider different reschedul-
ing objectives to minimize. The first one is the total man-
ufacturing cost for the jobs not yet started at the time of
the disruption. The second objective is the sum of match-
up times on the machines. The third one is the maximum
match-up time for the new schedule. We consider finding
efficient solutions to problems having two objectives to be
minimized. One of them is the total manufacturing cost and
the other one is either the sum of match-up times or the
maximum of match-up times. An efficient solution is the
one for which improvement in one objective is not possible
without degrading the other objective. Hence, we solve the
problem of minimizing total manufacturing cost subject to a
constraint on total match-up time or on maximum match-up
time. We give the formulations for each of these problems.
We show that cost minimization problems can be reformu-
lated by using conic quadratic inequalities. This reformula-
tion is important since it allows us to solve the practical size
problems very fast. Solving problems quickly is critical in
rescheduling because the schedule continues to be processed
while schedule modifications are being determined. The sec-
ond approach is devising an algorithm which generates a set
of approximately efficient solutions for the cost and match-
up time objectives based on the gradient of the convex cost
function. The notation used throughout the paper is stated
below:

Decision Variables:

xij : 1, if job j is assigned on machine i; 0, other-
wise.

zj : 1, if start time of job j in S is selected as match-
up time; 0, otherwise.

yij : Compression on the processing time of job j on
machine i.
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Parameters:

pu
ij : Processing time upper bound that gives the min-

imum manufacturing cost for job j on ma-
chine i.

cij : Manufacturing cost of job j on machine i with
no compression.

uij : Maximum possible compression for job j on
machine i.

fij (yij ): Compression cost function for job j on ma-
chine i.

Di : Available machining time capacity on ma-
chine i.

S : Preschedule on which a breakdown occurs.
yS
ij : Compression on the processing time of job j on

machine i in S .
sj : Start time of job j in S .

M∗: Index of the disrupted machine.
t∗: Time of disruption on machine M∗.
d∗: Duration of disruption on machine M∗.
J : Set of jobs not yet started processing at the time

of disruption, i.e., J = {j |sj ≥ t∗}.
Ji : Subset of J scheduled on machine i in S .

Jm
i : Subset of Ji that can form match-up point on

machine i, i.e., Jm
i = {j ∈ Ji |sj ≥ t∗ + d∗} for

i = M∗ and Jm
i = {j ∈ Ji |sj ≥ t∗} for i �= M∗.

Pj : Set of jobs including job j and its predecessors
which can form match-up point on the same ma-
chine in S .

Ei : End time of the last job on machine i in S .

In Sect. 2, we present different rescheduling approaches
on a numerical example. In Sect. 3, we give the description
of the rescheduling environment and formulations for the
considered rescheduling problems. In Sect. 4, we discuss
alternative formulations for the problems by using conic
quadratic inequalities. In Sect. 5, we propose a heuristic al-
gorithm to generate approximately efficient solutions for the
problems. We give the results of our computational study in
Sect. 6 and finalize with concluding remarks in Sect. 7.

2 Rescheduling with controllable processing times:
a numerical example

In order to clarify the distinctions between match-up re-
scheduling with fixed and controllable times, we demon-
strate alternative rescheduling approaches on a numerical
example in Fig. 1. This is a parallel machine rescheduling
example arising due to a breakdown on one of the machines.
In this study, the problem is to reschedule a set of jobs on
non-identical machines where each job has different cost
and processing time data on different machines. However,

in the numerical example, for simplicity we assume that the
jobs are of the same type and the machines are identical.
Hence, we assume pu

ij = 2.0 and uij = 1 for all i, j . The
processing time of the jobs can be compressed by incurring
additional manufacturing cost determined by the compres-
sion cost function which is fij = 5y2

ij for all i, j . The exam-
ple starts with a preschedule with the minimum total com-
pression cost. There are 15 jobs scheduled on three parallel
CNC machines. When there is a machine breakdown on one
of the machines, we illustrate how alternative rescheduling
approaches can be used to remedy this unavailability period
using a different Gantt Chart representation for each one of
them.

Gantt Chart 1 in Fig. 1 belongs to the preschedule. In or-
der to obtain this preschedule, we first solve a machine-job
assignment problem with cost minimization objective. Thus,
we find the optimum machine-job assignments (5 jobs on
each machine) and compression levels (0.2) on the process-
ing times subject to given capacities on the machines. Se-
lected machine-job allocation and processing times have
to satisfy the available machining time capacity constraint,
which is taken as (9.0) for this numerical example.

Gantt Chart 2 shows the breakdown on machine 1. In
practice, we do not know when a machine breakdown oc-
curs, but we can determine when it ends right after its oc-
currence. Therefore, we assume that the breakdown time is
not known a priori, but immediately after the event occurs
the down duration can be determined. In this numerical ex-
ample, a breakdown occurs at the start time of job 2. At this
point, the jobs 1, 6 and 11 have been completed, and some
are in process on other machines. These jobs, which are
highlighted on the chart, will not be considered in reschedul-
ing decisions since they are already completed. Gantt Chart
2 also gives the resulting schedule achieved by right-shifting
the jobs not yet finished at time of breakdown on machine 1.
The right-shift approach assumes fixed processing times and
it is the simplest rescheduling strategy. However, the result-
ing schedule violates the machining time capacity constraint
by the duration of down time, which is 3.60. The total man-
ufacturing cost of the jobs considered in rescheduling stays
the same (3.0) as their cost in the preschedule since the
processing times did not change. Since there is no inserted
idle time in the preschedule, we will not be able to find a
feasible solution by looking for an alternative machine-job
allocation with fixed processing times. The only way to find
a feasible schedule without violating the machining time ca-
pacity constraints for this particular example is to consider
the controllable processing times and machine reallocation
decisions simultaneously.

Gantt Charts 3 to 6 in Fig. 1 next show alternative
rescheduling approaches with controllable processing times.
The first approach finds a schedule with minimum sum of
match-up times on the machines. In other words, the objec-
tive is to minimize the length of the rescheduled portion of
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Fig. 1 Alternative reactive scheduling approaches
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Fig. 2 Efficient solution set for
total cost and sum of match-up
times objectives

the preschedule. Minimum sum of match-up times for the
schedule shown in Gantt Chart 3 is 16.20. This schedule is
achieved by moving job 2 to machine 2 and re-planning the
processing times of only six jobs represented by the dot-
ted boxes. This is a minimum cost schedule for the sum of
match-up time level of 16.20. As a result, the match-up times
on machine 1, machine 2 and machine 3 are the end time of
job 5, the starting time of job 9, and the starting time of job
12 in the preschedule, respectively. As it can be observed,
the schedule on each machine is exactly the same as the
preschedule beyond the match-up points. In contrast to the
fixed processing time approach given in the previous charts,
this approach neither violates the machining time capacity
constraint nor leaves unnecessary idle time. This schedule
fully utilizes the available machining time capacity on the
machines and it has a manufacturing cost of 21.0.

