
UC Irvine
UC Irvine Previously Published Works

Title
THE STRENGTH OF ABSTRACTION WITH PREDICATIVE COMPREHENSION

Permalink
https://escholarship.org/uc/item/1jj8v6w2

Journal
Bulletin of Symbolic Logic, 22(1)

ISSN
1079-8986

Author
WALSH, SEAN

Publication Date
2016-03-01

DOI
10.1017/bsl.2015.39
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jj8v6w2
https://escholarship.org
http://www.cdlib.org/


The Strength of Abstraction with Predicative
Comprehension

Sean Walsh∗

November 13, 2015

Abstract

Frege’s theorem says that second-order Peano arithmetic is interpretable in Hume’s
Principle and full impredicative comprehension. Hume’s Principle is one example of an
abstraction principle, while another paradigmatic example is Basic Law V from Frege’s
Grundgesetze. In this paper we study the strength of abstraction principles in the
presence of predicative restrictions on the comprehension schema, and in particular
we study a predicative Fregean theory which contains all the abstraction principles
whose underlying equivalence relations can be proven to be equivalence relations in a
weak background second-order logic. We show that this predicative Fregean theory
interprets second-order Peano arithmetic (cf. Theorem 3.2).
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1 Introduction

The main result of this paper is a predicative analogue of Frege’s Theorem (cf. Theorem 3.2).
Roughly, Frege’s theorem says that one can recover all of second-order Peano arithmetic using
only the resources of Hume’s Principle and second-order logic. This result was adumbrated
in Frege’s Grundlagen of 1884 ([10], [13]) and the contemporary interest in this result is due
to Wright’s 1983 book Frege’s Conception of Numbers as Objects ([34]). For more on the
history of this theorem, see the careful discussion and references in Heck [20] pp. 4-6 and
Beth [1].

More formally, Frege’s theorem says that second-order Peano arithmetic is interpretable
in second-order logic plus the following axiom, wherein the cardinality operator # is a type-
lowering function from second-order entities to first-order entities:

(1.1) Hume’s Principle : ∀ X, Y (#X = #Y ↔ ∃ bijection f : X → Y )

Of course, one theory is said to be interpretable in another when the primitives of the
interpreted theory can be defined in terms of the resources of the interpreting theory so that
the translations of theorems of the interpreted theory are theorems of the interpreting theory
(cf. [30] §2 or [22] pp. 96-97 or [17] pp. 148-149 or [27] §2.2). For a proof of Frege’s Theorem,
see Chapter 4 of Wright’s book ([34]) or §2.2 pp. 1688 ff of [29].

The second-order logic used in the traditional proof of Frege’s Theorem crucially includes
impredicative instances of the comprehension schema. Intuitively, the comprehension schema
says that every formula ϕ(x) in one free first-order variable determines a second-order entity:

(1.2) ∃ F ∀ x (Fx↔ ϕ(x))

The traditional proof of Frege’s Theorem uses instances of this comprehension schema in
which some of the formulas in question contain higher-order quantifiers (cf. [29] p. 1690
equations (44)-(45)). However, there is a long tradition of predicative mathematics, in which
one attempts to ascertain how much one can accomplish without directly appealing to such
instances of the comprehension schema. This was the perspective of Weyl’s great book Das
Kontinuum ([33]) and has been further developed in the work of Feferman ([7], [8]). Many
of us today learn and know of this tradition due to its close relation to the system ACA0 of
Friedman and Simpson’s project of reverse mathematics ([15], [26]).

However, outside of the inherent interest in predicative mathematics, considerations re-
lated to Frege’s philosophy of mathematics likewise suggest adopting the predicative per-
spective. For, Wright and Hale ([18], cf. [4]) have emphasized that Hume’s Principle (1.1)
is a special instance of the following:

(1.3) A[E] : ∀ X, Y (∂E(X) = ∂E(Y )↔ E(X, Y ))

wherein E(X, Y ) is a formula of second-order logic and ∂E is a type-lowering operator taking
second-order entities and returning first-order entities. These principles were called abstrac-
tion principles by Wright and Hale, who pointed out that the following crucial fifth axiom
of Frege’s Grundgesetze of 1893 and 1903 ([11], [14]) was also an abstraction principle:

(1.4) Basic Law V : ∀ X, Y (∂(X) = ∂(Y )↔ X = Y )
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The operator ∂ as governed by Basic Law V is called the extension operator and the first-
order entities in its range are called extensions. Regrettably, there is no standard notation
for the extension operator, and so some authors write §X in lieu of ∂(X). In what follows,
the symbol ∂ without any subscripts will be reserved for the extension operator, whereas the
subscripted symbols ∂E will serve as the notation for the type-lowering operators present in
arbitrary abstraction principles (1.3).

