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Abstract

Spatially Modulated Structures in Convective Systems

by

Hsien-Ching Kao

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Edgar Knobloch, Chair

This dissertation focuses on the study of spatially modulated structures in pattern forming
systems. The work is motivated by recent interest in spatially localized states observed in
convective systems. Weakly nonlinear analysis is applied to derive the modulation equations
and systematic studies, both analytical and numerical, are then performed on the simplified
equations. The following is a summary of this work:

Weakly Subcritical Patterns
The transition from subcritical to supercritical periodic patterns is described by the
one-dimensional cubic-quintic Ginzburg-Landau equation

At = µA+ Axx + b|A|2A+ i
(
a1|A|2Ax + a2A

2A∗
x

)
− |A|4A,

where A(x, t) represents the pattern amplitude. The coefficients are real indicating
that the system is spatially reversible. Coefficients µ and b are treated as bifurcation
parameters. Properties of the equation such as well-posedness, gradient structure, and
bifurcation behavior depend significantly on the parameters a1 and a2. In this system,
periodic patterns may in turn become unstable through one of two different mecha-
nisms, an Eckhaus instability or an oscillatory instability. Dynamics and bifurcations
near the instability thresholds are analyzed. Among the stationary solutions, the front
solution which connects the zero state to a spatially periodic state plays the most im-
portant role. The location of the front in the parameter µ is treated as a Maxwell
point. The spatially modulated solutions which bifurcate from the periodic solutions
demonstrate protosnaking behavior near this point. These results are used to shed
light on both variational and non-variational systems exhibiting homoclinic snaking.

Localized Patterns in Rotating Convection and Magnetoconvection
In two-dimensional rotating convection and magnetoconvection, the formation of spa-
tially localized patterns is strongly affected by the interaction between convection and
a large scale mode: zonal velocity in rotating convection and magnetic flux in magne-
toconvection. A nonlocal fifth order Ginzburg-Landau theory is developed to describe
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the localization near a codimension-two point. The study of the fifth-order Ginzburg-
Landau theory gives us better understanding of the appearance of spatially modulated
solutions and their subsequent bifurcation behavior. These results are used to explain
the properties of spatially localized convectons in the full convection problem. The
effect of boundary conditions is also analyzed which shows how the bifurcation picture
is modified in the presence of mixed boundary conditions.

Exact Solutions of the Cubic-Quintic Swift-Hohenberg Equation
Meromorphic exact solutions of the cubic-quintic Swift-Hohenberg equation

ut = µu− (1 + ∂xx)
2 u+ bu3 − cu5

are studied and a one-parameter family of real exact solutions is derived. The solutions
are of two types, differing in their symmetry properties, and are connected via an exact
heteroclinic solution. These exact solutions are used as initial conditions for numerical
continuation which shows that some of these lie on secondary branches while others
fall on isolas. The approach substantially enhances our understanding of the solution
space of this equation.
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Chapter 1

Introduction

Patterns appear naturally in a variety of systems, in particular, in fluid systems [1],
chemical reactions [2], biology [3], and nonlinear optics [4]. These systems, are mostly
driven dissipative systems and coherent structures like stripes, spots, spirals, labyrinths,. . .,
are formed from initially homogeneous background via spontaneous symmetric-breaking bi-
furcations. This fascinating field of study has generated a lot of attention and also yields
rich applications in fabrication, lithography, or even computer graphics. A classical and
probably the best studied example of pattern formation is Rayleigh-Bénard convection [1],
which occurs in a plane fluid layer heated from below. The applied temperature difference

Figure 1.1: (a) Shadowgraph of hexagonal convection cells. (b) Hexagonal cells transform
to roll pattern [5].

∆T between bottom and top acts as the ”driving force” which causes the uniform conduc-
tion state to lose its stability and periodic convection to appear as ∆T exceeds a certain
threshold. Figure 1.1 shows the experimental observation of this phenomenon. A detailed
analysis of the loss of stability to periodic convection can be found in [6].

To study the pattern forming behavior in Rayleigh-Bénard convection, a partial differ-
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ential equation, the so-called Swift-Hohenberg equation

ut = ru− (1 +∇2)2u− u3, (1.1)

has been suggested in [7]. Here u ≡ u(r, t), r ∈ R2, is an order parameter representing
the magnitude of the slow eigenvector of the linearized system and may be identified with
the temperature deviation (from the pure conduction profile) or the vertical fluid velocity
at the layer mid-plane. This equation is suitable for the description of two-dimensional
convection for which Eq. (1.1) becomes one-dimensional. However, in full three-dimensional
convection, the nonlinear term is nonlocal in space and Eq. (1.1) then represents a model
equation believed to retain the essential properties of the full convection problem.

The one-dimensional Swift-Hohenberg equation has been generalized to

ut = ru− (1 + ∂xx)
2u+ f(u), (1.2)

where f(u) = o(|u|) as u → 0 is a smooth nonlinear function of u. This equation, with
different nonlinearities, has been used for modeling purposes for various systems and serves
as a paradigm in pattern formation. According to linear stability analysis, the trivial state,
u = 0, loses stability as r becomes greater than zero and a steady state bifurcation to a
periodic state with wavenumber k = 1 occurs at r = 0. This bifurcation can be either
supercritical or subcritical which depends on the nonlinearity f(u). If f(u) has the Taylor
expansion

f(u) = f2u
2 + f3u

3 +O(u4), (1.3)

the bifurcation is subcritical when 38f 2
2 + 27f3 > 0 and supercritical when 38f 2

2 + 27f3 < 0
[8]. Note that in the classical Swift-Hohenberg equation, f(u) = −u3, the bifurcation to
periodic state is always supercritical.

The patterns introduced previously in Rayleigh-Bénard convection are spatially-extended
patterns. Recent interest in convective fluid pattern formation has focused on localized pat-
terns in coupled-convection systems. Such localized patterns appear mostly in the region
of subcritical bifurcation. This bifurcation behavior has been observed in [9, 10, 11, 12]
in full numerical simulations of binary-fluid convection and doubly-diffusive convection. In
these systems, a bistability exists between the pure conduction state and periodic convection
state. Figure 1.2 [9] shows an example of the bifurcation diagram in binary-fluid convection
of water-ethanol mixture. The vertical axis corresponds to Nu− 1, where Nu is the dimen-
sionless number, Nusselt number, which measures the ratio of convective to conductive heat
transfer across the layer. The horizontal axis corresponds to Ra, which is the dimensionless
number, Rayleigh number, that is proportional to the applied temperature difference. When
the fluid mixture is heated from below, the destabilizing temperature gradient competes
with a stabilizing concentration gradient that develops in response to the heating whenever
the separation ratio of the mixture is negative. As demonstrated in the figure, besides the
usual periodic convection structure (SOC, steady overturning convection) there are spatially
periodic traveling waves (TW), chaotic states (black dots), and spatially localized states.
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There are two branches of stationary localized states, each of which obeys either odd or
even reflection symmetry, which enter a snaking or pinning region as the norm, Nu − 1,
of the solution increases, and then ”snake” back and forth across this region with further
increase in norm. These oscillations of the localized states in the bifurcation diagram reflect
the nucleation of new convection cells at either end of the localized structure and hence the
process whereby the structure grows in length (and hence norm).

Figure 1.2: Bifurcation diagram showing Nusselt number Nu−1 as a function of the Rayleigh
number in binary-fluid convection [9].

The bifurcation scenario described above, so-called homoclinic snaking, has attracted
much attention. This type of bifurcation scenario can be well-described within the frame-
work of the generalized Swift-Hohenberg equation with quadratic-cubic or cubic-quintic non-
linearity

f23(u) ≡ f2u
2 + f3u

3, f35(u) ≡ f3u
3 + f5u

5, (1.4)

where the coefficients of the nonlinear terms are chosen to satisfy the condition for subcritical-
ity. The generalized Swift-Hohenberg equation with cubic-quintic nonlinearity is equivariant
under u→ −u while in the quadratic-cubic case there is no such equivariance property. The
choice of f23 or f35 nonlinearity depends on whether the underlying system has up-down re-
flection symmetry or not. Here the up-down reflection corresponds to the the transformation
z → −z, where z is the vertical coordinate and z = 0 corresponds to the layer mid-plane.
The bifurcation diagram for the quadratic-cubic Swift-Hohenberg equation (hereafter SH23)
is shown in figure 1.3 [13]. The black line corresponds to a spatially periodic state while the
blue lines, which bifurcate from the periodic branch through the Eckhaus mechanism [25],
correspond to localized states. There are two types of localized states, each with a peak or
a trough at its center. The localized branches switch their stability (stable to unstable or
unstable to stable) as they pass through successive saddle-nodes. However, in contrast to
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Figure 1.3: Bifurcation diagram and sample solution profiles of SH23 [13]. Here N represents
the L2-norm of the solution. Black line: periodic state. Blue line: localized state. The thick
line indicates the solution branch is stable while the thin line indicates the solution branch
is unstable.

convective systems, the system described by Eq. (1.2) has gradient structure, i.e.,

ut = −δF
δu
, F ≡

∫
Γ

{
−r
2
u2 +

1

2
[(1 + ∂xx)u]

2 −
∫ u

0

f(v)dv

}
dx (1.5)

when suitable boundary conditions are applied. Here Γ is the spatial domain and F is
referred to as the free energy of the system. The Maxwell point rM , which is the value of
r such that the periodic state has the same free energy as the zero state, can therefore be
defined. This point is of great value since the snaking branches exist and oscillate around it.
Besides the snaking structure, there are also rung-like structures which consist of asymmetric
localized states and connect the localized branches with different parity.

To study this behavior in the subcritical region, I consider the case when the bifurcation
is weakly subcritical and the picture can be described by a modulation equation, the cubic-
quintic Ginzburg-Landau equation (hereafter GL35) [20, 21]

At = µA+ Axx + i
(
a1|A|2Ax + a2A

2A∗
x

)
+ b|A|2A− |A|4A, (1.6)

whereA(x, t) represents the pattern amplitude and the coefficients are all real. Equation (1.6)
is the most general normal form equation for a weakly subcritical or supercritical bifurcation
when the underlying system is translation invariant and reflection symmetric in x. More
detailed background of this equation will be given in chapter 2. The branch of periodic states
is now identified with the homogeneous state |A| ̸= 0. Equation (1.6) is not a topological
normal form but a truncated normal form at fifth order and due to the absence of higher and
beyond all orders terms, the nonadiabatic effects are absent and the snaking region collapses
into a point identified in gradient systems with the Maxwell point [14, 15]. The nonadiabatic
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terms describe the pinning between the fronts bounding the structure on either side and the
pattern within, and thereby generate homoclinic snaking centered on the Maxwell point.
However, despite their absence, GL35 retains the essential properties of spatially localized
states, including their origin and termination. In addition, it applies to systems that are
not of gradient type. Thus, GL35 provides much useful information about the location of
the pinning or snaking region in both gradient and nongradient systems, and their behavior
outside of this region.

A bifurcation picture different from usual homoclinic snaking, slanted snaking, occurs
when there is a large scale mode present in the system. The slanted snaking behavior can
be observed in two-dimensional rotating convection and magnetoconvection with stress-free
boundary conditions [16, 17]. In these two systems, the large scale modes correspond to
zonal velocity and magnetic flux, respectively. These two physical variables vary on a large
spatial scale despite the presence of localized structures. Furthermore, the spatial averages of
these variables are constants in time and thus represent conservation laws for these systems
when periodic boundary conditions are applied in the horizontal direction. In this situation,
the usual nearly vertical snaking structure is replaced by a slanted snaking structure as
the localized solution branch grows in norm. In contrast with homoclinic snaking, slanted
snaking allows localized states to be present outside the region of bistability and indeed when
spatially periodic convection sets in supercritically and no bistability is present at all. Figure
1.4 shows the bifurcation diagram for slanted snaking in a rotating convection system.
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Figure 1.4: Bifurcation diagram showing the average poloidal kinetic energy as a function
of the Rayleigh number Ra for slanted snaking when Taylor number Ta = 20 and Prandtl
number σ = 0.1 [17].

The leading order modulation behavior of pattern forming systems with a large scale
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mode has been studied in [18, 19] and is described by the coupled set of equations

ηAT = rA+ AXX − 1− ξ2

2
|A|2A− ξAVX , (1.7)

VT = VXX + ξ
(
|A|2

)
X
, (1.8)

where A(X,T ) is the convection amplitude and V (X,T ) is the large scale mode. In the
stationary situation, these equations reduce to a nonlocal Ginzburg-Landau equation which
can be used to explain the bifurcation of a branch of modulated states. I am interested
in the modulation behavior near a codimension-two point where the leading order theory
becomes invalid through the vanishing of a cubic nonlinear term in the stationary equation.
The pattern forming behavior near the codimension-two point is again described by a fifth
order Ginzburg-Landau equation similar as GL35 except that the coefficients now contain
nonlocal contributions which change the bifurcation behavior [47]. Due to the nonlocal
nature, the Maxwell point is no longer present at a single value but broadens into a range
of values and becomes a ”Maxwell curve” in the bifurcation diagram. The connections
between the nonlocal equation and the two convection problems, rotating convection and
magnetoconvection, are established in this work.

