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ABSTRACT OF THE DISSERTATION

Mobile Robot Navigation With Low-Cost Sensors

by

Teddy Yap, Jr.

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2009

Dr. Christian R. Shelton, Chairperson

Mobile robots are becoming ubiquitous and an essential part of our everyday lives. They

are increasingly taking their place in service-oriented applications including domestic and

entertainment roles. They open up many potential opportunities, but they also come with

challenges in terms of their limited sensing capability and accuracy and minimal on-board

computing resources. In this dissertation, we address three fundamental problems in mobile

robotics and demonstrate our approach to each of the problems with a mobile robot equipped

with low-cost and low-end sensors. The problems we consider are those of mobile robot

calibration, mobile robot localization, and simultaneous localization and mapping.

Motion and sensor models are crucial components in current algorithms for mobile robot

localization and mapping. We demonstrate how the parameters of both the motion and sensor

models can be automatically estimated during normal robot operations via machine learning
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methods thereby eliminating the necessity of manually tuning these models through a labo-

rious calibration process. Mobile robot calibration is important especially for robots relying

on cheap and less-accurate sensors. Results from real-world robotic experiments with a robot

equipped with wheel encoders and sonar sensors are presented that show the effectiveness of

the estimation approach.

Monocular vision has long been regarded as an attractive sensor for the localization of

a mobile robot. In this dissertation, we present a particle filtering approach to real-time

pose estimation for a small-scale indoor mobile robot equipped with wheel encoders for its

odometry and aided by a standard perspective camera. Vision is used for detecting naturally

occurring static three-dimensional point features or landmarks from the environment and

utilizing the information for correcting the pose as suggested by the odometry. We validate

the effectiveness of the particle filter approach extensively with both simulations as well as

real-world data and compare its performance against that of the extended Kalman filter.

Simultaneous localization and mapping (SLAM) is a well-studied problem in mobile

robotics and the majority of the existing techniques rely on the use of accurate and dense

measurements provided by laser rangefinders to correctly localize the robot and produce

accurate and detailed maps of complex environments. In this dissertation, we present our

approach to SLAM with low-cost but noisy and sparse sonar sensors in large indoor environ-

ments involving large loops. Results from robotic experiments demonstrate that it is possible

to produce good maps of large indoor environments with large loops despite the inherent

limitations of sonar sensors.
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Chapter 1

Introduction

1.1 Motivation

As we progress further into the 21st century, mobile robots are becoming increasingly im-

portant, useful, and commonplace in our society. Mobile robots are being employed in grow-

ing numbers not only in industrial but also in service-oriented applications (which include

domestic and entertainment applications) as well. According to a recent study by the Inter-

national Federation of Robotics Statistical Department [2009], a total of about 7.2 million

service robots for personal and domestic use were sold through the end of 2008, of which

about 4.4 million units are for domestic use and about 2.8 million units are for entertainment

and leisure (compare that to 63,000 service robots for professional use and 113,300 industrial

robots sold through the end of the same year). Service robots for personal and domestic use

are largely in the areas of domestic (household) robots, which include vacuum-cleaning and
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lawn-mowing robots, and entertainment and leisure robots, which include toy robots, hobby

systems, and education and training robots. In 2008, about 940,000 vacuum-cleaning robots

were sold (almost 50% more than in 2007) while more than 21,000 lawn-mowing robots

were sold. Other service robots for personal and private use with fast-emerging markets in-

clude robots for handicap assistance, robots for personal transportation, and home security

and surveillance robots. The IFR projects that approximately 11.6 million service robots will

be sold during the period 2009–2012. This figure includes some 4.8 million domestic robots

and about 6.8 million entertainment and leisure robots. As such, service robots are now con-

sidered the most common form of robot, in sharp contrast to industrial robots being the most

common back in 1960s.

Mobile robots open up many potential opportunities; at the same time, they introduce

challenges in terms of their limited sensing capability and accuracy and minimal on-board

computing resources. These limitations are a result of two factors: 1) these robots are typi-

cally mass-produced and they are often equipped with cheap and low-end sensors and com-

puting power so as to attain an affordable market price for the general and price-sensitive con-

sumers and 2) they are usually small, lightweight, and low-powered (e.g. battery-operated)

machines thus significantly limiting the sensors and computing resources that can be installed

and used. Nevertheless, mobile service robots are still expected to accomplish their goals or

tasks with whatever modest computing resources and sensors that they may have.

In this dissertation, we consider three important problems in mobile robotics and demon-

strate our approach to each of the problems with a mobile robot equipped with low-cost

2



sensors. The problems we consider are those of mobile robot calibration, mobile robot lo-

calization, and simultaneous localization and mapping by a mobile robot. In the next three

sections, we separately introduce the problems we address and briefly discuss the approaches

we take for each problem.

1.2 Mobile Robot Calibration

Mobile robot calibration is the problem of identifying the parameters that describe the kine-

matic and perceptual processes of a mobile robot. Robot calibration is an important step

in robotics since a calibrated robot performs better than an uncalibrated one. However, the

parameters are typically provided and hand tuned by a human operator and those are often

derived from intensive and careful calibration experiments as well as the operator’s knowl-

edge and experience with the robot and its operating environment. Since the parameters are

influenced by the robot’s characteristics and environmental properties, there is a need for

manual recalibration whenever there is a significant change in the robot or the environment.

In Chapter 3, we demonstrate how the parameters of both the kinematic and perceptual

models of a mobile robot can be automatically estimated during its normal operation via

machine learning methods thereby eliminating the necessity of manually identifying the pa-

rameters through a laborious calibration process. We assume that the robot has access to the

map of the environment as well as the historical noisy account of its motion (i.e. odome-

try information) and perception (i.e. sonar readings). We use the expectation maximization
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[Dempster et al., 1977] approach to estimate the parameters of the robot. To obtain the likely

trajectory of the robot through the environment, we perform particle filtering [Arulampalam

et al., 2002] and smoothing [Doucet et al., 2000b, Godsill et al., 2004] using the sensor data

obtained by the robot during its normal operation. We then compute the maximum likelihood

estimates of the parameters given the estimated robot trajectory and actual data. Results from

real-world robotic experiments are presented that show the effectiveness of the estimation ap-

proach.

1.3 Mobile Robot Localization

In order for a mobile robot to be able to navigate safely and successfully in a given environ-

ment and accomplish its goals, it is necessary that it knows its position and orientation within

the environment. For example, a mail delivery service robot for an office environment cannot

properly pick up and drop off mail and avoid bumping into walls if it does not know where it

is and when it has arrived at its intended destination. Determining the position and orientation

of the robot within its environment is known as the mobile robot localization problem. Robot

localization is considered to be one of the most fundamental problems in mobile robotics

[Cox and Wilfong, 1990, Cox, 1991, Borenstein et al., 1996] and it can be described by the

question “Where am I?” Correct localization of the robot is crucial since wrong estimates

for the position and orientation of the robot can lead to erroneous behavior (e.g. entering

the wrong room or going to the wrong floor in the building) and even hazardous outcomes
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(e.g. colliding with objects or obstacles in the environment) thereby eventually preventing the

robot from achieving its goals (e.g. not being able to deliver mail, which can cause further

problems, and so on). For the robot to localize itself within its operating environment, it is

usually provided with a map of its environment beforehand and it is equipped with sensors

to perceive itself and its environment. Using the map of the environment and observations

(measurements) from the sensors, the robot determines its position and orientation.

In Chapter 4, we present an approach to real-time pose estimation for a small-scale in-

door mobile robot equipped with wheel encoders for its odometry and aided by a standard

perspective camera without an a priori map of the environment. We apply particle filtering

for processing measurements provided by the robot’s odometry and observations of static

three-dimensional point features or landmarks from the environment by the camera. We pro-

pose an appropriate sensor model for computing the weights of the particles in the filter. We

validate the effectiveness of our approach extensively with both simulation as well as real-

world data and compare its performance against that of the extended Kalman filter (EKF).

Results from the tests show that the particle filter is better than the EKF in terms of the root

mean squared error for the simulation data and it is capable of achieving good localization

accuracy in unmodified indoor environments in real time.
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1.4 Simultaneous Localization and Mapping

In many application areas, a mobile robot needs to be able to navigate safely and success-

fully around an unknown environment of which it has no a priori map nor does it know its

initial position and orientation in the environment. For instance, a mass-produced mobile

robot for housekeeping should be able to operate successfully in virtually any household en-

vironment. In this case, the robot needs to generate a map (representation) of its environment

from scratch while simultaneously localizing itself relative to the map from its sensor data.

The preceding problem is known in the mobile robotics community as the simultaneous lo-

calization and mapping problem [Leonard and Durrant-Whyte, 1991b, Thrun et al., 2005,

Durrant-Whyte and Bailey, 2006, Bailey and Durrant-Whyte, 2006], commonly abbreviated

as SLAM, and it was introduced by Smith and Cheeseman [1986] and Smith et al. [1990].

SLAM is also known as concurrent mapping and localization or CML [Thrun et al., 2000,

Leonard et al., 2002, Tardós et al., 2002, Lorenzo et al., 2004, Thrun et al., 2005, Durrant-

Whyte and Bailey, 2006]. SLAM is a complex problem as it intertwines the problems of

localization and mapping. For the robot to correctly estimate its position and orientation (i.e.

localization), it needs an accurate map of its surroundings, but to generate an accurate map

(i.e. mapping), it requires correct estimates for its position and orientation. A solution to the

SLAM problem is regarded as a “holy grail” [Dissanayake et al., 2001, Durrant-Whyte and

Bailey, 2006, Abrate et al., 2007] for the mobile robotics community as it would pave the

way for building truly autonomous mobile robots.
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In order to accomplish SLAM, the robot is usually equipped with sensors (e.g. wheel

encoders, range sensors, cameras) that allow it to observe (though only partially and inaccu-

rately) the state of the world including itself. While the SLAM problem is inherently difficult

and complex, the specific sensor used also contributes to the hardness of SLAM. SLAM

is a well-studied problem and has become one of the mainstream research areas in mobile

robotics. The majority of the proposed techniques for SLAM rely on the use of accurate and

dense measurements provided by laser rangefinders to correctly localize the robot and pro-

duce accurate and detailed maps of complex environments. Little work has been done on the

use of low-cost but noisy and sparse sonar sensors for SLAM in large indoor environments

involving large loops.

In Chapter 5, we present our approach to SLAM with sonar sensors by applying parti-

cle filtering and a line-segment-based map representation with an orthogonality assumption

[Nguyen et al., 2006] to map indoor environments much larger and more challenging than

those previously considered with sonar sensors. Results from robotic experiments demon-

strate that it is possible to produce good maps of large indoor environments with large loops

despite the inherent limitations of sonar sensors.

1.5 Contributions

Our contributions can be summarized as follows:
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• We propose an automated technique for the simultaneous calibration of both the motion

and sensor models of a mobile robot from data without the need for specific calibration

experiments and special calibration setup [Yap and Shelton, 2008]. This allows the

robot to perform calibration with little or no human intervention and the calibration

can be done during its normal operation.

• We present an approach to real-time pose estimation for a small-scale indoor mobile

robot equipped with wheel encoders for its odometry and aided by a standard perspec-

tive camera without an a priori map of the environment.1 This readily endows the robot

with localization capability with the use of a cheap, lightweight, and common sensor.

• We show through extensive experiments that it is possible to produce good-quality

maps of large indoor environments with large loops even with noisy and sparse sonar

sensors [Yap and Shelton, 2009]. This serves as a step towards enabling small-scale

robots in achieving full autonomy even with the use of cheap and less-powerful sensors

such as sonars.

1This work is currently in preparation for submission.

8



Chapter 2

Background

The problems of mobile robot localization and mapping are often viewed as state estimation

problems using sensor data. State estimation addresses the problem of estimating quantities

from sensor data that are not directly observable, but that can be inferred [Thrun et al., 2005].

In mobile robot localization and mapping, the exact location of the robot and all the obstacles

in the environment are quantities (or state variables) that are not directly measurable and they

need to be estimated from sensor data. However, sensor data only provide partial information

about those quantities and they are usually corrupted by noise. In this chapter, we review

probabilistic state estimation algorithms which are at the heart of many current state-of-the-

art robotic systems. These algorithms compute probability distributions (often called belief

distributions) over possible values of the state variables using the available sensor data. In

this chapter, our discussion focuses particularly on dynamic state estimation, i.e. estimating

9



the state of a system that changes over time, using a sequence of noisy sensor measurements

made on the system.

We start by discussing the Bayes’ filter, a recursive state estimation algorithm, that pro-

vides a framework for recursively computing probability distributions over the state variables

as they evolve using sensor measurements that are received over time. We then discuss three

concrete implementations of the Bayes’ filter, namely the Kalman filter [Kalman, 1960], the

extended Kalman filter (EKF), and the particle filter [Arulampalam et al., 2002] (which is the

technique used in this dissertation). Welch and Bishop [2006] provides a good introduction

to the Kalman filter and EKF.

2.1 Bayes’ Filter

In order to discuss the Bayes’ filter, we first define the dynamic state estimation problem

(also called the tracking problem). Consider a system with state vector x that evolves over

time according to

xt = ft (xt−1, ct,vt) , (2.1)

where ft is a (possibly) nonlinear function of the previous state xt−1 at time t− 1, the control

or system input ct at time t, and the process noise vector vt. vt (for t = 1, 2, ...) is a sequence

of independent and identically distributed (i.i.d.) process disturbances. t is the discrete time

index (t = 1, 2, ...). The goal of tracking is to recursively estimate the state xt from sensor
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measurement

st = ht (xt,nt) , (2.2)

where ht is a (possibly) nonlinear function of the current state xt at time t and measurement

noise vector nt. {nt} is a sequence of i.i.d. measurement noises. In filtering, the goal is

to estimate the state xt based on the set of all available controls c1:t , (c1, c2, ..., ct) and

measurements s1:t , (s1, s2, ..., st) up to time t, assuming controls and measurements arrive

starting at time 1.

The Bayesian approach to dynamic state estimation recursively computes the posterior

probability density function (pdf) (or probability distribution for discrete random variables)

p (xt|c1:t, s1:t) over the possible values of the state vector xt given all the available control

c1:t and sensor data s1:t up to time t. The pdf p (xt|c1:t, s1:t) represents the belief distribution

at time t. It is assumed that the initial pdf of the state vector (also called the prior) p (x0) at

time 0 is known or available.

Given the pdf p (xt−1|c1:t−1, s1:t−1) at time t − 1, the Bayes’ filter computes the pdf

p (xt|c1:t, s1:t) at time t in two steps. In the first step, called the prediction step, it computes

the pdf p (xt|c1:t, s1:t−1) using the system model defined in Equation 2.1 and the Chapman-

Kolmogorov equation as follows.

p (xt|c1:t, s1:t−1) =

∫
p (xt|xt−1, c1:t, s1:t−1) p (xt−1|c1:t, s1:t−1) dxt−1 (2.3)

=

∫
p (xt|xt−1, ct) p (xt−1|c1:t−1, s1:t−1) dxt−1 , (2.4)
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where p (xt|xt−1, c1:t, s1:t−1) = p (xt|xt−1, ct) since the system is Markovian of order one ac-

cording to Equation 2.1.1 p (xt|xt−1, ct) is called the probabilistic system model as defined by

Equation 2.1 and the known statistics of the process noise vector vt. The pdf p (xt|c1:t, s1:t−1)

is often called the prior pdf at time t to emphasize the fact that it is the pdf before the latest

measurement st at time t is considered. In the second step, called the update step, upon re-

ceipt of measurement st, the Bayes’ filter computes the pdf p (xt|c1:t, s1:t) using the prior pdf

p (xt|c1:t, s1:t−1) at time t and the measurement model defined in Equation 2.2 using Bayes’

theorem2:

p (xt|c1:t, s1:t) =
p (st|xt, c1:t, s1:t−1) p (xt|c1:t, s1:t−1)

p (st|c1:t, s1:t−1)
(2.5)

=
p (st|xt) p (xt|c1:t, s1:t−1)

p (st|c1:t, s1:t−1)
, (2.6)

where p (st|xt) is called the probabilistic observation model as defined by Equation 2.2 and

the known statistics of the measurement noise vector nt. The pdf p (xt|c1:t, s1:t) is often

called the posterior pdf at time t to signify that it is the pdf after the latest measurement

st at time t has been incorporated. The denominator p (st|c1:t, s1:t−1) in Equation 2.6 is a

1The Markov assumption is both important and convenient as it greatly reduces both time and space com-
plexities and makes the filtering process computationally tractable.

2Bayes’ theorem or Bayes’ rule states that p (x|y) =
p (y|x) p (x)

p (y)
when p (y) 6= 0.
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normalizing constant and can be expanded as

p (st|c1:t, s1:t−1) =

∫
p (st|xt, c1:t, s1:t−1) p (xt|c1:t, s1:t−1) dxt (2.7)

=

∫
p (st|xt) p (xt|c1:t, s1:t−1) dxt , (2.8)

where p (st|xt, c1:t, s1:t−1) = p (st|xt) since the measurement model defined in Equation

2.2 assumes that the measurement st is conditionally independent of the controls c1:t and

previous measurements s1:t−1 given the state xt at time t.

Equations 2.4 and 2.6 are used in the Bayes’ filter to recursively compute the posterior

pdf p (xt|c1:t, s1:t) at time t from the pdf p (xt−1|c1:t−1, s1:t−1) at time t−1. The Bayes’ filter

algorithm is shown in Algorithm 1 where η = p (st|c1:t, s1:t−1)
−1 is a normalizing constant

to ensure that the pdf p (x1:t|c1:t, s1:t) is a valid one.

Algorithm 1 Bayes’ Filter
Input:
p (xt−1|c1:t−1, s1:t−1): pdf at time t− 1
ct: control at time t
st: measurement at time t
Output:
p (xt|c1:t, s1:t): posterior pdf at time t
Process:
for all xt do

p (xt|c1:t, s1:t−1)←
∫
p (xt|xt−1, ct) p (xt−1|c1:t−1, s1:t−1) dxt−1

p (xt|c1:t, s1:t)← ηp (st|xt) p (xt|c1:t, s1:t−1)
end

Note that in order to perform Bayes’ filtering, three probabilistic models must be known:

the initial pdf p (x0) at time 0, the system model p (xt|xt−1, ct), and the observation model
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p (st|xt). These models are highly application specific and in Chapter 3 we discuss how to

learn the parameters of the system model p (xt|xt−1, ct) and the measurement model p (st|xt)

from data of an actual robot system.

The Bayes’ filter provides a conceptual framework for recursive state estimation and it

is the basis for the Kalman filter, EKF, particle filter, and other filters. Note that, given the

system and measurement models of a process, the Bayes’ filter provides the optimal way of

computing the pdf over the state of the process. However, to implement the Bayes’ filter,

we need to be able to perform the integration as well as the product of probability distribu-

tions in closed form, which can be intractable for large state spaces and arbitrary probability

distributions. Existing methods implementing the Bayes’ filter either restrict themselves to

finite state spaces or they make certain assumptions about the models and the forms of the

probability distributions.

2.2 Kalman Filter

The Kalman filter, introduced by Kalman [1960], is a concrete implementation of the Bayes’

filter. It assumes that the pdf p (xt|c1:t, s1:t) at every time step t is Gaussian parametrized by

a mean vector µt|t and covariance matrix Pt|t, i.e. p (xt|c1:t, s1:t) = N
(
xt;µt|t,Pt|t

)
.3 The

mean µt|t represents the most likely (best) estimate of the state of the system given all control

data c1:t and sensor data s1:t up to time t while the covariance matrix Pt|t represents the un-

3The notations µt1|t2 and Pt1|t2 are used to denote the mean and covariance of p (xt1 |c1:t1 , s1:t2), respec-
tively. N (x;µ,P) denotes a multivariate Gaussian distribution over the variable x with mean vector µ and
covariance matrix P.
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certainty in the estimate of the filter. If p (xt−1|c1:t−1, s1:t−1) is Gaussian, then p (xt|c1:t, s1:t)

is also Gaussian given that the following conditions hold:

• The function ft (xt−1, ct,vt) is a known linear function of xt−1, ct, and vt.

• The function ht (xt,nt) is a known linear function of xt and nt.

• vt and nt are drawn from independent Gaussian distributions of known means and

covariances.

Let Ft and Gt be matrices that define the linear function ft (xt−1, ct,vt), i.e. Equation 2.1

can be rewritten as

xt = Ftxt−1 + Gtct + vt . (2.9)

Similarly, let Ht be a matrix that defines the linear function ht (xt,nt), i.e. Equation 2.2 can

be rewritten as

st = Htxt + nt . (2.10)

Let vt and nt be independent zero-mean Gaussians with covariances Qt and Rt, respectively.

At initialization, µ0|0 = E[x0] with covariance matrix P0|0. Given the mean µt−1|t−1 and

covariance Pt−1|t−1 of p (xt−1|c1:t−1, s1:t−1) at time t − 1, the Kalman filter computes the

mean µt|t and covariance Pt|t of p (xt|c1:t, s1:t) at time t in two steps: prediction and update.

In the prediction step, the Kalman filter computes the mean µt|t−1 and covariance Pt|t−1 of
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the prior pdf p (xt|c1:t, s1:t−1) at time t as follows.

µt|t−1 = Ftµt−1|t−1 + Gtct (2.11)

Pt|t−1 = FtPt−1|t−1F
T
t + Qt . (2.12)

As can be seen in Equation 2.11, to compute the mean µt|t−1 of the prior pdf p (xt|c1:t, s1:t−1)

at time t, the Kalman filter uses the deterministic version of the linear system function in

Equation 2.9 (i.e. xt = Ftxt−1 + Gtct) but with µt−1|t−1 substituted for xt−1 and the con-

trol input ct received at time t. The covariance matrix Pt|t−1 of the pdf p (xt|c1:t, s1:t−1) is

computed by multiplying the linear matrix Ft into the previous covariance Pt−1|t−1 twice

(since the next state depends on the previous state through the matrix Ft and the covariance

is a quadratic matrix) and adding the covariance Qt of the process noise vt. As a result,

the uncertainty represented by the predicted covariance Pt|t−1 is larger than the uncertainty

represented by the prior covariance Pt−1|t−1.

