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ABSTRACT OF THE DISSERTATION

The Imagined We: Shared Bayesian Theory of Mind for Modeling Communication

by

Stephanie Eu-Tien Stacy

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2022

Professor Tao Gao, Chair

How can a pointing gesture or simple utterance come to mean so much? Unlike a code

or fixed mapping that can be used to uniquely identify a referent, humans flexibly use the

same signal to mean many different things. As a result, to formally capture the impromptu,

sparse nature of communication, it should be viewed as an inferential process. Both send-

ing and understanding a signal in context requires reasoning about the underlying mind at

the other end. This dissertation takes a cognitive approach to developing a computational

framework for this type of uniquely human communication. Even young children who can-

not yet speak in full sentences use simple gestures and utterances in uniquely flexible and

intelligent ways. This highlights the promise of a reverse engineering approach: the under-

lying cognitive mechanisms and commonsense reasoning accumulated during pre-linguistic

development become the foundation for modeling intelligent communication.

The modeling approach taken here formalizes this theoretical account by connecting and

extending three lines of work which have traditionally been viewed as separate domains.

First, I adopt an existing model that draws from game theory and probabilistic inference to

formalize flexible signal understanding. Second, I integrate this with socially rational models
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of individual agency, which involve understanding why individuals act the way they do in

terms of their underlying mental states. This follows the tradition of viewing communication

as an inference problem, where understanding a signal is about understanding the underly-

ing mind that generated it. Here I argue communication can be viewed in terms of its use:

signals are a special type of rational action that can be used to coordinate individuals. This

perspective connects modeling flexible signaling to models of intentional agents. Finally,

my last step is to shift from individual agency to treating communication as a cooperative,

shared agency problem. While shared agency has been a promising approach for coordinating

cooperators, it has not yet been modeled in conjunction with communication. This disserta-

tion bridges this gap, leading to the development of a novel framework for communication,

called the Imagined We (IW). I justify this cooperative shared agency approach by drawing

from a wealth of behavioral evidence in developmental and comparative psychology demon-

strating how communication can be viewed as a way to facilitate increasingly sophisticated

cooperation. Through a set of simulations in cooperative tasks, I demonstrate theoretical

advantages of this perspective. Moreover, I combine this with behavioral evidence that can

begin to support some of the theoretical claims this model makes.
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CHAPTER 1

Introduction

Communication is a universal part of everyday life: we engage in it constantly, often without

thought. For example, Audrey has plans to meet George at a restaurant for lunch. As she

gets ready, she texts him that she is on her way. At the bus stop, she puts her hand out as

she sees the bus approach. When she arrives, George is already sitting at a table. He raises

an eyebrow and looks pointedly at his watch. Throughout this example, Audrey engages in a

variety of communicative exchanges, all without saying a word. Communication is arguably

one of the most important and sophisticated part of human intelligence. Not only can we

communicate in different forms — through words, writing, gesture, and eye-gaze — but this

communication is often ambiguous and contextual. Despite this, humans are extremely good

at inferring rich meaning behind simple signals: when George looks at his watch, we infer

Audrey is late. How can we say so much with so little? I approach this question by looking at

communication in terms of its origin and development in humans. This dissertation proposes

a computational account of communication that leverages cognitive insights to approach this

type of human-unique overloaded and highly spontaneous communication.

1.1 A Language Approach to Modeling Communication

Without language, thought is a vague, uncharted nebula.

– Ferdinand de Saussure, Course in General Linguistics

Historically, language has been used as a critical benchmark to evaluate both human
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and machine intelligence. Early psychological theories emphasize language as arguably the

most decisive characteristic contributing to unique human cognition and behavior. Starting

from the late 1800’s, language has been argued as a human instinct which enables flexible

intelligence through interaction and competition with other instincts (Pinker, 2007 [1994]).

Later, language was regarded as a means to shape reality through grammatical structure

(e.g. Whorf, 1956) and as a biologically pre-programmed system laying the foundation for

various cognitive capacities (Chomsky, 1983). Meanwhile, early intelligent machines have

also emphasized language, through question answering. The well known Turing test evaluates

artificial intelligence (AI) by distinguishing natural language responses from a human versus a

machine (Turing, 2009 [1950]). From both fields, language generation and understanding has

been treated as a cognitive divider to differentiate human-level intelligence. More broadly,

it seems there is something intrinsically unique about language that makes it critical for

achieving a deeper understanding of human intelligence. Certainly language in the context

of syntax and grammar is exceedingly important in the study of more sophisticated forms

of human communication; however, here, we emphasize a different modeling approach. This

dissertation highlights how to formalize the underlying cognitive mechanisms necessary to

reverse engineer human communication at its development.

This perspective comes in part from the recent body of evidence in comparative psy-

chology which has shown that many of the types of intelligence that have been classically

attributed to language are actually shared by other non-human species. For example, corvids

exhibit complex behaviors in a variety of domains including the use and manufacture of

tools (Emery & Clayton, 2004; Hunt, 1996). Perhaps the most noteworthy results come

from studies on chimpanzees which are similar to humans in many respects, including el-

ements of their capacity for sophisticated physical cognition such as tool use (Tomasello,

Davis-Dasilva, CamaK, & Bard, 1987), working memory (Inoue & Matsuzawa, 2007), and

object tracking (Barth & Call, 2006). More importantly, chimpanzees also have demon-

strated their capacity for individual social cognition, which was originally thought to be
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human-unique. For example, chimpanzees understand what others can and cannot see (Hare,

Call, & Tomasello, 2006) as well as others’ goals (Warneken & Tomasello, 2006; Warneken,

Hare, Melis, Hanus, & Tomasello, 2007; Yamamoto, Humle, & Tanaka, 2012) and inten-

tions (Tomasello, Carpenter, Call, Behne, & Moll, 2005; Buttelmann, Carpenter, Call, &

Tomasello, 2007). Strikingly, chimpanzees can even mentally simulate and physically ma-

nipulate others’ perception and knowledge (Hare, Call, Agnetta, & Tomasello, 2000; Hare

et al., 2006; Melis, Call, & Tomasello, 2006) and perform similar to infants in classic false-

belief tasks (Krupenye, Kano, Hirata, Call, & Tomasello, 2016; Buttelmann, Buttelmann,

Carpenter, Call, & Tomasello, 2017). Taken together, these studies indicate that many of the

aspects thought to be human-unique because of language are, in fact, part of the foundation

for language. They also point to a gap that must be bridged to achieve flexible human-like

communication. What additional cognitive mechanisms are needed to explain the difference

in how humans communicate?

1.2 A Codebook Approach to Modeling Communication

The fundamental problem of communication is that of reproducing at one point

either exactly or approximately a message selected at another point. Frequently

the messages have meaning; that is they refer to or are correlated according to

some system with certain physical or conceptual entities. These semantic aspects

of communication are irrelevant to the engineering problem.

– Claude Shannon, A Mathematical Theory of Communication

Classic linguistics has also posed two divergent — though not entirely mutually exclusive

— theoretical approaches to modeling communication: a code model and an inferential model

(Sperber & Wilson, 1986). The first, the code model, has been widely adopted in information

theory and AI approaches to modeling communication. In traditional information theory, a

codebook — containing a one-to-one mapping between a signal and its meaning — serves as
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context for communication. This formulation is primarily concerned with how to encode and

decode a signal as well as how to design the codebook that minimizes the length of the code

that needs to be transmitted. Uncertainty in transmission comes from signal degradation

from noise in the communication channel: if that noise were removed, the code’s meaning

could be uniquely identified. In the past, people have proposed using a codebook to model

human communication (Shannon, 1948; Lewis, 1969; Skyrms, 2010), but on its own, the

code model is insufficient to explain spontaneous exchanges where the same signal can mean

something completely different depending on the context (Sperber & Wilson, 1986; Misyak

et al., 2016; Levinson, 1983). Many current AI approaches that do include communication

treat it as a code which is assumed or learned (P. J. Gmytrasiewicz & Durfee, 2001; Oliehoek

& Amato, 2016; Havrylov & Titov, 2017). This typically relies on a centralized planning

mechanism or extensive training to learn how to map signals to referents or outcomes a priori.

Critically, while these methods may develop language-like properties such as redundancy and

hierarchy (Havrylov & Titov, 2017), they still fail at the human ability to use the same signal

— a point, an eyebrow raise, an exclaimed “Hey!” — to mean a variety of things in context.

1.3 A Cognitive Approach to Modeling Communication

Point to a piece of paper. And now point to its shape — now to its color — now

to its number ... How did you do it?

– Ludwig Wittgenstein, Philosophical Investigations

In contrast to the code model, the second classic linguistic approach to communication is

the inferential model. Here signals are designed to provide evidence for one’s mental states

including beliefs, desires, and intentions; on the receiver side, understanding a signal requires

inferring those mental states from that evidence (Sperber & Wilson, 1986; W. Levelt, 1989;

Wharton, 2003). Instead of fixed meanings that can be encoded and decoded, meaning is

flexible and comes from inferring the contents of the speaker’s mind. Additionally, instead
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of treating uncertainty as noise in the signaling channel, uncertainty comes from inherent

overloading in meaning, which must be resolved using information publicly and mutually

known in the common ground.

The approach taken in this dissertation follows this inferential model and highlights the

underlying cognitive mechanisms developed to support human-unique communication. In

this way, commonsense knowledge accumulated during pre-linguistic development becomes

part of the foundation for modeling intelligent communication. Specifically, our work for-

malizes this theoretical account by building upon and connecting three related but largely

isolated modeling perspectives in the field.

1.3.1 Modeling Communication as a Rational Action

The first element of this approach is to use the Rational Speech Act (RSA) framework

to model communication as an inferential process (Frank & Goodman, 2012; Goodman &

Frank, 2016). This view is largely inspired by an influential account of pragmatics: the study

of how signals can be interpreted in context. Grice (1975) proposed that communication

should be taken as cooperative; communicators should be informative, truthful, relevant,

and straightforward. While there have been many efforts to derive rules for pragmatics,

the inferential view on communication has been notoriously difficult to formalize. Recently,

Grice’s initial observations on straightforward, cooperative communication have been re-

examined from a computational perspective. The insight of the resulting RSA framework is

to view communication as an optimization problem. With many signals to choose from, a

speaker makes a selection that maximizes a utility function associated with those choices.

Chapter 2.3 provides a more comprehensive description of how this utility function is defined

and Chapters 3.1.4 and 3.2 extend and generalize this definition to bridge the gap between

modeling perspectives. This frames communication as a classic decision theoretic problem

where agents select actions rationally, according to their expected pay-offs. Here, signals

serve as a particular type of rational action, and, as a result, inferring a signal’s meaning is
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based on what kind of communicative intentions could have rationally produced that signal,

giving a formal framework for sending and understanding overloaded communication.

1.3.2 Modeling Communication as Theory of Mind

The second aspect of this perspective is to view communicators as intentional agents with

minds full of components such as beliefs, desires, and intentions. If RSA is an inferential

model with signals as observations, this begs the question: what is the target of that infer-

ence? I argue that this target is the mind. Understanding the meaning of a signal in context

requires the receiver to understand underlying informational, motivational, or intentional

states of the speaker. This relies on a well-studied phenomena in psychology, Theory of

Mind (ToM) which is the capacity to infer others’ mental states based on their observed

actions (Premack & Woodruff, 1978; Wellman, 1992).

As a result of intelligent reasoning under ToM, failing to correctly infer the contents of

others’ minds can cause problems in communication. A speaker who must explain every

detail may blame the listener for being uninformed, incapable, or unmotivated. On the

other hand, a listener may also be annoyed at a speaker who does not “get to the point” or

“mansplains” aspects of a concept they are already well-acquainted with because the listener

infers that the speaker does not hold their intelligence in high regard.

There have been many recent advances in cognition-based modeling that have taken

a Bayesian approach to formalize ToM (Baker, Saxe, & Tenenbaum, 2009; Baker, Jara-

Ettinger, Saxe, & Tenenbaum, 2017). However, while modeling communication under an

inferential perspective is a ToM problem, this differs from classical ToM in two aspects.

First, ToM is typically about understanding others’ minds through their instrumental ac-

tions, which affect the environment directly. In communication, understanding others’ minds

occurs through their signals, which can only affect actions later downstream, through the

mind. Second, modeling accounts of ToM focus on inferences made by an observer reasoning

about an actor in the environment. In communication, agents are no longer observers but
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communicate and interact together. We link these concepts together formally in Chapter 3.

1.3.3 Modeling Communication through Shared Agency

The final aspect of my modeling approach takes the stance that communication, at its

essence, should be understood in the context of cooperation: through humans’ unique ability

to collaborate as a group. Specifically, the intention of “working on something together as a

‘We”’ enables us to convey rich ideas with relatively sparse communication. This approach

stems from a prominent theory that communication developed in the context of cooperation,

as a social tool (Tomasello, 2010; Bruner, 1985; Vygotsky, 1978). From this standpoint,

the purpose of communication is to facilitate increasingly sophisticated cooperation. When

building a model, this suggests that a formalism of communication should start with a

mechanism for cooperation.

In this sense, cooperation entails stronger constraints than being straightforward or in-

formative as originally proposed by Grice. Here agents coordinate in mutually beneficial

ways. This follows the tradition of viewing communication in terms of its use, as a type of

joint action (Clark, 1996). At the same time, we are faced with instances of hostile com-

munication both on a personal and international scale, which seems fundamentally at odds

with a cooperative stance on communication. How then, can we make the argument that

communication should start with a model of cooperation? I answer this question in the

remainder of this section with evidence from both intuitive examples and rigorous empirical

studies that can support and justify this modeling perspective.

First, much of the communication that is seen as non-cooperative still has important

cooperative aspects. Interacting individuals hold many conflicting interests which make co-

ordination and cooperation difficult, but it is precisely this conflict that requires sophisticated

coordination through communication. Negotiation, bargaining, or even outright arguing is a

form of this coordination — all parties continue to communicate in the hopes that they can

gain, not relative to each other, but to their own personal values (Schelling, 1960). Com-
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munication allows different parties with different perspectives and interests to “get on the

same page.” It is not conflict in communication, but the absence of communication that

marks a true departure from cooperation. For example, friends who argue are still friends,

but friends who no longer want to talk to each other often drift apart. Between nations,

an ambassador’s first line of diplomacy is to negotiate, but recalling that ambassador to

publicly close communication between countries acts as a signal of strong diplomatic censure

(Regan, Frank, & Aydin, 2009). Moreover, establishing communication entails cooperative

obligations: it can be considered rude to ignore someone talking to you, even if that person

is a stranger. In these cases, communication does not even need to be verbal; for example,

students in a classroom may avoid eye-contact when they do not want to be called on to

avoid an obligation to participate that comes from meeting the professor’s gaze. In conjunc-

tion, these everyday experiences suggest that there is room to negotiate mutually beneficial

outcomes even in hostile communication.

From an ontogenetic perspective, the idea that cooperation is the foundation of communi-

cation is supported by evidence from developmental and comparative psychology, especially

through studies that contrast the abilities of young children and chimpanzees. Despite the

incredible achievements made by chimpanzees in terms of individual cognition and ToM,

discussed previously, a gap between how apes and young human toddlers collaborate begins

to emerge after around 2 to 3 years of development (Wobber, Herrmann, Hare, Wrangham,

& Tomasello, 2014). It is not a coincidence that this is also the point at which children

begin to communicate flexibly. For example, toddlers point in a variety of ways (Tomasello,

Carpenter, & Liszkowski, 2007) and can even point to communicate about absent but mu-

tually known entities (Liszkowski, Schäfer, Carpenter, & Tomasello, 2009). Toddlers can

also interpret communicative signals based on the context of a joint task, reacting to an

ambiguous request for help (Tomasello & Haberl, 2003). These same tendencies are not

observed in chimpanzees, who struggle to even understand the helping intention behind a

simple pointing gesture towards hidden food (Tomasello, Call, & Gluckman, 1997), unless
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presented in a competitive setting (Hare & Tomasello, 2004).

While chimpanzees do have the capacity for certain gestures which are relatively flexible

(Call & Tomasello, 2020), their ability for sophisticated communication is highly limited due

to their collaborative failures. Chimpanzee collaboration is marked by “group behavior in

I-mode” (Tuomela, 2007). Often, the dominant individual simply takes all rewards after

a collaborative effort, demotivating the subordinate individual in future attempts (Melis,

Schneider, & Tomasello, 2011). When acting together, chimpanzees do not regulate their

own or others’ commitment (Warneken, Chen, & Tomasello, 2006), nor do they represent a

shared goal with complementary, reversible roles (Tomasello, Carpenter, & Hobson, 2005).

Instead chimpanzees seem to use each other as social tools to achieve greater individual

rewards (Tomasello, 2019). This is in stark contrast to human children who remain jointly

committed to tasks (Warneken et al., 2006; Vaish, Carpenter, & Tomasello, 2016) and treat

collaborating agents as equal partners (Hamann, Warneken, & Tomasello, 2012; Warneken,

Lohse, Melis, & Tomasello, 2011; Hamann, Warneken, Greenberg, & Tomasello, 2011).

In tasks where children do begin to successfully cooperate, they also start to communicate

in sparse but sophisticated ways. In the rare cases where one collaborating child tries to

take more rewards than is fair, a simple “Hey!” from their partner is readily understood

and successfully regulates the greedy child’s behavior (Warneken et al., 2011; Engelmann &

Tomasello, 2019). One task that directly shows how communication can make cooperation

more robust is a Stag Hunt paradigm, which has been studied extensively in game theory

to demonstrate the challenge of social cooperation. Cooperating is risky, but also leads

to higher rewards; whereas, acting individually is safe but less rewarding. In this task,

young children — but not chimpanzees — can use minimal communication such as eye

contact and joint attention to offset the risks of challenging coordination to collect larger

rewards through successful cooperation (Duguid, Wyman, Bullinger, Herfurth-Majstorovic,

& Tomasello, 2014; Siposova, Tomasello, & Carpenter, 2018).

Together, this evidence suggests that overloaded communication guides and facilitates
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cooperation by coordinating individuals’ shared intentions. Moreover, adopting a shared

agency perspective imposes strong assumptions on what is appropriate, relevant, and cooper-

ative to communicate which can help resolve overloading in communication. There has been

a recent body of computational work that has leveraged shared agency modeling to enable

robust cooperation in non-communicative settings which is discussed in depth in Chapter

2.2 (Tang, Stacy, Zhao, Marquez, & Gao, 2020; Kleiman-Weiner, Ho, Austerweil, Littman,

& Tenenbaum, 2016; Wu et al., 2021). This dissertation builds upon that perspective by

modeling shared agency to support sparse, overloaded communication.

1.3.4 Integration of Perspectives

While I have argued for three key components to modeling communication from a cognitive

approach, I make the additional claim that they are well posed to be integrated. While

Chapters 3 and 4 of this dissertation provide the formalism for this integration, a few con-

ceptual insights are worth noting. First, RSA is based on the idea of speech acts and the

use of language: signals are treated as a type of rational action. This creates a strong tie

to ToM reasoning. While communication is different from an instrumental action in many

ways, it can still be reasoned over and subjected to a utility maximization process. Moreover,

much of communication, especially early communication, occurs face-to-face in conjunction

with instrumental actions. Second, shared agency is closely tied to ToM which provides an

account of individual agency. While not the same, we would expect both types of agency

to follow a similar overall structure. As a result ToM serves as the foundation for mod-

eling shared agency where the target of inference is now a shared We mind instead of an

individual’s mind.
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1.4 Outline of Successive Chapters

Taken together, this dissertation aims to formalize the cognitive perspective on communica-

tion, starting from the social infrastructure already in place when linguistic communication

in children begins to develop. Chapter 2 places the work of this dissertation in the context

of recent computational modeling progress and provides motivation for the modeling frame-

work adopted in later chapters. Specifically, I review computational progress in the three

areas which make up the modeling perspective taken: theory of mind (ToM), cooperation

(shared agency), and communication (RSA). The remaining chapters of this dissertation

provide both computational formalism and behavioral evidence to integrate these ideas.

I first build up to this idea through computational work in Chapter 3 which starts by

bridging the gap between signals and actions to model highly contextual signals in a shared

task. This starting point is important as communication rarely occurs in a vacuum. While

classical accounts of communication have highlighted how signals are designed to change

beliefs, from a coordination standpoint those beliefs are ultimately important because they

are designed to engender certain downstream effects in our actions. Thus, sending and

interpreting a signal depends not just on how it can change other’s beliefs, but also how it

affects actions. The shared task setting provides additional common ground context to help

agents instantaneously coordinate on meaning. Here I demonstrate how integrating beliefs

and actions as constraints to communication can begin to capture the one-shot, extremely

flexible interpretation of overloaded signals in a humanlike manner. Details are summarized

in Chapter 3 and published works Stacy, Parab, Kleiman-Weiner, and Gao (2022); Jiang et

al. (2021, 2022).

After establishing the connection between signals and actions in the environment, I extend

this model to adopt a shared agency perspective in Chapter 4. This model, which I call the

Imagined We (IW), combines both cooperation and communication under the same cognitive

framework, unifying these three modeling directions. Now agents reason over joint believes
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under a shared goal which is constrained by which joint actions are rational to take in

the environment. This joint perspective also acts as another constraint to the meaning of

a signal: a signaler should not ask her partner to do things when it is more efficient for

her to do it herself while acting under the cooperative logic of shared agency. Details are

summarized in Chapter 4 and published works Stacy et al. (2021); Tang et al. (2020).

Following the computational framework, in Chapter 5, I run a set of preliminary behav-

ioral experiments to compliment the modeling work done in Chapter 4. Here we validate

our modeling paradigm and provide behavioral evidence that humans can adopt strategies

that take beliefs and actions into account when resolving overloading in communication.

Moreover, we examine whether humans have a preference for one type of reasoning over the

other when they are put in conflict. Details are summarized in Chapter 5 and published

work Stacy, Yun, Potter, Moskowitz, and Gao (2022). Finally, Chapter 6 summarizes the

findings of the preceding chapters, poses some important theoretical contributions of this

work, and proposes directions for future work.
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CHAPTER 2

Bayesian Theory of Mind for Cooperation and

Communication

Even at the onset of the field of artificial intelligence (AI), scientists have been concerned

with uncovering the nature of the mind by understanding the psychological mechanisms

underlying fundamentally human capabilities such as reasoning and thinking (Newell, Shaw,

& Simon, 1957; Simon & Newell, 1962). In fact, the initial goal of AI was to “find how

to make machines use language, form abstractions and concepts, and solve problems now

reserved for humans.” (Russell, 2019, p. 15). While there has always been a deep connection

between cognitive science and AI, this connection has been particularly fruitful in the last

20 years where cognitive modeling has focused increasingly on incorporating insights from

the development of AI (Lake, Ullman, Tenenbaum, & Gershman, 2017; Zhu et al., 2020).

We describe how cognitive models of commonsense knowledge based on intuitive physics

and psychology have been successfully applied to model the mind underlying social behaviors.

At the core of this approach is Theory of Mind (ToM): a well-studied psychological phe-

nomena which has been formalized using Bayesian models. ToM provides an agency-based

account of individuals, allowing them to successfully understand and anticipate others’ be-

havior in terms of their underlying mental states in a variety of tasks and environments.

