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Abstract: We have previously derived power calculation formulas for cohort studies and clinical trials
using the longitudinal mixed effects model with random slopes and intercepts to compare rate of change
across groups [Ard & Edland, Power calculations for clinical trials in Alzheimer’s disease. J Alzheim Dis
2011;21:369–77].Wehere generalize these power formulas to accommodate 1)missing data due to study subject
attrition common to longitudinal studies, 2) unequal sample size across groups, and 3) unequal variance
parameters across groups.We demonstrate how these formulas can be used to power a future study evenwhen
the design of available pilot study data (i.e., number and interval between longitudinal observations) does not
match the design of the planned future study. We demonstrate how differences in variance parameters across
groups, typically overlooked in power calculations, can have a dramatic effect on statistical power. This is
especially relevant to clinical trials, where changes over time in the treatment arm reflect background vari-
ability in progression observed in the placebo control arm plus variability in response to treatment, meaning
that power calculations based only on the placebo arm covariance structure may be anticonservative. These
more general power formulas are a useful resource for understanding the relative influence of these multiple
factors on the efficiency of cohort studies and clinical trials, and for designing future trials under the random
slopes and intercepts model.

Keywords: clinical trial; linear mixed effects model; power; sample size; study subject attrition.

1 Introduction

Ref. [1] have previously described sample size formulas for longitudinal studies with study subject dropout for
the mixed model repeated measures analysis comparing change from baseline to last visit across groups.
Missing data due to study subject dropout in clinical trials and cohort studies is commonand reduces statistical
power to detect treatment effects or differences in change across groups. We here derive power formulas for
longitudinal studies with study subject dropout for a different model, the mixed effects model with random
slopes and intercepts comparing mean slope across groups. We demonstrate how power formulas under this
model can be used to power a future trial of arbitrary design (arbitrary number and interval between follow-up
observation) regardless of the design of pilot study informing power calculations. We expand and generalize
previously published mixed effects model power formulas (e.g. [2, 3]) to fully accommodate differences in
length and interval between longitudinal observations, different allocation ratios, and different study subject
attrition rates. We also derive a formula that accommodates different covariance structures across groups.
Differences in covariance are typically ignored, butmay be critical to clinical trials, where changes over time in
the treatment arm reflect the normal background variability in progression observed in the placebo control arm
plus variability in response to treatment, meaning that power calculations based only on the placebo arm
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covariance structure may be anticonservative. To our knowledge, this is the first presentation of power for-
mulas for themixed effects model with random slopes and intercepts that accommodates differences in model
variance parameters across groups. We note that a substantial literature describes many of these features for
mixed model repeated measures analyses assuming compound symmetric or autoregressive covariance of
repeated measures [1, 3–5]. While compound symmetric and autoregressive covariance structures are math-
ematicallymore tractable, in our experience thesemodels are not appropriate for repeatedmeasures of chronic
progressive conditions.We demonstrate by example that compound symmetric and autoregressive covariance
structures typically are not appropriate for modeling chronic progressive conditions. In the interest of clarity,
in this paper we focus exclusively on the model with covariance structure imposed by random slopes and
intercepts most appropriate for chronic progressive outcome measures.

2 Background, the mixed effects model

The parameterization of the mixed effects model with random slopes and intercepts used in this derivation is
the familiar Laird and Ware mixed effects model parameterization with estimation and hypothesis testing by
restricted maximum likelihood (REML). We use the notation of [6] to represent within group longitudinal
observations yi on subject i as

yi = Xiα + Zibi + ei (1)

where α are the fixed effect intercept and slope describing the mean longitudinal trajectory, bi ∼ N (0,D) are
random, subject-specific intercepts and slopes, and ei ∼ N (0,Ri) is residual variation about the individual

trajectories.When convenient, wewill represent the elements ofD as( σ2
b0

σb0 , b1

σb0 , b1 σ2
b1

). In the derivation below,
Xi = Zi are subject specific design matrices composed of a column of ones and a column of times at which

measurements yi were made. To simplify presentation we maintain large sample normality assumptions in all

that follows, andwe do not consider covariates beyond ti. Consistent with prior literature [2, 3], we assume that

data are missing at random and that the covariance parameters are known.
Ref. [7] showed that V(α̂), the asymptotic variance of maximum likelihood estimates of α, is independent

of α̂ and derived its value. Under model (1), y is normally distributed withmean Xα and variance-covarianceV .
The likelihood function is

l = (2π)−12 n|V |12 exp( − 1
2
(y − Xα)′V−1(y − Xα)) (2)