While the Russell paradox shows that Basic Law V is inconsistent with the full compre-
hension schema (1.2) (cf. [29] p. 1682), nevertheless Basic Law V is consistent with predica-
tive restrictions, as was shown by Parsons ([25]), Heck ([19]), and Ferreira-Wehmeier ([9]).
This thus suggests the project of understanding whether there is a version of Frege’s theo-
rem centered around the consistent predicative fragments of the Grundgesetze. This project
has been pursued in the last decades by many authors such as Heck ([19]), Ganea ([16]),
and Visser ([28]). Their results concerned the restriction of the comprehension schema (1.2)
to the case where no higher-order quantifiers are permitted. One result from this body of
work says that Basic Law V (1.4) coupled with this restriction on the comprehension schema
is mutually interpretable with Robinson’s Q. Roughly, Robinson’s Q is the fragment of
first-order Peano arithmetic obtained by removing all the induction axioms. (For a precise
definition of Robinson’s Q, see [17] p. 28, [26] p. 4, [29] p. 1680, [30] p. 106). Additional
work by Visser allows for further rounds of comprehension and results in systems mutually
interpretable with Robinson’s Q plus iterations of the consistency statement for this theory,
which are likewise known to be interpretable in other weak arithmetics ([28] p. 147). In his
2005 book ([3]), Burgess surveys these kinds of developments, and writes:

[. . . ] I believe that no one working in the area seriously expects to get very
much further in the sequence Qm while working in predicative Fregean theories
of whatever kind ([3] p. 145).

Here Qm is the expansion of Robinson’s Q by finitely many primitive recursive function
symbols and their defining equations along with induction for bounded formulas ([3] pp.
60-63), so that Burgess records the prediction that predicative Fregean theories will be
interpretable in weak arithmetics.

The main result of this paper suggests that this prediction was wrong, and that predica-
tive Fregean theories can interpret strong theories of arithmetic (cf. Theorem 3.2). While we
turn presently to developing the definitions needed to precisely state this result, let us say
by way of anticipation that part of the idea is to work both with (i) an expanded notion of
a “Fregean theory,” so that it includes several abstraction principles, such as Basic Law V,
in addition to Hume’s Principle, and (ii) an expanded notion of “predicativity,” in which
one allows some controlled instances of higher-order quantifiers within the comprehension
schema (1.2). Hence, of course, it might be that Burgess and others had merely conjectured
that predicative Fregean theories in a more limited sense were comparatively weak.

This paper is part of a series of three papers, the other two being [31] and [32]. These
papers collectively constitute a sequel to our paper [29], particularly as it concerns the
methods and components related to Basic Law V. In that earlier paper, we showed that
Hume’s Principle (1.1) with predicative comprehension did not interpret second-order Peano
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arithmetic with predicative comprehension (cf. [29] p. 1704). Hence at the outset of that
paper, we said that “in this specific sense there is no predicative version of Frege’s Theorem”
([29] p. 1679). The main result of this present paper (cf. Theorem 3.2) is that when we
enlarge the theory to a more inclusive class of abstraction principles containing Basic Law V,
we do in fact succeed in recovering arithmetic.

This paper depends on [31] only in that the consistency of the predicative Fregean theory
which we study here was established in that earlier paper (cf. discussion at close of next
section). In the paper [32], we focus on embedding the system of the Grundgesetze into a
system of intensional logic. The alternative perspective of [32] then suggests viewing the
consistent fragments of the Grundgesetze as a species of intensional logic, as opposed to an
instance of an abstraction principle.

This paper is organized as follows. In §2 we set out the definitions of the predicative
Fregean theory. In §3 it is shown how this predicative Fregean theory can recover full
second-order Peano arithmetic. In §4 it is noted that some theories which are conceptually
proximate to the predicative Fregean theory are nonetheless inconsistent.

2 Defining a theory of abstraction with predicative

comprehension

The predicative Fregean theory with which we work in this paper is developed within the
framework of second-order logic. The language L0 of the background second-order logic
is an ω-sorted system with sorts for first-order entities, unary second-order entities, binary
second-order entities etc. Further, following the Fregean tradition, the first-order entities are
called objects, the unary second-order entities are called concepts, and the n-ary second-order
entities for n ≥ 1 are called n-ary concepts. Rather than introduce any primitive notation
for the different sorts, we rather employ the convention of using distinctive variables for each
sort: objects are written with lower-case Roman letters x, y, z, a, b, c . . ., concepts are written
with upper-case Roman letters X, Y, Z,A,B,C, F,G,H, U, . . ., n-ary concepts for n > 1 are
written with the upper case Roman letters R, S, T , and n-ary concepts are written with the
Roman letters f, g, h when they are graphs of functions.