Gantt Chart 4 in Fig. 1 presents the schedule achieved by
minimizing the manufacturing cost for a given upper bound
on the sum of match-up times. Sum of match-up times for
the schedule is 19.80 and the total cost is 18.30. Hence, com-
pared to the schedule in chart 3, by giving up from the sum
of match-up times performance, which implies distributing
the compression on more jobs, we improve the cost crite-
rion. We re-assigned jobs 2 and 3 to different machines com-
pared to the preschedule in this case. Gantt Chart 5 gives the
schedule which minimizes the maximum of match-up times
on the machines. Minimum of maximum match-up times is
5.40 for the given example. Minimizing the total cost sub-
ject to a maximum match-up time level of 7.20, we find the
schedule shown in Gantt Chart 6 in Fig. 1.

Alternative rescheduling approaches applied in this ex-
ample show that using processing time controllability has
definite advantages. The first one is that we can catch up

the preschedule soon after the breakdown occurs and satisfy
the due dates and production plans in the system. Process-
ing time and machine-job assignment changes affect only a
small part of the preschedule which helps to decrease the
stress in the system. Under the fixed processing times as-
sumption, it may not be possible to catch up the presched-
ule as shown in the numerical example. Secondly, we have
the flexibility to generate different alternative schedules with
varying total cost and match-up time objectives. We can pro-
vide a set of alternative schedules to the decision maker.
Thirdly, process time controllability provides a more robust
system. With fixed processing times, a breakdown may re-
sult in a rescheduling problem which is infeasible even for a
preschedule with idle times.

For the considered numerical example, we present a set
of efficient solutions illustrating the tradeoff between the
sum of match-up times and total cost objectives in Fig. 2.
Each solution on the chart is labeled by its sum of match-up
times value and total cost value, respectively. The first solu-
tion corresponds to the schedule in Chart 3 with the mini-
mum sum of match-up times but a high total cost. The third
solution corresponds to the schedule in Chart 4. Similarly,
we present a set of efficient solutions for the minimum of
maximum match-up times and the manufacturing cost ob-
jectives in Fig. 3. The first two solutions correspond to the
schedules given in Charts 5 and 6, respectively. The third
efficient solution shown in the figure has the minimum man-
ufacturing cost for the problem. In the next section, we will
describe the scheduling environment in detail and give prob-
lem definitions for different rescheduling objectives.
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Fig. 3 Efficient solution set for
total cost and minimum of
maximum match-up time
objectives

3 Scheduling environment and problem definitions

We consider n jobs to be processed in non-identical par-
allel CNC machine environment. The term “non-identical”
means that each job may have different processing time, up-
per bound on compression and manufacturing cost values
and different compression cost function on different ma-
chines. There are m machines, each of which has a given
available machining time capacity. Due to different mainte-
nance and allowance policies, each machine could have its
own finite machining time capacity (in terms of fixed time
units denoted as Di ) to process the set of assigned jobs.
This allows us to have a more realistic representation of the
rescheduling problems, since the production resources usu-
ally have limited capacities and scheduling problems should
be solved over a given finite planning period. Furthermore,
there is a given preschedule S being executed in this en-
vironment. As we have mentioned in Sect. 2, S could be
formed by solving the machine-job assignment problem to
minimize total manufacturing cost objective.

We assume that during the execution of S , there occurs a
breakdown on one of the machines. This means the machine
will be down for a certain time to be maintained or repaired.
Given such a disruption, S is no longer executable. We as-
sume that if the machine fails in the middle of processing a
job then this job has to be reprocessed in its entirety, called
the preempt-repeat case in the literature. The interrupted job
and all the other jobs which are not yet started processing
on their machines have to be rescheduled. Rescheduling in-
volves making new machine-job assignment and processing
time compression decisions. These decisions can be made in
order to catch up the preschedule at some point on each ma-
chine. Since we assume a non-preemptive machining envi-
ronment, we select match-up times out of the start times pre-
viously determined in S . The schedule, namely the sequence
of the jobs and their start-end times, that follows a match-up

time on a machine has to be the same as the preschedule. As
simultaneous disruptions are infrequent compared to a sin-
gle disruption, unless the system has serious maintenance
issues, we do not consider multiple disruptions in this study.

The match-up time idea is used successfully to solve the
rescheduling problems in the literature, but the critical issue
is how to determine the match-up time on each machine. We
could either minimize the sum of match-up times on each
machine or minimize the maximum one regardless of their
cost implications as will be discussed in Sects. 3.1 and 3.2.
Another alternative could be to provide alternative match-
up schedules with varying time/cost tradeoffs to the deci-
sion maker as will be discussed in Sects. 3.3 and 3.4. In the
previous numerical example summarized in Fig. 1, by allow-
ing machine reallocation and controllable processing times
we could absorb the machine breakdown duration as soon as
possible as in Gantt Charts 3 and 5 with two different match-
up strategies albeit at a high manufacturing cost. With the
maximum match-up time strategy, we expect to distribute
the required compression amount more evenly among the
selected jobs. This will eventually provide a better solution
in terms of the manufacturing cost, but a higher number of
jobs will be affected. We also suggest alternative nondomi-
nated solutions for this bi-criteria problem as given in Gantt
Charts 4 and 6 for each strategy, respectively. In the follow-
ing sections, we formulate alternative match-up scheduling
strategies to deal with the stated time/cost tradeoff.