The log likelihood, apart from a constant is

L = − 1
2
log|V | − 1

2
(y − Xα)′V−1(y − Xα) (3)

By the
̅̅
n

√
-consistency and asymptotic efficiency of MLE, α̂ the maximum likelihood estimate of α follows

̅̅
n

√ (α̂ − α)→d N (0, I−1(α)) (4)

where I(α) is the information matrix which equals to E( ∂2L
∂αh∂αk

). For the log likelihood (3), after taking the
partial derivative and expectation,

I(α) = X′V−1X (5)

Thus the asymptotic variance of α̂ is

V(α̂) = (X′V−1X)−1 (6)
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We can further simplify this as

V(α̂) = (X′V−1X)−1

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝(X′

1,X
′
2,…,X′

n)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V−1
1 0 0 0

0 V−1
2 0 0

0 0 ⋱ 0

0 0 0 V−1
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1

X2

⋮
Xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

= (∑
i
(X′

iV
−1
i Xi))−1

(7)

where

Vi = Cov(yi) = ZiDZ
′
i + Ri (8)

In particular, the lower right diagonal of V(α̂) is the variance of the mean slope estimate which is required for
sample size formulas to power clinical trials comparing mean slope in treatment versus control. The com-
ponents of V(α̂) can be estimated by REML [6].

Two specific cases of Eq. (7) are useful for illustrative purposes. If we are dealing with balanced data, then
Xi and Vi are constant across subjects, and Eq. (7) reduces to simply

V(α̂) = (nX′
iV

−1
i Xi)−1 (9)

A similar clinical trial with missing observations due to missed clinical exams or study subject dropout
would not have constant Vi and Xi, but instead would have a finite set of design and variance matrix pairs.
Letting k index this set, the variance of the fixed effect estimates for a clinical trial with missing data is then
equal to

V(α̂) = (∑
k
nk(X′

kV
−1
k Xk))−1

= (n∑
k
pk(X′

kV
−1
k Xk))−1

(10)

where the nk are counts of subjects in each set and sum to n, and pk = nk/n.

3 Power formulas derived

3.1 Power formula, balanced design with no dropout

For the balanced design with no dropout, standard power formulas apply. E.g., for equal allocation to arms,
sample size to detect a difference in mean slope Δ between treatment and control is

N/Arm = 2(zα/2 + zβ)2[(X′
iV

−1
i Xi)−1]

22
/Δ2 (11)

This formula can be used given an estimate of Vi = Cov(yi) obtained from pilot data or a previously completed
trial of comparable design.

A more generally applicable formula can be derived given the usual assumption of independent residual

error (Ri = σ2
ϵI). Under this assumption, it can be shown (Appendix A) that [(X′

iV
−1
i Xi)−1]22 = (σ2

b1
+

σ2
ϵ/∑(tj − t)2) [8], and Eq. (11) reduces to

N/Arm = 2(zα/2 + zβ)2(σ2
b1
+ σ2

ϵ/∑(tj − t)2))/Δ2 (12)

where Σ(tj − t)2 is the sum over the measurement time vector t = (t1, t2,…., tm)′ of the squared differences tj
minus mean time.
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Equation (12) is more generally applicable because it only requires estimates of σ2
ϵ and σ2

b1
, which can be

obtained by REML fit to longitudinal pilot data of arbitrary design. That is, future studies can be powered using
prior study data that do not necessarily have the same duration or interval between follow-up as the
planned future study [9]. Equation (12) also provides a heuristic illustration of the influence of study design on
power – longer trials or trials withmore longitudinal observations increase power by reducing the influence of

σ2
ϵ on overall variance.

3.2 Power formula, balanced design with dropout

Another important example, following Lu et al., is the case of study subject dropout during a cohort study or
clinical trial, also referred to as study subject attrition (SSA). SSA implies a subset of the dropout patterns
indexed by k in Eq. (10), restricting to them − 1 longitudinal dropout patterns composed of subjects whose last
visit is at tk, k = 2 throughm inclusive. Given the independent residual errors assumption and equal allocation
to arms, under SSA the sample size is calculated by

N/Arm = 2(zα/2 + zβ)2([(Σpk(X′
kV

−1
k Xk))−1]