All the properties described above rely heavily on the use of stress-free boundary con-
ditions but in real physical systems these boundary conditions cannot be easily realized. A
possible generalization is to break the stress-free boundary conditions weakly and see how
the bifurcation behavior changes due to this effect. To study this, mixed boundary condi-
tions between stress-free and no-slip are introduced; as a result the large scale mode becomes
weakly damped and a new length scale appears in the problem. This scale decreases the
range of the nonlocal coupling and permits interpolation between global and local coupling.
These results shed light on numerical investigation of two-dimensional convection systems
and suggest possible experimental work on probing the localized convection phenomenon in
a suitable parameter region.

In the study of the generalized Swift-Hohenberg equation, I focus on the stationary case,
in which the equation reduces to the fourth order ordinary differential equation

u′′′′ = (r − 1)u− 2u′′ + f(u). (1.9)

The bifurcation behavior of this ODE has been studied extensively but there remains the
question whether there are nontrivial O(1) solutions that are not related to the states which
bifurcate from the periodic solutions that originate from the homogeneous state u = 0.
These solutions may not be stable but can still play important roles in the understanding of
transient behavior when studying time evolution properties of large amplitude initial condi-
tions. In addition, the presence of such states may shed additional light on the bifurcation
properties of this type of system. ODEs such as Eq. (1.9) can be generalized to complex or-
dinary differential equations so techniques from complex analysis can be applied in searching
for solutions. I focus on the class of meromorphic functions to construct exact meromorphic
solutions of the cubic-quintic Swift-Hohenberg equation (hereafter SH35) and show these are
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the only meromorphic solutions that can be found. Based on these results, an one-parameter
family of real exact solutions is obtained and the solutions are then used as initial conditions
for numerical continuation [80]. The procedure enables us to uncover, for example, a series
of complex isolas of solutions, which would otherwise be extremely difficult to detect.

The stationary equations studied in this thesis can be understood as finite-dimensional
dynamical systems using spatial dynamics interpretation. This allows the use of numerical
continuation package, AUTO [36], which is developed for the study of bifurcation behavior
in finite-dimensional algebraic and ODE systems.

This dissertation is organized as follows. Chapter 2 explains how I arrive at Eq. (1.6)
and its relation with one-dimensional weakly subcritical patterns. The discussions of spatial
structures and time-dependent behavior are both given in this chapter. Chapter 3 is devoted
to the study of two-dimensional rotating convection and magnetoconvection, focusing on
slanted snaking and modulation behavior. A detailed weakly nonlinear analysis is provided
and the resulting equation, the nonlocal Ginzburg-Landau equation, is studied. The results
can be compared with full numerical simulations and suggest possible directions of future
investigation. Chapter 4 is a study of exact meromorphic solutions of SH35 and their bifur-
cations. In chapter 5, the conclusions, I give a brief summary of my thesis and show some
results from ongoing work. Several possible topics and directions for future research inspired
by these works are given at the end. For ease of reading, most of the calculational details
are rendered in appendices.
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Chapter 2

Weakly Subcritical Patterns

The generic bifurcation of a homogeneous state to a one-dimensional stationary periodic
pattern is described by the cubic real Ginzburg-Landau equation

At = µA+ Axx − b|A|2A. (2.1)

Eckhaus instability is of fundamental importance in the supercritical region (b > 0) since
it determines the wavenumber interval around the band center kc within which spatially
periodic solutions are stable. On the real line, this interval shrinks to zero as the closer one
approaches the primary bifurcation [22], i.e., the threshold for instability of the trivial state
|A| = 0. The theory has been extended to periodic domains with a finite period [23, 24]. In
this case the allowed wavenumbers are discrete and the wavenumber closest to band center is
stable, with the wavenumbers on either side Eckhaus-unstable. Lecture notes on the Eckhaus
instability in the cubic real Ginzburg-Landau equation can be found in [25].

Equation( 2.1) fails, however, in the vicinity of subcritical to supercritical transition, i.e.,
when b is small. In this case the equation must be augmented by fifth order terms, and
generically one finds that three additional terms enter into the description of the problem
and the resulting equation takes the form as Eq. (1.6). This equation was proposed in [26]
and studied in [27, 28, 29]; its validity was analyzed rigorously in [30]. A generalization to
two-dimensional systems with anisotropy, for example, for instabilities in a nematic liquid
crystal, is given in [31].

Equation (1.6) describes the transition in a number of physical systems of interest, in-
cluding the Blasius boundary layer [26], binary fluid convection [9] and doubly diffusive
convection [12], and can be used to predict the location of the snaking region in these sys-
tems within which spatially localized states are present.

This chapter builds upon works that appear in [20, 21].
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2.1 The cubic-quintic Ginzburg-Landau equation

Consider the evolution of the complex amplitude A of a wavetrain u(x, t) with wavenum-
ber kc near a steady state pattern-forming instability of a homogeneous state

u(x, t) = ϵ
{
A(ϵ2x, ϵ4t)eikcx + c.c.

}
+ h.o.t., (2.2)

where ϵ ≪ 1 determines simultaneously the distance from the primary bifurcation and
the degree of subcriticality of the primary bifurcation. The scaling of the amplitude A is
a consequence of choosing the coefficient of the term |A|2A to be O(ϵ2), a condition that
permits us to bring fifth order terms self-consistently into the theory. These terms are in turn
required to stabilize solutions when the primary bifurcation is subcritical and the resulting
theory is thus a codimension-two description of the bifurcation of steady wavetrains. If
the underlying system is translation- and reflection-invariant in x, the fifth order terms can
only belong to |A|2Ax, A

2A∗
x, and |A|4A. Multiple scale analysis now leads to an amplitude

equation of the form as Eq. (1.6). Here µ and b are real O(1) unfolding parameters, a1 and
a2 are two real O(1) coefficients which can be positive or negative, and the variables x and
t now refer to ϵ2x and ϵ4t, respectively. The coefficients of A, Axx, and of the quintic term
can always be set equal to 1 by a suitable rescaling of t, x, and A. However, µ represents
the bifurcation parameter and hence is retained in what follows. In unscaled variables all
terms in this equation are of fifth order, with ϵ4µ denoting the distance from the bifurcation
point. Terms proportional to iAx may be present which reflect the shift of band center in
multiple scale expansions but these can be eliminated by the change of variable A→ Ae−iδx

for a suitably chosen δ.
An equation of this type can be derived from the generalized Swift-Hohenberg equation

near the primary pattern-forming instability [32, 33] and a sketch of the derivation is provided
in Appendix A. The envelope description is valid provided |A| > 0 throughout the domain
since the spatial phase of the wavetrain (2.2) becomes undefined at zeros of |A|; thus zeros of
|A| are generally associated with the presence of phase jumps. Equation (1.6) is equivariant
under the three operations:

(i) x→ x, A→ Aeiϕ0 ,

(ii) x→ x+ x0, A→ A,

(iii) x→ x1 − x, A→ A∗,

where ϕ0, x0 and x1 are arbitrary constants. The first two operations are a consequence of
translation invariance of the underlying problem, while the third arises when the underlying
system is invariant under reflection of x. In this case the coefficients µ, a1, a2 and b must all
be real. The symmetry (iii) renders Eq. (1.6) spatially reversible.

When a2 = 0, Eq. (1.6) has gradient structure,

At = −δF (A,A
∗)

δA∗ , (2.3)
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where

F (A,A∗) =

∫
Γ

{
|Ax|2 − µ|A|2 − b|A|4

2
+

|A|6

3
+
ia1
4
|A|2 (AA∗

x − A∗Ax)

}
dx, (2.4)

and Γ is either the whole real line or a finite closed interval. In particular in the latter case
all solutions approach a time-independent state corresponding to a local minimum of the
free energy F (A,A∗) provided F is bounded from below. However, this is not necessarily the
case. In fact the lower bound on F is finite only when |a1| < 4√

3
and in this case Eq. (1.6)

is well-posed. This result follows from the estimate

F ≥
∫
Γ

{
|Ax|2 − µ|A|2 − b|A|4

2
+

|A|6

3
− |a1|

2
|A|3|Ax|

}
dx, (2.5)

which in turn implies, using Young’s inequality, that

F ≥
∫
Γ

{(
1− |a1|

4δ

)
|Ax|2 +

(
1

3
− |a1|δ

4

)
|A|6 − µ|A|2 − b|A|4

2

}
dx (2.6)

for all δ > 0. If the domain size is finite and the coefficients of |Ax|2 and |A|6 are both
positive in inequality 2.6 are both positive then F is bounded from below. This condition is
only true when |a1| < 4√

3
. However when |a1| > 4√

3
, the integrand for periodic wavetrains of

the form A = R0 exp(ikx), where R0 is a constant, reduces to

R2
0k

2 − µR2
0 −

b

2
R4

0 +
R6

0

3
+
a1kR

4
0

2
≈ R2

0

(
k +

a1R
2
0

4

)2

+

(
1

3
− a21

16

)
R6

0

for large R0. Thus for |a1| > 4√
3
the free energy F of wavetrains with k = −1

4
a1R

2
0 diverges

to negative infinity as R0 → ∞ thereby permitting the existence of runaway solutions.
The situation is yet more interesting when a2 is nonzero since no free energy then exists

and the time evolution of the system need not be monotonic. Thus the presence of the terms
ia1|A|2Ax and ia2A

2A∗
x in the amplitude equation changes qualitatively the evolution of the

system near the pattern forming bifurcation. In particular, oscillations may now be present
[29], and these may be expected near the saddle-node on the primary solution branch, where
the growth rates of the amplitude and phase modes are both small and hence comparable. In
the general case with nonzero a2, global existence of smooth solutions has only been proved
for (a2 − a1)

2 < 4 [34]. Remark that for the quadratic-cubic Swift-Hohenberg equation

(a1, a2) =
(

4
21

√
5
, 0
)
thus F is bounded from below and oscillations are absent. The latter is

of course a consequence of the gradient structure of the equation.

2.2 Stationary solutions

Stationary solutions of Eq. (1.6) satisfy the equation

Axx + i
(
a1|A|2Ax + a2A

2A∗
x

)
+ µA+ b|A|2A− |A|4A = 0. (2.7)



CHAPTER 2. WEAKLY SUBCRITICAL PATTERNS 11

In the following, we view this equation as a dynamical system in space. In view of the two
continuous symmetries associated with translations and phase shifts the equation has two
conserved quantities [27]

E ≡ (µ+ 2a2L) |A|2 + |Ax|2 +
b

2
|A|4 −

[
1

3
+
a2(a1 + a2)

6

]
|A|6, (2.8)

L ≡ i

2
(AA∗

x − A∗Ax) +
a1 + a2

4
|A|4. (2.9)

In terms of A(x) = R(x)eiϕ(x), where R(x) and ϕ(x) are real-valued functions, these take the
form

E = (µ+ 2a2L)R
2 +

(
R2

x +R2ϕ2
x

)
+
b

2
R4 −

[
1

3
+
a2(a1 + a2)

6

]
R6, (2.10)

L = R2ϕx +
a1 + a2

4
R4. (2.11)

Thus

R2
x + U = E, (2.12)

where

U(R;µ, L) ≡ L2

R2
+

(
µ+

3a2 − a1
2

L

)
R2 +

b

2
R4 + βR6 (2.13)

and β ≡ (a1+a2)(3a1−5a2)
48

− 1
3
. The problem (2.7) has thus been reduced to that of a particle of

energy E in a potential U . The form of the potential depends on the integral L as well as on
the bifurcation parameter µ. Thus solutions of Eq. (2.12) come in two-parameter families,
specified by the values of E and L. In general the solution of Eq. (2.12) will be a periodic
function of x. In view of the fact that ϕx = (L/R2)+ 1

4
(a1+a2)R

2, this solution corresponds
to a complex amplitude A(x) with two frequencies, one associated with oscillations in the
amplitude R(x) and the other with oscillations in the spatial phase ϕ(x). In the following we
refer to such solutions as two frequency states, while noting that in periodic domains with
finite spatial period the two frequencies must be rationally related. In the following we write
k ≡ ϕx and refer to k as the wavenumber. Of particular interest are equilibria of Eq. (2.12)
with R = R0, where R0 is a constant. If the associated k ̸= 0 such a solution corresponds to
a wave of constant amplitude R0. We call such solutions rotating waves (RW) by analogy
with the corresponding solution in the time domain, cf. [35]. Likewise, periodic solutions of
Eq. (2.12) with k = 0 will be called standing waves (SW). Both solution types are single
frequency states. We mention that equilibria with k = 0 correspond in the original problem
(2.2) to periodic wavetrains with wavenumber kc, while equilibria with k ̸= 0 (i.e., RW)
correspond to periodic wavetrains with wavenumber kc + ϵ2k. In contrast, SW correspond
to spatially modulated wavetrains. Finally, homoclinic and heteroclinic orbits correspond to
pulses, holes, and fronts, respectively.