3.1 Minimize sum of match-up times

We first consider the problem of minimizing the sum of
match-up times objective. This problem arises when the
length of the rescheduled part of schedule S is critical and
has to be minimized. Minimizing sum of match-up times can
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be formulated as follows:

min
∑

i

∑

j∈Jm
i

sj zj +
∑

i

Ei

(
1 −

∑

j∈Jm
i

zj

)

s.t.
∑

j∈J

(
pu

ij xij − yij

) ≤ Di, i = 1, . . . ,m, (1)

yij ≤ xijuij , i = 1, . . . ,m and j ∈ J, (2)

m∑

i=1

xij = 1, ∀j ∈ J, (3)

(SM)
∑

j∈Jm
i

zj ≤ 1, i = 1, . . . ,m, (4)

∑

j2∈Pj1

zj2 ≤ xij1, i = 1, . . . ,m and ∀j1 ∈ Jm
i , (5)

(
uij1 − yS

ij1

) ∑

j2∈Pj1

zj2 ≤ uij1 − yij1,

i = 1, . . . ,m and ∀j1 ∈ Jm
i , (6)

yS
ij1

∑

j2∈Pj1

zj2 ≤ yij1,

i = 1, . . . ,m and ∀j1 ∈ Jm
i , (7)

xij ∈ {0,1}, yij ∈ R+,

i = 1, . . . ,m, and j ∈ J, (8)

zj ∈ {0,1}, j ∈
⋃

i

Jm
i . (9)

The objective to minimize is the sum of match-up times.
Possible match-up times are the start times of jobs which
can still be started at the same time and on the same ma-
chine as in S . For instance, in the numerical example, in
Fig. 1, job 3 cannot form a match-up time since its machine
is not available at that time, while job 10 can. End of hori-
zon or ending time of the last job on a machine can also
be the match-up time. Constraint set (1) guarantees that the
new schedule does not exceed the available machining time
capacity on each machine. Constraint set (2) is the variable
upper bounding constraints on the amount of compression,
guaranteeing that processing time of a job on a machine can
be compressed only if the job is assigned on that machine
and also the compression cannot be greater than the upper
bound uij . Constraint set (3) assigns each job to a machine.
Start time of at most one of the jobs can be selected as a
match-up point on each machine which is forced by con-
straint set (4). Constraint set (5) guarantees that the jobs fol-
lowing a selected match-up time on a machine has to stay
on the same machine in the new schedule. Constraints (6)
and (7) fix the compression on a job which follows a match-
up point at its compression in S .

In Fig. 1, for the considered example, solution to the
above problem is given in Gantt Chart 3. Selected match-
up points on the machines are the end time of job 5 on ma-
chine 1 and the start times of jobs 9 and 12 on machines 2
and 3, respectively. The minimum sum of match-up times is
the sum of these selected match-up points. As can be seen
from the example, the new schedule following the match-up
points is exactly the same as the preschedule. The length of
the rescheduled part is at its minimum. Another critical per-
formance criterion is the maximum of match-up times which
is considered in the next section.

3.2 Minimize maximum of match-up times

It may also be critical for the decision maker to catch the
preschedule on all machines as soon as possible. Then, his
objective will be to minimize the latest match-up time on the
machines. We can formulate this problem as follows:

min W

(MM) s.t.
∑

j∈Jm
i

sj zj + Ei

(
1 −

∑

j∈Jm
i

zj

)
≤ W,

i = 1, . . . ,m, (10)

and (1)–(9).

Constraints (10) bound the match-up time on each ma-
chine from above by the variable W , which is minimized.
The other constraints are the same as the sum of match-up
times problem. Solving the rescheduling problem for either
of the two match-up time related objectives that we have
discussed so far results in extremely compressed processing
times and costly machine-job assignments. Hence, the man-
ufacturing cost for the resulting schedule could be too high.
In the following sections, we will consider the objective of
total manufacturing cost, while bounding the match-up time
criterion of the schedule.

3.3 Minimize total manufacturing cost subject to a bound
on sum of match-up times

Compressing the processing time of a job requires using ad-
ditional resources for the job. In a flexible manufacturing
system, reducing the processing time of an operation on a
CNC machine by increasing the cutting speed and feed rate
naturally leads to reduced tool life, and, consequently, in-
creased machining cost. We can model the change in the
machining cost due to processing time compression y ≥ 0
as

f (y) = kya/b,

where a and b are integers satisfying a ≥ b > 0 and k > 0,
so that f is an increasing and convex function of the com-
pression. The function f reflects the relationship between
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compression and cost in that as one decreases the process-
ing time of a job, it becomes more expensive to compress
it further. Convexity of f models the increasing marginal
cost of compression. Technical specifications of a job such
as its length, diameter, required surface quality, as well as
machine and tool type determine the cost coefficients k, a,
and b as discussed in Kayan and Aktürk (2005).

Minimizing the manufacturing cost necessitates making
appropriate machine-job assignment and compression deci-
sions. In match-up rescheduling, manufacturing cost due to
process time compression and match-up time objectives are
in conflict. Increasing the match-up time window on a ma-
chine not only allows one to distribute the required compres-
sion across a larger number of jobs, but also provides new
machine-job reassignment possibilities. As this relaxes the
feasible region of the problem it helps to reduce the manu-
facturing cost. Having two conflicting objectives, one way to
find efficient solutions is to minimize one of the objectives
subject to the constraint that the solution value of the second
objective cannot be worse than the given upper bound, and
solve the overall problem as a single objective problem. This
method known as the ε-constraint approach, as discussed in
T’kindt and Billaut (2006), has been widely used in the liter-
ature, because the decision maker can interactively specify
and modify the bounds and analyze the influence of these
modifications on the final solution. Below, we formulate the
problem of minimizing the manufacturing cost subject to an
upper bound T on the sum of match-up times in the new
schedule:

min
∑

i

∑

j∈J

(
cij xij + fij (yij )

)

(CSM) s.t.
∑

i

∑

j∈Jm
i

sj zj

+
∑

i

Ei

(
1 −

∑

j∈Jm
i

zj

)
≤ T , (11)

and (1)–(9).

The objective function above is the sum of fixed costs
and compression costs. The formulation above includes con-
vex functions in the objective. Constraint (11) sets the up-
per bound on the sum of match-up times for the schedule
and, thus, limits the size of the rescheduled portion of the
preschedule.

