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Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common precursor 
state for blood cancers that most frequently occurs due to mutations in the DNA-
methylation modifying enzymes DNMT3A or TET2. We used DNA-methylation array 
and whole-genome sequencing data from four cohorts together comprising 5522 per-
sons to study the association between CHIP, epigenetic clocks, and health outcomes. 
CHIP was strongly associated with epigenetic age acceleration, defined as the residual 
after regressing epigenetic clock age on chronological age, in several clocks, rang-
ing from 1.31 years (GrimAge, p < 8.6 × 10−7) to 3.08 years (EEAA, p < 3.7 × 10−18). 
Mutations in most CHIP genes except DNA-damage response genes were associated 
with increases in several measures of age acceleration. CHIP carriers with mutations 
in multiple genes had the largest increases in age acceleration and decrease in esti-
mated telomere length. Finally, we found that ~40% of CHIP carriers had acceleration 
>0 in both Hannum and GrimAge (referred to as AgeAccelHG+). This group was at 
high risk of all-cause mortality (hazard ratio 2.90, p < 4.1 × 10−8) and coronary heart 
disease (CHD) (hazard ratio 3.24, p < 9.3 × 10−6) compared to those who were CHIP−/
AgeAccelHG−. In contrast, the other ~60% of CHIP carriers who were AgeAccelHG− 
were not at increased risk of these outcomes. In summary, CHIP is strongly linked to 
age acceleration in multiple clocks, and the combination of CHIP and epigenetic aging 
may be used to identify a population at high risk for adverse outcomes and who may 
be a target for clinical interventions.
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1  |  INTRODUC TION

Aging is inextricably associated with an increase in the number 
of somatic mutations, and this process is believed to be central 
to the development of cancer (Blokzijl et al., 2016; Hoang et al., 
2016; Martincorena & Campbell, 2015; Risques & Kennedy, 2018; 
Welch et al., 2012). Clonal hematopoiesis of indeterminate poten-
tial (CHIP) (Jaiswal et al., 2014) is defined by the presence of a 
cancer-associated somatic mutation in the blood cells of people 
without a blood cancer or other known clonal disorder. CHIP orig-
inates when hematopoietic stem cells (HSCs) acquire a random 
mutation, usually in an epigenetic factor, that results in increased 
clone fitness (Jaiswal & Ebert, 2019). CHIP is strongly associated 

with age, and carriers of these mutations have an increased risk 
for developing blood cancers, but also coronary heart disease 
(CHD) and all-cause mortality (Jaiswal et al., 2014, 2017). In addi-
tion to age, CHIP has been found to occur at a higher prevalence 
in males (Jaiswal et al., 2014) and a lower prevalence in people 
of self-reported Hispanic and East Asian ancestry compared to 
Europeans (Bick, Weinstock, et al., 2020; Jaiswal et al., 2014). The 
association of CHIP and heart disease may result from enhanced 
inflammatory gene expression in mutant macrophages within ath-
erosclerotic plaques (Bick, Pirruccello, et al., 2020; Fuster et al., 
2017; Jaiswal et al., 2017), demonstrating that at least some of 
these mutations cause dysfunction of immune cells and affect 
phenotypes apart from cancer.

mailto:sjaiswal@stanford.edu
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The availability of DNA-methylation data from large epidemio-
logical cohorts has advanced our understanding of epigenetic aging 
in recent years. Several “methylation clocks” have been developed 
(Hannum et al., 2013; Horvath, 2013; Horvath et al., 2018; Levine 
et al., 2018; Lu, Quach, et al., 2019) that use methylation state at 
a subset of CpGs to predict chronological age with high accuracy 
in healthy individuals. “Age acceleration” results when predicted 
methylation age is greater than chronological age and associates 
with increased risk of CHD (Levine et al., 2018; Lu, Quach, et al., 
2019; Perna et al., 2016) and all-cause mortality (Chen et al., 2016; 
Christiansen et al., 2016; Levine et al., 2018; Lu, Quach, et al., 2019, 
p. 201; Marioni et al., 2015; Perna et al., 2016). Similar to prior stud-
ies (Horvath & Raj, 2018), we defined age acceleration as the residual 
of a linear model of a clock estimate regressed against chronological 
age. By definition, this measure is not correlated with chronolog-
ical age and a positive (or negative) value indicates that the clock 
age is higher (or lower) than expected based on chronological age. 
The factors underlying epigenetic age acceleration are incompletely 
understood. Recent work has noted that two distinct categories 
of epigenetic clocks, intrinsic and extrinsic, which are believed to 
capture different aspects of aging. Intrinsic aging is independent 

of cell type and may be partly driven by the number of times a cell 
has divided (Lu et al., 2018), while extrinsic aging, is associated with 
changes of cell type composition in blood (Horvath et al., 2016), and 
maybe influenced by environmental factors (Levine et al., 2018; Lu, 
Quach, et al., 2019). The Horvath and IEAA clocks reflect intrinsic 
aging, whereas the Hannum, EEAA, PhenoAge, and GrimAge clocks 
are measures of extrinsic aging (Table 1). GrimAge and PhenoAge 
were also trained to be predictors of mortality (Levine et al., 2018; 
Lu, Quach, et al., 2019). In addition, several DNA methylation-based 
predictors of other aging-related phenotypes have recently been de-
veloped to improve mortality prediction, such as surrogate biomark-
ers for plasma protein levels (adrenomedullin, beta-2-microglobulin, 
cystatin C, leptin, plasminogen activator inhibitor 1, tissue inhibitor 
matrix metalloproteinase 1) (Lu, Quach, et al., 2019), smoking pack 
years (Lu, Quach, et al., 2019), and telomere length (Lu, Seeboth, 
et al., 2019).

