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Abstract
Substance use disorders (SUDs) represent a significant public health crisis. Worldwide, 5.4% of the global disease burden 
is attributed to SUDs and alcohol use, and many more use psychoactive substances recreationally. Often associated with 
comorbidities, SUDs result in changes to both brain function and physiological responses. Mounting evidence calls for a 
precision approach for the treatment and diagnosis of SUDs, and the gut microbiome is emerging as a contributor to such 
disorders. Over the last few centuries, modern lifestyles, diets, and medical care have altered the health of the microbes that 
live in and on our bodies; as we develop, our diets and lifestyle dictate which microbes flourish and which microbes vanish. 
An increase in antibiotic treatments, with many antibiotic interventions occurring early in life during the microbiome's normal 
development, transforms developing microbial communities. Links have been made between the microbiome and SUDs, and 
the microbiome and conditions that are often comorbid with SUDs such as anxiety, depression, pain, and stress. A better 
understanding of the mechanisms influencing behavioral changes and drug use is critical in developing novel treatments for 
SUDSs. Targeting the microbiome as a therapeutic and diagnostic tool is a promising avenue of exploration. This review 
will provide an overview of the role of the gut-brain axis in a wide range of SUDs, discuss host and microbe pathways that 
mediate changes in the brain’s response to drugs, and the microbes and related metabolites that impact behavior and health 
within the gut-brain axis.

Keywords  Addiction · Alcohol · Cocaine · Gut-brain Axis · Metabolites · Microbiome · Opioids · Methamphetamine · 
Psychedelics · Cannabis

Gut‑brain Axis and Addiction

Despite the impact of substance use disorders on society, 
few treatment options are effective, underscoring the need to 
explore novel therapies (Volkow and Boyle 2018). Emerging 
evidence supports the role of the gut-brain axis in regulat-
ing behavior and responses to drugs, and in a larger context, 
reward and satiety (Han et al. 2018; Van Oudenhove 2014; 
Bliss and Whiteside 2018). The gut and brain are physically 
connected through the vagus nerve and chemically con-
nected through metabolites, hormones, and neurotransmit-
ters (Cryan and Dinan 2012; Brookes et al. 2013; Forsythe 
et al. 2016; Sarkar et al. 2016). The presence or absence of 
specific microbes modulates the immune system (Belkaid 
and Hand 2014; Zhao and Elson 2018; Lazar et al. 2018; 

Gensollen et al. 2016) and regulates inflammation (Lobionda 
et al. 2019; Blander et al. 2017; Clemente et al. 2018; Tilg 
et al. 2020). Studies in both humans and preclinical models 
have demonstrated the critical role of gut microbes in brain 
function (Mohajeri et al. 2018), mood (Huang et al. 2019), 
and behavior (Marchesi 2016; Li 2008).

Drugs of abuse are known to alter the composition of the gut 
microbiome (Mutlu et al. 2012; Bode et al. 1984; Bjorkhaug 
2019; Kang et al. 2017; Wang and Roy 2017). Opioids cause 
constipation by activating µ-opioid receptors in the gut, length-
ening the transit time of gut contents (Khansari et al. 2013; 
Wood and Galligan 2004). Long-term alcohol abuse leads to 
chronic liver disease (Osna et al. 2017), changes in metabolism 
(de Timary et al. 2012), bile acid availability (Monroe et al. 
1981; Ridlon et al. 2015), and intestinal permeability Kakiyama  
et al. (2014). Individuals that abuse substances also have dis-
tinct changes to dietary preferences. Those with alcohol use 
disorder (AUD) consume many of their calories through 
alcohol (Lieber 2003), opioid users increase intake of foods 
high in sugar (Mysels and Sullivan 2010), many stimulant, 
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psychedelic, and nicotine users reduce food intake (Mineur 
et al. 2011; Mitchell and Roseberry 2019), and THC initiates 
binge-like feeding behavior (DiPatrizio et al. 2011). The sub-
stitution of dietary choices and changes in behavior only com-
pound drug-related fluctuations in the gut microbiome but also 
extend to the oral microbiome. For example, smoking cannabis 
or nicotine can cause degradation to the oral epithelium, the 
acidic nature of cocaine can be detrimental to jaw integrity, 
and alcoholic drinks are acidic and alcohol itself can kill oral 
microbes. Over an extended time, oral dysbiosis and ingestion 
of increased opportunistic and pathogenic microbes that reside 
in the mouth may have negative consequences on gut health 
long-term (Olsen and Yamazaki 2019).

The gut-brain axis represents a highly integrated, 
dynamic ecosystem, with both central and peripheral mecha-
nisms playing a role in balancing the microbial communities 
and behavioral feedback mechanisms for optimal function 
(Fig. 1). Due to the limited efficacy of the treatments for 
substance use disorders, there is a need to understand better 
the potential for the gut-brain axis to regulate behavioral 
responses to drugs and other contributing comorbid neuro-
logical states. A comprehensive cross-sectional analysis of 
the literature is currently missing—this review fills that gap 
by exploring how substance use disorders both influence 
and are influenced by the microbiome. First, we will dis-
cuss several critical microbiome and gut-brain axis elements 
including communication pathways, such as the vagus nerve, 
microbial metabolites, and immune system dysregulation. 

Then we will discuss the impact of specific drugs on the 
microbiome and gut-brain axis. Although there is limited lit-
erature on this topic for some drugs of abuse, we will include 
those that have been widely studied (alcohol, psychostimu-
lants) as well as those that are emerging (nicotine, opioids, 
psychedelics, and cannabis).

Critical Elements of the Gut Microbiome

A healthy microbiome acts as a barrier to preventing the 
overgrowth of exogenous bacteria and commensal microbes 
that can potentially turn pathogenic (DeGruttola et al. 2016; 
Bien et al. 2013). The modern western diet Zinocker and 
Lindseth   (2018), the overuse of antibiotics (Dethlefsen  
et al. 2008), and drug use all have a detrimental influence 
on gut microbiome composition. Processed foods lower the 
threshold to nutrient absorption (Spreadbury 2012), creating 
an environment where the colonization of unfavorable bac-
teria can occur rapidly Stecher (2015). Microbes can swiftly 
adjust community makeup and metabolism depending on the 
nutrient supply and composition of surrounding communi-
ties (David et al. 2014; Jumpertz et al. 2011; Turnbaugh 
et al. 2009). While there is no perfect “healthy microbiome,” 
a diverse diet high in fiber and low in processed foods is ben-
eficial to maintaining a microbiome with increased diversity 
and resiliency Hills et al. (2019). A resilient microbiome 
can better adapt to shifts in community makeup and reduce 

Fig. 1   Healthy and Dysbiosis States of the Gut-Brain Axis. Dys-
regulation of the gut-brain axis results in alterations to available 
microbes, metabolites, and inflammatory signals. SCFA, bile acids, 
and neurotransmitters are decreased or dysregulated through commu-
nity shifts. A decrease in SCFA impairs tight junctions and allows for 
intestinal permeability, which is linked to activation of a wide range 

of proinflammatory signals and pathways. Bile acid dysregulation 
contributes to liver cirrhosis and alterations of the microbial commu-
nity through the antimicrobial properties of bile acids. Inflammation 
in the gut is increased through the hypothalamic pituitary axis (HPA) 
and has feedback to the central nervous system, increasing pain, 
stress, and anxiety
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the probability of an imbalance of the natural flora in the 
gut (dysbiosis) (Stecher et al. 2013; Lozupone et al. 2012; 
Fassarella 2020). The gut microbiome also participates in 
the education of the immune system to avoid hyperreactiv-
ity to commensal microbes and food antigens. This process 
occurs through the activation of inflammatory responses 
through metabolites produced by the microbiome, and the 
microbial maintenance of the gut epithelium (Brandtzaeg 
2011; Hooper et al. 2012; McFall-Ngai 2007; Maynard et al. 
2012). If the microbiome is not in balance, the resulting 
dysbiosis leads to degradation of the gut-epithelium, trans-
location of microbes, microbial epitopes such as lipopoly-
saccharides (LPS), and a plethora of metabolites that alter 
the immune response and signaling throughout the body and 
brain (Levy et al. 2017). Communication between the gut 
and brain is not only through indirect pathways like micro-
bial metabolites, but also via the vagus nerve, which is the 
primary direct pathway of the gut-brain axis (Fülling et al. 
2019; Bonaz et al. 2018).

Vagal Pathways and the Microbiome

One critical avenue for drug-induced alterations of the gut-
brain axis is via the vagus nerve, a wandering behemoth 
of sensory and motor fibers that represents a collection of 
functionally and structurally diverse connections between 
the viscera and the brain (Johnson and Wilson 2018). Vagal 
pathways have been central to exploring the gut-brain axis 
as a direct connection between the gut and the brain and are 
thoroughly reviewed elsewhere (Fülling et al. 2019; Bonaz 
et al. 2018; Breit et al. 2018; Forsythe et al. 2014; Cryan 
2019). Vagal afferent terminals are located beneath the gut 
epithelium, receive signals produced by the gut microbiota 
(Cawthon and de La Serre 2018). A wide variety of recep-
tors on vagal afferents has been hypothesized to provide 
a polymodal response to a broad assortment of chemical, 
mechanical, and hormonal signals (Egerod et al. 2018). 
Additionally, the vagus regulates immune responses in 
the gut via the release of acetylcholine, which attenuates 
immune cell activation through ⍺-7 nicotinic acetylcholine 
receptors (a7nACHr) (Matteoli and Boeckxstaens 2013; 
Wang et al. 2003). The vagus nerve is also implicated in 
behavioral responses such as appetite regulation, mood, 
intestinal inflammation. Vagal stimulation is already an 
established treatment for resistant mood dosorders and is 
being explored for potential substance use disorder-related 
behavioral modification (Altschuler et al. 1993; Berthoud 
et al. 1991; Bremner 2020; Childs et al. 2017; Matteoli and 
Boeckxstaens 2013).