3.4 Minimize total manufacturing cost subject to a bound
on maximum match-up time

Given an upper bound T on the maximum match-up time,
one can set the match-up time on machine i to be Ti =
maxj∈Ji

{sj : sj ≤ T }. This is due to the fact that increas-
ing the match-up time on a machine does not increase the

total manufacturing cost of a schedule as discussed above.
Defining the set of jobs that precede selected match-up times
on their machines as J T , we can formulate the problem of
minimizing manufacturing cost subject to a given maximum
match-up time as:

min
∑

i

∑

j∈JT

(
cij xij + fij (yij )

)

s.t.
∑

j∈JT

(
pu

ij xij − yij

) ≤ Ti,

i = 1, . . . ,m, (12)

(CMM) yij ≤ xijuij , i = 1, . . . ,m and j ∈ J T , (13)

m∑

i=1

xij = 1, j ∈ J T , (14)

xij ∈ {0,1}, yij ∈ R+,

i = 1, . . . ,m and j ∈ J T . (15)

In this section, we have described the rescheduling en-
vironment and provided four different rescheduling prob-
lems to solve. In the computational analysis section, we
will demonstrate that minimizing the sum of match-up times
and minimizing maximum match-up time problems can be
solved easily by commercial mixed-integer programming
(MIP) solvers. However, it is usually difficult to solve cost
minimization problems since they have convex cost terms in
their objective functions. In the next section, we will discuss
how the cost minimization problems can be reformulated in
a stronger way by using conic quadratic inequalities.

4 Strong conic quadratic formulations for cost
minimization problems

When solving the continuous relaxation of CSM and CMM
formulations, convex cost terms in the objectives cause
highly fractional optimal solutions which lie in the inte-
rior of their convex relaxation. Hence, branch-and-bound
algorithms based on such relaxations usually require ex-
cessive branching to find integer feasible solutions. How-
ever, in reactive rescheduling, solution times for the prob-
lems are quite critical. Recent work by Aktürk et al. (2009)
on problems with a separable convex objective and variable
upper bounding constraints shows that conic quadratic in-
equalities can be employed for strengthening the formula-
tions of such problems. Their approach is based on second-
order cone programming (SOCP), which is also called conic
quadratic programming. Alizadeh and Goldfarb (2003) give
an extensive review on the theory of SOCP and report the
recent advances in this area. Existence of efficient SOCP al-
gorithms implemented in branch-and-bound solvers allows
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us to reformulate CSM and CMM models as proposed by
Aktürk et al. (2009) and solve them efficiently. In this sec-
tion, we discuss the implementation of this approach in the
rescheduling problems with cost minimization objectives.

The first step of the reformulation is to put CSM into
conic optimization problem form with linear objective and

conic constraints. Thus, we replace each term y
aij /bij

ij in the

objective with an auxiliary variable tij and add y
aij /bij

ij ≤ tij
into the constraints as below:

min
∑

i

∑

j∈J

(cij xij + kij tij )

(CSM1) s.t. y
aij /bij

ij ≤ tij , i = 1, . . . ,m, j ∈ J, (16)

and (1)–(9) and (11).

As cij , tij ≥ 0 and bij > 0 for all i, j , Inequality (16) is
equivalent to

y
aij

ij ≤ t
bij

ij , (17)

which can be strengthened as

y
aij

ij ≤ t
bij

ij x
aij −bij

ij . (18)

Because aij ≥ bij , for 0 ≤ xij ≤ 1, Inequality (18) im-
plies (17). Thus, we can substitute the inequalities with the
stronger ones and obtain:

min
∑

i

∑

j∈J

(cij xij + kij tij )

(CSM2) s.t. y
aij

ij ≤ t
bij

ij x
aij −bij

ij ,

i = 1, . . . ,m, j ∈ J, (19)

and (1)–(9) and (11).

Inequalities (17) and (18) can be represented by using
conic quadratic constraints. This can be shown first by using
the fact that an inequality of the form

r2l ≤ s1s2 · · · s2l , (20)

for r, s1, . . . , s2l ≥ 0, can be expressed equivalently using
O(2l ) variables and O(2l ) hyperbolic inequalities of the
form

u2 ≤ v1v2, u, v1, v2 ≥ 0 (21)

(Ben-Tal and Nemirovski 2001), and then using the fact that
each constraint (21) can be written as a second-order conic
constraint

∥∥(2u,v1 − v2)
∥∥ ≤ v1 + v2, (22)

where ‖v‖ denotes the Euclidean norm of vector v. Aktürk
et al. (2009) have shown that Inequalities (17) and (18) can
be represented equivalently by using O(log2 aij ) variables
and O(log2 aij ) conic quadratic constraints of the form (22).
An example for the conic quadratic representation of a given
Inequality (18) is shown below.

Example 1 Consider the convex function f (y) = y5/4. We
first write inequality (18) as

y5 ≤ t4x, y, t, x ≥ 0

then put it in the form of (20) as

y8 ≤ t4xy3, y, t, x ≥ 0,

which we can express equivalently by using the following
hyperbolic constraints:

v2
1 ≤ xy, x, y ≥ 0,

v2
2 ≤ yv1, y, v1 ≥ 0,

y2 ≤ tv2, t, v2 ≥ 0.

The hyperbolic constraints are then written in conic quadrat-
ic form as
∥∥(2v1, y − x)

∥∥ ≤ y + x,
∥∥(2v2, y − v1)

∥∥ ≤ y + v1,
∥∥(2y, t − v2)

∥∥ ≤ t + v2.

We have discussed the strengthening and reformulation
on CSM model. CMM can also be reformulated in the same
way. Using strengthened conic quadratic formulations al-
lows one to solve CSM and CMM very quickly as discussed
in Sect. 6. In the next section, we describe a heuristic ap-
proach to generate approximately efficient solutions for the
cost and the match-up objectives.

5 Generating a set of approximately efficient solutions:
heuristic approach

In the rescheduling literature, a common approach to solve
scheduling problems is by heuristics which can find a so-
lution quickly. In the previous section, we have discussed a
way of getting strong formulations for the considered cost
minimization problems, CSM and CMM. In this section, we
propose a heuristic search algorithm which generates a set
of approximately efficient solutions that can be presented
to the decision maker quickly. We consider two bi-criteria
rescheduling problems. In the first problem, the conflicting
objectives are the total manufacturing cost and the sum of
match-up times; whereas in the second one, the conflicting
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Algorithm 1 Heuristic algorithm for finding approximate efficient solutions
Require: A preschedule S and a disruption on one of the machines.

Solve the problem SM (MM) to find an initial schedule S, match-up times Ti , and job pool P .
repeat

Apply 1-move Algorithm.
Apply 2-swap Algorithm.
Report the generated solution.

until Augment Job Pool is False.

objectives are the total manufacturing cost and maximum
match-up time.

We first give a step by step definition of the proposed
heuristic algorithm below. The algorithm generates ap-
proximately efficient solutions for the bi-criteria match-up
scheduling problems under consideration.