We hypothesized that CHIP may be an acquired genetic factor 
associated with epigenetic age acceleration. Here, we use whole-
genome sequencing (WGS) and DNA-methylation array data from 
several cohorts within the Trans-omics for Precision Medicine 
(TOPMed) program to test the hypothesis that CHIP is linked to 

TA B L E  1 Summary of epigenetic clocks used in the study

Clock Type Tissue Outcome Publication Notes

Horvath Intrinsic Multiple Chronological 
age

Horvath (2013) Inaccessible tissues primarily from tissue-adjacent 
normal samples in The Cancer Genome Atlas 
(see publication)

IEAA Intrinsic Multiple Chronological 
age

Quach et al. (2017) Uses same CpGs as Horvath clock, but reweighted 
as described in Quach et al. to minimize 
influence of cell composition

Hannum Extrinsic Whole blood Chronological 
age

Hannum et al. (2013) Highly correlated with aging-related changes in 
blood cell composition

EEAA Extrinsic Whole blood Chronological 
age

Quach et al. (2017) Uses same CpGs as Hannum clock, but reweighted 
as described in Quach et al. to maximize 
influence of cell composition

SkinAndBloodClock Intrinsic Whole blood, 
fibroblasts

Chronological 
age

Horvath et al. (2018) Created to address poor age prediction in Horvath 
clock in skin and whole blood

PhenoAge Extrinsic Whole blood Time to death Levine et al. (2018) PhenoAge is measure of mortality risk derived 
from National Health and Nutrition 
Examination Survey using the following 
markers: albumin, creatinine, serum glucose, log 
C-reactive protein, lymphocyte percent, mean 
red cell volume, red cell distribution width, 
alkaline phosphatase, white blood cell count, 
and age (see publication for details)

GrimAge Extrinsic Whole blood Time to death Lu, Quach, et al. (2019) Methylation is used to predict eight surrogate 
biomarkers: Adrenomedullin (ADM), Beta-
2-Microglobulin (B2M), Cystatin C, Growth 
Differentiation Factor 15 (GDF15), Leptin, 
Serpin Family E Member 1 (SERPINE/PAI1), 
TIMP Metalloproteinase Inhibitor 1 (TIMP1), 
smoking pack-years (PACKYRS). The predicted 
values of those biomarkers are used to predict 
mortality (see publication for details)

Abbreviations: EEAA, extrinsic epigenetic age acceleration; IEAA, intrinsic epigenetic age acceleration.
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epigenetic age acceleration. We find that CHIP is strongly associated 
with age acceleration in several clocks. We further assess whether 
there are gene-specific associations of CHIP with epigenetic age and 
methylation-estimated telomere length. Finally, we test whether the 
combination of CHIP status and epigenetic age can be used to iden-
tify the group at highest risk for adverse outcomes.

2  |  RESULTS

2.1  |  Association between CHIP and epigenetic age 
acceleration in several clocks

We used WGS data obtained from whole blood DNA for several large 
cohorts within TOPMed, including the Framingham Heart Study (FHS), 
the Jackson Heart Study (JHS), the Women's Health Initiative (WHI), 
and the Multi-Ethnic Study of Atherosclerosis (MESA), to identify CHIP 
as previously described (Bick, Pirruccello, et al., 2020; Bick, Weinstock, 
et al., 2020) (see Table S1 for a demographic summary of cohorts). 
The populations assayed for methylation were an unbiased selection 
from within FHS and JHS, while the WHI TOPMed samples were over-
sampled for incident stroke and venous thromboembolism. The BA23 
subset of WHI was a CHD case/control study. Importantly, the blood 
draw used for methylation array analysis was the same as that used for 
WGS in FHS, JHS and MESA, and in WHI, only persons for whom the 
blood draw for the WGS was within 3 years of the draw for methyla-
tion were included. After adjusting age acceleration residuals for sex, 
self-reported ancestry, and cohort, 5522 individuals, including 319 
CHIP carriers, from the four cohorts were assessed for seven different 
aging measures: DNAmAge (Horvath) (Horvath, 2013), DNAmHannum 
(Hannum) (Hannum et al., 2013), DNAmPhenoAge (PhenoAge) (Levine 
et al., 2018), DNAmSkinClock (SkinBloodClock) (Horvath et al., 2018), 
DNAmGrimAge (GrimAge) (Lu, Quach, et al., 2019), intrinsic epige-
netic age acceleration (IEAA) (Lu et al., 2018) and extrinsic epigenetic 
age acceleration (EEAA) (Lu et al., 2018), and a methylation-based esti-
mate of telomere length (DNAmTL) (see Methods). The effects of CHIP 
were assessed overall (any CHIP mutation), as well as at the level of 
specific classes of CHIP mutations (see Methods).