Several studies have explored microbiome signaling 
through vagal afferents by observing changes in the imme-
diate early gene cFOS, which labels active neurons in the 
vagal ganglia and the brain. Activation of neurons has been 

observed using this technique following oral administra-
tion of various microbes (Goehler et al. 2005; Bharwani 
et al. 2020). Functional studies have demonstrated that oral 
exposure of Lactobacillus Rhamnosus decreases anxiety-like 
behavior in mice, which is abolished by vagotomy (Cawthon 
and Serre 2018). In contrast, activation of the vagus nerve 
increases in the production of indole, a proinflammatory 
microbial metabolite that increases anxiety-like behavior 
(Jaglin et al. 2018). However, stimulation parameters and 
behavioral paradigms can result in differential behavio-
ral outcomes. Childs et al. used vagus nerve stimulation 
to extinguish appetitive behaviors and reduced relapse in 
a model of cue-induced cocaine self-administration rein-
statement in rats (Childs et al. 2017). Intermittent blockage 
of vagus nerve signaling is being explored as an effective 
form of weight loss by short term control of eating (Pelot 
and Grill 2018). Furthermore, regions of the brain associ-
ated with eating behavior linked with obesity are the same 
regions associated with substance use disorder-related 
behaviors. Both share similar neuronal substrates in natural 
reward centers and disrupted signaling results in loss of con-
trol and disorder progression. Further research is needed, but 
these observations suggest that vagal signaling has both a 
direct and indirect role in modulating the gut-brain axis and 
downstream behaviors.

The Immune System and the Microbiome

The microbiome is linked to the immune system from the 
beginning of life. Our earliest commensal microbes educate 
the immune system as we develop, act as a shield against 
pathogenic bacteria, and directly signal to immune related 
cells in the gut (Francino 2014). Therefore, it is likely that 
drug induced changes to microbiota can influence immune 
response and vice versa. There are various mechanisms 
by which the microbiota and its products are linked to the 
immune system, including vagal signaling (Bonaz et al. 
2017; Goehler et al. 1999), microbial epitopes, and metabo-
lite production. Innate immune cells that come into contact 
with the microbiota express membrane and intracellular 
proteins that sense microbial molecules. Microbe associ-
ated molecular patterns (MAMPs) such as LPS, lipoteichoic 
acid (LTA), and peptidoglycans induce proinflamma-
tory cytokines (e.g., IL-1β, IL-6, TNF-a) by activation of 
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) 
(Thaiss et al. 2016).

Interferon-1 (IFN-1) modulation occurs through micro-
bial metabolites such as acetate, a short-chain fatty acid 
(SCFA) which is primarily produced through the diges-
tion of dietary fiber by the microbiome. The microbiome 
also modifies neutrophil function and can impact the 
differentiation of T-cells into a variety of T-helper cells 
(Francino 2014). Additionally, not only is immunological 
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receptor availability modified by the microbiota, but 
also the overexpression or lack of receptors can result in 
changes to the microbiome itself. TLRs that are typically 
associated with targeting a specific microbes via MAMPs 
can confer a benefit to the surrounding microbial commu-
nity by supporting or limiting that microbe, or conversely 
this change can potentially initiate dysbiosis through the 
same pathways (Vijay-Kumar 2010). The microbiome-
immune axis has been explored in relation to interactions 
in affective behaviors (Sylvia and Demas 2018); however, 
a broader discussion of the microbiome-immune axis 
beyond the scope of this review. There is a need for an 
in-depth examination of the connection between the brain, 
gut, and immune system and its role in physiological con-
ditions such as addiction. This review will focus on the 
specific alterations of the immune system for each drug 
of abuse and how increased inflammation, degradation 
of the gut lining, and dysbiosis exacerbate drug taking 
behavior. For further review on the microbiome-immune 
axis see the following publications (Thaiss et al. 2016; 
El Aidy et al. 2014; Maranduba et al. 2015; Fung 2020; 
Salvo-Romero et al. 2020). Figure 1 provides a broad 
overview of the microbiome and related immunological, 
metabolite signaling, and organ function in healthy and 
dysbiosis states.

Functional Signaling Metabolites Produced 
by the Microbiome

Metabolite production, including that of short-chain fatty 
acids, bile acids, and neurotransmitters, are another mech-
anism by which the gut-brain axis can modify substance 
use disorders (Cryan and Dinan 2012). Aside from pro-
ducing bioactive molecules, microbes have been shown to 
metabolize drugs and functionalize/deconjugate circulating  
metabolites (Swanson 2015; Zimmermann et  al. 2019). 
These mechanisms can modify the drug's effectiveness and 
pharmacokinetics, which can alter the valence of reward 
and withdrawal symptoms. Secondary functionalization 
of metabolites may also increase the prevalence of toxic 
byproducts that contribute to liver toxicity, intestinal per-
meability, and inflammatory responses, all of which can 
contribute to downstream behavioral changes and disease  
severity (Wilson and Nicholson 2017; Caldwell and  
Hawksworth 1973; Clarke et al. 2019). While the impact 
of microbial metabolism on prescription drugs is currently 
applied to the development of pharmaceuticals (Hitchings 
and Kelly 2019), it may also be relevant to the field of sub-
stance use disorders to understand better potential avenues 
by which microbes may impact substance use disorders.

Short‑Chain Fatty Acids

SCFAs, one of the principal families of microbial metabo-
lites, result from the fermentation of dietary fiber in the 
gut by the resident microbiota and can influence brain 
function and immune responses (Silva et al. 2020; Dalile 
et al. 2019). As signaling molecules and energy sources, 
SCFAs modulate tight junctions in the gut epithelium, leu-
kocyte development, and regulate several leukocyte func-
tions, including the production of cytokines, chemokines, 
and eicosanoids (Correa-Oliveira et  al. 2016; Vinolo 
et al. 2011a). Behaviorally, administration of SCFAs in 
preclinical models of stress has been found to alleviate 
stress-responsiveness, reduce anhedonia, and stress-
induced intestinal permeability (Van De Wouw 2018). 
SCFAs further function as ligands of G protein-coupled 
receptors (GPCRs) FFAR2, FFAR3, GPR109, and Olfr78 
(Kimura et al. 2011; Priyadarshini et al. 2018) and also as 
histone deacetylase inhibitors, which significantly impact 
behavior and gene transcription (Silva et al. 2020; Correa-
Oliveira et al. 2016; Bourassa et al. 2016; Yuille et al. 
2018; Licciardi et al. 2011). These functions have been 
extensively studied and are well-reviewed (Vinolo et al. 
2011a; Antunes et al. 2019; Ohata et al. 2005; Parada  
Venegas et al. 2019).

Bile Acids

Bile Acids are steroid acids produced by the liver. These 
compounds act as a significant regulator of the microbi-
ome through direct amphipathic antimicrobial action on 
microbial membranes (Begley et al. 2005), and indirectly 
via Farnesoid receptor (FXR)-induced peptides (Inagaki 
et al. 2006). Bile acids are crucial signaling molecules 
that influence immune homeostasis, with overexpression 
of certain bile acids causing inflammation and even cell 
death (Chiang 2013). Microbes directly regulate the avail-
able pool of bile acids by deconjugating primary bile acids 
into secondary bile acids. Secondary bile acids are essen-
tial for the emulsification of fats for later absorption in the 
intestine, altering satiety and energy expenditure profiles 
(Ramirez-Perez et al. 2017; Wu et al. 2020). Conditions 
of dysbiosis can cause a shift in the production of second-
ary bile acids, resulting in an over-abundance of primary 
bile acids (Staley et al. 2017). Bile acid concentrations 
also preferentially alter the makeup of the microbiome 
causing degradation of gram-positive cell walls that lack 
the outer layer of protection of LPS. High concentrations 
of bile acids can also be detrimental to the host, causing 
oxidative stress, DNA damage, and cell death resulting in 
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intestinal permeability (Payne et al. 2008). An increase in 
intestinal permeability increases peripheral inflammation 
and pathways that lead to further dysbiosis. For substance 
use disorders such as alcohol, a degradation of proper liver 
functioning can drastically alter alcohol metabolism, bile 
acid availability, and disease progression severity. For fur-
ther review of the function and impact of bile acids on the 
microbiome (see Ridlon et al. 2014).