In the update step, upon receipt of the measurement st, the Kalman filter first computes

the innovation or measurement residual rt and its associated covariance St at time t:

rt = st −Htµt|t−1 (2.13)

St = HtPt|t−1H
T
t + Rt . (2.14)
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The measurement residual rt reflects the discrepancy between the actual measurement st and

the predicted measurement Htµt|t−1 (which is the best prediction of what the measurement

will be at time t). The Kalman filter then computes the Kalman gain Kt:

Kt = Pt|t−1H
T
t S−1

t . (2.15)

The Kalman gain Kt specifies the degree to which the measurement st is incorporated into the

new state estimate µt|t and affects the covariance Pt|t at time t. The Kalman filter computes

the mean µt|t and covariance Pt|t of the posterior pdf p (xt|c1:t, s1:t) at time t as follows.

µt|t = µt|t−1 + Ktrt (2.16)

Pt|t = Pt|t−1 −KtHtPt|t−1 . (2.17)

Note that in Equation 2.15, the Kalman gain Kt is proportional to the predicted covariance

Pt|t−1 and inversely proportional to the covariance St of the measurement. Thus, in Equation

2.16, if the measurement st is much more uncertain than the predicted estimate µt|t−1, the

correction term Ktrt is very small, and as such, the measurement st has little effect on the

computation of the new state estimate µt|t, and µt|t is mainly equal to the predicted estimate

µt|t−1. On the other hand, if the predicted estimate µt|t−1 is much more uncertain than the

measurement st, the measurement st is used to a larger degree in updating the predicted

estimate µt|t−1 to derive the new state estimate µt|t.
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Now, we consider how the measurement st affects the covariance Pt|t at time t. Using

Equation 2.15 in Equation 2.17, we get

Pt|t = Pt|t−1 −Pt|t−1H
T
t S−1

t HtPt|t−1 . (2.18)

From Equation 2.18, we observe that if the measurement st is very uncertain (i.e. St is large),

the covariance Pt|t is decreased from Pt|t−1 by only a small amount. In other words, the mea-

surement contributes very little in reducing the estimation uncertainty if it is highly uncertain

(or unreliable). On the other hand, if the measurement is very precise (i.e. St is small), the

covariance Pt|t is decreased from Pt|t−1 considerably. This means that precise (or reliable)

measurement contributes significantly in reducing the estimation uncertainty.

Algorithm 2 shows the Kalman filter algorithm using Equations 2.11 to 2.17. For lin-

ear Gaussian systems such as that described by Equations 2.9 and 2.10, the Kalman filter

provides the optimal state estimate for the tracking problem and it is therefore an exact im-

plementation of the Bayes’ filter. As can be seen, at every time step t, we only need to keep

track of the mean vector µt|t and the associated covariance matrix Pt|t of the state estimate

as they are the parameters of the Gaussian distribution p (xt|c1:t, s1:t).

2.3 Extended Kalman Filter

The assumption that the system model in Equation 2.1 and the measurement model in Equa-

tion 2.2 are linear functions (called the linearity assumption) is crucial for the correctness
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Algorithm 2 Kalman Filter
Input:
µt−1|t−1, Pt−1|t−1: mean and covariance of p (xt−1|c1:t−1, s1:t−1), respectively
ct: control at time t
st: measurement at time t
Output:
µt|t, Pt|t: mean and covariance of p (xt|c1:t, s1:t), respectively
Process:
µt|t−1 ← Ftµt−1|t−1 + Gtct

Pt|t−1 ← FtPt−1|t−1F
T
t + Qt

rt ← st −Htµt|t−1

St ← HtPt|t−1H
T
t + Rt

Kt ← Pt|t−1H
T
t S−1

t

µt|t ← µt|t−1 + Ktrt

Pt|t ← Pt|t−1 −KtHtPt|t−1

of the Kalman filter. However, the linearity assumption can be limiting and may not hold in

practice (as many non-trivial real-world systems are not linear). The EKF relaxes the linear-

ity assumption, i.e. the system and observation models need not be linear functions of the

state, but requires that the models be differentiable functions.

In the EKF, the system and measurement models are given in Equations 2.19 and 2.20,

respectively. 4

xt = ft (xt−1, ct) + vt (2.19)

st = ht (xt) + nt . (2.20)

4In general, xt and st can also depend nonlinearly on vt and nt, respectively, although we do not do so here
for ease of discussion.
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The pdf p (xt|c1:t, s1:t) at time t is approximated by a Gaussian with mean µt|t and covari-

ance Pt|t, i.e. p (xt|c1:t, s1:t) ≈ N
(
xt;µt|t,Pt|t

)
, in the EKF. Similar to the Kalman filter,

at initialization, µ0|0 = E[x0] with covariance P0|0. Given the mean µt−1|t−1 and covari-

ance Pt−1|t−1 of p (x1:t−1|c1:t−1, s1:t−1) at time t − 1, the EKF computes the mean µt|t and

covariance Pt|t of p (xt|c1:t, s1:t) at time t in two steps (i.e. prediction and update). In the

prediction step, it computes the mean µt|t−1 and covariance Pt|t−1 of p (xt|c1:t, s1:t−1) at time

t as follows.

µt|t−1 = ft
(
µt−1|t−1, ct

)
(2.21)

Pt|t−1 = F̂tPt−1|t−1F̂
T
t + Qt , (2.22)

where

F̂t =
∂ft
∂xt−1

∣∣∣∣
µt−1|t−1,ct

. (2.23)

In the update step, it computes the measurement residual rt and its associated covariance

St, the Kalman gain Kt, and the mean µt|t and covariance Pt|t of p (xt|c1:t, s1:t) at time t as

follows:

rt = st − ht

(
µt|t−1

)
(2.24)

St = ĤtPt|t−1Ĥ
T
t + Rt (2.25)

Kt = Pt|t−1Ĥ
T
t S−1

t (2.26)
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µt|t = µt|t−1 + Ktrt (2.27)

Pt|t = Pt|t−1 −KtĤtPt|t−1 , (2.28)

where

Ĥt =
∂ht

∂xt

∣∣∣∣
µt|t−1

. (2.29)

F̂t and Ĥt are the Jacobian matrices of the system and observation functions, respectively.

The EKF is given in Algorithm 3. As can be seen in Algorithm 3, the EKF algorithm is

very similar to the Kalman filter algorithm in Algorithm 2 except that it uses the nonlinear

system and measurement models for computing the predicted mean µt|t−1 and predicted (or

expected) measurement ht

(
µt|t−1

)
, respectively, and utilizes the Jacobian matrices F̂t and

Ĥt in place of the matrices Ft and Gt in the Kalman filter.

Algorithm 3 Extended Kalman Filter
Input:
µt−1|t−1, Pt−1|t−1: mean and covariance of p (xt−1|c1:t−1, s1:t−1), respectively
ct: control at time t
st: measurement at time t
Output:
µt|t, Pt|t: mean and covariance of p (xt|c1:t, s1:t), respectively
Process:
µt|t−1 ← ft

(
µt−1|t−1, ct

)
Pt|t−1 ← F̂tPt−1|t−1F̂

T
t + Qt

rt ← st − ht

(
µt|t−1

)
St ← ĤtPt|t−1Ĥ

T
t + Rt

Kt ← Pt|t−1Ĥ
T
t S−1

t

µt|t ← µt|t−1 + Ktrt

Pt|t ← Pt|t−1 −KtĤtPt|t−1
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The EKF described uses the first-order Taylor series expansion5 of the nonlinear func-

tions, i.e.

ft (xt−1, ct) ≈ ft
(
µt−1|t−1, ct

)
+

∂ft
∂xt−1

∣∣∣∣
µt−1|t−1,ct

(
xt−1 − µt−1|t−1

)
(2.30)

= ft
(
µt−1|t−1, ct

)
+ F̂t

(
xt−1 − µt−1|t−1

)
(2.31)

ht (xt) ≈ ht

(
µt|t−1

)
+
∂ht

∂xt

∣∣∣∣
µt|t−1

(
xt − µt|t−1

)
(2.32)

= ht

(
µt|t−1

)
+ Ĥt

(
xt − µt|t−1

)
. (2.33)

Of course, the accuracy of the above approximations is dependent on the degree of non-

linearity of the functions involved. Unlike the Kalman filter, the EKF is, in general, not an

optimal estimator and it is not an exact implementation of the Bayes’ filter. Nevertheless,

the EKF has become the de facto technique for dynamic state estimation problems and it

performs reasonably well in practice. Note that if the system and measurement functions are

linear, then the EKF becomes the standard Kalman filter.

5The Taylor series expansion of a function f (x) that is infinitely differentiable in a neighborhood

of a is f (a) +
f (1) (a)

1!
(x− a) +

f (2) (a)
2!

(x− a)2 +
f (3) (a)

3!
(x− a)3 + ..., or more compactly as

∞∑
n=0

f (n) (a)
n!

(x− a)n, where f (n) (a) is the nth derivative of f evaluated at a, n! is the factorial of n,

f (0) (a) = f (a), and 0! = 1.
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2.4 Particle Filter

The particle filter is an alternative implementation of the Bayes’ filter. Unlike the Kalman

filter and EKF, it does not assume that the pdf p (xt|c1:t, s1:t) at every time step is a Gaus-

sian. The key idea of the particle filter is to represent the pdf p (xt|c1:t, s1:t) by a set of

random samples (also called particles, hence the name) with associated weights. Let Xt ={(
x

[i]
t , w

[i]
t

)
: i = 1, 2, ..., Ns

}
be a random measure characterizing the pdf p (xt|c1:t, s1:t),

where
{
x

[i]
t : i = 1, 2, ..., Ns

}
is a set of support points (samples) with associated weights{

w
[i]
t : 0 ≤ w

[i]
t , i = 1, 2, ..., Ns

}
, and Ns is the number of samples or particles in the par-

ticle filter. Each particle x
[i]
t is a concrete instantiation (or hypothesis) of the state at time t.

The weights are (usually) normalized, i.e.
Ns∑
i=1

w
[i]
t = 1. The pdf p (xt|c1:t, s1:t) at time t is

approximated as

p (xt|c1:t, s1:t) ≈
Ns∑
i=1

w
[i]
t δ
(
xt − x

[i]
t

)
, (2.34)

where δ(.) is the Dirac delta function6. The set Xt, therefore, is a discrete weighted approx-

imation of p (xt|c1:t, s1:t). The weights of the particles w[i]
t are computed using the principle

of importance sampling [Arulampalam et al., 2002, Thrun et al., 2005] which we discuss in

Section 2.4.1.

Similar to the Kalman filter and EKF, the particle filter computes the pdf p (xt|c1:t, s1:t)

at time t from the pdf p (xt−1|c1:t−1, s1:t−1) at time t − 1. At initialization, we assume that

6The Dirac delta function δ (x) = 0 if x 6= 0 and δ (x) =∞ if x = 0 with
∫ b

a

δ (x) dx = 1 if 0 ∈ [a, b] and∫ b

a

δ (x) dx = 0 if 0 /∈ [a, b].
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the prior p (x0) is represented by the set of weighted particles X0 =
{(

x
[i]
0 , w

[i]
0

)
: w

[i]
0 =

1

Ns
, i = 1, 2, ..., Ns

}
at time 0.7 Since the pdfs are represented as sets of weighted particles,

the particle filter computes the particle set Xt at time t from the set Xt−1 at time t − 1 with

the following steps.

1. Particle Updating. For each particle x
[i]
t−1 at time t− 1, generate a particle x

[i]
t for time

t by sampling from the probabilistic system model p
(
xt

∣∣∣x[i]
t−1, ct

)
given the control

input ct. This step corresponds to the prediction step in the Bayes’ filter, Kalman filter,

and EKF. The set of particles
{
x

[i]
t : i = 1, 2, ..., Ns

}
obtained in this step approximates

the prior pdf p (xt|c1:t, s1:t−1) at time t.

2. Particle Weighting. For each particle x
[i]
t at time t, compute its weight w[i]

t (also

called the importance factor). The weight w[i]
t is computed as the likelihood of the

measurement st given the particle x
[i]
t using the probabilistic observation model, i.e.

w
[i]
t = w

[i]
t−1p

(
st

∣∣∣x[i]
t

)
. The weights, therefore, are used to incorporate the measure-

ment st at time t into the particle filter. This step corresponds to the update step in the

Bayes’ filter, Kalman filter, and EKF. The set of weighted particles
{(

x
[i]
t , w

[i]
t

)
: i =

1, 2, ..., Ns

}
obtained at this step approximates the posterior pdf p (xt|c1:t, s1:t).

3. Particle Resampling. Given the set of weighted particles
{(

x
[i]
t , w

[i]
t

)
: i = 1, 2, ..., Ns

}
,

drawNs particles with replacement from the set, with each particle x
[i]
t having the prob-

ability of being selected proportional to its importance weight w[i]
t . Set the weights of

7At initialization, the particles can also be assigned with non-uniform weights to encode the prior knowledge
that some initial states are more likely than the other states.
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the particles drawn to
1

Ns
. Resampling transforms the set of Ns particles before the

resampling step (representing the prior pdf p (xt|c1:t, s1:t−1)) into another set of Ns

particles (representing the posterior pdf p (xt|c1:t, s1:t)). The resulting set of particles

usually contain many duplicates.

Algorithm 4 provides the particle filter algorithm. The particular version of the particle

filter shown in Algorithm 4 is called the sequential importance resampling (SIR) particle

filter [Arulampalam et al., 2002]. It performs resampling at every iteration. The idea behind

the resampling step is to remove particles that have small weights and replicate particles

that have large weights. Particles that have large weights represent likely (“good”) particles

while those that are assigned small weights represent unlikely (“bad”) particles.8 However,

performing resampling often can lead to loss of diversity among the particles (also called the

particle depletion problem [Grisetti et al., 2005] or sample impoverishment [Arulampalam

et al., 2002]). In order to reduce the risk of particle depletion, we perform resampling only

when a severe degeneracy is observed in the particle filter: where after a few iterations, all

but one particle has negligible weight. One way of measuring the degeneracy of the particle

filter is the estimated effective sample size N̂eff defined as

N̂eff =
1

Ns∑
i=1

(
w

[i]′

t

)2
, (2.35)

8“Good” particles are those that are consistent with the observations or evidence while “bad” particles are
those that are not consistent with the observations or evidence.
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where w[i]′

t =
w

[i]
t∑Ns

i=1w
[i]
t

is the normalized weights of the ith particle at time t [Doucet et al.,

2000a, Arulampalam et al., 2002, Grisetti et al., 2005]. Note that N̂eff ≤ Ns and we resample

only when N̂eff falls below a certain threshold Nτ . The particle filter with this selective

resample scheme is given in Algorithm 5.

Algorithm 4 Particle Filter
Input:
Xt−1 =

{(
x

[i]
t−1, w

[i]
t−1

)
: i = 1, 2, ..., Ns

}
: Set of weighted particles at time t− 1

ct: control at time t
st: measurement at time t
Output:
Xt =

{(
x

[i]
t , w

[i]
t

)
: i = 1, 2, ..., Ns

}
: Set of weighted particles at time t

Process:
X̄t ← ∅, Xt ← ∅
for i← 1 to Ns do

sample x
[i]
t ∼ p

(
xt

∣∣∣x[i]
t−1, ct

)
w

[i]
t ← p

(
st

∣∣∣x[i]
t

)
X̄t ← X̄t ∪

(
x

[i]
t , w

[i]
t

)
end
for i← 1 to Ns do

draw j with probability ∝ w
[j]
t

Xt ← Xt ∪
(
x

[j]
t ,

1

Ns

)
end

The particle filter is also known by various names including the sequential Monte Carlo

method [Doucet et al., 2000a], the bootstrap filter [Gordon et al., 1993], and the CONDEN-

SATION (short for conditional density propagation) algorithm [Isard and Blake, 1998] in

the computer vision community. Similar to the EKF, the particle filter is an approximate

nonlinear Bayesian filter. However, as the number of samples Ns → ∞, the approxima-
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Algorithm 5 Particle Filter with Selective Resampling
Input:
Xt−1 =

{(
x

[i]
t−1, w

[i]
t−1

)
: i = 1, 2, ..., Ns

}
: Set of weighted particles at time t− 1

ct: control at time t
st: measurement at time t
Output:
Xt =

{(
x

[i]
t , w

[i]
t

)
: i = 1, 2, ..., Ns

}
: Set of weighted particles at time t

Process:
X̄t ← ∅, Xt ← ∅
for i← 1 to Ns do

sample x
[i]
t ∼ p

(
xt

∣∣∣x[i]
t−1, ct

)
w

[i]
t ← w

[i]
t−1p

(
st

∣∣∣x[i]
t

)
X̄t ← X̄t ∪

(
x

[i]
t , w

[i]
t

)
end
Compute N̂eff

if N̂eff < Nτ

for i← 1 to Ns do
draw j with probability ∝ w

[j]
t

Xt ← Xt ∪
(
x

[j]
t ,

1

Ns

)
end

else

Z ←
Ns∑
i=1

w
[i]
t

for i← 1 to Ns do

Xt ← Xt ∪
(
x

[i]
t , Z

−1w
[i]
t

)
end

end
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tion (Equation 2.34) approaches the true posterior pdf p (xt|c1:t, s1:t) and thus the Bayesian

filtered estimate. In practice, the number of particles used is often a large number (e.g.

1,000). Unlike the Kalman filter and EKF, the particle filter is not limited to Gaussian or

uni-modal distributions as the set of particles can represent multi-modal or arbitrary distri-

butions which can be important in some applications. Such a representation is approximate

and nonparametric and it can represent a much broader space of distributions than Gaussians.

Additionally, the particle filter can be applied to any system and measurement models and it

is not restricted to the linearity or Gaussian noise assumptions of the Kalman filter and EKF.

In fact, one of the advantages of the particle filter over the Kalman filter and EKF is its ability

to model nonlinear transformation of random variables.

2.4.1 Importance Sampling

In this section, we briefly discuss the concept of importance sampling and how it is used for

the weight computation in the particle filter.

The idea behind importance sampling is as follows. Suppose p (x) is a probability density

from which we want to obtain samples. However, sampling directly from p (x) is difficult

or impossible, but it can be evaluated (up to a proportionality constant). p (x) is often called

the target distribution. Now, suppose that there is a distribution q (x) from which we can

easily generate samples {x[i] : x[i] ∼ q (x) , i = 1, 2, ..., Ns}. q (x) is often referred to as

the proposal distribution or importance density. The proposal q (x) can be any arbitrary

distribution as long as p (x) > 0 implies q (x) > 0. The preceding ensures that there is a
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non-zero probability of generating a sample from q (x) for any state that might be generated

by sampling from p (x). p (x) can now be approximated by the set of weighted particles x[i]

as follows.

p (x) ≈ 1

W

Ns∑
i=1

w[i]δ
(
x− x[i]

)
, (2.36)

where W =
Ns∑
i=1

w[i], and

w[i] =
p
(
x[i]
)

q (x[i])
(2.37)

is the normalized weight for the ith sample x[i].

To see how the weight update equation

w
[i]
t ∝ w

[i]
t−1p

(
st

∣∣∣x[i]
t

)
(2.38)

is derived, we let the particles in the particle filter be samples of state sequences, i.e.

x
[i]
0:t ,

(
x

[i]
0 ,x

[i]
1 , ...,x

[i]
t

)
. (2.39)

To generate and maintain these samples of state sequences, we simply append x
[i]
t to the state

sequence sample x
[i]
0:t−1 from which it was generated. The particle filter, in this case, is used

to approximate the posterior pdf p (x0:t|c1:t, s1:t) over all state sequences by a weighted set of

state sequence samples x
[i]
0:t instead of the posterior pdf p (xt|c1:t, s1:t) over the current state.9

9Note that the pdf p (xt|c1:t, s1:t) can be obtained from p (x0:t|c1:t, s1:t) by simply marginalizing out the

previous states x0,x1, ...,xt−1, i.e. p (xt|c1:t, s1:t) =
∫ ∫

...

∫
p (x0:t|c1:t, s1:t) dx0dx1...dxt−1.
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In the particle filter, the target distribution is p (x0:t|c1:t, s1:t) while the proposal distribution

is q (x0:t|c1:t, s1:t). If we have samples x
[i]
0:t ∼ q (x0:t|c1:t, s1:t) , i = 1, 2, ..., Ns, then we can

approximate the target distribution p (x0:t|c1:t, s1:t) (see Equation 2.36)

p (x0:t|c1:t, s1:t) ≈
1

W

Ns∑
i=1

w
[i]
t δ
(
x0:t − x

[i]
0:t

)
, (2.40)

where (according to Equation 2.37)

w
[i]
t =

p (x0:t|c1:t, s1:t)

q (x0:t|c1:t, s1:t)
. (2.41)

Suppose we already have samples drawn from the pdf p (x0:t−1|c1:t−1, s1:t−1) and we want to

approximate the pdf p (x0:t|c1:t, s1:t) with a set of samples. Suppose further that the proposal

distribution can be factorized as

q (x0:t|c1:t, s1:t) = q (xt|x0:t−1, c1:t, s1:t) q (x0:t−1|c1:t−1, s1:t−1) . (2.42)

Note that if x
[i]
0:t−1 ∼ q (x0:t−1|c1:t−1, s1:t−1), then x

[i]
0:t ∼ q (x0:t|c1:t, s1:t) can be obtained by

appending x
[i]
t ∼ q

(
xt

∣∣∣x[i]
0:t−1, c1:t, s1:t

)
to x

[i]
0:t−1. By using the Bayes’ rule, the chain rule

of probability 10, and the Markov assumption, we can breakdown p (x0:t|c1:t, s1:t) in terms of

10The chain rule of probability is given by p (x, y|z) = p (x|z) p (y|x, z).