Algorithm 1 starts with an initial schedule S and a given
disruption. We first solve the problem of minimizing sum
of match-up times (or minimizing maximum of match-up
times). The solution for this problem gives the initial match-
up times and a job pool, i.e., the set of incomplete jobs that
precede the match-up times. With the given match-up times,
the algorithm applies the 1-move and 2-swap improve-
ment algorithms on the current job pool and records the so-
lution. The next step is to expand the job pool by adding an
appropriate job to the pool and the improvement algorithms
are applied on the new job pool. The algorithm terminates
when the job pool cannot be expanded, i.e., no jobs exist to
be added to the pool. Algorithm 1 generates a set of solu-
tions where each solution is an approximately efficient solu-
tion. In the following, we will describe a subproblem which
motivates the improvement search steps of the algorithm and
then we will describe the steps of Algorithm 1 in detail.

5.1 A subproblem

We first define a subproblem that is solved at each iteration
of Algorithm 1. The solution to the subproblem is used by
the 1-move and 2-swap improvements and for augment-
ing the job pool. The subproblem for machine i is described
as the following: Given a match-up time Ti and a set of jobs
Jc to be scheduled before Ti on machine i, find optimal com-
pression levels for the jobs so that the total compression cost
is minimized. The problem is formulated as

min
∑

j∈Jc

fij (yij )

(CIMPi) s.t.
∑

j∈Jc

(
pu

ij − yij

) ≤ Ti, (23)

0 ≤ yij ≤ uij , j ∈ Jc. (24)

COMPi is a nonlinear continuous resource allocation
problem. Optimality properties and a solution method for

the problem were given by Bretthauer and Shetty (1995). We
can write the Karush–Kuhn–Tucker conditions for COMPi
as below:

∂fij

∂yij

− λ − νj + ηj = 0, j ∈ Jc, (25)

λ

(∑

j∈Jc

(
pu

ij − yij

) − Ti

)
= 0, (26)

νjyij = 0, j ∈ Jc, (27)

ηj (yij − uij ) = 0, j ∈ Jc, (28)

νj ≥ 0, ηj ≥ 0, j ∈ Jc, (29)

λ ≥ 0, (30)

and Inequalities (23)–(24). These conditions imply the fol-
lowing lemma which will be very useful in designing im-
provement steps and augmenting the job pool in our heuris-
tic.

Lemma 1 Let y∗
ij and (λ∗, η∗, ν∗) be an optimal pair of

solutions to COMPi. For each job j , we have the following:

(∂fij /∂yij )
(
y∗
ij

)
⎧
⎪⎨

⎪⎩

≥ λ∗, if y∗
ij = 0;

= λ∗, if 0 < y∗
ij < uij ;

≤ λ∗, if y∗
ij = uij .

Because λ∗ ≥ 0 and (∂fij /∂yij )(0) = 0, the first part
holds only when λ∗ = 0. Thus Lemma 1 states that, when-
ever λ∗ > 0, the partial derivative of the cost function for
each job must be equal unless its compression is at its upper
bound uij . Here, λ∗ is the rate of change of the optimal cost
as Ti changes. But also from the lemma, the rate of change
of the optimal cost for each job with 0 < y∗

ij < uij is also
equal to λ∗. This interpretation will be used in designing
search steps in the following sections.

5.2 Job pool

In the heuristic algorithm, at each iteration we work on a
job pool which is the set of jobs to be rescheduled at that
iteration. Given match-up times on the machines, a job is in-
cluded in the job pool if it is not yet started at the time of the
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breakdown and its start time precedes the given match-up
time on its machine. The only exception is the interrupted
job on the breakdown machine which is included in the
job pool. For the bi-criteria problem with cost and sum of
match-up times objectives, the initial job pool is determined
by the match-up points found by solving the SM problem
in Sect. 3.1. Solving SM gives us the minimum attainable
sum of match-up times. As shown in Gantt Charts 3 and 5
in Fig. 1, minimizing sum of match-up times or maximum
of match-up times requires extensively compressing a small
set of jobs. The solution with minimum sum of match-up
times has the highest manufacturing cost. Thus, the first ap-
proximately efficient solution we generate has the minimum
possible sum of match-up times but its manufacturing cost
is the worst of all efficient solutions.

For the problem with the objectives of minimizing total
cost and maximum match-up time, we get the initial job pool
by solving the MM problem and setting the match-up time
on each machine to be the highest match-up time less than
the maximum match-up time found by solving MM.

We augment the job pool at each iteration by adding a
new job to the pool. The question is which job to add to the
current job pool. Considering the jobs which are immediate
successors of match-up points; there are at most m candi-
dates. Adding a new job to the job pool increases the sum of
match-up times, but it may give us a schedule with a lower
manufacturing cost after reallocating the jobs and solving
the subproblems on each machine. We use the following rule
to select the machine for increasing its match-up time. For
each machine i, we have λ∗

i , the rate of change of the opti-
mal cost by the change of match-up time, for the jobs sched-
uled before match-up point. Suppose that the job that imme-
diately succeeds match-up point on machine i is j and that
the compression on job j is y∗

ij , then we select the machine
with the smallest

Δi := kij ŷ
aij /bij

ij − kij y
∗
ij

aij /bij − λ∗
i (ŷij − y∗

ij )

pu
ij − y∗

ij

,

where ŷij = min((∂fij /∂yij )
−1(λ∗

i ), uij ). Δi is an esti-
mate of the ratio of the cost change to the match-up time
change that will be obtained by moving the match-up point
to the start time of the next job. Consider machine 2 in
the schedule represented by Gantt Chart 4 in Fig. 1. On
machine 2, λ∗

2 = 6.5, y∗
2,10 = 0.2 and ŷ2,10 = 0.65. Then,

Δ2 = 5×(0.65)2−5×(0.2)2−6.5×(0.65−0.2)
1.8 = −2.25. The first

two terms in the numerator give the cost change that would
occur if job 10 were compressed by the same amount as the
other jobs in the job pool on machine 2. The third term gives
an estimate for the cost change by expanding the jobs in the
job pool on machine 2 by the difference between two com-
pression levels for job 10 considered in the first two terms.
In other words, we first increase the compression of job 10

Algorithm 2 Augment job pool
Require: Given match-up times Ti for each machine and

job pool P .
if Ti = Ei for all i then

return False.
else

Calculate Δi for the machines with Ti �= Ei .
Select i∗ with minimum Δi .
Ti∗ ← sj , where j is the next job on i∗; P ← P ∪ {j}.
return True.

by 0.45 and then we expand jobs 2, 7, 8, 9, and 10 by a
total amount of 0.45. Hence, Δ2 estimates the cost improve-
ment that would occur by adding job 10 to the job pool and
then replanning the compression levels of the jobs. Since we
are interested in the efficient frontier of manufacturing cost
and sum of match-up time objectives, we select the machine
that gives the maximum cost improvement estimate per unit
match-up time change as outlined in Algorithm 2.