Besides the sorts, the other basic primitive of the signature of the background second-
order logic L0 are the predication relations. One writes Xa to indicate that object a has
property or concept X. Likewise, there are predication relations for n-ary concepts, which
we write as R(a1, . . . , an). The final element of the signature L0 of the background second-
order logic are the projection symbols. The basic idea is that one wants, primitive in the
signature L0, a way to move from the binary concept R and the object a to its projec-
tion R[a] = {b : R(a, b)}. We assume that the signature L0 of the background second-order
logic is equipped with symbols (R, a1, . . . , am) 7→ R[a1, . . . , am] from (m+n)-ary concepts R
and an m-tuple of objects (a1, . . . , am) to an n-ary concept R[a1, . . . , am] = {(b1, . . . , bn) :
R(a1, . . . , am, b1, . . . , bn)}. Further, typically in what follows we avail ourselves of the tuple
notation a = a1, . . . , an and thus write predication and projection more succinctly as R(a)
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and R[a], respectively.
All this in place, we can then formally define the signature L0 of the background second-

order logic as follows:

Definition 2.1. The signature L0 of the background second-order logic is a many-sorted
signature which contains (i) a sort for objects and for each n ≥ 1 a sort for n-ary concepts,
(ii) for each n ≥ 1, an (n + 1)-ary predication relation symbol R(a1, . . . , an) which holds
between an n-ary concept R and an n-tuple of objects a1, . . . , an, and (iii) for each n,m ≥ 1,
an (m+ 1)-ary projection function symbol (R, a1, . . . , am) 7→ R[a1, . . . , am] from an (m+n)-
ary concept R and an m-tuple of objects (a1, . . . , am) to an n-ary concept R[a1, . . . , am].

As is usual in many-sorted signatures, we adopt the convention that each sort has its own
identity symbol, so that technically cross-sortal identities are not well-formed. But we con-
tinue to write all identities with the usual symbol “=” for the ease of readability.

The expansions of second-order logic with which we work are designed to handle abstrac-
tion principles (1.3). Hence, suppose that L is an expansion of L0. Suppose that E(R, S) is
an L-formula with two free n-ary relation variables for some n ≥ 1, with all free variables of
E(R, S) explicitly displayed. Then we may expand L to a signature L[∂E] which contains a
new function symbol ∂E which takes n-ary concepts R and returns the object ∂E(R). Then
the following axiom, called the abstraction principle associated to E, is an L[∂E]-sentence:

(2.1) A[E] : ∀ R, S (∂E(R) = ∂E(S)↔ E(R, S))

This generalizes the notion of an abstraction principle (1.3) described in the previous section
in that the domain of the operator ∂E can be n-ary concepts for any specific n ≥ 1.

This generalization is warranted by several key examples, such as that of ordinals. Let R
be a binary concept and let Field(R) be the unary concept F such that Fx iff there is a y
such that Rxy or Ryx. Then consider the following formula E(R, S) on binary concepts:

[(Field(R), R) |= wo ∨ (Field(S), S) |= wo]→(2.2)

∃ isomorphism f : (Field(R), R)→ (Field(S), S)

In this, “wo” denotes the natural sentence in the signature of second-order logic which
says that a binary concept is a well-order, i.e. a linear order such that every non-empty
subconcept of its domain has a least element. It’s not too difficult to see that E(R, S) is an
equivalence relation on binary concepts, and that two well-orders will be E-equivalent if and
only if they are order-isomorphic. Just as the Russell paradox shows that Basic Law V (1.4)
is inconsistent with the full comprehension schema, so one can use the Burali-Forti paradox
to show that A[E] for this E in equation (2.2) is inconsistent with the full comprehension
schema (cf. [21] p. 138 footnote, [2] pp. 214, 311). To handle these abstraction principles
we need to adopt restrictions on the comprehension schema, to which we presently turn.

There are three traditional predicative varieties of the comprehension schema: the first-
order comprehension schema, the ∆1

1-comprehension schema, and the Σ1
1-choice schema (cf.

[26] VII.5-6, [29] Definition 5 p. 1683). However, to make the comparison with the full
comprehension schema (1.2) precise, we should restate it to include not only concepts but n-
ary concepts for all n ≥ 1 and to indicate its explicit dependence on a signature:
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Definition 2.2. Suppose that L is an expansion of L0. Then the Full Comprehension Schema
for L-formulas consists of all axioms of the form ∃ R ∀ a (Ra ↔ ϕ(a)), wherein ϕ(x) is
an L-formula, perhaps with parameters, and x abbreviates (x1, . . . , xn) and R is an n-ary
concept variable for n ≥ 1 that does not appear free in ϕ(x).

The most restrictive predicative version of the comprehension schema is then the following,
where the idea is that no higher-order quantifiers are allowed in the formulas:

Definition 2.3. Suppose that L is an expansion of L0. The First-Order Comprehension
Schema for L-formulas consists of all axioms of the form ∃ R ∀ a (Ra↔ ϕ(a)), wherein ϕ(x)
is an L-formula with no second-order quantifiers but perhaps with parameters, and x abbre-
viates (x1, . . . , xn) and R is an n-ary concept variable for n ≥ 1 that does not appear free
in ϕ(x).

A more liberal version of the comprehension schema is the so-called ∆1
1-comprehension

schema. A Σ1
1-formula (resp. Π1

1-formula) is one which begins with a block of existential
quantifiers (resp. universal quantifiers) over n-ary concepts for various n ≥ 1 and which
contains no further second-order quantifiers. One then defines:

Definition 2.4. Suppose that L is an expansion of L0. Then the ∆1
1-Comprehension Schema

for L-formulas consists of all axioms of the form

(2.3) (∀ x ϕ(x)↔ ψ(x))→ ∃ R ∀ a (Ra↔ ϕ(a))

wherein ϕ(x) is a Σ1
1-formula in the signature of L and ψ(x) is a Π1

1-formula in the signature
of L that may contain parameters, and x abbreviates (x1, . . . , xn), and R is an n-ary concept
variable for n ≥ 1 that does not appear free in ϕ(x) or ψ(x).