Neurotransmitters

Neurotransmitters such as dopamine, serotonin, epineph-
rine, norepinephrine, gamma-aminobutyric acid (GABA), 
and acetylcholine play an essential role in the signaling and 
homeostasis of the body (Mittal et al. 2017). From gut motil-
ity to nutrient absorption, many neurotransmitters are pro-
duced and used in the gut by microbes (Strandwitz 2018) and 
gastrointestinal related-cells (Cooke 2000). Dysregulation 
of neurotransmitters in the gut (particularly serotonin) is a 
common drug-related side effect. Peripheral neurotransmit-
ter dysregulation is also linked other disease states such as 
inflammatory bowel disease and Parkinson’s disease (Ghia 
et al. 2009; Kidd et al. 2009; Dinan and Cryan 2017). Simi-
lar to peripheral serotonin production, the microbiome also 
serves as an alternative route for kynurenic acid production, 
an endogenous tryptophan metabolite Dehhaghi et al. (2019). 
In the periphery, kynurenic acid excites dorsal root ganglia 
neurons through the activation of GPR35 (Cosi et al. 2011), 
impacting the perception of pain. Kynurenic acid can also 
reduce TNF⍺ expression, secretion and downstream immune 
signaling. In the central nervous system, kynurenic acid acts 
as a neuromodulator, interacting with M-Methyl-D-aspartic 
acid (NMDA) (Kessler et al. 1989) and nicotinic receptors 
(Hilmas et al. 2001), modulating the release of other neu-
rotransmitters such as glutamate (Carpenedo et al. 2001),  
acetylcholine (Albuquerque and Schwarcz 2013), and dopa-
mine (Ramos-Chavez et al. 2018; Okuno et al. 2011). For 
additional review of kyurenic metabolism and its physiologi-
cal impacts, see Wirthgen et al. (Wirthgen et al. 2017). Other 
critical signaling molecules to consider are neuropeptides, 
including neuropeptide Y, substance P, corticotrophin-
releasing factor, and vasoactive intestinal polypeptide (among 
many others) (Holzer and Farzi 2014). Apart from acting as 
neurotransmitters, neuropeptides also commonly function as 
gut-hormones through GPCRs. Gut hormone signaling does 
not always occur through endocrine pathways but also from 
activation of the vagus nerve (Holzer and Farzi 2014). There 
is still much to be explored surrounding the interconnected 
nature of microbial metabolites in the modulation of the pro-
cesses that impact behavior, with the potential to modify the 
microbiome or leverage metabolites to have clinically ben-
eficial outcomes.

Potential Clinical Applications 
of the Gut‑Brain Axis

Alterations of the gut microbiome have been implicated 
in autism spectrum disorder (Vuong and Hsiao 2017), 
major depressive disorder (Kelly et al. 2016; Kelly et al. 
2019), Alzheimer’s disease (Kowalski and Mulak 2019) 
and addiction (Meckel and Kiraly 2019; Ren and Lotfipour 
2020; Wang et al. 2020) among others. Therefore there 
is considerable interest in leveraging the gut microbiome 
to support human health and mental well-being. Studies 
have also linked the microbiome to several fundamental 
neurological underpinnings, including synaptic plastic-
ity (Leung and Thuret 2015), neuroinflammation Cerovic 
et al. (2019), and neurotransmitter signaling. Conversely, 
patients with gut-related disorders such as inflammatory 
bowel disease experience dysregulation of sleep, have a 
high incidence of depression, and increased rates of anxi-
ety (Limbana et al. 2020; Bannaga and Selinger 2015). 
To address this issue, everything from the use of pro- and 
pre-biotics to fecal transplantation and antibiotic therapies 
is being explored to treat CNS-related diseases.

Fecal microbiome transplants (FMTs) are employed to 
replicate an intact sampling of the microbiome rather than 
supplementation with a single species or small group of 
microbes. However, there are significant caveats to fecal 
transplants. The microbiome includes fungi, viruses, and 
phages, making it difficult to determine how the whole 
community may impact the donor and match donors with 
patients (Sbahi and Palma 2016). Live biotherapeutics  
(LBP) are a biological product that contains live organisms 
for the treatment of disease, this can be a probiotic with nat-
urally occurring strains, or a modified organism. LBPs are 
gaining traction and efforts are being made to regulate and 
develop them (Cordaillat-Simmons et al. 2020). However, 
in both cases of FMT and LBPs, it can be a challenge for 
newly supplemented microbes to find a niche due to extreme 
competition in the gut.

Diet-induced or antibiotic-induced modulation of the 
microbiome is much easier to achieve in the laboratory 
setting. Outside of the laboratory pro- and pre-biotics are 
widely used because dietary changes are often difficult to 
maintain. Administration of probiotics such as Lactobacillus 
and Bifidobacterium have emerged as promising treatments  
to reduce gut leakiness (Rao and Samak 2013), endotoxin  
levels (Wang et al. 2006), and attenuate the hypothalamic-
pituitary axis (HPA) response to stress through the modulation  
of biologically active molecules such as serotonin (Sarkar 
et al. 2016), norepinephrine (Cao et al. 2018), brain-derived 
neurotrophic factor (BDNF) (Liang et al. 2015), cortisol 
(Liang et al. 2015), all of which are involved in potentiat-
ing addiction relapse events. The quantity of data supporting 
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microbiome manipulation of behavior showcases the poten-
tial for analogous microbiota interventions in the context 
of addiction and related behavioral tendencies. To further 
explore mechanisms and potential connections between the 
microbiome and substance use disorders, the remainder of 
this review will focus on the literature surrounding specific 
drugs of abuse and their related microbiome impact. For ease, 
a comprehensive table of microbiome manipulations that are 
related to behavior is included in Table 1.

Alcohol and the Microbiome

Alcohol has been a part of human culture for over a mil-
lennium; however, excessive alcohol consumption is one 
of the leading causes of mortality worldwide, accounting 
for nearly 6% of total deaths (GBD 2016 Alcohol Collabo-
rators 2018; Rehm and Shield 2019; Bardach et al. 2019). 
AUD results from a complex interaction of social, envi-
ronmental, and genetic factors and can lead to long-term 
negative outcomes to the central nervous system and 
peripheral organs. Chronic alcohol intake leads to small 
and large intestinal bacterial overgrowth, and community 
shifts in the oral and gut microbiome which results in dys-
biosis that has been observed in humans and preclinical 
animal models (Bode et al. 1984; Casafont et al. 1996; 
Yan et al. 2011; Hartmann et al. 2013; Engen et al. 2015; 
Bull-Otterson et al. 2013; Leclercq et al. 2014; Yussof 
et al. 2020).

Alterations of the microbiome are thought to be a 
critical pathway for the development and maintenance of 
alcohol use disorder and associated alcohol liver disease 
(ALD) (Tripathi et al. 2018; Dubinkina et al. 2017). AUD 
and ALD progression are correlated to increased intestinal 
permeability (Leclercq et al. 2014), altered production of 

bile-acids (Bajaj and Hylemon 2018), other metabolites/
signaling molecules (Zhong and Zhou 2014), genetic fac-
tors (Anstee et al. 2015; Meroni et al. 2018; Stickel et al. 
2017), and changes in circadian rhythm (Bajaj et al. 2017). 
Importantly, dysbiosis is associated with the progression 
of cirrhosis of the liver (Chen et al. 2011), worsening of 
comorbid psychiatric disorders (Petra et al. 2015), and 
nutritional deficiencies Hibberd et al. (2017). Not only 
is the gut–brain axis altered in patients with AUD, but it 
can also negatively influence disorders often found to be 
comorbid with substance abuse, such as eating and anxi-
ety disorders (Temko et al. 2017; Xiao et al. 2018; Volpe 
et al. 2014).

Alcohol Use and Microbes

High levels of alcohol consumption are linked to shifts in the  
microbiome, available amino acids (Tedesco et al. 2018), 
and increased inflammation (Kakiyama et al. 2014). Though, 
method of intake and type of alcohol directly impact the out-
come of microbial modifications. Mice fed alcohol (ethanol) 
via intragastric administration exhibit a reduction of beneficial 
bacteria from the phyla Firmicutes and an expansion of Ver-
rucomicrobia and Bacteroidetes compared to controls (Yan 
et al. 2011). Similarly, rats that voluntarily consumed alco-
hol exhibit reduced alpha diversity (Kosnicki et al. 2019). In 
contrast, mice fed fermented rice liquor exhibit an expansion 
of Turicibacter, which is known to bidirectionally commu-
nicate with the host serotonergic system (Fung et al. 2019). 
Interestingly, animals exposed to fermented rice liquor exhib-
ited increased SCFA production, likely due to the fermented 
nature of the beverage (Lee et al. 2020). In this instance, the 
method of fermentation of the beverage may outweigh some 
of the adverse effects of drinking on SCFA production.

Table 1   Microbiome manipulations and substance use disorders. This table outlines the current literature of direct microbial manipulations 
and SUD related behaviors in preclinical animal models

Species Drug Administration Manipulation Behavioral Effect Citation

Mouse Cocaine Passive (IP) Antibiotics
SCFA + Antibiotics

↑ Locomotor sensitization
↑ CPP
SCFA administration Rescues behavior changes

(Kiraly et al. 2016)

Mouse Cocaine Passive (IP) Surgical intervention to 
increase bile acid

↓ Locomotor Sensitization
↓ CPP

(Reddy et al. 2018)

Mouse Cocaine
Morphine

Passive (IP)
Passive (Pellet)

Antibiotics ↓ CPP
↓ Latency in tail immersion test

(Lee et al. 2018a)

Mouse Morphine Passive (Pellet) Antibiotics Prevented antinociceptive tolerance in tail 
immersion test and acetic acid stretch assay

(Kang et al. 2017)

Mouse Morphine Passive (injec-
tions twice 
daily)

DHA supplementation ↓ Anxiety (EPM)
- Thermal Analgesia

(Hakimian et al. 2017)

Rat Oxycodone Passive (IM) Antibiotics Altered Neuronal Ensembles recruited during 
intoxication and withdrawal

(Simpson et al. 2020)
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In the clinic, alcoholics with cirrhosis exhibit reduc-
tions in Bacteroidetes and increases in pro-inflammatory  
Proteobacteria and Fusobacteria (Chen et al. 2011). Alco-
holics with mild liver disease exhibited similar reductions 
of Lactobacillus spp. and Bifidobacterium spp. (Leclercq 
et al. 2014). Not all changes were permanent, however; 
individuals that followed a 19-day abstinence period dem-
onstrated a rebound of some microbes, including Rumino-
coccaceae (Leclercq et al. 2014). While some degree of 
alcohol-induced dysbiosis is potentially long-lasting, the 
resulting effects may also hinge on the individual’s baseline 
microbiome composition. Overall, a decrease in SCFA pro-
ducing microbes and increases in proinflammatory microbes 
were observed in both human and animal models of AUD. 
Supplementation of SCFAs or other yet unidentified metabo-
lites may be leveraged to reduce adverse outcomes in AUD. 
Table 2 includes an inclusive list of drug-related perturba-
tions to microbes, metabolites, and immune-related markers.