For the maximum match-up time criterion, the match-up
time increasing rule we use is to select the candidate job
which has the smallest completion time. We have discussed
the compression subproblem, formation of initial job pool
and job pool augmentation rules used in our heuristic. We
next describe the improvement search methods.

5.3 1-move improvement search

1-move method assumes that we have a schedule at hand
with given match-up times and that the compression sub-
problem COMPi is solved for each machine. 1-move
method looks for cost improving move of a job in the job
pool from its current machine to another machine. A 1-
move yields compression cost improvement in its original
machine since the compression for the remaining jobs can
be decreased due to the additional machining time capacity
that becomes available when the job leaves. On the other
hand, it increases the compression cost on the new machine
as the jobs on this machine need to be compressed further
to make up space for the new job to get a feasible schedule.
Below we give a lower bound on the cost change for a given
1-move.

Lemma 2 (Lower bound for a 1-move) For a given sched-
ule let λi1 and λi2 be optimal dual prices for COMPi1 and
COMPi2, respectively, and yi1j be the compression of job j

on machine i1. Then, a lower bound for the cost change that
will result by moving job j from machine i1 to i2 is as stated
below:

LB
(
j : (i1 → i2)

) = −λi1(pi1j − yi1j ) − ci1j − fi1j (yi1j )

+ ci2j + fi2j (ŷi2j ) + λi2(pi2j − ŷi2j ),
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Algorithm 3 1-move search algorithm
Require: A given schedule S and a job pool P .

repeat
Generate all feasible 1-moves for each j in P in S;
Calculate LB for all moves;
if LB ≥ 0 for all feasible moves then

BREAK;
else

Make a list of moves with LB < 0 in nondecreasing
order of LBs.
Initialize: found_improving_move← False,
end_of_list← False;
while NOT found_improving_move and NOT
end_of_list do

Do the next move in the list;
if It is the last move in the list then
end_of_list← True

Solve COMPi for affected machines;
New schedule is S′;
if COST (S′) < COST (S) then

S ← S′;
found_improving_move← True;
improved← True;

if NOT found_improving_move then
improved← False

until NOT improved.

where ŷi2j = min((∂fi2j /∂yi2j )
−1(λi2), ui2j ).

Proof The first three terms in LB(j : (i1 → i2)) give a lower
bound on the cost reduction by removing job j from ma-
chine i1; whereas the last three terms give a lower bound on
the cost increase by inserting job j into machine i2. �

LB(j : (i1 → i2)) gives us a lower bound on the change of
manufacturing cost change for moving job j from i1 to i2.
So if the lower bound is positive, then the corresponding
1-move does not improve the cost of the schedule. On the
other hand, if it is negative, then it may be possible to im-
prove the cost of the schedule by reallocating this job to ma-
chine i2. Hence, we employ a procedure to implement one
moves on a given schedule as given in Algorithm 3.

Algorithm 3 starts with an initial schedule and applies
promising 1-moves iteratively to obtain schedules with im-
proved total manufacturing cost. The algorithm terminates
when no improvement is possible for the current schedule.
In the next section, we give a larger neighborhood search by
a 2-swap move.

5.4 2-swap improvement search

A 2-swap move is the exchange of two jobs, j1 and j2,
between two machines i1 and i2, i.e., moving job j1 from

machine i1 to i2, and job j2 in the opposite direction. We
can consider a 2-swap move as a combination of two 1-
move’s and calculate a cost change lower bound for a given
2-move as below:

Lemma 3 (Lower bound for a 2-swap) For a given sched-
ule let λi1 and λi2 be optimal dual prices for COMPi1 and
COMPi2, respectively, and yi1j1 and yi2j2 be the compres-
sion of the jobs j1 and j2 on machine i1 and i2, respectively.
Then, a lower bound for the cost change that will result by
swapping jobs j1 and j2 between machines i1 and i2 is cal-
culated as below:

LB(j1 ↔ j2) = λi1(pi1j1 − yi1j1 − pi1j2 + ŷi1j2) − ci1j1

− fi1j1(yi1j1) + ci1j2 + fi1j2(ŷi1j2)

+ λi2(pi2j2 − yi2j2 − pi2j1 + ŷi2j1) − ci2j2

− fi2j2(yi2j2) + ci2j1 + fi2j1(ŷi2j1),

where ŷi2j1 = min((
∂fi2j1
∂pi2j1

)−1(λi2), ui2j1) and ŷi1j2 =
min((

∂fi1j2
∂yi1j2

)−1(λi1), ui1j2).

Proof Similar to the proof of Lemma 2. �

As in the 1-move case, if the lower bound for a given
2-swap is positive, then the 2-swap does not reduce the
cost of the current schedule. However, a 2-swap with a
negative lower bound has the potential for improvement. So
starting from the most promising 2-swap, we try possible
two swaps for a given schedule and improve it iteratively.
Hence, the algorithm for 2-swap improvement search is
same as Algorithm 3 except that 2-swaps are considered
instead of 1-moves.

In this section, we have described a heuristic algorithm
which generates a set of approximately efficient solutions
for each bi-criteria problem considered. Each iteration of
the algorithm gives a new solution with increased match-up
times, and for each new solution the manufacturing cost is
either decreased or stays the same. At the end, Algorithm 1
produces a set of solutions which approximate the efficient
frontier of match-up time versus manufacturing cost trade-
off. In the next section, we will describe our computational
results on this heuristic method and the exact solution ap-
proaches.

6 Computational study

In the computational study, we tested the performance
of alternative conic quadratic formulations introduced in
Sects. 3 and 4 for generating exact efficient solutions and
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of the heuristic algorithm described in Sect. 5 for generat-
ing approximate efficient solutions. We compared the com-
putation time and solution quality of these alternative ap-
proaches on a set of randomly generated test problems. The
test problems have varying number of jobs (n = 50,100),
machines (m = 2,3), capacity factor (κ = 0.25,0.30), and
average length of disruption (ld = 2.0,5.0). For each of
the 16 possible configurations of these four parameters, we
generated 15 problem instances at random. The fixed cost
(cij ) for each job-machine pair was generated from Uni-
form [2.0, 6.0]. The coefficients of the compression cost

function (fij (yij ) = kij y
aij /bij

ij ) kij were generated from
Uniform [1.0, 3.0] and aij = U/10, where U is from a dis-
crete Uniform [11, 31] and bij = 1. Processing time pu

ij was
generated from Uniform [1.0, 3.0], whereas uij = pu

ij × U ,
where U is from Uniform [0.5, 0.9]. We set the machining
time capacity of each machine equal to

Di = κ ×
∑m

i=1
∑n

j=1 pu
ij

m
.