Moreover, ToM can naturally accommodate an intuitive understanding of the environment

through a utility calculus defining the rewards and costs associated with behaviors. The

power of this formulation stems from its ability to connect mental states to the environment

and thus capture aspects of social and physical commonsense. On the social side, behaviors
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are the rational product of beliefs, desires, and intentions, and on the physical side, the

actual actions that should be taken given those mental states depend on features of the

environment.

Starting from ToM, we review two research directions that have been explored as a result:

cooperation and communication. First, reformulating ToM as a shared agency problem has

been shown as a promising avenue for understanding commonsense intelligence in cooperation

both through empirical findings and computational work. This is because contextual cues

under the constraint of mutual cooperation can help reduce ambiguity in how to achieve

cooperation. We explore insights in modeling shared agency and provide a specific example

in a multi-agent coordination setting emphasizing this advantage. In line with the second

direction, we also review applications of ToM to tasks with communication. Treating signals

as a particular type of rational action, the same inferential approach used to reason about

underlying beliefs, desires, or intentions from observed behaviors can also be used to infer

the meaning of a signal. A probabilistic approach is particularly promising as it can allow

for uncertainty and overloading in a signal’s meaning.

2.1 Modeling Individual Intentionality: Bayesian Theory of Mind

ToM refers to the ability to spontaneously attribute an action to the underlying mental

states that produced it, including beliefs, desires, and intentions (Premack & Woodruff,

1978; Gopnik & Meltzoff, 1997; Dennett, 1987; Wellman, 1992). For example, you observe

someone take a phone call in the library. This action can be interpreted as:

• The person thinks it is appropriate to take a call in the library (belief).

• This call is extremely important and urgent to the person (desire).

• The person is purposefully trying to annoy other people in the library (intention).

As a fundamental building block of social interaction, ToM plays a profound role in human
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society. For example, in our legal system a guilty act (actus reus) alone is often insufficient

for conviction in many crimes: a guilty mind (mens rea) is also necessary. Moreover, mens

rea is further divided into different levels of culpability which can be tied back to mental

states: intent, knowledge, recklessness, and negligence. In addition to playing a huge role in

society, ToM has been a topic of particular interest in the last several decades of development

psychology (e.g. Wellman, 1992; Spelke & Kinzler, 2007; Gergely, Nádasdy, Csibra, & B́ıró,

1995). Various studies have supported the early onset of such social capacity in humans,

such as showing that infants as young as 6 months old can interpret desires and goals from

agents’ arm-reaching movement (Woodward, 1998).

Formally, ToM has been modeled through a Bayesian formulation: Bayesian Theory of

Mind (BToM) (Baker et al., 2009). To interpret an action in terms of the observed mental

states that generated it, BToM first requires a model of how actions are produced. This can

be formalized through action planning, unfolded using a generative model. Forward planning

uses the “principle of rationality” which asserts that an agent should act to maximize its

expected utility while avoiding costs with respect to underlying mental states and constraints

of the environment.

Actions are sampled from the soft-max of an agent’s utility function, a method commonly

used for approximately rational decision making (Luce, 1959), shown in Equation 3.4, where

β ∈ [0,∞) describes the agent’s degree of rationality. When β = 0, the agent is modeled as

acting randomly, and as β → ∞, the agent deterministically chooses the action with highest

expected utility:

P (action|mind) ∝ eβE[U(action,mind)] (2.1)

In this framework, the mental states of others are made of three components: beliefs (b),

desires (d), and intentions (i) following the tradition of Bratman (1987):
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(a) Action Planning (b) Inverse Planning

Figure 2.1: 2.1a Rational action planning: In action selection, agents maximize their utility

according to the mind. 2.1b Inverse planning: An observer sees another agent acting in the

environment and infers their hidden mind.

P (mind) = P (b, d, i) = P (b)P (d)P (i|b, d) (2.2)

Critically, using Bayesian inference, an observer can perform inverse planning to do back-

ward reasoning over the generative models to infer the beliefs, desires, and intention of others

that can best explain their observed actions (a) given the environment (w):

P (mind|a, w) ∝ P (a|mind, w)P (mind|w) (2.3)

This formulation was first tested by modeling human inference of an agent’s goal in a 2D

grid world (Baker et al., 2009). Thus, uncertainty in the mind in Equation 3.5 reduces to

inferences about likely goals based on observed actions. The planning engine is implemented

as a Markov Decision Process (MDP), which provides the probability of an action in a state

conditioning on each possible goal. This model of goal inference has also been extended
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to adapt to changing or complex goals made of multiple sub-goals. However, even in its

simplest form, by observing only a part of an agent’s trajectory, the model can successfully

infer the goal of that agent as well as capture temporal dynamics of human inferences in this

task.

In follow-up studies, BToM has been extended to partially observable environments to

jointly infer beliefs and desires (Baker & Tenenbaum, 2014; Baker et al., 2017). This demon-

strates that rationally interpreting an agent’s actions may require simultaneously reasoning

over multiple components of the mind: here, the agent’s uncertainty about the environment

as well as personal preferences which determine how rewarding a particular goal is. Remark-

ably, employing BToM can sometimes even allow agents to make inferences about an agent’s

preference for a goal that is not currently in the environment

BToM has also been employed to formally capture human interpretation of intentionality

purely from motion. For example, it can be used to infer perception of intentional goals such

as exploration, attacking, gathering, and fleeing just from the physical dynamics of moving

geometric shapes (Pantelis et al., 2014). In addition, BToM has also shown promising

results capturing intentionality from motion in modeling the psychophysics of chasing under

limited memory and attention (Gao, Baker, Tang, Xu, & Tenenbaum, 2019). Adding these

constraints to BToM captures human performance and limitations when detecting predator-

prey relations between pairs of targets in various conditions.

2.2 Extending BToM for Cooperation

ToM provides a scaffold for inference and planning and is often used to model the dynamics

between an actor in the environment and a disconnected observer trying to understand the

mind of that actor. However, cooperation requires individuals to simultaneously be both

actors and observers. Thus, to capture the dynamic interactions in cooperation, agents

need the capacity to perform both inverse planning — to understand one’s partner — and
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forward planning — to generate one’s own cooperative actions. Moreover, while ToM agents

model their partner’s mind from an individual perspective, such that “my mind understands

your mind,” cooperation often involves a joint perspective where individuals influence each

other in a “meeting of minds.” For this reason, our focus in this section is on one branch

of modeling which has extended the individual perspective of classical ToM to incorporate

shared agency or shared intentionality.

Philosophers have argued that the robust motivation for cooperation in humans is cog-

nitively rooted in shared intentionality (Searle, 1990; Gilbert, 1992; Bratman, 1992). Under

a shared intentionality framework, individuals intend that the self and others as a plural

subject “We” — with its own actions and mind — jointly commit to a shared goal (Gilbert,

2013; Tomasello, 2010). This joint commitment is established through “readiness” of collab-

orators, must be normatively followed by all individuals, and cannot be rescinded unilaterally

(Gilbert, 2013).

One challenge of modeling shared agency is its paradoxical nature: a shared intention

emphasizes a collective representation of the group but must be implemented at an individual

level (Schweikard & Schmid, 2021). Philosophical discourse posits that there are two core

principles of shared intentionality. First, it is irreducible: shared intentionality is not simply

the summation or aggregation of individual intentions, but rather has a qualitatively different

structure. Second, it is individually owned: shared intentionality can only be experienced by

an individual, within one’s mind; thus, there is no ways to unilaterally dictate its formation,

as forming a shared intention is voluntary. These two claims give rise to a tension: How can

a collective intention that goes beyond any single individual simultaneously only make sense

at the individual level?

Philosophers reconcile this paradox from different angles. One account argues that a We

intention does not exist in reality but is instead imagined by each individual. For example,

Margaret Gilbert focuses on the joint commitment, proposing that a shared intention is only

realized when two or more individuals are willing to be “jointly committed to espousing a
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goal as a body” or as a “plural subject” (Gilbert, 2013, p. 30, 37). In parallel, Michael

Bratman highlights the coordination of individuals’ plans, proposing that a shared intention

is an intricate mesh of individual plan-embedded intentions and their interrelations, aligned

with each other and commonly known to all (Bratman, 1992, 2013). Importantly, shared

intentionality as an infrastructure for cooperation also provides a new perspective on the

nature of human-unique communication. That is, the purpose of communication is to co-

ordinate agents’ minds in a joint task so that each individual’s distinct version of We can

synchronize. While computational works following the tradition of both philosophical ideas

are represented here, the modeling perspective in this dissertation most closely aligns with

that of Gilbert.

Computational works modeling shared agency began to emerge in the 1990’s and typically

relied on logical language. Largely grounded in philosophy, Grosz and Kraus (1996) extended

individual plans using a “sharedPlans” framework which contained both individual and

mutual beliefs about how actions should be done. On the other hand, a model developed

by Levesque, Cohen, and Nunes (1990) characterized the goal and intention of a group as

“acting like a single agent” by defining a joint persistent goal that replaced individual beliefs

in a personal goal with mutual belief. However, early shared agency formulations remained

largely rule-based and disconnected from more recent Bayesian approaches for modeling ToM

which represent uncertainty probabilistically instead of relying on rules.

More recently, probabilistic accounts of shared agency modeling based on BToM have

begun to gain traction. They leverage Bayesian inference’s capacity to reason over counter-

factuals to answer (a) how shared intentions can be achieved when they are not real and

(b) how different shared intentions imagined by individuals can be aligned during coopera-

tion. The first instance of this modeling approach described a grid world coordination game

where partners must infer whether they are competitors or cooperators and plan their ac-

tions accordingly (Kleiman-Weiner et al., 2016). The inference process to decide whether

their partner is cooperative involves reasoning about whether the history of interactions can
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be explained by cooperative joint planning. During cooperation, shared intentions can be

viewed as a form of augmented individual planning that takes the form “I intend that we

J.” Formally, this statement corresponds to agent i’s generation of a joint policy π with

respect to the goal G for each state s which makes action predictions for both herself (ai)

and her partner aj. However, because agent i can only take her own action, the individual

policy involves marginalizing out the partner: πG
i (s, ai) =

∑
aj
πG(s, ai, aj). Thus, different

individuals are able to form an intention not only about one’s own action but also about

the states other agents reach in a “meshing of plans” (Bratman, 2013). This type of joint

planning has also been proposed generically as a potential mechanism to plan and predict

cooperative behavior in modeling work which aims to infer more complex team structures

involving multiple levels of cooperative and competitive behavior (e.g. A is cooperating with

B against C) (Shum, Kleiman-Weiner, Littman, & Tenenbaum, 2019).

In the formulation of Kleiman-Weiner et al. (2016), and most models of cooperation,

a shared reward function determines how agents should act together. This joint BToM

approach has also been applied to a collaborative cooking task as a means to coordinate

while working together on a sub-task (e.g. chop the tomato) within a recipe (e.g. make a

salad) (Wu et al., 2021). Throughout the task, agents work either in parallel on different

sub-tasks or collectively coordinate on the same step to complete a recipe. Collaboration on

a specific step may be necessary (e.g. if a counter divides the kitchen space then agents may

need to pass ingredients across) or simply more efficient. This work captures the changing and

reactive dynamics of coordinating under a shared task, using a joint form of ToM reasoning

in order to do so; at the same time, it also introduces more complex task and environment

elements.

2.2.1 Coordinating under the Imagined We framework

This dissertation adopts a stronger notion of cooperation that entails Gilbert’s notion of

cooperating “as a body.” We have started by modeling BToM shared agency from a joint
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commitment perspective (Tang et al., 2020). To form a shared intention, each agent indi-

vidually demonstrates a readiness to commit to the joint goal through her behavior which,

in this case, does not require explicit communication. To achieve this, collaborators view

themselves not as individuals, but rather as part of an imagined, supra-individual group We

entity acting under the shared beliefs, shared desires, and shared intentions of the group

(Gilbert, 1999). This focuses on cooperation beyond goal or reward sharing: namely that it

entails a joint commitment among cooperators and the plural subject We with its own set

of actions and mind.

Under this framework, called Imagined We (IW), collaborators imagine a We agent with

a joint mind and “bird’s eye perspective” on collaboration, where all individuals are reasoned

about as a whole (Nagel, 1989; Tomasello, 2010). That is, We reasons about actions similar

to the individual, and would aim to direct cooperators similar to a central controller, just

as an individual coordinates their limbs. A true central controller with complete knowledge

of the situation could perfectly coordinate all cooperators. However, in reality there is no

central controller and it is unrealistic and inefficient for all agents to share all knowledge.

Thus, under IW, each agent instead must individually simulate this We agent, making We

imagined. IW contains joint mental states — joint beliefs, joint desires, and a joint intention

— given observation of joint actions already made by themselves and other agents. The IW

mind is constructed by inferring what We believes, desires, and intends based on what We

has done (or, as I will explore in Chapter 4, said).

We modeled a coordinated hunting scenario with multiple predators and prey to demon-

strate how shared intentionality in IW can help achieve joint commitment to arbitrary goals

(Tang et al., 2020, 2022). In this task, all targets were identical and equally rewarding, so

that there was no predetermined target; however, predators could be much more successful

when they collectively coordinated to hunt together. IW agents bootstrapped commitment

to converge on which prey to hunt. Specifically, modeling occurred in three steps:

1. Intention sampling: At each time step, each individual samples which prey they believe
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is the target based on their version of IW.

2. Planning: Given the sampled target, each individual forms a joint plan of how “We”

should pursue that target.

3. Inference: Each agent takes their own action according to the planned joint policy and

observes actions taken by other agents. Using this, each individual does counterfactual

reasoning using BToM to ask how they can explain their own and others’ actions if

those actions had actually been rationally generated by the supraindiviudal We. This

allows individuals to infer which prey “We” most likely wants.

Using this sequence of sampling, planning, and inference, cooperators were able to quickly

bootstrap commitment to the same arbitrary intention without even the need for explicit

communication. In this setting, IW successfully captures humans’ robust commitment in

cooperation: resisting alternative targets, achieving greater quality of hunt, and maintaining

a relatively high goal consistency among hunters. This indicates that there is indeed an

advantage to shared agency cooperation in this task, and manifesting that advantage requires

joint commitment as a stronger constraint for the team behavior.

Approaching this problem from a different angle, recent work has also made a direct

comparison to cooperative hunting using a reward sharing model which does not incorporate

shared intentionality but instead focuses on a Multi-agent Reinforcement Learning (MARL)

framework (Zhao et al., 2022). MARL models, a multi-agent extension to mainstream AI

Reinforcement Learning (RL) approaches, traditionally use trial-and-error to approximate

the optimal action policy achieved while maximizing long-term expected rewards (Sutton

& Barto, 2018). Although this method has been successfully applied to various challeng-

ing group coordination scenarios, such as autonomous-driving coordination (Shalev-Shwartz,

Shammah, & Shashua, 2016), as well as teaming in Dota 2 (Berner et al., 2019), and Star-

Craft (Vinyals et al., 2019), it does not consider shared agency and fails to consider the

qualitative and semantic differences between cooperation and competition. MARL offers
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a generic solution to different cooperative (Sayin, Zhang, Leslie, Basar, & Ozdaglar, 2021;

Zhang, Yang, Liu, Zhang, & Basar, 2018), competitive (Silver et al., 2017; Sayin et al., 2021;

Xie, Chen, Wang, & Yang, 2020; Zhang, Kakade, Basar, & Yang, 2020), or mixed inter-

est settings (Lagoudakis & Parr, 2002) simply by changing the reward function. We argue

that to efficiently cooperate or compete, agents need to go beyond the reward structure of

the game and consider each other’s mental state and possible actions. Reward-sharing on

its own only imposes weak constraints on teaming that are insufficient to capture humans’

cooperative behaviors.

Zhao et al. (2022) make this case that a shared reward function is not enough for suc-

cessful coordinated hunting in two parts. First, they show a shared reward is not necessary:

selfish predators who only care about their own individual benefits are seemingly able to

coordinate with each other to capture a single prey. Moreover sharing a reward is not suffi-

cient: predators that share rewards actually suffer from the free-rider problem. When even

a small action cost is added, coordinated hunting breaks down because predators are able

to obtain the same reward whether or not they expend effort to contribute to the hunting

when that reward is shared. In a hybrid team simulation experiment with multiple prey, the

IW model has also been shown to better mimic the intentions of human hunters compared

to reward sharing (Tang et al., 2022). Together, these studies offer insights on the potential

of using a shared intentionality framework approach to modeling human cooperation.

2.3 Extending BToM for Communication

The second direction BToM has been extended is toward scenarios involving communication,

another type of social interaction with a wide variety of situational uncertainties that re-

quires a rich, dynamic exchange of actions and minds. Incorporating communication with an

agency-based perspective allows agents to more intelligently solve these situational uncertain-

ties. Paradoxically, adding communication simultaneously introduces its own uncertainty,
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due to the sparse, overloaded, and flexible manner in which people may communicate. As a

result, in order to achieve the immense flexibility inherent in human signaling, cognitively-

inspired models of communication must be driven by other strong constraints, many of which

lie outside signals themselves, but can be formalized through the structure provided by ToM

reasoning. The key insight to extending BToM to capture communication is to treat sig-

naling as a type of rational action which can be planned and reasoned over instead of a

code with a fixed mapping. As a result, interpreting signals follows the same framework as

generating actions from underlying mental states.

This insight has recently been formalized using the rational speech Rational Speech Act

(RSA) (Frank & Goodman, 2012; Goodman & Frank, 2016). Treating signals as a type of

rational action means that speakers should be truthful, concise, relevant, and straightforward

and a listener should also expect this and interpret the signal in accordance with these

properties (Grice, 1975). Under RSA, a signal is used to convey information about beliefs,

states of the world, or some referent in a maximally efficient way. In its initial formulation,

RSA was used to solve referential signaling games (Lewis, 1969; Wittgenstein, 1953), where

a speaker sends a signal with the aim of getting the listener to correctly identify an intended

referent among a set of potential referents by reasoning about the linguistic context. Figure

2.2 provides a simple referential signaling game used as a running example.

A rational signal is defined in terms of its utility function: a signal’s utility is determined

by how it is expected to change the listener’s beliefs to reflect an intended referent. This

definition provides a mechanism to evaluate which signals are good. Inferring the listener’s

beliefs in this manner closely mirrors the rational inverse planning that BToM agents perform

when reasoning about the underlying mental states that produce observed actions.

Formally, under RSA, a speaker who is pragmatic (psp), chooses a signal (signal) to

describe a state of the world state, (e.g. the four of clubs). This signal may have multiple

referents or interpretations; however, communication is assumed to be produced through a

rational decision making process. Parallel to Equation 4.10, a noisy utility maximization
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Figure 2.2: Referential Signaling Game Example: Given the cards, the speaker says “clubs.”

Clubs can literally refer to two cards – the four and six. However, a pragmatic interpretation

would choose the four of clubs using the reasoning – if the speaker had been referring to the

six of clubs, “six” would have been a better signal to send.

(soft-max) with β ∈ [0,∞) representing the degree of rationality, determines the signal sent:

Psp(signal|state) ∝ eβE[U(signal,state)] (2.4)

In order to calculate the utility of a signal, the speaker reasons about how the pragmatic

listener (plp) interprets that signal in terms of the states it could refer to:

E[U(signal, state)] = plp(state|signal)

∝ psl(signal|state)p(state)
(2.5)

The utility of the signal is defined by how well it is expected to convey a belief about

a state to the pragmatic listener. This is estimated by modeling the pragmatic listener’s

reasoning process: a Bayesian inference about the observed signal. Here, the likelihood

function is a simpler, literal speaker (psl) model which does not have a partner model and
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simply indicates whether a signal is literally true for a target referent state. This is weighted

by a prior over states.

When communicators interact, they can recursively reason about each other at increas-

ingly deep levels; for example, a level-1 speaker models a listener who reasons about a

literal (level-0) speaker, but a level-2 speaker considers the listener who models a level-1

speaker. Thus, regardless of recursion depth, the literal speaker acts as an entering point

for more sophisticated social recursion. RSA has been incredibly successful in linguistic

domains, capturing phenomena including metaphor (Kao, Bergen, & Goodman, 2014), re-

dundancy (Degen, Hawkins, Graf, Kreiss, & Goodman, 2020), and convention formation

(R. X. Hawkins, Frank, & Goodman, 2017). However, it has been viewed almost entirely

as a language model, focusing on what else others could say. BToM can serve to develop

this viewpoint to consider communication in the context of tasks which rely on acting in the

environment.

BToM has been applied to model communication in several notable examples, includ-

ing through communicative demonstrations which illustrates the difference between doing

something and showing someone else how to do it. An interesting challenge in these tasks is

that the method to communicate completely overlaps with typical actions: agents can take

actions in order to achieve their own goals but can also use their actions to communicate in-

formation about the environment or task to teach an observer. In this model of pedagogical

demonstration (Ho, Littman, MacGlashan, Cushman, & Austerweil, 2016; Ho, Cushman,

Littman, & Austerweil, 2021), a demonstrator simply doing her task plans a high utility

route to achieve her personal goal given knowledge of the environment. Using standard

BToM inverse planning, an observer could then reason about what that goal and knowl-

edge of the environment are. In order to show her goal, the communicative demonstrator

incorporates the mind of this observer into her calculation of utility. Traditionally, partially

observable MDPs (POMDPs) offer a way for agents to plan over uncertainty in their own

beliefs about the environment (Kaelbling, Littman, & Cassandra, 1998); however, here they
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are being repurposed to plan over uncertainty in the observer’s beliefs. This reflects a cross-

ing of minds through recursive reasoning, similar to how RSA speakers make increasingly

sophisticated inferences about listeners; the difference here is that the action space is the

signal space and thus action utilities are composed of both their effectiveness at achieving

goals and their ability to communicate.

In addition, there have been recent efforts to integrate RSA models of communication

with actions using BToM. This would allow a separate channel for communication outside of

the agent’s action space. The major benefit of this perspective is to allow a broader definition

of context in communication that includes abilities and actions of agents. Thus, BToM

agents’ formulation of rational actions in the physical environment allows consideration of

non-linguistic context to solve linguistic ambiguity in communication.

One such work examines speaker strategy comparisons that trade-off being maximally

informative with maximizing task performance (Sumers, Hawkins, Ho, & Griffiths, 2021).

This task combines traditional signaling games introduced with RSA (Lewis, 1969) with

the classic reinforcement learning (RL) paradigm multi-armed bandits, which add a more

complex reward component (Sutton & Barto, 2018, Chapter 2). A speaker who knows the

entire reward structure communicates about rewards associated with features of items, where

the sum of all feature rewards is the item’s reward. Based on the observed signal, the listener

selects an item. Returning to the card task Figure 2.2, the signaler would now be provided

information about the payoff of different suits and numbers (e.g. ♠ : +2, ♣ : +1, ♢ : −1,

♡ : −2), and could send the listener information about a feature (e.g. ♣ : +1 or ♣ : +2

which is a false statement).