30



p (st|xt), p (xt|xt−1, ct), and p (x0:t−1|c1:t−1, s1:t−1) as shown in the following.

p (x0:t|c1:t, s1:t) =
p (st|x0:t, c1:t, s1:t−1) p (x0:t|c1:t, s1:t−1)

p (st|c1:t, s1:t−1)
(2.43)

=
p (st|x0:t, c1:t, s1:t−1) p (xt|x0:t−1, c1:t, s1:t−1) p (x0:t−1|c1:t, s1:t−1)

p (st|c1:t, s1:t−1)

(2.44)

=
p (st|xt) p (xt|xt−1, ct) p (x0:t−1|c1:t, s1:t−1)

p (st|c1:t, s1:t−1)
(2.45)

∝ p (st|xt) p (xt|xt−1, ct) p (x0:t−1|c1:t−1, s1:t−1) . (2.46)

Expanding the numerator and denominator of Equation 2.37, we get

w
[i]
t ∝

p
(
st

∣∣∣x[i]
t

)
p
(
x

[i]
t

∣∣∣x[i]
t−1, ct

)
p
(
x

[i]
0:t−1

∣∣∣ c1:t−1, s1:t−1

)
q
(
x

[i]
t

∣∣∣x[i]
0:t−1, c1:t, s1:t

)
q
(
x

[i]
0:t−1

∣∣∣ c1:t−1, s1:t−1

) (2.47)

∝ w
[i]
t−1

p
(
st

∣∣∣x[i]
t

)
p
(
x

[i]
t

∣∣∣x[i]
t−1, ct

)
q
(
x

[i]
t

∣∣∣x[i]
0:t−1, c1:t, s1:t

) . (2.48)

For convenience, we can let q (xt|x0:t−1, c1:t, s1:t) = q (xt|xt−1, c1:t, s1:t) and select the pro-

posal distribution to be the system model, i.e. q (xt|xt−1, c1:t, s1:t) = p (xt|xt−1, ct). As such,

Equation 2.48 becomes Equation 2.38 (see also Algorithm 5). Note that if resampling is per-

formed at every iteration such that the weights of the particles are reset to
1

Ns
, then the weight

update in Equation 2.38 simply becomes (see Algorithm 4)

w
[i]
t ∝ p

(
st

∣∣∣x[i]
t

)
. (2.49)
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2.5 Other Filters

In the preceding three sections, we have discussed three concrete implementations of the

Bayes’ filter, namely the Kalman filter, EKF, and the particle filter. It should be pointed

out that other filters exist such as the unscented Kalman filter (UKF) [Julier and Uhlmann,

1997], information filter (IF) and extended information filter (EIF) [Thrun et al., 2005], and

histogram filter [Thrun et al., 2005] or approximate grid-based method [Arulampalam et al.,

2002], among others, as well as variants of the particle filter such as the auxiliary particle filter

(APF) [Pitt and Shephard, 1999] and Rao-Blackwellized particle filter (RBPF) [Murphy,

2000]. While these filters are interesting, important, and have found themselves being applied

in a number of problems, we do not discuss them here as they are not employed in this

dissertation. We refer the interested reader to the references given in this section.

2.6 Discussion

The problems of mobile robot localization and mapping are often viewed as dynamic state

estimation problems. Probabilistic state estimation algorithms compute probability distri-

butions over the possible values of the state variables using the available sensor data. The

Bayes’ filter is a recursive (on-line) state estimation algorithm that provides a framework for

recursively computing probability distributions over the state variables as they evolve using

sensor measurements that are received over time. The Bayes’ filter computes the exact pdf at

every time step given all available data up to that time.
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The Kalman filter is a concrete and exact implementation of the Bayes’ filter for linear

Gaussian systems. However, many real-life problems are not linear; therefore, the Kalman

filter is not directly applicable. For tracking nonlinear systems, the extended version of the

Kalman filter or EKF first linearizes the nonlinear functions at the current estimate via a first-

order Taylor series expansion of the functions and then applies the Kalman filter equations.

Thus, the EKF requires the computation of the Jacobian matrices which may not be feasible

or computationally costly in some cases. Unlike the Kalman filter, the EKF is an approxi-

mate implementation of the Bayes’ filter for nonlinear systems and its performance depends

on the degree of non-linearity of the functions involved. Since both the Kalman filter and

EKF assume that the pdf is Gaussian, it suffices to only keep track of the mean vector and

covariance matrix of the distribution at every iteration. The Kalman filter and EKF are com-

putationally efficient and involve computing matrix inversion and multiplication. The EKF

has become the de facto technique for dynamic state estimation and it performs reasonably

well in practice.

The particle filter is an alternative approximate implementation of the Bayes’ filter. Un-

like the Kalman filter and EKF, the particle filter does not assume that the pdf is Gaussian.

The particle filter represents the required pdf by a set of weighted samples or particles. As the

number of particles used tends to infinity, the particle filter estimate approaches that of the

Bayes’ filter. The particle filter can estimate arbitrary distributions and, more importantly,

multi-modal distributions (in cases where there are several distinct modes of hypotheses),

which are not possible with the Gaussian distributions used in the Kalman filter and EKF.
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Moreover, the particle filter is well-suited for nonlinear system dynamics and measurement

functions. In order to implement the particle filter, one needs to be able to sample from the

system model and evaluate the measurement model. The particle filter is gaining in popular-

ity and it is being used in increasing number of applications including mobile robotics. It is

the filter employed in the next three chapters of this dissertation.
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Chapter 3

Mobile Robot Calibration

3.1 Introduction

Mobile robot localization, the problem of estimating the robot’s position and orientation (of-

ten called the pose) within its environment, is often viewed as a dynamic state estimation

problem using sensor data. In Chapter 2, we introduced probabilistic state estimation al-

gorithms that compute probability density functions (pdfs) or belief distributions over the

possible values of the variables of interest using the available sensor data. Before being able

to employ the filters of the previous chapter to solve the mobile robot localization problem,

two models must be known: the system model p (xt|xt−1, ct) and the observation or mea-

surement model p (st|xt). In the context of mobile robotics, the system model p (xt|xt−1, ct)

is often called the kinematic or motion model as it describes the effect the control action ct

(e.g. translation or rotation) has on the state or configuration of the robot (i.e. its pose) which
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is represented as xt while the observation model p (st|xt) is often called the perceptual or

sensor model as it describes the process by which sensor measurements st (e.g. sonar read-

ings, laser scans, or camera images) are generated given the state xt of the robot and the

environment. Since robot actuation is not perfect and uncertain and sensor measurements are

almost always subject to random noise and error, the motion and sensor models are appro-

priately represented as probability distributions [Elfes, 1987, Fox et al., 1999, Thrun, 2003,

Eliazar and Parr, 2004b].

The probabilistic motion and sensor models explicitly model the inherent uncertainty and

noise that exist in robot actuation and perception, respectively. Of course, the specifics of

the models depend on the kind of robot and sensors used as well as the robot’s operating

environment. The models are typically described by a set of parameters that affect the actual

shapes and forms of these distributions. These distributions, in turn, influence the quality

of the estimate provided by the probabilistic state estimation techniques. Thus, identifying

the appropriate values of the parameters used to describe the motion and sensor models is

an important step in mobile robotics. As already mentioned in Chapter 1, mobile robot cali-

bration deals with the problem of identifying the parameters that describe the kinematic and

perceptual processes of a mobile robot. There are several ways one can go about learning

the parameters of the models. Typically, the parameters of the models are provided and hand

tuned by a human operator and those are often derived from intensive and careful calibration

experiments as well as the operator’s knowledge and experience with the robot and its oper-

ating environment. The preceding approach is often a tedious and laborious manual process
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that needs to be repeated whenever there is a significant change in the robot (e.g. wear and

tear) or the environment (e.g. going from static environment to dynamic environment).

In this chapter, we propose an automated technique for learning the parameters of both

the motion and sensor models of a mobile robot. The automated technique uses the expecta-

tion maximization (EM) [Dempster et al., 1977] approach, a machine learning technique for

estimating the parameters of probabilistic models that depend on hidden or latent variables.

Our technique assumes that the robot has access to the map of the environment and the his-

torical account of its motion (as provided by the odometric information) and sensing (in our

case, range measurements provided by sonar sensors). Odometry and sensor measurements

are needed for estimating the likely trajectory of the robot through the environment during its

normal operation. We estimate the robot’s trajectory using particle filtering [Arulampalam

et al., 2002] and smoothing [Doucet et al., 2000b, Godsill et al., 2004]. We provide experi-

mental results demonstrating the effectiveness of the estimation approach and the advantage

of learning the parameters of both the motion and sensor models.

3.2 Related Work

Calibration has been an active research area in mobile robotics. UMBmark [Borenstein and

Feng, 1995] is a method for the quantitative measurement of systematic odometry errors in

a mobile robot that involves performing a series of simple calibration experiments in which

the robot traverses a square path in both clockwise and counter-clockwise directions and an
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operator manually measures the absolute position of the vehicle to compare with the robot’s

calculated position based on odometry. Roy and Thrun [1999] proposed a statistical method

for the on-line self-calibration of the odometry of mobile robots which eliminates the need for

explicit measurements of actual robot motion by a human or some external device. Unlike

UMBmark, the method of Roy and Thrun [1999] is automatic and it calibrates a robot’s

odometers continuously during its everyday operation allowing the robot to adapt to changes

that might occur over its lifetime. Eliazar and Parr [2004b] have a similar goal where they

proposed a method that can start with a crude motion model and bootstrap itself towards a

more refined motion model; thus, allowing the robot to adapt to changing motion parameters.

But unlike Roy and Thrun [1999], Eliazar and Parr [2004b] used a more general motion

model which incorporates interdependence between motion terms including the influence of

turns on lateral movement and vice versa. Instead of dealing with systematic errors, they also

estimated non-systematic errors through the variance in the different motion terms.

Other notable work on the automatic calibration of the robot odometry include the self-

calibrating extended Kalman filter (EKFSC) approach by Caltabiano et al. [2004] and the

observable filter (OF) (used in conjunction with the augmented Kalman filter (AKF)) by

Martinelli et al. [2003]. Foxlin [2002] introduced a general architectural framework that

enables systems to simultaneously track themselves, construct a map of landmarks in the

environment, and calibrate sensor intrinsic and extrinsic parameters. Recently, Stronger and

Stone [2005] presented a technique for the simultaneous calibration of the action and sensor

models (SCASM) of a mobile robot. However, the models used by Stronger and Stone [2005]
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are not probabilistic and their method makes use of careful calibration setup and requires the

robot to go through a training phase thereby disrupting the robot from its normal operation.

Our work is similar in spirit with that of Eliazar and Parr [2004b] and Roy and Thrun

[1999] but instead of only estimating the motion model parameters, we also aim for the

estimation of the sensor model parameters. Unlike Stronger and Stone [2005], our models

are expressed probabilistically and our estimation method can be performed by the robot

during its normal operation thus skipping the need for a separate training phase. Our results

demonstrate the advantage of co-calibrating both models.

3.3 Probabilistic Motion and Sensor Models

In this section, we discuss the probabilistic motion and sensor models we employ for our

mobile robot. Note that there are several ways one can describe the motion and sensor models

of a mobile robot probabilistically. The specific probabilistic motion and sensor models

presented here are chosen because they are found to work well with our current robot and

should not be seen as the only models that go with our automated calibration technique.

In fact, in this chapter, we propose a general framework for estimating the parameters of a

mobile robot that can be used for other motion and sensor models as well.
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3.3.1 Motion Model

The purpose of the motion model is to describe the effect the control input ct has on the

robot’s pose xt. In this chapter, we assume that the robot moves in a planar environment

so that its pose at any given time t can be represented as a three-dimensional column vector

xt = (xt, yt, θt)
T , where (xt, yt)

T is the robot’s two-dimensional Cartesian coordinates and θt

denotes the robot’s heading or orientation. Since robot motion is not perfectly repeatable (i.e.

the same control command will not generally produce the same effect on the robot’s configu-

ration), the motion model is expressed as a probability distribution of the form p (xt|xt−1, ct),

where xt−1 and xt are the robot’s poses for two consecutive time steps t − 1 and t, respec-

tively, and ct is the control command executed by the robot during the time interval [t−1, t).

In this work, our robot is equipped with odometry that provides an estimate of the robot pose

x̂t =
(
x̂t, ŷt, θ̂t

)T

at time t by integrating wheel encoder information. Due to drift, wheel

slippage, and other factors, the estimated pose x̂t gradually differs from the true pose xt over

time. Thus, using odometry alone is not sufficient for tracking accurately the robot pose over

time. Nevertheless, we use the odometry measurements as our basis for calculating the esti-

mated relative motion of the robot over time. Specifically, in the time interval [t − 1, t) and

given the odometry measurements x̂t−1 and x̂t, we compute the estimated distance traveled

40



d̂t and rotation made r̂t by the robot during the given time interval as:

d̂t =

√
(x̂t − x̂t−1)

2 + (ŷt − ŷt−1)
2 (3.1)

r̂t =
(
θ̂t − θ̂t−1

)
mod 2π . (3.2)

The estimated distance traveled and rotation made differ from the true ones and they are

assumed to be corrupted by independent noise. While technically speaking the odometry

information are sensor measurements, we consider them as control measurements and we let

the control command ct be the pair
(
d̂t, r̂t

)T

. As suggested by the probability distribution

p (xt|xt−1, ct), the robot’s next pose depends stochastically on its previous pose one time step

earlier and the control input ct. The distribution p (xt|xt−1, ct) governs how the particles in

the particle filter are propagated from one time step to the next. Although not explicitly in-

cluded as part of the conditioning variables in p (xt|xt−1, ct), the mapM of the environment

as well as the set of parameters that define the motion model also determine the robot’s next

pose.

There are several ways one can describe the motion model. Roy and Thrun [1999] sug-

gested the following.

xt = xt−1 + dt cos (θt−1 + rt) (3.3)

yt = yt−1 + dt sin (θt−1 + rt) (3.4)

θt = (θt−1 + rt) mod 2π , (3.5)
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with the assumption that the drive and turn commands are independent. dt and rt denote the

true distance traveled and rotation made by the robot, respectively. A more complex motion

model proposed by Eliazar and Parr [2004b] that can account for simultaneous turning and

lateral movement decomposes the movement into two principal components

xt = xt−1 +Dt cos

(
θt−1 +

Tt

2

)
+ Et cos

(
θt−1 +

Tt + π

2

)
(3.6)

yt = yt−1 +Dt sin

(
θt−1 +

Tt

2

)
+ Et sin

(
θt−1 +

Tt + π

2

)
(3.7)

θt = (θt−1 + Tt) mod 2π , (3.8)

where θt−1 +
Tt

2
is referred to as the major axis of movement, θt−1 +

Tt + π

2
is the minor

axis of movement (orthogonal to the major axis), and Et is an extra lateral translation term

to account for the shift in the orthogonal direction to the major axis. In their motion model,

the variables Dt, Tt, and Et are all independent and conditionally Gaussian given d̂t and r̂t:

Dt ∼ N
(
d̂tµDd̂

+ r̂tµDr̂
, d̂2

tσ
2
Dd̂

+ r̂2
tσ

2
Dr̂

)
(3.9)

Tt ∼ N
(
d̂tµTd̂

+ r̂tµTr̂
, d̂2

tσ
2
Td̂

+ r̂2
tσ

2
Tr̂

)
(3.10)

Et ∼ N
(
d̂tµEd̂

+ r̂tµEr̂
, d̂2

tσ
2
Ed̂

+ r̂2
tσ

2
Er̂

)
, (3.11)

where N (a, b) is a Gaussian distribution with mean a and variance b, µAb
is the coefficient

for the contribution of the odometry term b to the mean of the distribution over A. Thus, the
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twelve parameters µDd̂
, µTd̂

, µEd̂
, µDr̂

, µTr̂
, µEr̂

, σ2
Dd̂
, σ2

Td̂
, σ2

Ed̂
, σ2

Dr̂
, σ2

Tr̂
, and σ2

Er̂
, define this

motion model.

In this chapter, we adopt the motion model of Eliazar and Parr [2004b] but with a slightly

different noise model. We still use Equations 3.6, 3.7, and 3.8 for our state update equations

except that

Dt ∼ N
(
d̂t, d̂

2
tσ

2
Dd̂

+ r̂2
tσ

2
Dr̂

+ σ2
D1

)
(3.12)

Tt ∼ N
(
r̂t, d̂

2
tσ

2
Td̂

+ r̂2
tσ

2
Tr̂

+ σ2
T1

)
(3.13)

Et ∼ N
(
0, d̂2

tσ
2
Ed̂

+ r̂2
tσ

2
Er̂

+ σ2
E1

)
. (3.14)

Our noise model is similar to the noise model of Eliazar and Parr [2004b] with µDd̂
= 1,

µDr̂
= 0, µTd̂

= 0, µTr̂
= 1, µEd̂

= 0, µEr̂
= 0. We added extra constant terms to the

variances using the additional parameters σ2
D1

, σ2
T1

, and σ2
E1

. These parameters are added to

account for errors that are not proportional to the translation or rotation of the robot. The

motion parameters we wish to estimate from data are σ2
Dd̂
, σ2

Td̂
, σ2

Ed̂
, σ2

Dr̂
, σ2

Tr̂
, σ2

Er̂
, σ2

D1
, σ2

T1
,

and σ2
E1

.

3.3.2 Sensor Model

The sensor model constitutes the second probabilistic model needed to implement the prob-

abilistic state estimation techniques discussed in Chapter 2. The sensor model describes the

process by which sensor measurements are generated in the physical world. It relates the ac-

43



tual sensor measurements to the state of the robot or the environment. It is defined as the con-

ditional probability distribution p (st|xt), where st is the sensor measurement received at time

t and xt is the robot pose at time t. Just like in the motion model p (xt|xt−1, ct), even though

we do not explicitly include the environment mapM as part of the conditioning variables in

p (st|xt), it also determines the sensor measurement. The actual definition of the distribution

p (st|xt) depends on the type of sensor used by the robot (e.g. cameras, range sensors). In

this study, our mobile robot is equipped with a cyclic array of sixteen ultrasound sensors with

eight front sonars and eight back sonars. Thus, in our case, st =
{
s
(1)
t , s

(2)
t , ..., s

(K)
t

}
, where

s
(k)
t is the kth sensor measurement received at time t andK = 16 is the total number of sensor

measurements. We assume that the errors in the sensor measurements are independent.

The distance reported by the rangefinder is often subject to random noise and error. In

this chapter, we make use of the sensor model for rangefinders described by Thrun et al.

[2005] that represents the distribution as a mixture of four distributions corresponding to the

four types of measurement errors typically observed in range readings: small measurement

noise, errors due to unexpected objects or obstacles, errors due to failure to detect objects, and

random unexplained noise. We let s(k)∗
t denote the true distance to an obstacle, s(k)

t denote

the recorded measurement, and smax denote the maximum possible reading (e.g. 5000mm).

In order to model small measurement noise associated with range readings, we define a

narrow Gaussian distribution phit over the range [0, smax] with mean s(k)∗
t and standard devia-
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tion σhit. σhit is an intrinsic parameter of the distribution phit. Formally

phit

(
s
(k)
t

∣∣∣xt

)
=


η

1√
2πσhit

e
−

(
s
(k)
t − s

(k)∗
t

)2

2σ2
hit if 0 ≤ s

(k)
t ≤ smax

0 otherwise

, (3.15)

where η is a normalizing factor due to clipping.

Although we assume that the map of the environment is static and it does not include

moving objects such as people, actual robot environments (such as buildings and hallways)

are highly dynamic and they are often populated with dynamic entities other than the robot

itself. These dynamic entities often block the robot’s range sensors’ “line-of-sight” thus

causing them to return measurements shorter than the true range. This particular type of

measurement error is modeled by a truncated exponential distribution pshort with parameter

λshort. Specifically,

pshort

(
s
(k)
t

∣∣∣xt

)
=


ηλshorte

−λshorts
(k)
t if 0 ≤ s

(k)
t ≤ s

(k)∗
t

0 otherwise

, (3.16)

where η =
1(

1− e−λshorts
(k)∗
t

) .

Sometimes, rangefinders fail to detect obstacles. For sonar sensors, this type of error can

happen due to specular reflections when the echo fails to return to the sonar. Thus, the obsta-

cle appears invisible from the robot’s perspective. Sonar sensors are typically programmed

to return the maximum sensor range smax when this happens. This particular type of mea-
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surement error is modeled by a pseudo point-mass distribution pmax centered at smax:

pmax

(
s
(k)
t

∣∣∣xt

)
=


1 if s(k)

t = smax

0 otherwise

. (3.17)

Finally, rangefinders can return totally unexplainable measurements. This can be caused

by interference or cross-talk between different sensors or incomplete knowledge about rang-

ing technologies. This type of measurement error is modeled by a uniform distribution prand

over the entire measurement range:

prand

(
s
(k)
t

∣∣∣xt

)
=


1

smax
if 0 ≤ s

(k)
t ≤ smax

0 otherwise

. (3.18)

The four distributions defined in Equations 3.15 to 3.18 are combined by a weighted

average through the mixing parameters αhit, αshort, αmax, and αrand

p
(
s
(k)
t

∣∣∣xt

)
= αhitphit

(
s
(k)
t

∣∣∣xt

)
+αshortpshort

(
s
(k)
t

∣∣∣xt

)
+αmaxpmax

(
s
(k)
t

∣∣∣xt

)
+αrandprand

(
s
(k)
t

∣∣∣xt

)
,

(3.19)

such that

αhit + αshort + αmax + αrand = 1 . (3.20)

It is often appropriate to think of the mixing parameters as the a priori probabilities that a

particular sensor reading is caused by one of the four types of measurement errors discussed
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above. Note that the mixing parameters, σhit, and λshort are the intrinsic parameters of this

particular sensor model which we wish to learn from actual data.