CHAPTER 2. WEAKLY SUBCRITICAL PATTERNS 12

The notion of stability within Eq. (2.7) refers to spatial stability. In particular, the loss
of stability of an equilibrium corresponds to the appearance of new steady states with an
x-dependent amplitude R and phase ϕ. Such bifurcations occur at amplitudes R0 defined
by UR = 0 and satisfying URR > 0, where

URR = 8k2 + 4[b+ (a1 + a2)k]R
2
0 + 2

(
a21 − a22 − 4

)
R4

0 (2.14)

and k is the corresponding wavenumber. To demonstrate this result, we write

A = (R0 + r) exp i(kx+ ϕ0 + ψ) (2.15)

with |r|, |ψ| ≪ 1. The linearized system of equations governing the evolution of the pertur-
bations r and ψ is then given by

d

dx


r
s
ψ
q

 =


0 1 0 0

−1
2

(
URR + URL

∂L
∂R

)
0 0 −URL

2
∂L
∂k

0 0 0 1
0 − 1

R2
∂L
∂R

0 0




r
s
ψ
q

 , (2.16)

where the coefficients are all evaluated at R = R0 and ϕx = k. The associated spatial
eigenvalues and eigenvectors are

λ1,2 = 0, v1,2 =


0
0
1
0

 ; λ3,4 = ±
√
−URR

2
, v3,4 =


±
√

−URR/2
−URR/2
− 1

R2
∂L
∂R

∓ 1
R2

∂L
∂R

√
−URR/2

 .

The equilibrium is elliptic when URR > 0 and hyperbolic when URR < 0. The degenerate
solution with UR = URR = 0 is in general a saddle but can be elliptic if URRR = 0, URRRR > 0.
Such an equilibrium is given by R2

0 = − b
8β

and occurs when b = −8(L2β3)1/4 < 0 and

µ+ 3a2−a1
2

L = 6(L2β)1/2, where β > 0. When the energy E is increased above that for a local
minimum, periodic solutions bifurcate from the elliptic equilibrium, and these correspond to
quasiperiodic wavetrains whose amplitude oscillates with spatial period close to 2π

√
2/URR.

We begin with the equilibria (R0, k). With ϕx ≡ k these satisfy the polynomial equation

µ− k2 + [b+ k(a2 − a1)]R
2
0 −R4

0 = 0. (2.17)

Thus homogeneous states with k = 0 set in first as µ increases, followed by RW with k ̸= 0
at µ = k2. The amplitude R0 of these states is given by the roots R±

0 of this equation,

(R±
0 )

2 ≡ 1

2

[
b′ ±

√
b′2 + 4(µ− k2)

]
, (2.18)

where b′ ≡ b + k(a2 − a1). Thus when b′ ≤ 0 (the supercritical case), only the R+
0 solution

exists and it bifurcates supercritically from the trivial state at µ = k2. This solution is



CHAPTER 2. WEAKLY SUBCRITICAL PATTERNS 13

temporally stable with respect to amplitude perturbations, i.e., perturbations with the same
wavenumber k as the solution. When b′ > 0 (the subcritical case), a saddle-node bifurcation
occurs at µsn(k) ≡ k2 − b′2

4
creating both R−

0 and R+
0 solutions, with R−

0 unstable and R+
0

stable. The R−
0 branch connects to the trivial state at µ = k2 via a subcritical bifurcation.

When (a2 − a1)
2 − 4 < 0, the curve µ = µsn(k) has positive curvature leading to a modest

interval of bistability (figure 2.1(a)) and under this condition the global existence of solutions
has been proved [34]. In contrast, when (a2−a1)

2−4 > 0 the curve µ = µsn(k) has negative
curvature leading to a subcritical region that broadens rapidly with increasing wavenumber
k (figure 2.1(b)). These differences are reflected in the bifurcation diagrams at fixed k shown
in figure 2.2 and more dramatically in bifurcation diagrams constructed for fixed µ > 0
(figures 2.3(a,b)) and µ < 0 (figures 2.3(c,d)). The curves |a2 − a1| = 2 in the (a1, a2) plane
are shown in figure 2.4 and are tangent to the curve β = 0 at the points (a1, a2) = ±(

√
3, 1).
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Figure 2.1: The existence region in parameter space of periodic states when (a) a2 − a1 = 1,
b = 1, and (b) a2 − a1 = 3, b = 1. In both cases the state R+

0 exists for µ > k2 if b′ < 0,
and for µ > k2 − b′2

4
if b′ ≥ 0; R−

0 exists in the region between µ = k2 and µ = k2 − b′2

4
, but

the curve µ = k2 − b′2

4
in (a,b) has positive (negative) curvature depending on the sign of

(a2 − a1)
2 − 4.

Different types of spatially modulated states can be determined by examining the shape
of the potential U(R;µ, L). Figures 2.5 and 2.6 classify the possibilities for L = 0 and L > 0,
respectively. The L < 0 case can be obtained from L > 0 by changing the signs of a1 and a2.
These results allow us to identify different types of homoclinic and heteroclinic orbits which
play an important role in what follows. Explicit expressions for these orbits may be found
in Appendix B.

Of these the heteroclinic orbits play the most important part. Owing to the shape of
U(R;µ, L) such orbits necessarily involve the trivial state A = 0 and require the conditions
E = L = 0. In addition we require that the potential U(R;µ, 0) has a pair of local maxima,
one at R = 0, one at R = RM ̸= 0, both of the same height. This condition defines the
equivalent of a Maxwell point µM = b2

16β
< 0 for the present system, and requires b > 0,

β < 0. The resulting heteroclinic orbit connects the trivial state R = 0 to a periodic
wavetrain with R2

M = − b
4β

and kM = (a1+a2)b
16β

, and hence corresponds to a front between the
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Figure 2.2: Bifurcation diagrams showing R2
0 as a function of µ for (a,b) |a2 − a1| < 2, (c,d)

|a2 − a1| > 2. Panels (a,b) are for a2 − a1 = 1, b = 1 and show (a) k ≥ 0, (b) k ≤ 0. Panels
(c,d) are for a2 − a1 = 3, b = 1 and show (c) k ≥ 0, (d) k ≤ 0. Solid (dashed) lines indicate
solutions that are stable (unstable) in time with respect to amplitude perturbations. These
correspond to R+

0 and R−
0 , respectively.

trivial state and a spatially periodic pattern (see figure 2.7 and Appendix B). One can check
that µsn(kM) ≤ µM < 0 with equality when

a2(a1 + a2) = 4. (2.19)

It follows that if a2(a1+a2) < 4, then the amplitude RM belongs to the R+
0 (kM) branch and

is then referred to as R+
M ; if a2(a1+a2) > 4, the amplitude RM belongs to the R−

0 (kM) branch
and is then referred to as R−

M . In figure 2.8, we show for comparison two different homoclinic
orbits, the first homoclinic to the trivial state (A = 0) and the second to a nontrivial state
(A ̸= 0).

2.3 Steady state bifurcations from primary branches

From the discussion in section 2.2, we know that quasiperiodic solutions can bifurcate
from the primary branch with fixed wavenumber k when the equilibrium point corresponding
to the amplitude R0(k) is elliptic. The period of the associated amplitude modulation is
approximately equal to 2π

√
2/URR near the original periodic state.
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Figure 2.3: Bifurcation diagrams showing R2
0 as a function of k when (a) µ = 1, a2− a1 = 1,

(b) µ = 1, a2 − a1 = 3, (c) µ = −1, a2 − a1 = 1, and (d) µ = −1, a2 − a1 = 3. Solid
(dashed) lines indicate solutions that are stable (unstable) in time with respect to amplitude
perturbations.

If the domain size is infinite, the first modulation branch occurs when URR = 0. To
describe the initial stages of this bifurcation we fix the coefficients a1, a2, and b, and treat µ
as the primary bifurcation parameter. The instability is triggered by a change in the potential
U as µ varies, and takes place when URR passes through zero, subject to the requirement that
k0, the asymptotic wavenumber at infinity, remains fixed. Thus U = U(R;µ, L(µ)) ≡ Ũ(R;µ)
and the instability sets in at

R0(k)
2 =

b′ + 2ka1 ±
√
(b′ + 2ka1)2 + 4(4 + a22 − a21)k

2

4 + a22 − a21
> 0, µ0 = R4

0 − b′R2
0 + k2. (2.20)

The branching direction of the stationary modulated states that result can be readily
determined by a local expansion of U around (R0, µ0). We write (R, µ) = (R0+ δR, µ0+ δµ)
and suppose that generically ŨRRR,0ŨRµ,0 ̸= 0. Thus

Ũ(R;µ) = Ũ(R0;µ) + ŨRµ,0δµδR +
ŨRRR,0

6
(δR)3 + h.o.t., (2.21)

where δR = O(|δµ|1/2) and the subscript 0 indicates that the quantity is evaluated at the
bifurcation point. The bifurcation occurs as µ increases (decreases) provided ŨRRR,0ŨRµ,0 is
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Figure 2.4: (Color online) The (a1, a2) plane splits into a number of regions with different
behavior (see text). Black dots indicate the parameter values used in subsequent figures, with

the numbers indicating the corresponding figure. The region β ≡ (a1+a2)2

16
− a2(a1+a2)

6
− 1

3
< 0

(between solid black lines) contains heteroclinic solutions between the origin and either R+
0

(if a2(a1 + a2) < 4) or R−
0 (if a2(a1 + a2) > 4). The line α ≡ a22 − a21 = 0 plays a role in

determining the sequence of secondary bifurcations while the sign of α+4 plays an important
role in the temporal analysis.

negative (positive); the corresponding stationary solution is given by

δR ≡ ±

(
−2ŨRµ,0δµ

ŨRRR,0

)1/2 [
3sech2 (hx)− 1

]
+O(|δµ|), h ≡ 1

2

(
−1

2
ŨRRR,0ŨRµ,0δµ

)1/4

,

(2.22)
which corresponds to a pulse or hole solutions according to whether ŨRRR,0 > 0 or ŨRRR,0 < 0
(see Eq. (2.21)). In the present case Eq. (2.13) together with the fact that ŨRR,0 = 0 at the
bifurcation point imply that

ŨRµ,0 = 2R0, ŨRRR,0 = 24R0(b+ 8βR2
0). (2.23)

Thus ŨRµ,0 is always positive and the bifurcated solution is a hole with branching to the
right (or pulse with branching to the left) whenever b+ 8βR2

0 is negative (or positive).
When the periodic wavetrain lies at the band center, i.e., k = 0, the bifurcation is now

located at

(R2
0, µ0) =

(
2b

4 + a22 − a21
,
2b2(a21 − a22 − 2)

(4 + a22 − a21)
2

)
(2.24)

and hence lies close to the saddle-node (R2, µ) = (b/2,−b2/4) whenever |a21−a22| ≪ 1, b > 0.
Since ŨRRR,0 is now equal to −8R3

0 [2 + a2(a1 + a2)] it follows that the bifurcating solution
is a hole branching to the right when 2 + a2(a1 + a2) > 0, or a pulse branching to the left
when 2 + a2(a1 + a2) < 0.
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Figure 2.5: The potential U(R;µ, L) when L = 0, drawn reflected in R = 0. (a) µ = −1,
b = 1, β = 0.9 (µ < 0, β > 0). (b) µ = 1, b = −1, β = −0.9 (µ > 0, β < 0). (c)
µ = −1, b = 5, β = −1 (µ, β < 0 and b > 4

√
µβ). (d) µ = 1, b = −5, β = 1 (µ, β > 0 and

b < −4
√
µβ). (e) µ = −1, b = 3.7, β = −1 (µ, β < 0 and 2

√
3µβ < b < 4

√
µβ). (f) µ = 1,

b = −3.7, β = 1 (µ, β > 0 and −4
√
µβ < b < −2

√
3µβ). (g) µ = −1, b = 3.3, β = −1

(µ, β < 0 and b < 2
√
3µβ). (h) µ = 1, b = −3.3, β = 1 (µ, β > 0 and b > −2

√
3µβ).
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Figure 2.6: The potential U(R;µ, L) when L = 1. (a) µ = 1, b = 4, a1 = 1, a2 = 1,
(β < 0, R2

0,− > 0, R4
0,−
(
µ′ + bR2

0,−/2
)
> 2L2). (b) µ = 1, b = −1, a1 = 1, a2 = 1, (β < 0

and at least one of the other conditions in (a) is violated). (c) µ = 40, b = −20, a1 = 4,
a2 = 0.5 (β > 0, b < 0, 0 < 32βµ′ < 3b2, R4

0,+

(
µ′ + b′R2

0,+/2
)
< 2L2). (d) µ = 40, b = 5,

a1 = 4, a2 = 0.5 (β > 0 and at least one of the other conditions in (c) is violated). Here

µ′ ≡ µ+ 3a2−a1
2

L and R2
0,± ≡ −b±

√
b2−32βµ′/3

8β
.