Consistent with previous results, carriers of CHIP were signifi-
cantly older than non-carriers (+7.23 ± 0.61 years, p < 1.13 × 10−31, 
Figures S1 and S2), and the prevalence of CHIP reached >20% in 
those over 80 years (Figure S1). We then tested whether age accel-
eration residuals from several clocks bore any association to CHIP 
(Figure 1). Similar to the results of Robertson et al. (2019), CHIP was 
most strongly associated with intrinsic age acceleration (Horvath: 
3.01 years, p < 3.0 × 10−25; IEAA: 2.92 years, p < 9.3 × 10−26). Due 
to our larger sample size, we also observed strong associations 
between CHIP and extrinsic age acceleration (Hannum clock: 
2.71 years, p < 1.8 × 10−23; EEAA: 3.08 years, p < 3.7 × 10−18), as well 
as PhenoAge (2.21 years, p < 1.0 × 10−8), SkinBloodClock (1.58 years, 
p < 2.5 × 10−13), and GrimAge (1.31 years, p < 8.6 × 10−7). We also 
found that the number of driver mutations was associated with a 

stepwise increase in age acceleration for several clocks, and this re-
lationship was strongest for Hannum and EEAA (Table S2).

We also found modest associations between CHIP and several 
epigenetic surrogate markers of plasma proteins as well as blood 
counts (Table S3A,B), and between clock estimates and variant allele 
fraction (VAF), which is an approximation of clone size (Table S4). 
Methylation data can also be used to estimate a surrogate marker of 
leukocyte telomere length (LTL), DNAmTL (Lu, Seeboth, et al., 2019). 
CHIP was associated with reduced predicted age-adjusted DNAmTL 
in CHIP overall (−0.06, p < 1.2 × 10−8), as well as several mutation 
classes (Figure S3A). An increasing number of mutations was asso-
ciated with a decrease in predicted DNAmTL (2 mut. vs. 1: −0.174, 
p < 8.0 × 10−7; >2 mut. vs. 2: −0.404, p < 1.1 × 10−5, Figure S3B,C).

2.2  |  Gene-specific associations of CHIP with 
epigenetic age acceleration

Clonal hematopoiesis of indeterminate potential most commonly 
occurs due to mutations in genes coding for the DNA methylation-
altering enzymes DNMT3A and TET2, but can also arise due to muta-
tions in ASXL1, JAK2, splicing factors, and DNA-damage response 
(DDR) genes. Accordingly, we examined the associations of muta-
tions in specific CHIP genes with age acceleration (Table 2). In all 
clocks, the direction of association for DNMT3A and TET2 mutations 
was the same, although those with TET2 mutations had significantly 
greater age acceleration than those with DNMT3A mutations for 
Hannum (2.10 years, p < 0.0012) and EEAA (2.32 years, p < 0.0063), 
but not other clocks. We also performed differential methylation 
analysis to assess whether mutations in the DNA-methylation modi-
fying enzymes DNMT3A and TET2 had divergent effects at the clock 
CpGs. Mutations in both genes primarily resulted in hypomethyla-
tion although a small number of CpGs showed hypermethylation in 
TET2 (Figure S4A,B). We also observed at the clock CpGs that the 

F I G U R E  1 CHIP is associated with increased age acceleration. 
Forest plot of the effect sizes and confidence intervals for the effect 
of CHIP on age acceleration estimate from seven methylation clocks
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M-values (a log-transformed measure of the percent methylation at 
each site) in persons with DNMT3A and TET2 mutations were highly 
correlated (Figure S4C), indicating that the methylation state of per-
sons with the two mutations is largely similar, despite their opposing 
enzymatic effects.

Persons with mutations in multiple genes had the largest in-
creases in age acceleration across all clocks except PhenoAge, con-
sistent with our observation that age acceleration increases with the 
number of mutations. Conversely, no increase in age acceleration 
was observed in persons with mutations in DDR genes (TP53, PPM1D, 
BRCC3), which is consistent with the lack of association with age ac-
celeration observed for the same mutations in cancer tissue samples 
(Horvath, 2013). Although we had only eight individuals with JAK2 
mutations in our cohort, these mutations showed an exceptionally 
strong association for a single mutation in several clocks, the most 
extreme example being PhenoAge (10.01 years, p < 9.7 × 10−6). The 
PhenoAge clock was trained to predict a composite measure of mor-
tality risk which includes several hematological variables such as 
white blood cell count, white blood cell differential, and several red 
blood cell parameters which may be abnormal in myeloproliferative 
neoplasm, a hematological malignancy which is strongly associated 
with JAK2 mutations. CHIP overall was nominally associated with 
estimated pack years of smoking (DNAmPACKYRS), but only mu-
tations in ASXL1 were significantly associated with this measure in 
a gene-specific analysis (7.54 pack years, p < 0.002), a finding that 
is in accordance with a recent report (Bolton et al., 2020) (Table S3).