This work contrasts three ToM-based frameworks which isolate mental components —

beliefs, actions, and the two combined — which allows a fine-grained analysis of the benefits

and drawbacks of different signaling strategies. Belief-oriented speakers are RSA signalers,

equivalent to Equation 4.4 where state now contains all of the speaker’s knowledge about

rewards and the signaling space is the set of all feature reward pairs. These speakers choose

27



highly truthful but potentially irrelevant signals. In contrast, the action-oriented speaker’s

utility comes from optimizing how likely the listener is to select the item with the best pay-off

from the set of current options based on a model of the listener’s actions. Action-oriented

speakers choose highly relevant, context-specific signals but often lie to distort beliefs and

thus would not generalize well when the current options change. Finally, combined speakers

optimize over beliefs that maximize expected rewards by taking into account the rewards of

all actions. Combined speakers choose signaling strategies that maximize overall reward in

the task, tending to inform (and distort) both high reward and high cost options.

In parallel, we have developed the integration of RSA and BToM — combining beliefs

and actions for a formulation of utility similar to the combined speaker to address a com-

pletely different phenomenon — to formalize a broader notion of relevance in a helping task.

This work has explored how ToM can be leveraged to achieve understanding in a surprisingly

sparse but powerful communication modality: pointing (Jiang et al., 2022). Pointing is an

interesting communication domain because it is incredibly sparse, indirect, and overloaded,

relying entirely on non-linguistic context. Despite this, empirical studies reveal that even

prelinguistic infants can flexibly use context to resolve ambiguous social intentions when

interpreting pointing gestures (Liebal, Behne, Carpenter, & Tomasello, 2009). A pointing

gesture has many potential interpretations, but relevance requires a mutual understanding

that what’s being communicated should be as relevant as possible (Sperber & Wilson, 1986);

thus, the challenge then becomes how to formalize relevancy. In this helping task, an agent

who cannot fully observe the environment forms beliefs about their current state after taking

each action. Framing this problem as a POMDP allows us to formalize the desirability of tak-

ing an action given a belief as a Q-value. The signaler’s calculation of relevance then involves

a crossing of minds between the signaler and receiver. First, the signaler makes predictions

about the receiver’s actions using a model of the receiver’s beliefs. The signaler assumes

that the receiver takes the best possible action given what they know. Second, using their

own beliefs, the signaler evaluates that predicted action. Relevance measures the signaler’s
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estimation of how much a listener could improve their utility by knowing the information

that the signaler has. This formulation reflects paternalistic helping, a phenomenon where

a person who knows better rejects someone’s request “for their own good,” even though the

requester may not feel this way. Modeling work in Chapter 3 of this dissertation also takes

this approach to capture the formation of instantaneous communicative conventions using

shared context.

2.4 Conclusions: Shared Agency Cooperative Communication

Thus far, we have reviewed how individual BToM can be extended for shared agency to

model cooperative cases and extended by treating signals as rational actions to model com-

munication. Integrating these two lines of research has a strong theoretical motivation that

stems from psychology and evolutionary biology. One influential theory on the origin of

communication is that it arose as an adaptation to support complex underlying social cog-

nition in humans, specifically in support of increasingly complex cooperation (Tomasello,

2010). As a result, communication is simply another type of social tool allowing people

to get things done together (Bruner, 1985; Vygotsky, 1978). Thus, communication should

be viewed in terms of its use, specifically the ways it can be cooperatively used to align

perspectives. These two parallel lines of research are unified in a shared agency model of

communication capable of handling uncertainty in signals in Chapter 4. This will broaden

the scope of considered communication tasks from helping or observing to include partners

who are equally able to act and make decisions in the environment.
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CHAPTER 3

Overloaded Communication as Paternalistic Helping

Even simple, ambiguous signals can have rich interpretations when viewed as part of an

interaction in a shared environment. We create a model called Paternalistic Communication

(PaCo), designed to formalize aspects of this context by combining an existing modeling

framework for overloaded signaling — Rational Speech Acts (RSA) — with an agentic The-

ory of Mind (ToM) model. This integration allows signals to be processed in conjunction

with common ground in a principled manner using task-dependent action utilities. This

modeling perspective treats communication as a way to coordinate diverging perspectives

in a cooperative setting. Under the PaCo framework, a speaker decides what to say by

predicting their partner’s response based on public information in the common ground and

then evaluates those responses using private information in their own mind. We demonstrate

the potential of this framework using an existing case study with context-based, ambiguous

signaling. Through a set of simulations where we compare PaCo to RSA, we replicate the

flexibility of human performance and extend beyond the original task to show how common

ground constraints and additional levels of modeling recursion affect performance.

3.1 Background

You’re walking with a friend on a freezing winter night when your friend yells “careful!”

You look down and observe a patch of black ice underfoot. Without context, “careful!”

can mean countless things; however, in context, this single word sets off a rich inferential

process: What is your friend referring to? (the ice) How should this knowledge change your
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beliefs? (the ground will be slippery) How should this change your actions? (falling hurts, so

tread carefully). One traditional approach to modeling communication assumes that words

and their meaning have a one-to-one mapping, predefined outside of the current exchange

(Shannon, 1948; Valiant, 1984) which would fail at explaining this example. “Careful!”

cannot be mapped from a codebook, as the meaning of the signal is derived directly from

the context of the current situation. At another time, I could easily be referring to broken

glass from a dropped jar or a large pothole in the road. However, instead of an encoding

and decoding process, human communication is highly dependent on understanding what

is relevant in the current context (Sperber & Wilson, 1986), allowing us to be incredibly

successful at expressing rich meaning using sparse, overloaded signals. In this work, we

propose a model of signaling that targets how the context of the situation can help solve

signal ambiguity.

Sending a sparse signal is often enough to impact a listener’s mind in sophisticated ways.

This is because a speaker counts on a listener to be intelligently using her own mind — full

of beliefs, desires and intentions — to interpret a signal’s meaning in context of mutually

known information: the common ground. In turn, the listener trusts that the speaker has

chosen a signal by first considering how an intelligent listener might act in response. The

examples above highlight that communication is often used as a cooperative tool for helping

(Tomasello, 2010). However, communication is a unique type of helping for two reasons.

First, it is not the same as instrumental helping because instead of taking actions that

change the world, communicators send signals to change the mind. Second, communication

requires a coordination of minds. Communicators simultaneously track what is shared and

what is private (Heller, Parisien, & Stevenson, 2016), which requires agents to coordinate

divergent minds. In order to coordinate these minds in a cooperative setting, we turn to a

type of helping that has already been studied: paternalistic helping. In the following sections,

we introduce a set of components that allows us to build a flexible model of communication

that can be integrated using the principle of paternalistic helping.
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Overloaded communication in a visual scene has also been studied through empirical

research in psychology (Grosse, Moll, & Tomasello, 2010; Tomasello & Haberl, 2003). In one

notable experiment which we use as a modeling case study, cooperators are demonstrated

to use and understand overloaded signals to form instantaneous conventions that change

flexibly, depending on context (Misyak et al., 2016). In this task to collect rewards (bananas)

and avoid punishments (scorpions) hidden in boxes, one partner knows where rewards are

located, but cannot reach them while the other does not know the boxes’ contents but may

use axes to open them and collect whatever is inside. The knowledgeable speaker can signal

by placing tokens on boxes, which can equivalently be interpreted as “open” or “avoid”

that box. Across trials, shared knowledge and available actions are manipulated. Using

this, partners who have never interacted with each other before are able to successfully and

flexibly use and interpret the meaning of the tokens. In this work, we build a computational

model to capture the flexibility seen in this banana example by treating communication as

a type of paternalistic helping.

3.1.1 Common Ground

Common ground is mutually shared, public, and transparent knowledge that can be assumed

between communicators. Keeping track of this information is critical to communication

(Clark, 1992). Initially, this was proposed as a recursive statement: information in the com-

mon ground must only contain things I know you know that I know ... ad infinitum (Lewis,

1969; Schiffer, 1972). However, the feasibility of establishing common ground through infi-

nite recursion has been challenged by the speed and sparsity of everyday exchanges (Sperber

& Wilson, 1986) as well as the fact that speakers use self-repair to add information when

they detect their partner is not on the same page (W. J. Levelt, 1983). Heuristics have since

been proposed to bypass much of the recursion (Clark & Marshall, 1981), allowing commu-

nicators to assume some common knowledge. Here, we treat communication as a means to

add information into the common ground. In turn, the existing common ground also acts as
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a means to narrow the interpretation of a signal (Clark & Brennan, 1991; Clark & Marshall,

1981) which allows people to communicate more efficiently.

When knowledge is already in the common ground, there is no longer a need to talk about

it, reducing the length of communication. Returning to the ice example, because speakers

assume shared knowledge and only need to talk about things that are new, “there might

be ice underfoot which could cause you to slip and fall which would hurt so be careful”

achieves the same effect as a simple “careful.” Similarly, in the banana collecting task, the

total number of rewards is sometimes in the common ground so tokens are placed already

assuming that knowledge. In addition, a new signal should be interpreted in the context of

the already established common ground, making its meaning flexible. Thus, changes in the

common ground allow the same token placed on a box with a banana in one situation and

a scorpion in another.

Evidence from developmental studies reveal that even infants are able to use common

ground to resolve ambiguity in communication both when interpreting and generating an

ambiguous signal. Infants as young as 14 and 15 months old use past shared experiences to

resolve ambiguous requests for an object (Ganea & Saylor, 2007; Moll, Richter, Carpenter, &

Tomasello, 2008). Moreover, infants interpret pointing to a fixed object differently, resolving

ambiguous social intentions of the pointer based on the previous shared interaction with them

(Liebal et al., 2009). Pre-linguistic infants also use common ground to resolve ambiguity

when generating signals, namely through their use of pointing. One-year-old infants point

more for adults who are ignorant, indicating that these infants have an understanding of

what is and isn’t in the common ground (Liszkowski, Carpenter, & Tomasello, 2007). Pre-

linguistic infants even use pointing to note the absence of items (Liszkowski et al., 2007,

2009). Pointing to something out of place first requires an expectation of where things

normally are in the common ground. The violation of this expectation, not the current shared

experience, is the referent of this gesture. Collectively, these studies demonstrate that even

early on, humans have the capacity to reason richly about incredibly sparse communication,
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which go far beyond simply inferring what the referent is.

These effects are also seen in adults where coordinating common ground occurs on many

different scales and from many different sources. Broadly, individuals can share societal

cultural norms and shared domain knowledge (Isaacs & Clark, 1987). At a fine-grained

level, individuals may share a history of past experiences and interactions (Fussell & Krauss,

1992), or even just an immediate shared visual context (Richardson, Dale, & Kirkham,

2007; Hanna, Tanenhaus, & Trueswell, 2003). Common ground even allows individuals

to coordinate on a social level without explicit communication, relying instead on “virtual

bargaining” and salience (Misyak, Melkonyan, Zeitoun, & Chater, 2014; Schelling, 1960).

Because it can come from the environment itself, common ground allows overloaded com-

munication to be instantaneously interpretable without requiring a past history of interaction

(Clark, 1996; Tomasello, 2010). In turn, this allows it to serve as a natural anchoring point

for future communicative exchange. Here we focus on this type of instantaneously formed

common ground which relies on an intuitive understanding of others’ minds which is largely

universal and developed early on (Wellman, 1992). Of course, common ground is not static,

but instead interacts with communicative exchange. This process is a dynamic feedback loop

between signal and common ground: each communicative contribution is context-shaped and

context-renewing (Heritage, 1984).

3.1.2 Flexible Linguistic Pragmatics

The literal meaning of an utterance is not always enough to resolve a signal. Instead, prag-

matics — taking into consideration the context of the current exchange — is often the key

to understanding what someone means (Levinson, 1983). Previously, we’ve discussed why

common ground gives context to a situation. Here we briefly review a framework called the

Rational Speech Act (RSA) model which has seen much recent success as a formalization

of linguistic pragmatics (Frank & Goodman, 2012; Goodman & Frank, 2016). Specifically,

we introduce an extension which allows for different speaker types who have varied com-
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municative goals. In the context of this work, we simply refer to this variant as RSA. In

the banana example, this can capture the opposite usage of tokens to communicate when to

open or avoid a box; more broadly, this extension has also been used to describe linguistic

phenomena such as hyperbole (Goodman & Frank, 2016; Kao et al., 2014).

Under RSA, a pragmatic speaker ps chooses a signal from a set of possible signals and

signaling type c to describe a target referent or world state w. Signals are treated as a

type of rational action, subject to a utility soft-maximization, where β ∈ [0,∞) represents

the degree of rationality. Here, the utility of a signal can be calculated by reasoning how a

pragmatic listener pl will interpret that signal:

Pps(signal, c|w) ∝ eβPpl(w,c|signal) (3.1)

The pragmatic listener models signal interpretation using Bayesian inference, which re-

quires a likelihood function, here a simple, generative literal speaker model ls. Finally, the

prior term is defined over both speaker type and state, which are assumed to be independent

in this task context.

Ppl(w, c|signal) ∝ Pls(signal|w, c)P (w)P (c) (3.2)

In order to generate this interpretation, the listener also needs a speaker model in the form

of a likelihood function. To start with a simple entering point that doesn’t require further

reasoning, the speaker is modeled as literal ls, uniformly sending true signals according to a

lexicon (Lex(.)). The lexicon is an indicator truth function of whether a signal is consistent

with the referent state w given the speaker type c, returning one when consistent and zero

otherwise:

pls(signal|state) ∝ eβLex(signal,state,c) (3.3)
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An important property of RSA is its social recursive reasoning. In this example, a speaker

models a listener modeling a basic speaker. However, it is straightforward to add additional

layers of reasoning about your partner, building up a “cognitive hierarchy” (Camerer, Ho,

& Chong, 2004).

RSA is grounded in linguistic theory, including Gricean cooperative logic (Grice, 1975).

Grice’s insight is to treat conversation as cooperative: interlocutors should speak in ways that

are maximally efficient and rational to make oneself interpretable, which serves as a constraint

to how a signal can be understood. As a result, RSA has successfully modeled a variety

of linguistic phenomena in communication, such as implicature (Goodman & Stuhlmüller,

2013), vagueness (Lassiter & Goodman, 2017), and convention formation (R. X. Hawkins

et al., 2017). While some recent work has begun to develop in the direction of adding

action context (Sumers et al., 2021) or grounding pragmatic signals within a utility-driven

task (McCarthy, Hawkins, Wang, Holdaway, & Fan, 2021), RSA has primarily been used in

purely linguistic settings. In these cases, speakers have the communicative goal of describing

a referent by reasoning about how different signals are expected change the listener’s beliefs.

As a generic model of communication, RSA requires an informative means to evaluate a

signal. Conceptually, in its current formulation, RSA provides the required structure by tying

communication to concrete utilities: in the black ice example “careful” can mean different

things and we should choose the meaning that allows for the best utility. Similarly, in the

banana example, we can interpret the token by reasoning about whether interpreting it as

“open” or “avoid” can achieve a higher utility. RSA’s approach to deriving the utility of

a signal is based on its ability to efficiently convey the features of its target referent state,

ppl(state|signal), to the listener. However, describing features of a target is only one part of

human communication.

In reality communication is often several steps more indirect than this; we communicate

about not only referent states (What?) but also social motivations (Why?) and interactions

in the shared physical environment that can achieve those motivations (How?). In the black
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ice example, “careful” literally pertains to an agent’s actions and is motivated by helping

a friend avoid a large negative action utility (slipping on ice). In the banana example, one

condition manipulates the receiver’s abilities which does not change the state of the world —

where the bananas are — but still affects how people send and interpret signals. To consider

more generic settings where communication is indirect, we need to integrate the utility of a

signal with an intelligent model of agency. This will allow us to consider communication in

terms of what agents can do, what agents want to do, and how they can act to achieve it.

3.1.3 Bayesian Theory of Mind

To provide the necessary cognitive infrastructure for a model of agency, we turn to Theory of

Mind (ToM) which has been extensively studied in cognitive science (Premack & Woodruff,

1978; Wellman, 1992). Particularly, we focus on the Bayesian formulation of ToM for mod-

eling purposes. ToM provides a natural mechanism for rational action planning and inverse

action interpretation. When deciding how to act, one should rationally take actions that

achieve desirable utilities with respect to their underlying mind, which can be broken down

into different mental states including beliefs, desires, and intentions:

P (action|mind) ∝ eβE[U(action,mind)] (3.4)

In addition to action planning, ToM is a model of action interpretation. Bayesian infer-

ence allows an observer to reason over which underlying mental states an agent is most likely

to have given their observed actions (see Equation 3.5). Bayesian ToM models of agency have

been widely and successfully adopted in the last few decades to infer physical goals (Baker

et al., 2009; Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016), social goals (Ullman et al.,

2009), and joint beliefs and desires (Baker et al., 2017) from observed actions. In addition,

ToM also has great potential in cooperation, using joint planning (Kleiman-Weiner et al.,

2016; Shum et al., 2019).
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P (mind|action) ∝ P (action|mind)P (mind) (3.5)

ToM agents act rationally according to the expected utility of taking different actions,

but where do these action utilities come from and why do they matter? In the banana

example, there are no explicit action costs, but opening boxes with bananas leads to positive

rewards while scorpions lead to negative ones. Even preschoolers can understand basic costs

of acting and rewards associated with different preferences and desires using a Naive Utility

Calculus (Jara-Ettinger et al., 2016; Liu, Ullman, Tenenbaum, & Spelke, 2017). These

cost-reward comparisons constrain the scope of affordable actions, allowing cooperators to

resolve ambiguity (Jara-Ettinger, Floyd, Huey, Tenenbaum, & Schulz, 2020). By using ToM

reasoning to understand communication, we have a way to evaluate signals by connecting

them back to a task with well defined utilities.

3.1.4 Utility of a Signal

In addition to action utilities, communicators also need to evaluate the utility of a signal.

However, the utility of a signal is not as straightforward to define as it may initially seem.

Unlike instrumental actions, signals do not directly change the world. Instead signals are

designed to change our mind — affecting beliefs, desires, and even actions. If signals can-

not change the world, how can we define their utility? We we start with the insight that

changing one’s mind can lead to different rational behavior. Given the changed mind, we

can make a prediction about what a rational agent will do. These actions serve as the ulti-

mate consequence of sending a signal. Thus, by grounding our communicative interactions

in action consequences, we can measure the utility of sending a signal. By considering the

entire mind, communication becomes more than reasoning about beliefs, instead, it extends

to what agents want and will do given an evaluation of the consequences of those actions.

As a result, this agency-based model can actually significantly enrich the notion of a signal’s
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utility.

The focus on the tight connection between communication and actions, showing how

communication can be used to do things, has long reaching roots in philosophy, in language

games (Wittgenstein, 1953). Austin (1962) developed this further through “speech acts,”

where signals can be viewed as a type of rational action that can do things. This same

approach has been adopted in Artificial Intelligence (AI) as a way to derive the utility of a

signal by grounding it in the resulting action. In these approaches, the value of sending a

signal is equivalent to how good the actions taken as a result of hearing it are, compared to

the action that would have been taken without the signal.

One such modeling framework is Recursive Mind Modeling (RMM) (P. J. Gmytrasiewicz

& Durfee, 2001). The key insight of RMMs is to derive the value of communication by

grounding interaction in a task in the environment. Under an RMM framework, a signal is

designed to change the decision-making situation agents are in. Namely, a signal can reduce

an agent’s belief uncertainty about the reward structure of the environment, allowing them

to take actions that are more likely to lead to beneficial outcomes. RMMs are promising

in formalizing signal utility but bypass a critical challenge of human-like communication:

how a signal can be mapped onto its meaning. RMMs generally treat the mapping between

signal and meaning as one-to-one and fixed: the uncertainty in the expected utility of a

signal comes only from noise in the communication channel. Treating uncertainty only as

a probability of transmission error ignores the additional — and much more challenging —

uncertainty that comes from trying to understand an ambiguous signal’s meaning. Because

the mapping between utterance and meaning is fixed, there is no need to reason about what

that signal should be, because it can only mean one thing. To move beyond codebook

mapping communication, we must integrate the RSA framework, which can handle this type

of overloaded and flexible mapping, with the task oriented definition of signal utility seen in

AI works.
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3.2 A Paternalistic Perspective on Communication

When communicating, a final issue that arises is how to coordinate the communicators’

diverging minds, which can contain asymmetric information. To understand this, it is useful

to start by thinking of cooperative communication as a type of helping. When sending a

signal, speakers help listeners by providing new, relevant information not already in the

common ground. The utility calculation underlying this signal requires both prediction

and evaluation of a listener’s actions. There is already an elegant solution to the perspective

coordination problem: Smithian sympathy. Smith demonstrated that sympathy encompasses

more than resonating with others’ feelings (Smith, 2010 [1759]). One can feel bad for a dead

person or sad for someone who has dementia but feels happy.

More recently, this idea has been extended to paternalistic helping where a person who

“knows better” overrides another individual’s actions or requests “for their own good,” even

though the requester may not feel this way (Jacobsson, Johannesson, & Borgquist, 2007;

Sibicky, Schroeder, & Dovidio, 1995). Paternalistic helping develops early: children as young

as five years old are able to override another child’s desires by considering the negative

consequences of that desire (Martin, Lin, & Olson, 2016). The key to this paternalistic

perspective is that a person can predict others’ actions by ToM reasoning using common

ground knowledge, but that person will evaluate predicted actions according to their private

beliefs. Taking a paternalistic perspective has previously been successful for modeling when

helpful pointing is relevant in a classic AI task (Jiang et al., 2021). Similarly, we adopt this

approach as a way to coordinate the minds of speaker and listener.

3.2.1 Paternalistic Communication (PaCo) Modeling Framework

Paternalistic helping acts as a binding agent between common ground, RSA, ToM, and signal

utilities derived from actions to process flexible, sparse communication in a holistic manner.

For this reason, we call our modeling framework Paternalistic Communication (PaCo). A
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pragmatic paternalistic signaler chooses what to say by evaluating the utility of different

signals, equivalent to the pragmatic RSA speaker (Equation 3.1) with a generalized utility

function. This generalized value of a signal for an intentional agent is linked back to action

through a task in the environment. The speaker creates an expectation of how good a signal

will be by predicting how a receiver, upon hearing the signal, will act. Then the speaker

evaluates how good that action is compared to other actions generated by other potential

signals:

E[U(signal,mind)] = EP (a|signal,c)[U(a,mind)] (3.6)

There are two terms needed to connect signals to actions. First, we measure how signals

change the mind. This quantity, P (mindcg|signal, c) can be derived from inverse planning

in ToM where signals are treated as a type of rational action (Equation 3.5) and is similar

to modeling a RSA listener (Equation 3.2), but is capable of reasoning more generically over

other components of the mind. Second, we measure the rational action outcomes that arise

from different mental states. Here, P (a|mindcg) can be derived from ToM rational action

planning (Equation 3.4).

P (a|signal, c) =
∑

mindcg

P (mindcg|signal, c)P (a|mindcg) (3.7)

Here we assume that the signal and speaker type are independent from other components

of the mind. The integration of common ground, ToM and RSA under the paradigm of

paternalistic helping gives a flexible, context driven approach to overloaded communication.

These two components, action prediction and signal evaluation, reflect the different per-

spectives of paternalistic sympathy. Action prediction is done with respect to common

ground information while action utilities are evaluated according to the speaker’s privileged

information about the world. Thus, a signaler predicts what actions a receiver is likely to take

by simulating the receiver’s mind, which constrains which actions are rational to take down-
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stream. The underlying receiver mind is denoted mindcg to emphasize the role of common

ground information that can create strong interpretation constraints before communication

even occurs.