3.4 Particle Filtering and Smoothing

In order to learn the parameters of the motion and sensor models of the mobile robot from

sensor observations, we need to infer the actual trajectory that the robot took through the

environment. Inferring the actual robot trajectory would provide us with an estimate of the

actual robot transitions that occurred as well as what robot poses and environmental entities

(e.g. walls, doors, or posts) generated the sensor readings. We then use these estimates

for learning the parameters of the models. It is noteworthy to point out that learning the

model parameters requires the full smoothing inference, rather than just filtering, because

it provides better estimates of the states of the process. Learning with filtering can fail to

converge correctly [Russell and Norvig, 2003]. In what follows, we briefly review the process

of particle filtering and then discuss particle smoothing for estimating the trajectory of the

robot through the environment. Particle smoothing requires that particle filtering has already

been carried out on the entire sequence of sensor measurements leading to a particle-based

approximation of the filtering density at each time step.
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3.4.1 Particle Filtering

Given the prior distribution p (x0) over the robot’s pose at time 0 represented as the weighted

set of particles X0, the motion model p (xt|xt−1, ct), the sensor model p (st|xt), the sequence

of control actions c1:T , and the sequence of sensor measurements s1:T (where T denotes the

last time step), we perform particle filtering using Algorithm 4 in Chapter 2 from time t = 1

to time t = T . After performing particle filtering, we now have a particle representation of the

posterior distribution over the state of the robot for each time step t (i.e. Xt, t = 0, 1, ..., T ),

given the observations up to time t. While particle filtering provides an estimate of the state

of the robot for every time step t, we still need to perform particle smoothing as it provides

better estimates of the states of the robot.

3.4.2 Particle Smoothing

Smoothing is the task of computing the posterior distribution over a past state, given all

evidence up to the present. That is, the objective of smoothing is to compute the distributions

p (xt|c1:T , s1:T ) for some t with 0 ≤ t ≤ T . Hindsight provides a better estimate of the state

of the system than was available at the time because it incorporates more (later) evidence

[Russell and Norvig, 2003]. Similar to filtering, smoothing can be performed recursively,
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although in this case backward in time, using the smoothing formula

p (xt|c1:T , s1:T ) =

∫
p (xt|xt+1, c1:T , s1:T ) p (xt+1|c1:T , s1:T ) dxt+1 (3.21)

=

∫
p (xt|xt+1, c1:t+1, s1:t) p (xt+1|c1:T , s1:T ) dxt+1 (3.22)

=

∫
p (xt+1|xt, c1:t+1, s1:t) p (xt|c1:t+1, s1:t)

p (xt+1|c1:t+1, s1:t)
p (xt+1|c1:T , s1:T ) dxt+1

(3.23)

=

∫
p (xt+1|xt, ct+1) p (xt|c1:t, s1:t)

p (xt+1|c1:t+1, s1:t)
p (xt+1|c1:T , s1:T ) dxt+1 (3.24)

=

∫
ηp (xt+1|xt, ct+1) p (xt|c1:t, s1:t) p (xt+1|c1:T , s1:T ) dxt+1 , (3.25)

where η = p (xt+1|c1:t+1, s1:t)
−1. Note that in Equation 3.25, the second factor in the in-

tegral is given by the system model and the third factor can be computed by filtering for-

ward from time 1 to t. As pointed out by Godsill et al. [2004], in many applications, the

marginal distributions p (xt|c1:T , s1:T ) , 0 ≤ t ≤ T , are of limited interest, because investi-

gation of historical states generally focuses on trajectories and hence requires consideration

of collections of states together. Thus, we are interested in the entire joint smoothing den-

sity p (x0:T |c1:T , s1:T ). Godsill et al. [2001] provided a sequential method for obtaining the

maximum a posteriori (MAP) estimate of the sequence using dynamic programming and

the Viterbi algorithm. However, in Bayesian inference setting, especially when dealing with

multi-modal distributions, a single best estimate is rarely appropriate [Godsill et al., 2004].
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Thus, we need for random generation of entire historical trajectories drawn from the joint

smoothing density p (x0:T |c1:T , s1:T ).

In this chapter, we rely on a simple and efficient technique presented by Doucet et al.

[2000b] and Godsill et al. [2004] for generating samples from the entire joint smoothing den-

sity p (x0:T |c1:T , s1:T ). The technique assumes that particle filtering has already been carried

out on the entire data set resulting in a particle approximation of the posterior distribution

at each time step t consisting of a weighted particle set Xt. The technique is based on the

following factorization of the joint smoothing density

p (x0:T |c1:T , s1:T ) =
T∏

t=0

p (xt|xt+1:T , c1:T , s1:T ) , (3.26)

where

p (xt|xt+1:T , c1:T , s1:T ) = p (xt|xt+1, c1:t+1, s1:t) (3.27)

=
p (xt+1|xt, c1:t+1, s1:t) p (xt|c1:t+1, s1:t)

p (xt+1|c1:t+1, s1:t)
(3.28)

=
p (xt+1|xt, ct+1) p (xt|c1:t, s1:t)

p (xt+1|c1:t+1, s1:t)
(3.29)

∝ p (xt+1|xt, ct+1) p (xt|c1:t, s1:t) . (3.30)

Equation 3.30 can be used to generate states recursively backward in time, given fu-

ture states. Suppose we have a random sample x̃t+1:T , (x̃t+1, x̃t+2, ..., x̃T ) drawn from

p (xt+1:T |c1:T , s1:T ), we then draw x̃t from p (xt|x̃t+1:T , c1:T , s1:T ). Prepending x̃t to x̃t+1:T ,
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x̃t:T = (x̃t, x̃t+1:T ) is then a random sample from p (xt:T |c1:T , s1:T ). The question now is:

how to draw x̃t from p (xt|x̃t+1:T , c1:T , s1:T )? Notice that p (xt|x̃t+1:T , c1:T , s1:T ) depends on

the pdf p (xt|c1:t, s1:t) for which we have a particle approximation from performing particle

filtering. The particle approximation to p (xt|x̃t+1:T , c1:T , s1:T ) is obtained using the filtered

particles x
[i]
t with modified importance weights w[i]

t|t+1 ∝ w
[i]
t p
(
x̃t+1

∣∣∣x[i]
t , ct+1

)
, i.e.

p (xt|x̃t+1:T , c1:T , s1:T ) ≈
Ns∑
i=1

w
[i]′

t|t+1δ
(
xt − x

[i]
t

)
, (3.31)

where

w
[i]′

t|t+1 =
w

[i]
t|t+1

Ns∑
j=1

w
[j]
t|t+1

. (3.32)

Therefore, to draw x̃t, we simply sample from the discrete distribution shown in Equation

3.31 with weights w[i]
t|t+1.

Algorithm 6 shows the steps for sampling from the joint smoothing density p (x1:T |c1:T , s1:T ).

The algorithm starts by drawing a particle at the last time step T with probability proportional

to its forward filtering weight w[i]
T . The algorithm then proceeds backward in time modifying

the weights of the particles at each time step t by multiplying their forward filtering weight

w
[i]
t by the probability that they lead to a transition to the drawn particle at the next time step

t+ 1 (i.e. p
(
x̃t+1

∣∣∣x[i]
t , ct+1

)
). The algorithm draws a particle with probability proportional

to its modified weight w[i]
t|t+1 at every time step t. The sequence of particles x̃t drawn from
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time 0 to time T (0 ≤ t ≤ T ) constitutes a sampled trajectory x̃0:T , (x̃0, x̃1, ..., x̃T ) from

the joint smoothing density p (x0:T |c1:T , s1:T ).

Algorithm 6 Sampling from the entire joint smoothing density p (x0:T |c1:T , s1:T )

Input:
Xt, t = 0, 1, ..., T : particle approximations to the posterior pdfs p (xt|c1:t, s1:t) , t = 0, 1, .., T
c1:T = (c1, c2, ..., cT ): set of controls from time 1 to time T
Output:
x̃0:T = (x̃0, x̃1, ..., x̃T ): a sample from the entire joint smoothing density p (x0:T |c1:T , s1:T )
Process:
draw i with probability ∝ w

[i]
T

x̃T ← x
[i]
T

for t← T − 1 down to 0 do
for i← 1 to Ns do

w
[i]
t|t+1 ← w

[i]
t p
(
x̃t+1

∣∣∣x[i]
t , ct+1

)
end
draw i with probability ∝ w

[i]
t|t+1

x̃t ← x
[i]
t

end

Algorithm 6 can be repeated many times if several samples of p (x0:T |c1:T , s1:T ) are needed.

We use Algorithm 6 to generate several robot trajectories and use them in estimating the

parameters of the motion and sensor models of the robot.

3.5 Expectation Maximization and Parameter Estimation

To estimate the set of motion and sensor model parameters of the robot, we propose using

the expectation maximization (EM) algorithm [Dempster et al., 1977], a standard machine

learning method.
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3.5.1 Expectation Maximization

EM is an iterative optimization method for estimating some unknown parameters ϑ in a

probabilistic model, given measurement data D. However, some variables u (sometimes

called hidden or latent variables) are not observed and that must be integrated out of the

likelihood function. The objective of EM is to seek for the parameters ϑ∗ that maximizes the

posterior probability of the parameters ϑ given the data D, with u marginalized out, i.e.

ϑ∗ = arg max
ϑ

∫
p (ϑ,u|D) du . (3.33)

Our discussion of the EM algorithm is based on those by Minka [1998] and Dellaert [2002]

that explain the EM algorithm as lower bound maximization.

The idea behind the EM algorithm is to alternate between estimating the unknown vari-

ables ϑ and the unobserved variables u. However, given an estimate for ϑ, the EM computes

a distribution over u rather than just finding the best estimate for u. While the idea of al-

ternating between estimating the unknown variables ϑ and the unobserved variables u often

serves as a good intuition for the EM algorithm, an alternative and better exposition of the EM

algorithm is given by the lower bounding maximization viewpoint. In the lower bounding

maximization viewpoint, the EM algorithm alternates between constructing a lower bound

of the posterior distribution in Equation 3.33 (this step is often called the expectation step or

E-step) and maximizing (optimizing) the bound (this step is often called the maximization

step or M-step), thus improving the estimate for ϑ.
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To maximize the posterior distribution in Equation 3.33, first notice that we can rewrite it

as

ϑ∗ = arg max
ϑ

p (ϑ|D) (3.34)

= arg max
ϑ

p (ϑ,D) , (3.35)

since p (ϑ,D) ∝ p (ϑ|D). Maximizing p (ϑ,D) is equivalent to maximizing log p (ϑ,D)

since the logarithm is a monotonically non-decreasing function. Thus,

ϑ∗ = arg max
ϑ

log p (ϑ,D) (3.36)

= arg max
ϑ

log

∫
p (ϑ,u,D) du (3.37)

= arg max
ϑ

log

∫
qt (u)

p (ϑ,u,D)

qt (u)
du . (3.38)

where in Equation 3.38, we have introduced some arbitrary probability distribution qt (u)

over the hidden variables u at the tth iteration of the EM algorithm. To maximize the objec-

tive in Equation 3.38, EM constructs a tractable lower bound bt (ϑ) at the current estimate of

ϑ at the tth iteration (i.e. ϑt) and maximizes the bound instead. Using Jensen’s inequality1,

bt (ϑ) ,
∫
qt (u) log

p (ϑ,u,D)

qt (u)
du ≤ log

∫
qt (u)

p (ϑ,u,D)

qt (u)
du . (3.39)

1Jensen’s inequality (continuous version) states that if p (x) is a continuous density function and f is a real

continuous function that is concave, then
∫

p (x) f (g (x)) dx ≤ f

(∫
p (x) g (x) dx

)
.
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Given the bound bt (ϑ), the EM algorithm finds the best (optimal) lower bound that

touches the objective function log p (ϑ,D) at the current estimate ϑt at the tth iteration. This

is to ensure that the next estimate ϑt is an improvement on ϑ when the bound is locally max-

imized with respect to ϑ. The optimal lower bound at the current estimate ϑt can be obtained

by maximizing

bt (ϑt) =

∫
qt (u) log

p (ϑt,u,D)

qt (u)
du , (3.40)

with respect to the distribution qt (u). Using a Lagrange multiplier λ for the constraint∫
qt (u) du = 1, the objective is now

B (qt (u)) =

∫
qt (u) log p (ϑt,u,D) du−

∫
qt (u) log qt (u) du + λ

(
1−

∫
qt (u) du

)
.

(3.41)

Taking the partial derivative of Equation 3.41 with respect to qt (u) and setting to 0

∂B

∂qt (u)
= log p (ϑt,u,D)− log qt (u)− 1− λ = 0 . (3.42)

Solving for qt (u) in Equation 3.42, we get

qt (u) =
p (ϑt,u,D)∫
p (ϑt,u,D) du

= p (u|ϑt,D) . (3.43)
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Note that if we use the value of qt (u) in Equation 3.43 to Equation 3.40, the bound bt (ϑt)

indeed touches the objective function log p (ϑt,D) at the current estimate ϑt:

bt (ϑt) =

∫
p (u|ϑt,D) log

p (ϑt,u,D)

p (u|ϑt,D)
du (3.44)

=

∫
p (u|ϑt,D) log p (ϑt,D) du (3.45)

= log p (ϑt,D)

∫
p (u|ϑt,D) du (3.46)

= log p (ϑt,D) . (3.47)

The preceding is the E-step of the EM algorithm where it finds the optimal lower bound that

touches the objective function log p (ϑ,D) at the current estimate ϑt and this is achieved by

setting qt (u) to be p (u|ϑt,D).
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Having found the optimal lower bound, the EM algorithm then maximizes it with respect

to ϑ. Note that Equation 3.39 with qt (u) = p (u|ϑt,D) can be rewritten as

bt (ϑ) =

∫
p (u|ϑt,D) log

p (ϑ,u,D)

p (u|ϑt,D)
du (3.48)

=

∫
p (u|ϑt,D) log p (ϑ,u,D) du−

∫
p (u|ϑt,D) log p (u|ϑt,D) du (3.49)

= Ep(u|ϑt,D)[log p (ϑ,u,D)]− Ep(u|ϑt,D)[log p (u|ϑt,D)] (3.50)

= Ep(u|ϑt,D)[log(p (u,D|ϑ) p (ϑ))]− Ep(u|ϑt,D)[log p (u|ϑt,D)] (3.51)

= Ep(u|ϑt,D)[log p (u,D|ϑ)] + Ep(u|ϑt,D)[log p (ϑ)]− Ep(u|ϑt,D)[log p (u|ϑt,D)]

(3.52)

= Ep(u|ϑt,D)[log p (u,D|ϑ)] + log p (ϑ)− Ep(u|ϑt,D)[log p (u|ϑt,D)] . (3.53)

In Equation 3.53, the first term is the expected log-likelihood of the hidden variables u and

data D given the parameters ϑ, the second term is the logarithm of the prior distribution over

the unknown variables ϑ, and the last term is the entropy2 of the distribution p (u|ϑt,D).

Since the last term does not depend on ϑ, we can maximize the bound with respect to ϑ using

2The (continuous) entropy of a probability density function p (x) is given by Ep(x)[log p (x)] =

−
∫

p (x) log p (x) dx.
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only the first two terms in Equation 3.53 to get the new improved estimate ϑt+1, i.e.

ϑt+1 = arg max
ϑ

bt (ϑ) (3.54)

= arg max
ϑ

[Ep(u|ϑt,D)[log p (u,D|ϑ)] + log p (ϑ)] . (3.55)

To summarize, at initialization, the EM algorithm starts with an initial estimate of the

parameters ϑ0. At every iteration t, it finds an optimal lower bound bt (ϑ) of the objective

function at the current estimate ϑt (see Equation 3.40) (the E-step), and then maximizes

this bound to obtain an improved estimate ϑt+1 (see Equation 3.55) (the M-step). The EM

algorithm repeatedly alternates between performing the E-step and M-step until convergence

or a maximum number of iterations is reached. It is noteworthy to point out that the EM

algorithm is a local optimization technique, and as such, it can also be trapped in some local

optimum like other optimization methods such as gradient descent and Newton’s methods.

3.5.2 Parameter Estimation Framework

In this section, we now discuss how we apply the EM algorithm discussed in the preceding

subsection to learn the parameters of the motion and sensor models of the robot.

The parameters we want to learn from data are the set of motion and sensor parameters:

ϑ =
{
σ2

Dd̂
, σ2

Td̂
, σ2

Ed̂
, σ2

Dr̂
, σ2

Tr̂
, σ2

Er̂
, σ2

D1
, σ2

T1
, σ2

E1
, αhit, αshort, αmax, αrand, σhit, λshort

}
. (3.56)
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The data D from which we learn the parameters are

D = {c1:T , s1:T} . (3.57)

Finally, the hidden variables are the actual robot trajectory through the environment, i.e.

u = x0:T . (3.58)

Note that the true robot trajectory x0:T is not directly observable even with accurate sensors

such as global positioning system or GPS.

At initialization, we set the parameters ϑ to some initial values. We then alternate between

performing the E-step and M-step. As discussed in the previous subsection, in the E-step, we

compute the expectation of log p (u,D|ϑ) with respect to the distribution p (u|ϑt,D). The

distribution p (u|ϑt,D) is nothing but the entire joint smoothing density p (x0:T |c1:T , s1:T )

given a particular set of parameters ϑt discussed in Section 3.4.2. However, computing

Ep(x0:T |c1:T ,s1:T )[log p (x0:T , c1:T , s1:T |ϑ)] is, in general, intractable since the space of all pos-

sible robot trajectories x0:T is infinite and we do not have a closed form for the distribution

p (x0:T |c1:T , s1:T ) but only samples from it. Thus, we approximate the E-step by perform-

ing particle filtering and smoothing to obtain sample robot trajectories from the smoothing

density p (x0:T |c1:T , s1:T ) as discussed in Section 3.4. In the maximization step or M-step,

we treat the sampled trajectories obtained in the E-step as the ground truth to compute the

maximum likelihood parameters of the models. We repeatedly alternate between perform-
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ing the E-step and M-step until convergence. It has been shown by Dempster et al. [1977]

that the EM algorithm is guaranteed to reach a local optimum. We should emphasize that

our E-step is just an approximation of the “true” E-step of the EM algorithm since we are

sampling from the posterior distribution p (x0:T |c1:T , s1:T ) over possible robot paths instead

of computing with the exact posterior distribution p (x0:T |c1:T , s1:T ).

To compute the maximum likelihood values of the motion model parameters in the M-

step, we calculate the motion errors ε[j]Dt
, ε[j]Tt

, and ε[j]Et
for t = 0, 1, ..., T − 1 (based from the

jth sampled robot trajectory x̃
[j]
0:T obtained in the E-step) as well as the contributions of the

odometry values d̂t and r̂t to the variances of these errors. Let ε[j]Dt
be the translational error,

ε
[j]
Tt

the rotational error, and ε[j]Et
the lateral translation given by

ε
[j]
Tt

=
(
θ̃

[j]
t+1 − θ̃

[j]
t − r̂t

)
mod 2π (3.59)

ε
[j]
Dt

=
(
x̃

[j]
t+1 − x̃

[j]
t

)
cos

(
θ̃

[j]
t +

r̂t + ε
[j]
Tt

2

)
+
(
ỹ

[j]
t+1 − ỹ

[j]
t

)
sin

(
θ̃

[j]
t +

r̂t + ε
[j]
Tt

2

)
− d̂t

(3.60)

ε
[j]
Et

= −
(
x̃

[j]
t+1 − x̃

[j]
t

)
sin

(
θ̃

[j]
t +

r̂t + ε
[j]
Tt

2

)
+
(
ỹ

[j]
t+1 − ỹ

[j]
t

)
cos

(
θ̃

[j]
t +

r̂t + ε
[j]
Tt

2

)
.

(3.61)
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Note that

ε
[j]
Dt
∼ N

(
0, d̂2

tσ
2
Dd̂

+ r̂2
tσ

2
Dr̂

+ σ2
D1

)
(3.62)

ε
[j]
Tt
∼ N

(
0, d̂2

tσ
2
Td̂

+ r̂2
tσ

2
Tr̂

+ σ2
T1

)
(3.63)

ε
[j]
Et
∼ N

(
0, d̂2

tσ
2
Ed̂

+ r̂2
tσ

2
Er̂

+ σ2
E1

)
. (3.64)

Given the following likelihood functions

LεD

(
σ2

Dd̂
, σ2

Dr̂
, σ2

D1

)
= p

({
ε
[j]
Dt

}∣∣∣ c1:T ,
{
x̃

[j]
0:T

})
(3.65)

=
∏

j

T−1∏
t=0

1√
2π
(
d̂2

tσ
2
Dd̂

+ r̂2
tσ

2
Dr̂

+ σ2
D1

)

× exp

−
(
ε
[j]
Dt

)2

2
(
d̂2

tσ
2
Dd̂

+ r̂2
tσ

2
Dr̂

+ σ2
D1

)
 (3.66)

LεT

(
σ2

Td̂
, σ2

Tr̂
, σ2

T1

)
= p

({
ε
[j]
Tt

}∣∣∣ c1:T ,
{
x̃

[j]
0:T

})
(3.67)

=
∏

j

T−1∏
t=0

1√
2π
(
d̂2

tσ
2
Td̂

+ r̂2
tσ

2
Tr̂

+ σ2
T1

)

× exp

−
(
ε
[j]
Tt

)2

2
(
d̂2

tσ
2
Td̂

+ r̂2
tσ

2
Tr̂

+ σ2
T1

)
 (3.68)
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LεE

(
σ2

Ed̂
, σ2

Er̂
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our objective is to get the maximum likelihood estimates of the motion parameters, i.e.
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Taking the logarithm of the likelihood functions, we get
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We then maximize the logarithm of the likelihood functions via conjugate gradient3 ascent

with respect to the motion model parameters. Conjugate gradient is a method for finding the

closest local minimum or maximum of a function of several variables and it assumes that

the gradient of the function can be computed. Unlike the gradient descent or ascent method

that takes steps proportional to the gradient of the function at the current estimate for finding

the local minimum or maximum, conjugate gradient uses conjugate directions for locating

the optimum more efficiently. Typically, in conjugate gradient, the gradient of the function

is taken as the first search direction while the succeeding search directions are chosen such

that they are mutually conjugate (or orthogonal) to all previous search directions, thus avoid-

ing searching in directions that have been previously searched (this is the case in gradient

descent or ascent method). Since conjugate gradient requires the gradient of the function to

be optimized, we show how the gradient of the log-likelihood functions are computed. The

3For the interested reader, Shewchuk [1994] provides an excellent introduction to the method of conjugate
gradient.
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gradients of the log-likelihood functions with respect to the motion parameters are
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To compute the maximum likelihood values of the sensor model parameters in the M-step,

we first calculate soft assignments of each individual sensor reading sk to the four compo-

nents of our sensor model. That is, we calculate the probability ρk,ccc that the sensor reading

sk was generated by component ccc of our sensor model, where ccc ∈ {hit, short,max, rand}.