The bifurcation also sets in at R = 0 when k = 0 which the previous discussion is invalid.
We expect a bifurcation to periodic RW together with pulse states. Suppose that µ = O(ϵ2),
where ϵ≪ 1. The RW take the form

A = ϵR exp(ikx) +O(ϵ2), (2.25)
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Figure 2.8: (a) Homoclinic solution to A = 0 at µ = 0 when b = −2, β = 1 and a1 + a2 = 64
(Appendix B, Eq. (B.5)). (b) Homoclinic solution to a nonzero equilibrium corresponding
to a rotating wave at µ = −1 with R0 ≈ 1.1791 and k = −1.3903 when b = 3.5, a1 = a2 = 2
(Appendix B, Eq. (B.6)).

where k = O(ϵ), while the pulse states take the different form

A = ϵR(X, ϵ) exp iϵϕ(X, ϵ) +O(ϵ2), (2.26)

where X ≡ ϵx is a slow spatial scale. Substituting this ansatz into Eq. (2.7) with R(X, ϵ) =
R(0)(X) + ϵR(1)(X) + . . ., ϕ(X, ϵ) = ϕ(0)(X) + ϵϕ(1)(X) + . . ., µ = ϵ2µ2, we obtain at O(ϵ3)

R
(0)
XX + µ2R

(0) + bR(0)3 = 0 (2.27)

and at O(ϵ4)

ϕ
(0)
X = −1

4
(a1 + a2)R

(0)2 ̸= 0. (2.28)

Thus RW and pulse states bifurcate simultaneously from A = 0 at µ = 0, much as in
the Swift-Hohenberg equation. However, owing to the absence of pinning, there is a one-
parameter family of pulse solutions, parametrized by an arbitrary phase. In finite domains,
however large, the modulated solutions are expected to bifurcate from the RW at small but
finite amplitude.



CHAPTER 2. WEAKLY SUBCRITICAL PATTERNS 19

If the domain size is finite, boundary conditions select a discrete set of branches from
the continuous family of such solutions parametrized by the constants of integration E and
L. Since Eq. (2.7) is spatially reversible, solutions satisfying periodic boundary conditions
(PBC) on a domain of period 2Γ satisfy boundary conditions

Re[Ax] = 0, Im[A] = 0 (2.29)

on a domain of length Γ, we focus in the following on stationary solutions satisfying the
boundary conditions (2.29). We mention that more generally periodic boundary conditions
on u(x), ie., u(x+ 2Γ) = u(x) for all x, imply the boundary condition

A(ϵ2(x+ 2Γ)) exp 2ikcΓ = A(ϵ2x), (2.30)

for all x on the amplitude A.
In the following we plot bifurcation diagrams showing the solution amplitude measured

by the quantity ∥ · ∥H1 as a function of the parameter µ, where

∥A∥H1 ≡
(
1

Γ

∫ Γ

0

|Ax|2 + |A|2dx
)1/2

. (2.31)

Bifurcations from the k = 0 primary branch

Since the k = 0 branch is the first of the (subcritical) primary branches to set in for b > 0
as µ increases, we present in figures 2.9–2.15 the k = 0 branch together with a number of
secondary branches, computed using the continuation software AUTO [36]. These consist of
states with spatially varying amplitude R(x) and phase ϕ(x) and bifurcate from the k = 0
branch in secondary bifurcations we refer to as Eckhaus bifurcations (see section 2.4). These
secondary branches either terminate on the same k = 0 branch, or do so on a different
primary branch (k ̸= 0) or not at all. Figure 2.9 reveals that when a1 = a2 = 0 [37] the
secondary branches originate and terminate on the same k = 0 primary branch. Each branch
can be labeled by a pair of integers (n,m) specifying the number of half wavelengths of R(x)
and ϕ(x) within the domain Γ. Solutions with n = 1 (the first secondary branch) bifurcate
nearest to the primary bifurcation at µ = 0 and terminate nearest to the saddle-node. Figure
2.10(a) shows typical results when a1a2 ̸= 0. In this case, unless b is too small (figure 2.10(b)),
the n = 1 branch no longer terminates on the k = 0 primary branch but terminates instead
on the primary branch with k = π/Γ. However, since an n = 1 Eckhaus instability near the
k = 0 saddle-node remains, a new n = 1 branch bifurcates from the k = 0 branch near the
saddle-node bifurcation and this time extends monotonically to larger amplitudes. States of
this type represent a defect in the original wavetrain with wavenumber kc that may be located
either in the center of the domain or at its boundary, e.g. figure 2.12(b), and we refer to
them as defect states [38]. These states resemble those familiar from studies of the Eckhaus
instability for the supercritical Ginzburg-Landau equation [23, 24] but are present here even
for k = 0. The figures show that the defect states bifurcate from the k = 0 branch either
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below or above the saddle-node, depending on parameters; for increasingly negative b the
bifurcation point moves to larger and larger amplitude, leaving behind stable supercritical
periodic states. The termination points of the smaller amplitude secondary branches may
likewise lie below or above the saddle-node. Figures 2.11–2.13 show that these basic effects
of the presence of the coefficients a1, a2 persist to other values provided a21 − a22 − 4 < 0 (see
Eq. (2.14) with k = 0). In contrast, when a21 − a22 − 4 > 0 (figures 2.14–2.15) the secondary
branches are all strongly subcritical and all terminate on branches with k ̸= 0. The curves
a21 − a22 − 4 = 0 are also shown in figure 2.4.
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Figure 2.9: (Color online) Bifurcation diagrams for subcritical stationary solutions with
k = 0 with several secondary branches of nonuniform states satisfying boundary conditions
(2.29). Parameters: a1 = 0, a2 = 0, Γ = 16π. (a) b = 0.5. (b) b = 0.2. (c) Sample profiles
R(x) along the branch bifurcating from point 1 in (a).

It will have been noticed that all secondary branches bifurcating from R−
0 , except those

bifurcating close to the saddle-node, develop a protosnaking region with a sudden increase
of H1 norm located near the Maxwell point µM = b2

16β
< 0. This point plays a fundamental

role in understanding the behavior shown in figures 2.9–2.15. We have seen that at µ = µM ,
a heteroclinic connection between A = 0 and A = RM exp(ikMx) is present (figure 2.7).
Although one might expect the presence of homoclinic snaking extending over a finite interval
whenever kM ̸= 0, this is not the case here owing to the absence of a coupling between the
front and the spatial oscillations with wavenumber kM . As a result the snaking region
collapses to a single point µ = µM . Despite this, the presence of this point determines the
branch on which the secondary branches involved terminate. This is because the presence
of the heteroclinic orbit at µ = µM determines the wavenumber kM , and this wavenumber
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Figure 2.10: (Color online) Bifurcation diagrams for subcritical stationary solutions with
k = 0 with several secondary branches of nonuniform states satisfying boundary conditions
(2.29). Parameters: a1 = 0.6, a2 = 0.1, Γ = 16π. (a) b = 0.5. (b) b = 0.25. (c) Sample
profiles of ReA(x) (solid line) and ImA(x) (dashed line) along the branch bifurcating from
point 1 in (a). This branch terminates on a primary branch with k = π/Γ ≈ kM .

in turn determines the primary branch on which the branches terminate. For example, in
figure 2.9, the selected wavenumber kM = 0 and all secondary branches terminate on the
k = 0 branch from which they first bifurcated. In figure 2.10, the wavenumber kM ≈ −0.0696
and indeed the n = 1 branch no longer terminates on a k = 0 branch and instead terminates
on a primary branch with wavenumber closest to kM that is compatible with the imposed
boundary conditions (2.29) and domain length Γ, viz. |k| = π/Γ = 0.0625 (m = 1). The
secondary branches with n ≥ 2 do not come sufficiently close to forming the heteroclinic
orbit and so continue to terminate on the k = 0 branch. In figures 2.11 and 2.12 the
corresponding wavenumbers are kM = −0.1424 (m = 2) and kM = −0.2174 (m = 3) and
these wavenumbers determine the type of change that must take place before the different
secondary solutions can approach the heteroclinic connection. These changes are illustrated
clearly in the lower panels in figure 2.11 which show that the branches bifurcating at points
1 (n = 1) and 2 (n = 2) both become m = 2 states despite bifurcating at different locations
from the k = 0 branch. Since phase has to be added along these secondary branches for
these changes to take place it follows that the quantity L in the potential U(R;µ, L) must
either pass through zero in order that the phase may jump by π, or remain identically zero
so that multiple phase changes can take place.

In figures 2.9–2.12 the heteroclinic orbit that forms at µM connects the states R = 0 and
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Figure 2.11: (Color online) (a) Bifurcation diagram for subcritical stationary solutions with
k = 0 with several secondary branches of nonuniform states satisfying boundary conditions
(2.29). The first three secondary branches terminate on a primary branch with k ̸= 0. (b,c)
Sample profiles of ReA(x) (solid line) and ImA(x) (dashed line) along the branch bifurcating
from points 1 and 2, respectively, showing that both branches terminate on a primary branch
with wavenumber k = 2π/Γ ≈ kM . Parameters: b = 0.5, a1 = 1.1, a2 = 0.1, Γ = 16π.

R+
M . In figure 2.13 it connects instead the states R = 0 and R−

M , i.e., a stable state R = 0 to
an amplitude-unstable state R−

M . In such a situation the associated front will move, allowing
the stable state to invade the unstable state. For the cases a21−a22−4 > 0 with (a1−a2)2−4 <
0 (figure 2.14) and a21 − a22 − 4 < 0 with (a1 − a2)

2 − 4 > 0 (figure 2.15) the predictions
µM ≈ −0.197, R+

M ≈ 1.255, kM ≈ −0.906 (figure 2.14) and µM ≈ −0.0941, R+
M ≈ 0.8677,

kM ≈ −0.207 (figure 2.15) continue to agree well with the numerical computations shown
in the figures. Thus the wavenumber selection process via the formation of a heteroclinic
connection continues to determine the termination points of the secondary branches even
when the k ̸= 0 primary branches are highly subcritical.

The above bifurcation diagrams have all been obtained for a domain of one given length,
Γ = 16π. When Γ is increased, the termination points of the secondary branches must
switch to branches containing extra wavelengths of the Maxwell wavelength λM = 2π/kM .
The mechanism whereby this occurs has been studied in detail in gradient systems [38, 37].
Similar behavior has also been found in nongradient systems such as the partial differential
equations describing natural doubly diffusive convection [38].
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Figure 2.12: (Color online) (a) Bifurcation diagram for subcritical stationary solutions with
k = 0 with several secondary branches of nonuniform states satisfying boundary conditions
(2.29). Parameters: b = 0.5, a1 = 1.5, a2 = 1.0, Γ = 16π. Branches bifurcating at points 1
and 2 in (a) terminate at the same wavenumber, k = −3/16. (b) Sample profiles of ReA(x)
(solid line) and ImA(x) (dashed line) along the defect branch bifurcating at point 3 in (a).

Bifurcations from the k = 1 primary branch

In figures 2.16 and 2.17 we show the corresponding results for the primary k = 1 bifur-
cation. As shown in Appendix C when a1 = a2 = 0 two steady state branches bifurcate
together from µ = 1. The prediction follows from a careful analysis of the symmetry of the
problem when periodic boundary conditions are imposed and is confirmed in figure 2.16.
The larger amplitude branch consists of RW states of the form A = R0 exp i(x+ ϕ0), where
R0 is a constant, while the smaller amplitude branch consists of SW states of the form
A = R(x) exp iϕ0, where R(x) is x-dependent and near µ = 1 resembles cosx. Here ϕ0 is an
arbitrary phase. Both states of course satisfy periodic boundary conditions in space, and can
be translated in x so as to satisfy the imposed boundary conditions (2.29). Figure 2.16(a)
also shows that the RW and SW branches may be connected by a secondary branch of time-
independent states, of the form A = R(x) exp i(ϕ(x) + ϕ0), while other secondary branches
bifurcating from the RW branch develop into defect states and extend monotonically to large
amplitude (figure 2.16(d)). Figure 2.16 shows that the former are periodic since both R(x)
and ϕ(x) oscillate with same frequency, while along the latter R(x) and ϕ(x) oscillate with
different frequencies and the solutions appear quasiperiodic.