2.3  |  Association of CHIP and epigenetic age 
acceleration with clinical outcomes

Several previous studies have linked both CHIP (Jaiswal et al., 2014, 
2017) and age acceleration in some clocks (Levine et al., 2018; Lu, 
Quach, et al., 2019) to increased risk of adverse clinical outcomes, 
in particular all-cause mortality and CHD. We asked whether the 
combination of CHIP and age acceleration could further stratify car-
riers of CHIP into high-risk and low-risk groups for these outcomes 
using Cox proportional hazards models adjusted for chronological 
age at blood draw, low-density lipoprotein cholesterol, high-density 
lipoprotein cholesterol, triglycerides, systolic blood pressure, type 2 
diabetes status, smoking status, and self-reported ancestry in 4088 
persons from JHS, FHS, and WHI (Figure 2B,C). In FHS, JHS, and 
WHI EMPC, which are unselected for CHD, there were 720 deaths 
(74 in CHIP carriers) out of 3624 participants (213 CHIP carriers) and 
212 cases of incident CHD (22 in CHIP carriers) out of 3331 partici-
pants (192 CHIP carriers) after excluding those with CHD prevalent 
to time of blood draw. In WHI BA23, which was a case-control study 
for CHD, there were 168 cases of incident CHD (18 in CHIP carriers) 
in 458 total participants (42 CHIP carriers).

We defined a person to have “age acceleration” (AgeAccel) for 
a clock if their values for an age acceleration residual exceeded 
zero after adjustment for age at blood draw, sex, self-reported an-
cestry, and study cohort. We then tested the interaction between 

this dichotomous variable and CHIP status in predicting mortality in 
each of the seven clocks using Cox models. As shown in Table S5, we 
found that the most significant interactions were for the Hannum 
and GrimAge clocks, although neither reached Bonferroni-corrected 
statistical significance. Though both the Hannum and GrimAge 
clocks were predictive of time to death or CHD in previous studies 
(Lu, Quach, et al., 2019; Marioni et al., 2015; Perna et al., 2016), they 
were trained on different outcomes (age for Hannum versus time to 
death for GrimAge), and are not strongly correlated in our dataset 
(bicor = 0.242, R2 = 0.058, Figure 2A). Therefore, we reasoned that 
a combined measure incorporating age acceleration in both Hannum 
and GrimAge would better stratify high-  and low-risk groups be-
cause each clock provides orthogonal information. By this combined 
measure (henceforth referred to as AgeAccelHG), 102/255 (40%) of 
CHIP carriers were AgeAccelHG+ (age acceleration residual >0 for 
both Hannum and GrimAge), compared to 922/3833 (24%) persons 
without CHIP. Considered individually in separate models, CHIP and 
AgeAccelHG were each associated with a modest increase in risk 
of all-cause mortality (CHIP: HR 1.27, p < 0.077; AgeAccelHG: HR 
1.84, p < 4.0 × 10−14), consistent with previous findings. When we 
modeled the interaction of CHIP with AgeAccelHG for all-cause 
mortality, we found a significant interaction effect (CHIP main ef-
fect: coefficient  =  −0.25, p  <  0.20; AgeAccelHG main effect: co-
efficient  =  0.51, p  <  3.08  ×  10−9; interaction: coefficient  =  0.80, 
p < 3.74 × 10−3), which remained significant after Bonferroni correc-
tion for eight tests.

To validate this finding, we sought replication in an indepen-
dent cohort, the BA23 subset of WHI, which was not used in the 
above mortality analysis (Horvath et al., 2016). When we modeled 
the interaction of CHIP with AgeAccelHG for CHD in BA23, the 
interaction term was again significant (CHIP main effect: coeffi-
cient = −0.24, p < 0.60; AgeAccelHG main effect: coefficient = 0.24, 
p < 0.35; interaction: coefficient = 1.72, p < 0.01).

Having demonstrated a significant statistical interaction between 
CHIP and AgeAccelHG for clinical outcomes, we combined these 
two variables into a single, 4-factor variable for further modeling. 
For CHD, we included incident events in FHS, JHS, and WHI EMPC 
together with WHI BA23 as a meta-analysis. Persons who were 
CHIP+/AgeAccelHG+ had much greater risk of all-cause mortality 
(HR 2.90, p < 4.1 × 10−8) and CHD (HR 3.24, p < 9.3 × 10−6) compared 
to those who were CHIP−/AgeAccelHG−. Those who were CHIP−/
AgeAccelHG+ had a more modest increase in risk of all-cause mor-
tality (HR 1.66, p < 3.1 × 10−9), and CHD (HR 1.39, p < 0.012) com-
pared to those who were CHIP−/AgeAccelHG−. In contrast, those 
who were CHIP+/AgeAccelHG− did not have elevated risk of either 
all-cause mortality (HR 0.78, p < 0.20) or CHD (HR 1.03, p < 0.93) 
compared to those who were CHIP−/AgeAccelHG− (Figure 2B,C). 
We also fitted contrasts to estimate the hazard ratios for all-cause 
mortality and CHD for CHIP only in persons with AgeAccelHG+ and 
AgeAccelHG+ only in persons with CHIP, in both cases finding the 
associations to be significant (Figure S5).

We also asked if there were gene-level differences in risk 
of these outcomes. We had insufficient sample size to assess 
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either mortality or CHD individually, so we combined the two 
into a composite outcome. Being AgeAccelHG+ increased the 
risk of the composite outcome for those with TET2 mutations 
relative to those who were CHIP−/AgeAccelHG− (TET2 mu-
tated+/AgeAccelHG+: HR = 3.88, p < 1.6 × 10−6; TET2 mutated+/
AgeAccelHG−: HR = 1.14, p < 0.66; p for interaction < 0.065) to a 
greater degree than those with DNMT3A mutations (DNMT3A mu-
tated+/AgeAccelHG+: HR = 1.99, p < 0.028; DNMT3A mutated+/
AgeAccelHG−: HR  =  0.68, p  <  0.079; p for interaction  <  0.11) 
or other non-DDR mutations (other mutation+/AgeAccelHG+: 
HR  =  2.88, p  <  1.1  ×  10−5; other mutation+/AgeAccelHG−: 
HR = 1.00, p < 1; p for interaction < 0.19).