That is

ρk,hit = ηphit (sk|xk) (3.86)

ρk,short = ηpshort (sk|xk) (3.87)

ρk,max = ηpmax (sk|xk) (3.88)

ρk,rand = ηprand (sk|xk) , (3.89)

where xk is the location where the sensor reading was taken and η is a normalization constant

to ensure that the above four values sum to one. We then calculate the maximum likelihood

values of the parameters (where S denotes the set of all sensor measurements sk)

αhit =

∑
k ρk,hit

|S|
(3.90)

αshort =

∑
k ρk,short

|S|
(3.91)

αmax =

∑
k ρk,max

|S|
(3.92)
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αrand =

∑
k ρk,rand

|S|
(3.93)

σhit =

√∑
k ρk,hit (sk − s∗k)

2∑
k ρk,hit

(3.94)

λshort =

∑
k ρk,short∑

k ρk,shortsk

, (3.95)

where s∗k is the true range of the object which can be easily computed by performing ray

tracing on the mapM. See Thrun et al. [2005] for a detailed derivation of the above formulas.

We should point out that the process of computing the maximum likelihood values of the

sensor model parameters constitute an EM algorithm itself. In our experiments, we compute

the maximum likelihood sensor parameters only once per iteration of our EM framework

using the above formulas rather than having another EM algorithm nested within our EM

framework. The derivation of the EM algorithm in [Neal and Hinton, 1998] justifies this

partial optimization step as well as the approximate E-step; our EM algorithm can still be

viewed as optimizing the likelihood of the robot’s trajectory. Figure 3.1 shows the block

diagram for the parameter estimation framework we used.

3.6 Experimental Results

To demonstrate the effectiveness of the estimation approach discussed in the previous section,

we present the results of robotic experiments we conducted. In our experiments, we used an

ActivMedia Robotics P3-DX as our testbed robot. The robot is equipped with a front sonar

array with eight sensors, one on each side and six forward at 20o intervals. It also has a rear
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Collect control and sensor data

Initialize motion and sensor model parameters

M−step:  Compute the maximum likelihood values

                 of the motion and sensor model parameters

E−step:  Perform particle filtering and smoothing

                to obtain sample robot trajectories

Expectation Maximization

Figure 3.1: The block diagram for the parameter estimation framework. Figure taken from
[Yap and Shelton, 2008] c© [2008] IEEE.

sonar array with eight sensors, one on each side and six rear at 20o intervals. It is controlled

by an IBM ThinkPad X32 notebook computer.

In our experiments, we considered two test environments (see Figure 3.2 and Figure 3.3).

The first test environment is a makeshift environment we set up that represents a scaled-

down version of a typical office environment. The associated map of the environment has

an approximate size of 6.7m × 6.7m. The second test environment is a portion of the South

wing of the third floor of our Computer Science building. Compared to the first test environ-

ment, the second test environment is significantly bigger with a map size of approximately

38m × 30m. The second test environment is more realistic than the first test environment in

that it is dynamic and it contains many unmodeled objects and obstacles (e.g. people walking

around, trash bins). For both test environments, we instructed the robot to autonomously

navigate through the environment by visiting predefined waypoints and returning to the start-
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Figure 3.2: The first test environment (left) and its associated map with waypoints (right) for
the parameter estimation. Figure taken from [Yap and Shelton, 2008] c© [2008] IEEE.

Figure 3.3: The second test environment (left) and its associated map with waypoints (right)
for the parameter estimation. Figure taken from [Yap and Shelton, 2008] c© [2008] IEEE.

ing position while collecting control and sensor data along the way. In our experiments, the

parameter estimation routine is carried out off-line on a different machine for computational

reasons. Table 3.1 provides summary information about our experiments. Notice that the

parameter estimation routine currently runs approximately ten times slower than real time

(i.e. data collection time) but with further advances in processor speedup and code optimiza-

tion we can expect the parameter estimation routine to achieve real-time execution. Another

way to speed up the estimation process is to consider only portions of the collected data set

instead of using the entire data set.
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Table 3.1: Parameter estimation experiments summary.

Test Test
Environment 1 Environment 2

Map Sizes ≈ 6.7m× 6.7m ≈ 38m× 30m
Data Collection Times (1 round) ≈ 5minutes ≈ 13minutes
Total Time Steps T 601 1008
Number of Sonar Measurements 9616 16128
Parameter Estimation Times 53m38s 2h7m52s

Table 3.2 shows the values of the parameters we obtained after performing our estima-

tion method starting from some initial crude (uncalibrated) model parameters and using the

historical account of the robot’s motion and perception. As can be seen in Table 3.2, the

estimated values of the motion parameters for both test environments are similar except for

the values of the parameters σ2
T1

, σ2
D1

, and σ2
E1

. These are all related to the non-proportional

variance in the robot’s translational and rotational motions. The drastic difference between

the estimated values in the two environments is natural given the differences in floor mate-

rial: carpet in the first test environment and concrete with expansion joints in the second test

environment.

The differences in sensor model parameters are similarly explainable. Recall that the

parameter αshort represents the probability that a particular sensor measurement is caused

by unexpected objects in the environment such as people walking along the corridors and

other unmodeled objects (e.g. trash bins) not included in the map. Since the second test

environment is highly dynamic and contains many unexpected objects, the learned value for

parameter αshort is 3.4 times larger than the value obtained from the first test environment.
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Table 3.2: The initial and estimated values of the parameters.

Estimated Parameter Values
Initial Parameter Values Test Environment 1 Test Environment 2
σ2

Tr̂
0.01 0.338267 0.348720

σ2
Td̂

0.01 0.000345 0.000318

σ2
T1

0.01 0.666048 0.007811
σ2

Dr̂
0.01 0.010731 0.007965

σ2
Dd̂

0.01 0.021869 0.044325

σ2
D1

0.01 0.000001 0.010533
σ2

Er̂
0.01 0.013427 0.026958

σ2
Ed̂

0.01 0.008588 0.005744

σ2
E1

0.01 0.000014 0.001121
αhit 0.30 0.434601 0.319870
αshort 0.20 0.029356 0.100010
αmax 0.30 0.348269 0.408525
αrand 0.20 0.187774 0.171595
σhit 500.00 31.18050 23.65530
λshort 0.15 0.001094 0.000651

We also notice that the value of αmax, the probability that the range finder would fail to detect

obstacles, is higher by approximately 17% in the second test environment than the value in

the first test environment. The second test environment also contains smooth glass walls

along the corridors that can cause specular reflections thus making the walls invisible to the

sensor.

After obtaining the estimated parameters, we also tested their effect on the speed of robot

navigation. The robot in this experiment is commanded by a controller module that uses

the estimated robot pose for issuing control commands (such as the amount of translational

and rotational velocities) for navigating from one waypoint to the other. The estimated robot

pose is provided by a localizer module that uses the motion and sensor models discussed in
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Table 3.3: The navigation times of the robot. Please see text for discussion.

Navigation Times
A B C

Test Environment 1 (5 rounds) 25m47s 25m41s 22m43s
Test Environment 2 (2 rounds) 26m19s 25m58s 25m3s

Sections 3.3.1 and 3.3.2, respectively. The correctness of the control commands issued by the

controller module is dependent on the accuracy of the estimated robot pose according to the

localizer module. The time to navigate is in turn dependent on the correctness of the control

commands given by the controller module. In these experiments, we compared the times it

took the robot to navigate through the same path in both environments when the localizer

module uses: A) the uncalibrated motion and sensor models, B) only the calibrated motion

model, and C) both calibrated motion and sensor models. Table 3.3 shows the navigation

times for these experiments. As can be seen in Table 3.3, using both calibrated motion and

sensor models led to noticeable speedups in robot navigation. This result is in line with the

preceding argument: the model parameters affect the accuracy of the robot pose, the accuracy

of the robot pose in turn affects the correctness of the control signals for driving the robot to

its goal or destination, and finally, the correctness of the control signals affects the amount of

time the robot needs to navigate to its destination. The results of this experiment support the

fact that calibrated robot performs better than uncalibrated ones.

Finally, to demonstrate the appropriateness of the estimated parameter values in estimat-

ing the robot path, we constructed sonar maps by plotting the endpoints of sonar readings
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Figure 3.4: The generated sonar maps using the uncalibrated motion and sensor models
(left), calibrated motion model only (middle), calibrated motion and sensor models (right).
The (blue) dots represent the endpoints of sonar readings with respect to the estimated path
of the robot. The true map is displayed for easier visual inspection. Figure taken from [Yap
and Shelton, 2008] c© [2008] IEEE.

with respect to the estimated path of the robot.4 Figure 3.4 shows the generated sonar maps

displayed on top of the true map of the environment for easier visual inspection. It is easy to

see that the sonar map generated using both the calibrated motion and sensor models is bet-

ter than those generated using the uncalibrated motion and sensor models or using only the

calibrated motion model since the sonar readings are well aligned with the actual map of the

environment. For a more quantitative comparison, we generated the cumulative plot in Figure

3.5 which shows the percentage of sonar endpoints that are closer than a given distance from

the nearest wall in the environment. As Figure 3.5 shows, over 50% of the sonar endpoints

are closer than d = 50mm to the nearest wall for the sonar map generated using both the

calibrated motion and sensor models while only about 33% of the sonar endpoints are closer

than d = 50mm to the nearest wall for the sonar map generated with the uncalibrated motion

and sensor models.

4We do not include the maximum sonar readings smax in the plot since they provide us with little information
as to the location of the objects or obstacles.
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Figure 3.5: Percentage of sonar endpoints that are less than a certain distance from the nearest
wall in the environment. Figure taken from [Yap and Shelton, 2008] c© [2008] IEEE.

3.7 Summary

Robot calibration is an important activity in mobile robotics. However, current calibration

techniques often involve intensive and carefully set up calibration experiments as well as a

significant amount of human effort. In this chapter, we presented an automated technique

for calibrating a mobile robot’s motion and sensor models based from the control and sensor

data obtained naturally during robot operations. Our method is based on a standard machine

learning method called the EM algorithm. Starting from some initial parameter values, our

method iteratively optimizes the parameters based from the data collected during normal

robot operation. Unlike other calibration techniques, our method does not require any special

calibration setup and it can be performed by the robot as it operates with little or no human

intervention. Since the parameters are estimated from actual data, the robot can learn a more
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appropriate set of parameter values. The estimation procedure can be readily invoked by the

robot at a later time when there is a need to recalibrate the models. The results of some actual

robotic experiments are presented that show the effectiveness of our approach. As pointed

out, our parameter estimation framework is general in that it is not tied to any particular

motion and sensor models and it can be used for other motion and sensor models as well.
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Chapter 4

Mobile Robot Localization

4.1 Introduction

For nearly two decades now, mobile robot localization, the problem of estimating the robot’s

pose in a given environment from sensor measurements, has been the subject of investiga-

tion in the field of robotics [Crowley, 1989, Cox, 1991, Leonard and Durrant-Whyte, 1991a,

Weißet al., 1994, Fox et al., 1999]. Researchers have made great strides and progress in tack-

ling this fundamental problem. To date, a variety of sensors have already been considered

and demonstrated for pose estimation including wheel encoders, inertial sensors, rangefinders

(such as infrared, ultrasonic, and laser), cameras (e.g. omnidirectional, monocular, binocular,

trinocular, and multi-camera), microphone arrays, WiFi sensors, global positioning system

(GPS), and directional antennas. While it is evident that high-end sensors are capable of

delivering superior localization performance than low-end ones, their high costs, power con-
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sumption, hardware requirements, and computational demands do not justify their applica-

tion to small-scale robots such as domestic, educational, service, and entertainment robots.

We are interested in the use of low-cost sensors for small-scale robots while still achieving

good real-time localization accuracy in an unmodified indoor environment.

In this chapter, we present an approach to real-time pose estimation for a small-scale

indoor mobile robot equipped with wheel encoders for its odometry and aided by a standard

perspective camera without an a priori map of the environment. Virtually all wheeled robotic

vehicles (and legged robots, to some extent) come equipped with wheel encoders as their

primary proprioceptive sensors for ego-motion estimation. While wheel encoders are only

reliable for very short distances of travel as they can quickly suffer from accumulated errors

over time, their extremely low cost and wide default availability in most robotic platforms

could still render them as the sensor of choice for the navigation of small-scale indoor robots.

In order to compensate for the limitations of wheel encoders for pose estimation, additional

sensors are usually employed. Whereas there are several equally lightweight and low-cost

sensors for aiding odometry such as sonars and infrared rangefinders, we prefer to use a single

standard front-looking perspective camera for the following reasons: it is not intrusive, it is

becoming more pervasive and common, it provides rich information, and it is versatile in

that it can also be used for other robotic tasks (e.g. object or place detection and recognition,

situation understanding, etc.). We use vision for detecting naturally occurring static three-

dimensional point features or landmarks from the environment and utilize the information

for correcting the pose as suggested by the odometry. Using vision to estimate the three-

76



dimensional position of a static point feature requires that it be observed in at least two

different camera poses. Since our robot is equipped with only a single camera, it has to

rely on small motions and observe various features from several vantage points. As already

pointed out by Mourikis and Roumeliotis [2006, 2007], the observation of a static feature

from several camera poses defines geometric constraints involving all those poses. They

used an extended Kalman filter (EKF) to estimate a history of up to Np recent camera poses

for processing the feature measurements as the measurements of each tracked feature are

utilized for imposing constraints between all the camera poses from which the feature was

observed.

Instead of using an EKF, we use a particle filter to sample over the space of the most recent

Np robot poses (and camera poses, assuming we know the fixed transformation from the robot

frame to the camera frame). The most recent Np camera poses are used for processing the

feature measurements. With a particle filter, we avoid the linearization errors associated with

the EKF. We introduce a measurement model for assigning weights to the particles based on

their recent trajectory and the measurements of the features observed along the trajectory.

We validate the effectiveness of the particle filter approach extensively with both simulation

as well as real-world data and compare its performance against that of the EKF. Results from

the tests show that the particle filter is better than the EKF in terms of the root mean squared

error (RMSE) for the simulation data and it is capable of good real-time localization accuracy

in unmodified indoor environments.
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4.2 Related Work

The use of single camera setup for aiding robotic navigation has already been considered by

a number of researchers in the past. As opposed to stereo or multi-camera systems, a single

camera is inherently a bearing-only sensor, i.e. each image in itself does not contain suffi-

cient information for determining the locations of features or landmarks that are observed.

Chenavier and Crowley [1992] used an EKF to fuse the position estimation from odometry

with observations of fixed objects in the environment from a camera mounted on the robot.

Fixed objects serve as landmarks and they are assumed to be listed in a database. The sys-

tem calculates the angle to each landmark and then orients the camera. The EKF is used to

correct the pose from the error between the observed and estimated angle to each landmark.

In our work, we use the camera to detect and temporarily estimate naturally occurring static

three-dimensional point features in the environment for localization. We do not assume the

existence of an a priori database of features in the environment to aid in localization.

In order to determine the locations of static point features with a single camera, they have

to be observed from multiple view points. Inferring the positions of features using images

taken from multiple view points is widely known in the computer vision community as the

structure-from-motion (SFM) problem. Methods for solving the SFM problem commonly

work off-line and process all the obtained images in a batch fashion. For example, Royer

et al. [2005, 2007] presented a method for computing the localization of a mobile robot with

reference to a learning video sequence. Their method follows a three-step approach. In the
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learning step, the robot is manually guided on a path while a video sequence is recorded with

its front-looking camera. In the second step, a 3D reconstruction of the path and the envi-

ronment is computed off-line from the learning sequence. In the navigation step, the robot

uses the 3D reconstruction for its pose estimation in real time and follows the learning path

or a slightly different path in autonomous navigation. Although such methods can provide

very accurate and robust reconstruction of the path and the environment (in light of the fact

that such methods utilize all of the available information at once), they may not be suitable

in cases (such as ours) where on-line and real-time operation is called for. Moreover, using

a learning sequence limits the operational applicability of the robot to that of the training

environment. Thus, rather than computing the 3D reconstruction off-line, Mouragnon et al.

[2006] described a method for computing in real time the robust estimates of the camera

poses as well as the 3D map of the environment. The 3D map is constantly refined via a fast

and local bundle adjustment method producing accurate and reliable results. However, being

an SFM method, it does not assume feedback from information sources such as odometry

which is commonly (and in our case, readily) available in filtering approaches in robotics.

In robotics, the problem of jointly estimating the robot’s (or camera’s) pose and the land-

marks’ positions from sensor measurements is referred to as the simultaneous localization

and mapping (SLAM) problem as discussed in Chapter 1. The SLAM problem is custom-

arily tackled with the use of recursive and probabilistic filtering framework such as the EKF

and particle filter. Davison [2003] used the EKF estimation framework for achieving real-

time SLAM with a single camera. The overall system state vector of the EKF includes the
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state of the camera (its current position and orientation) and the states of the feature points

(their 3D locations in the environment). The state vector is accompanied by a full covariance

matrix to represent the uncertainty (to the first order) in all the entries in the state vector.

Pupilli and Calway [2005] described a particle filter (instead of an EKF) method for

vision-based tracking of a hand-held calibrated camera in real time. The particle filter is

used to track the 3D motion parameters of the camera. The main motivation for the use of

the particle filter over the EKF is its ability to deal with non-linearities and non-Gaussianity

in the system (as mentioned in Chapter 2), thus providing improved robustness in track-

ing. Instead of tracking a camera undergoing general 3D motions, Karlsson et al. [2005]

proposed the vSLAM algorithm for SLAM of a camera-equipped robot moving on a planar

surface. The algorithm is odometry- and vision-based and applies the Rao-Blackwellized

particle filter [Murphy, 2000] for estimating the full posterior distribution over the robot pose

and landmark locations. Similar to FastSLAM [Montemerlo et al., 2002], it is based on an

exact factorization of the posterior into a product of conditional landmark distributions and

a distribution over robot paths. Thus, the entire problem is broken down into a robot local-

ization problem and a number of landmark estimation problems that are conditioned on the

robot pose estimate. A particle filter is used for estimating the posterior over robot paths.

Each particle possesses a number of Kalman filters, each one to estimate one of the land-

mark locations conditioned on the path estimate. A FastSLAM-type particle filter is also

used in a monocular SLAM system by Eade and Drummond [2006]. The main advantage of

SLAM-based algorithms is that they maintain the correlations between the robot (or camera)

80



pose and the locations of the features observed. However, maintaining those correlations is

computationally expensive thus prohibiting current SLAM-based algorithms to be applied in

large environments with thousands of features.

In order to reduce the complexity and achieve real-time operation, some algorithms only

estimate the robot or camera poses and forgo including the feature positions in the state

estimation. In these approaches, visual feature observations are used to initialize temporary

landmarks, the landmarks are used for localization, and then they are discarded. Mourikis

and Roumeliotis [2006, 2007] introduced the multi-state constraint Kalman filter (MSCKF)

for vision-aided inertial navigation of a vehicle localizing in a large-scale urban environment.

In the MSCKF, the overall state vector consists of the state of the inertial measurement unit

as well as theNp camera poses. They introduced a measurement model capable of expressing

the geometric constraints resulting from the observations of static features from the camera

poses in the state vector without requiring the inclusion of the 3D feature positions in the

state vector. As such, their algorithm is fast with a computational complexity that is linear

in the number of features processed and it is capable of achieving accurate pose estimates in

large-scale real-world environments.

In this chapter, we investigate the use of a particle filter to sample over the space of the

most recent Np robot or camera poses instead of an EKF. This is motivated by the fact that

the particle filter is able to deal with non-linearities and non-Gaussianity in the system. We

avoid the linearization errors associated with the EKF and introduce a measurement model

for assigning weights to the particles based on their recent trajectory and the measurements
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of the features observed along the trajectory. We validate the particle filter approach using

simulation and real-world data and compare its performance against that of the MSCKF.

4.3 Particle Filtering Approach

The objective of our particle filter is to track the pose of a wheeled robotic vehicle navigating

around an indoor environment with the use of odometry and the observations of static and

naturally occurring point features or landmarks in the environment through its front-looking

camera. As before, our robot operates in a planar environment so we represent the robot pose

at time t as a column vector xt = (xt, yt, θt)
T , where (xt, yt)

T are its two-dimensional Carte-

sian coordinates and θt is its heading or orientation with respect to some global reference

frame G. Here, we assume that the global reference frame coincides with the initial robot

frame R0 at time 0.