The integration of these modeling components gives a flexible, context driven approach

to overloaded communication. First, common ground cues provide the necessary perceptual

context to constrain sparse signals. Second, RSA gives a framework for flexible signal pro-

duction and interpretation through creating a model of one’s communicative partner that

can predict how signals will be interpreted and evaluate how good those outcomes are. Third,

ToM expands the definition of how to model a communicative partner, allowing common

ground information to be processed differentially and grounding signals into tasks in the

environment. Finally, because of the link from signal to action, the utility of a signal can be

more naturally expressed in terms of intuitive costs and rewards of acting in the environment.

3.3 Case Study Modeling

Here we demonstrate the potential of PaCo by modeling a case study with impromptu,

overloaded signaling from Misyak et al. (2016). Through a non-linguistic cooperative com-

munication task, the authors empirically demonstrate that humans can coordinate to form

instantaneous conventions using contextual environmental cues in the common ground, even

when a signal can mean opposite things (“go to” or “avoid” a location). We provide a com-

putational account of these behaviors as a special case of ambiguous communication that is

captured by PaCo and compare it to a baseline model: the version of RSA introduced pre-

viously which allows varied communicative goals. The key difference between these models

is that in PaCo context includes both beliefs about world features and how an agent can act

based on the knowledge of those features; whereas, RSA is only able to consider beliefs.
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3.3.1 Task

During each trial, each pair of participants saw three boxes, each containing either a banana

(a reward) or a scorpion (punishment). The goal of this task was to collect bananas while

avoiding scorpions. The participant who played the role of signaler knew which boxes con-

tained bananas and scorpions but could not open them. The receiver had no information

about the contents of boxes but could use axes to open them. At each trial, the signaler had

a fixed number of tokens which could be placed on top of boxes to provide information for

the receiver to see (a maximum of one token could be placed on a box). The receiver had

a fixed number of axes with which to open boxes. Both individuals knew how many tokens

and axes were available, making this common ground information (see Figure 3.1). The total

number of bananas and scorpions was either shown in the common ground or occluded by

a wall to hide that information (wall not shown in figure). Communication in this task was

always fully overloaded because placing a token on a box had two opposite interpretations:

“go there” or “avoid that.”1

There are four key conditions that can be used to highlight how humans flexibly convey

meaning across context: Two Token, Inversion, One Ax, and Wall. In all four of these

conditions, two of the boxes contain rewards and the third contains a punishment, but the

receiver does not necessarily know this. In the Two Token condition, the signaler has two

tokens, the receiver has two axes, and the number of bananas and scorpions is known. The

Inversion condition is identical to the two token condition, except the signaler is only given

one token to convey the location of the two rewards. When, in addition to one token,

the receiver also has only one ax, this is the One Ax condition. Finally, the Wall condition

occludes the number of boxes containing rewards and punishments from the common ground,

while leaving the signaler with one token and the receiver with two axes. Conditions are

summarized in Table 3.1.

1The true space of meanings could be infinite, containing conventions such as “avoid the box to the left
of the token”; however, following the original experiment, we focus on these two which are most direct.
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Figure 3.1: Schematic of Inversion condition setup for Misyak et al. (2016). (Left) Agent spe-

cific knowledge: the receiver sees the three boxes but not their contents whereas the signaler

sees the contents of each box. (Right) Common ground information: both participants see

how many tokens are available to the signaler, how many axes are available to the receiver,

and the total number of boxes containing bananas or scorpions (which is sometimes hidden

behind a wall).

In order to focus on instantaneously formed conventions from impromptu communica-

tion, we model a version of this game played without live interaction between signalers and

receivers. This limits learning and rapport building between individuals, as the sequence of

signals encountered by the receiver comes from multiple, anonymous signalers, collected at

an earlier time. In addition, no feedback was given to either player about the outcome of

how they chose to produce and interpret a signal’s meaning. See Experiment 2 in Misyak et

al. (2016) for details.

This experiment emphasizes the importance of common ground as context to solve am-

biguous communication. Here, the common ground is composed of shared information about

the number of rewards, number of axes, and number of signals in the task. The possible

contents of the boxes form the space of beliefs, utility maximization principles of collecting

bananas and avoiding scorpions defines the desire, and which boxes the receiver can open
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Condition Tokens Axes Wall Present

Two Token 2 2 False

Inversion 1 2 False

One Ax 1 1 False

Wall 1 2 True

Table 3.1: Key experimental conditions in Misyak et al. (2016)

given available axes form the action space.

Under PaCo, these beliefs and desires compose mindcg and operationalize the utility U(.)

of an action, while the number of axes the receiver has defines the space of possible actions

a ∈ A. The number of tokens defines the space of all possible signals, while the number

of axes, rewards, and signals define a prior over the shared content of the common ground.

Communication in the task is always fully overloaded because placing a token on a box can

have two opposite interpretations: “go there” or “avoid that,” depending on the speaker

type c. Thus, disambiguation occurs on a trial-by-trial basis as receivers flexibly and jointly

infer the tokens’ meaning and, as a direct consequence, the boxes’ contents. In this context,

mindcg is effectively equivalent to RSA’s notion of w in Equation 3.1, but can naturally

generalize to include uncertainty in joint desires. For example, while we consider the benefit

of a banana equivalent to the cost of a scorpion following the original experiment, this could

be compared to a model of a speaker who is risk averse and cares more about avoiding

scorpions than collecting bananas. The critical difference between these two formulations is

that under PaCo, the speaker aims to maximize the receiver’s action utility. As a result, the

available actions provides a constraint for mindcg which influences which signal a speaker

chooses; in contrast, in RSA the speaker aims to directly convey maximal information about

w, the state of the world, without considering how a receiver can act on it.
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3.4 Simulation 1: Capturing Human-like Use of the Same Signal

for Opposite Meanings

In Simulation 1, we aim to capture humanlike flexible signaling behavior across the four key

conditions introduced above. In particular, we highlight cases where PaCo and RSA give

different predictions. While RSA can use signals flexibly to maximally resolve beliefs about

the world state, this may not always be the optimal communication strategy: a fact which

humans are sensitive to.

For example, the only difference between the Inverse condition and One Ax condition

is that the receiver can open two boxes in the former but only one in the latter. Humans

are more likely to use their single token to denote a punishment in the Inverse condition

(providing maximal information about the world) and to denote a reward in the One Ax

condition (providing an action directive). In this second case, because participants can get at

most one reward with only one ax, extra information about the second reward is extraneous.

Signaling in opposite ways in these two conditions relies on the signaler’s expectation formed

through ToM action prediction that the receiver will act differently based on the rational

integration of beliefs and available actions. We predict that PaCo will robustly capture

human-like flexible use of tokens in these conditions as well as the other key conditions

tested in the original study.

3.4.1 Methods

3.4.1.1 Task Specification

To translate the task’s goal into an explicit utility calculation, we assign a positive value

(+1) for each banana and a negative cost (-1) for a scorpion. Unlike traditional RSA,

this cost ratio could naturally vary using PaCo; however, this is not a factor considered in

the original behavioral experiment, thus we choose a fixed constant where the benefit of

46



choosing a banana is equivalent to the cost of choosing the scorpion. Also following the

original study, there is no explicit cost of using more tokens, if available. PaCo and RSA

can both be characterized by two free parameters: β and P (open). β offers an estimation

of how rational an agent is; we assume partners are equally rational. P (open) represents

the prior distribution over signaler type. We focus on the two types primarily employed

by humans: c ∈ {avoid, open}. An open-type signaler only places tokens on bananas while

an avoid-type signaler only places tokens on scorpions. The prior over beliefs p(mindcg) is

uniformly split across all possible assignments of bananas and scorpions; when there is no

wall, all assignments inconsistent with the common ground beliefs are given zero probability.

To test the robustness of the models, we compare model predictions of how the signaler will

act under a wide range of parameter combinations (β = [1, 2, . . . , 17], P (open) = [.4, .425,

. . . , .675, .7]). For each combination, we let the two models play the same task as seen by

humans in the original experiment.

3.4.1.2 Descriptive Statistics

We define a single scalar to describe the similarity between model and human generation of

a signal. An averaged root-mean-squared-error (RMSE) quantifies how closely the model

approximates human signal generation, where a smaller RMSE indicates better agreement

between human and model. For a particular condition, we first categorize behavior into the

two strategies a signaler could employ and take the RMSE between model x and human

x∗ distribution. Then, across the four conditions, these RMSEs are averaged to get obtain

RMSE:

RMSE =
1

4

∑
m∈Condition

(√
1

2

∑
x∈open,avoid

(xm − x∗
m)

2

)
(3.8)
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3.4.2 Results

To understand how robust each model is to changes in hyperparameters, we calculate the

RMSE across the grid of β and meaning priors for each model, summarized in Figure 3.2.

To compare overall tolerance to parameter changes between the two models, we conducted

a one-sided Wilcoxon signed-rank test for matched-pairs. Under equivalent conditions, the

median error under PaCo is significantly smaller than RSA (W = 630, p < .001). This

supports PaCo’s robustness across a wide range of parameters, and suggests that these

properties are not the product of over-fitting human data, but rather, a specific example of

a general class of phenomena a paternalistic perspective is capable of handling.

Figure 3.2: PaCo and RSA heatmaps of RMSE for key trials: The RMSE for each model

and parameter combination is represented as a color intensity in the heatmap. Lighter colors

represent smaller error or, equivalently, better agreement between human and model. PaCo

systematically reduces error better than RSA across parameter combinations.

Beyond the overall fit, we look at strategies employed in the four key conditions, pay-

ing specific attention to differences between Inversion and One Ax, where humans tend to

change their strategy between conditions. To do this, we select the parameter set that best

approximates human strategies in terms of error minimization for each model (PaCo: β =
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3, P(open) = .575 results in RMSE = 2.94× 10−2 , RSA: β = 5, P (open) = .65 results in

RMSE = 7.05× 10−2).

Like humans, PaCo is sensitive to the common ground: how many signals and axes were

available and the presence/absence of the wall, and instantaneously changes which strategy is

dominant between the Inversion and One Ax conditions (Human P (open): Inv =.42, One Ax

= .63; PaCo: Inv = .47, One Ax =.57). In contrast, RSA fails to make this strategy switch

or even distinguish between these conditions (Inversion = One Ax = .58). Full behavioral

pattern in key conditions are shown in Figure 3.3.

Using ToM, PaCo can integrate and reason about common ground information that

relates to different components of the mind. Here shared information about how many

boxes contain bananas puts constraints on possible beliefs about the state of the world prior

to communication. Critically, the information about how many axes are available in the

environment also relates to the mind as a constraint to the action space. A utility driven

choice of a signal meaning under constraints of the signal space processes both of these

common ground components jointly. Next, we explore how common ground information

produces flexible signaling through simulation results beyond those in the original study.

3.5 Simulation 2: Understanding the Effects of Action Driven

Utility

Previously, we demonstrated that PaCo and RSA behave differently at capturing human

signaling flexibility; here, we explain these differences by focusing on the contributing con-

textual factors from a theoretical standpoint. To examine how these models produce different

behaviors, we divide context into two separate sources of uncertainty within the common

ground. First is the world space, manipulated by the presence or absence of a wall, and

second is the action space, manipulated by the number of available axes. Through a set

of highlighted scenarios, we examine how these elements contribute differently to achieved
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Figure 3.3: Strategy breakdown comparison between humans, PaCo, and RSA under optimal

parameters. Trials where the predicted strategy is to place tokens on bananas in grey and

on scorpions in navy.

utility in the task as well as signaling behavior.

The major difference between these models is that PaCo derives its utility from how desir-

able action outcomes under the task are expected to be whereas RSA focuses on minimizing

the uncertainty in a listener’s beliefs. Thus, we expect RSA to be sensitive only to the world

space knowledge, not restrictions to actions. On the other hand, how well PaCo performs
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should depend on whether considering the receiver’s action space can act as a constraint on

signaling. When the receiver is limited to few actions, these limitations propagate to what

the signaler should say. A signaler should not tell the receiver to do something known to be

impossible. However, when the receiver is capable, with a large action space, jointly consid-

ering actions and the world can increase uncertainty, making it more difficult to understand

what the signaler is trying to communicate. Thus, we expect PaCo’s action-based reasoning

to become more important in cases where the world state is highly uncertain.

3.5.1 Methods

3.5.1.1 Task Specification

We use the same task utility structure as before, adding a small cost (-.1) per token used to

encourage shorter signals. In addition, to look at how performance varies across scaled-up

environments, we expand the world to have five boxes. Token meaning priors are set at

the optimal ones that match human performance in Simulation 1, and the models are set

to high rationality (β = 20) to emphasize theoretical performance. The number of axes

are manipulated (1, 2, 3, 4), with and without a wall. The number of tokens are set to be

high (3, 4) which ensures that a signaler has the means to send a longer signal if desired.

Similarly, the number of rewards are set to be high (3, 4) which ensures the possibility of

achieving a high utility. We sample N=250 environments for each combination of wall and

number of axes.

3.5.1.2 Descriptive Statistics

To test how PaCo and RSA communicated using different strategies, we used the Kullback-

Leibler (KL) divergence between P , the true belief that the signaler privately knows (i.e.

which boxes contain scorpions as opposed to bananas) and Q, the receiver’s belief posterior

about the box contents to describe the uncertainty over the set of possible beliefsM . Because
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the receiver’s posterior is highly dependent on which signal they observe, the expectation

accounts for the signaler’s probability of sending each signal given the true world:

E[KL(P ||Q)] = E[
∑

mindcg∈M

P (mindcg) log
P (mindcg)

Q(mindcg)
] (3.9)

A larger KL divergence occurs when the receiver is more uncertain about the contents of

the boxes.

3.5.2 Results

When there is no wall, both models achieve the upper bound of possible performance. Con-

sistent with our hypothesis, these models make different predictions when there is higher

uncertainty in the world from adding a wall. When the wall is added, performance drops for

both models; however, multiple comparison tests show that PaCo outperforms RSA at each

level of ax (all padj < .05 under Tukey’s HSD) except when there are four axes (padj = .074)

(see Figure 3.4). When the receiver has four axes, there are no constraints on the action

space and thus, considering actions is not able to restrict signaling behavior. Because PaCo

cooperators take into account the receiver’s action space, a less capable agent requires less

information to do its best, making PaCo predict that it is sometimes better to tell their

partner exactly how to act.

Even more striking, PaCo uses fewer tokens than RSA to achieve a higher task utility

when the uncertainty in the world is high (Figure 3.5). With this uncertainty, constraints

of the action space help reduce which signals are reasonable to consider. However, when

the shadow is shown, PaCo uses more tokens than RSA, seemingly over informing. Just

as considering the receiver’s capabilities in the Wall condition had a benefit, here it has a

drawback. When PaCo recognizes their partner as more capable, it sends a longer, more

cautious signal to ensure the signal is not misinterpreted. Here signals that maximally

reduce uncertainty are preferred, even when a shorter signal can be understood with high
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Figure 3.4: Utility achieved as a function of axes for RSA and PaCo with 95% CI. Dashed

lines represent when there is no wall and solid lines represent cases when there is a wall.

When there is no wall, both models achieve optimal utility 100% of the time. However PaCo

is able to communicate more successfully when there is a wall and the uncertainty in the

world is high.

probability. As the cost of communication is only .1, PaCo is willing to pay to be safe and

ensure the receiver achieves the maximum reward possible. For example, if four of five boxes

contain rewards, marking four boxes to open is semantically impossible to misinterpret,

whereas marking one for avoid is possible (however unlikely) to be interpreted as a signal to

open.

By definition, RSA always aims to provide the most informative message, whereas PaCo’s

action-based utility drives it to provide messages that maximize task outcome. From Figure

3.6, we see this clearly in the breakdown of model KL divergences. When the shadow is

shown, both models always have virtually zero divergence, indicating that the signal can

fully resolve the state of the world. However, in the Wall condition, higher uncertainty leads

to a different pattern of results. RSA achieves a much smaller KL divergence than PaCo,

indicating that RSA agents are likely to have a better understanding of the true world state,
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Figure 3.5: Proportion of tokens used by PaCo and RSA given the available receiver actions

for cases with a wall (left) and when the shadow is present (right).

but that this alone is not enough to succeed at the task.

Figure 3.6: Distribution of KL divergence between receiver belief posterior and true world

belief for N=2000 conditions from Simulation 2. True world belief distribution is adjusted

to give non-target beliefs a small non-zero (1× 10−6) weight.
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3.6 Simulation 3: Performance under Utility Driven Optimal Con-

ditions

Coordinating minds and maximizing a utility calculus are two modeling components that do

much of the heavy lifting in PaCo. Given this, we investigate how helpful deep recursion is

for signaling in this task. We test whether the advantage of PaCo is present even without a

complex partner model and to what extent adding recursion improves performance for PaCo

and RSA. For both PaCo and RSA, we include players who do not model their partner.

We then compare this to when each model has added levels of recursion to the receiver to

see how the receiver having a model of their partner can change performance. In addition,

previous simulations focus on specific environment cases that highlight features of how the

models can emulate human behavior and interact with common ground. We also use this task

to examine whether PaCo’s advantage generalizes beyond the specific conditions from the

previous simulations to cases on a larger scale and with few constraints in the environment.

3.6.1 Methods

3.6.1.1 Task Specification

For both PaCo and RSA, we start with literal communicators (naive or level-0) who do

not model their partner. We compare this to models with additional levels of recursion to

the receiver and signaler to see how having a partner model can change performance. To

scale up reasoning in the environment, we look at environments with three to six boxes and

remove all free parameters from the models, focusing on how well the models can perform in

general settings without any prior biases. To measure the best possible performance under

uncertainty, partners greedily select the action or signal with the maximum expected utility.

We put a uniform prior over a token’s meaning and remove all signaling costs. We then

uniformly sample from the space of possible worlds all possible worlds with three to six

55



boxes which have at least one scorpion and one banana. The number of axes and tokens are

sampled independently such that there is at least one and at most n − 1 for each, given a

world with n boxes. The presence of a wall is also sampled as a binary variable. Each model

at each reasoning level has a total of 400 simulated trials.

3.6.2 Results

For both models, having a model of one’s partner improves communication substantially

(PaCo: xS1R1−S0R0 = .34, t(439) = −15.3, p < .001, RSA: xS1R1−S0R0 = .14, t(439) =

−5.3, p < .001). Moreover, there is a distinctive improvement in performance when the

PaCo signaler is not a 0-level reasoner. A level-0 signaler randomly samples both what a

token means and a consistent signal given that meaning leading to poor performance. How-

ever, an intelligent PaCo signaler can improve on this by taking into account what actions a

receiver can take. When the signaler is not at level-0, all PaCo communicator pairs perform

better than RSA communicator pairs of equivalent recursion depth (padj < .001) but this is

not true when the signaler is a level-0 reasoner (average difference between PaCo - RSA at

different receiver levels of reasoning: xR0 = −0.066, padj < .001; xR1 = −0.067, padj < .001

xR2 = −0.011, padj = .64), adjusting for multiple comparisons using the Benjamini-Hochberg

criteria.

These results indicate that PaCo’s success does not necessarily rely heavily on deep

recursion. Instead sensitivity to other task-related information may shift some of the burden

off complex reasoning. Here, PaCo’s flexibility in conveying information about actions and

not just beliefs about the environment allow it to outperform RSA, especially in the absence

of common ground information.
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Figure 3.7: Utility achieved as a percent from optimal by communicator pairs at different

depths of reasoning for PaCo (Left) and RSA (Right). Darker red indicates better task

performance and higher signaler/receiver level indicates deeper recursive reasoning.

3.7 General Discussion

PaCo proposes a structured way to process common ground information to help resolve

ambiguity in signaling. To disambiguate signals, we integrated ToM into RSA’s pragmatic

reasoning framework. This provides a holistic view of the interplay between common ground,

the mind, and the shared environment which allows communicators to reason beyond refer-

ential signals about beliefs. PaCo also uses predicted action outcomes to determine the value

of a signal, allowing us to argue for communication as a way to align cooperators’ minds.

Through modeling Misyak et al. (2016) as a case study, we highlighted (1) the importance of

treating common ground as a multi-faceted constraint to signaling, which requires treating

partners as rational and capable of achieving things in the instrumental world and (2) the

benefit of framing communication as a means to coordinate perspectives, which highlights

how different components of cooperators’ minds interact to reduce reliance on deep social

recursion.
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3.7.1 Theory of Mind is Important for Processing Common Ground

Context is not one-dimensional. Different sources of uncertainty contribute information to

the common ground: in this task, restrictions on world beliefs and available actions led

to different human signaling predictions. RSA chooses signals based on how informative

they are: signal utility comes from evaluating reduction of the receiver’s uncertainty about

the world. In contrast, PaCo considers rational action consequences and their underlying

beliefs in conjunction, through its ToM mechanism. This ToM mechanism has demonstrated

benefits in this task.

Achieved task utility in Simulation 2 established the theoretical contribution of PaCo’s

action-driven model over RSA’s belief-driven one. Furthermore, taking action restrictions

into consideration is important even outside of the highlighted conditions from Simulation 2.

PaCo’s performance advantage generalizes well in this task as demonstrated by Simulation

3. PaCo reached a higher asymptotic performance under optimal, maximal rationality.

Furthermore, it did this at a shallow level of recursive partner reasoning and across different

sized environments without relying on informative signal meaning priors or costs.

PaCo uses common ground information to both excel at the task and signal flexibly. In

Simulation 1, the PaCo signaler used the same signal in different ways depending on the

common ground information of number of signals, number of axes, and whether there was

a wall. These results demonstrated a flexible fit to human behavioral data robust to a wide

range of hyper-parameters.

In addition, we also saw further interesting results that can motivate future research. Two

predominant strategies for communication emerged from the modeling work in Simulation

2’s highlighted conditions. The first strategy was belief-driven (where bananas/scorpions

are) and the second was action-driven (which boxes to open). While RSA is designed as

exclusively belief-driven, our model naturally switched between these strategies based only

on the calculation of expected outcome utility. Evidence for this came from looking at
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cases where the common ground information was highly uncertain in two specific analyses of

Simulation 2. First, token usage as a function of available actions demonstrated that PaCo

was able to say less while performing better at the task. Second, a PaCo receiver’s beliefs

diverged from the true world much more than RSA’s. In those cases, the receiver did not

have a good understanding of the world state, but still performed well because it interpreted

signals as action requests.

This finding has real world implications, reflecting an interesting dynamic seen in ev-

eryday exchange. For example, consider the scenario where your kitchen sink gets clogged

while your housemate is out running errands. Here, you must decide whether to inform

your housemate of the situation — “the kitchen sink is clogged” — or tell them what to

do — “pick up a plumbing snake on your way home.” Which choice you make depends on

how capable your housemate is; if they’re very capable you may just inform them and let

them figure it out how to fix it, but if they’re not, it can be more useful to directly tell

them what to do. This example highlights the trade-off in this “need to know” phenomena

between action capabilities and what kind of information to provide your partner to achieve

the desired result.

Signals are designed to change beliefs; however, using a ToM infrastructure puts under-

standing signals into a broader context. The meaning of a signal depends not only an agent’s

beliefs, but also the expectation that agents should do rational things based on those beliefs.

This mechanism has contributed to PaCo’s task utility and allowed PaCo to exhibit flexi-

ble signaling strategy switching sensitive to a rational agent’s capabilities. The underlying

support of a full ToM model provides solid grounding for communicators to coordinate with

each other.