To illustrate absolute risks among those with both CHIP and 
AgeAccelHG, we determined the cumulative incidence of all-cause 
mortality and CHD in persons from FHS, JHS, and WHI EMPC 
aged 65 or older at blood draw who did not have prevalent CHD 
(Figure 2D,E). Those who were CHIP+/AgeAccelHG+ had a cumu-
lative incidence of all-cause mortality of 46.6% by 10 years and a 
cumulative incidence of CHD of 22.2% by 10  years. In contrast, 
the other three groups had substantially lower 10-year cumula-
tive incidence of all-cause mortality (CHIP+/AgeAccelHG− 17.7%, 
CHIP−/AgeAccelHG+ 25.8%, CHIP−/AgeAccelHG− 19.2%) and CHD 
(CHIP+/AgeAccelHG− 7.98%, CHIP−/AgeAccelHG+ 13.0%, CHIP−/
AgeAccelHG− 8.66%).

Our data permitted us to also ask whether there was an associ-
ation of CHIP and AgeAccelHG to time to death in those who had a 
first CHD event, a subgroup that is often the target of clinical inter-
ventions. We restricted our analysis to individuals who had a first 
CHD event after age 70 and, if they died, did so more than 30 days 
after the CHD event. We found a significant interaction between 
CHIP and AgeAccelHG for all-cause mortality after CHD (p < 0.036). 
Persons who were CHIP+/AgeAccelHG+ showed significant increase 
in risk of all-cause mortality (HR = 3.16, p < 1.16 × 10−5), while those 
who were CHIP+/AgeAccelHG− (HR = 0.462, p < 0.27) or CHIP−/
AgeAccelHG+ (HR = 1.40, p < 0.13) showed no significant increase. 
The 5-year cumulative incidence of death after CHD for those who 
were CHIP+/AgeAccelHG+ was 58.5%, while for all other groups 
it was substantially lower (CHIP+/AgeAccelHG− 18.8%, CHIP−/
AgeAccelHG+ 20.0%, CHIP−/AgeAccelHG− 19.8%, Figure 2F).

Given the previous findings linking both CHIP (Jaiswal et al., 
2017) and extrinsic epigenetic aging (Horvath et al., 2016; Levine 
et al., 2018; Lu, Quach, et al., 2019) to inflammation, we asked 
whether plasma levels of the inflammation marker high-sensitivity 
C-reactive protein (hs-CRP) showed any evidence of interaction with 
CHIP for all-cause mortality or CHD. We found evidence for a main 
effect of hs-CRP on risk for all-cause mortality, but not for an in-
teraction with CHIP (CHIP main effect: coefficient = 0.22, p < 0.22; 
log (hs-CRP) main effect: coefficient = 0.09, p < 1.01 × 10−3; inter-
action: coefficient = 0.076, p < 0.29). For CHD, no effect of hs-CRP 
was observed (CHIP main effect: coefficient = 0.23 p < 0.49; log (hs-
CRP) main effect: coefficient = 0.01, p  <  0.90; interaction: coeffi-
cient = −0.3, p < 0.82). We also stratified our cohort into eight groups 
based upon CHIP status, AgeAccelHG status, and whether hs-CRP TA
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levels were above 2 mg/L, an established clinical cutoff. Individuals 
with CHIP and AgeAccelHG showed a similar risk of all-cause mor-
tality and CHD regardless of whether they had high or low hs-CRP 
levels (Figure S5E,F). These results indicate that hs-CRP is a poor 
discriminator of risk in CHIP carriers, unlike AgeAccelHG.

A coding SNP in IL6R (rs2228145), which results in Asp358Ala, 
was previously found to attenuate the increased risk for mortal-
ity and CHD associated with CHIP (Bick, Pirruccello, et al., 2020; 
Bick, Weinstock, et al., 2020). Here, the interaction between CHIP 
status and alternate allele count at rs2228145 was not significant 
for either all-cause mortality (CHIP main effect: coefficient = 0.27, 
p < 0.158; rs2228145 main effect: coefficient = −0.082 per alter-
nate allele, p  <  0.21; interaction: coefficient  =  −0.044 per alter-
nate allele, p < 0.82) or CHD (CHIP main effect: coefficient = 0.23, 
p < 0.36; rs2228145 main effect: coefficient = −0.16 per alternate 
allele, p < 0.08; interaction: coefficient = 0.25 per alternate allele, 
p  <  0.36). There were also no significant interactions between 
rs2228145 genotype and the combined CHIP/AgeAccelHG vari-
able (Figure S5C,D). These results indicate that IL6R genotype is 
a poor discriminator of risk in CHIP carriers in this dataset, unlike 
AgeAccelHG. However, we did find differences based on which 
gene was mutated. Those who were TET2-CHIP+/AgeAccelHG+ 