Once either a1 or a2 is nonzero, a similar analysis shows that the RW branch splits into
two distinct rotating waves RW± both of which continue to bifurcate simultaneously from
µ = 1. In addition when 0 < |k(a1 + a2)| < |b| the SW state turns into a mixed mode (MW)
state that bifurcates from the A = 0 state simultaneously with the RW±. The MW are no
longer present as a primary branch once |k(a1 + a2)| > |b| (see Appendix C). Figure 2.17(a)
shows the RW± in the subcritical case when a1 = 0.6, a2 = 0.8, b = 0.5. Thus in this case no
MW are present as a primary branch although the figure reveals the presence of two types of
finite amplitude secondary branches resembling states of this type. The first type bifurcates
from the k = 1 RW+ branch below the saddle-node and terminates on a primary branch
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Figure 2.13: (Color online) Bifurcation diagrams for subcritical stationary solutions with k =
0 with several secondary branches of nonuniform states satisfying boundary conditions (2.29)
showing the reconnection process that takes place with decreasing b. Branches bifurcating at
points 1 and 2 in (a) terminate at the same wavenumber, k = −1/8. Parameters: a1 = 1.5,
a2 = 1.6, Γ = 16π. (a) b = 0.5. (b) b = 0.4. (c) b = 0.395.

with k ̸= 0, 1. The second type represents defect states that extend to large amplitudes
without termination. These secondary branches are outside of the range of validity of the
weakly nonlinear theory in Appendix C but are found in a higher codimension analysis of
the a1 = a2 = 0 degeneracy [39]. Only the defect states are present in the supercritical case
(figure 2.17(b), a1 = 1.4, a2 = 1.2, b = −0.5).

In the special case a1 + a2 = 0 the MW states degenerate into SW and bifurcate from
µ = 1 together with the RW±. Figure 2.18 shows an example of the resulting bifurcation
diagram. Finally, figure 2.19 shows an example with 0 < |k(a1+ a2)| < |b| in which the MW
are present and bifurcate together with the RW±. However, at larger amplitudes the two
sets of branches behave quite differently, with the MW terminating on RW−.

Theoretical interpretation

It is possible to develop, to a certain extent, a theoretical understanding of the above
results. The understanding is based on the presence of the conserved quantities E and L,
and the shape of the potential U(R;µ, L) (Eqs. (2.10)–(2.13)). With boundary conditions
(2.29), secondary bifurcations to two-frequency states can only occur on a primary branch



CHAPTER 2. WEAKLY SUBCRITICAL PATTERNS 25

−0.4 −0.3 −0.2 −0.1 0 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

µ

||A
|| H

1

(a)

1

2

3

4
5

µ
M

k=−13/16

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

µ

||A
|| H

1

(b)

0 0.5 1

−1

−0.5

0

0.5

1

x/Γ

R
e[

A
(x

)]
2

0 0.5 1

−1

−0.5

0

0.5

1

x/Γ

R
e[

A
(x

)]

3

0 0.5 1

−1

−0.5

0

0.5

1

x/Γ

R
e[

A
(x

)]

4

0 0.5 1

−1

−0.5

0

0.5

1

x/Γ

R
e[

A
(x

)]

5

(c)

Figure 2.14: (Color online) Bifurcation diagrams for (a) subcritical and (b) supercritical sta-
tionary solutions with k = 0 with several secondary branches of nonuniform states satisfying
boundary conditions (2.29). All secondary branches terminate at nonzero wavenumber. Pa-
rameters: a1 = 2.1, a2 = 0.2, Γ = 16π. (a) b = 0.5. (b) b = −0.01. (c) Sample profiles of
ReA(x) along the branch bifurcating from point 1 in (a).

at locations where

URR =
2π2n2

Γ2
, n ∈ N. (2.32)

Explicit expression for URR can be found in Eq. (2.14). Since stationary solutions are deter-
mined up to translation in x and phase rotation by the integrals E and L, the behavior of
a branch of two-frequency states is determined by a set of implicit functions containing E
and L with µ as a bifurcation parameter. These relations capture the requirement that an
integer number of half-wavelengths of both R(x) and ϕ(x) fit in the domain Γ and take the
form

Γ

n
=

∫ Rmax

Rmin

dR√
E − U(R;µ, L)

, n ∈ N; (2.33)

mπ

n
=

∫ Rmax

Rmin

L/R2 − a1+a2
4

R2√
E − U(R;µ, L)

dR, m ∈ Z. (2.34)

Here Rmin and Rmax are the roots of E = U(R;µ, L) corresponding to the turning points
of the trajectory in the potential. Thus each branch of two-frequency states is determined
by a pair of integers n and m. In particular, on the primary k = 0 branch, the secondary
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Figure 2.15: (Color online) Bifurcation diagrams for subcritical stationary solutions with
k = 0 with several secondary branches of nonuniform states satisfying boundary conditions
(2.29). Some secondary branches terminate on the k = 0 primary branch. Parameters:
a1 = 1.6, a2 = −0.5, Γ = 16π. (a) b = 0.5. (b) b = 0.42. (c) b = 0.41. (d) b = 0.2.

bifurcation points satisfy

URR = 4bR2
0 + 2(a21 − a22 − 4)R4

0 = 2π2n2/Γ2, (2.35)

cf. Eq. (2.14). Thus in the supercritical case (b < 0), URR < 0 when a21 − a22 − 4 ≤ 0
and no secondary bifurcations are present. However, if a21 − a22 − 4 > 0 the quantity URR

becomes positive at sufficiently large R triggering secondary bifurcations. In contrast, in
the subcritical case (b > 0) URR increases monotonically with R0 provided a21 − a22 − 4 ≥ 0,
and consequently secondary bifurcations for each n appear exactly once along the branch.
However, when a21 − a22 − 4 < 0 URR first increases with R0 but then decreases. When
a22 − a21 = 0, URR ≥ 0 along the whole R−

0 branch; if −4 < a22 − a21 < 0 the region where
URR ≥ 0 extends above the saddle-node, but it shrinks below the saddle-node if a22−a21 > 0. If
a22−a21 is so large that the maximum of URR falls below π2/Γ2, no bifurcation point is present.
These results are reflected in the properties of figures 2.9–2.15. In the case a21 − a22 < 4, if
we increase the domain size Γ, the number of bifurcation points scales as Γ. The bifurcation
points accumulate near URR = 0, i.e., at R2

0 = 0 and R2
0 = 2b

4+a22−a21
. If we let µn be the

nth bifurcation point in the sequence that accumulates at R0 = 0 when Γ is large (i.e., at
µ = 0), then the µn scale as n2/Γ2 and a similar scaling holds at the other accumulation
point unless this point coincides with the saddle-node. In the latter case a21 = a22 and the
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Figure 2.16: (Color online) Bifurcation diagrams for (a) subcritical and (b) supercritical sta-
tionary solutions with k = 1 with several secondary branches of nonuniform states satisfying
boundary conditions (2.29). (c) Sample profiles of ReA(x) (solid line) and ImA(x) (dashed
line) along the branch extending between points 1 and 10 in panel (a). (d) Sample profiles of
ReA(x) along the secondary branch bifurcating from the RW branch at point 3 in panel (a).
The behavior along the branches bifurcating from points 2 and 4–7 is qualitatively similar
to (d). Parameters: a1 = 0, a2 = 0, Γ = 16π. (a) b = 0.5. (b) b = −0.5.

distance δµn from the saddle-node scales as n4/Γ4. Note that since the integer n represents
the mode number, the accumulation point is reached in the limit n → 1, with n/Γ, n = 1,
representing the smallest wavenumber allowed by the boundary conditions. Such scaling
laws are also found in the Swift-Hohenberg equation, and arise in studies of natural doubly
diffusive convection as well [38]. As shown in Appendix D, the direction of branching of the
resulting quasiperiodic states is readily computable and the predictions therein agree well
with our numerical computations.

When k ̸= 0 the conditions (2.34) provide implicit relations that determine the locations
of bifurcation points. The integrals can be evaluated in terms of Jacobi elliptic functions,
and the results determine the variation of E and L with the parameter µ along the secondary
branch. Each branch is characterized by the integer n which is constant along the branch.
This is not true for the integer m, however, which is in general only piecewise constant
along the branch. This is a consequence of phase jumps that may take along place along
the branch. These occur when R passes through zero at some x ∈ (0,Γ) and require that
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Figure 2.17: (Color online) Bifurcation diagrams for (a) subcritical and (b) supercritical
stationary solutions with k = 1 (RW+) and k = −1 (RW−) together with several secondary
branches of nonuniform states satisfying boundary conditions (2.29) on a domain of length
Γ = 16π. Parameters: (a) b = 0.5, a1 = 0.6, and a2 = 0.8. (b) b = −0.5, a1 = 1.4,
and a2 = 1.2. (c) Sample profiles of ReA(x) (solid line) and ImA(x) (dashed line) along
the branch in (a) bifurcating at point 3 showing a gradual change of wavenumber between
points 3 and 7. ImA(x) oscillates π

2
out of phase with ReA(x). Similar wavenumber changes

occur along the branches in (a) bifurcating at points 1 and 2. (d) Sample profiles of ReA(x)
(solid line) and ImA(x) (dashed line) along the branch bifurcating at point 1 in (b) showing
a gradual change of wavenumber between points 1 and 5.

simultaneously L = 0. The phase jump is determined by writing∫ Rmax

Rmin

LdR

R2
√
E − U

=

∫ R∗

Rmin

LdR

R2
√
E − U

+

∫ Rmax

R∗

LdR

R2
√
E − U

, (2.36)

and taking R∗ = O(|L|p), 1/2 < p < 1. The integral from R∗ to Rmax (= O(1)) is O(|L|/R∗)
and so vanishes in the limit L→ 0. The first integral dominates because Rmin = |L|/

√
E +

o(|L|) as L→ 0, E = O(1), and U − L2/R2 = O(R2) = o(L2/R2) in Rmin < R < R∗. Thus

lim
L→0

∫ R∗

Rmin

LdR

R2
√
E − U

= sgn(L)

∫ ∞

1

dr

r2
√

1− 1/r2
= sgn(L)

π

2
, (2.37)

where sgn(L) denotes the sign of L along the branch before it reaches 0. Thus the total
change of phase over the domain Γ as L crosses zero is −sgn(L)nπ. The phase remains
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Figure 2.18: (Color online) (a) Bifurcation diagram showing the simultaneous bifurcation at
µ = 1

64
of an SW branch and a pair of RW branches with k = ±0.125. A secondary branch

of spatially modulated states connects the SW and RW− branches between points 1 and 3.
(b) Sample profiles of R(x) along the SW branch. Parameters: b = 0.5, a1 = −0.2, a2 = 0.2,
Γ = 16π.
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Figure 2.19: (Color online) (a) Bifurcation diagram showing the simultaneous bifurcation at
µ = 1

256
of a branch of two-frequency states (MW: red (gray) curve) undergoing protosnaking

and a pair of branches of periodic states RW± with k = ± 1
16
. The two-frequency states

terminate on RW−. (b) Sample profiles of ReA(x) (solid line) and ImA(x) (dashed line)
along the MW branch in (a). Parameters: b = 0.5, a1 = 0.3, a2 = 0.2, Γ = 16π.

constant unless another phase jump takes place. It follows from Eq. (2.34b) that∫ Rmax

0

(a1 + a2)R
2

4
√
E − U

dR = π

[
sgn(L)0

2
− m

n

]
. (2.38)

This relation constrains greatly the phase jumps that may occur along the secondary branches
and in particular the allowed interconnections among the primary branches. In particular,
in the special case a1 = −a2, the necessary condition for a phase jump to take place is
2m = sgn(L)n. Thus if the primary branch has nonzero wavenumber k = mπ

Γ
the condition

URR = 2π2n2

Γ2 for a secondary bifurcation collapses to bR2
0 − 2R4

0 = 0 implying that the only
secondary branch that can undergo a phase jump is the branch bifurcating at R2

0 = b/2. We
emphasize that these phase jumps correspond to phase jumps that occur over large scales in
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the original problem; strictly, we cannot take the limit L → 0 without encountering higher
order terms omitted from the Ginzburg-Landau description (1.6).