3.7.2 Communication is a Coordination of Minds

Grounding PaCo in a fully developed ToM still begs the question of how communicators

are able to understand each other. Typically, recursive reasoning is emphasized as the way
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to model partner beliefs. However, when a joint inference over different mind components

becomes the focus of signal resolution, a richer social phenomenon emerges. By jointly

considering interacting mental states, communication can be viewed as a meeting of rational

minds to help align perspectives. We examined the contribution of recursive reasoning to

solve this task in Simulation 3, where PaCo was able to achieve a high performance with

only a simple partner reasoning model. This indicates that some of the inferential burden

associated with deep recursive reasoning can be lifted by adopting the perspective that

communication is about coordinating our minds.

Without considering actions, there is no room for coordination. Under PaCo, a speaker

considers actions by predicting their partner’s reaction using the common ground. The

speaker then evaluates those predictions using their private mind which may contain ad-

ditional information related to the task. For a receiver, shared public knowledge provides

necessary context to constrain the scope of possible ambiguous signal meanings. Under this

approach, communication is treated as a means to update common ground information that

the mind is build upon. Joint uncertainty over different components of the mind allows PaCo

to naturally make trade-offs between competing components and decide which component

is is most important to talk about in the moment as seen in Simulation 2 where PaCo sent

informative signals as well as imperative signals depending on context.

3.7.3 Future Directions

We highlight the importance of actions, but planning in this task is limited in two ways: (1)

planning over actions is a simple action cost calculus and (2) a cooperative shared agency

perspective is ignored. In the original study, communicative roles are vastly simplified and

the action space is naive. Here, fixed roles were assigned to the signaler, who cannot act, and

receiver, who can. While having a predefined signaler and listener is common in signaling

paradigms (e.g. Frank & Goodman, 2012; Selten & Warglien, 2007; De Ruiter, Noordzij,

Newman-Norlund, Hagoort, & Toni, 2007), task oriented communication in the natural world
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is usually done between partners with overlapping abilities. Furthermore, planning was not

highlighted, unlike many interesting sequential game settings studied in AI (Tambe, 1997;

Grosz & Kraus, 1996). Moving away from one-shot actions opens up important cooperative

considerations across time and space and brings signaling closer to conversation rather than

a one-way exchange.

Directly telling a less capable agent what to do helped PaCo cooperators achieve a higher

task utility efficiently; however, this modeling advantage diminished as the agent you talk

to became more capable, with fewer action restrictions to narrow a signal’s meaning. In real

life, our cooperators are not often omnipotent, especially when interacting in the physical

world. Instead, more nuanced utility considerations can shrink the space of affordable actions

which puts strong constraints on how a signal should be interpreted.

While this task was constrained to arbitrary capability manipulations, agents could in-

stead be constrained by cooperative rules such as joint utility dynamics in a spatial environ-

ment with barriers. Actions are still possible, but become expensive when considering joint

utility. If the speaker always held the expectation that the receiver should do everything,

this could actually increase the uncertainty of how to interpret an overloaded signal. Instead,

working under a cooperative framework can actually enhance the efficiency of communication

which has been tested in other work (Stacy et al., 2021).

In addition, framing planning as a joint problem between cooperative agents can actually

help further constrain affordable actions and, as a result, reasonable signals. In these cases,

it can be helpful to focus on a shared agency model of cooperative communication. PaCo

can be extended to a shared agency model if we treat the minds that are coordinating as

“We” minds, full of joint beliefs, joint desires, and joint intentions which produce rational

joint action outcomes. Taking a joint stance has seen support in philosophy and cognitive

science (Nagel, 1989; Tomasello, 2010; Gallotti & Frith, 2013) and in non-communicative

cooperative modeling tasks (Tang et al., 2020; Kleiman-Weiner et al., 2016; Wu et al., 2021).

In this study, we’ve proposed a model to fit human performance from Misyak et al.
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(2016) alongside many theoretical predictions. In more challenging cases simulated by the

model, it is not clear whether people could actually act using these strategies. The results

we find here, namely supporting shifting between communication strategies and replacing

some of recursion with more nuanced partner predictions can hopefully serve as a starting

point for future behavioral research. By answering these questions, we can build a better

understanding of the mechanisms underlying coordination in communication.
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CHAPTER 4

The Imagined We: Modeling Cooperative

Communication to Coordinate Perspectives

One basic principle of traditional machine communication is to treat communication as an

encoding and decoding process where each signal is uniquely mapped using a codebook.

In reality, human communication is highly overloaded: a single signal can map onto many

meanings. In this work we develop a formal model of this reasoning process, inspired by

insights from both artificial intelligence (AI) and cognitive science. Our model views com-

munication as a utility optimizing process for both understanding and influencing the minds

and actions of other agents. A distinctive feature of our approach, which we call the Imag-

ined We (IW) model, is the focus on shared agency instead of individual reasoning to capture

the cooperative nature of communication. Under IW, each individual agent models a We

mind, simulating a centrally controlled super-agent. While the We mind is not real, agents

act as if it exists; thus communication makes information public and shared to help coordi-

nate different simulated versions of We. The current study models IW in a set of simulated

signaling tasks that incorporate linguistic ambiguity in gridworlds. We show IW is capable

of successfully signaling meaning under high ambiguity. Additionally, when signaling be-

comes costly, IW maintains task performance while substantively decreasing the amount of

information exchange required for successful communication. When agents recursively model

each other, IW outperforms baseline models of pragmatic reasoning without shared agency

at even the shallowest level of recursive reasoning. These results highlight how constraints

from rationality, shared knowledge, and cooperative logic can do much of the heavy-lifting
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in communication.

4.1 Background

Imagine Audrey and George are sitting at a table with a glass of water precariously close

to the edge. Audrey exclaims “the glass!” and George instantly moves his glass away from

the table’s edge. Here, “glass” is sparse, leaving the listener infer why the glass is relevant

and how to best respond. Additionally, “the glass” is overloaded in what is refers to. It

might refer to a broken window pane in one context, or the request for a refill in the next.

These simple, everyday exchanges involve spontaneity and indirectness, capabilities that

are the hallmark of intelligent “inference-making machines” (Sacks, 1985). When choosing

what to say, humans rely on what they and (their estimate of) their partner know, see,

want, and want to do. The way humans communicate is different from how models of

communication, such as those that build on information theoretic principles, are typically

constructed. Humans are highly sensitive to context, both linguistic and non-linguistic,

which allow them to resolve the ambiguity in sparse exchanges. The importance of including

context in models of communication has long been recognized but has been notably difficult

to model (Sperber & Wilson, 1986; Levinson, 1983). Recently, works have begun to formalize

aspects outside of the current exchange of signals themselves, such as a history of past

experiences (R. X. Hawkins et al., 2017), common ground expectations (Bohn, Tessler, &

Frank, 2019), and the space of possible referents itself (Ashok Kumar, Garg, & Hawkins,

2021).

Leveraging computational work and empirical advances from artificial intelligence (AI)

and cognitive science, we develop a human-like model of cooperative communication. This

model contains three novel properties:

1. It views communication as an action to change others’ minds, which can be formalized

by a model of agency (“glass” is designed to make you believe the glass is important
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and act to save it).

2. This model of agency goes beyond the individual, instead taking on a shared We per-

spective capable of creating joint plans given joint beliefs to maximize joint utility.

Here “jointness” acts as a constraint on communicative intent: signals are constrained

to interpretations that are expected to improve the joint utility under a cooperative

logic where agents must treat partners with respect and commitment to find jointly effi-

cient solutions (signaling “glass” implies the message is relevant to the listener George;

thus “glass” is not the one closer to Audrey – that would be Audrey’s responsibility

to keep safe).

3. When considering joint planning and joint utility, non-linguistic context such as phys-

ical and visual cues are included (“the glass” is not about the linguistic properties of

the signal; it refers to the glass’s physical instability).

4.2 Linguistic Context from Signaling Pragmatics

We supplement AI models of planning with ideas from cognitive science, to focus on two

types of context in communication: context that comes from what you can say as well as

context that comes from what you can do. First, we look at linguistic context. Referential

language games are a typical setting in linguistics used to study overloaded communication

(Wittgenstein, 1953). In these games, the environment contains a set of potential referents

with features (e.g. shape, color). A listener aims to understand which referent a speaker

is indicating from a potentially ambiguous signal. This has been more recently modeled

in cognitive science using the Rational Speech Act (RSA) framework (Frank & Goodman,

2012; Goodman & Frank, 2016), a Bayesian model of signal pragmatics that uses the mutual

assumption of communicative cooperation to resolve potential ambiguity. Here cooperative

signaling involves being truthful, relevant, and straightforward with respect to the commu-

nicative goal of conveying a referent (Grice, 1975). This assumption constrains both signals
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and their interpretation as communicators must speak (and assume others are speaking) in

line with this principle. In addition, assuming that the speaker has produced the best utter-

ance possible allows a listener to discard interpretations that are literally correct but could

have been referred to more directly. We introduce these ideas formally in Section 4.6.1.

RSA addresses ambiguity in communication by emphasizing the importance of linguistic

context and has been successful at modeling phenomena such as metaphor (Kao et al., 2014),

redundancy (Degen et al., 2020), and politeness (Yoon, Tessler, Goodman, & Frank, 2017).

However, this model remains primarily focused on linguistic context, where pragmatics is

largely determined by the available vocabulary – both what the speaker says and chooses not

to say. These are key features for language but may not be enough to capture communication.

In many real life situations, communicative context is more broadly defined to include tasks

executed in the visual and physical environment.

4.3 Non-linguistic Context from Agency in the Environment

4.3.1 Theory of Mind as Agents Modeling Other Agents

The second integration of AI and cognitive science comes from the insight that a large part of

non-referent context can be captured by considering not just what an intelligent agent should

say but also what they want to do, why they want to do it, and how they can accomplish

it. Here, we rely on an existing line of computational work which emphasizes agency and

is capable of reasoning over rational actions in the physical world. This agency approach

provides a means to connect ambiguity in signaling with non-linguistic context from planning

in the shared environment to make up for the sparsity and ambiguity of communication.

An early agency-based approach heavily studied in AI to modeling human reasoning

centers around describing the underlying mental states of an agent that drive its actions:

namely beliefs, desires, and intentions (BDI). The BDI framework originated from a per-

spective in philosophy that regards beliefs as the informational states of the mind, desires
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as the motivational states of the mind, and intentions as the deliberative states of the mind

(Bratman, 1987). This approach has garnered attention for decades (Adam & Gaudou,

2016; Georgeff, Pell, Pollack, Tambe, & Wooldridge, 1998; Norling, 2004; Rao & Georgeff,

1995); however, on its own, this framework cannot support humanlike communication. This

is because BDI agents do not easily represent uncertainty in a probabilistic manner which,

in turn, cannot support ambiguity in communication. While the BDI architecture has been

extended to assess metrics such as truthfulness and responsiveness as cooperative heuristics

in communication (Singh, Padgham, & Logan, 2016); again, these are rule-based decisions

based on accumulated signals from other agents. Moreover, communication is not simply

planning based on one’s own beliefs, desires, and intentions as under BDI, but also involves

inferring the contents of others’ minds in order to send relevant signals.

Using the underlying representation of mental states that the BDI framework offers,

Bayesian inference can be used to interpret signals. This interpretation is not based on

a fixed mapping, instead it is a probabilistic inference of other agents’ minds – including

beliefs, desires, and intentions – and the rational planning process over them. This approach,

stemming from Theory of mind (ToM) in cognitive science, is a widely established type of

social reasoning (Gopnik & Meltzoff, 1997; Wellman, 1992) which predicts that individuals

act rationally according to underlying mental states, as defined by the BDI model. This

process has been formalized as a Bayesian inference problem in Bayesian Theory of Mind

(BToM) (Baker et al., 2009; Baker & Tenenbaum, 2014). In forward planning, agents aim

to maximize their utility according to their mental states while minimizing costs of acting

in the world similar to the BDI formulation. By observing others’ actions a, Bayes rule

inverts the planning process to help infer the underlying mind containing beliefs, desires, or

intentions that may have produced those actions given the environment w.

P (mind|a, w) ∝ P (a|mind, w)P (mind|w) (4.1)

While we focus on BToM as the foundation for modeling communication in interacting

agents, it is only one example of a broader class of models which aim to capture how agents
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model other agents (Fan & Yen, 2004; Doshi, Gmytrasiewicz, & Durfee, 2020).

Interpreting a signal in isolation is often not enough to communicate successfully; instead,

BToM allows communicators to model their partners’ minds which are full of situational

context critical to resolving ambiguity. The context offered by the mind has two parts. First,

the contents of mental states define the space of beliefs, desires, and intentions and second,

the rational planning process provides principles that guide how mental states interact to

generate actions.

4.3.2 Communication as a Tool to Coordinate Plans

We treat communication as a planning problem driven by utility maximization based on

BToM: able to reason over mental states and actions of others. From this perspective, com-

munication is broader than language games from cognitive science which focus on guessing

and changing the contents of others’ minds without linking the mind to actions. Instead, we

view communication as a problem that is highly consistent with a fundamental principle of

AI: rational agents choose actions that maximize their utility (Russell, 2019). This principle

is closely connected to multi-agent problems, such as interactive partially observable Markov

Decision Processes (I-POMDPs) (Doshi et al., 2020; P. J. Gmytrasiewicz & Doshi, 2005),

which involve agents reasoning about each other. Here, when agents have partial information

about the world, communication can improve task performance. However, AI formulations

do not highlight the flexible, instantaneous interpretation of a signal’s meaning. Our goal

is to take this perspective of understanding communication in the context of planning while

maintaining the cognitive science focus on flexible meaning interpretation.

In an I-POMDP setting, signals can provide information that can change others’ beliefs

allowing agents to take good actions with respect to their personal reward functions. This

captures the idea that communication should be understood in the context of the task, in-

stead of focusing purely on linguistics. The interactive aspect of this formulation is that state

changes, observations, and rewards are jointly determined by the decisions of all agents. A
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cooperative alternative, which has been extended to include communication, is the decentral-

ized POMDP (Dec-POMDP) (Bernstein, Givan, Immerman, & Zilberstein, 2002). However,

similar to their single agent counterparts (Crandall, 2020; Hayashi, Ruiken, Hasegawa, &

Goerick, 2020), typical solutions to Dec-POMDPs execute plans in a decentralized manner

but rely on centralized planning to learn and agree upon agents’ policies a-priori (Oliehoek

& Amato, 2016; Spaan, Gordon, & Vlassis, 2006; Xuan, Lesser, & Zilberstein, 2001) or by

assuming a fixed policy of the signaler (P. Gmytrasiewicz, 2020). Unlike the language game,

the goal of communication is to improve task performance by connecting signaling to actions

in the physical world, the signal is an observation reasoned over according to predetermined

knowledge about agents’ policies. While approaches from these studies demonstrate the

importance of understanding communication in the context of tasks and share the insight

that signals can be tied to action utilities, they do not focus on the pragmatic aspects of

communication inherent in RSA for flexible signal disambiguation.

Figure 4.1: Connection between signals and actions through the mind.

The key is to combine RSA pragmatics with an agency model that plans over actions in a

cooperative task. BToM provides a rich framework for harnessing intuitive action costs and

preference rewards (Jara-Ettinger et al., 2016; Ullman, Spelke, Battaglia, & Tenenbaum,

2017), which allow for planners using the environment with intuitive physical constraints

(e.g. agents cannot move through barriers). Moreover, framing signals as another type of

rational action allows BToM to be readily integrated with communication to connect signals

back to actions in the environment. In line with this, there have been two examples of
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recent efforts which treat communication as an action to improve planning in the task using

individual BToM (Sumers et al., 2021; Jiang et al., 2021). First, work from Sumers et

al. (2021) considers the trade-off between being maximally informative (belief-oriented) and

maximizing task rewards (action-oriented) and their conjunction. This allows for fine-grained

comparison of behavior under different models of signaling and demonstrates how changing

others mind can help them understand a reward signal. Alongside this, a second example

(Jiang et al., 2021) provides a model of relevance that relies on pragmatics and ToM to

resolve an overloaded pointing gesture. Using a classic AI paradigm, Wumpus World (Yob,

1975), a pragmatic helper who knows the location of the Wumpus can choose to emphasize

observations that a hunter receives by pointing. The hunter reasons that the helper aims

to be relevant and interprets the pointing gesture in the manner that can best improve the

hunter’s utility, which requires an integration of BToM and pragmatic linguistic reasoning.

4.4 A Shared Agency Perspective on Cooperative Communication

Previous work has focused on individual ToM reasoning where agents reason individually

about other agents; here we focus on cooperative communication which poses constraints on

partners due to its shared nature. Specifically, we highlight the importance of cooperative

logic when communicating while performing a joint task. That is, being cooperative is

about being truthful, efficient, and easy to understand (Grice, 1975). We go one step farther

arguing that it also involves treating others fairly as equals, meaning cooperators should

search for jointly efficient solutions. Requests must be justified from a joint perspective:

agents should not ask others to do things easier for themselves to achieve. For this reason,

we argue it is important to model communication as not just an agency problem but rather

a shared agency problem.

One school of thought in philosophy posits that under shared agency, collaborators must

be committed to achieving a joint intention as a collective body (Gilbert, 2013). Under this
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perspective, agents individually reason over how someone viewing the task from a third-party

perspective would coordinate actors (Tomasello, 2010) or “view from nowhere” (Nagel, 1989)

in order to approximate shared agency. This could be viewed as a centralized “We” agent

who coordinates agents as if they were limbs of a body. The problem with this centralized

We is that it does not exist in reality: only You and I exist as individuals. That is, each

agent must separately imagine We. While the aim is to model the same We, in reality each

agent may imagine a slightly different version. When these versions of IW are synchronized

and represent the same contents, agents can coordinate smoothly.

Even without explicit communication, shared agency can put strong enough cooperative

constraints on actions to allow for successful coordination. The plural We stance has been

modeled in AI settings (Grosz & Hunsberger, 2006; Jennings, 1995; Tambe, 1997; Grosz &

Kraus, 1996; Levesque et al., 1990), typically guided by heuristics and rule-based reasoning.

In addition, more recent computational successes adopt a Bayesian framework and extend

BToM to a shared problem. Adopting a shared BToM perspective is naturally sensitive

to action context and makes planning explicitly joint. Planning over the joint space of all

cooperators’ actions who share a utility function has been shown to produce successful coop-

eration in a physical coordination task (Kleiman-Weiner et al., 2016) and cooking paradigm

(Wu et al., 2021). Moreover, a stronger formulation of We, achieved through explicit repre-

sentation of joint intentions — in addition to shared rewards and joint actions — has allowed

agents to robustly bootstrap joint commitment to one of many equivalent, arbitrary goals in

a hunting paradigm (Tang et al., 2020).

This formulation mirrors individual BToM where the mind is narrowly defined in terms

of its underlying components: beliefs, desires, and intentions. In this case the mind is shared

and contains joint beliefs (bwe), joint desires (dwe), and joint intentions or goals (gwe).

P (mindwe) = p(bwe)p(dwe)p(gwe|bwe, dwe) (4.2)
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It is notable that none of these modeling works involve communication; instead, agents

can spontaneously coordinate using constraints from joint planing while reasoning from a

shared agency perspective. This has further implications for how communication can be

modeled. Adding even a sparse signal — a nod, shared glance, or pointing gesture — on top

of a shared agency foundation can further improve intelligent interpretation under increas-

ingly flexible situations. This gap between models of communication and cooperation can

be bridged with the insight that communication can be viewed as a social tool to enable in-

creasingly intelligent cooperation (Tomasello, 2010). Thus models of communication should

be built in the context of cooperation which involves signaling, reasoning, and acting with

others – unlike purely linguistic formulations or fixed signal mappings. To reflect that each

individual represents the collective shared group of cooperators, we call our communication

modeling framework the Imagined We (IW).

Modeling shared agency in the context of cooperation can provide a solution to a long-

standing challenge in multi-agent interaction: recursion. Traditionally, models depend on

recursive partner reasoning where cooperators must make a decision about which layer of

recursion to stop at (Camerer et al., 2004). IW makes inference a one-way process. This

relieves some dependence on this recursion: an agent reasons about IW but IW does not

need to reason about individuals. In addition, communication is public and transparent.

Shared knowledge serves as the basis for interpretation of signals whereas private knowledge

is excluded from consideration (Clark & Brennan, 1991; Clark & Marshall, 1981). Thus,

an interpretation of an overloaded signal occurs in the context of mutual transparency: a

signaler expects a receiver to resolve overloading using the existing mutually shared knowl-

edge. Moreover, the signals discussed in this work are overt, carrying an additional layer of

communicative intention (not only do I want you to know X, I also want you to know that I

want you to know X), enforcing norms of helpfulness or cooperation (Tomasello, 2010). The

role of communication, then, is to make information public to align different versions of IW.

Signals in conjunction with ToM reasoning offer an especially versatile and flexible mecha-
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nism to do this that allow even young toddlers to employ cooperative logic to constrain the

meaning of an ambiguous requests for help (Grosse et al., 2010).

4.5 Task: Cooperative Referential Signaling in Gridworld

We start by introducing our modeling task then provide computational formalism, using the

task as a running example. We test IW in an gridworld task to demonstrate its ability to

communicate successfully in a cooperative setting. This task combines feature overloading,

which demands the language pragmatics studied by frank2012predicting, but is enriched by

a spatial scene that requires joint planning similar to the overloaded helping from grosse2010.

In this task, a signaler and a receiver cooperate to reach a target item among a set of

items placed in a gridworld environment. Each item has multiple feature dimensions that can

take on different values. In Experiments 1 and 2, these are shape (circle, triangle, square)

and color (orange, green, purple). We start with the case where signaling is costless but

restricted to a single feature of the target (e.g. ”purple”), adding ambiguity and increasing

the chance it will refer to more than one item in the environment. In Experiment 3, we relax

this assumption and allow signals to contain multiple features and look at items with up to

5 feature dimensions. However, signalers are still motivated to send short signals as sending

each additional feature comes at an added cost.

In play, the signaler acts first – she may walk to and select an item (incurring the

appropriate action cost), send a signal to her partner (free), or quit the trial (earning a

utility of zero). If the first agent sends a signal, the receiver then gets a turn. The trial ends

after the receiver’s turn or the target item is reached, whichever comes first.

Cooperation occurs in a nearly-fully observable setting. The key is the only bit of asym-

metry of information between agents: only the signaler knows which item is the target. If

either agent reaches the target, both receive a reward (+8); however, each step taken by

either agent incurs a cost (-1) which is shared by both agents. We calibrate the setup of the
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environment so that the signaler is motivated to ask for help: if the signaler acts for herself

when it is better to ask for help, the expected utility is around zero. However communica-

tion comes with a risk as it is often overloaded. As a result, if the receiver misinterprets the

signal, he may go to the wrong goal and incur a large action cost without gaining a reward.

In cases where the cost of the signaler walking to the goal herself is too high, and the signaler

cannot communicate clearly, the rational decision may be to quit.