and with no alternate alleles of rs2228145 (IL6RWT) had the 
highest risk for the composite mortality/CHD outcome rela-
tive to the referent group of CHIP−/AgeAccelHG−/IL6RWT (HR 
=11.3, p < 2.4 × 10−21, Figure S6). Those who were TET2-CHIP+/
AgeAccelHG+ but carried 1 or 2 alternate alleles of rs2228145 
(IL6RMut) had substantially lower risk (HR = 1.91 compared to the 
same referent group, p < 0.066; coefficient for interaction = −1.12 
per alternate allele, p for interaction < 9.6 × 10−7, Figure S6). There 
was no significant difference in risk based on rs2228145 genotype 
in those who were TET2-CHIP+/AgeAccelHG−. We also did not find 
significant differences in risk of death/CHD by rs2228145 geno-
type in DNMT3A-CHIP or CHIP with other non-DDR mutations re-
gardless of AgeAccelHG status.

3  |  DISCUSSION

The results presented here permit us to draw several conclu-
sions. First, it is clear that CHIP is strongly associated with epi-
genetic aging in several clocks. Consistent with the results from 
Robertson et al. (2019), we find the strongest associations to be 
with the intrinsic clocks, Horvath and IEAA. This could reflect 

F I G U R E  2 CHIP and epigenetic age acceleration identify persons at high risk of all-cause mortality and development of coronary heart 
disease (CHD). (a) Scatterplot of correlation between AgeAccelGrim and AgeAccelHannum in all cohorts. (b, c) Forest plots showing hazard 
ratios, confidence intervals, and p-values for Cox proportional hazard models of all-cause mortality (b) and development of CHD (c) in persons 
from FHS, JHS, and WHI. All models included chronological age, race, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, 
triglycerides, systolic blood pressure, type 2 diabetes status and smoking status as covariates. Top two sections show the overall effect size 
of CHIP and age acceleration and bottom section shows effect sizes based on dividing persons into four groups based upon presence of CHIP 
and age acceleration. The results in c are a meta-analysis of events in FHS, JHS, WHI EMPC (unselected for CHD), and WHI BA23 (case-control 
study for CHD). (d, e) Cumulative incidence plots of death (d) and CHD (e) in persons divided into groups by the presence of CHIP (CHIP+/
CHIP−) and age acceleration (AgeAccelHG+/AgeAccelHG−). The numbers in parentheses indicate the number of persons in each group for 
these analyses. Only persons over 65 and free of CHD at baseline were used in d and e, while all persons were used for b and c. (f) Cumulative 
incidence plot of death in persons with incident CHD after age 70. Individuals who died less than 30 days after CHD were excluded

(a) (b) (c)

(d) (e) (f)
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a shared genetic architecture, as evidenced by the overlapping 
GWAS hits between polymorphisms near TERT and TRIM59 that 
associate with both CHIP and IEAA (Bick, Pirruccello, et al., 2020; 
Bick, Weinstock, et al., 2020; Zink et al., 2017). However, the her-
itability of CHIP appears to be low (3.6% Bick, Pirruccello, et al., 
2020; Bick, Weinstock, et al., 2020), which limits our ability to 
test for genetic correlation between CHIP and age acceleration. 
Previous studies have shown that IEAA of cultured fibroblasts 
strongly correlates with the number of population doublings (Lu 
et al., 2018). Therefore, an alternative hypothesis is that the in-
crease in intrinsic age acceleration seen in CHIP carriers may be 
due to either (1) increased proliferation or self-renewal of HSC 
clones that harbor these mutations or (2) stem cell exhaustion 
of wild-type HSCs from over-proliferation, leading to a selective 
advantage for mutant clones. Studies in model systems such as 
genetically modified mice may help delineate the cause-effect re-
lationship between mutations in various CHIP−associated genes 
and intrinsic age acceleration.

Most importantly, our results show that it is possible to strat-
ify CHIP carriers into those at high versus low risk of adverse 
clinical outcomes using a composite measure of Hannum and 
GrimAge (AgeAccelHG). CHIP or AgeAccelHG status alone is as-
sociated with a modestly increased risk of death or CHD, but the 
combination of CHIP+ and AgeAccelHG+ is synergistic for these 
outcomes. Furthermore, CHIP in the absence of epigenetic aging 
in these clocks is not associated with adverse outcomes. These 
results suggest that the effects of CHIP on health are context-
dependent, as Hannum and GrimAge are not uniformly increased 
in all CHIP carriers, and may be influenced by environmental fac-
tors such as CRP, smoking, diet, BMI, insulin resistance, educa-
tion level, exercise, socioeconomic status (Quach et al., 2017), 
traumatic stress (Wolf et al., 2018), insomnia (Carroll et al., 2017), 
and hunter-gatherer lifestyle (Horvath et al., 2016). Our results 
may also explain why the strength of the associations between 
CHIP and mortality or CHD are somewhat inconsistent across 
studies—while the prevalence of CHIP is fairly uniform across 
populations, epigenetic aging may not be. In populations with a 
high prevalence of risk factors for epigenetic aging, the conse-
quences of CHIP may be direr than in populations without such 
risk factors.