Transition from subcritical to supercritical behavior

The results presented above enable us to understand the sequence of transitions that
must take place as b decreases through b = 0 and the k = 0 primary branch goes from
being subcritical to being supercritical. There are two fundamentally distinct scenarios,
distinguished by the sign of the quantity a21 − a22 − 4. When a21 − a22 − 4 < 0 figure 2.9 shows
that as b decreases the secondary bifurcation points on the k = 0 branch move to higher
amplitude while the termination points move towards lower amplitude. In addition, since
kM is proportional to b its value decreases thereby making it more and more likely that the
secondary branch originates and terminates on the same branch. The mechanism whereby
the termination point switches from a primary branch with k ≈ kM to the k = 0 branch
relies on reconnection between the protosnaking branch and a defect branch originating from
the k = 0 branch (not shown), as discussed elsewhere [38]. A similar reconnection eliminates
the secondary branches one by one until none remain. Figure 2.13 shows an example of
the process: as b decreases an n = 3 mixed mode branch approaches and reconnects with
a defect branch leaving behind a short segment connecting the subcritical k = 0 branch to
itself together with a larger amplitude, completely disconnected branch of defect-like states.
With further decrease of b the endpoints of the short segment come together, eliminating
the segment, while the disconnected branch moves farther away. In this particular example
the protosnaking branches turn towards larger µ and undergo a twist before terminating
on a periodic state but this does not occur in other cases we have examined. Thus when
a21 − a22 − 4 < 0 secondary bifurcation points annihilate pairwise and there is a minimum
value of b, bmin ≡ (π/Γ)

√
4 + a22 − a21, such for 0 < b < bmin no secondary bifurcations take

place on the subcritical branch, i.e., localized states are absent.
Figure 2.15 shows that similar reconnections are responsible for successive elimination

of the secondary branches in the case a21 − a22 − 4 > 0 as well. In this case the secondary
branches bifurcate strongly subcritically and the Maxwell point µM typically falls outside the
coexistence range between A = 0 and the k = 0 branch (figure 2.14(a)). As b decreases both
µM and µsn(0) decrease as b

2, implying that in large domains secondary branches continue to
bifurcate subcritically. Moreover, when b decreases the secondary bifurcation points move up
in amplitude and so move through the saddle-node to the upper k = 0 branch as the saddle-
node moves downward. Of course the protosnaking behaviour disappears as the system
becomes supercritical but the subcritical secondary branches remain (figure 2.14(b)). These
terminate on periodic states that bifurcate subcritically from A = 0 at µ > 0, cf. figure 2.2(c).

Figure 2.16(b) shows a typical result in the supercritical case b = −0.5 with k = 1 and
a1 = a2 = 0. The two branches that bifurcate from A = 0 at µ = 1 are both supercritical
and only secondary branches of defect type are present, much as in the standard Eckhaus
problem [24]. In contrast, once a1a2 ̸= 0 (figure 2.17(b)) the SW branch is absent and ad-
ditional Eckhaus bifurcations occur on the RW branch at small amplitude with connections
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to primary branches with k ̸= 0, 1, while defect states continue to bifurcate at larger ampli-
tudes. Observe that no protosnaking develops on any of the secondary branches bifurcating
from the k = 1 branches, implying the absence of heteroclinic connections between A = 0
and A = R0 exp ix. This is a consequence of the centrifugal barrier (L ̸= 0) in the potential
U(R;µ, L) for this state, and is in turn a consequence of the fact that here k = 1 is selected
by the boundary conditions and not by the condition for a heteroclinic connection.

2.4 Temporal stability analysis

Since R+
0 is amplitude-stable while R−

0 is amplitude-unstable it follows that in the former
case the front connects two stable states, while in the latter case it connects a stable state
(A = 0) to an unstable state (A−). This distinction is of great consequence for the stability
and motion of the front. The curve (2.19) is also shown in figure 2.4.

In this section we examine the stability properties of primary branches with both k = 0
and k ̸= 0 with respect to long wave perturbations with wavenumber |q| ≪ |k|. The analysis
performed is analogous to the classical Eckhaus analysis [22] but the results, presented in
the form of stability regions in the (k, µ) plane, are substantially different owing to the
subcriticality of the basic wavetrain and the presence of the coefficients a1, a2, assumed to
be nonzero. The problem is formally posed on the real line and no boundary conditions are
imposed on the perturbations.

Stability of primary branches

Nontrivial constant-amplitude steady solutions A = R0 exp i(kx + ϕ0) of Eq. (1.6) fall
into three classes:

(1) Supercritical case: b′ ≤ 0, R+
0 exists in the region µ > k2.

(2) Subcritical case: b′ > 0, R+
0 solution exists in the region µ ≥ k2 − b′2

4
.

(3) Subcritical case: b′ > 0, R−
0 solution exists in the region k2 − b′2

4
< µ < k2.

To study the stability, we calculate the spectrum of periodic solutions by writing

A = R0e
i(kx+ϕ0)(1 + a). (2.39)

The perturbation a ≡ a(x, t) evolves according to

at = −(2µ− 2k2 + b′R2
0) (a+ a∗) + 2ikax + axx + iR2

0(a1ax + a2a
∗
x) +O(|a|2). (2.40)

The stability of the periodic solutions is determined by the eigenvalues of the linearized
problem. Writing

aq(x, t) = β1(t)e
iqx + β∗

2(t)e
−iqx, (2.41)
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where q > 0 is a real wavenumber, we find that β1 and β2 are complex-valued functions of
time satisfying

d

dt

(
β1
β2

)
=

(
C+

1 C+
2

C−
2 C−

1

)(
β1
β2

)
, (2.42)

where

C±
1 ≡ −2µ+ 3k2 − (b′ ± a1q)R

2
0 − (k ± q)2, C±

2 ≡ −2µ+ 2k2 − (b′ ± a2q)R
2
0.

Thus the eigenvalues of the stability matrix are

σ± = −g − q2 ±
√

(g + q2)2 − q2(f + q2), (2.43)

where

f(µ, k) ≡ (2 + a22 − a21)
{
µ− k2 + b′R2

0

}
+ 2µ− 6k2 − 4ka1R

2
0,

g(µ, k) ≡ 2(µ− k2) + b′R2
0.

When q = 0 there is a marginal mode a = i with eigenvalue σ = 0 corresponding to
translation invariance. The remaining mode is referred to as the amplitude mode and is
stable when g > 0 (i.e., on R+

0 ) and unstable when g < 0 (i.e., on R−
0 ). The function f can

be computed directly from the potential U and satisfies

URR = −2f (2.44)

on periodic wavetrains. This property plays an important role in characterizing the relation-
ship between temporal and spatial stability when q ̸= 0.

An eigenmode of wavenumber q is unstable provided

(i) q2(f + q2) < 0: Both eigenvalues are real and there is only one unstable eigenvalue
σ+ > 0, yielding the unstable solution

ãq(x, t) = eσ+t
[
C+

2 βe
iqx +

(
σ+ − C+

1

)
β∗e−iqx

]
,

where β is a complex constant.

(ii) g + q2 < 0 and q2(f + q2) > 0: The eigenvalues can be either real or complex, but
both are unstable. The former case applies when g2 > q2(f − 2g), leading to unstable
solutions of the form

ãq(x, t) = eσ±t
[
C+

2 βe
iqx +

(
σ± − C+

1

)
β∗e−iqx

]
,

where β is again a complex constant. In contrast, when g2 < q2(f−2g) the eigenvalues
are complex, and the unstable solutions take the form

ãq(x, t) = eσrt
{
C+

2 β1(t)e
iqx +

[(
σr − C+

1

)
β∗
1(t) + σiβ

∗
2(t)
]
e−iqx

}
,
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where

β1(t) = β cos(σit) + γ sin(σit), β2(t),= −β sin(σit) + γ cos(σit),

with β and γ are complex constants. Here σr = −g−q2, σi =
√
(g + q2)2 − q2(f + q2).

From the discussions above, an eigenmode of wavenumber q is stable if and only if both
q2(f + q2) and g + q2 are positive. This is so for all q if and only if f and g are both
nonnegative. This is so for periodic wavetrains satisfy R = R+

0 whenever URR(R
+
0 ) ≤ 0. In

this case localized states in the form of front, pulse and hole solutions connecting to R+
0 as

|x| → ∞ may be stable since the background state to which they connect is itself stable.
In the following we refer to the instability triggered by real eigenvalues as the Eckhaus

instability (phase mode), since it is associated with the appearance of stationary but spatially
modulated solutions (cf. section 2.3). Instability of type (ii) with complex eigenvalues will be
called oscillatory instability (amplitude and oscillatory modes). To determine the regions in
the (k, µ) plane corresponding to stable and unstable solutions on the real line, we determine
the conditions under which at least some unstable wavenumbers q are present. In this case
the conditions (i) and (ii) for instability can be rewritten as:

(i) f < 0, (ii) g < min {0, f} . (2.45)

Figure 2.20 shows the eigenvalues σ± as functions of q near the onset of instability.
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Figure 2.20: Eigenvalues σ± as functions of q near the onset of instability. (a) Phase mode:
f = −0.2 and g = 1. (b) Real and oscillatory modes: f = 1 and g = −0.1.

The case a1 = a2 = 0

In the following we use the notation (1)(i) to refer to case (1) as defined in section 2.4
and condition (i) as defined in Eq. (2.45), etc. We begin with the case a1 = a2 = 0. In this
case, the range of µ within which the periodic wavetrain is unstable is
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(1)(i) and (2)(i):

µ < 2k2 − b2

8
− b

8

√
b2 + 16k2. (2.46)

Moreover, in order that R+
0 be present, we also need the conditions µ > k2 (supercritical

case) and µ ≥ k2 − b2/4 (subcritical case). The resulting instability regions are shown
in figure 2.21(a,c).

(3)(i):

k2 − b2

4
< µ < k2. (2.47)

Condition (i) thus holds for all µ along the R−
0 branch (figure 2.21(b)), i.e., R−

0 is
unstable.

The resulting bifurcation diagrams resemble those familiar from the supercritical case [24],
with amplitude-stable solutions unstable with respect to the Eckhaus instability at small
amplitude and stable at large amplitude.
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Figure 2.21: The (k, µ) plane when a1 = a2 = 0 and (a) b = 1, R+
0 , (b) b = 1, R−

0 , (c)
b = −1, R+

0 . When b ≤ 0 both curves lie in µ ≥ 0; when b > 0 the curves extend below
µ = 0.
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The general case

In the general case with at least one of a1 and a2 nonzero, we let α ≡ a22 − a21 and
s ≡

√
b′2 + 4(µ− k2). To find the range of µ for instability of type (i), we rewrite the

condition f < 0 as a condition on s. When α + 4 ̸= 0,

(1)(i) and (2)(i):

(4 + α)

{[
s+

(2 + α)b′ − 4ka1
4 + α

]2
− 4(b′ + 2a1k)

2 + 16(4 + α)k2

(4 + α)2

}
< 0. (2.48)

(3)(i):

(4 + α)

{[
s− (2 + α)b′ − 4ka1

4 + α

]2
− 4(b′ + 2a1k)

2 + 16(4 + α)k2

(4 + α)2

}
< 0. (2.49)

When 4 + α = 0, these relations become

(1)(i) and (2)(i):

(b′ + 2a1k)(b
′ + s) + 4k2 > 0. (2.50)

(3)(i):

(b′ + 2a1k)(b
′ − s) + 4k2 > 0. (2.51)

We summarize these results in two different types of plots. In the first we superpose the
curves f = 0 and g = f on the bifurcation diagram in figure 2.3 showing the amplitude
R0 of a periodic wavetrain as a function of the wavenumber k for different values of b and
µ = 1 (figure 2.22) and µ = −1 (figure 2.23). Plots of this type determine the range of stable
periodic states. We show the same information in the (k, µ) plane in figure 2.24 for b > 0
(the subcritical case) and figure 2.25 for b < 0 (the supercritical case), in both cases focusing
on the stability properties of the R+

0 state. In both cases a2 has been taken to be positive.
In each plot we indicate the regions in which a wavetrain with wavenumber k is stable with
respect to the Eckhaus instability and where it is unstable. These regions are delimited by
the union of two curves, the curve µ = µsn(k) for |k| small (near band center) and the curve
µ = k2 for those wavenumbers for which the primary bifurcation is supercritical (larger |k|),
and by the curve f = 0 corresponding to the Eckhaus instability. The resulting plots should
be compared with figure 2.21 computed for a1 = a2 = 0. We see that when a1 ̸= 0, a2 ̸= 0
the stability region becomes asymmetrical with respect to k → −k, and may either grow or
shrink. Indeed for some coefficient values the region of stability is suppressed altogether.
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Figure 2.22: (Color online) Bifurcation diagrams R2
0(k) when µ = b = 1 showing the onset

of type (i) (f = 0, black dashed line) and type (ii) (g = f , black line) instabilities. Thick
blue (gray) line indicates stable solutions while the thick dashed blue (gray) line indicates
the R−

0 solutions unstable with respect to instability (i) only. (a) a1 = 3, a2 = 4. (b)
a1 = −3, a2 = −2. (c) a1 = 3, a2 = 6. (d) a1 = −3, a2 = 0.

The instability regions for the R−
0 branch are more complex since in addition to instability

(i), we may also have instability (ii), with either two real positive eigenvalues or a pair of
unstable complex eigenvalues. The condition for instability (ii) is(

1 +
α

2

)
s2 − [(1 + α)b′ − 4a1k] s+

αb′2 − 8a1kb
′ − 16k2

2
> 0, (2.52)

subject to the requirement s < b′ that defines the existence range for R−
0 . We show the

location of complex eigenvalues on the subcritical branch R−
0 for b > 0 in figure 2.26 and

for b < 0 in figure 2.27. Note that complex eigenvalues are only present close to the saddle-
node where the time scales for the growth of amplitude and phase perturbations become
comparable. We also mention that the quantity f − 2g = a22R

4
0 − (a1R

2
0 + 2k)2 is negative

whenever a2 = 0. In this case, the condition for the presence of complex eigenvalues, g2 <
q2(f − 2g), cannot be satisfied. This is as expected since Eq. (1.6) is then of gradient type.
We leave to future work the possibility that the unstable oscillations present when a2 ̸= 0
acquire stability at finite amplitude and the role played by the complex eigenvalues in the
stability properties of the various secondary states identified in section 2.3.