Each particle in our particle filter is an estimate of the recent Np robot poses (i.e. the ith

particle at time t is x
[i]
t−Np+1:t ,

(
x

[i]
t−Np+1,x

[i]
t−Np+2, ...,x

[i]
t

)
. Thus, the particles collectively

sample the space of the recent Np robot poses. Similar to Mourikis and Roumeliotis [2006,

2007], multiple states are necessary for processing the feature measurements as the measure-

ments of the features are utilized for imposing constraints between the different poses from

which those features are observed. Feature measurements are incrementally processed for

features that are observed or tracked for at least two and up to a maximum of Np frames. A

feature that is tracked for more than Np frames will be considered as a new feature starting at
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the (Np + 1)th frame. Each particle in the particle filter is assigned a weight w[i]
t based on the

feature measurements. Let Xt =
{(

x
[i]
t−Np+1:t, w

[i]
t

)
: i = 1, 2, ..., Ns

}
be the set of weighted

particles at time t, where Ns is the total number of particles in the particle filter. Note that

we do not represent the position of landmarks in the particle filter unlike SLAM techniques.

In the next subsections, we discuss how the particles are propagated from one time step to

the next and how the particles are weighted based on the estimates and the observed feature

measurements.

4.3.1 Motion Model

As in Chapter 3, the robot is equipped with odometry that provides an estimate of the robot

pose at every time step by integrating wheel encoder information. We use the estimated

robot poses x̂t−1 and x̂t to compute the relative motion (i.e. d̂t and r̂t) of the robot during

the time interval [t− 1, t) (see Equations 3.1 and 3.2) and let the probabilistic motion model

p (xt|xt−1, ct) be conditioned on the control command ct =
(
d̂t, r̂t

)T

. In this chapter, we

use the motion model by Roy and Thrun [1999] which we repeat here for convenience:

xt = xt−1 + dt cos (θt−1 + rt) (4.1)

yt = yt−1 + dt sin (θt−1 + rt) (4.2)

θt = (θt−1 + rt) mod 2π , (4.3)
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where dt and rt denote the robot’s true translation and rotation, respectively. The true trans-

lation and rotation are related to the estimated translation and rotation from the odometry

via

dt = d̂t + δtrans

∣∣∣d̂t

∣∣∣+ εtrans (4.4)

rt = r̂t + δrot

∣∣∣d̂t

∣∣∣+ εrot , (4.5)

where δtrans and δrot describe the systematic errors, and εtrans ∼ N (0, σ2
trans) and εrot ∼

N (0, σ2
rot) are the additive random variables representing the random noise. In our exper-

iments, δtrans = 1× 10−3, δrot = 1× 10−3, σtrans = 0.002m, and σrot = 0.5◦.

Given the ith particle x
[i]
t−Np:t−1 =

(
x

[i]
t−Np

,x
[i]
t−Np+1, ...,x

[i]
t−1

)
at time t − 1, we use the

motion model and the latest pose x
[i]
t−1 at time t − 1 to sample the pose x

[i]
t at time t (i.e.

x
[i]
t ∼ p

(
xt

∣∣∣x[i]
t−1, ct

)
). We then append the pose x

[i]
t to x

[i]
t−Np:t−1 to obtain the intermediate1

particle x
[i]
t−Np:t

at time t.

4.3.2 Sensor Model

After propagating the particles, we now assign weights to the particles based on their esti-

mates and the observed feature measurements along the trajectory hypothesized by the par-

ticles. In the particle filtering framework, the weight of each particle is proportional to the

likelihood of the observations given the particle estimates (see Chapter 2 Section 2.4). In this

1The particle is intermediate as it still has an extra pose needed for processing the feature measurements in
the update stage of the filter.
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chapter, our robot is equipped with a standard perspective front-looking camera for observing

naturally occurring static three-dimensional point features or landmarks in the environment.

Viewing a static feature from multiple camera poses results in constraints involving all those

poses. Camera observations are grouped by tracked features and they are used for assigning

weights to the particles.

First, we consider a single feature fj that is observed in Mfj ,t camera poses by time t

and we use the observations of feature fj to define constraints on the consecutive robot poses

where it is observed. The weight of the ith particle at time t based from observing feature fj

is

w
(j)[i]
t = p

(
O(j)

t

∣∣∣x[i]
t−Np:t

)
, (4.6)

where O(j)
t ,

{
o

(j)
k : k ∈ Sfj ,t

}
is the set of normalized image coordinates of feature fj in

the camera framesCk and Sfj ,t is the set of camera frames
{
Ck

}
where feature fj is observed

by time t. Averaging over the potential position of feature fj , denoted as fj , we get

w
(j)[i]
t =

∫
p
(
O(j)

t

∣∣∣x[i]
t−Np:t

, fj

)
p
(
fj

∣∣∣x[i]
t−Np:t

)
dfj . (4.7)

Our noise model is captured by

p
(
O(j)

t

∣∣∣x[i]
t−Np:t

, fj

)
∝

∏
k∈Sfj ,t

e
−1

2

(
o

(j)
k − ψk (fj)

)T (
o

(j)
k − ψk (fj)

)
σ2

im , (4.8)
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where ψk (fj) is the projection of fj in the camera frame
{
Ck

}
at time t. Note that in Equa-

tion 4.8, we have assumed that the errors in the feature observations in the image planes

are independent and normally distributed with mean 0 and variance σ2
im. We also assume

p
(
fj

∣∣∣x[i]
t−Np:t

)
= p (fj): the feature position in the environment is independent of the actual

robot or camera trajectory. Hence, Equation 4.7 becomes

w
(j)[i]
t =

∫
p
(
O(j)

t

∣∣∣x[i]
t−Np:t

, fj

)
p (fj) dfj . (4.9)

We select p (fj) in Equation 4.9 to be the uninformative2 distribution over the potential posi-

tion fj of feature fj in the environment. We can therefore safely drop the term p (fj) from the

above:

w
(j)[i]
t ∝

∫
p
(
O(j)

t

∣∣∣x[i]
t−Np:t

, fj

)
dfj . (4.10)

In order to compute the integral in Equation 4.10, we introduce a proposal distribution q (fj)

over the potential feature position fj from which to sample:

w
(j)[i]
t =

∫ p
(
O(j)

t

∣∣∣x[i]
t−Np:t

, fj

)
q (fj)

q (fj) dfj (4.11)

= Eq(fj)

p
(
O(j)

t

∣∣∣x[i]
t−Np:t

, fj

)
q (fj)

 . (4.12)

2This means that without any information, the feature can be located equally likely anywhere in the envi-
ronment.

86



While the proposal q (fj) can be any distribution, we choose q (fj) to be N
(
f̂j; f̂

∗
j ,C

(j)
)

,

where f̂∗j is the estimated position of feature fj and C(j) is the associated covariance matrix

of the estimate. There are several ways the above expectation can be evaluated and we choose

the technique of the unscented transform [Julier and Uhlmann, 1997, Ito and Xiong, 2000]

which we briefly discuss in Section 4.3.6.

Equation 4.12 provides the contribution of feature fj to the weight of the ith particle at

time t. Considering all the features that have been observed at time t, the weight w[i]
t of the

ith particle can be updated as

w
[i]
t = w

[i]
t−1

∏
j

w
(j)[i]
t

w
(j)[i]
t−1

, (4.13)

assuming that observed features are independent of each other. Note that in Equation 4.13,

we divided w(j)[i]
t by w(j)[i]

t−1 (i.e. the contribution of feature fj to the weight of the ith particle

at time t− 1) in order to avoid “double counting” the contribution of feature fj to the weight

of the ith particle in case the observations of feature fj were processed at the previous time

step t − 1. If the observations of feature fj are processed for the first time at time t, then

w
(j)[i]
t−1 = 1. With this weighting scheme, feature observations are processed incrementally

at every time step without waiting for the features to be lost or be tracked for a maximum

number of frames before their measurements are processed. Note that while w[i]
t−1 may have

been changed (due to the resampling step of the particle filter), the individual feature weights,

w
(j)[i]
t−1 , were not. Therefore, Equation 4.13 does not directly reduce to

∏
j

w
(j)[i]
t .
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4.3.3 Feature Parametrization

The parametrization of feature fj is critical to the success of using a Gaussian proposal

distribution q (fj). In this section, we discuss the parametrization we use for feature fj .

We represent camera frame Ck as
(

G
Ck

R, GpCk

)
, where A

BR is the 3× 3 matrix describing

the rotation between frames A and B, ApB is the 3D position of the origin of frame B with

respect to frame A, and G is the global reference frame. Each of the Mfj ,t observations of

feature fj is described by the pinhole camera model:

o
(j)
k =

1
Ckzfj

 Ckxfj

Ckyfj

+ n
(j)
k , (4.14)

where
(

Ckxfj
, Ckyfj

, Ckzfj

)T
= Ckpfj

is the position of feature fj in camera frame Ck, n(j)
k is

the 2× 1 image noise vector with known covariance matrix σ2
imI2, and I2 is the 2× 2 identity

matrix. The position of feature fj in camera frame Ck is given by

Ckpfj
=


Ckxfj

Ckyfj

Ckzfj

 = C
RR G

Rk
RT (Gpfj

− GpRk
) + CpR , (4.15)
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where

G
Rk

R =


cos (θk) − sin (θk) 0

sin (θk) cos (θk) 0

0 0 1

 (4.16)

GpRk
=


xk

yk

h

 , (4.17)

h is the known height of the robot, Gpfj
is the three-dimensional position of feature fj in the

global frame G, and C
RR and CpR are the known extrinsic parameters of the camera frame C

with respect to the robot frame R. Since the three-dimensional position Gpfj
of the feature

in the global frame G is unknown, we need to first estimate it using the measurements o
(j)
k ,

k ∈ Sfj ,t, and the Mfj ,t camera poses where the feature was observed. However, instead

of directly computing an estimate of the three-dimensional position of the feature in the

global frame, we compute an estimate of the inverse-depth parametrization of the feature with

respect to the last camera frame in which the feature was observed. Specifically, suppose Cn

is the last camera frame the feature was observed, then the feature coordinates with respect

to the kth camera frame are

Ckpfj
= Ck

Cn
RCnpfj

+ CkpCn , k ∈ Sfj ,t . (4.18)
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Rewriting the above equation:

Ckpfj
= Cnzfj


Ck
Cn

R



Cnxfj
Cnzfj

Cnyfj
Cnzfj

1

+
1

Cnzfj

CkpCn

 (4.19)

= Cnzfj


Ck
Cn

R


αfj

βfj

1

+ ρfj

CkpCn

 (4.20)

= Cnzfj


ψk1(αfj

, βfj
, ρfj

)

ψk2(αfj
, βfj

, ρfj
)

ψk3(αfj
, βfj

, ρfj
)

 , (4.21)

where αfj
, βfj

, and ρfj
are the inverse-depth parameters of feature fj with respect to the last

camera frame Cn and are defined as

αfj
,

Cnxfj

Cnzfj

, βfj
,

Cnyfj

Cnzfj

, ρfj
,

1
Cnzfj

, (4.22)

and ψk1, ψk2, and ψk3 are scalar functions of αfj
, βfj

, and ρfj
. We can now express the

observation o
(j)
k of feature fj in camera frameCk as functions of the inverse-depth parameters
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αfj
, βfj

, and ρfj
:

o
(j)
k =

1

ψk3(αfj
, βfj

, ρfj
)

 ψk1(αfj
, βfj

, ρfj
)

ψk2(αfj
, βfj

, ρfj
)

+ n
(j)
k (4.23)

= ψk

(
αfj

, βfj
, ρfj

)
+ n

(j)
k , (4.24)

where

ψk

(
αfj

, βfj
, ρfj

)
=

1

ψk3(αfj
, βfj

, ρfj
)

 ψk1(αfj
, βfj

, ρfj
)

ψk2(αfj
, βfj

, ρfj
)

 = ψk (fj) . (4.25)

We let the parametrization of feature fj be fj = (αfj
, βfj

, ρfj
)T .

4.3.4 Feature Estimation Using Gauss-Newton Minimization

In this section, we discuss the Gauss-Newton minimization technique we used for estimating

the inverse-depth parametrization fj =
(
αfj

, βfj
, ρfj

)T of feature fj given the set of normal-

ized image coordinates O(j) ,
{
o

(j)
k : k ∈ Sfj ,t

}
in the camera frames Ck, k ∈ Sfj ,t. The

output of this step will be the estimated inverse-depth parametrization f̂∗j and its associated

covariance matrix C(j). Note that f̂∗j is computed for each particle in the particle filter since

each particle represents an estimate of the robot or camera trajectory.
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With reference to Equation 4.8, the likelihood function of the parametrization f̂j of feature

fj is given by

Λ
(
f̂j

)
= p

(
O(j)

t

∣∣∣x[i]
t−Np:t

, f̂j

)
(4.26)

∝
∏

k∈Sfj ,t

e
−1

2

(
o

(j)
k − ψk

(
f̂j

))T (
Q

(j)
k

)−1 (
o

(j)
k − ψk

(
f̂j

))
, (4.27)

where Q
(j)
k = σ2

imI2. Taking the logarithm of the likelihood function above, we get

Λ∗
(
f̂j

)
= const.− 1

2

∑
k∈Sfj ,t

(
o

(j)
k − ψk

(
f̂j

))T (
Q

(j)
k

)−1 (
o

(j)
k − ψk

(
f̂j

))
. (4.28)

Our objective is

f̂∗j = arg max
f̂j

Λ∗
(
f̂j

)
. (4.29)

Let

J
(
f̂j

)
=

1

2

∑
k∈Sfj ,t

(
o

(j)
k − ψk

(
f̂j

))T (
Q

(j)
k

)−1 (
o

(j)
k − ψk

(
f̂j

))
. (4.30)

Maximizing Λ∗
(
f̂j

)
with respect to f̂j is equivalent to minimizing J

(
f̂j

)
with respect to f̂j .

Taking the derivative of J
(
f̂j

)
with respect to f̂j and setting to 0:

0 = ∇f̂j
J
(
f̂j

)
(4.31)

= −
∑

k∈Sfj ,t

(
o

(j)
k − ψk

(
f̂j

))T (
Q

(j)
k

)−1

Ψ
(j)
k , (4.32)
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where Ψ
(j)
k = ∇f̂j

ψk

(
f̂j

)
is the gradient of the measurement function ψk

(
f̂j

)
with respect

to f̂j . Note that Equation 4.32 cannot be solved in closed form and we solve it using the

Gauss-Newton iterative minimization.

The Gauss-Newton algorithm is an iterative method for solving nonlinear least-squares

problem (e.g. Equation 4.32). Starting with an initial guess f̂
(0)
j for the minimum, the method

iteratively updates the guess via

f̂
(l+1)
j = f̂

(l)
j + ∆ , (4.33)

where f̂
(l)
j is the estimate for fj at the lth iteration and ∆ is the correction term. In the

following, we derive the correction term ∆ needed for iteratively updating the estimate f̂ (l).

Computing the Taylor series expansion of J
(
f̂j

)
up to the first-order around the estimate

f̂
(l)
j of the Gauss-Newton iteration, we have

Ĵ
(
f̂j

)
≈ J

(
f̂
(l)
j

)
+∇f̂j

J
(
f̂
(l)
j

)(
f̂j − f̂

(l)
j

)
. (4.34)

Taking the derivative of Equation 4.34 with respect to f̂j and setting to 0 yields

∇f̂j
J
(
f̂
(l)
j

)T

+
(
f̂j − f̂

(l)
j

)T

∇2
f̂j
J
(
f̂
(l)
j

)
= 0 , (4.35)
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where ∇2
f̂j
J
(
f̂
(l)
j

)
is the Hessian of J with respect to f̂j evaluated at f̂

(l)
j . Solving for f̂j in

Equation 4.35

∇f̂j
J
(
f̂
(l)
j

)T

+
(
f̂j − f̂

(l)
j

)T

∇2
f̂j
J
(
f̂
(l)
j

)
= 0 (4.36)(

f̂j − f̂
(l)
j

)T

∇2
f̂j
J
(
f̂
(l)
j

)
= −∇f̂j

J
(
f̂
(l)
j

)T

(4.37)

∇2
f̂j
J
(
f̂
(l)
j

)(
f̂j − f̂

(l)
j

)
= −∇f̂j

J
(
f̂
(l)
j

)T

(4.38)

f̂j − f̂
(l)
j = −

(
∇2

f̂j
J
(
f̂
(l)
j

))−1

∇f̂j
J
(
f̂
(l)
j

)T

(4.39)

f̂j = f̂
(l)
j −

(
∇2

f̂j
J
(
f̂
(l)
j

))−1

∇f̂j
J
(
f̂
(l)
j

)T

.

(4.40)

Thus, the update rule for the Gauss-Newton minimization is

f̂
(l+1)
j = f̂

(l)
j −

(
∇2

f̂j
J
(
f̂
(l)
j

))−1

∇f̂j
J
(
f̂
(l)
j

)T

, (4.41)

where ∆ = −
(
∇2

f̂j
J
(
f̂
(l)
j

))−1

∇f̂j
J
(
f̂
(l)
j

)T

.

For completeness, we also show how to compute the gradient Ψ
(j)
k of the measurement

function ψk

(
f̂j

)
and the Hessian ∇2

f̂j
J
(
f̂
(l)
j

)
. Recall from Equation 4.25 that

ψk (fj) = ψk

(
αfj

, βfj
, ρfj

)
(4.42)

=


ψk1

(
αfj

, βfj
, ρfj

)
ψk3

(
αfj

, βfj
, ρfj

)
ψk2

(
αfj

, βfj
, ρfj

)
ψk3

(
αfj

, βfj
, ρfj

)
 . (4.43)
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Let

ψk13

(
αfj

, βfj
, ρfj

)
=
ψk1

(
αfj

, βfj
, ρfj

)
ψk3

(
αfj

, βfj
, ρfj

) (4.44)

ψk23

(
αfj

, βfj
, ρfj

)
=
ψk2

(
αfj

, βfj
, ρfj

)
ψk3

(
αfj

, βfj
, ρfj
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(4.46)

Thus,

Ψ
(j)
k =


∂ψk13
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∂ψk23
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Computing the Hessian∇2
f̂j
J
(
f̂
(l)
j

)
:

∇2
f̂j
J
(
f̂
(l)
j

)
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(
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(
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(l)
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= ∇f̂j
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k∈Sfj ,t
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o
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(
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(j)
k

)−1
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(j)
k
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= −
∑

k∈Sfj ,t

−
(
Ψ

(j)
k

)T (
Q

(j)
k

)−1

Ψ
(j)
k (4.50)

=
∑

k∈Sfj ,t

(
Ψ

(j)
k

)T (
Q

(j)
k

)−1

Ψ
(j)
k . (4.51)

To summarize, given an initial estimate f̂
(0)
j of the inverse-depth parametrization of fea-

ture fj , we repeatedly apply Equation 4.41 to obtain a new estimate for f̂j for a specified

number of iterations or until convergence. Let f̂∗j be the final estimate of the Gauss-Newton
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minimization. Its associated covariance C(j) is given by the inverse of the Hessian, i.e.

C(j) =
(
∇2

f̂j
J
(
f̂∗j

))−1

. (4.52)

4.3.5 Summary of Particle Weighting

The following summarizes the steps needed to assign weights to the particles.

• For each particle x
[i]
t−Np:t

, i = 1, 2, ..., Ns

– For each feature fj tracked at time t

∗ Use O(j)
t , x[i]

t−Np:t
, and the Gauss-Newton minimization to obtain an estimate

f̂∗j of the inverse-depth parametrization of feature fj and its associated co-

variance C(j)

∗ Computew(j)[i]
t , the contribution of feature fj to the weight of the ith particle,

using Equation 4.12 with q (fj) = N
(
f̂j; f̂

∗
j ,C

(j)
)

– Compute the overall weight w[i]
t using Equation 4.13
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4.3.6 Unscented Transform

As discussed in Section 4.3.2, the contribution of feature fj to the weight of the ith particle

at time t is given by

w
(j)[i]
t =

∫ p
(
O(j)

t

∣∣∣x[i]
t−Np:t

, fj

)
q (fj)

q (fj) dfj (4.53)

= Eq(fj)

p
(
O(j)

t

∣∣∣x[i]
t−Np:t

, fj

)
q (fj)

 , (4.54)

where we choose q (fj) = N
(
f̂j; f̂

∗
j ,C

(j)
)

. Thus,

w
(j)[i]
t = EN(f̂j ;f̂∗j ,C(j))

p
(
O(j)

t

∣∣∣x[i]
t−Np:t

, f̂j

)
N
(
f̂j; f̂∗j ,C

(j)
)
 (4.55)

=

∫ p
(
O(j)

t

∣∣∣x[i]
t−Np:t

, f̂j

)
N
(
f̂j; f̂∗j ,C

(j)
) N

(
f̂j; f̂

∗
j ,C

(j)
)
dfj (4.56)

=

∫
F
(
f̂j

)
N
(
f̂j; f̂

∗
j ,C

(j)
)
dfj , (4.57)

whereF
(
f̂j

)
=
p
(
O(j)

t

∣∣∣x[i]
t−Np:t

, f̂j

)
N
(
f̂j; f̂∗j ,C

(j)
) . One way to approximate the integral in Equation 4.57

is the unscented transform [Julier and Uhlmann, 1997, Ito and Xiong, 2000]. In general, we

are faced with the problem of computing the integral of the following form.

EN (m;µ,P)[F (m)] =

∫
F (m)N (m;µ,P) , (4.58)
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where m is an n-dimensional random variable. The technique of unscented transform to

approximate the above integral is to deterministically choose 2n+ 1 points

m̄0 = µ (4.59)

m̄i = µ+
(√

(n+ κ)P
)

i
, 1 ≤ i ≤ n (4.60)

m̄i+n = µ−
(√

(n+ κ)P
)

i
, 1 ≤ i ≤ n , (4.61)

with corresponding weights

w0 =
κ

n+ κ
(4.62)

wi =
1

2 (n+ κ)
, 1 ≤ i ≤ n (4.63)

wi+n =
1

2 (n+ κ)
, 1 ≤ i ≤ n , (4.64)

where κ ∈ < and
(√

(n+ κ)P
)

i
is the ith row or column of the matrix square root

(Cholesky decomposition) of (n+ κ)P. Then, Equation 4.58 can be approximated as

EN (m;µ,P)[F (m)] ≈
2n∑
i=0

wiF (m̄i) . (4.65)
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4.4 Experimental Results

We implemented the particle filtering approach described in the previous section and tested it

extensively with both simulation as well as real-world data. In this section, we present some

of the experimental results.