In order to construct preschedules, we first solved the
machine-job assignment problem that minimizes total man-
ufacturing cost subject to given machining time capacity for
each machine. We sequenced the allocated jobs on each ma-
chine by using the shortest processing time (SPT) first rule,
which gives the minimum total completion time for a given
set of jobs on a machine. In the preschedules generated for
the experiments, the ratio of the amount of compression
on a job to its maximum possible compression (yS

ij /uij ) is
38% on average, 68% at maximum and 6% at minimum.
Hence, we tested our solution approaches on a wide range
of preschedules with different compression levels.

A long disruption to a schedule may result in an infea-
sible rescheduling problem as it may not be possible to
catch up a preschedule within given machining time ca-
pacity levels. Therefore, we limit our test problems to the
ones that could lead to feasible rescheduling instances so
that we could measure the objective function values along
with the required computation times. On the other hand,
it might be possible to have preschedules where machines
have enough idle times to absorb the disruption durations.
These schedules could be repaired without incurring any ad-
ditional compression costs. In our computational study, we
solve instances with no idle times, and hence our instances
require additional compressions on processing times of jobs.

Having formed a preschedule, we generated a breakdown
on the schedule by randomly selecting a machine and a job
on the selected machine so that the breakdown occurs dur-
ing the execution of the selected job and lasts for a duration
generated from Uniform [ld −1.0, ld +1.0]. The reschedul-
ing problem included the interrupted job on the breakdown
machine and all jobs planned to be started processing at the
time of breakdown or later in the preschedule.

For each problem instance, we first ran Algorithm 1
which generates a set of approximately efficient solutions.
In order to test the solution quality of the points generated
by Algorithm 1 against efficient solutions to be generated
by CSM and CMM problems, we first selected three solu-
tions out of the solution set generated by the algorithm. Let
T̄min and T̄max be the minimum and maximum values of sum
of match-up times achieved by the algorithm. We then cal-
culate three different values of sum of match-up times by

setting k = 1,2,3 in T̄min + k × T̄max−T̄min
4 . For each value of

k, we select a solution which has the closest possible sum
of match-up times (T̄k) to the value calculated in the pre-
vious step. Then, for each k we solved CSM problem by
setting T̄ = T̄k and measured the relative gap between the
cost of the heuristic solution and the cost of the exact effi-
cient solution. We solved CSM by using the conic quadratic
formulations, CSM1 and CSM2, given in Sect. 4. We fol-
lowed the same approach for the maximum match-up time
problem and solved formulations CMM1 and CMM2. All
experiments were performed using ILOG CPLEX Version
10.1 on a 3 GHz Linux workstation with 512 MB memory
with a 1000 CPU seconds time limit.

In the experimental runs, solving the machine-job alloca-
tion problem to form the preschedule took 16.14 CPU sec-
onds on the average. After generating the disruptions, the
average number of jobs to be rescheduled was 40.7 for the
50-job problems and 84.9 for the 100-job problems. Solving
the SM model required 0.39 CPU seconds on average; the
corresponding value for the MM model was 0.16. Thus, we
can solve the sum of match-up times or maximum match-up
time problems in very short CPU times.

In Table 1, we give the computational results for the
conic quadratic representations of formulations CSM2 and
CMM2. We report the number of problems (out of 15)
solved to optimality within the time limit (opt). We also re-
port the average relative gap between the best known upper
bound and the lower bound at time of termination (egap), the
average number of branch-and-bound nodes explored (node)
and the average CPU time in seconds to solve the problems
(cpu). We observe that CSM2 was able to solve 92% of the
problems to optimality. CSM2 achieved a quite low optimal-
ity gap which is 0.07% in the worst case. Similarly, CMM2
could solve all the problems to optimality within short CPU
times by exploring a small number of branch-and-bound
nodes. We can even use CMM2 to generate all the solutions
in the efficient frontier. Our computational results indicate
that advances in conic mixed-integer programming provide
us strong formulations which can solve rescheduling prob-
lems with controllable processing times within reasonable
CPU times.

If the number of jobs or number of machines increases
then the sizes of rescheduling problems increase as ex-
pected. Moreover, it takes more CPU time to solve the
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Table 1 Results for strong conic quadratic formulations

ld κ n m Sum of match-up times Maximum match-up time

CSM2 CMM2

opt egap (%) node cpu opt egap (%) node cpu

2 15 0 35.7 9.8 15 0 2.9 1.3
50 3 15 0 188.7 71.1 15 0 14.6 4.1

0.25 2 15 0.01 106 55 15 0 0 0.6
100 3 14 0.01 311.3 340.2 15 0 6.9 6.4

2.0 2 15 0.01 41.3 12.6 15 0 2.6 1
50 3 13 0.07 280.9 176.1 15 0 15.9 4.5

0.30 2 15 0.01 82.5 58.1 15 0 2.4 2.1
100 3 13 0.01 463.4 502.9 15 0 14 10.6

2 15 0 54.2 13.9 15 0 1.1 0.7
50 3 14 0.03 306.9 161.8 15 0 10.2 3.5

0.25 2 15 0.01 120.1 80 15 0 2.2 2
100 3 11 0.05 624.4 567.6 15 0.01 11.7 7.9

5.0 2 15 0 35.9 9.6 15 0 2.8 1
50 3 14 0.01 496.1 213.7 15 0 25.1 7.7

0.30 2 14 0.02 213.8 157.1 15 0 0.9 1.3
100 3 8 0.05 710.2 792.7 15 0.01 17.6 14.2

Average 13.8 0.02 254.5 201.4 15 0.001 8.2 4.3

CSM2 formulation compared to the CMM2 formulation
as shown in Table 1. Solving a CMM problem involves
machine-job allocation decisions within given match-up
times on the machines whereas solving a CSM problem in-
volves making additional match-up time decisions as well.
We can expect that solving CMM problems are easier than
solving CSM problems. Table 1 shows that CMM problems
were solved in 4.3 CPU seconds on average, whereas CSM
problems took 201.4 CPU seconds to solve. We can also
observe from Table 1 that when the length of disruption is
higher it takes more time to solve cost minimization prob-
lems as sizes of the problems increase. Our computational
results indicate that this effect is more notable in CSM prob-
lems.