Additional light can be shed on the plots in figures 2.24–2.27 by examining the special
(and simpler) case k = 0 (the band center), starting with instability (i). In the supercritical
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Figure 2.23: (Color online) Bifurcation diagrams R2
0(k) when µ = −1, b = 3 showing the

onset of type (i) (f = 0, black dashed line) and type (ii) (g = f , black line) instabilities.
Thick blue (gray) line indicates stable solutions while the thick dashed blue (gray) line
indicates the R−

0 solutions unstable with respect to instability (i) only. (a) a1 = 3, a2 = 4.
(b) a1 = −3, a2 = −2. (c) a1 = 3, a2 = 6. (d) a1 = −3, a2 = 0.

regime the R+
0 branch is unstable only when 4 + α < 0, within the range µ > −2(2+α)b2

(4+α)2
.

In the subcritical regime the R+
0 branch is unstable for all µ when 4 + α ≤ 0. When

−4 < α < 0 there is a range of instability, − b2

4
< µ < −2(2+α)b2

(4+α)2
which shrinks as α increases

towards α = 0 and vanishes when α reaches zero. The subcritical R−
0 branch is always

unstable. The instability (ii) only appears on the R−
0 branch, and then only when α > 0

with − b2

4
< µ < − (1+α)b2

(2+α)2
. These results are reflected in figures 2.24–2.27.

Finite size effects

In the presence of restrictions on q, e.g., due to a finite domain size, the allowed wavenum-
ber q limits the range of unstable µ. For example, for periodic boundary conditions with
period 2Γ, the wavenumbers k+kc and q must be integer multiples of π

Γ
. With kc =

π
Γ
(N + l),

where N is a nonnegative integer and 0 ≤ l < 1, the possible values of k and q are
kn = π

Γ
(n − l) and qm = πm

Γ
with n ∈ Z and m ∈ N, respectively. The smallest unsta-

ble wavenumber qm is therefore finite, cf. [23, 24], resulting in a slight decrease in the range
of instability.
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Figure 2.24: The parameter range (kb ≡ k/|b|, µb ≡ µ/b2) for instability (i) of R+
0 when b > 0

and a2 > 0. Dashed curve: saddle-node. Solid curve: µ = k2. Dash-dotted curve: Eckhaus
boundary. (a) a1 = 1, a2 = 2 (α > 0). (b) a1 = −1, a2 = 2 (α > 0). (c) a1 = 1.3, a2 = 1
(−4 < α < 0). (d) a1 = −0.6, a2 = 0.5 (−4 < α < 0). (e) a1 = 2.8, a2 = 1 (α < −4).
(f) a1 = −2.1, a2 = 0.5 (α < −4). (g) a1 = 3, a2 = 1 (α < −4). (h) a1 = −2.3, a2 = 0.5
(α < −4).

Stability of secondary branches

We have also examined the stability of the secondary branches by computing numerically
the temporal spectrum σ, and examining the behavior of the leading eigenvalues along the
various branches, focusing primarily on the secondary branches bifurcating from the k = 0
branch. Figures 2.9–2.15 show that the bifurcation to the first of these is always supercritical
when b > 0, implying that the first secondary branch has initially a single unstable eigenvalue.
When the branch enters the protosnaking region this eigenvalue becomes very small. If the
branch remains monotonic this eigenvalue remains positive but if the branch undergoes folds
it can become negative thereby stabilizing the branch. This is so in figures 2.10(b), 2.12(a),
and 2.14(a). In figure 2.12(a) there are in fact four folds on the first secondary branch, the
first three of which are not visible on the scale of the figure. In other cases, however, the
portion of the branch with positive slope remains unstable. This is the case, for example, in
figures 2.13(b,c).

2.5 Dynamics of periodic wavetrains

In this section we derive modulation equations describing the dynamics near the onset of
each type of secondary instability and compare the resulting dynamics with results obtained
via direct numerical simulation of Eq. (1.6). The time-stepping used here and in the subse-
quent sections employs the Fourier-based method ETD4RK [40]. Dealiasing is achieved via
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Figure 2.25: The parameter range (kb ≡ k/|b|, µb ≡ µ/b2) for instability (i) of R+
0 when

b < 0 and a2 > 0. Dashed curve: saddle-node. Solid curve: µ = k2. Dash-dotted curve:
Eckhaus boundary. (a) a1 = 0.7, a2 = 1 (α > 0). (b) a1 = −0.7, a2 = 1.5 (α > 0). (c)
a1 = 1.8, a2 = 1 (−4 < α < 0). (d) a1 = −2.1, a2 = 0.5 (α < −4). (e) a1 = 2.3, a2 = 0.5
(α < −4). (f) a1 = −2.23, a2 = 0.5 (α < −4). (g) a1 = 2.65, a2 = 0.5 (α < −4). (h)
a1 = −2.65, a2 = 0.5 (α < −4).

mode truncation.

Phase mode (Eckhaus instability)

Here we assume that the periodic state R+
0 (k0) is such that g = O(1) > 0 and f ≈ 0,

i.e., R+
0 (k0) is close to the onset of instability. Figure 2.20(a) shows the eigenvalue σ+ versus

the perturbation wavenumber q when f is slightly negative. The unstable modes are phase
modes and result in Eckhaus instability, i.e., in phase slips [23].

To describe the dynamics that result we use multiple scale analysis to derive an evolution
equation for the phase of the pattern. Define µ0 be the value of µ which f(µ0, k0) = 0 and
let R+

0 be evaluated at (µ, k) = (µ0, k0). When ∂µf(µ0, k0), f can be approximated as

f = ∂µf |µ=µ0
δµ+ o (|δµ|) =

[
(4 + a22 − a21)(R

+
0 )

2 + 4k20/(R
+
0 )

2
]√

b′2 + 4(µ0 − k20)
δµ+ o (|δµ|) , (2.53)

where R+
0 is evaluated at (µ, k) = (µ0, k0). If a21 − a22 < 4, ∂µf |µ=µ0

is always positive

implying that R0,+ is Eckhaus-stable for µ > µ0. In contrast, if a21 − a22 > 4, the quantity
∂µf |µ=µ0

can be negative in an appropriate region of the (a1, a2) plane and this allows the
phase mode to be unstable when µ > µ0. There is no instability when µ < µ0.

In the nondegenerate case ∂µf(µ0, k0) = O(1) we assume that δµ = O(ϵ2) and the q2 term
in Eq. (2.43) is comparable with f , i.e., q = O(ϵ). The corresponding timescale is determined
by the magnitude of the most unstable eigenvalue which is O(ϵ−4). For eigenmodes near



CHAPTER 2. WEAKLY SUBCRITICAL PATTERNS 40

−3 0 3
−1

0

9

k
b

µ b
(a)

0

0

(i)

(ii)

(i),(ii)

−0.5 0 2.5
−7

0

7

k
b

µ b

(b)

(i),(ii)

(ii)

(i)

−1.5 0 1.5
−0.5

0

2

k
b

µ b

(c)

(i),(ii)

(i)

(ii)

−0.5 0 2
−30

0

5

k
b

µ b

(d)

(ii)

(i),(ii)

(i)

−3 0 1
−1

0

5

k
b

µ b

(e)

(i)

(ii)

(i),(ii)

−1 0 6
−150

0

50

k
b

µ b

(f)

(i)

Figure 2.26: (Color online) The parameter range (kb ≡ k/|b|, µb ≡ µ/b2) for instability (i)
and (ii) of R−

0 when b > 0 and a2 > 0. Black dashed curve: saddle-node. Black solid
curve: µ = k2. Red (gray) solid curve: boundary of instability (i). Red (gray) dashed
curve: boundary of instability (ii). (a) a1 = 1, a2 = 1.4 (α > 0). (b) a1 = −1, a2 = 1.42
(α > 0). (c) a1 = 3.46, a2 = 3 (−4 < α < 0). (d) a1 = −3.46, a2 = 3 (−4 < α < 0). (e)
a1 = 2.45, a2 = 1 (α < −4). (f) a1 = −3, a2 = 1.5 (α < −4).

q = 0, the real part of the eigenvector is O(ϵ) smaller than its imaginary part implying that
the instability results primarily in phase modulation. We therefore write

δµ = ϵ2µ2, T = ϵ4t, X = ϵx,

A = R+
0 (1 + ϵ2r(0) + ϵ4r(1) + . . .)ei(k0x+ϵϕ(0)+ϵ3ϕ(1)+...), (2.54)

where r(n) and ϕ(n) are real functions of X and T . It can now be shown that with this scaling
the phase perturbation ϕ(0) satisfies the nonlinear phase equation [22]

2g0ϕ
(0)
T = −ϕ(0)

XXXX + f2ϕ
(0)
XX + 2γϕ

(0)
X ϕ

(0)
XX , (2.55)

where f = ϵ2f2, g0 = g|µ0,k0
and

γ =
URRR,0R0

4b+
, b± ≡ a2R

2
0 ±

(
a1R

2
0 + 2k0

)
. (2.56)

The perturbed amplitude r(0) is slaved to ϕ
(0)
X ,

2g0r
(0) = b−ϕ

(0)
X . (2.57)

These results can also be written in terms of the perturbation wavenumber κ ≡ ϕ
(0)
X ,

2g0κT =
(
−κXX + f2κ+ γκ2

)
XX

. (2.58)
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Figure 2.27: (Color online) The parameter range (kb ≡ k/|b|, µb ≡ µ/b2) for instability (i)
and (ii) of R−

0 when b < 0 and a2 > 0. Black dashed curve: saddle-node. Black solid
curve: µ = k2. Red (gray) solid curve: boundary of instability (i). Red (gray) dashed
curve: boundary of instability (ii). (a) a1 = 0.45, a2 = 2 (α > 0). (b) a1 = −1, a2 = 2
(α > 0). (c) a1 = 2.2, a2 = 1.4 (−4 < α < 0). (d) a1 = −2.8, a2 = 2.2 (−4 < α < 0). (e)
a1 = 3.2, a2 = 2.2 (α < −4). (f) a1 = −3, a2 = 1.73 (α < −4).

A sketch of the derivation is given in Appendix E.
Equation (2.58) has stationary spatially localized solutions in the Eckhaus-stable regime

f2 > 0. In the stationary case, the phase equation can be integrated twice, yielding

−κXX + f2κ+ γκ2 = 0. (2.59)

The integration constants are set to zero by the requirement that the asymptotic wavenumber
outside the structure remains unchanged. Bifurcation to localized solutions takes place as
f2 becomes positive and the resulting solution takes the form

κ0(X) = −3f2
2γ

sech2

(√
f2
2
X

)
. (2.60)

Within the phase description the stability properties of this solution follow from the fact
that Eq. (2.58) has a Lyapunov functional,

G[κ] =

∫
R

(
κ2X
2

+
f2
2
κ2 +

γ

3
κ3
)
dX, (2.61)

i.e., G[κ] decreases monotonically with time. Consider G̃(s) = G[κ0 + sw], where w is an
arbitrary smooth function that tends to 0 as |X| → ∞. Locally around s = 0, we have

G̃(s) = G̃(0) +
1

2
G̃′′(0)s2 +O(s3), (2.62)
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where G̃′′(0) takes the form

G̃′′(0) =

√
f2
2

∫
R

{
w2

X′

2
+
(
2− 6sech2X ′)w2

}
dX ′, X ′ =

√
f2
2
X. (2.63)

Consider now the eigenvalue problem,

−w′′ +
(
4− 12sech2X ′)w = λw. (2.64)

It is known [41] that Eq. (2.64) has one negative eigenvalue λ = −5. It follows that G̃′′(0) < 0
for a suitable choice of w and hence that the solution given in Eq. (2.60) is unstable. The
presence of an unstable localized state for f > 0 is consistent with the well-known fact that
the Eckhaus instability is subcritical.