4.4.1 Simulation Results

The goal of the simulation experiments is to test the performance of the particle filtering

approach under different conditions by varying certain parameters.

Figure 4.1 shows our simulation environment which is a 12m× 12m room with two hun-

dred visual point features randomly placed on the walls. The height of the features ranges

from 0.5m to 5m. The robot is moving along a circular path of radius 3m with a constant ve-

locity and angular velocity of 0.1m/s and 0.0333rad/s, respectively.3 The measured velocity

and angular velocity are corrupted by independent zero-mean Gaussian noise with standard

deviations 0.01m/s and 1◦/s, respectively. As the robot moves, its camera records images

at 1Hz. We assume that the camera has a field of view of 47.5◦ and σim = 1/400. We set

the total number of time steps for the simulation to be 1000. For the particle filter, we set

Nτ = Ns/3.

For comparison, we computed the average root mean squared error (RMSE) over all 100

Monte Carlo trials and over all time steps of both the EKF and particle filter. We exper-

3For the simulation experiments, we used the constant velocity and constant angular velocity motion model
instead of the odometry motion model discussed in Section 4.3.1.
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Figure 4.1: The simulation environment and the true trajectory of the robot (circle). Each dot
represents a point landmark placed on the wall of the environment.

imented with different values for Np (the maximum number of robot or camera poses for

processing feature measurements) and different number of particles Ns for the particle filter.

From Table 4.1, it can be seen that the particle filter performs better than the MSCKF for

the cases considered. Moreover, as the value of Np decreases, the performance of the particle

filter exhibits a more graceful degradation than that of the MSCKF. Notice also that increas-

ing the number of particles in the particle filter does not significantly affect its performance

indicating that using only 1000 particles is sufficient for this simulation scenario.
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Table 4.1: The mean RMSE of the MSCKF and particle filter over all 100 Monte Carlo trials
and over all time steps.

MSCKF Particle Filter
Ns

Np 1000 5000 10000

10
0.2449 0.2312 0.2198 0.2297 x
0.2288 0.2024 0.1951 0.1925 y
0.0707 0.0248 0.0190 0.0210 θ

5
0.3149 0.2623 0.2446 0.2363 x
0.3169 0.2526 0.2496 0.2478 y
0.0962 0.0357 0.0331 0.0358 θ

3
0.4622 0.3365 0.3092 0.3275 x
0.4678 0.3309 0.3155 0.3218 y
0.1536 0.0583 0.0627 0.0634 θ

2
0.6795 0.4221 0.4147 0.4103 x
0.6599 0.4564 0.4284 0.4183 y
0.2077 0.1000 0.0984 0.0828 θ

4.4.2 Real-World Results

To demonstrate the effectiveness and applicability of the particle filter approach in a real-

world setting, we apply the approach on real image sequences collected with our mobile

robot. In our experiments, we used an ActivMedia Robotics P3-DX that is equipped with

wheel encoders for its odometry and a front-looking Canon VC-C50i camera that provides

images of resolution 320 × 240 pixels. We pre-calibrated the camera using the camera cal-

ibration toolbox for Matlab by Bouguet [2008]. For the real-world experiments, we stored

all data on an IBM ThinkPad X32 notebook computer that is used to control the robot. Data

processing was done off-line. We used the Kanade-Lucas-Tomasi (KLT) tracker [Shi and

Tomasi, 1994, Birchfield, 2007] for extracting and tracking fifteen features per image frame.
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Table 4.2: Parameter settings for the real-world experiments.

σtrans = 0.002m σrot = 0.5◦ δtrans = 0.001 δrot = 0.001
σim = 1

400
Nmax = 5 Nτ = 0.6Ns Ns = 1000

For the particle filter, we used 1000 particles. Table 4.2 shows the parameter settings we used

for our real-world experiments.

The first real-world experiment was conducted inside our laboratory where the robot was

driven along a rectangular path of size approximately 3m×7m. While traversing the path, the

robot collected images at the rate of 4Hz. This led to a total of 3346 images of which sample

images are shown in Figure 4.2. If there is not enough motion between two consecutive

image frames, computing the feature estimate is an ill-conditioned problem. To avoid this,

we automatically selected images from the original sequence of images in which the encoders

indicate that the robot translated for at least 0.1m or rotated for at least 1◦. From a total of

3346 images from the original sequence of images, 194 images were selected. However, the

KLT tracker was ran on the full image sequence.

Figure 4.3 shows the estimated trajectory according to the odometry (broken line) vs. the

estimated trajectory according to the particle filter (i.e. the mean particle trajectory) (thick

line) vs. the estimated trajectory according to the MSCKF (thin line). The robot started and

ended at position (0, 0). Notice that the robot’s odometry suffers from drift; its estimate of

its pose quickly and significantly deviates from the true robot pose. Here, we can clearly see

that using the observations of visual features and the particle filter (or MSCKF) approach can
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Figure 4.2: Some sample images taken from the first real-world experiment.

compensate for odometric errors and close the loop (which is generally considered a difficult

problem in aided robotic navigation).

We also tested the MSCKF and particle filter approaches in a much larger real-world

environment. The second test environment is the rectangular hallway environment of the

South wing of the fourth floor of our Computer Science building. The rectangular hallway

has an approximate size of 30m × 25m. Aside from being much larger than the first test

environment, the second test environment is more challenging from a vision standpoint as

the lighting condition is non-uniform across the environment as can be seen from the sample

images taken from this environment shown in Figure 4.4. The entire image sequence for the

second test environment consists of a total of 4857 images and image selection resulted in
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Figure 4.3: The estimated trajectory according to the odometry (broken line), particle filter
(thick line), and MSCKF (thin line) for the first test environment. The robot started and ended
at position (0, 0).
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Figure 4.4: Some sample images taken from the second real-world experiment.

1257 images. As before, we ran the KLT tracker on the original image sequence and we

post processed the output of the KLT tracker to determine the feature tracks for the selected

images.

Figure 4.5 shows the estimated trajectory based on the odometry (broken line), particle

filter (thick line), and MSCKF (thin line). The robot started and ended at position (0, 0). As

can be seen from the figure, only the particle filter is capable of closing the loop. This is

remarkable as loop closing in environments consisting of long hallways (such as the second

test environment) poses a great challenge to filtering algorithms since an incorrect filtered

estimate during any part of the journey would cause drifting and prevent the loop from being

properly closed. We should also point out that the approach uses no prior map of the envi-
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Figure 4.5: The estimated trajectory according to the odometry (broken line), particle filter
(thick line), and MSCKF (thin line) for the second test environment. The robot started and
ended at position (0, 0).

ronment and that the robot or camera motion is mostly parallel to the camera’s optical axis

during the experiment which is a difficult scenario for vision-based motion estimation.

4.5 Discussion and Summary

In this chapter, we have presented a particle filtering approach for monocular vision-aided

odometry for the real-time localization of a mobile robot navigating in indoor environments.

Monocular vision is used for detecting naturally occurring static three-dimensional point
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features or landmarks from the environment and the information is utilized for correcting the

pose as suggested by the odometry. In order to process feature measurements, several robot

or camera poses are maintained by each particle in the particle filter. We have introduced a

sensor model for assigning weights to the particles based on their trajectory and the measure-

ments of features observed along the trajectory. The approach has been validated using both

simulation as well as real-world data and compared against that of the MSCKF.

While the results of the tests show the effectiveness of the particle filter approach for

monocular vision-aided odometry, there are several open issues that have to be addressed:

• It is interesting to investigate the performance of the approach in the case of dynamic

environments. We should point out that the real-world experiments we have conducted

took place in nearly static environments.

• Since the success of the approach highly depends on the performance of the visual

tracker employed (in our case, we used the KLT tracker), it is worthwhile to study the

robustness of the approach against wrong data associations (i.e. mistakingly treating

different features in two consecutive images to be the same feature) produced by the

tracker.

• Since it is impossible to have a perfect visual tracker and we cannot always assume that

the robot’s operating environment is static, it is necessary to incorporate outlier detec-

tion and rejection into the approach. We believe that outlier detection and rejection can

be useful for dealing with the problems mentioned above.
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Chapter 5

Simultaneous Localization and Mapping

5.1 Introduction

Since it was introduced by Smith and Cheeseman [1986] and Smith et al. [1990], the si-

multaneous localization and mapping (SLAM) problem has become one of the mainstream

research areas in mobile robotics. SLAM involves estimating the position and orientation of

the robot while building a map of the environment in parallel. In order to accomplish SLAM,

the robot is usually equipped with sensors (e.g. wheel encoders, range sensors, cameras) that

allow it to observe (though only partially and inaccurately) the state of the world including

itself. The SLAM problem is inherently difficult and complex although the specific sensor

used also contributes to the hardness of SLAM.

SLAM is a well-studied problem in mobile robotics and a number of techniques have

been proposed. However, the majority of the proposed techniques for SLAM rely on the
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use of accurate and dense measurements provided by laser rangefinders to correctly localize

the robot and produce accurate and detailed maps of complex environments (see e.g. Mon-

temerlo et al. [2002], Eliazar and Parr [2003], Montemerlo and Thrun [2003], Hähnel et al.

[2003], Eliazar and Parr [2004a], Brunskill and Roy [2005], Grisetti et al. [2005], Garulli

et al. [2005], Nguyen et al. [2006], Eliazar and Parr [2006]). Relatively little work has been

done on the use of low-cost but noisy and sparse sonar sensors for SLAM in large indoor

environments involving large loops. Obviously, the SLAM problem is much more difficult

and challenging in the case of sonar sensors than laser rangefinders (which have become the

de facto range sensors for SLAM). Despite the difficulty, we believe that it is interesting to

investigate the extent to which sonar sensors can be used for SLAM especially in mapping

large indoor environments with large loops.

Although sonar sensors are not as accurate and do not provide as dense observations as

laser rangefinders, they are still an attractive alternative to laser rangefinders when it comes

to cost, power consumption, size and weight, and computational requirements. Compared

to laser rangefinders, sonars cost several orders of magnitude less, consume less power, are

small and lightweight, and impose minimal computational requirements. As such, sonar

sensors are well suited for use in inexpensive consumer-oriented and minimally-equipped

robots that are typically limited in both power and computational capability.

In this chapter, we present our approach to SLAM with sonar sensors by applying parti-

cle filtering and an orthogonal line-segment-based map representation [Nguyen et al., 2006]

to map indoor environments much larger and more challenging than those previously con-
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sidered with sonar sensors. Rather than employing a grid-based representation [Elfes, 1987,

Moravec, 1988, Elfes, 1989] for the map, we use a feature-based representation where the

features are represented as line segments. Line segments are suitable for compactly describ-

ing most structured indoor environments that are usually composed of walls, doors, glass

windows, etc. that are either parallel or perpendicular to each other. Similar to Nguyen et al.

[2006], we also make use of the orthogonality assumption about the shape of the environment

in order to reduce the complexity, mapping only lines that are either parallel or perpendicular

to each other.

A major difficulty in using line segments as an environment’s representation is extracting

them from noisy and sparse sensors such as sonars (in our case, an array of sixteen sonar

transducers) compared to a single dense scan of a 180◦ laser rangefinder. Thus, in this work,

we adopt the multiscan approach [Beevers and Huang, 2006] to group consecutive sparse

scans so that measurements from multiple time frames can be used to extract line segments,

although our work differs on how the sparse scans are collected and the frequency at which

the feature extraction is performed.

The contributions of our work can be summarized as follows. We show through extensive

experiments that it is possible to produce good-quality maps of large indoor environments

with large loops even with noisy and sparse sonar sensors. To our knowledge, the envi-

ronments we consider in our experiments are much larger and more challenging than those

previously reported in the literature for SLAM with sonars. The results provide significant

supportive evidence for the potential viability of sonars for large-scale indoor SLAM. Our
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method employs a particle filtering technique where each particle carries a single map rather

than a distribution over possible maps. Moreover, we apply the orthogonality assumption to

reduce the complexity. Finally, we discuss how we extract line segments from sonar data and

we introduce a simple sensor model for computing the likelihood of the observations.

5.2 Related Work

While much of the work on SLAM with proximity sensors has focused on laser scanners,

some researchers have used sonars. In this section, we briefly describe some of the techniques

proposed for carrying out SLAM with sonars. There are two main criteria that can be used

to categorize existing sonar-based SLAM techniques: the representation used to model the

environment and the technique used to estimate the state belief distribution.

Zunino and Christensen [2001] described an algorithm for SLAM based on the extended

Kalman filter (EKF). The EKF approach was used to build and maintain the map of the

environment. Their method used point features as landmarks (representing corners, edges,

and thin poles detectable by standard sonar sensors through a triangulation technique). They

also presented a method for detecting the failures of the EKF approach and recovering from

such failures. Experiments were performed using a Nomadic SuperScout mobile robot in a

room of size 5m× 9m.

Tardós et al. [2002] described a technique for the creation of feature-based stochastic

maps using standard Polaroid sonar sensors. In their work, they used the Hough transform
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[Duda and Hart, 1972] for detecting point features (representing corners and edges) and line

segment features (representing walls) from sonar data acquired from multiple uncertain van-

tage points. Instead of building one global map from the start, they generated a sequence of

local maps of limited size, and then joined them together, to obtain the global map. Tech-

niques for joining and combining several stochastic maps were presented. The locations of

geometric features in the environment and the position of the robot were jointly estimated in

a stochastic framework via the EKF. Experiments were carried out using a B21 mobile robot

equipped with a ring of twenty-four Polaroid sensors in a 12m× 12m environment.

A similar approach to that of Tardós et al. [2002] was proposed by Leonard et al. [2002]

except that they incorporated past robot positions to the state vector and explicitly maintained

the estimates of the correlations between current and previous robot states. By doing so, it

became possible to consistently initialize new map features by combining data from multiple

vantage points. Experiments were conducted in a testing tank of size 10m × 3m × 1m for

underwater sonar-based SLAM, a simple “box” environment made of plywood, and along a

25m long corridor.

A much earlier work along the same lines of feature-based stochastic mapping using the

EKF was given by Rencken [1993] although experiments were only performed in a simula-

tion of a 5m× 5m room.

Instead of jointly estimating the robot state and the locations of line segment features via

the EKF, Lorenzo et al. [2004] used the EKF to estimate only the robot state. The environ-

ment was described by a global segment-based map that was built using local sonar-based
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occupation maps to identify obstacle boundaries. The Hough transform was used to extract

the segments that represent the obstacle boundaries. The segments were then incorporated

to the global segment-based map. The Hough-based approach provided a correction of the

estimated robot pose which was integrated with odometric information via the EKF. The

approach was tested with a Nomad 200 mobile robot equipped with a ring of sixteen sonar

sensors traversing a corridor environment.

More recently, Schröter et al. [2007] presented a combination of map-matching with a

Rao-Blackwellized particle filter (RBPF) [Murphy, 2000] which enabled them to solve the

SLAM problem with low-resolution sonar range sensors. They introduced a simple and

fast but very efficient shared representation of grid maps which reduced the memory cost

overhead caused by inherent redundancy between the particles. Experimental results were

presented with a SCITOS A5 robot platform navigating in a home store environment.

Other notable recent related work on SLAM with sparse sensors include the work of

Beevers and Huang [2006] on SLAM with sparse sensing using the multiscan approach and

RBPF, Abrate et al. [2007] on experimental EKF-based SLAM for mini-rovers with IR sen-

sors only, and Choi et al. [2008] on a line-based SLAM with infrared sensors using geometric

constraints and active exploration.

The focus of our work reported in this chapter is on SLAM in large structured indoor

environments involving large loops using sonar sensors. The largest environment we consider

has an approximate area of 70.0m× 53.7m containing two major loops and it is made up of

various types of obstacles (e.g. brick walls, tiled walls, glass windows and doors, and cable
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railings). Our work differs from Schröter et al. [2007] in that we use a line-segment-based

instead of a grid-based representation for the map. By adopting a line-segment-based map

representation, we can avoid the usual problems associated with a grid-based representation

such as data smearing [Tardós et al., 2002], the strong independence assumption between

the grid cells, and the considerable amount of memory required for storage. However, a

major difficulty with line segments is extracting them from sparse and noisy sonars. To

overcome the sparseness, we apply the multiscan approach [Beevers and Huang, 2006] to

group consecutive sparse scans. In order to reduce the complexity of SLAM, similar to

Nguyen et al. [2006], we make use of the orthogonality assumption about the shape of the

environment by mapping only lines that are parallel or perpendicular to each other. Unlike

Rencken [1993], Tardós et al. [2002], Leonard et al. [2002], Lorenzo et al. [2004], we use

particle filters to sample the distribution over the most recent robot poses. Each particle in

our particle filter is associated with a single map rather than a distribution over possible maps.

5.3 Localization Approach

The basis of our approach is a particle filter, where each particle is an estimate of the recent

Np robot poses. Thus, the particles collectively sample the space of the recentNp robot poses.

Here, as in previous chapters, we assume that the robot moves in a planar environment so that

its pose at time t can be represented as a column vector xt = (xt, yt, θt)
T , where (xt, yt) is

its two-dimensional Cartesian coordinates and θt is its heading or orientation with respect to
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some global reference frame G. Each particle carries an estimated map of the environment

that is represented as a set of line segments. Because of the orthogonality assumption about

the shape of the environment, the map will contain only two types of lines: horizontal and

vertical. Horizontal (vertical) lines are assigned to be parallel to the x-axis (y-axis) of the

global reference frameG. Extracted line segments that are not close to being either horizontal

or vertical are simply discarded and not placed in the map.

In the next two subsections, we discuss the motion and sensor models we use for our

particle filter.

5.3.1 Motion Model

Let xt−Np+1:t ,
(
xt−Np+1,xt−Np+2, ...,xt

)
be the sequence of the recent Np robot poses at

time t. We denote by x
[i]
t−Np+1:t ,

(
x

[i]
t−Np+1,x

[i]
t−Np+2, ...,x

[i]
t

)
the trajectory estimate of the

ith particle.M[i]
t is the set of line segments representing the map of ith particle at time t. The

particles move according to the probabilistic motion model p(xt|xt−1, ct), where ct is the

control command executed by the robot during the time interval [t− 1, t), to account for the

inherent uncertainty in robot motion. The control command ct is given by the pair
(
d̂t, r̂t

)
,

where d̂t is the distance traveled and r̂t is the rotation made by the robot, according to the

wheel encoders. Due to the probabilistic nature of the motion model, the particles spread

and generate different possible robot trajectories. Here we use the motion model in Roy and
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Thrun [1999] and we repeat it here for convenience:

xt = xt−1 + dt cos (θt−1 + rt) (5.1)

yt = yt−1 + dt sin (θt−1 + rt) (5.2)

θt = (θt−1 + rt) mod 2π, (5.3)

where dt and rt denote the robot’s true translation and rotation, respectively. The true trans-

lation and rotation both differ from the translation and rotation measured by the robot due to

systematic and random errors. Specifically,

dt = d̂t + δtrans

∣∣∣d̂t

∣∣∣+ εtrans (5.4)

rt = r̂t + δrot

∣∣∣d̂t

∣∣∣+ εrot (5.5)

where δtrans and δrot describe the systematic errors and εtrans ∼ N (0, σ2
trans) and εrot ∼ N (0, σ2

rot)

are the additive random variables representing the random noise. In our experiments, δtrans =

1.0× 10−2, δrot = 1.0× 10−5, σtrans = 2mm, and σrot = 2◦.

5.3.2 Sensor Model

For SLAM, the weight assigned to the ith particle is directly proportional to the likelihood

of the observations p
(
st

∣∣∣x[i]
t ,M

[i]
t

)
where st =

{
s
(1)
t , s

(2)
t , ..., s

(K)
t

}
is the set of sensor

measurements taken by the K available sensors at time t. From the preceding discussion, it
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is evident that using an accurate and robust sensor model is therefore crucial to the success

of the particle filter and other state estimation techniques in general. However, deriving an

accurate and robust model for sensors is generally a difficult problem.

In this chapter, we propose a heuristic but simple way to calculate the weights of the par-

ticles which is inspired by the work of Schröter et al. [2007] on map matching. In [Schröter

et al., 2007], they need to match a local map to a global one. They calculate the weight of ith

particle as

w
[i]
t ∝ e

m
[i]
t
f (5.6)

where f is a free parameter that influences the spread of the particle weights and m[i]
t is a

measure of the quality of the match. Schröter et al. [2007] employs a grid-based map, so

we replace their definition of m[i]
t with our own. For each sonar range measurement s(k)

t

obtained by sensor k at time t, we perform ray tracing along the facing direction of sensor k

twice: a) using the current mapM[i]
t and b) using the current map but with the line segments

extended by a certain length of Lext (e.g. 200mm) at both ends.1 Each ray tracing operation

for sensor k at time t, calculates the “true” (expected) range measurement2 s
(k)∗
t for sensor

k at time t. If the absolute difference between the actual and expected range measurements

is less than or equal to the standard deviation of the sonar measurements σd (50mm) (i.e.

1We exclude those measurements s
(k)
t that are equal to the maximum sonar range smax (e.g. 5000mm) since

they provide us with little information as to the location of objects or obstacles.

2The “true” (expected) range measurement s
(k)∗
t is intended to be the distance to the nearest obstacle in

the map along the facing direction of the sensor. If the ray doesn’t intersect with any obstacle in the map,
s
(k)∗
t = +∞.
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∣∣∣s(k)
t − s

(k)∗
t

∣∣∣ ≤ σd), we count it as +1. Otherwise, we count it as −1. We then take the

average of the counts obtained from the two ray tracing operations for sensor k and use that

as the sensor’s contribution. We sum these contributions to obtain m[i]
t . Figure 5.1 illustrates

how the match value is computed. In this way, a particle whose map can explain the current

measurements well will be assigned a higher weight than one that cannot. We should point

out that the above procedure to compute the match value is just a simple heuristic that is

found to work well in our experiments.