22
/Δ2) (13)

where the sum is over the m − 1 dropout patterns defined by SSA, pk(X′
kV

−1
k Xk) are as in Eq. (10), and Vk are

matrices with off diagonal elements u, v equal to σ2
b0
+ (tu + tv)σb0 , b1 + tutvσ2

b1
and diagonal elements u, u equal

to σ2
b0
+ 2tuσb0 , b1 + t2uσ

2
b1
+ σ2

ϵ. As before, the parameters σ2
b0
, σb0 , b1, and σ2

b1
ofD and the residual error variance σ2

ϵ

are estimated by REML fit to representative prior longitudinal data.
Power formulas accommodating study subject attrition such as Eq. (13) and [1] are technically anti-

conservative because they ignore information lost by the occasional missed interim visit, although this bias is
typically small. If missing interim visit data is a concern, then applying Eq. (13) over all sets of missing data
patterns will ensure true nominal type I error rates are maintained.

3.3 Power formula, unequal allocation, unequal study subject attrition, and unequal
variance across groups

Formulas (12) through (13) assume that variance parameters and study subject attrition rates are the same in
the two groups being compared and the number of subjects in each group is equal. We may require a formula
that accommodates different study subject attrition rates across groups, and/or unequal allocation to groups
[1]. It would also be useful to have a formula that accommodates different variance parameters across groups.

Letting Term1 and Term2 indicate the values [(Σpk(X′
kV

−1
k Xk))−1]22 calculated separately for group1 and group2,

and given the independent identically distributed residual error assumption, sample size for group1 can be
calculated by

Ngroup1 = (zα/2 + zβ)2(Term1 + λTerm2)/Δ2) (14)

where λ is the sample size ratio across groups (Ngroup2 = Ngroup1/λ). The derivation of Eq. (14) is straightforward,
and follows from the observation that the variance of the difference in fixed effects slope estimates equals the
sum of the individual slope estimate variances. Factoring out 1/Ngroup1 from this sum leaves the quantity
(Term1 + λTerm2), and power as a function of Ngroup1 follows.

3.4 Modeling under the unequal variance across groups assumption

It is given that using Eq. (14) with unequal variance parameters to power a study presumes the analysis plan for
the study explicitly models the covariance structure of the two groups. For most applications, including
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clinical trials, σ2
ϵ is assumed constant across groups. Sample syntax explicitly modeling the remaining, within

group random effects parameters determining the covariance structure of repeated measures is included in
Appendix B.

4 Example

Given representative pilot data it is a simple matter to estimate the variance terms required for the power
formulas. For example, Table 1 is the output from a mixed effect model fit to longitudinal ADAS-cog scores
observed in the ADCS trial of a folic acid/B6/B12 compound to slow the progression of Alzheimer’s disease [10]
(n = 330 subjects and m = 7 observations per subject) using the software provided with the standard mixed
effectsmodel textMixed-EffectsModels in S and S-PLUS [11]. The correlation of repeatedmeasures estimated by
the random slopes and random intercepts REMLmodel fit (Table 2)mirrors the empirical correlation calculated
from the same sample data, confirming that thismodel well represents the covariance structure of longitudinal
repeated measures of a chronic progressive condition. In contrast, the commonly assumed compound sym-
metric and autoregressive covariance structures are constant on the diagonals and inconsistent with these
longitudinal data of a chronic progressive condition.

From Table 1, the estimated standard deviation of slopes σ̂b1 is 3.964 and the estimated standard deviation
of residual errors σ̂ϵ is 3.705 (Table 1). Assuming equal variance across arms, and using these values in Eq. (12),
the sample size required to detect a 25% slowing of cognitive decline (Δ = 0.25*4.06) with 80% power and a
type I error rate of 5% for an 18 month trial with observations every three months is 360 subjects/arm. For
comparison, a 24 month trial with observations every three months would require 296 subjects per arm using
Eq. (12). Note that it is not necessary for the design of the pilot study (i.e., the number of observations and
interval between observations) to match the design of the future trial, we only require that there are sufficient

pilot data to estimate the variance parameters σ2
b1
and σ2

ϵ.

5 Validation by computer simulation

To evaluate the performance of Eq. (12) through (14) we have performed computer simulations assuming data
following themodel fit obtained in the Example above.We first performed simulations assuming a clinical trial
with balanced design with six post-baseline time points with no loss to follow-up and with equal variance
within arms consistent with Eq. (12). Simulating a series of clinical trials with sample size from 200 to 600
subjects per armwith effect size equal to a 25% reduction in themean rate of decline observed in placebo (25%
of themean 4.06 points per year rate of decline observed in the pilot data (Table 1)) with 10,000 simulations per
sample size simulated, we found that simulated power closely tracks the power predicted by Eq. (12) (top line,
Figure 1).