Finally, traditionally one also includes amongst the predicative systems the following choice
principle:

Definition 2.5. Suppose that L is an expansion of L0. The Σ1
1-Choice Schema for L-

formulas consists of all axioms of the form

(2.4) [∀ x ∃ R′ ϕ(R′, x)]→ ∃ R [∀ x ϕ(R[x], x)]

wherein the L-formula ϕ(R′, x) is Σ1
1, perhaps with parameters, and x abbreviates (x1, . . . , xm)

and R is an (m+ n)-ary concept variable for n,m ≥ 1 that does not appear free in ϕ(R′, x)
where R′ is an n-ary concept variable.

The Σ1
1-Choice Schema and the First-Order Comprehension Schema together imply the ∆1

1-
Comprehension Schema (cf. [26] Theorem V.8.3 pp. 205-206, [29] Proposition 6 p. 1683).
Hence, even if one’s primary interest is in the latter schema, typically theories are axiomatized
with the two former schemas since they are deductively stronger, and that is how we proceed
in this paper.
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To the signature L0 of the weak background second-order logic, we want to associate a
certain weak background L0-theory. Some of the axioms of this background theory axioma-
tize the behavior of the predication symbols and the projection symbols. For each m ≥ 1,
one has the following extensionality axiom, wherein R, S are m-ary concept variables and
a = a1, . . . , am are object variables:

(2.5) ∀ R, S [R = S ↔ (∀a (R(a)↔ S(a)))]

But it should be noted that some authors don’t explicitly include the identity symbol for
concepts or higher-order entities and simply take it as an abbreviation for coextensionality
(cf. [26] pp. 2-3, [3] pp. 14-15). Second, for each n,m ≥ 1, one has the following projection
axioms governing the behavior of the projection symbols, wherein R is an (m+n)-ary concept
variable and a = a1, . . . , am, b = b1, . . . , bn are object variables:

(2.6) ∀ R ∀ a, b [(R[a])(b)↔ R(a, b)]

Finally, with all this in place, we can define the weak background theory of second-order
logic:

Definition 2.6. The weak background theory of second-order logic Σ11-OS is L0-theory con-
sisting of (i) the extensionality axioms (2.5) and the projection axioms (2.6) and (ii) the Σ1

1-
Choice Schema for L0-formulas (Definition 2.5) and (iii) the First-Order Comprehension
Schema for L0-formulas (Definition 2.3).

In the theory Σ11-OS and its extensions, we use standard abbreviations for various operations
on concepts, for instance X ∩ Y = {z : Xz & Y z} and {x} = {z : z = x} and X × Y =
{(x, y) : Xx & Y y} and ∅ = {x : x 6= x}. In general, we use {x : Φ(x)} as an abbreviation
for the concept F such that Fx iff Φ(x), assuming that Φ(x) is a formula which falls under
one of the comprehension principles available in the theory in which we are working.

This weak background theory Σ11-OS of second-order logic is used to define the following
Fregean theory at issue in this paper. If E(R, S) is an L0-formula with two free nE-ary
concept variables and no further free variables, then we let Equiv(E) abbreviate the L0-
sentence expressive of E being an equivalence relation on nE-ary concepts, i.e. the universal
closure of the following, wherein R, S, T are nE-ary concept variables:

(2.7) [E(R,R) & (E(R, S)→ E(S,R)) & ((E(R, S) & E(S, T ))→ E(R, T ))]

Then consider the following collection of L0-formulas which consists of all the L0-formulas
E(R, S) with two free nE-ary concept variables and no further free variables such that Σ11-OS
proves Equiv(E):

(2.8) ProvEquiv(L0) = {E(R, S) is an L0 formula : Σ11-OS ` Equiv(E)}

Then define the following expansion of L1 of L0:

Definition 2.7. Let L1 consist of the expansion of the signature L0 (2.1) by a new function
symbol ∂E from nE-ary concepts to objects for each E from ProvEquiv(L0) (2.8).
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Then we define the predicative theory as follows:

Definition 2.8. The predicative Fregean theory, abbreviated PFT, is the L1-theory consisting
of (i) the extensionality axioms (2.5) and the projection axioms (2.6) and (ii) the Σ1

1-Choice
Schema for L1-formulas (Definition 2.5) and (iii) the First-Order Comprehension Schema
for L1-formulas (Definition 2.3), and (iv) the abstraction principle A[E] (2.1) for each E
from ProvEquiv(L0) (2.8).