5.3.3 Particle Filtering

For particle filtering, we use Algorithm 5 (see Section 2.4) but we compute the particle

weights using Equation 5.6 and we perform resampling only if N̂eff < Nτ where Nτ = Ns/2.

We then extract line segment features from the recent Np sonar scans st−Np+1:t for each par-

ticle x
[i]
t−Np+1:t and incorporate the extracted line segments into the mapM[i]

t .

5.4 Map Building Approach

In this section, we discuss the technique we use to extract line segments from multiple sonar

scans and how the lines are added into the maps of the particles as well as how the maps are

maintained.
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Figure 5.1: Computation of the match value. (Top Left) Result of the first ray tracing oper-
ation using the estimated line segments. Count values are shown in parenthesis beside their
corresponding sonar measurements. Missing sonar measurements are equal to smax and are
not considered in computing the match value. (Top Right) Result of the second ray tracing
operation using the extended line segments. (Bottom) Average count value for each sonar
measurement. The match value mt = −2 for this example. Figure taken from [Yap and
Shelton, 2009] c© [2009] IEEE.
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5.4.1 Line Segment Extraction

For extracting line segments from the group of recent Np sonar scans, we use the randomized

Hough transform (RHT) technique proposed by Kultanen et al. [1990]. Before line segments

can be extracted, we first plot each sonar measurement as a point (in the global reference

frame G) that represents the nominal position of the sonar return, computed along the central

axis (facing direction) of the transducer, with respect to the robot pose where the measure-

ment was taken. Let P be the set of such points. We then use the RHT to find groups of

(almost) collinear points in P and extract the parameters of the lines that fit those groups of

points.

The Hough transform [Duda and Hart, 1972] is a technique used in digital image pro-

cessing for extracting features such as lines and curves in binary edge images. It is a voting

scheme where each point (pixel) in the image votes for a set of features (lines, curves) that

pass through it. Voting is performed in a discretized parametric space, called the Hough

space, representing all possible feature locations. The most voted cells in the Hough space

should correspond to the features actually present in the image.

The RHT is an improvement on the original Hough transform by reducing the computa-

tion time and memory usage. The basis of the method lies on the fact that a single parameter

space point can be determined uniquely with a pair, triple, or generally n-tuple of points from

the image. Such an n-tuple of points can be chosen randomly from the image and hence the

name. Unlike in the original Hough transform where each point in the image votes for a set

of cells in the Hough space, a group of n randomly chosen points from the image vote for
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only one parameter space point in the RHT. The presence of a specific feature in the image

is quickly revealed by the accumulation of a small number of parameter space points. Rather

than having a fixed-size array structure for implementing the Hough space (also called the

accumulator space) as in the original Hough transform (thus imposing some predefined ac-

curacy in parameter point location), in RHT, it is possible to use a dynamic tree structure to

store the accumulator cells with non-zero votes in the parameter space. This way, one can

achieve as high an accuracy as required while at the same time bringing memory usage to

near minimal.

To use the RHT for line segment extraction, we use the polar coordinate parametrization

(ρ, θ) for lines, where ρ is the length of the normal from the origin to the line and θ is the

angle that the normal makes with the positive x-axis. Using this parametrization, the equation

of the line can be written as

ρ = x · cos θ + y · sin θ . (5.7)

To ensure unique parametrization of lines, we impose that 0 ≤ ρ ≤ ρmax and −180◦ ≤ θ <

180◦.

In our implementation, we discretize the Hough space using the resolutions ∆ρ = 50mm

and ∆θ = 1◦. Let A be the fixed-size accumulator array for implementing the discretized

Hough space. A point (ρ, θ) in the Hough space corresponds to the accumulator cell Aij

with i = bρ/∆ρc and j = b(θ − θmin) /∆θc. Algorithm 7 outlines the RHT to extract line

segments from the set P .
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Algorithm 7 Randomized Hough Transform
Input:
P: set of points
N0: minimum number of points
Ntrials: maximum number of trials
τ : a threshold (e.g. 100)
Output:
Extracted line segments
Process:
while P contains at least N0 points and the maximum number of trials has not been reached

Reset the accumulator cells Aij to 0
while the accumulator array A does not have a global maximum that exceeds τ

Pick two points pa and pb randomly from P
Solve the line parameters (ρ, θ) from the line equation with points pa and pb

Increment the accumulator cell Aij corresponding to (ρ, θ) by 1
end

Let
(
ρ̂, θ̂
)

be the line determined by the location of the maximum in A

Let Q be the set of points in P that are close to the line
(
ρ̂, θ̂
)

If Q contains at least N0 points, use Q and
(
ρ̂, θ̂
)

to extract line segments ***
Remove from P points in Q used to generate segments

end
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Prior to extracting line segments in the step marked with *** in Algorithm 7, we apply

the orthogonality assumption and proceed with the line segment extraction only if the line(
ρ̂, θ̂
)

is close to being horizontal or vertical. This is done by testing whether θ̂ is within a

certain threshold εθ = 5◦ from 90◦ or −90◦ for horizontal line and −180◦, 0◦, or 180◦ for

vertical line. If so, we then set θ̂ to be one of {−180◦,−90◦, 0◦, 90◦} accordingly and update

ρ̂ so as to best fit the points in Q in the least-square sense. We denote the line resulting from

applying the orthogonality assumption as
(
ρ̂′, θ̂′

)
.

Given
(
ρ̂′, θ̂′

)
, we project the points in Q onto the line

(
ρ̂′, θ̂′

)
. Let R = {p′1, p′2, ...} be

the set of projected points arranged sequentially starting from one of the extreme endpoints.

We then sequentially partition R into subsets Sh, h = 1, 2, ..., with each Sh representing the

set of points belonging to a line segment. We break the line into segments if there is a gap

greater than a threshold Lsep = 500mm. After partitioningR into subsets Sh, h = 1, 2, ..., the

line segments are easily obtained as those that connect the extreme endpoints in each Sh. To

increase the reliability of the line segment extraction phase, only those line segments that are

made up of at least N0 = 8 points and with length at least Lmin = 200mm are incorporated

into the map.

5.4.2 Line Merging and Map Management

When incorporating a line segment into the map, we first test whether it can be merged with

the line segments of the same type already in the map. Two line segments can be merged if
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distance
perpendicular

distance
perpendicular

distance of
separation

Overlapping and Non−overlapping Lines

Figure 5.2: The perpendicular distance and distance of separation between overlapping and
non-overlapping horizontal lines. Figure taken from [Yap and Shelton, 2009] c© [2009]
IEEE.

• they overlap and the perpendicular distance between them is less than or equal to Ldist

(300mm); or

• they do not overlap but the perpendicular distance between them is less than or equal

to Ldist and their distance of separation is less than or equal to Lsep.

Figure 5.2 illustrates the perpendicular distance and distance of separation between overlap-

ping and non-overlapping horizontal lines. A similar interpretation exists for vertical lines.

To merge two line segments, we first compute the position (i.e. the ρ-value) of the result-

ing line segment. The position of the resulting line segment is the sum of the positions of

the given line segments, weighted by their respective number of points. We then project the

endpoints of the given line segments onto the resulting line and the two projections that are

farthest apart define the endpoints of the resulting line segment. The number of points of the

resulting line segment is just the sum of the number of points of the given line segments. If a

line segment cannot be merged with the line segments already in the map, it is simply added

to the map.
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After incorporating the line segments into the map, we continue to merge segments that

meet our criteria until no further mergings are possible. This step can have the desirable

effect of integrating two distinct line segments representing the same environmental feature

into one (e.g. a long stretch of wall occasionally occluded by dynamic obstacles or relatively

small and insignificant objects).

5.5 Rao-Blackwellized Particle Filter

SLAM integrates the problems of estimating the robot’s pose and landmark positions in the

environment. When viewed as a probabilistic state estimation problem, SLAM involves

estimating the joint posterior probability over the robot’s pose xt and map of the (static)

environment M given all the control and sensor data up to time t, i.e. p (xt,M|c1:t, s1:t).

Thus, the overall state vector Ξt includes both the mapM and the pose of the robot xt, i.e.

Ξt = (xt,M). Formulated in this way, the various filters discussed in Chapter 2 can be

directly applied to solve SLAM. As already mentioned, to implement the filters in Chapter 2,

one needs to define the probabilistic system model p (Ξt|Ξt−1, ct) = p (xt,M|xt−1,M, ct)

that describes how the system evolves. Since the environment is static (as is the assumption

for most work on SLAM and in this chapter), then the mapM should not change and should

not be affected by the control input ct. Additionally, one also needs to specify the prior

distribution p (Ξ0) = p (x0,M) over the robot’s pose x0 and mapM at time 0.
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When using a particle filter directly for SLAM, at initialization, one needs to be able to

generate samples for the robot’s pose and map of the environment from the prior p (x0,M).

With the static world assumption, the sampled maps at initialization are fixed and should

never change. Herein lies the problem of directly using a particle filter for SLAM: the space

of all possible maps is infinite and the dimension of this space is also infinite and thus being

able to sample a map that is close to the true map is close to impossible. The particle filter,

therefore, is guaranteed to fail since it will (with very high probability) not converge to the

true state of the system.

In order to avoid the above problem, we use a variant of the particle filter known as the

Rao-Blackwellized particle filter (RBPF) [Murphy, 2000]. RBPFs have been introduced as

an effective way to solve the SLAM problem (e.g. the FastSLAM system of Montemerlo et al.

[2002] and Montemerlo and Thrun [2003]). When applied to SLAM, RBPF decomposes the

entire problem of jointly estimating the robot’s pose and map of the environment into a robot

localization problem and a map estimation problem conditioned on the robot pose estimate.

That is,

p (x0:t,M|c1:t, s1:t) = p (x0:t|c1:t, s1:t) p (M|x0:t, c1:t, s1:t) (5.8)

= p (x0:t|c1:t, s1:t) p (M|x0:t, s1:t) , (5.9)

where p (M|x0:t, c1:t, s1:t) = p (M|x0:t, s1:t) (that is, the mapM is independent of the con-

trols c1:t). Note that the factorization shown in Equation 5.9 is exact. In order to approx-
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imate the distribution p (x0:t,M|c1:t, s1:t), a particle filter is used to estimate the posterior

p (x0:t|c1:t, s1:t) over potential robot trajectories and a distribution over mapMt is associated

with every sample x
[i]
0:t in the filter.3 This map distribution associated with the ith particle rep-

resents p
(
M
∣∣∣x[i]

0:t, s1:t

)
. Each distribution over Mt is incrementally built given the robot

trajectory x
[i]
0:t of the associated particle and the sensor observations s1:t. The robot trajectory

evolves according to the robot motion given by the probabilistic motion model in Section

5.3.1 and as such, we can still use Algorithm 5 in Chapter 2. In our work, each distribution

over map Mt is represented as M[i]
t , a set of line segments (to represent the presence of

walls, doors, windows, etc.). It is an approximation to the full distribution p
(
Mt

∣∣∣x[i]
0:t, s1:t

)
over possible maps given the robot trajectory according to the ith particle and the sensor data

s1:t. While at first glance, a set of line segments M[i]
t does not appear to be a distribution

over possible maps, we can view it as a distribution over maps by letting it represent the

most likely map. The presence of a line in the map represents an obstacle that is most likely

to be in the environment while the absence of a line may be interpreted as insufficient or

uncertain knowledge of about the presence of an obstacle in the environment. This interpre-

tation explains why we need to perform ray tracing twice, first using the mapM[i]
t and then

using the same map but with extended lines segments, taking the average of the results for

computing the weight for the ith particle. In doing so, we are taking a heuristic average over

other likely maps “near” the most likely map. While this is not a formal implementation of a

3Please note that the time subscript t for each individual map is not used to mean that the environment or
its map is dynamic but rather to indicate that its posterior distribution is incrementally modified as a result of
incorporating sensor measurements.
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Rao-Blackwellized particle filter, it is a heuristic that requires little computational effort, and

performs well in practice.

5.6 Experimental Results

We have implemented our SLAM approach for sonars and tested it on the ActivMedia

robotics P3-DX mobile robot platform. The robot is equipped with a front sonar array with

eight sensors, one on each side and six facing forward at 20◦ intervals. It also has a rear sonar

array with eight sensors, one on each side and six facing backward at 20◦ intervals. There-

fore, a single sonar scan yields a total of sixteen sonar measurements. Of the sixteen sonar

measurements in a single scan, only a small fraction actually correspond to correct measure-

ments while the rest are unreliable due to angular uncertainty (20◦ to 30◦ for sonars), specular

and multiple reflections, crosstalk, etc. This is in stark contrast to typical laser rangefinders

that produce accurate (with a statistical error of ≈ 5mm in range measurement and angular

beam width of ≤ 1◦ for each beam) and dense measurements (e.g. 180 or 360 measurements

in each scan) and they are not affected by problems such as specular reflections and crosstalk.

As such, SLAM with sonars is much more difficult and challenging than SLAM with laser

rangefinders. Despite the shortcomings of sonars, our experimental results show that it is

possible to produce good-quality maps of large indoor environments with large loops using

sonars.
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In our experiments, the robot is controlled by an IBM ThinkPad X32 notebook computer

and it navigated around different environments by visiting predefined waypoints while col-

lecting control and sensor data along the way. We considered three test environments of

increasing sizes and complexities. The first test environment is a makeshift environment that

represents a scaled-down version of a typical office environment. The associated map of the

environment has an approximate size of 6.7m× 6.7m. It is mostly made up of smooth card-

board walls. The second test environment is a portion of the faculty suite on the third floor of

our Engineering Building II. It is bigger than the first test environment with an approximate

map size of 38.6m × 12.7m and it contains two major loops. Finally, the third test environ-

ment is the entire hallway of the third floor of our Engineering Building II, including the two

bridges connecting to the old engineering building. It is the biggest environment in our ex-

periments with a map size of approximately 70.0m× 53.7m and it contains two major loops.

The third test environment is made up of various types of obstacles such as brick walls, tiled

walls, cable railing, glass windows, trash bins, etc. Unlike the first two test environments, the

third test environment is dynamic with people walking along the corridors during the exper-

iments. Figure 5.3 shows the three test environments and their associated maps while Table

5.1 provides summary information about our experiments.

To show the effectiveness of our SLAM approach using sonars to compensate for odo-

metric errors, we show in Figure 5.3 (right column) the trajectory from the raw encoder

readings (broken lines) against the desired path of the robot (solid lines) for all three test

environments. It is evident from Figure 5.3 (right column) that the robot’s odometry suffers
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Table 5.1: SLAM experiments summary.

Test Environment 1 Test Environment 2 Test Environment 3
Map Size ≈ 6.7m × 6.7m ≈ 38.6m × 12.7m ≈ 70.0m × 53.7m
Data Collection Time ≈ 5 minutes ≈ 9 minutes ≈ 30 minutes
Distance Traveled 26.7m 85.7m 283.5m
Total Time Steps T 545 727 1985
Number of Measurements 6= smax 5915 7577 19348
Number of Particles Used Ns 200 300 200

from drift that gets more pronounced in larger environments. Therefore, relying only on the

robot’s odometry for performing SLAM is not sufficient and sonar measurements taken must

be used for correcting the robot’s pose. Figure 5.4 (left column) shows the resulting maps

and robot trajectories with our approach for the three test environments. Although the gen-

erated maps are not exactly the same as the true maps, they do capture the main structure of

the environments. Additionally, our approach managed to close the loops properly in all test

environments which is generally considered a difficult problem in SLAM. Lines in our maps

correspond to actual major obstacles such as walls, glass windows, doors, cable railings, as

well as to some minor ones such as trash bins and posts. Because of the Hough transform, our

line extraction procedure is quite robust to noise caused by specular and multiple reflections

and phantom readings. Also, since we only consider horizontal and vertical lines, our line

extraction procedure is effective at filtering out dynamic objects particularly for the third test

environment.

We also performed experiments without using the orthogonality assumption and the final

maps and robot trajectories are shown in Figure 5.4 (middle column). Without the orthog-

onality assumption, the resulting maps and robot trajectories are not properly estimated and
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corrected. Finally, we implemented a RBPF using grid maps for SLAM based on the map

matching technique of Schröter et al. [2007], and the resulting maps for all three test envi-

ronments are also shown in Figure 5.4 (right column). Note that we used the same set of

parameter values for generating the results for all three test environments with our approach

(except for the number of particles Ns) while we had to use different sets of parameter values

to generate the resulting grid maps shown in Figure 5.4 (right column) using RBPF with map

matching in order to obtain reasonable results. We can easily see the effect of data smearing

when using a cell-based approach to SLAM; measurements are often blurred onto a region

of the map to account for angular and distance uncertainty.

5.7 Summary

SLAM has received considerable attention in the mobile robotics community for the last two

decades. However, much of the research effort for SLAM has focused on the use of highly

accurate and dense measurements provided by laser rangefinders to correctly localize the

robot and produce accurate and detailed maps of complex environments. In this chapter, we

presented an approach to SLAM for a mobile robot equipped with low-cost but noisy and

sparse sonar sensors navigating in large indoor environments involving large loops. The pro-

posed approach applies particle filtering where each particle is an estimate of the recent robot

poses and carries a map of the environment represented as a set of line segments. To over-

come the sparseness of sonars and to allow for the reliable extraction of line segment features
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Figure 5.3: The three test environments (left column) and their associated maps (right right).
The right column also shows the paths of the robot (solid lines) and the trajectory estimates
based from encoder readings (broken lines). Figure taken from [Yap and Shelton, 2009] c©
[2009] IEEE.
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Figure 5.4: The estimated maps and robot trajectories with our approach (left column). Maps
and robot trajectories estimated without using the orthogonality assumption (middle column).
Maps and robot trajectories estimated using a RBPF using grid maps (right column). For the
grid maps, dark regions indicate high level of occupancy, white regions indicate low level of
occupancy, and gray regions represent unexplored areas. Figure taken from [Yap and Shelton,
2009] c© [2009] IEEE.
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from the environment, we used the multiscan approach and grouped consecutive sparse scans

into multiscans. To reduce the complexity of SLAM particularly when sonars are used, we

applied the orthogonality assumption about the shape of the environment by mapping only

lines that are parallel or perpendicular to each other. The orthogonality assumption is rea-

sonable especially for most man-made indoor environments where major structures such as

walls, windows, and doors are either parallel or perpendicular to each other. The randomized

Hough transform was used to extract line segments from multiscans and it was quite robust

to noise caused by specular and multiple reflections and phantom readings, problems usually

associated with sonars. Despite the inherent limitations of sonars, results of empirical vali-

dation, carried out using a real mobile robot platform navigating in different environments of

increasing sizes and complexities, provide supportive evidence for the potential viability of

sonars for complex large-scale indoor SLAM.
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Chapter 6

Conclusions

Mobile robots are becoming ubiquitous and essential part of our everyday lives. They are

increasingly taking their place in service-oriented applications including domestic and enter-

tainment. They open up many potential opportunities but they also come with challenges in

terms of their limited sensing capability and accuracy and minimal on-board computing re-

sources. In this dissertation, we have addressed three important problems in mobile robotics

and demonstrated our approach to each of the problems with a mobile robot with low-cost

and low-end sensors. The problems we have considered are those of mobile robot calibration,

mobile robot localization, and simultaneous localization and mapping.

We presented an automated technique for simultaneously calibrating a mobile robot’s

motion and sensor models based from the control and sensor data obtained naturally during

robot operations. Our method is based on a standard machine learning method called the

EM algorithm. Starting from some initial parameter values, EM iteratively optimizes the
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parameters based from the collected data. The method we proposed does not require any

special calibration setup and it can be performed by the robot as it operates with little or

no human intervention. The estimation procedure can be readily invoked by the robot at

a later time when there is a need to recalibrate the models. Experimental results show the

effectiveness of our estimation approach and the advantage of co-calibrating the models.

Monocular vision has long been advertised as an attractive sensor for mobile robot local-

ization. In this dissertation, we have presented a particle filtering approach for monocular-

vision aided odometry for the real-time localization of a mobile robot navigating in in-

door environments. Monocular vision is used for detecting naturally occurring static three-

dimensional point features or landmarks from the environment and the information is utilized

for correcting the pose as suggested by the odometry. We introduced a sensor model for as-

signing weights to the particles based on their trajectory and the measurements of the features

observed along the trajectory. The approach has been validated using both simulation as well

as real-world data and compared against that of the EKF.

For the last two decades, SLAM has been the focus of much research in the mobile

robotics community. However, much of the research effort for SLAM has focused on the use

of laser rangefinders to correctly localize the robot and produce accurate and detailed maps of

complex environments. In this dissertation, we presented an approach to SLAM for a mobile

robot equipped with low-cost but noisy and sparse sonar sensors navigating in large indoor

environments with large loops. We used a particle filter where each particle is an estimate

of the recent robot poses and it carries a map of the environment represented as a set of
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line segments. To overcome the sparseness of sonar scans and reliably extract line segments

from the environment, we grouped consecutive scans into multiscans. The orthogonality

assumption about the shape of the environment is applied by mapping only horizontal and

vertical lines. The randomized Hough transform was used to extract line segments from

multiscans and it was quite robust to noise caused by specular and multiple reflections and

phantom readings, problems usually associated with sonars. Results of empirical validation

using a real mobile robot platform navigating in different environments of increasing sizes

and complexities provide supportive evidence for the potential viability of low-cost sonars

for complex large-scale indoor SLAM.

Taken together, the results of this dissertation demonstrate that good navigation perfor-

mance by a small-scale mobile robot can be achieved using low-cost sensors. Such results

are especially important for mobile service robots that are equipped with modest sensors.
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