Our risk stratification schema may also be used to select patients 
for clinical trials of pharmaceutical or behavioral interventions, as 
the benefit-to-risk ratio may be particularly favorable in the high-
risk CHIP group. We note that that the 5-year mortality after CHD 
in those who are CHIP+ and AgeAccelHG+ approaches 60%, sim-
ilar to the mortality seen in patients with intermediate-risk MDS 
(Greenberg et al., 2012). Furthermore, the high event rate in this 
group would enable smaller trials with sufficient power for detecting 
favorable outcomes such as reduced all-cause mortality or time to 
CHD. One such intervention may be blockade of IL-6 receptor (Bick, 
Pirruccello, et al., 2020; Bick, Weinstock, et al., 2020); our results 
show that those who are TET2-CHIP+ and AgeAccelHG+ have lower 
risk of death or CHD with increasing copies of rs2228145, which has 

previously been linked to reduced IL-6R expression levels in myeloid 
cells (Bick, Pirruccello, et al., 2020; Bick, Weinstock, et al., 2020). 
Alternatively, this group may benefit from IL-1B inflammatory block-
ade (Ridker et al., 2017), which has also been shown to be relevant 
to atherosclerosis in model systems of CHIP (Fuster et al., 2017; 
Jaiswal et al., 2017). Of note, AgeAccelHG appears to be superior to 
hs-CRP and genotype at IL6R for risk discrimination of CHIP carriers, 
implying that it is capturing additional information beyond baseline 
inflammation.

In sum, our results show that there is an important relation-
ship between CHIP and epigenetic aging. CHIP and epigenetic 
age acceleration can also be used to identify persons at high risk 
of all-cause mortality and CHD, further reinforcing the impor-
tance of both phenotypes as valuable tools in precision medicine 
for aging.

4  |  METHODS

4.1  |  Epidemiological cohorts

All participant data were obtained from four independent patient co-
horts: the FHS (Feinleib et al., 1975), the JHS (Sempos et al., 1999), the 
WHI (phs000200.v11.p3), and the MESA (Bild, 2002, p. 200). These 
cohorts were included in the TOPMed consortium which is run by the 
National Heart Lung and Blood Institute of the National Institutes of 
Health. Access to all data was approved by TOPMed as well as the in-
dividual cohorts. We included only those persons from these cohorts 
in which the age at draw for both whole blood methylation and WGS 
were available. In the FHS and JHS cohorts, the samples for methyla-
tion and WGS were taken from the same blood draw in all persons. In 
MESA, methylation data were only used from the first exam as this 
was the time at which DNA for WGS was also collected. In the WHI 
cohort, the two samples were often taken from different times. We 
only considered persons for whom the methylation and WGS samples 
were taken within 3 years of each other.

4.2  |  Methylation array data

Whole blood methylation was quantified using the Illumina 
MethylationEPIC or HumanMethylation450k array. Normalized 
methylation data were submitted to the online methylation 
clock tool (https://dnama​ge.genet​ics.ucla.edu/new) which gen-
erates methylation age estimates for seven different clocks: 
DNAmAge (Horvath, 2013), DNAmHannum (Hannum et al., 2013), 
DNAmPhenoAge (Levine et al., 2018), DNAmSkinClock (Horvath 
et al., 2018), DNAmGrimAge (Lu, Quach, et al., 2019), intrinsic 
epigenetic age acceleration (IEAA) (Lu et al., 2018), and extrinsic 
epigenetic age acceleration (EEAA) (Lu et al., 2018). Age accelera-
tion was computed for each measure as the residual of model pre-
dicting each persons' methylation age from their chronological age 
at the time of blood draw. Additionally, the DNAmGrimAge clock 

https://dnamage.genetics.ucla.edu/new
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generates seven surrogate biomarkers based upon blood protein 
expression (MADM/NRBP1, B2  M, CST3 (Cystatin C), GDF15, 
LEP (Leptin), SERPINE1/PAI1, and TIMP1) as well smoking pack 
years. Age-adjusted LTL and unadjusted LTL are also estimated 
by the clock software (Lu, Seeboth, et al., 2019). Cell composition 
was also estimated by the clock software using a published model 
(Houseman et al., 2012).

4.3  |  Identification of somatic variants

Approximately 100,000 whole genomes were sequenced from 
whole blood DNA to ~30× depth as part of the TOPMed study 
(Bick, Pirruccello, et al., 2020; Bick, Weinstock, et al., 2020). 
Somatic mutations associated with CHIP were called from WGS 
data using the Mutect2 module in GATK from BAM files previ-
ously aligned with BWA. Candidate CHIP variants were selected 
based upon a curated list of known variants recurrently mutated in 
hematological malignancies as previously described (Jaiswal et al., 
2017) (see Table S6). A full list of variants identified in this study 
are included in Table S7.