Hence, the theory PFT is a recursively enumerable theory in a recursively enumerable sig-
nature L1. If one desired a recursive signature, one could alternatively define L1 to consist
of function symbols ∂E from nE-ary concepts to objects for each L0-formula E, regardless
of whether it was in ProvEquiv(L0) (2.8). This is because clause (iv) in Definition 2.8
only includes the abstraction principle A[E] (2.1) when the formula E is in fact in the set
ProvEquiv(L0) (2.8).

While this definition is technically precise, the niceties ought not obscure the intuitive-
ness of the motivating idea. For, the idea behind this predicative Fregean theory is that
it conjoins traditional predicative constraints on comprehension together with the idea that
abstraction principles associated to certain L0-formulae are always available. More capa-
ciously: if we start from weak background theory of second-order logic Σ11-OS and if we can
prove in this theory that an L0-formula E(R, S) in the signature of this weak background
logic is an equivalence relation on nE-ary concepts for some nE ≥ 1, then the predicative
Fregean theory PFT includes the abstraction principle A[E] (2.1) associated to E. Hence the
theory PFT includes the abstraction principles associated to number, extension, and ordinal,
namely Hume’s Principle (1.1), Basic Law V (1.4) and the abstraction principle associated
to ordinals (cf. (2.2) above).

One of the aims of the earlier paper [31] was to establish the following:

Theorem 2.9. The theory PFT is consistent.

Proof. Let E1, . . . , En, . . . enumerate the elements of the collection ProvEquiv(L0) from equa-
tion (2.8). By compactness, it suffices to establish, for each n ≥ 1, the consistency of the
subsystem of PFT which is formed by restricting part (iv) of the Definition of PFT to the
abstraction principles A[E1], . . . , A[En]. But then this theory is a subtheory of the theory
which, in the paper [31], we called Σ11−[E1, . . . , En]A+SO+GC. The consistency of this theory
was established in the Joint Consistency Theorem of that paper.

3 Interpreting second-order arithmetic in the theory

While the predicative Fregean Theory only explicitly includes predicative instances of the
comprehension schema for L0-formulas, surprisingly it is able to deductively recover all in-
stances of the Full Comprehension Schema for L0-formulas.

Theorem 3.1. PFT proves each instance of the Full Comprehension Schema for L0-formulas.
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Proof. Let Φ(x,G) be an L0-formula with all free variables displayed, wherein x is an object
variable and G is a unary concept variable. Let us first show that PFT proves the following
instance of the Full Comprehension Schema for L0-formulas (Definition 2.2):

(3.1) ∀ G ∃ F ∀ x (Fx↔ Φ(x,G))

After we finish the proof of this instance, we’ll comment on how to establish the general
case.

First consider the following L0-formulas µ(R, S), ν(R, S) with all free variables displayed,
where R, S are binary concept variables:

µ(R, S) ≡ [∃ ! x,G with R = {x} ×G] & [∃ ! y,H with S = {y} ×H]

& ∀ x,G, y,H [(R = {x} ×G & S = {y} ×H)→ (Φ(x,G)↔ Φ(y,H))]

ν(R, S) ≡ ¬[∃ ! x,G with R = {x} ×G] & ¬[∃ ! y,H with S = {y} ×H]

In this, the identity R = {x} ×G is an abbreviation for the claim that

(3.2) ∀ a, b (R(a, b)↔ ((a = x) & Gb))

Hence, µ(R, S) expresses that R can be written uniquely as {x} × G for some x,G, while
S can be written uniquely as {y} × H for some y,H, and that Φ(x,G) ↔ Φ(y,H). The
circumstance in which a binary relation R can be written as {x} × G but not uniquely so
is when G is empty, since in this case {x} × G = {x′} × G for any objects x, x′. Finally,
consider the following L0-formula E(R, S) where again R, S are binary concept variables and
all free variables are displayed:

(3.3) E(R, S) ≡ (µ(R, S) ∨ ν(R, S))

The weak background theory Σ11-OS proves that E(R, S) is an equivalence relation on
binary concepts. For reflexivity, either R can be written uniquely as {x} ×G for some x,G,
or not. If so, then one trivially has Φ(x,G) ↔ Φ(x,G). This then implies µ(R,R) and so
E(R,R). If not, then of course ν(R,R) and so E(R,R). For symmetry, it simply suffices to
note that both µ and ν are symmetric in that µ(R, S) implies µ(S,R) and likewise for ν. For
transitivity, suppose that E(R, S) and E(S, T ). Because of the disjunctive definition of E
in (3.3), there are three cases to consider. First suppose that µ(R, S) and µ(S, T ). Then we
may uniquely write R = {x}×G,S = {y}×H,T = {z}×I, and from Φ(x,G)↔ Φ(y,H) and
Φ(y,H) ↔ Φ(z, I) we may conclude that Φ(x,G) ↔ Φ(z, I). Hence we then have µ(R, T )
and thus E(R, T ). Second suppose that ν(R, S) and ν(S, T ). These two assumptions imply
that we can’t write any of R, S, T uniquely as the product of a singleton and a unary concept,
and hence that ν(R, T ) and E(R, T ). Finally, suppose that µ(R, S) and ν(S, T ) (or vice-
versa). But this case leads to a contradiction, since µ(R, S) implies that we can write S
uniquely as the product of a singleton and a unary concept, while ν(S, T ) says that we can’t.
Hence E(R, S) is indeed an equivalence relation on binary concepts, and provably so in the
weak background theory Σ11-OS.
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Then the L0-formula E(R, S) is in the set ProvEquiv(L0) (2.8). Hence the theory PFT

contains the abstraction principle A[E] (2.1). Before we verify (3.1), let us introduce another
abstraction principle. Consider the following L0-formulas µ′(X, Y ), ν ′(X, Y ) with all free
variables displayed, where X, Y are unary concept variables:

µ′(X, Y ) ≡ ∃ x ∃ y X = {x} & Y = {y} & (Φ(x, ∅)↔ Φ(y, ∅))
ν ′(X, Y ) ≡ ¬(∃ x X = {x}) & ¬(∃ y Y = {y})

Then consider the following L0-formula E ′(X, Y ) where again X, Y are unary concept vari-
ables and all free variables are displayed:

(3.4) E ′(X, Y ) ≡ (µ′(X, Y ) ∨ ν ′(X, Y ))

By the same argument as the previous paragraph, Σ11-OS proves that E ′(X, Y ) is an equiva-
lence relation unary concepts. So the theory PFT contains the abstraction principleA[E ′] (2.1)

Now, working in PFT, let us verify (3.1). There are three cases. First suppose that there
is no x0 with Φ(x0, G). Then to establish (3.1) one can take F = ∅.

As a second case, suppose that there is a x0 with Φ(x0, G) and that G is non-empty.
Then observe that the graph of the function f(x) = ∂E({x} × G) has both a Σ1

1- and a
Π1

1-definition:

f(x) = y ↔ ∃ R (∀ a, b R(a, b)↔ (a = x & Gb)) & ∂E(R) = y

↔ ∀ R (∀ a, b R(a, b)↔ (a = x & Gb))→ ∂E(R) = y(3.5)

These are equivalent because we can use the First-Order Comprehension Schema for L1-
formulas to secure that the binary relationR = {x}×G exists. Hence by the ∆1

1-Comprehension
Schema for L1-formulas, the equivalence in (3.5) implies that the graph of f exists as a bi-
nary concept. Then by First-Order Comprehension Schema for L1-formulas, the following
unary concept exists:

(3.6) F = {x : f(x) = ∂E({x0} ×G)}

Now let’s argue that F = {x : Φ(x,G)}. First suppose that Fx. Then f(x) = ∂E({x0} ×G)
and hence ∂E({x} × G) = ∂E({x0} × G). Then E({x} × G, {x0} × G) and since G is non-
empty we have µ({x} × G, {x0} × G). Then Φ(x,G) ↔ Φ(x0, G). Since we’re assuming
that Φ(x0, G), we then conclude that Φ(x,G), which is what we wanted to show. For the
converse, suppose that Φ(x,G). Since we’re assuming that Φ(x0, G) and that G is non-
empty we may conclude that µ({x} × G, {x0} × G) and thus E({x} × G, {x0} × G) and
∂E({x} × G) = ∂E({x0} × G). By the definition of f , we then have f(x) = ∂E({x0} × G)
which by the definition of F implies that Fx, which is what we wanted to show.

As a third case, suppose that there is an x0 with Φ(x0, G) but that G itself is empty.
Then we argue as before that the graph of g(x) = ∂E′({x}) exists as a binary concept, that
F = {x : g(x) = ∂E′({x0})} exists as a unary concept, and that F = {x : Φ(x,G)}.

This finishes the proof of (3.1) in PFT. The proof of the general case of the Full Compre-
hension Schema for L0-formulas (Definition 2.2) differs only in that unary concept variable F
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from (3.1) might instead be an n-ary concept variable and there may be more than one con-
cept parameter G, as well as some additional object parameters. But the proof of this general
case is directly analogous to the proof of (3.1). The only difference is that the number of
abstraction principles used in the proof will increase with the number of concept parameters.
In general if there are m-concept parameters G1, . . . , Gm, then there will be 2m different ab-
straction principles used in the proof, since one must consider a case corresponding to the
finite binary sequence (i1, . . . , im), wherein ik = 0 indicates that Gk is empty, and ik = 1
indicates that Gk is non-empty.

Before turning to the proof that PFT interprets second-order Peano arithmetic, let’s briefly
note that in the consistency proof from [31] invoked in the proof of Theorem 2.9, we explicitly
verified the Full Comprehension Schema for L0-formulas. (In the language of that paper,
these were part of the theory SO, and the interested reader may consult the proof of the Joint
Consistency Theorem in that paper).