In Table 2, we present the computational results for the
heuristic algorithm, which generates approximate efficient
solutions with varying cost and match-up time. In this ta-
ble, we report the average number of solutions generated
by the algorithm (# sol), and the average CPU time in sec-
onds (cpu). Since we solved the CSM (CMM) problems for
the sum of match-up times (maximum of match-up times)
of the selected solutions generated by the heuristic, we
can compare the manufacturing cost of the selected heuris-

tic solutions with the corresponding optimal cost achieved
by solving CSM (CMM). The relative gap is measured by
100 × (zH − zCSM)/zCSM, where zH and zCSM are the cost
value of the heuristic solution and the optimal cost achieved
by solving CSM, respectively. In the table, we report the
mean, minimum and the maximum of the relative gap (gap).

The results show that Algorithm 1 runs within few sec-
onds and generates a large number of alternative solutions
with varying time/cost tradeoff to the decision maker. Such
a solution set can be used to visualize an approximate effi-
cient frontier. When we check the solution quality for cost
versus sum of match-up times problem, we see that the av-
erage gap between the heuristic solution and the exact so-
lution is less than 1% in most of the cases and is 1.58% at
most. The worst gap performance is 6.23%, but in most of
the cases it is less than 1.0%, implying an almost equivalent
solution quality with exact approaches. For the maximum
match-up time problem, the average gap for the heuristic is
0.73%. While the minimum gap can be as low as 0.0%, and
we see the worst gap is 24.04%. For the cases where the de-
cision maker may want to see the behavior of the efficient
frontier quickly, the heuristic algorithm may be very valu-
able.
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Table 2 Heuristic algorithm performance

ld κ n m Sum of match-up times Maximum match-up time

# sol cpu gap (%) # sol cpu gap (%)

mean mean mean min max mean mean mean min max

2 19.8 1.26 0.04 0.00 0.21 27.6 2.05 0.28 0.00 1.06
50 3 13.8 0.37 1.21 0.00 6.23 31.8 1.38 0.35 0.00 1.43

0.25 2 70.2 8.58 0.21 0.00 0.66 67.6 12.03 0.17 0.08 0.24
100 3 49 3.77 0.09 0.00 0.18 78.8 12.51 0.11 0.00 0.37

2.0 2 18.6 0.64 0.39 0.00 1.92 31.4 2.30 0.21 0.00 0.62
50 3 14.4 1.15 0.82 0.00 3.04 34.4 4.63 0.73 0.10 2.08

0.30 2 50.4 3.77 0.09 0.00 0.55 72.6 10.22 1.17 0.00 15.75
100 3 27.6 1.35 0.03 0.00 0.09 80.6 27.16 0.08 0.00 0.23

2 19.4 1.94 0.14 0.00 0.48 20.6 2.00 0.48 0.00 1.60
50 3 21.2 1.16 0.49 0.00 1.41 25.0 1.72 1.94 0.00 18.00

0.25 2 53.6 11.74 0.30 0.00 0.93 57.0 9.97 0.41 0.16 0.86
100 3 57 10.33 0.26 0.00 0.92 70.2 15.60 0.38 0.07 1.04

5.0 2 66.2 2.10 0.21 0.00 0.61 24.6 2.28 1.89 0.00 17.94
50 3 19.4 1.23 1.58 0.17 4.11 31.2 2.44 0.36 0.00 1.25

0.30 2 69.4 12.89 0.17 0.01 0.50 64.8 9.05 0.46 0.25 0.73
100 3 48 6.26 0.97 0.00 2.68 74.0 24.80 2.64 0.09 24.04

Average 38.6 4.28 0.44 0.01 1.53 49.5 8.76 0.73 0.05 5.45

The results in Table 2 also indicate that the proposed
heuristic algorithm performs well for different parameter
settings. We can observe from the table that for both prob-
lems the average gap value tends to increase as the average
disruption length is increased. As expected, the algorithm
requires more CPU time as the number of jobs increases.
As the length of disruption is increased the algorithm tends
to generate more solutions for the sum of match-up times
problem, since the algorithm adds more jobs to the job pool.
When we check the maximum match-up time results, the
number of alternative solutions decreases as the length of
disruption is increased. This is due to the decreased number
of possible match-up times in this case.

Finally, we have checked the effect of solving the sum
of match-up time problem on the maximum match-up time
objective and vice versa. If we solve the sum of match-up
time problem, and check the maximum match-up time of
the achieved schedules, we see that the resulting maximum
match-up times deviate by 14.7% from optimum. Similarly,
if we solve the maximum match-up time problem and check
the sum of match-up times, we see a deviation of 25.5%
from the optimum. We have also compared the manufac-
turing cost of the initial schedules achieved by the heuris-

tic algorithm. The cost of the schedule achieved by solving
maximum match-up time is 0.4% higher on average than the
schedule achieved by solving sum of match-up times objec-
tives. However, in terms of manufacturing cost, we do not
see a statistically significant relationship between two ap-
proaches.

In this section, we have shown that we can efficiently
solve match-up rescheduling problems with controllable
processing times exactly by using recently developed refor-
mulation techniques and commercial solvers. We have also
observed that our heuristic is able to generate a very good
approximation of the efficient frontier of match-up time and
manufacturing cost quickly. In the next section, we conclude
with some final remarks.

7 Conclusions

The results in this paper clearly indicate that control-
lable processing times introduce an important flexibility to
rescheduling problems under a single machine breakdown.
As a result of this solution flexibility, we can either gen-
erate schedules which can catch up the preschedule very
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quickly after the disruption albeit at a high manufacturing
cost, or we can distribute the effects of disruption to the en-
tire schedule by creating alternative time/cost tradeoffs to
the decision maker. We have introduced new match-up time
related objectives, sum of match-up times and maximum
match-up time, each which has its own advantages. It may
be critical for the scheduler to balance the match-up time and
manufacturing cost objectives, hence we provide effective
exact mathematical programming formulations and heuris-
tic algorithms to provide alternative solutions. Processing
time controllability and convex cost functions complicate
the scheduling problems significantly. Here, we have also
seen that new advances in conic mixed integer programming
can play an important role in mitigating this difficulty.
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