4.4  |  Association between CHIP and methylation 
age acceleration

Clonal hematopoiesis of indeterminate potential status was associ-
ated with age acceleration and the other measures using linear mod-
eling, with a separate model being fitted for each aging measure. 
Because of the relatively small number of comparisons, p-values for 
these analyses were reported unadjusted. We combined the data 
from all three studies and used residualization to remove the effects 
of age, race/ethnicity, sex, and study. This approach was chosen to 
eliminate any possibility of spurious associations between CHIP and 
the methylation measures that were driven by collinearity between 
CHIP and covariates. The residualized methylation measure was the 
outcome in each model, and a likelihood ratio test was performed 
to test the significance of CHIP as predictor against a null model 
containing only the intercept. When testing the association of CHIP 
mutations with specific genes, CHIP status was replaced with a cat-
egorical variable indicating whether the individual had a mutation 
in that gene, and persons with CHIP mutations in other genes were 
excluded. The following specific categories for single mutations 
were used: DNMT3A, TET2, DNA-damage response (DDR, which in-
cludes TP53, PPM1D, and BRCC3), JAK2, ASXL1/2 (includes ASXL1 
and ASXL2), splicing factor (includes SF3B1, SRSF2, U2AF1, ZRSR2, 
and PRPF8), and other for any single gene which did not fit in the 
previous categories. Persons with mutations in more than one gene 
were classified as multiple regardless of the number of mutations or 
which genes were mutated, while persons with multiple mutations 
in the same gene were classified as singletons. The analysis of muta-
tion number versus methylation measures grouped all persons with 
single mutation into one group, and split the group with mutations in 

multiple genes into two mutations and greater than two mutations, 
regardless of which genes were mutated. Correlation between VAF 
and the residualized methylation measures was computed using bi-
weight midcorrelation, an outlier resistant alternative to Pearson's 
correlation (Horvath, 2011).

4.5  |  Differential methylation of clock CpGs

Illumina HumanMethylation450K and MethylationEPIC CpG probe 
IDs for the clocks and DNAmLTL were obtained from the supple-
mental data of the relevant publications. Methylation beta values 
for each cohort were subsetted for CpGs used in all clocks except 
GrimAge (for which the CpG locations have not been published) 
and were converted to M-values. The M-values were adjusted for 
the same covariates that were considered for the methylation clock 
measures. The adjusted residuals were tested for differential meth-
ylation and p-values were corrected for the number of CpGs tested 
using limma(Ritchie et al., 2015).

4.6  |  Association of CHIP and epigenetic age 
acceleration with clinical outcomes

We tested the associations of CHIP and epigenetic age acceleration 
with all-cause mortality and incident CHD with Cox proportional 
hazards models using the survival package in R. Models included age, 
sex, race/ethnicity, systolic blood pressure, type 2 diabetes status, 
plasma LDL-cholesterol concentration, plasma HDL-cholesterol con-
centration, plasma triglyceride concentration, and smoking status as 
covariates. Some persons in WHI had DNA for the methylation and/
or WGS sample obtained several years after the baseline visit, which 
potentially could introduce survivorship bias into the analysis. For 
this reason, we also excluded anyone in WHI for whom either the 
methylation or WGS blood draw occurred more than 5 years after 
the baseline visit.

For analysis of all-cause mortality, pooled data from FHS, 
JHS, and WHI EMPC were used. The selection of samples used in 
TOPMed in these cohorts were taken essentially at random from the 
larger parent cohorts. WHI BA23 was excluded from this analysis 
because persons in this cohort were over-sampled for CHD. MESA 
was excluded from this analysis because persons in this cohort were 
selected for surviving at least 10 years from baseline. We chose to 
present the results from models in which all three cohorts were 
pooled, rather than analyzed separately and then meta-analyzed. 
The results for the meta-analysis were similar, however (CHIP/
AgeAccelHG interaction pooled: coefficient = 0.80, p < 3.7 × 10−3; 
CHIP/AgeAccelHG interaction in fixed-effects meta-analysis: coef-
ficient = 0.85, p < 2.4 × 10−3).

For the analysis of CHD, the WHI BA23 cohort was analyzed 
separately, and a meta-analysis was used to combine the results of 
the BA23 analysis with the other pooled cohorts (JHS, FHS, and 
WHI EMPC) to get the final effect size estimates. 45 persons in WHI 
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BA23 were also included in the mortality analysis of WHI EMPC but 
were not included in the CHD analysis of WHI EMPC (i.e., were not 
double-counted). Because BA23 was over-sampled for CHD, we 
adjusted the sample weights in BA23 using race and incident CHD 
numbers in the entire dbGaP-eligible set of WHI to allow for Cox 
proportional hazards modeling. Robust standard errors were used to 
calculate p-values in all models.

Similar to the associations between CHIP and age accelera-
tion, p-values for these analyses were reported unadjusted due 
to the small number of comparisons. We used the age accel-
eration residuals from the analysis associating CHIP with epi-
genetic age acceleration to determine if persons had high age 
acceleration (AgeAccelHG, defined as being greater than 0 for 
both AgeAccelHannum and AgeAccelGrim) and intersected this 
with CHIP status, resulting in four groups: no CHIP with low age 
acceleration, no CHIP with high age acceleration, CHIP with low 
age acceleration, and CHIP with high age acceleration. When we 
analyzed the interaction of individual clocks with CHIP status, we 
used the same definition for age acceleration but restricted it to 
only one clock.

For the gene-level analyses, persons with any singleton DNMT3A, 
TET2, or DDR gene (TP53, PPM1D, BRCC3) mutation were considered 
to be in those classes. All other non-DNMT3A, TET2, and DDR mu-
tations were considered “other.” In those with multiple mutations, 
the mutated gene with the highest VAF was used to assign the class.

For the analysis of cumulative incidence of death and CHD, the 
cmprsk package in R was used.
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