Table : Sample model fit using the R package nlme and R function lme.

lme(y ∼ time, random = ∼ time|id)

Random effects formula: ∼time | subject

StdDev Corr

(Intercept) 7.432548 (Intr)

Time 3.964215 0.465

residual 3.705466

Fixed effects: ADAS ∼ time

Value Std.Error

(Intercept) 17.745024 0.4321112

Time 4.057879 0.2672020

Number of observations: 2310/Number of groups: 330
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To validate the power formula for data with study subject attrition described in Eq. (13), we simulated data
under equivalent conditions, except that for each simulation we randomly dropped 5% of the initial sample
from each arm at t2 through t7. We similarly found that simulated power closely tracks the power predicted by
Eq. (13) power formula (bottom line, Figure 1). Study power decreases when there is study subject attrition
(Figure 1).

To validate the power formula for data with unequal allocation to groups described in Eq. (14), we
simulated data with 5% study subject attrition at each follow-up visit as above, but let the allocation ratio λ
vary from one to two. Simulated power closely tracks the power predicted by Eq. (14) power formula (Figure 2).
Predictably [12, 13], power is maximized when λ equals one, and declines as the allocation ratio deviates from
one (Figure 2).

To validate Eq. (14) power formula when covariance structures differ across groups, we simulated data as
done in the top line of Figure 1, but increased σb1 by 50% in one of the groups. Simulated power closely tracks
the power predicted by Eq. (14) power formula (Figure 3). The top line from Figure 1 is included in Figure 3 for
reference. Figure 3 illustrates the potential for anticonservative power calculations in the clinical trial setting
when variance parameters used in power calculations are informed by prior placebo arm data and assumed to
be constant across arms.

Table : Correlationmatrices estimated using data from the ADCS Folate/B/B clinical trial. The correlationmatrix imposedby
a random effect model fit (RE, bottom panel) closely mirrors the empirical correlation matrix (top panel).

Empirical correlation matrix0
BBBBBBBB@

 : : : : : :
:  : : : : :
: :  : : : :
: : :  : : :
: : : :  : :
: : : : :  :
: : : : : : 

1
CCCCCCCCA

Correlation matrix estimated assuming RE0
BBBBBBBB@

 : : : : : :
:  : : : : :
: :  : : : :
: : :  : : :
: : : :  : :
: : : : :  :
: : : : : : 

1
CCCCCCCCA

Figure 1: Theoretical power curves versus power
estimated by computer simulation given no study
subject attrition (top curve) and give 5% attrition per
follow-up visit (bottom curve) (10,000 simulations per
sample size, two-sided test, type I error α = 0.05).
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6 Discussion

There are limitations to the Laird andWare model as parameterized in Eq. (1), because this model depends on
the assumption that mean trajectories are linear as a function of time. This assumption may be violated,
particularly in clinical trials of treatments with potential acute treatments effect beyond simple alteration of
rate of progress of disease. In this circumstance mixed model repeated measure analysis [1] or model robust
alternatives such as generalized estimating equations [14] would be preferred. In our experience the linearity
assumption is often appropriate for chronic progression conditions, especially when the interval of obser-
vation under study is small relative to the full trajectory of disease.

We further note that the formulas presented here assume variance parameters are known, as is typical of
the power formula literature [1–3, 5, 15]. However, variance parameters may be uncertain if sample size in pilot
studies used to estimate the variance parameters is small or if pilot data are not perfectly representative of the
future investigation being powered. There is a literature on characterizing power when variance parameter
estimates are uncertain (e.g. [16]). However, these methods apply to narrow applications that do not include
random effects models. We recommend sensitivity analyses using a range of plausible variance parameters to
ensure that planned future investigations are adequately powered. If the prior data informing power calcu-
lations are available, sensitivity analyses may be informed by bootstrap estimates of the uncertainty of
variance parameter estimates (e.g., [17]). We have also used computer simulations to explore the adequacy of
pilot study sample size to inform future trials in other applications [18].

Figure 3: Theoretical power curves versus power
estimated by computer simulation given equal variance
of random slopes (top line) and given σb1 is increased by
50% in one of the groups (bottom line) (10,000
simulations per sample size, two-sided test, type I error
α = 0.05).

Figure 2: Theoretical powers curve versus power
estimated by computer simulation given 5% study
subject attrition per visit, and allocation ratio λ = 1 (top
curve) and λ = 2 (bottom curve) (10,000 simulations per
sample size, two-sided test, type I error α = 0.05).