Alcohol Use and Alterations of Microbial 
Metabolites

Separating the changes in metabolism and metabolites that 
are related to alcohol intake versus microbiome variability 
can be challenging. For example, amino acids such as threo-
nine and glutamine and bile acids such as guanidinosuccinate 
and isocitric acid are elevated in plasma as a result of alco-
hol metabolism rather than microbial metabolism (Harada 
et al. 2016; Rachakonda et al. 2014). Comorbid diseases 
also contribute to complex signaling. Patients with alcoholic 
hepatitis exhibit increases in levels of metabolites related to 
lipolysis and oxidative stress in serum due to decreased liver 
function (Rachakonda et al. 2014). In contrast, a reduction 
in microbiota-associated bile acids and an increased con-
centration of conjugated primary bile acids are observed in 
alcoholics as a result of microbial metabolism (Ridlon et al. 
2014). Shifts in available bile acids result in alterations of 
gram-positive bacterial species that are more sensitive to 
bile acid production due to cell wall composition. Bile acid 
imbalance is detrimental to the larger microbial community 
as many gram-positive species are also producers of SCFAs 
that downregulate proinflammatory signals, strengthen tight 
junctions, and inhibit colonization by pathogenic microbes. 
The prophylactic administration of SCFAs has been shown 
to mitigate chronic-binge ethanol-induced intestinal barrier 
and liver injury (Cresci et al. 2017). Unsurprisingly, Gut-
microbiota-associated metabolites vary based on level of 
alcohol use (Leclercq et al. 2017).

Couch et al. (2015) hypothesized that intestinal micro-
biota function might be altered in alcoholics, leading to 
increased alcohol-associated pathologies. They examined 
metabolites in the feces of alcoholics and found decreased 
SCFAs in alcoholics versus non-alcoholic controls. 

Alcoholics exhibit decreased SCFA production and the loss 
of butyrogenic bacteria. This shift in community makeup is 
also found in inflammatory diseases like psoriatic arthritis 
and inflammatory bowel disease (Scher et al. 2015; Wang 
et al. 2014). Broadly, SCFAs producing bacteria and SCFA 
production are reduced in conditions of dysbiosis (Lloyd-
Price et al. 2019). Bajaj et al. administered FMTs from a 
donor enriched for SCFA producing Lachnospiraceae and 
Ruminococcaceae to patients with AUD related cirrhosis 
and problem drinking and observed that craving was reduced 
by 90% in the FMT group versus 30% in the control. There 
was a reduction in serum IL-6, and LPS, as well as increases 
in SCFAs in the treated group (Bajaj et al. 2020). These 
observations underscore that not only are metabolite shifts 
in response to alcohol are potentially harmful to the makeup 
of the resident microbial communities, but also that micro-
bial metabolites are merely the top of a cascade that broadly 
impacts other pathways which magnify complications of 
dysbiosis, such as the activation of immune responses within 
the gut.

Alcohol Use and the Immune System

Clinicians have long acknowledged an association between 
excessive alcohol intake and immune-related health out-
comes. Alcoholics have a greater likelihood of experienc-
ing liver disease, cancer, slow wound healing, and sepsis  
(Sarkar et al. 2015). However, a caveat of comparing the 
human and rodent immune responses is that there are many 
differences between them. Rodents express more TLR’s than 
humans, and there are species-specific differences in LPS 
stimulation (Rehli 2002). As long as the models' limitations 
are taken into consideration, they are still useful for explor-
ing the role of the gut-brain axis in AUD in a controlled set-
ting that is often unachievable in humans. Multu et al. (2012) 
hypothesized that chronic alcohol consumption would result 
in alterations of the gut microbiome and that these changes 
may be responsible for increased inflammation and endotox-
emia. Indeed, individuals that exhibited lower concentration 
of SFCA producing Bacteroidetes, and high concentration 
of inflammation inducing Proteobacteria appear to be highly 
correlated with the onset of endotoxemia. Of all drugs of 
abuse discussed in this review, increases in Proteobacteria 
is seen in patients with substance use disorders in four out 
the of six discussed substances.

A healthy mucosa and an intestinal layer is essential to 
controlling the translocation of negative signals from the 
microbiome to the rest of the body. A lack of intestinal per-
meability and diverse commensal communities also restrain 
the expansion of pathogenic bacteria (Turner 2009). Intes-
tinal permeability allows for microbial antigens to circu-
late widely which increases inflammatory cascades. This 
indicates that changes to the microbiome in AUD directly 
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affect the immune function. Increases endotoxin-producing 
Proteobacteria bacteria such as Enterobacteriaceae and a 
decrease in SCFA producing Firmicutes such as Rumino-
coccaceae and Lachnospiracea (Bull-Otterson et al. 2013; 
Wang et al. 2011; Chen et al. 2015; Forsyth et al. 2009) are 
associated with increased alcohol intake. An increase in 
proinflammatory microbes contributes to further degrada-
tion of the intestinal barrier and alteration of the commensal 
bacteria that comprise the defense system of the gut. Simi-
larly, Yan et al. demonstrated that alcohol feeding in mice 
led to microbial overgrowth and dysbiosis with increases in 
Bacteroidetes and Verrucomicrobia and a decrease in Fir-
micutes (Yan et al. 2011). Interestingly an overgrowth of 
Akkermansia Muciniphila was observed in this model and 
is hypothesized to play a role in the degradations of mucins 
that can lead to intestinal permeability, despite its typical 
association as a beneficial microbe (Yan et al. 2011).

Alcohol Use and Intestinal Permeability

In humans, Leclerq et  al. found that alcoholics can be 
divided into two groups: high and low intestinal permeabil-
ity. While both AUD groups showed a higher prevalence of 
psychiatric disorders such as depression and anxiety, rates 
were higher with patients exhibiting increased intestinal per-
meability (Leclercq et al. 2014). Patients without dysbiosis 
did not exhibit similar permeability despite heavy alcohol 
consumption (Leclercq et al. 2014). Dependent subjects  
with intestinal permeability also showed a decreased abun-
dance of Ruminococcus, Fecalibacterium prausnitzii, Oscil-
libacter, and Anaerofilum. In particular, Fecalibacterium 
prausnitzii, which is known to be correlated with reduced 
inflammatory response, was significantly decreased in indi-
viduals with increased intestinal permeability, and levels did 
not change at the end of the abstinence period. These indi-
viduals also exhibited an increase in other Lachnospiraceae, 
Blautia, and Megasphaera which have been associated with 
hepatic encephalopathy and impaired cognition (Leclercq 
et al. 2014; Dhiman 2012).

Preclinical models have employed germ-free mice that 
received fecal transplantation from human alcohol-dependent  
subjects with severe alcoholic hepatitis (sAH) or no alco-
holic hepatitis (nAH) to study how the gut microbiota play 
a role in the modulation of intestinal permeability and 
the development of alcohol-induced liver disease (Llopis 
et al. 2016). Increases in Bifidobacteria and Streptococci 
with differential expression of many members from the 
Lachnospiraceae family were observed in animals from the 
sAH group, compared to the nAH group. The nAH group 
exhibited increased levels of Akkermansia, Turcibacter, and 
Phascolarctobacterium, as well as members of the Rumino-
coccaceae family, which are known for anti-inflammatory 
properties and maintaining a health mucosal layer (Sokol 

et al. 2008; Forbes et al. 2016). Likely, these microbes con-
ferred a reduction in bacterial epitope translocation and 
downstream immune system activation, as well as protec-
tion from alcohol-induced hepatitis.

There are conflicting reports as to whether AUD-
induced intestinal permeability is long-lasting, which is 
relevant to potential microbiome interventions. Several  
studies have shown that AUD-mediated increases in intes-
tinal permeability reverse following alcohol abstinence 
(Maccioni et  al.  2020; Ohlsson et  al.  2019; Flux and 
Lowry 2020; Peirce and Alvina 2019). Alcohol-associated 
intestinal permeability was also reversed in rodent models  
through the application of probiotics (Lactobacillus Rham-
nosus) (Forsyth et al.  2009) and the administration of 
microbial metabolites such as SCFAs. Increased intestinal 
permeability can allow for LPS to cross the gut epithelium 
and activate downstream immunological pathways. Mono-
cytes from humans with ALD also exhibit priming for the 
release of cytokines (Hunt and Goldin 1992). An increase 
of TNF-alpha, IL-6, and IL-8 have also been documented 
in AUD patients (Leclercq et al. 2014). This topic has  
been extensively reviewed by Leclerq et al. and others 
(Leclercq et al. 2017).

Altogether, alcohol use has a significant impact on the 
microbiome and downstream inflammatory pathways 
involved in liver and comorbid CNS disease severity. Pre-
clinical supplementation of microbes and microbial metab-
olites such as SCFAs suggests that microbiome-related 
treatments could provide several avenues to develop novel 
therapies for AUD and liver-related comorbidities. While 
there may not be one AUD-related microbiome, further 
exploration of the gut-brain axis and AUD may contribute 
to harm reduction and improve behavioral outcomes.