While the theory PFT only explicitly includes some instances of the Full Comprehension
Schema for L0-formulas in its definition (cf. Definition 2.8), the previous theorem says that
it proves all of them. However, even in this predicative setting, the Russell paradox can
be used to show that there is no concept consisting of the extensions, i.e. the range of
the extension operator ∂ from Basic Law V (1.4). For a proof, see [29] Proposition 29 p.
1692. Now the formula rng(∂) is definable by a Σ1

1-formula of the signature L0[∂]. Further
L0[∂] is included in the signature L1 of PFT. Hence, since the L1-theory PFT is consistent
by Theorem 2.9, it follows that PFT does not prove all instances of the Full Comprehension
Schema for L1-formulas.

This kind of situation is of course not entirely unfamiliar. For instance, Presburger
arithmetic yields a complete axiomatization of the structure (Z, 0, 1+, <) (cf. Marker [24]
pp. 82 ff). So this axiomatization proves each instance of the following induction schema in
the signature L = {0, 1,+, <}:

(3.7) [ϕ(0) & ∀ x ≥ 0 (ϕ(x)→ ϕ(x+ 1)))]→ [∀ x ≥ 0 ϕ(0)]

Consider a non-standard model G = (G, 0, 1,+, <) of Presburger arithmetic, and extend L
to L′ by adding a new unary predicate Z which is interpreted on G as the integers Z. Then
of course the axioms of Presburger arithmetic do not imply all instances of the schema (3.7)
in the expanded signature L′. So of course it’s consistent for there to be a schema and an L′-
theory and a subsignature L of L′ such that the theory proves all instances of the L-schema
but not every instance of the L′-schema.

Now let’s show that PFT interprets second-order Peano arithmetic PA2. These axioms are
the natural set of axioms used to describe the standard model of second-order arithmetic;
see [26] p. 4 or [29] p. 1680 or [30] p. 106 for an explicit list of these axioms.

Theorem 3.2. The predicative Fregean theory PFT interprets second-order Peano arithmetic
PA2.

Proof. First note that the predicative Fregean theory PFT proves the existence of the graph
of the function s(x) = ∂({x}) (cf. [29] Proposition 27 p. 1691), where this is the abstraction
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operator associated to Basic Law V (1.4). For, note that in PFT, for all objects x, y, one has
that the following Σ1

1-condition and Π1
1-conditions are equivalent:

(3.8) [∃ X (X = {x} & ∂(X) = y)]↔ [∀ X (X = {x} → ∂X = y)]

By the ∆1
1-Comprehension Schema for L1-formulas, there is then a binary relation which

holds of objects x, y iff either the Σ1
1-condition holds or the Π1

1-condition holds. And this
binary relation is obviously the graph of the function s(x) = ∂({x}).

Let M be {x : x = x}, which exists by Full Comprehension for L0-formulas, and let
0 = ∂(∅). Then one has that the triple (M, 0, s) satisfies the first two axioms of Robinson’s Q:

(3.9) ∀ x s(x) 6= 0, ∀ x, y (s(x) = s(y)→ x = y)

For, suppose that s(x) = 0. Then ∂({x}) = ∂(∅) and then by Basic Law V (1.4) one has
that {x} = ∅, a contradiction. Similarly, suppose that s(x) = s(y). Then ∂({x}) = ∂({y})
and so by Basic Law V (1.4) one has that {x} = {y} and hence x = y. Thus (3.9) follows
immediately from Basic Law V (1.4).

But then standard arguments allow one to interpret second-order Peano arithmetic PA2 by
taking the natural numbers N to be the sub-concept of M consisting of all those subconcepts
of M which are “inductive,” that is which contain zero and closed under successor. Here
of course for the existence of N and the verification of the other axioms of arithmetic, one
appeals to the Full Comprehension Schema for L0-formulas, using M, 0, s as parameters (cf.
[29] Theorem 16 p. 1688).

4 The fragility of abstraction with predicative compre-

hension

However, in spite of its technical strength, the conceptual basis of the predicative Fregean
theory PFT is rather fragile. For, the L1-theory PFT was formed by adding the abstraction
principle A[E] associated to the L0-formulas E(R, S) when this formula could be proven to
be an equivalence relation in the background second-order logic Σ11-OS. But one cannot suc-
cessively iterate this idea. For, suppose that in analogue to ProvEquiv(L0) in equation (2.8),
one defines:

(4.1) ProvEquiv(L1) = {E(R, S) is an L1 formula : PFT ` Equiv(E)}

And further suppose that one defines L2 to be the expansion of L1 by the addition of
a function symbol ∂E from nE-ary concepts to objects for each L1-formula E(R, S) in
ProvEquiv(L1). Finally, suppose one defines the following iteration of PFT (cf. Defini-
tion 2.8):

Definition 4.1. The theory PFT2 is the L2-theory consisting of (i) the extensionality ax-
ioms (2.5) and the projection axioms (2.6) and (ii) the Σ1

1-Choice Schema for L2-formulas (Def-
inition 2.5) and (iii) the First-Order Comprehension Schema for L2-formulas (Definition 2.3),
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and (iv) the abstraction principle A[E] (2.1) for each E which is from ProvEquiv(L0) (2.8)
or from ProvEquiv(L1) (4.1).