In each trial, the set of shapes in the environment is randomly sampled and located with

the constraint that the target is closer to the receiver. As a result, the optimal utility can

only be achieved when the signaler successfully asks for help which gives us a way to see

the difference between communication models. In addition, to make joint planning more

interesting, we add a physical barrier which is either near the receiver or near the signaler

(see Figure 4.2). The closer the barrier is located to the signaler, the more ambiguity the

receiver needs to handle from a joint action perspective. This is because a larger portion

of the environment becomes the receiver’s responsibility which makes the constraints from

joint utility less likely to be useful for understanding a signal. However, pragmatics which

focus on linguistic features should not be impacted much by this barrier.

4.6 Computational Modeling

IW integrates two types of context: linguistic pragmatics and joint efficiency of actions.

Thus, we compare IW to two baselines reflecting these individual components and two dis-

tinct lines of reasoning. In addition, we make a comparison to the central control optimal

solution (CC). CC is a true, not imagined, central controller which reflects how the two

agents would rationally coordinate with perfect information: the ceiling of achievable utility.

This is calculated with value iteration over the concatenation of the individual agents’ action

spaces.
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Figure 4.2: Example trial setup with a barrier near the signaler on the left and barrier near

the receiver on the right. Moving the barrier up toward the receiver changes the joint utility

dynamics. Both purple items are equivalent from the receiver’s individual perspective, but

the purple triangle is jointly efficient.

4.6.1 Modeling Linguistic Pragmatics: RSA

Here we provide the computational formalization of RSA which has been used to model

linguistic ambiguity and explain an extension to accommodate this task. This formulation

acts as one of the components of IW reasoning as well as a baseline comparison to IW

in this work. The underlying aim of a RSA speaker (sp) is to describe a state of the

world (state ∈ Ωw) with vocabulary (signal ∈ Ωsig) that is true but may have multiple

possible referents. In the task we introduced here (see Figure 4.2 for example), the state

represents the true target item (e.g. purple circle) and the vocabulary is limited to features
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of these items (e.g. “purple”). This decision making process is based on the signaler’s

estimation of the utility of a signal when describing state (saying purple to describe the

purple circle). Signalers noisily maximize their expected utility (soft-max), leading them to

send approximately rational signals, where β ∈ [0,∞) represents the degree of rationality.

Psp(signal|state) ∝ eβE[U(signal,state)] (4.3)

In the typical language game setting, the speaker’s utility is based on her estimate of the

listener’s probability of correctly identifying the target.

E[U(signal, state)] = pListener(state|signal) (4.4)

Calculating this utility requires a model of the listener. The simplest possibility is to assume

the listener interprets the signal literally; as a result, any item with the signaled feature is

equally likely to be interpreted as the target. However, the speaker may believe that the

listener is pragmatic and also reasons about the speaker in order to make decisions. This

becomes a recursive process where a more sophisticated listener model depends on a more

sophisticated speaker model and vice versa. A pragmatic listener (lp) uses Bayesian inference

to interpret a signal based on a model of a simple speaker.

plp(state|signal) ∝ psl(signal|state)p(state) (4.5)

As an entering point for recursion, this speaker model is literal (sl) and uniformly samples

truthful signals — features that belong to the target item — without consideration for the

listener. However, this recursion can be built up in additional layers for increasingly complex

partner models.

In its original formulation, RSA is intended to be a language only model; however, the

current task allows the speaker to make non-communicative choices. Here, the speaker has

the additional choice of whether they would like to quit or perform an action, walking to an

item instead of sending a signal (DIY). To make RSA a fair baseline, we build a mechanism
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for considering action utilities on top of the traditional communication component. We call

this adaptation action RSA (aRSA). Instead of selecting only a signal, an aRSA speaker now

makes a utility driven decision based on d ∈ {DIY, quit,Ωsig} instead of signal according

to Equation 4.3.

Now the expected utility of a signal is not only the probability of the listener understand-

ing, but also considers the consequence of the listener’s beliefs in terms of action utility. Using

the traditional communication model to generate plp(w|signal), the listener’s interpretation,

the signaler evaluates the receiver’s utility: the action consequence of that interpretation.

This occurs via value iteration as the listener’s cost of traveling to the item ar plus whether

ar yields a reward: 1[ar = goalt].

E[U(signal, goalt)] =
∑
w∈Ωw

plp(w|signal)U(apl = w, goalt) (4.6)

This is different from IW’s formulation of utility as it still lacks “jointness” – that is, action

utility helps a signaler decide whether to communicate or act, but once a signal is sent, the

receiver uses standard RSA pragmatic reasoning to decide what that signal means.

4.6.2 Modeling Jointly Efficient Actions: Joint Utility

The second important component of IW and another baseline comparison focuses on joint

utility. Joint Utility (JU) agents share a joint perspective on “who should do what.” JU

signalers always signal when it is jointly efficient for the receiver to obtain the target, re-

gardless of how difficult it is for the listener to interpret. At the top level, a JU signaler

samples a decision d ∈ {DIY, signal, quit} according to Equation 4.3 and similar to aRSA.

However, here the decision of whether to signal is made first and based on the optimal action

the receiver could take in the environment.
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E[U(d, goalt)] =


U(asp → goalt) if d = DIY

U(alp → goalt) if d = signal

0 if d = quit

(4.7)

In the cases where d = signal is sampled at this first step, the actual selected signal is then

sampled from all literally true signals consistent with goalt. Similarly, a JU receiver, upon

hearing a signal, constrains herself to consistent interpretations, weighing those interpreta-

tions according to their joint utilities.

4.6.3 Modeling Signaling under the Imagined We

A speaker cannot send a signal just because it is more convenient for the receiver to take

an action without regard for how the receiver will understand the signal. At the same time,

the speaker cannot send a signal solely based on linguistic properties without regard to its

potential consequences. IW takes both the linguistic pragmatics of RSA and joint planning

of JU and integrates them to resolve signal ambiguity. As a result, actions become both a

way to evaluate the consequence of communication and a constraint for how to disambiguate

signal ambiguity.

In the present study, we focus on the case where the environment is fully observable so

there is no uncertainty in beliefs and the task is specified for all agents so that there is no

uncertainty in desires. Instead, the uncertainty lies in which goal is the target goalt, which

only the speaker privately knows. The speaker is approximately rational and selects a signal

according to its utilities as in RSA:

P (signal|goalt) ∝ eβE[U(signal,goalt)] (4.8)

Unlike traditional RSA, IW defines the utility of a signal by looking at the utility of the

outcome actions under the task, weighted by how often those actions are expected to occur:
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E[U(signal, goalt)] = EP (a|signal)[U(a, goalt)] (4.9)

This framework actually serves to coordinate different perspectives: (1) Action prediction:

The speaker predicts how a signal can change the IW mind (here, shared goal: goalwe). (2)

Action evaluation: The speaker evaluates how good that change is according to their private

knowledge of goalt. The evaluation of U(a, goalt) includes the cost of taking a and the reward

if a achieves goalt.

Action prediction can be further broken down by connecting signals to actions via the

mind. First, signals change the IWmind, making some goals more likely than others. Second,

using the BToM likelihood function for action planning, we can calculate which actions are

rational conditional on a given joint mind. We assume actions are conditionally independent

from signals given the mind, captured by the intuition that signals can only influence actions

through the mind:

P (a|signal) =
∑
goalwe

P (goalwe|signal)P (a|goalwe) (4.10)

Traditional ToM planning yields P (a|goalwe) and Bayesian inference allows us to measure

how observing a signal will change the distribution of inferred goals. For the likelihood

function we use a measure of consistency (Is this message truthful given the goal?), similar

the literal speaker from RSA:

P (goalwe|signal) ∝ P (signal|goalwe)P (goalwe) (4.11)

IW is a shared agency account of modeling language that is able to integrate different

types of relevance — language pragmatics and intuitive utilities — to communicate rationally

under different sources of ambiguity. See Appendix A for full pseudo-code.
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4.7 Simulation 1: Amount of Ambiguity

In this experiment we demonstrate how different models communicate as a function of the

degree of overloading. We achieve this by manipulating the number of items in the envi-

ronment from two to nine and comparing this across two barrier positions. We randomly

sample items without replacement out of the set of nine possibilities (3 colors by 3 shapes).

As the signaler can only communicate a single feature (a color or shape), increasing the

number of items increases the potential overloading in the environment. When there are

only two items, it is always possible to uniquely identify the target; however, when there are

three to five items, the signal is potentially overloaded. At six or more items, the feature is

guaranteed to be overloaded. As the goal of successful communication is to efficiently reach

the target, we compare the utilities achieved by each model when faced with the exact same

scenario. In addition, we look at the breakdown of signaler decisions (DIY, quit, signal) and

receiver decisions (correct/incorrect interpretation of signal).

4.7.1 Results

Figure 4.3 shows the utilities achieved by each model, as ambiguity increases. Different

environments have varying maximum achievable utilities which can be obtained by the CC.

Thus, we measure task performance of each model as the percent from the maximum possible

determined by CC.

First we focus on the case where the barrier is located near the receiver. When com-

pared to the utility of always doing it for yourself (DIY), all models of communication

lead to substantial gains in utility (mean difference (95% CI): xIW−DIY = 3.78(3.68, 3.88),

xRSA−DIY = 2.02(1.90, 2.15), xJU−DIY = 2.38(2.22, 2.55)). Benjamini-Hochberg adjustments

for multiple comparisons to paired t-tests find all padj < .001. However, these models’ ca-

pacity to overcome ambiguity varies: the advantage disappears at high levels of ambiguity

for aRSA and JU, but not for IW. Across any number of items in the environment, IW
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outperforms other baselines and only begins to deviate from the CC model when the un-

certainty is very high. At the highest level of ambiguity (9 items) IW achieves 71.5% (CI:

64.6–78.4%) of the optimal utility on average, while aRSA achieves 3.7% (CI: 0.5–6.8%) and

JU achieves 19.4% (CI: 4.4–34.4%). This demonstrates how communication understanding

is significantly enhanced by the integration of linguistic and action-based reasoning in this

task. When the barrier is located near the signaler, an extremely similar pattern emerges;

however, this condition is harder for JU and IW. Both models perform systematically higher

when the barrier is near the receiver than near the signaler. This is not the case for aRSA

(see Figure 4.3).

Figure 4.3: Achieved utility (95% CI) measured as the percent from optimal for each model

under varying degrees of ambiguity. (Left) When barrier is near the receiver. (Right) When

barrier is near the signaler. N=2000 trials per model; β = 4 for all models.

We make a more fine-grained comparison between models to understand what contributes

to differences in achieved utilities by breaking down signaler and receiver decisions. As am-

biguity increases, model decisions diverge hugely (Figure 4.4). As expected, the JU model

always communicates without considering whether the receiver will understand the signal.

As a result, the receiver often incorrectly interprets the signal, which dramatically increases

errors as the number of items increases. In aRSA, the trend is dramatically different. aRSA

signalers consider how their partner will interpret the signal; thus the percentage of misun-
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derstanding is relatively low. However, only using features often leads to large uncertainty

in the receiver’s interpretation so the signaler is rarely willing to communicate, almost ex-

clusively favoring quit by nine items. IW is able to combine these reasoning strategies to

perform well across all levels of ambiguity: there is a much smaller decline in successful

communication when the uncertainty is large. Similar to JU, IW has a strong preference

for communication; furthermore, similar to aRSA, IW considers how that communication

will be interpreted. As a result, even at nine items communication is highly successful and

mostly avoids the pitfalls exhibited by JU and aRSA. Collectively, these results demonstrate

that IW is capable of handling overloading to successfully communicate even under high

signal ambiguity. Moreover, reasoning over both vocabulary and actions are vital to this

disambiguation process.

4.8 Simulation 2: Level of Recursion

One strength of IW is that integrating the additional constraints from cooperative joint

planning can often quickly resolve ambiguity, lessening reliance on deep recursion. This may

provide a novel answer to why everyday pragmatic language often feels quick and easy. Here

we demonstrate this by looking at how performance changes as a function of deeper reasoning

for IW and aRSA at different levels. We focus only on the contrast between IW and aRSA as

JU does not have a model of one’s partner so recursion does not make sense. As introduced

previously, both IW and aRSA do utilize recursion to interpret signals pragmatically: the

signaler models a receiver to determine which signals will be understood and the receiver

models the signaler to interpret a signal. The only difference is that in RSA the target of

inference is your partner’s beliefs whereas the target of inference in IW is the shared IW

mind (the part where the signaler takes the receiver model to make an inference about We

can be shown in line 5 of the signaler algorithm in Appendix A). We compare the utilities

achieved by different reasoning levels of speaker and receiver playing this task. In IW, a joint
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Figure 4.4: Breakdown of agent decision (as a proportion) for each model under varying levels

of ambiguity. The decisions are (a) Successful communication: the signaler communicates

and the receiver goes to the correct goal (b) Unsuccessful communication: the signaler

communicates and the receiver fails to choose the correct goal (c) Signaler does: the signaler

forgoes communication and walks to the target (d) Quit: the signaler deems the trial too

hard and skips the trial.

utility calculation determines the portion of the environment where each agent is responsible

for achieving the target. Here we start from a literal receiver (level-0), on top of this, more

complex layers of signaler and receiver are successively built until level-2 reasoning is reached

for both agents.

4.8.1 Results

In general, deeper recursive reasoning leads to an increase in performance. For both mod-

els, the most complex signaler/receiver pair (level-2 signaler, level-2 receiver) performs best

regardless of the environment. This is consistent with previous findings on recursive reason-
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ing where deeper recursion improves performance (Yuan, Monroe, Bai, & Kushman, 2018).

When comparing the most complex pair to the simplest (level-1 signaler, level-0 receiver),

IW achieves an average of 19.3% and 25.4% boost in performance from recursion in the

receiver barrier and signaler barrier conditions respectively. aRSA sees a 20.9% and 15.6%

bump in performance. Figure 4.5 shows heatmaps of performance (utility as a percent of

optimal) comparing the two models (IW: left, aRSA: right) and two barrier configurations

(receiver barrier: top, signaler barrier: bottom) at different levels of recursion. For each pair

of signaler and receiver reasoning level (receiver is on x-axis, signaler on y-axis), the utility

as a percent from optimal is recorded. A deeper red in the heatmap corresponds to higher

performance achieved by a pair of communicators.

Within a signaler level, as the receiver does deeper reasoning, the achieved utility tends

to increase (see Figure 4.5). This indicates that having an intelligent receiver is important

to performing well on the task. Notably, for both models and environments, the worst

performing pair is a level-2 signaler with a level-0 receiver. This could indicate that when

the speaker expects their receiver to be reasoning more deeply than they actually are, this

mismatch in expectations can be highly detrimental.

At the same level of recursion, IW always outperforms aRSA (see Figure 4.6), achieving

up to twice the utility. In fact, the most complex reasoning under aRSA does worse than

the simplest IW communicator pair. For IW the simplest reasoning achieves 77.7% (CI:

73.1-82.3%) and 64.0% (CI: 58.8-69.3%) of the optimal achievable utility in the RB and

SB conditions respectively. In contrast, the most complex communicator pair under aRSA

only reaches 50.0% (CI: 44.7-55.3%) and 44.5% (CI: 39.3-49.7%). This large performance

difference indicates that the benefits of recursion are outweighed by the benefits of joint

utility reasoning. Here much of the complex inferential burden of language can be pushed to

a much simpler utility calculus. If these results align with future empirical behavioral data,

it would provide evidence that everyday language does not need deep recursion to be sparse

and successful.
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Figure 4.5: Mean achieved utility (red represents higher performance) for signaler and re-

ceiver pairs with different levels of reasoning. Shown are N = 500 cases where communication

is optimal per modeling level pair. Number of items is fixed at 6, β = 4.

Finally we can examine the effect of moving the barrier on performance. From a joint

utility perspective, moving the barrier toward the receiver makes it harder to constrain the

meaning of a signal using joint utility. We find that performance for a communicator pair is

better in the RB condition than in the SB condition in IW (padj < .001 for all communicator

pairs using Benjamini-Hochberg procedure) but not in aRSA (padj > .05 for all communicator

pairs), demonstrating the gains from joint utility reasoning under a shared agency framework.
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Figure 4.6: Forest plot comparison of IW and aRSA mean achieved utilities (with 95% CIs)

at different levels of signaler and receiver recursion and in different barrier positions.

4.9 Simulation 3A: Information Theoretic Gains to IW Under

Costly Signaling

Previously, we have demonstrated IW’s success in cases where communication is highly

restricted. We are now interested in how IW performs when precise, non-overloaded com-

munication is possible but there is an added cost for longer signaling. This still encourages

shorter communication as long as it can be interpreted. We predict that communication

enabled by the IW will often be shorter because of IW’s underlying explicit model of shared

agency which can process and integrate context from joint utilities and pragmatics. IW sig-

nalers count on their receiver to be intelligently making inferences to understand the signal
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which removes some of the burden to fully and unambiguously specify what she means off

of the signaler.

We aim to show IW is more efficient when compared to a baseline and that this efficiency

comes at a minimal cost to task performance. From an information theoretic perspective,

we can measure the communication efficiency as the length of communication in bits. We

predict IW can communicate using fewer bits while still maintaining task performance.

Previously, each item was defined by values along only two feature dimensions. As

a result, even a two word signal is guaranteed to fully specify the target. To motivate

signals of varied lengths, we expand the item feature space and make the overloading more

challenging. We set both the number of feature dimensions (e.g. color, shape, pattern, size)

and the number of values within each dimension (e.g. green, circle, striped, small) to be

four. A signaler can say as many dimensions of an item as desired (i.e. up to four words);

however, each additional word has a cost. We look at costs from 0 to .6 in increments of .1,

where the physical step cost on the grid is still 1.

To make the game challenging and highlight the potential of IW for sparse signaling, we

look at environments where, in order to fully specify the item, all features of an item must be

signaled in order to uniquely identify the target item. Under these conditions, we compare

the average bits used by IW to the full signal. We refer to this fully specified signal as the

baseline.

We calculate the average bits of a signal by constructing a predefined codebook given

the fact that the distribution of features in the environment is uniform. Thus we would

expect the length of each signal to be the same. Each spoken word a signaler communicates

corresponds to a combined feature code and value code. As a result, each possible item

that could occur in the environment is assigned a unique binary code starting from feature

dimension and followed by feature value.1

1In an environment with n feature dimensions, we encode each possible dimension using a binary rep-
resentation of a fixed length. For example, a possible mapping might choose 000 to represent shape, 001
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As before, all analysis is restricted to cases where communication is optimal, meaning the

receiver is in a better position than the signaler to walk to the target item. We allow both

the baseline and IW signalers to go to the target item (DIY) and quit when communication

is deemed to be too costly or uncertain. Both models compare the utility of signaling to

the utility of quitting and DIY. A signaler will go to the target if the utility of signaling

(including signal costs) is less than the utility of DIY. In addition, it will choose to quit

when the utility of signaling is expected to be less than zero. The only difference is that IW

can send shorter signals. Thus we may expect that, when IW can express itself clearly with

a shorter signal, it may choose to do so instead of quitting/DIY.

We first investigate what the actual model behavior breakdown looks like, similar to

analysis in Simulation 1. Specifically, we are interested in cases where the goal is not reached

by the receiver, which are the trials that would be considered sub-optimal from a central

control perspective. There are a variety of reasons why the receiver may not reach the goal:

the receiver could fail to understand the signal (communication failure), the signaler could

decide signaling is too expensive or uncertain and choose to walk to the item (DIY), or the

signaler could quit the trial and earn 0 utility (quit). Of these behaviors, communication

failure is the most concerning. Moreover, the cases where quitting and DIY do occur may not

necessarily be sub-optimal. Although the signaler is physically further from the target, the

additional incurred costs of signaling can change that relationship when the cost differential is

not large; in some cases, the additional costs of sending a signal can make the achieved utility

overall negative or smaller than the signaler doing it herself, in which case it is reasonable

to quit and DIY respectively. In addition to model behavior, we compare the average bits

needed as well as the overall task performance, measured as utility achieved across different

to represent color, 010 to represent size, etc. This allows us to specify which channel we are trying to
communicate about. Within each dimension, we then assign each possible feature value a unique code of a
fixed length in a similar fashion (e.g. 000 represents the first value, 001 the second, etc.). For example, if
the signaler decides to say “red,” and red is the first feature value within color, this might correspond to
the code ‘001000.’ Alternatively, if the signaler says “red square,” the corresponding signal might become
‘001000 000010’.
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signal costs.

4.9.1 Results

Overall, IW successfully communicates in 93.8% of trials whereas for the baseline, successful

communication occurs in 88.1% of trials. Figure 4.7 focuses on the cases where the goal

is not reached by the receiver at different signal costs. Notably, there are no cases at any

cost where the receiver does not understand the signaler’s message, indicating that IW will

only send a signal when it is confident the receiver will understand. Using IW improves

all behaviors. Adjusting for signal cost, IW is significantly more likely to communicate

(OR = 2.18, p < .001)2, less likely to quit (OR = .18, p < .001)3 and less likely to DIY

(OR = .69, p < .001)4. In all instances of quitting and DIY observed in IW, sending the

full signal would achieve a lower utility than the observed decision. Thus, the signaler only

decides to DIY because signaling becomes too costly, or, in rare cases, when the expected

utility of signaling as well as acting is negative, the signaler decides to quit.

Notably, the receiver always reaches the target when the cost of each signal is .2 or less.

This is because .2 acts as a cost threshold that changes the dynamics between signals and

actions: at above a cost of .2, a signal that specifies all feature dimensions becomes greater

than one step in the physical environment.

In addition, when we examine only the trials where both models choose to communicate,

IW consistently uses fewer bits on average than baseline as shown in Figure 4.8. When

there is no cost, saying more will not hurt and there is no incentive for IW to send a shorter

overloaded signal, even if it is expected to be understood. As a result, IW only samples

shorter signals when they have just as much power to disambiguate as longer ones. When

2Model: logit(Communicate) ∼ β0 + β1modelIW + β2sigCost

3Model: logit(Quit) ∼ β0 + β1modelIW + β2sigCost

4Model: logit(DIY ) ∼ β0 + β1modelIW + β2sigCost
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Figure 4.7: Breakdown of cases where IW and Baseline receivers do not go to the target

item across signaling costs. Hatched portion of bars represent when the signaler quits and

solid portion represents when the signaler chooses DIY.

even a small cost is added, IW further shortens the signals sent. This small added cost serves

to significantly amplify the advantage of IW (p < .001). As we continue to increase the cost

of signaling, however, there is no further reduction of signaling length. This is because with

even the smallest added cost, IW is doing the best it can at sending brief signals while still

ensuring that they will be understood. This captures the intuition that talking is cheaper

than acting, though not completely free. A case where the receiver chooses the wrong target

due to signal misunderstanding is much more expensive than sending a longer signal. In

fact, sometimes the cost of being uncertain about whether communication will succeed is

even larger than DIY or quit, leading the signaler to choose those options.

While IW is more efficient and chooses to signal more often, this could come at the cost

of performance in the task. We show this is not the case here. In Figure 4.9 we compare

the achieved task utility of IW to the baseline under different signal costs. The total height

of each bar represents the action utility achieved as a proportion of the central controller

solution, excluding signal costs. It is important to note here that the central controller

solution assumes complete, shared knowledge which allows perfect coordination in all trials,
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Figure 4.8: Average number of bits used for baseline and IW across different signaling costs

(with 95% CI)

without communication. The hatched portion of the bar represents average signal costs

incurred. At all signal costs, IW has both a higher total action utility and smaller average

signal costs.