Opioids and the Microbiome

Despite being an effective analgesic, the rewarding and 
euphoric effects of opioids reinforce early use and the negative 
emotional and physical outcomes related to withdrawal consid-
erably increase abuse liability (Koob 2020). These properties 
have led to a public health crisis with high rates of relapse 
(Smyth et al. 2010) and approximately 150 opioid-overdose 
related deaths per day CDC/NHS (2020). Many treatments 
have been explored to reduce the negative outcomes related 
to opioids, however few studies have explored the role of the 
microbiome in opioid use. Some of the first points of con-
tact for opioids are in the gut. Opioid receptors are widely 
expressed throughout the gastrointestinal tract on neurons 
within the myenteric and submucosal plexus (Galligan and 
Akbarali 2014). Activation of µ-receptors (mu) by opioids 
reduces gut motility and leads to opioid-induced constipation, 

Journal of Neuroimmune Pharmacology (2022) 17:33–6144



﻿	

1 3

one of the main complaints of those using opioids to manage 
pain (Camilleri et al. 2017; Argoff 2020). Clinically, studies 
have documented compositional shifts in the gut microbiota 
in individuals using opioids (Akbarali and Dewey 2019; Bell 
et al. 2009; Xu et al. 2017; Acharya et al. 2017). Dysbiosis 
induced by chronic opioid use is also linked to central opi-
oid tolerance, acceleration of disease progression (Meng et al. 
2015b), and immune modulation (Sacerdote 2006; Liang et al. 
2016). Concurrent prescription of opioids and antibiotics or 
other prescription medicines may result in an additive effect 
on the microbiome and gut-brain communication Simpson 
et al. (2020). These preliminary observations support the need 
for more studies evaluating the role of the gut microbiome in 
opioid use disorder (OUD) progression and severity, as well 
as the potential use of the microbiome in the prediction and 
treatment of OUD.

Opioid Use and Microbes

Preclinical models have identified that differences in gut 
microbiome composition are associated with route and 
schedule of opioid exposure. Rodents passively exposed 
to opioids via implanted morphine pellets exhibit elevated 
abundance of Firmicutes (Banerjee et  al.  2016). Mice 
exposed to morphine passively demonstrated increases in 
gram-positive Enterococcus faecalis, a normal commen-
sal that can cause sepsis and other infections if introduced 
to the bloodstream. Remarkably, blockade of the periph-
eral receptors attenuate community changes and result-
ing inflammatory pathways related to this microbe (Wang 
et al. 2018a). Intermittent morphine treatment significantly 
decreases the relative abundances of Lactobacillus spp. and 
increases Ruminococcus  spp.; however, these taxa were 
unaffected following uninterrupted morphine treatment, 
suggesting that repeated opioid withdrawal bouts com-
pound microbial changes in relation to OUD. In contrast, 
sustained but not intermittent morphine treatment increases 
the genus Clostridium (Lee et al. 2018a). Mice that receive 
chronic opioids exhibit an increase in proinflammatory 
genus Staphylococcus, Enterococcus, and Proteobacteria, 
and decreases in the abundance of beneficial genus Bac-
teriodales, Clostridiales, and Lactobacillales (Akbarali  
and Dewey 2019). Method of delivery, schedule of admin-
istration and model are involved in microbial shifts that 
are observed; however, an increase in inflammation and 
decrease in anti-inflammatory microbes appears to be a com-
mon result of opioid abuse as well as other drugs of abuse.

There are conflicting reports of opioid-related micro-
biome alterations in clinical populations. This discrep-
ancy is likely due to heterogeneous samples, particularly 
related to polydrug use across samples. Barengolts et al. 
examined cross-sectional differences in opioid users com-
pared to controls and reported a decrease in Actinobacteria, 

Bifidobacteriales, Lactobacillales, Dialister, and Para-
prevotella with decreases in Prevotella and Bifidobacte-
rium (Barengolts et al. 2018). Patients using opioid agonists 
exhibit a lower abundance of Roseburia (SCFA producer) 
and Bilophila (bile acid metabolizer), but there were no dif-
ferences in patients using opioid antagonists. This finding 
parallels work in preclinical models that demonstrate drug 
use disrupts SCFA production and bile acid balance which 
are crucial reducing inflammation in the gut, and contribute 
to changes in drug-taking behavior (Gicquelais et al. 2020).

Opioid Use and Metabolites

Systemic inflammatory factors originating in the gut might 
result in central nervous system effects through a compro-
mised blood–brain barrier caused by chronic opioid use. 
Similar to shifts in Roseburia and Bilophila observed by 
Gicquelais et al. (2020) levels of SCFA’s are reduced by 
the peripheral μ-opioid receptor agonist and anti-diarrheal 
agent loperamide, perhaps due to a decrease in butyrate- 
producing bacteria (Touw et al. 2017). In the periphery, SCFAs 
act on GPCR’s free fatty acid receptors 2 (FFAR2) and 3  
(FFAR3) to regulate leucocyte functions, such as the pro-
duction of eicosanoids, chemokines, and cytokines involved 
in inflammatory responses (Vinolo et al. 2011b). In the 
CNS, opioid-induced microglia activation further leads to 
a reduction in the dopamine-dependent reward behavior via 
a BDNF signaling pathway (Taylor et al. 2016). Hakimian 
et al. hypothesized that withdrawal from opioids leads to 
microbiome depletion that can be rescued with supplemen-
tation of fatty acids, but instead of SCFAs, supplemented 
the long-chain polyunsaturated fatty acid (LCFA) doco-
sahexaenoic acid (DHA) Hakimian et al. (2019). Supple-
mentation of DHA blocked reinstatement of oxycodone 
self-administration in DHA-treated mice. Not only did the 
treatment impact behavior, treated animals exhibit increased 
richness and phylogenetic diversity following oxycodone 
exposure compared to untreated animals, which is generally 
accepted as beneficial. DHA administration also reduces 
anxiety-like behavior in mice following chronic morphine 
exposure, limiting a strong impetus for relapse behaviors 
(Hakimian 2017). Broadly, DHA supplementation has been 
explored for a variety of psychiatric illnesses and has been 
established to reduce anxiety-like behaviors, improve mood 
disorders, and other cognitive impairments in both rodent 
models (Pusceddu et  al.  2015; Trofimiuk and Braszko  
2013) and clinical settings (Ross et al. 2007; Zhang et al. 
2016; Lesperance et al. 2011).

Another major driving factor for relapse in opioid models 
is increased pain during withdrawal. Several groups have 
demonstrated that metabolite pathways, including SCFAs, 
kynurenic acid, and bile acids, can alter pain-related pro-
cesses (Csáti et al. 2015; Pineda-Farias et al. 2013; Mecs 
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et al. 2009; Li et al. 2020). For instance, the administra-
tion of butyrate reduces nerve injury-induced pain (Guo 
et al. 2019) and oral administration of the SCFA butyrate 
was found to prevent morphine antinociceptive tolerance in 
mice treated with chronic morphine (Akbarali and Dewey 
2019). The endogenous opioid system is crucial to sensa-
tion of pain, but also itch. Bile acids can modulate pain and 
itch by several mechanisms. TGR5, is a G-protein coupled  
bile acid receptor is be activated by bile acids to stimulate the 
release of endogenous opioids. The bile acids - deoxycholic  
acid, taurolithocholic acid, and oleanolic acid are all ago-
nists of TGR5, and mediate the release of itch-inducing  
gastrin-releasing peptide and analgesic including endog-
enous opioids (Dawson and Karpen 2014). It is important 
to consider that microbes not only secrete metabolites but 
alter the availability of precursors that are essential for 
neuronal/gut homeostasis. Whether it is neurotransmitters, 
bile acids, or SCFAs, each are integral to maintaining gut 
health and function. Drug-mediated dysbiosis, or even small 
reductions/expansions of community members, appears to 
be enough to exacerbate opioid-related signaling, inflamma-
tion, and intestinal permeability.

Opioid Use, Intestinal Permeability, 
and Inflammation

Opioid-induced gut microbial disruption and bile acid dys-
regulation (as have been noted in the previous sections) 
leads to gut barrier compromise and sustained systemic 
inflammation (Wang et al. 2018a). Individuals with heroin 
use disorder display distinct increases in gut microbiota 
diversity and composition compared with healthy controls 
(Xu et  al.  2017). Opioid-use-dependent microbial dys-
biosis is independent of liver disease, instead resulting in 
increased endotoxemia and hospital readmissions (Acharya 
et al. 2017). Morphine-treated animals also exhibited sig-
nificant changes to secondary bile acid availability, which 
ensued after primary bile acids decrease following a reduc-
tion in Lactobacillus and Clostridium (Banerjee et al. 2016). 
Secondary bile acids have been implicated in gut barrier 
disruption and increased intestinal inflammation. Preclinical 
studies have also demonstrated impaired intestinal epithe-
lial repair in humanized mouse models, which plays a cru-
cial role in the overall immune response of the host (Meng 
et al. 2015b, 2020).

Clinical studies also find issues with gut epithelial integ-
rity following opioid abuse. Opioid-induced loss of epithe-
lial integrity increases the likelihood of bacterial transloca-
tion and expression of proinflammatory cytokines such as  
IL-1β in the colon. Opioid use was also associated with a 1.5-fold  
increased risk of mortality from colonic inflammation and 
a three-fold risk of infection when compared with patients  
not receiving opioid analgesics (Lichtenstein et al. 2012). 