Then the same argument as in the proof of Theorem 3.1 establishes that PFT2 proves each
instance of the Full Comprehension Schema for L1-formulas. But then PFT2 is inconsistent,
since on pain of the Russell paradox there is no concept of all extensions (cf. [29] Proposition
29 p. 1692), where again the extensions are the range of the abstraction operator ∂ associated
to Basic Law V (1.4). Hence, while the predicative Fregean theory PFT is consistent, when
one tries to iterate its underlying idea of adding abstraction principles when their equivalence
relations can be proven to be equivalence relations, one again runs up against the Russell
paradox. This indicates that the resource of abstraction principles in the predicative setting
is unlike that of typed theories of truth or second-order logic, which we may consistently add
to any consistent theory.

This point is underscored when one observes that the same considerations show the
inconsistency of an axiom-based analogue of the rule-based predicative Fregean theory PFT.
In particular, suppose that we recursively defined a signature L∗ extending L0 so that if
E(R, S) is an L∗-formula in exactly two free nE-ary concept variables then L∗ also contains
a function symbol ∂E which takes nE-ary concepts to objects and which does not occur in
E. One could then define the following L∗-theory:

Definition 4.2. The theory PFT∗ is the L∗-theory consisting of (i) the extensionality ax-
ioms (2.5) and the projection axioms (2.6) and (ii) the Σ1

1-Choice Schema for L∗-formulas (Def-
inition 2.5) and (iii) the First-Order Comprehension Schema for L∗-formulas (Definition 2.3),
and (iv) the axiom Equiv(E)→ A[E] for each L∗-formula E.

In this, Equiv(E) is the sentence which says that E is an equivalence relation (cf. (2.7)) and
A[E] is the abstraction principle (2.1), so that the axiom Equiv(E) → A[E] says that if E
is an equivalence relation, then A[E] holds. The considerations of the previous paragraphs
can be replicated in this theory PFT∗, showing it to be inconsistent. However, the conceptual
distance between the inconsistent L∗-theory PFT∗ and the consistent L1-theory PFT is rather
slim. The difference is merely a difference between a rule and an axiom: whereas the rule-
based PFT only includes an abstraction principle when the underlying equivalence relation is
expressible in the weak background logic and is provably an equivalence relation there, the
axiom-based PFT∗ includes a commitment to either the truth of the abstraction principle or
the falsity of its underlying formula being an equivalence relation.

In response to this, one might try to restrain the predicative Fregean theory PFT so that
the analogously defined iterated version of it and the analogously defined axiom-based version
of it were consistent. For instance, one might consider restricting the abstraction principles
added to the theory PFT to those whose underlying equivalence relation was expressible both
as a Σ1

1-formula and a Π1
1-formula in the background second-order logic. This, it might be

suggested, would be a genuinely predicative theory of abstraction principles. Such a move
would block the proof of Theorem 3.1. For, the equivalence relation E(R, S) (3.3) used in
that proof is not obviously expressible in such a way. However, it is unknown to us how
much arithmetic this more austerely predicative theory could interpret, and it is not obvious
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to us whether the analogously defined iterated version of it (or axiom-based version of it) is
consistent.

Another way forward might be to find some principled way to focus attention on abstrac-
tion principles which are somehow more like the paradigmatic Basic Law V (1.4) and Hume’s
Principle (1.1) and the abstraction principle associated to ordinals (2.2), and somehow less
like the seemingly ad-hoc abstraction principles constructed in the proof of Theorem 3.1.
But to do so would be to lose some of the original motivation for focusing on predicative
abstraction principles. For, part of the attraction was supposed to be that more abstraction
principles became consistent and jointly consistent. And indeed, as the predicative Fregean
Theory PFT attests, a good deal of joint consistency is available in this setting. Hence in the
earlier paper [31] we said that we had resolved an analogue of the joint consistency problem.
But as we have seen in this section, when we try to iterate the underlying idea of abstrac-
tion principles in the predicative setting, we again run into inconsistency and seem back in
the situation of trying to discern ways to weed out the acceptable from the unacceptable
abstraction principles. For an overview of the various candidates for acceptable abstraction
principles in the general impredicative setting, see [23] or [5].

Perhaps another way forward might be to give up on the idea of abstraction principles
altogether and find principled reasons for studying systems centered around either Basic
Law V (1.4) itself or Hume’s Principle (1.1) itself or the abstraction principle associated to
ordinals (2.2) all by itself. With respect to Basic Law V (1.4), this is the perspective of
[32], where the idea is to work within an intensional logic and see the extension operator as
selecting a sense for each concept, just like we might select a specific Turing machine index
for each computable function. But much remains unknown about the individual abstraction
principles at the predicative level. For instance, it is to our knowledge unknown whether
Basic Law V (1.4) or the abstraction principle associated to ordinals (2.2), equipped with
the Σ1

1-choice schema and the First-Order Comprehension Schema, interprets the analogous
predicative versions of arithmetic (cf. [29] p. 1707). In this paper, the idea for interpreting
arithmetic was to collect together all the predicative abstraction principles so that they could
effect the interpretation together, and it is in general unclear to us what happens when one
focuses on the abstraction principles one by one.
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