In conclusion, through the first portion of this simulation, we have demonstrated that

IW can conserve information by sending shorter signals that can be understood despite

overloading. As a result, even at large signal costs, IW signalers also DIY and quit less

frequently than baseline, leading to increased task performance.

4.10 Simulation 3B: Generalizing the Number of Features

While we have shown the advantages of IW as soon as even a small signaling cost is added,

we are also interested in how this effect generalizes across different environments. Here we

focus in on this question by manipulating both the number of feature dimensions (e.g. color,

shape, pattern, size, edge line weight) and the number of values within each dimension (e.g.
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Figure 4.9: Total action utility achieved by IW and Baseline as a proportion of the central

controller solution across signal costs. Hatched portions of the bars represent average total

cost of signaling incurred at that level of signal cost.

green, circle, striped, small, no edge) from three to five. We fix cost to either be zero or

.1 as additional incurred signaling costs do not lead to further reductions in the number of

bits conserved. In this focused contrast, we again look at the information conservation and

achieved task utility.

4.10.1 Results

We first compare the percent of bits conserved by using IW instead of baseline across different

environments for either no signaling cost or a small .1 signaling cost (see Figure 4.10). The

resulting heatmap has several important features. First, at both no cost (left) and .1 cost

(right), the percent of bits conserved are positive indicating IW is using fewer bits than

baseline in all cases. Second, with the small added cost, the percent information conserved

is 2.63 times greater on average: this can also be visually observed by how much darker the

values in the added cost scenario are. Finally, the amount of information conserved given a

signal cost is highly stable. As the feature space increases, IW is still able to send shorter

signals that can be understood.
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Figure 4.10: Average percent of bits conserved by using IW as compared to baseline for each

combination of feature dimension (e.g. color) and feature value (e.g. red). On the left is

the percent conserved when the signal cost is zero and on the right is the percent conserved

when the cost of each word is 0.1.

While using IW can conserve information, our baseline comparison achieves perfect ac-

curacy at the task which is not guaranteed by IW. Again, we ask whether conserving in-

formation comes at the cost of performing well in the task. To answer this, we compare

the task utility of IW relative to the baseline as a percent. In this case, an achieved utility

of 100% would represent IW is performing on par with the baseline at the task. We see in

Figure 4.11 that in all combinations of feature value and dimension IW performs significantly

better than baseline (all padj < .001) That is, taking communication costs into account, IW

can send shorter signals that are still understood and interpreted by the receiver.
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Figure 4.11: Percent task utility achieved by using IW as compared to baseline for each

combination of feature dimension (e.g. color) and feature value (e.g. red).

4.11 Discussion

Our proposed modeling approach emphasizes insights from AI and cognitive science to build a

model of cooperative communication in grounded tasks based on a shared agency perspective.

Cooperative logic, pragmatic language reasoning, and affordable actions under a joint utility

calculus constrain a signal’s interpretation. Integrating these sources of context allow for fast,

flexible signaling which helps remove the inferential burden from deep recursion. As a result,

IW serves as a powerful general framework of indirect and overloaded signal production

and understanding. We have demonstrated this point through three simulated experiments.

Specifically, we showed IW can communicate successfully when highly overloaded, unlike JU

and aRSA comparisons, due to its integration of both linguistic and non-linguistic context

under a shared agency. Moreover, this consideration of context can take the burden of

understanding off of deep recursive reasoning, allowing it to perform well with very little

recursion. Finally, when communication is not restricted but incurs a small cost, IW is

brief, sending signals using fewer bits while still maintaining high interpretability and task

performance.
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In the introduction, we highlighted three key properties of IW which allows it to success-

fully model efficient communication in overloaded scenarios. Our simulated results provide

the empirical support for these claims. The first claim was that treating signals as rational

actions designed to change others’ minds provides a principled framework to send and in-

terpret signals that relies on the assumption of mutual rationality. Reasoning about others’

minds allows meaning to flexibly map onto a signal in the context of the situation. The task

design allows this by using an environment with action costs (as well as signal costs). Thus,

individuals must consider this in order to make rational decisions. This task also places

signals in a broader context by integrating them with actions: it is no longer just reasoning

about what you want to say but also about what you want to do. This is demonstrated by

examining the behaviors different models adopt in Simulation 1. Moreover, the advantage

of a rational agentic approach to signaling is observed in Simulation 3 where adding a small

signal cost makes communication under IW more efficient and necessarily overloaded without

compromising understanding.

Another key feature of IW is that it integrates non-linguistic context about the costs of

interacting with the environment into its model of communication. This is motivated by the

idea that most communication does not happen in a vacuum – it happens in a shared visual

scene full of context. In this task, cooperative reasoning about actions in the environment

characterized by joint utility calculations can do much of the heavy lifting in language un-

derstanding. In Simulation 1, as the amount of overloading increases, comparisons to JU

and aRSA demonstrate that both linguistic and non-linguistic reasoning improve the ability

to resolve overloaded signals. The two positions of the barrier in the environment also serve

to change the utility dynamic. As a result, IW’s advantage is particularly prominent when

the barrier is near the receiver where there are more constraints on what the signaler can

say under a cooperative joint utility logic. These findings support an account of communica-

tion that is able to integrate and process multiple types of relevance for rich understanding

despite sparse, indirect signaling.
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The final feature of IW is that it adopts a shared We perspective, beyond that of any

single individual. This shared agency framework poses extra cooperative constraints on

agents, further narrowing the scope of what can be considered rational when producing and

interpreting signals. Both IW and JU have a notion of shared-ness through joint planning.

However, JU does not involve recursive pragmatic reasoning. Even with a basic model of

cooperative logic, JU still achieves limited success and is comparable to aRSA performance

in many environmental conditions of Simulation 1. Moreover, individual planning and prag-

matic partner reasoning in aRSA are not enough to reliably reduce signaling overloading

either. Only when you combine these ideas as in IW do we see robust performance. Finally

adopting a shared agency perspective replaces the need for deep recursion, as seen in Simu-

lation 2 where even at very shallow levels of reasoning, IW outperforms a more sophisticated

aRSA model. Instead of debating how deep recursion should be, IW shifts the focus to the

structure of the minds that are being reasoned about. Thus, by reasoning about a richer

shared mind in a broader context, it does not need to go as deep.
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CHAPTER 5

Behavioral Experiments: Solving Signaling Ambiguity

Through Belief-driven and Action-driven Cooperative

Logic

Resolving overloading in communication requires attention to context. Previous research

has found that the mutual assumption of cooperation during communication can act as

a powerful constraint, allowing successful resolution under ambiguity. In this study, we

investigate two specific types of cooperative context used in a communicative task which

arise from different sources: beliefs and actions. In pragmatic belief-driven communication,

signals are interpreted in context of what else a speaker could have said about the world. Here

communicators assume that the speaker aims to change the listener’s beliefs by providing

the most straightforward signal. In joint utility action-driven communication, signals are

considered in terms of what a speaker can reasonably ask others to do given the costs of

acting in the physical world. Through a communication game, we tested how listeners

would interpret an ambiguous signal using belief pragmatics or joint utility strategies. In

Experiment 1, we find that individuals are able to use both strategies and that they are

internally consistent about the strategy they choose. Moreover, when these strategies come

into conflict, participants are faster and more confident when making joint utility action-

driven decisions. Joint utility reasoning is robust across conditions and, in a follow-up which

replicates and extends results from Experiment 1, joint utility is shown to be an overall

dominant strategy in the population.
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5.1 Background

Cooperation has been viewed as a key aspect of communication, providing another form of

context to constrain potential ambiguity. Here we collect empirical behavioral data which

can lead to insights about how communication operates under this cooperative frame. More-

over, we make the distinction between two types of rational cooperative logic: speech acts

and joint planning. Speech acts involve reasoning about signals as a cooperative way to

change the beliefs of others. Joint planning involves assuming cooperators will choose ac-

tions that are jointly efficient and fair. These discrete but complementary views offer distinct

mechanisms to constrain how signals can be sent and interpreted to resolve ambiguity. While

both cooperative aspects of communication have previously been explored, they have been

typically viewed separately and from different contexts. In the present study we incorporate

them in the same behavioral task to explore whether humans can flexibly employ these two

cooperative heuristics for disambiguation based on the context they are in. In addition, when

both strategies can be used to solve the task but provide conflicting answers, we examine

whether one strategy is dominant.

5.1.1 Context of Beliefs: Cooperative Speech Acts

The first type of cooperative logic employed during communication is speech acts. Speech

acts fall under the umbrella of language pragmatics – the branch of linguistics which focuses

specifically on the context sensitive interpretation of utterances. Grice’s insights in devel-

oping a cooperative framework for communication have been highly influential in guiding

a formalization of pragmatics. Specifically, Gricean cooperative logic treats communication

as a truthful, concise, relevant, and straightforward exchange (Grice, 1975). To be consid-

ered cooperative, a signal should be straightforward, maximally efficient, and predicted to

be interpretable by the receiver. In order to determine what is straightforward or efficient,

communicators must engage in social reasoning about their partners. Although the signaler
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must ultimately decide on a signal, this process implicitly requires considering the context of

all available — but not chosen — options. As a result, a signal with multiple literal meanings

may now have a clear pragmatic interpretation which can be inferred using the situational

context of the utterance.

While Grice’s maxims are intuitively important for communication, alone, they are not

enough to solve uncertainty in communication. Instead they must be combined with the

insight that exchanges center around the use of language. This is valuable because viewing

communication through its use ties signals to communicative goals, making their utilities

easier to define (Allen & Perrault, 1980; Goodman & Frank, 2016). Under this formulation,

communication is a type of rational action: a speech act (Austin, 1962; Clark, 1996; Grice,

1975). When viewed as such, signals have the communicative goal of conveying information

about a referent or state of the world to a listener given the decision context (Van Rooy,

2003). A rational, utility driven signaler chooses a signal by evaluating all possible things she

could say and picking a good option. Having a communicative goal provides the mechanism

for that evaluation of what is good: a signal’s value comes from how it is expected to change

the listener’s beliefs to reflect the intended referent. In turn, under these same assumptions,

the listener can use these cooperative constraints to infer the intended pragmatic meaning

of the signal.

Empirical evidence also supports a cooperative pragmatic account of communication in

adults. Referential language games provide a controlled environment well suited for studying

pragmatic reasoning (Lewis, 1969; Wittgenstein, 1953). In these games, a set of items with

different features (e.g. shape, color) act as context, and a listener aims to understand which

referent a speaker is indicating from a potentially ambiguous signal. In one game, listeners

were asked to bet on which item they believed the signal referred to by distributing money

across the different possibilities (Frank & Goodman, 2012). The listeners’ bets (combined

with empirical ratings of feature salience) agreed highly with how informative the speaker’s

signal was for disambiguating the item. These effects were also replicated in a forced choice
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task with a similar setup (Qing & Franke, 2015) as well as in a setting with more complex

stimuli depicting ambiguous spatial relations, albeit with more noise (Carstensen, Kon, &

Regier, 2014).

5.1.2 Context of Actions: Cooperative Joint Planning

The second type of cooperation we focus on is the context that joint planning provides in

a shared task. Much of communication occurs face-to-face where perceptual cues in the

environment provide important context for framing an exchange. From this perspective,

communication is simply a social tool which can enable individuals to coordinate and get

things done together more effectively (Bruner, 1985; Tomasello, 2000; Vygotsky, 1978).

Again, communication is framed in terms of use, but this time studied using commonsense

knowledge outside of language. Instead, this knowledge lies in considering consequences in

the physical world through action planning and in others’ mental world which provide the

beliefs and desires to create a plan.

We motivate our emphasis on joint action context by examining how even young chil-

dren who do not yet have the capacity for fully-developed language can intelligently and

flexibly reason using sparse communication but using constraints from acting cooperatively,

namely through joint commitment and fairness. Before they have mastered language, tod-

dlers can use visual communication to monitor and regulate their partner through protesting

or attempting to re-engage them when they break a joint commitment formed through ver-

bal acknowledgement (Gräfenhain, Behne, Carpenter, & Tomasello, 2009; Warneken et al.,

2006). At as young as four years old, children already exhibit sensitivity to minimal commu-

nication: they establish commitment using simple cues such as joint attention to help offset

risks of cooperating in a stag hunting paradigm (Wyman, Rakoczy, & Tomasello, 2013).

Moreover, slightly older children protest when their partner does not cooperate, even when

eye contact was the only established form of joint commitment (Siposova et al., 2018). These

findings indicate that communication can help establish strong joint goals in the context of
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cooperation.

One of the early non-verbal uses of communication is also demonstrated in the context

of fairness. Children, but not chimpanzees are able to split rewards fairly in a collaborative

task where it is easy for one party to monopolize rewards (Hamann et al., 2011; Warneken et

al., 2011). In the few cases where one child tries to take more than is fair, sparse communi-

cation (e.g. “Hey!”) quickly and decisively resolves disputes. Here “Hey” is overloaded, and

this overloading is not solved by considering alternative protests or signals as in pragmatic

reasoning. Instead, it is solved by considering the context of the task — where the principle

of fairness is being violated. This protest comes from not only a preference for equality but

also a resentment at being treated unfairly (Engelmann & Tomasello, 2019). These devel-

opmental studies demonstrate the importance of task-based cooperation in communication

stripped down to its most fundamental form, without syntax or grammar.

These cooperative properties of commitment and fairness can be realized through utility

driven joint planning: cooperators act under a rational plan that apportions fair costs and

rewards to all parties given a joint goal. Empirical evidence has also shown that adults

engage in joint utility planning for cooperative tasks, preferring co-efficient actions which

prioritized the group utility over the utility of any individual (Török, Pomiechowska, Csibra,

& Sebanz, 2019). From a utility driven standpoint, even toddlers understand the cooperative

logic of ambiguous requests from a joint cooperative perspective (Grosse et al., 2010). In this

experiment, two equivalent items are equidistant from the toddler, but near and far relative

to the speaker. When the speaker makes an ambiguous request for the item, children are

able to use cooperative logic to reason over the joint utility dynamics of the environment in

the context of the speaker’s capabilities: reaching the far item more often when the speaker

had their hands free than occupied. These studies support how communication should be

taken in context of committing to achieve a shared goal fairly and respectfully. In both

children and adults, joint planning ultimately makes it irrational to ask a collaborator to do

something more easily accomplished by oneself.
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5.2 Experiment 1: Belief-Pragmatics and Action-Utility Use for

Signal Disambiguation

5.2.1 Methods

This task combined feature overloading enriched by a spatial scene, which included abilities

to disambiguate signals both using the belief-driven context of words and the action-driven

context of utility dynamics. In a grid-world environment, participants played a referential

communication game where they were told the goal was to cooperate with their partner to

reach a target item in the fewest steps. During the game, the participant always played the

role of a receiver who could observe the entire environment but did not know which item was

the intended target. Participants were told they were working with a cooperative, intelligent

signaler who had a full view of the grid and knew the target; however, in reality, signals were

pre-programmed. The signaler’s decision depended on the condition and consisted of either

an ambiguous signal — consistent with multiple potential items in the trial — or walking to

an item when that item was closer to the signaler than the receiver.

5.2.2 Participants

Sixty-six undergraduate students in the Department of Communication at University of Cal-

ifornia, Los Angeles (UCLA) participated in this online study for class credit. We analyzed

the data of 51 participants after excluding six participants for not finishing the experimen-

tal trials, three participants for failing the comprehension quiz more than twice, and seven

participants for self-reporting not being serious in the experiment (one participant among

them also did not finish the experimental trials). The experiment was performed in accor-

dance with guidelines and regulations approved by the UCLA institutional review board

IRB#19-001990.
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5.2.3 Stimuli and Task

Participants were able to access the experiment on their personal computer or laptop. On

each trial, a 9 by 10 grid layout was presented to participants. Each grid square was 50 px×

50 px and, three items were placed in the grid. Each item had two features of color (orange,

purple, or green) and shape (triangle, circle, or square) for a total of nine distinct items.

An icon representing the participant was located at grid location (4, 6) while their partner

was located at (4, 0). Both agents traveled along the grid taking steps in the four cardinal

directions, so Manhattan distance was used to describe how far each item was from an agent.

5.2.3.1 Design

The experiment followed a within-subject design with four conditions: Belief-Pragmatic,

Action-Utility, Conflict, and Signaler-walk. Participants played a total of 80 randomly or-

dered trials (20 per condition). The main dependent variable was the strategy the participant

employed to solve each condition, reflected by the item they chose as the target. The re-

ceiver’s decision time from when they received a signal to when they selected an item was

recorded. In addition, participants rated their own confidence after each decision.

The Belief-Pragmatic condition coincided with the example from Frank and Goodman

(2012), but was spread spatially in a visual display. All utility dynamics were fixed so that

only the features of the items could influence the receiver’s decision, equivalent to reasoning

in a referential signaling game. Two items had one unique feature and one feature shared with

a third item (see Figure 5.1 for an example trial of each condition). The signal was a shared

feature, consistent with two items. Relevant items were equidistant from the receiver and all

items were jointly efficient for the receiver (closer to receiver than signaler). Receivers could

select an item that was irrational: inconsistent with the signal, non-pragmatic: consistent

but could be indicated with a more straightforward signal, or pragmatic: consistent and most

straightforward because both features were overloaded. In a traditional referential signaling
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Figure 5.1: Example trials of four experimental conditions. Signaler decision (visible to

participant) and reasoning corresponding to item selection (not visible to participant) on top

of grid layout. (1) Belief-Pragmatic Condition. (2) Action-Utility Condition. (3) Conflict

Condition. (4) Signaler-walk Condition.

game setup, a distinction is made between a literal and pragmatic reasoner whereas we

divide responses into pragmatic and non-pragmatic items. This is because selecting either

consistent item on an individual trial is consistent with literal reasoning; understanding

whether an individual is truly reasoning pragmatically is only possible when looking at the
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distribution of an individual’s response across many trials.

The Action-Utility condition forced participants to make a purely utility-based decision

with two identical items (and one irrelevant distinct one). The observed signal was one fea-

ture of the identical items, which made the context of language pragmatics unable to help

with disambiguation. This setup reflected the dynamic in Grosse et al. (2010), but with a

stronger individual utility component. One of the identical items was closer than the other

to the receiver, making it individually efficient to reach. However, the individually efficient

item was also closer to the signaler than to the receiver, making it jointly inefficient. Thus,

receivers could select an item that was irrational: the non-identical inconsistent one; indi-

vidual: individually efficient but jointly inefficient; or joint: jointly efficient but individually

inefficient.

The Conflict condition was designed to force participants to choose between a joint util-

ity and pragmatic strategy. It was identical to the Belief-Pragmatic condition in terms of

item feature structure and signal. Also, the two consistent items were equidistant from the

receiver. However, instead of all items being jointly efficient for the receiver, the pragmatic

item was jointly efficient for the signaler. Receivers could still select an irrational item, but

now had two previous strategies that came into conflict and could select either a pragmatic

interpretation inconsistent with joint utility (pragmatic) or a joint utility interpretation that

was not pragmatic (joint).

Finally, in the Signaler-walk condition, the signaler walked to an item, and participants

did not make a decision. This baseline was to establish that the signaler had the option to

act for herself instead of communicating. Moreover, the signaler only walked to items when

it was jointly efficient to do so, demonstrating the signaler was rational and cooperative.

Items and signals were counterbalanced to account for preference of feature or feature

value. In addition, items were separated by a minimum distance of two grid units to reduce

potential perceptual chunking. Items always were always at least two grid units farther

from one agent than the other in order to ensure clear joint utility judgments. Finally, item
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locations within a condition were sampled randomly without replacement, subject to the

utility constraints defined by the condition and aforementioned restrictions.

5.2.3.2 Procedure

Participants entered the experiment by opening the link on their own device. They started

with an instruction tutorial which established the rules and cooperative context of the task,

and then completed a comprehension quiz that tested them on the goal and set-up of the

experiment. Participants completed eight practice trials to familiarize them with the task

which consisted of two trials in each condition presented in a random order.

In each trial, the signaler made the first decision: she either walked to an item herself or

sent a signal to the participant describing a single item feature (e.g. “circle”). If the signaler

sent a signal, the participant then had a chance to walk to the item they believed was the

target by clicking on it. Before they made a decision, hovering the cursor over any item in

the grid displayed the distance of each agent from the target: the cost of traveling there. If

the signaler moved to the target herself, participants observed the signaler walking to the

item. The trial ended when either agent reached an item. Then, a review box would pop

up, showing who took how many steps to reach the selected item. Participants were asked

to rate their confidence in their selection from one (least confident) to five (most confident).

Participants then proceeded to the next trial. Participants were not given feedback about

whether their decision was correct or not to avoid biasing decisions on future trials. After

all experimental trials, participants took an exit survey which included a self-report on how

serious they were throughout the experiment, strategies they used, and performance of their

partner.
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5.2.4 Results

We analyzed the strategy, response time, and confidence rating on each trial. Across all

conditions and participants, only 17 trials had irrational responses (Belief-Pragmatic: 9,

Action-Utility: 3, Conflict: 5), thus we restricted our analyses to focus on the major strategies

employed: for the Belief-Pragmatic condition, pragmatic/non-pragmatic; for the Action-

Utility condition, joint/individual; and for the Conflict condition, joint/pragmatic.

5.2.4.1 Strategy Preferences

We examined the breakdown of each participant’s behavior within each condition. In the

Belief-Pragmatic Condition, this was the proportion of trials each individual chose the prag-

matic versus non-pragmatic item shown in Figure 5.2. If an individual was reasoning literally

instead of pragmatically, we would expect them to have no preference between the two con-

sistent items: pragmatic and non-pragmatic. After adjusting for multiple comparisons using

the Benjamini-Hochberg criteria (BHC), we find that 20 out of 51 participants (39.2%)have a

strong strategy preference (padj < .05). Nineteen of these participants are using pragmatics.1

For the other two conditions, the items themselves corresponded to two types of strategies;

thus, we tested strategy consistency within an individual in the same manner as well as

whether a clear preference emerged across the population. At the individual level in the

Action-Utility conditions, 45 out of 51 participants (88.2%) had an individual preference for

a strategy (BHC adjusted padj < .05) which can be seen in Figure 5.3. At the same time,

people were divided between an individual utility and joint utility strategy. Twenty-four

participants (47%) were driven by individual utility and 21 participants (71%) selected items

that was consistent with maximizing the joint utility. At the population level, we looked

at the distribution of proportions of joint utility use, averaged by subject and performed a

1One participant had a strong preference for the non-pragmatic item. This strategy requires performing
pragmatic reasoning but deliberately selecting the non-pragmatic option.
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Figure 5.2: Individual participant strategies in the Belief-Pragmatic condition. Asterisks

denote participants who were pragmatic reasoners.

t-test under the hypothesis H0 : µ = .5. Under this test, there was no evidence to support a

dominant utility strategy in the population (xju = .559, p = .331).

Figure 5.3: Individual participant strategies in the Action-Utility condition. Asterisks denote

participants who were highly internally consistent.