Neutralization of IL-17A after morphine exposure improves 
intestinal barrier function in a sepsis model of mice (Meng 
et al. 2015a). Blocking intestinal barrier degradation stops 
the translocation of MAMPs such as LPS, is a common 
trigger of the immune system which has been linked to 
the development of anxiety and depression-like behaviors 
in mice, which can exacerbate drug-taking behavior Jang 
et al. (2019). In parallel with microbial-related inflamma-
tion, opioids also initiate a neuroinflammatory response 
within the CNS through toll-like receptor 4 (TLR4) micro-
glia activation, which can increase tolerance and reduce 
opioid-induced analgesia (Milligan and Watkins 2009; 
Hutchinson et al. 2007). Ongoing pain and the negative emo-
tional states related to opioid withdrawal are a significant 
incentive to continue or escalate opioid use (Koob 2020; 
Carmack et al. 2019). Alterations of pain via microbiome 
pathways may play an important role in the escalation of 
use following exposure. Indeed, antibiotic-induced deple-
tion of the microbiome after morphine treatment reduced 
inflammatory mediators such as IL-1β, relating the impor-
tance of separating drug-related microbe inflammation and 
non-drug related inflammation (Kang et al. 2017). Inflam-
mation of the colon has also been demonstrated to increase 
antinociceptive tolerance to morphine (Komla et al. 2019). 
Opioids induced activation of TLR4 signaling has also been 
associated with changes to morphine-tolerance and reward 
behaviors (Hutchinson et  al. 2012; Wang et  al. 2012a). 
Antagonism of the TLR4 pathways has been demonstrated 
to reverse neuropathic pain and to potentiate opioid anal-
gesia (Hutchinson et al. 2012; Watkins et al. 2007). Lee  
et al. (2018a) hypothesized that systemic administration of 
opioids at given intervals, as well as cessation, would impact 
inflammation-driven hyperalgesia. They demonstrated a 
causal relationship between intermittent morphine exposure 
and dysbiosis and ensuing reward-related behavior. In the 
brain, increased microglia activation in the VTA leads to a 
reduction in dopamine-dependent reward behavior through 
a BDNF/microglia-mediated pathway (Taylor et al. 2016). 
While studies at the intersection of OUD and the gut-brain 
axis are still developing—there is promising evidence that 
the microbiome may play a significant role in harm reduc-
tion from opioid use. Opioids are unique in that the mecha-
nism in which they would reduce pain also contributes to 
immune mechanisms that increase pain, a major incentive 
for dependent individuals to escalate and/or continue drug 
use. Alterations of the microbiome leading to gut metabo-
lite shifts and increased inflammatory responses seem to be 
omnipresent following exposure to drugs of abuse. Decreas-
ing inflammation broadly whether via the microbiome or 
microbiome related treatments appears to be a viable poten-
tial target to reduce comorbid psychiatric disorders and 
negative emotional/physical states that contribute to the 
modulation of drug taking behavior.
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Psychostimulants and the Microbiome

This section will focus on cocaine and methamphetamine, of 
which exposure and withdrawal have been demonstrated to 
impact the gut microbiota and induce depressive-like behav-
ioral effects (Volpe et al. 2014). Depending on the popu-
lation, prescription stimulants for the treatment of ADHD 
are also commonly abused. Stimulants act as an appetite 
suppressant, cause constipation, diarrhea, and acute intesti-
nal ischemia leading to shifts in the resident microbiota, an 
increase in intestinal permeability, and inflammation, all of 
which contribute to comorbid stress, anxiety, and depression 
(Ersche et al. 2013). The significant influx of neurotrans-
mitters in the gut-associated with stimulant usage can also 
lead to the generation of oxidative stress molecules which 
damage or kill enteric neurons, compounding the impact of 
stimulants on the gut (Yu et al. 2015). Increased neurotrans-
mitter release, such as the kind found in stimulant use, can 
stimulate microbial blooms, which may impact the stress 
response (Freestone et al. 2002). Though the literature is 
limited, there are some notable foundational works dem-
onstrating the modulation of drug-taking behavior through 
perturbations of the gut-brain axis.

Stimulant Use and Microbes

Preclinical cocaine exposure in mice results in decreases 
the abundance of Mucispirillum, Ruminococcaceae, 
Lachnospiracea, and Butyricicoccus, with an increase in 
Barnesiella, Porphyromonadaceae, Bacteriodales, and 
inflammation inducing Proteobacteria (Scorza et al. 2019; 
Chivero et al. 2019; Ning et al. 2017). Similarly, rats exposed  
to methamphetamine also exhibit a reduction in SCFA pro-
ducing microbes such as Ruminococcaceae, Lachnospira-
cea, and Butyricicoccus as well as related circulating metab-
olites (Ning et al. 2017). As observed with other drugs of  
abuse, cocaine reduces diversity and richness within the gut  
microbiome (Scorza et al. 2019). In contrast, methamphetamine- 
treated animals were reported to have increased diver-
sity following exposure. While characteristic increases in  
Proteobacteria were observed following methamphetamine 
exposure, there was also an increase in Ruminococcaceae, 
which has also been reported to be reduced following meth-
amphetamine use (Ning et al. 2017). In the clinic, human 
methamphetamine users demonstrate a reduction in benefi-
cial SCFA producing Butyricicoccus and Fecalibacterium 
and an increase in pathogenic Porphyromonas, which is 
associated with periodontal disease, a common comorbid-
ity in methamphetamine users (Cook et al. 2019). Stimulants 
elicit similar decreases in SCFA producers and increases in 
proinflammatory inducers observed in other substance use 
disorders such as AUD and OUD.

Microbiome Manipulation Alters Substancse 
Use‑Related Behaviors

Depletion of the microbiome by antibiotics has been dem-
onstrated to affect stimulant taking behavior. Kiraly et al. 
demonstrated that depletion of the microbiome in ani-
mals exposed to cocaine lowered the reward threshold for 
conditioned place preference for cocaine, which returned 
to control levels using SCFA supplementation (Kiraly 
et al. 2016). Those animals also exhibited alterations of gene 
expression in the nucleus accumbens, a region essential for 
reward-related behaviors. Antibiotic depletion increased 
brain-derived neurotrophic factor (BDNF) and dopamine 
receptor type-1 (Drd1) and decreased neurotrophic receptor 
tyrosine kinase 2 (Ntrk2), demonstrating that depletion of 
the microbiome was associated with increased reward and 
sensitized behavioral responses to cocaine. This key finding 
was crucial for linking SCFA administration, microbiome 
manipulation, and behavioral changes to a drug of abuse. 
In contrast to these results, Lee et al. found that depletion 
of the microbiome decreases cocaine conditioned place 
preference (CPP) at a similar dose (Lee et al. 2018a). The 
differences are unsurprising; the two studies used different 
depletion protocols, and one had previous exposure to opi-
oids which can impact microbial communities, as well as 
the neuronal ensembles activated during intoxication and 
withdrawal (Simpson et al. 2020). The differences between 
these studies are further discussed in the review by (Meckel 
and Kiraly 2019).

Stimulant Use—Metabolites, Immune system, 
and Intestinal Permeability

Levels of SCFAs are associated with inflammatory responses. 
Exposure to stimulants can lead to significant disruption of gut 
function and signaling through the combination of a decrease 
in SCFA producers and the  exhaustion of endogenous  
neurotransmitters (Ning et al. 2017). Like cocaine, alcohol, 
and opioids, methamphetamine increases susceptibility to 
infections through the alteration of immune activity (Cook 
et al. 2019). Many of methamphetamine’s neurotoxic effects 
are mediated by inflammation (Potula et al. 2018; Prakash 
et al. 2017) with exposure to the drug impacting both adap-
tive and innate immunity (Salamanca et al. 2014), modifying 
cytokine pathways, and inhibiting T-cell proliferation (Potula  
et al. 2018). Methamphetamine use increases IL-6 and IL-8 
production, which stimulates inflammatory responses in the 
brain, inhibits neurogenesis, and alters hippocampal function  
and progenitor cell propagation (Salamanca et al. 2014).  
Methamphetamine also blocks proliferation of astrocytes 
by altering gene expression (Jackson et  al. 2014; Shah 
et al. 2012). Methamphetamine users are more suscepti-
ble to infections, likely due to a decrease in macrophages, 
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natural killer cells (NK), dendritic cells (DC), monocytes, 
and granulocytes seen following methamphetamine use 
(Harms et al. 2012; Saito et al. 2006). Cocaine was also 
found to induce a myriad of changes in levels of expression 
of cytokines (TNFa, IL-6, MCP-1), chemokines, and toll-
like receptor activation (TLR-2) in vitro, ultimately leading 
to a proinflammatory environment (Liao et al. 2016). The 
largest increases are seen in cytokines MCP-1 and CCL-11, 
both of which are pro-inflammatory. Cocaine-mediated gut 
dysbiosis was also associated with the upregulation of proin-
flammatory mediators including NF-kB, and IL-1β (Chivero  
et al. 2019). Like in cocaine paradigms, mice treated with 
methamphetamine also exhibit increased expression of 
IL-1β in the brain (Loftis and Janowsky 2014).