Y. Zhao and S.D. Edland: Power formulas for mixed effects models 179



The formulas derived here are useful for determining the relative efficiency of different study designs using
themixed effects model to test for differences in mean rate of change between groups. We have described how
efficiency can vary by the number and interval between observations, the study subject attrition rate, the
allocation ratio, and by differences in variance parameters between groups. Increasing the length of obser-
vation or number of observations increases statistical power, althoughwith diminishing returns depending on
the magnitude of residual error variance of the outcome measure under study (see Eq. (12)). Study subject
attrition can also meaningfully impact statistical power and should be accounted for in study design (see Eq.
(13) and, e.g., Figure 1).

Regarding recruitment allocation ratios, if all other conditions are equal across groups, then altering the
allocation ratio from one-to-one reduces statistical power for given study sample size [12]. Altering the allo-
cation ratio has been propose to improve statistical power when there is differential attrition rates across
clinical trial arms [1]. More commonly, allocation ratios are altered to increase the probability of randomization
to the active treatment in the hope of increasing clinical trial recruitment rates. While this approach may
increase recruitment rates, it also implies more subjects will have to be recruited to achieve target statistical
power, and trade-offs between clinic trial cost and time to completion should be considered carefully when
planning a trial with unequal randomization to arms [13].

Finally, we describe how statistical power depends on variance parameters whichmay vary across groups
(Eq. (14)). This consideration is typically overlooked, butmay be especially relevant to clinical trials, where rate
of progression in the active treatment arm is a function of both underlying variability in rate of progression and
variability in response to treatment. Given that response to treatment is unlikely to be constant across subjects,
we can anticipate that the variance of random slopes in the treatment arm will be larger than variance in the
control arm if there is a treatment effect. Hence, power calculations based only on the covariance within
placebo data will be anticonservative. Typically pilot data for clinical trials are from placebo arm data of a
previous trial or registry trial with no treatment arm. A conservative power calculation assumption under these

circumstances would be to use an inflation factor for σ2
b1
within the treatment arm in (14) to be more likely to

achieve nominal power in the planned trial.
Formulas (12), (13), and (14) are implemented in the R package longpower [19], and will be useful tools for

planning future cohort studies and clinical trials as well as for comparing the influence of the many factors
affecting the efficiency of such investigations. Areas of additional research include modifying power calcu-
lation methods in anticipation of evolving guidelines on statistical analysis plans for clinical trials in the
presence of missing not at random data [20], and generalizing power formulas to more directly address the
stochastic nature of covariance parameter estimates typically used in practice.

Author contribution: All the authors have accepted responsibility for the entire content of this submitted
manuscript and approved submission.
Research funding: This work was supported by The Shiley Marcos Alzheimer’s Disease Resarch Center and
National Institute on Aging (AG049810, AG062429, AG066088).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix A

To derive the variance term in Eq. (12), we need to find the bottom right corner of (X′
iV

−1
i Xi)−1. As derived by [21],

V−1
i = (XiDX

T
i + σ2

ϵI)−1
= σ−2

ϵ I − σ−2
ϵ Xi(X′

iXi)−1X′
i + Xi(X′

iXi)−1(σ2
ϵ(X′

iXi)−1 + D)−1(X′
iXi)−1X′

i

Substituting and collecting terms,

180 Y. Zhao and S.D. Edland: Power formulas for mixed effects models



(X′
iV

−1
i Xi)−1 = σ2

ϵ(X′
iXi)−1 + D

and

[(X′
iV

−1
i Xi)−1]

22
= σ2

ϵ/∑(tj − t)2 + σ2
b1

Appendix B

The random effects model with random slopes and intercepts can be performed with the lmer function within
the R package lmerTest [22]. To test for differences in slopes between groups under the assumption of equal
covariance structure in the two groups, the lmer model call is

lmer (Y ∼ GROUP ∗ TIME + (TIME | ID))

where ID indexes individual subjects, GROUP is a 0, 1 variable indicating placebo (0) and active treatment (1),
and TIME are times of repeated observations on the dependent variable Y.

To test for differences in slopes between groups under the assumption of unequal covariance structure in
the two groups, as implemented in power Formula (14), the lmer model call is

TIME_0 <- ifelse (GROUP = = 0, TIME, 0)

TIME_1 <- ifelse (GROUP = = 1, TIME, 0)

lmer (Y ∼ TIME * GROUP + (TIME_0|ID) + (TIME_1|ID))
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