Finally, we focus on the results of the Conflict Condition, our main experimental ma-

nipulation of interest. At the individual level, people were highly internally consistent when

choosing a strategy (see Figure 5.4). In 39 out of 51 cases (76.5%), participants adopted a

dominant strategy (BHC adjusted padj < .05). Of these, 23 individuals (45%) used joint util-
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ity reasoning while 16 individuals (31%) selected pragmatic items. While there were slightly

more individuals who employed joint utility reasoning, there was not enough evidence at the

population level to suggest an overall preference (xju = .569, p = .234).

Figure 5.4: Individual participant strategies in the Conflict condition. Asterisks denote

participants who were highly internally consistent.

Moreover, we investigated whether participants’ strategies correlated between conditions

in Figure 5.5. Pairwise correlation analyses indicated a strong positive relationship between

an individual’s strategy in the Action-Utility and Conflict conditions (Spearman’s ρ = .91,

p < .001). That is, individuals who chose a joint utility strategy in the Action-Utility

condition were also likely to choose a joint utility strategy when pragmatic reasoning and

utility reasoning were in conflict. This effect was not observed for the Belief-Pragmatic and

Conflict (ρ = .03, p = .852) or Belief-Pragmatic and Action-Utility conditions (ρ = .18,

p = .211).

5.2.4.2 Strategy Difficulty: Decision Time and Confidence

In this task, we examined decision time which can act as a rough proxy for the cognitive

difficulty involved in employing that strategy (Townsend, 1992). Because participants took

the study on their personal device instead of a controlled laboratory setting, the data included
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Figure 5.5: Strategy correlations across conditions. Correlation coefficients (upper triangle),

corresponding to the individual responses (lower triangle). Histogram describing distribution

of strategy preference (on diagonal). Data concentrated at the extremes of the histogram

indicate the strong, divergent preferences seen in the Action-Utility and Conflict conditions.

extreme decision times which could not reasonably be attributed to deliberation on the task.

While it is common practice to remove reaction times above a certain threshold, typically

three Z-scores away (Tabachnick, Fidell, & Ullman, 2007), this can substantively inflate

the Type I error rate (Bakker & Wicherts, 2014). Because we had no strong literature-

based intuition for a decision time cut-off to indicate when subjects were no longer paying

attention, we relied on nonparametric testing which is robust to outliers and skew inherent

in reaction time data. In the Belief-Pragmatic condition, we found participants to take more

time when employing pragmatic reasoning than non-pragmatic reasoning (x̃prag = 5.23 sec,

x̃lit = 4.58 sec, Mann-Whitney-Wilcoxon test (MWW); 95% CI of median difference: [.201,
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1.103], p < .001). In the Action-Utility condition, participants took similar time to respond

when employing either strategy (x̃ju = 2.93 sec, x̃iu = 2.83 sec, MWW; 95% CI: [-0.094,

.389], p = 0.115). Finally, in the Conflict condition, participants spent longer to make a

decision when employing pragmatics as opposed to joint utility reasoning (x̃prag = 3.61 sec,

x̃ju = 3.07 sec, MWW; 95% CI: [.003, .561], p = 0.024). See Figure 5.6 for decision time

comparisons within each condition.

Figure 5.6: Boxplot of decision times for three conditions. Trials > 30 seconds (npragmatic =

17, nutility = 7, nconflict = 9) are included in analyses but not shown here for legibility.

We also examined self-reported confidence as a function of decision (see Figure 5.7).

Participants were significantly more confident when choosing pragmatic items than non-
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pragmatic ones (xprag = 3.60, xlit = 3.05, p < .001 under Welch’s t-test) as well as when

choosing items that maximized joint utility rather than individual utility (xju = 4.06, xiu =

3.44, p < .001). Finally, in the Conflict condition, participants were significantly more

confident when choosing the joint utility items over pragmatic ones (xju = 3.99, xprag = 3.67,

p < .001).

Figure 5.7: Self-rated confidence for each condition on a scale of 1 (not at all confident) to

5 (highly confident). Violin plots are split by strategy to show the difference in confidence

distribution depending on chosen strategy.

5.2.5 Debriefing Data: Collaboration Between Partners

While participants were told they were playing with a cooperative and intelligent speaker,

without live interaction, there was no way to regulate one’s partner. As a result, one potential

concern was that participants would not feel that their partner was collaborative or that they

may lack the motivation to be collaborative themselves. However, qualitative examination of

post-experiment debriefing data suggests participants did engage collaboratively with their

partner.

When asked to rate their partner’s performance in the experiment on a scale of 1 (lowest)

to 5 (highest), participants tended to rate their partners favorably or above average (x =

3.79). Upon examining participants’ written reflections, 36 of the 51 participants (70.58%)

indicated that their strategy involved reasoning about their partner collaboratively, beyond
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just the non-pragmatic signal that was sent. Self-reported strategies included references to

joint utility by considering relative distances between their partner and the targets, as well

as references to pragmatics by considering what signals their partner did not choose to send

in addition to the one that was sent. Finally, when given a chance to report any issues or

confusion with the experiment, only two of the 51 participants (3.92%) expressed any doubt

over the helpfulness of their partner.

5.2.6 Discussion

Individuals do use pragmatic reasoning, but it is challenging and not universal in this task,

which we established through the strategy preference analysis in the Belief-Pragmatic Con-

dition. This supports previous empirical findings in referential signaling games (Frank &

Goodman, 2012; Qing & Franke, 2015), replicating this phenomena in our visual paradigm.

On average, people also took longer to make a pragmatic decision than a non-pragmatic one,

which is consistent with the computational models of pragmatics. In order to come up with a

pragmatic interpretation of a signal, a listener must first reason over simpler interpretations

(Goodman & Frank, 2016). At the same time, people were more confident about pragmatic

selections than non-pragmatic ones.

Finally, while there was not enough evidence to say joint utility was a dominant strategy

over pragmatics in this task, when we consider the Conflict condition at the individual level,

we see that people are exceptionally strategic in their decisions. Results suggest groups of

highly consistent decision-makers who have overwhelming preferences for their respective

strategies. Some individuals interpreted signals in a belief-driven manner: reasoning based

on the speaker’s intention to be straightforward. Other individuals interpreted signals in an

action-driven manner: interpreting signals in a way that led to jointly efficient actions.

However, there is further evidence that joint utility may be a more robust strategy than

pragmatics. When examining an individual’s decisions across different conditions, their use

of joint utility in the Action-Utility condition was highly predictive of their behavior in
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the Conflict condition. In contrast, an individual’s ability to reason pragmatically in the

Belief-Pragmatic condition had no bearing on their decisions in the Conflict condition. This

suggests that while only a subset of individuals used a joint utility based strategy, it was an

incredibly powerful and robust heuristic that could generalize across contexts.

Moreover, in the Conflict condition participants were in fact faster at making joint utility

based decisions than pragmatic ones. At the same time, confidence ratings were higher on

trials where people employed joint utility. These results suggest that joint utility reasoning

may be an easier means to solve this task than pragmatics.

5.3 Experiment 2: Focus on Joint Utility and Pragmatics in Con-

flict

Results from Experiment 1 indicated that when joint utility and pragmatics were in conflict,

individuals were faster and more confident about joint utility reasoning decisions. Moreover,

while there was not enough evidence for joint utility as a dominant strategy in the pop-

ulation, it tended to be more robust. In Experiment 2 we focus on the contrast between

pragmatics and joint utility to replicate and extend existing results in Experiment 1. We

also hypothesized that the inclusion of the non-conflict conditions could be explicitly cuing

people to consider a strategy that they might not have naturally used otherwise, introducing

additional bias.

5.3.1 Methods

In order to focus on the conflict between pragmatics and joint utility and remove a potential

source of bias, we removed the Belief-Pragmatics and Action-Utility conditions from the

experimental setup and just focused on cases where subjects were forced to make a conflicting

choice (Conflict condition). We also kept the Signaler-walk condition to demonstrate that

the signaler could act cooperatively. Other than this change, the stimuli, task, and game
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play were all the same as in Experiment 1. As a result, a new set of participants saw 20

trials of each of the two remaining conditions for a total of 40 trials.

Fifty undergraduate students in the Department of Communication at University of Cal-

ifornia, Los Angeles (UCLA) participated in this online study for class credit. We analyzed

the data of 40 participants after excluding three participants for failing the comprehension

quiz more than twice, and seven participants for self-reporting not being serious in the ex-

periment.

5.3.2 Results

We performed the same analyses as in Experiment 1 with particular emphasis on the overall

strategy and individual strategy preferences. Across all conditions, four trials had irra-

tional responses which were excluded from analysis. As before, individuals still tended to be

consistent in choosing their strategy (see Figure 5.8). In this case, 26 out of 40 (65%) par-

ticipants adopted a dominant strategy after adjusting for multiple comparisons using BHC

(padj < .05). Of these, eight (20%) adopted a pragmatic strategy and 18 (45%) adopted

a joint utility strategy. In this case, unlike the previous experiment, a two-tailed t-test of

subject strategies indicated the joint utility was dominant (xju = .623, p = .0397).

Furthermore, we replicated the decision time and confidence patterns seen in Experiment

1. Participants spent longer to make a decision when employing pragmatics as opposed to

joint utility reasoning (x̃prag = 4.20 sec, x̃ju = 3.58 sec, MWW; 95% CI of median difference

[.069, .857], p < .001). Additionally, they were more confident when choosing the joint

utility items than when choosing the pragmatic ones (xju = 4.03, xprag = 3.70, p < .001

under Welch’s t-test).

Finally, participant ratings of their partner during the exit survey in Experiment 2

matched those of Experiment 1. When asked to rate their partner’s performance in the

experiment on a scale of 1 (lowest) to 5 (highest), participants tended to rate their partners
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Figure 5.8: Strategy in Conflict Condition: Individuals are highly internally consistent and

have an overall preference for joint utility. Asterisks denote participants who were highly

internally consistent.

favorably (x = 4.10). Thirty of the 40 participants (75.0%) indicated that their strategy in-

volved reasoning about their partner collaboratively, with similar strategies to those reported

in Experiment 1. No participants reported doubt over their partner’s cooperation.

Figure 5.9: Left: Boxplot of decision times. Trials > 30 seconds (n = 9) are included in

analyses but not shown here for legibility. Right: Self-rated confidence, split by strategy.

5.3.3 Discussion

These results serve to both replicate previously described patterns observed in Experiment 1

as well as extend them. After removing a source of potential bias generated from the inclusion

of trials testing for utility reasoning and pragmatic reasoning individually, there are multiple
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measures of evidence which all support joint utility as a dominant strategy when compared to

pragmatics. First, all results in this follow-up remain consistent with the original experiment.

Around two-thirds of individuals are highly individually consistent in their strategy, and

participants who adopted a joint utility strategy were both highly confident and faster to

make their decisions. Additionally, self-reported strategies again affirm that the majority

of participants believe their partner to be at least somewhat collaborative and engage in

decision-making centered around this belief. Finally, in addition to the replications from

Experiment 1, we also see a preference for joint utility reasoning at the population level.

5.4 General Discussion

When individuals were forced to choose between action-driven or belief-driven strategies in

Experiment 1, they were highly internally consistent. Moreover they were faster and more

confident about their action-driven strategies using joint utility reasoning. In Experiment 2

we were able to confirm these results as well as extend them. When we focused in on this

Conflict scenario, joint utility began to dominate as a strategy.

Individuals’ overall preference for joint utility reasoning was not as strong as initially

hypothesized. For example in the Action-Utility condition of Experiment 1, we found par-

ticipants to be more confident about their decision when they chose a jointly efficient item,

but that they were still highly split between an individual and joint. Moreover, in the Con-

flict conditions, it was not until Experiment 2 where we observed a population level effect.

We were surprised that this joint utility preference was not stronger given previous work

on joint efficiency in cooperative tasks (Török et al., 2019). One explanation is that be-

ing cooperative requires effort. In this experiment utility decisions can be mapped on to

different types of perspectives. Maximizing individual utility is equivalent to viewing the

problem from an egocentric perspective. There is a line of research that suggests reasoning

from an egocentric perspective acts as an easier default which only adjusts toward another
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perspective with sufficient cognitive resources (Keysar, Barr, & Horton, 1998; Epley, Keysar,

Van Boven, & Gilovich, 2004; Barr, 2014). In this task, it is possible that participants did

what was easiest. However, this may not be the whole story as (a), there was no signifi-

cant difference in the distribution of decision times between individual and joint utility, and

(b), participants were actually more confident about joint utility decisions. These findings

alongside the presence of a substantial portion of individuals adopting joint utility reasoning

support the idea that perspectives outside of egocentrism may not be secondary (Dale et al.,

2018).

It is also possible that individuals who have the capacity to plan jointly may not have

had high enough motivation in the task to engage it. Empirical work points to the idea that

when interpreting referring expressions, individuals weigh perspectives depending on context

(Heller et al., 2016), leading to a division of labor in communication. One factor that could

contribute to this division is an estimation of the degree of effort one’s partner is exerting

(R. D. Hawkins, Gweon, & Goodman, 2021). The debriefing data supports that participants

likely believed their partners to be at least somewhat collaborative and the majority of self-

reported strategies indicated reasoning about one’s partner cooperatively. However, as there

was no true interaction between participants, this still may not have been enough motivation

to choose jointly efficient actions.

This leaves room for interesting potential future research. Although framed as coop-

erative, the signaler’s responses were pre-programmed. A version of this task that was

interactive, bringing subjects in to work together in person or in real-time online, could en-

courage more robust collaboration. Even more strongly, a version of this experiment where

the role of the communicator and listener were not fixed could lead to much stronger pref-

erences for fairness and cooperation. Here, the signaler is in a more powerful position: they

have additional information about the target as well as the capacity to force their partner to

be responsible for acting by sending a signal. Role reversal in the game could help enforce

stronger cooperative norms.
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Finally, while these experiments have shown how individuals act when forced to choose

between action and belief driven strategies, these strategies are not mutually exclusive. In

fact context — and the constraints it provides — likely accumulates evidence to resolve am-

biguity in linguistic communication (Roy & Mukherjee, 2005). Integration of many simpler

contextual heuristics may be a key to fast, flexible, and sparse signaling. Future behavioral

research should address how these heuristics interact with each other, which has already

been demonstrated to be a theoretically promising approach to communication (Stacy et al.,

2021).
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CHAPTER 6

Discussion and Directions for Future Work

6.1 How can we say so much with so little?

Even something as effortless as a shared look can be instantly understood as secretive, in-

credulous, or confused. Humans communicate so much with so little: sparse gestures and

simple verbal utterances can often be understood as as complex, sophisticated exchanges.

How can this be formalized to build a mechanistic model of human-like communication? The

chapters of this dissertation provide a theoretically motivated infrastructure to advance this

direction. Here, I take the perspective that intelligence can be reverse-engineered starting

from an understanding of the remarkably rich social and physical knowledge exhibited by

infants and young toddlers. Long before children master the complexities of language, they

are already developing incredibly sophisticated socio-cognitive abilities to support the devel-

opment of communication. By capturing these underlying mechanisms, I provide the formal

structure needed to model overloaded communication at its origin. Specifically, while ToM

serves as a widely recognized building block for social intelligence, it is also crucial for the

inferential attitude toward communication taken here. Moreover, cooperation plays a critical

role in the development of human-unique communication which motivates our Imagined We

approach.

Taken together, the chapters of this dissertation integrate and extend existing modeling

work to capture overloaded, spontaneous communication. Chapter 2 provides an overview of

existing modeling work covering the three major building blocks emphasized in this disserta-
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tion: Theory of Mind, cooperation, and communication. Following this, Chapter 3 formally

connects two of these ideas: ToM and RSA. This serves to both frame signals in terms of

their use in the real world and provide a modeling mechanism to support an inferential per-

spective on communication. Moreover, it introduces the idea of treating communication as

a type of paternalistic helping where the signaler coordinates different perspectives. Next,

in Chapter 4, I integrate ToM and RSA with shared agency to introduce the Imaged We

model for communication. Previously, in Chapter 3, agents were modeled with unbalanced

roles: the signaler acted as an observing helper who could provide information to an actor.

However, most settings involve agents who interact in the environment as equal partners.

This interaction creates the need for understanding what is mutually known and desired

as well as acting on what is mutually efficient. We establish this through a shared agency

approach. Finally, in Chapter 5, I provide preliminary behavioral evidence to complement

this line of modeling work.

6.2 Broader Insights: Avoiding Traps of Recursion with IW

One major theoretical contribution of adopting an IW framework is that it provides an

elegant solution to the problem of recursion involved in many traditional inference models.

From the recursion standpoint, selecting as signal involves modeling what I think you think,

but also what I think you think I think and so on. Despite the fact that the idea of relying on

deep recursion as a means to solve social negotiation has been criticized in cognitive science

(Chater, Zeitoun, & Melkonyan, 2022; Sperber & Wilson, 1986; Clark & Marshall, 1981),

many modeling approaches do rely on direct partner recursion as a means to coordinate.

For example, both BToM and RSA fall into this arena of social recursion. Chater et al.

(2022) posit that neither type of model is able to resolve the paradox created from mutual

mind-reading. BToM models have been extremely successful at capturing interesting social

inferences; however, they sidestep the core challenge of recursion: social interaction. Instead,
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they model inferences from the perspective of an observer who cannot not intervene in the

environment. Thus the target of the observer’s inference — the agent interacting in the

environment — does not need to mutually reason about or even be aware of this observer. On

the other hand, RSA involves direct partner reasoning. However, it does not satisfactorily

solve how to coordinate which level of reasoning to adopt or when to stop. The typical

method for resolving this is to cut off recursion at a relatively shallow depth which has been

justified using behavioral evidence in game-theoretic paradigms which find strategic thinking

to be shallow and constrained by working memory (Camerer et al., 2004). However, more

recently, depth of recursion has been found to be highly contextual in behavioral economic

settings (Georganas, Healy, & Weber, 2015) and much easier and extensive than previously

thought when presented implicitly using stories (O’Grady, Kliesch, Smith, & Scott-Phillips,

2015). This indicates the coordination problem may not be trivial. IW offers an alternative

to this paradox. While it can be modeled as a recursive process, the most natural stopping

point is for all agents to model the same sharedWe using mutually known, public information.

Instead of debating how deep recursion should be, this shifts the focus to the structure of the

minds that are being reasoned about. IW reasons about a richer shared mind in a broader

context which means it does not need to go as deep.

IW can be thought of as a special type of perspective taking that supersedes any single

individual, self or other, which has interesting implications for other processes involved in

social cognition. For example, it proposes a cooperative constraint to joint actions such as

coordinating how to move a table together, even in the absence of communication. In this

sense, instead of anticipating how one’s partner might move and how to anticipate and react

to that movement for a meshing of plans, the joint goal of moving is simply planned as

if agents were already acting together as a single We. Communication acts as a means to

course correct when one’s partner is not in the ways one’s version of We predicted. This is

not to say that individuals must always operate under IW, but to argue for it as a mode of

reasoning that communicators who have established cooperative motivations can engage in
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to ease the burden of deep mind-reading.

6.3 Open Questions and Future Directions

While IW offers a novel framework for communication as a means to coordinate perspec-

tives, there are still many open questions and future directions that this modeling approach

generates. For example, while I have argued for IW as inspired by a developmental and cog-

nitive perspective, there are cases where communicators still need to engage in more complex

reasoning, either to fix cooperation that has gone awry or to establish cooperation and align

interests in the first place. One important modeling direction for this framework involves

figuring out when and how to recognize you are not “on the same page” as your collaborator

and debug this or how to make that initial establishment of a shared We among individuals

with imperfectly aligned personal goals and motivations.

Thus far, our formulation of overloaded communication has been highly grounded in the

perceptual environment, sensitive to costs under a joint task. In conjunction, I have argued

that the core purpose of communication is to coordinate perspectives under uncertainty

or asymmetry in knowledge, in this task knowledge of the goal. However, the environment

themselves (baring some key piece of knowledge) are fully observable with both agents sharing

a top-down perspective. In the future, I could move this into a partially observable domain

with different visual perspectives which would lead to beliefs about the environment that

could be coordinated in a similar fashion under IW.

Finally, on the behavioral side, many of these theoretical modeling ideas still need rig-

orous empirical support. While I have provided initial steps toward this in Chapter 5, I

focus on preferences between different strategies for resolving overloaded communication. In

reality, it is likely that there are many processes and heuristics humans use in conjunction to

successfully handle overloading. One next step is to broaden the types of context examined

and look at their interaction: how they can build on top of each other to support a fuller

123



inferential account of communication?
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APPENDIX A

Pseudocode of IW Algorithm (Chapter 4)

The base case for IW signaler is sending a signal in the signal space under uniform distribu-

tion.

Algorithm 1 IW Signaler Algorithm
Inputs:

goalt: true goal;

Ωs: signal space; Ωa: action space; Ωg: goal space;

JP (g): a sequence of actions generated by a joint policy for goal g;

β: rationality parameter;

C(signal): cost of signal

IWr(signal,Ωa,Ωg,JP(.), β, C(.)): IW interpretation of a signal, returns IW’s goal distribu-

tion given a signal

U(JP(.), g) = Reward(g) - Cost(JP(g)): utility function as the reward of reaching goal g

minus action costs

Output: decision: {signal ∈ Ωs, quit, DIY }
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1: procedure IWs(goalt,Ωs,Ωa,Ωg, JP(), β, Cs)

2: for signal ∈ Ωs do

3: for goal ∈ Ωg do

4: ▷ Signaler’s model of how the group should interpret the signal

5: P (goal|signal) =IWr(signal,Ωa,Ωg, JP(), β, Cs)[goal]

6: P (actions|goal) = 1{actions = JP (goal)}

7: end for

8: P (actions|signal) =
∑

goal∈Ωg
P (goal|signal)P (actions|goal)

9: E[U(signal, goalt)] = EP (actions|signal)[U(actions, goalt)]− C(signal)

10: end for

11: end procedure

12: ▷ Compute utility of non-communicative actions:

13: U(quit, goalt) = 0

14: U(DIY, goalt) = Reward(goalt)− Cost(πsignaler
goal ) ▷ Utility of signaler reaching goal

15: Ωd = {Ωs, DIY, quit} ▷ Decision space includes signaling and non-communicative

actions

16: P (decision|goalt) = eβE[U(decision,goalt)]∑
d∈Ωd

eβE[U(d,goalt)]

17: Sample a decision based on P (decision|goalt)

18: return decision
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Algorithm 2 IW Receiver Algorithm
Inputs:

signal: signal received;

Ωs: signal space; Ωa: action space; Ωg: goal space;

JP (g): a sequence of actions generated by a joint policy for goal g;

β: rationality parameter;

IWs(g,Ωs,Ωa,Ωg, JP (), β, Cs): Model of how IW signaler selects a signal given goal g

U(JP(.), g) = Reward(g) - Cost(JP(g)): utility function as the reward of reaching goal g

minus action costs

Output:

JP (gwe): The sampled action trajectory to reach the inferred goal gwe

1: procedure IWr(signal,Ωa,Ωg, JP (), β, Cs)

2: ▷ Bayes theorem where the likelihood is the IW signaler and P (goal) is assumed

uniform across all consistent goals

3: P (goal|signal) = (IWs(goal,Ωs,Ωa,Ωg ,JP (),β,Cs)[signal])P (goal)∑
g∈Ωg

(IWs(g,Ωs,Ωa,Ωg ,JP (),β,Cs)[signal])P (g)

4: end procedure

5: Sample a gwe from P (goal|signal)

6: return JP (gwe)
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