A large proportion of metabolites in the blood originate in 
and are functionalized/deconjugated in the gut (SCFAs, Bile 
Acids). Therefore, it is reasonable to conclude that altera-
tions of the resident microbiota may impact the normal inter-
actions of the microbiome metabolites and cytokines, mac-
rophages, NK, and DC’s (Sridharan et al. 2014; Krishnan 
et al. 2018). For instance, microbial tryptophan metabolism 
is known to modulate cytokine protection at the level of host  
metabolism Schirmer et al. (2016). Chivero et al. demon-
strated that cocaine exposure in mice contributed to the deg-
radation of the mucosal epithelial barrier composition and 
decreased integrity of the gut epithelium through the claudin 
family of proteins which regulate tight junction proteins, 
leading to an increase in intestinal permeability (Chivero 
et al. 2019). Aside from intestinal permeability, metham-
phetamine and cocaine exposure increases blood–brain 
barrier (BBB) permeability (Barr et al. 2020; Northrop and 
Yamamoto 2015). With the simultaneous increased release 
of bacterial metabolites and bacterial translocation combined 
with a compromised BBB, gut-derived metabolites can have 
a greater impact on brain signaling and inflammation. While 
these studies are noteworthy and highlight the importance 
of the microbiome at multiple levels of stimulant pathol-
ogy, more mechanistic studies are needed to separate which 
perturbations have the greatest contribution to the related 
downstream psychostimulant abuse. Further study the abil-
ity of depletion microbiome to alter the reward threshold for 
stimulants may uncover microbes that can confer resistance 
to addiction liability.

Nicotine and the Microbiome

Despite widespread use of nicotine, the literature on nicotine 
use and the gut microbiome is sparse compared to other 
drugs of abuse. Nicotine use, whether via cigarettes, vap-
ing, or chewing, impacts the microbiome of the mouth, gut, 
and respiratory tract (Savin et al. 2018; Mason et al. 2015; 
Prochaska and Benowitz 2019). Smoking is a known risk 

factor for gastrointestinal cancers, Crohn’s disease, liver 
disease, and H. pylori infections (Li et al. 2014; Berkowitz  
et al. 2018). Like other drugs of abuse, tobacco use can con-
tribute to negative impacts on the immune system (Jaspers 
2014). Current and previous smokers have significantly 
reduced bacterial diversity in upper small intestinal mucosa 
compared to those who have never smoked. Shanahan 
et al. also observed that smokers exhibited a higher relative 
abundance of Firmicutes and Actinobacteria (Rothia), with 
lower levels of Bacteroidetes (Prevotella) and Proteobacteria 
(Neisseria) (Shanahan et al. 2018). These results contrast 
with other studies where there appears to be an increase 
in Proteobacteria and Bacteroidetes, as well as Clostridia 
and Prevotella, but this is dependent on the route of admin-
istration (Capurso and Lahner 2017; Stewart et al. 2018; 
Benjamin et al. 2012). Vaping nicotine did not result in the 
same shifts as smoking tobacco via combustible cigarettes 
(Stewart et al. 2018). Yet another study reported a decrease 
in Actinobacteria and Firmicutes, as well as Bifidobacte-
rium and Lactococcus (Biedermann et al. 2013). Moreover,  
the microbiome appears to go through a rebound stage fol-
lowing smoking cessation (Lee et al. 2018b). Nicotine has  
a wide range of methods of intake potentially supporting 
the observed variety in the changes to the resident microbi-
ome than other drugs of abuse. For a further in-depth cross-
sectional analysis of smoking, the oral/gut microbiome, 
and a wide range of comorbid diseases, see Huang and Shi  
(2019).

Vogtmann et al. (2015) investigated the effect of smoking 
on the upper gastrointestinal (UGI) microbiome and found 
that smoking was associated with both increased alpha and 
beta diversity, in contrast to the study done by Shanahan et al. 
(2018) in which they reported decreased diversity. Vogtmann 
also reported a greater abundance of two bacterial species 
in the UGI of smokers – Dialister invisus and Megasphaera 
micronuciforms. They theorized the gram-negative, anaerobic 
nature of these bacterium might give them an advantage in a 
smoky environment (Vogtmann et al. 2015). One theory they 
posed for the seemingly heightened diversity was the pres-
ence of different bacterial species in cigarettes. Several groups 
demonstrated that both cigarettes and smokeless tobacco prod-
ucts harbor diverse microbial populations both within samples 
and between different brands. Many of the microbes identi-
fied in these studies are opportunistic and capable of causing 
infections. (Vogtmann et al. 2015; Sapkota et al. 2010; Smyth 
et al. 2017). Another theory involves the immunosuppressive 
nature of tobacco, allowing for increased diversity (Vogtmann 
et al. 2015). It seems that study design, sampling location, 
cigarette preference, and population contribute to these con-
trasting results and should inform future study design.

Preclinically, nicotine has also been demonstrated to impact 
the microbiome differently in males and female mice. Chi 
et al. demonstrated sex-dependent effects of nicotine on gut 
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microbiome community composition, functional bacterial 
genes, and fecal metabolome. Fecal metabolomics showed 
that neurotransmitters, such as glutamate, GABA, and gly-
cine, were differentially altered in this model, translating to 
modification of gut signaling (Chi et al. 2017). Another study, 
also demonstrated changes in microbiome related metabolites 
following smoke exposure. In this study, rats exposed to nico-
tine exhibited decreased levels of SCFA (Tomoda et al. 2011). 
Recent studies have also demonstrated that cigarette smok-
ing increases cholesterol in the liver and altered related bile 
acid metabolism, perhaps through microbiome modifications 
resulting from smoking (Yang et al. 2021). These observa-
tions yet again highlight that intake of drugs of abuse broadly 
alter microbiome composition and downstream metabolites 
that closely regulate immune and brain function. In addition to 
shifts in intestinal microbiota composition, smoking has also 
shapes bacterial makeup of the oral microbiome. Alterations 
in the oral microbiome were also observed in active metham-
phetamine users. Specifically, current smokers appear to have 
increased levels of Proteobacteria, Atopobium, and Streptococ-
cus, all of which are linked to pathogenicity and inflammation 
(Wu et al. 2016). Smoking-induced oral microbiome dysbio-
sis also contributes to periodontitis and related downstream 
inflammation (Wade 2013). Furthermore, disruption of the 
oral microbiome directly effects the state of the gut microbi-
ome (Olsen and Yamazaki 2019).

Nicotine and the Immune System

There are relatively few studies examining the relationship 
between the microbiome, immune response, and smoking; 
however, smoking is known to alter the immune system by 
increasing the numbers of neutrophils, macrophages, eosino-
phils, and mast cells (Mehta et al. 2008). An expansion of 
these processes can result in immune suppression, which 
can leave the host at a higher risk of colonization of com-
mensal and pathogenic bacteria (Droemann et  al.  2005;  
Matthews et al. 2012). Chronic cigarette smoke exposure also 
induces microbial and inflammatory shifts as well as changes 
in the protective mucin layer in preclinical models (Allais 
et al. 2016). As seen in stimulants, opioids, and alcohol, IL-6 
(Gellatly et al. 2020) and IL-8 (Johnson et al. 2010) are also 
both upregulated following exposure to nicotine. Smoking also 
impedes activation of NF-κB, a central immune system regula-
tor. Suppression of NF-κB, in turn, reduces the gut inflamma-
tory response (Wang et al. 2012b). Intestinal cytokine levels 
were also shown to be altered as a result of smoking with 
increased cytokine (MIP-2) and interferon (IFN-γ) levels and 
increasing IL-6, and decreasing TGF-β in the colon (Allais 
et al. 2016). Allais et al. offered evidence to implicate smok-
ing in alterations of intestinal mucin composition (Allais 
et al. 2016). Notably, they found increased mRNA expression 
of mucin proteins mucin 2 (Muc2) and mucin 3 (Muc3) in the 

ileum and mucin 4 (Muc4) in the colon of smoke-exposed 
mice. In addition, smoking-related alterations of oxidative 
stress-related enzymes have been hypothesized to be involved 
in smoking-induced gut dysbiosis (Wang et al. 2012b). There 
is conflicting evidence as to how long the microbiome altera-
tions last and what the long-term impact is on the cessation 
/ relapse of smoking. With these inconsistent results, there is 
still much more to be explored. Study sizes were small and 
involved heterogeneity in the route of administration (smok-
ing, electronic cigarette) and population; however, with the 
prevalence of nicotine use in the population it should be con-
sidered a comorbidity for future microbiome and behavioral 
studies. Additionally, the upregulation of similar inflammatory 
pathways and pro-inflammatory microbes are observed after 
nicotine use as in OUD and AUD.

Other Drugs of Abuse and the Microbiome

Psychedelics

Psychedelics have regained popularity as therapeutic agents 
for stress-related disorders. Psychedelics, which include 
LSD, psilocybin, and DMT, among others, are serotonergic 
drugs that bind to serotonin receptors, including 5-HT2A, 
which is known to be the pharmacological trigger of psy-
chedelic experiences (Nichols 2016). Serotonin is a key 
neuromodulator involved in cognition, mood, and percep-
tion. Intake of psychedelics is also linked to suppression of 
feeding behavior. Chronic treatment with selective serotonin 
reuptake inhibitors remains the leading treatment for depres-
sion. Serotonin is widely produced in the gut, with up to 90% 
of the body’s supply being synthesized by enterochromaffin  
cells in the gastrointestinal tract (Hata et al. 2017; Yano 
et al. 2015). Approximately 50% of gut-derived Serotonin 
is regulated by the gut microbiota, dominated by Clostri-
diaceae and Turcibacteraceae (Fung et al. 2019; Reigstad 
et al. 2015). It is possible that serotonergic drugs not only 
interact with downstream receptors of the host but also 
on microbes that sense and metabolize serotonin (Fung 
et al. 2019). Lasting impacts to mood and behavior have 
been documented with micro-dosing, which do not have the 
characteristic central psychedelic responses but have been 
theorized to be driven through peripheral mechanisms, per-
haps mediated by gut microbes or microbe related metabo-
lite mechanisms (Kuypers 2019).

Psychedelics such as LSD appear to diverge from other 
drugs of abuse as they have reported anti-inflammatory 
properties. This has been demonstrated through the suppres-
sion of B-lymphocytes (2015) and NK cells as well as the 
suppression of the induction of IL-6, IL-4, and IL-2 in vitro 
(House et al. 1994). 5-HT2 agonism has also been dem-
onstrated to reduce expression of proinflammatory markers 
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(IL-6, TNFa, and others) in vivo (Flanagan et al. 2021). 
Serotonin can also modulate macrophage and dendritic cell 
function (de las Casas-Engel et al. 2013; Szabo et al. 2018). 
Whether alterations of neurotransmitters or immune status, 
there are few studise of psychedelics on the microbiome. The 
promising anti-inflammatory properties of psychedelics and 
the direct interaction with host serotonergic system make 
this class of drug appealing to study in conjunction with the 
microbiome to modify host behavior.

Cannabis

Cannabis is a complex plant comprising over 400 chemical 
compounds, many of which have antibacterial properties 
(Appendino et al. 2008). Two of the most widely studied 
compounds are cannabidiol (CBD) and tetrahydrocanna-
bidiol (THC) (Atakan 2012), which are ligands of the can-
nabinoid receptors. The psychoactive and gut effects of can-
nabis are well known and are mediated via the cannabinoid  
receptors 1 and 2 (CB1, CB2) (Gyires and Zadori 2016; 
Casajuana et al. 2018). CB1 is highly expressed in the intes-
tinal epithelium, smooth muscle, the submucosal myenteric 
plexus, and the brain. CB2 is differentially expressed from 
CB1 and is mainly found in plasma cells, macrophages, and 
at much lower levels in the brain (Wright 2005; Roche and 
Finn 2010). CB1 activation is primarily mediated via the gut-
brain axis with both central and peripheral actions. Like mu-
opioid receptor activation, CB1 activation reduces gastroin-
testinal motility and hyperalgesia. CB1 also reduced gastric 
acid secretion and nausea but increases feeding and binge-
like behaviors (Sanger 2007). Recreational cannabis use is 
associated with a 30% reduction in constipation (Adejumo  
et al. 2019). CB2 activation functions mainly through the 
immune system and is hypothesized to be a gastrointestinal 
inflammation “braking mechanism” to mediate intestinal 
inflammation and limit visceral pain (Wright et al. 2008). 
The endogenous cannabinoid system has been demonstrated 
to protect against peripheral colonic inflammation (Massa et 
al. 2004). Recent review has thoroughly examined the role 
of CBD and the immune system and reports that CBD is 
immune suppressive in both in vitro and in vivo models 
(Nichols and Kaplan 2019). In contrast, when whole can-
nabis was explored in individuals with cannabis use disor-
der, IL-1β, IL-6, IL-8 and TNF⍺ were increased in cannabis 
users compared to controls (Bayazit et al. 2017); however, 
immune modulation seems to be dependent on administra-
tion and model (Nagarkatti et al. 2009). Despite the appar-
ent connection between cannabis and the microbiome, there 
have been few studies on the direct impact of cannabis and 
the microbiome/behavior.

Activation of CB1 has been demonstrated to acutely 
regulate gut epithelial barriers in a model of acute stress 
(Zoppi et al. 2011), and to modulate the activity of vagal 

neurotransmission in relation to gastrointestinal function 
(Vianna et al. 2012; Izzo and Sharkey 2010). Endocannabi-
noid control of feeding has been established by several groups 
(Gomez et al. 2002), and fasting is known to increase levels 
of anandamide in the rat small intestine (Gomez et al. 2002). 
Cluny et al. hypothesized that exposure to THC might pro-
duce weight loss due to the regulation of adipogenesis 
through endocannabinoid signaling, and therefore treated 
mice chronically with THC. THC blocked an increase in the 
Firmicutes:Bacteriodetes ratio in diet-induced obese mice and 
increased Akkermansia Muciniphilia spp. compared to lean 
controls. THC administration prevented weight gain in diet-
induced obese mice with no significant effects on locomotor 
activity or energy intake. Further investigation is needed to 
determine if the effects are reciprocal and additive (Cluny 
et al. 2015). Comparable to the previous study, hedonic eat-
ing in humans is associated with increases in endocannabi-
noid signaling. Monteleone et al. demonstrated increased 
peripheral levels of endocannabinoid, 2-Arachidonoylglycerol  
(2AG), and ghrelin are generated by the availability of 
highly palatable food and pleasurable eating (Monteleone 
et al. 2012). Drugs of abuse are often initiated due to the 
rewarding effects of substance intake (Koob and Moal 2001), 
but are continued due to the emergence of negative emotional 
states when the drug is not available (Koob and Volkow 
2016). Again, the literature is sparse for psychedelics and 
CBD but interest in their role in gut motility, permeability, and 
interactions with the gut microbiota is growing (DiPatrizio 
2016). Expanding such studies will be essential in unraveling 
the contribution of different drugs to microbiome modifica-
tion. Polydrug abuse is common, and if the microbiome is to 
be leveraged to improve substance use disorder outcomes, 
more work is needed.

Discussion

This review aims to consolidate the current understanding 
of the bidirectional relationship between substance-use dis-
orders and the microbiome and encourage future studies in 
this emerging cross-sectional field. Our analysis was con-
centrated on the impact that a wide range of substances have 
on the microbes, metabolites, and immunological profile of 
the host, and in turn, how those perturbations might alter 
drug-taking behavior.

Disturbance of the microbiome by drug exposure, dietary 
changes, and stress response all alter the epithelial layer 
in the gut. These barriers serve to protect the body from 
translocation of pathogenic microbes and microbial metabo-
lites that lead to inflammation and increased inflammatory 
responses. Peripheral inflammation has been demonstrated 
across several drug groups and is associated with dysbio-
sis and increased adverse outcomes with the exception of 
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limited reports of suppression of the immune system by 
psychedelics, cannabis, and nicotine; however, broadly, 
exposure to drugs alters the composition of the gut microbi-
ota, production of microbial metabolites and immune status. 
These metabolite, microbial, and immunological changes 
following drug exposure are presented in Fig. 2. Preclinical 
investigations of microbiome manipulation of drug-taking 
behavior (Table 1) demonstrate deviations in reward, stress, 
and withdrawal responses. These drug-related microbiome 
alterations elucidate pathways (inflammation, SCFA, bile 
acid) that have the potential to alter central mechanisms 
underlying addiction vulnerability.

While a connection between the gut microbiome and 
substance use disorders is clear, there remains much to be 
explored – one critical concern being the frequency of poly-
drug abuse. For example, alcohol abuse is often accompa-
nied by the use of nicotine, cannabis, and/or opioids. This 
renders the compounding effects of multiple drugs on micro-
biota an extremely relevant area of research for therapeutic 
development. Additionally, longitudinal studies investigat-
ing the microbiome-substance use disorder connection are 
relatively non-existent, and temporal effects of drug-use 
on gut microbiota and vice versa have yet to be elucidated. 
Drug use is often associated with comorbid disorders such as 

Fig. 2   Microbiome, Immune, and Metabolite Alterations Follow-
ing Drug Exposure. This diagram highlights the most prominent fac-
tors associated with the microbiome and drugs of abuse. Dysbiosis, 
increased inflammation and inflammatory microbes, a decrease in 
SCFA producing bacteria and SCFA production, along with bile acid 
dysregulation are shared among the assessed drugs. Constipation occurs 
among stimulants, alcohol, and opioids. Upregulation of IL-6 is con-
served among almost all drugs except for cannabis and psychedelics. 
Appetite suppression, increased binge eating, and/or shifts in caloric 
sources are a common theme among all drugs surveyed. Despite vary-

ing mechanisms of action, drugs of abuse contribute to alteration of the 
microbiome that result in downstream immunological and metabolic 
shifts that in turn exacerbate drug related comorbidities and drug taking 
behavior. The microbiome remains a largely uncharted landscape for the 
development and discovery of novel therapies and biomarkers for sub-
stance use disorders. Abbreviations: BDNF (brain derived neurotrophic 
factor), CBD (cannabidiol), LPS (lipopolysaccharide), IL-4 (interleukin 
4), IL-6 (interleukin-6), IL-8 (interleukin-8), IL-1β (interleukin 1β), 
mTOR (mechanistic target of rapamycin), TNF⍺ (Tumor necrosis factor 
⍺), TLR-4 (toll-like receptor-4), SCFA (short-chain fatty acid)
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depression, stress, and anxiety, which are poorly documented 
in the current microbiome-addiction literature. While it may 
be difficult to tease apart the effect of medical and comor-
bid psychiatric conditions that coincide with substance use 
disorders on the microbiome, sequencing costs are declining 
and studies are increasing. Leveraging machine learning and 
available datasets will enable for better stratification, meta-
analysis, and interpretation of the markers for each drug of 
abuse and between drugs of abuse. In addition, large scale 
GWAS studies and functional outputs such as metabolomics 
will help illustrate a more comprehensive picture of how 
the microbiome regulates human health. The potential to 
leverage the microbiome as a predictive tool to find novel 
pathways that contribute to abuse liability is in its nascency. 
Microbiome research is an evolving, multifaceted field that 
will require collaboration and standardization to improve 
implementation of translational measures capable of com-
batting substance use disorders. There is abundant potential 
to elucidate novel drug targets and therapeutics associated 
with the microbiome and related pathways.
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