We now turn to the study of the dynamical evolution of the Eckhaus instability that
takes place when f < 0 using direct numerical integration of Eq. (1.6) for different choices
of (a1, a2) with a1 − a2, k0, g > 0 and f < 0 fixed. The reason for fixing f and g is to
ensure that the spectrum of the linearized equation remains unchanged for different choices
of (a1, a2) and this can be done by modifying the values µ and b. We pick a1 − a2 = 0.45,
f = −0.02, g = 1.3, k0 = π/10 with domain size Γ = 200 and periodic boundary conditions.
The number of grid points, here and elsewhere, is 512 with time step equal to 0.01. We
examine the cases a1 = 0.65, 0.75, 1.25, and 2.25 with γ ≈ −7.3351, −6.1736, −4.3349,
and −3.9596. The initial condition we choose is a periodic wavetrain with a superimposed
perturbation a = c1e

iqx+ c2e
−iqx, q = 6π/Γ, corresponding to the most unstable mode in the

given domain. Time evolution of the profile of Re[A] is shown in figure 2.28 initialized with
perturbation amplitude

√
c21 + c22 = 0.05. With the given initial condition, the number of

rolls changes from 10 to 7 as a result of phase slips triggered by the Eckhaus instability, and
it is clear that the time for a phase slip to occur is smaller when |γ| is larger. Phase slips
occur at t = T ≈ 1860, 2465, 4380 and 5075, respectively; for the perturbation amplitude√
c21 + c22 = 0.05 the time T is determined largely by nonlinear processes and not by the

linear growth phase of the instability.
In figure 2.29 we examine the dependence of these results on initial conditions. The figure

shows the dynamics of an Eckhaus unstable 10-roll periodic wavetrain with a superimposed
unstable mode with perturbation wavenumber (a) 2π/Γ, (b) 4π/Γ, (c) 6π/Γ, and (d) 8π/Γ.
The simulation shows that the number of rolls decreases by 1, 2, 3 and 4. Here a1 = 0.75,
a2 = 0.3 and the remaining quantities are as in figure 2.28.

We also investigate the dependence of the time to phase slip on the linear growth rate
σ+(q). Here we fix a2 = 0.2, g = 1.3, γ = −7, and choose the wavenumber of the periodic
wavetrain k0 = π/10. Values of the parameters a1, µ, and b are adjusted so that the
numerical value of f is approximately equal to −0.01503, −0.01751, −0.01999, and −0.02247.
In each case the most unstable mode corresponds to q = 6π/Γ with the corresponding
temporal eigenvalue σ+ ≈ 2.0847 × 10−5, 2.9261 × 10−5, 3.7680 × 10−5, and 4.6105 × 10−5,
respectively. Figure 2.30 shows the time evolution resulting from an initial perturbation with√
c21 + c22 = 0.001; figure 2.31 confirms that for these small amplitudes the time T to phase
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Figure 2.28: Time evolution of Re[A] with PBC in a domain of size Γ = 200. Parameters:
f = −0.02, g = 1.3, k0 = π/10, and a1 − a2 = 0.45. (a) a1 = 0.65. (b) a1 = 0.75. (c)
a1 = 1.25. (d) a1 = 2.25. In each case the solution has been initialized with a sinusoidal
perturbation of amplitude

√
c21 + c22 = 0.05 and wavenumber q = 6π/Γ.

slip is determined by the linear growth rate σ−1
+ . This is no longer the case for perturbations

with amplitude
√
c21 + c22 & 0.01, cf. figure 2.29.

The degenerate situation f |µ=µ0
= ∂µf |µ=µ0

= 0 arises when a21 − a22 > 4 and is always
present in the supercritical case (b′ < 0). In the subcritical case (b′ > 0) |a1| must be smaller
than |a2|+ 2/|a2| for this degeneracy to occur. At this degenerate point R+

0 and b are given
by

(R+
0 )

2 = 2|k0|(a21 − a22 − 4)−1/2, b = −2|k0|(a21 − a22 − 4)1/2 − k0(a1 + a2). (2.65)

It can be shown that at this point ∂2µf(µ0) is always negative implying that the periodic state
is always unstable when µ is slightly perturbed from µ0. The derivation of the phase equation
corresponding to this case is similar to the nondegenerate case except that δµ = O(ϵ) instead
of O(ϵ2), and also results in Eq. (2.55).

The degeneracy γ = 0 is of greater interest. This degeneracy only arises when β > 0
implying that (a1, a2) must lie in the range |a1− a2| > 2. We remark that Eq. (1.6) may not
be well-posed in this regime. From Eq. (2.58), we can see that in order for the next higher
order term (κ3)XX to come in, the scaling must be modified:

X = ϵx, T = ϵ4t, κ = O(ϵ), γ = ϵγ1. (2.66)
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Figure 2.29: Time evolution of Re[A] with PBC in a domain of size Γ = 200 triggered by the
Eckhaus instability. Parameter values are a1 = 0.75, a2 = 0.3, with the remaining quantities
as in figure 2.28. The superposed initial perturbation is periodic with wavenumber (a) 2π/Γ,
(b) 4π/Γ, (c) 6π/Γ, and (d) 8π/Γ. In each case the solution has been initialized with a
sinusoidal perturbation of amplitude

√
c21 + c22 = 0.05 and wavenumber q = 6π/Γ.

The size of γ is controlled by varying b. Since κ is O(ϵ), the perturbations of the phase and
amplitude will be O(1) and O(ϵ), respectively, so that

A = R+
0 (1 + ϵr(0) + ϵ3r(1) + . . .)ei(k0x+ϕ(0)+ϵ2ϕ(1)+...). (2.67)

Following the procedure in the nondegenerate case, one can show that the perturbed wavenum-
ber κ satisfies the Cahn-Hilliard equation but with a negative cubic coefficient,

2g0κT =
[
−κXX + f2κ+ γ1κ

2 − 2 (1 + 2k0/b+)
2 κ3
]
XX

. (2.68)

When this is the case solutions of Eq. (2.68) exhibit finite time blow up [42]; the blow up time
corresponds to the occurrence of a phase slip, i.e., the breakdown of the phase description. In
numerical simulations, solutions of Eq. (1.6) always blow up owing to the generation of high
frequency modes in this regime. This result is consistent with the failure of well-posedness
when |a1 − a2| > 2. In figure 2.32 we present numerical results before blow up occurs. In
contrast with the generic situation when |γ| = O(1) > 0, the rolls narrow right before a
phase slip.

Amplitude and oscillatory modes

We now assume that the periodic state satisfies f = O(1) > 0 and that g ≈ 0. The
instability sets in when g becomes slightly negative and only occurs for periodic wavetrains
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Figure 2.30: Time evolution of Re[A] with PBC in a domain of size Γ = 200. Parameter
values: a2 = 0.2, g = 1.3, γ = 7. (a) f = −0.01503 (σ+ = 2.0847× 10−5). (b) f = −0.01751
(σ+ = 2.9261 × 10−5). (c) f = −0.01999 (σ+ = 3.7680 × 10−5). (d) f = −0.02247 (σ+ =
4.6105× 10−5). In each case the solution has been initialized with a sinusoidal perturbation
of amplitude

√
c21 + c22 = 0.001 and wavenumber q = 6π/Γ.

slightly below the saddle-node (µ0 = k20−b′2/4). The spectrum as a function of the perturbed
wavenumber q is shown in figure 2.20(b) and indicates that the eigenvalues are real and
unstable when q is close to zero and become complex unstable as q exceeds a certain limit.

Since f = f0 ≡ a22b
′2

4
−
(
2k0 +

a1b′

2

)2
when µ = µ0 the coefficient a2 must be nonzero and large

enough for f to be positive. Thus this type of instability is only present when the system is
sufficiently far from a gradient system.

When µ is close to the onset of instability, the dependence of g on µ− µ0 is

g(µ) = 2(µ− µ0)− b′
√
µ− µ0 ≈ −b′

√
µ− µ0. (2.69)

Let δµ ≡ µ − µ0 = O (ϵ4). In order for g to compete with the q2 term in the temporal
eigenvalue, the amplitude must vary on O(ϵ−1) scales. But there is another spatial scale
which comes from the modes with real unstable eigenvalues. These modes lie within a
narrow region around q = 0 of ϵ2 width. The inclusion of this spatial scale is important
when the domain size is relatively large. We refer these modes as amplitude modes while the
modes in the region of unstable complex eigenvalues are oscillatory modes. With the given
scaling, the magnitude of the real and the imaginary parts of the eigenvalues are of different
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Figure 2.31: (a) The linear growth rate σ−1
+ as function of f from figure 2.30. (b) Time T

to phase slip in figure 2.30 multiplied by σ+ as function of σ−1
+ .

Figure 2.32: Time evolution of Re[A] with PBC in a domain of size Γ = 200. Parameter
values: a1 = −2.9, a2 = −0.7, f = −0.02, γ = 0. The instability is initialized using an
unstable mode with wavenumber (a) 4π/Γ and (b) 6π/Γ.

order, O (ϵ−2) for the real part and O (ϵ−1) for the imaginary part. These facts suggest the
following choice of multiscale scaling:

X1 = ϵx, X2 = ϵ2x, T1 = ϵt, T2 = ϵ2t,

δµ = ϵ4µ2
1, a = ϵ2a(0) + ϵ3a(1) + ... (2.70)

Here δµ ≥ 0 since µ0 is already at the saddle-node.
In the following we write a(n) ≡ a

(n)
r + ia

(n)
i . The first two orders in ϵ then yield the

equations

a
(0)
r,T1

− b−a
(0)
i,X1

= 0, (2.71)

a
(0)
i,T1

− b+a
(0)
r,X1

= 0, (2.72)

a
(1)
r,T1

− b−a
(1)
i,X1

= b−a
(0)
i,X2

− a
(0)
r,T2

+ a
(0)
r,X1X1

− b′2a(0)2r + 2b′µ1a
(0)
r , (2.73)

a
(1)
i,T1

− b+a
(1)
r,X1

= b+a
(0)
r,X2

− a
(0)
i,T2

+ a
(0)
i,X1X1

. (2.74)
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Thus a
(0)
r and a

(0)
i both satisfy a one-dimensional wave equation on O (ϵ−1) scales with

wave speed
√
f0. We therefore introduce the comoving variables ξ ≡ X1 −

√
f0T1 and

η ≡ X1 +
√
f0T1 and look for solutions of the form

a(0)r = A1(ξ,X2, T2) + A2(η,X2, T2) + A0(X2, T2), (2.75)

a
(0)
i = (b+/b−)

1/2
[
−A1(ξ,X2, T2) + A2(η,X2, T2) + Ã0(X2, T2)

]
. (2.76)

Combining Eqs. (2.73) and (2.74) together gives

2
√
f0a

(1)
r,ξη =

(
∂T2 − b′µ1 + b′2a(0)r

)
(A2,η − A1,ξ) + A1,ξξξ − A2,ηηη −

√
f0 (A1,ξ + A2,η)X2

.(2.77)

Requiring that A1 and A2 remain bounded as |ξ| → ∞, |η| → ∞, we obtain the following
coupled equations for the slow evolution of the amplitudes A1 and A2,(

∂T2 +
√
f0∂X2

)
A1,ξ = A1,ξξξ + b′µ1A1,ξ − b′2 (A1 + A0)A1,ξ, (2.78)(

∂T2 −
√
f0∂X2

)
A2,η = A2,ηηη + b′µ1A2,η − b′2 (A2 + A0)A2,η. (2.79)

Since the spatial average of A1 and A2 can be absorbed into A0 and Ã0, we may assume
⟨A1⟩ = ⟨A2⟩ = 0, where ⟨·⟩ indicates the average over the comoving space variables. Inte-
grating both Eqs. (2.78) and (2.79) once and averaging Eqs. (2.73) and (2.74) with respect
to ξ and η, respectively, we obtain finally a pair of equations that describe the interaction
between the amplitude and oscillatory modes,(

∂T2 +
√
f0∂X2

)
A1 = A1,ξξ + (µ1 − A0)A1 −

A2
1 − ⟨A2

1⟩
2

, (2.80)(
∂T2 −

√
f0∂X2

)
A2 = A2,ηη + (µ1 − A0)A2 −

A2
2 − ⟨A2

2⟩
2

, (2.81)

Ã0,T2 −
√
f0A0,X2 = 0, A0,T2 −

√
f0Ã0,X2 = 2µ1A0 −

⟨
A2

1 + A2
2

⟩
− A2

0. (2.82)

Here the coefficient b′ has been scaled out by suitably redefining A1, A2, A0, Ã0, and µ1.
These equations generalize those derived by Knobloch and De Luca for counterpropagating
waves on a trivial background [43] to the case of a nontrivial background.

Figures 2.33 and 2.34 show plots of the time evolution of Eq. (1.6) in a periodic domain
of size Γ = 200 for a1 = 0.3, a2 = 2.2, b = 0.5, and µ = µ0 + 5 × 10−6. The initial 20
roll periodic wavetrain is perturbed with a right-traveling wave with q = 2π/Γ (figure 2.33)
or a left-traveling wave with q = 4π/Γ (figure 2.34). Both perturbations are of order 10−2.
Under these conditions, the wavetrain eventually collapses to 0 although a growing traveling
modulation is visible in the demodulated solution as shown in figures 2.33(b) and 2.34(b).
A comparison between the dynamics of the full equation (1.6) and the modulation equations
is shown in (c), which demonstrates that the time dependence of (b′2/ϵ2)Re[⟨a⟩] (solid line)
is well approximated by the time evolution of the mean mode A0 (dashed line).
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Figure 2.33: A 20 roll periodic wavetrain with PBC undergoing both amplitude and oscilla-
tory instabilities. (a) Time evolution of Re[A]. (b) Time evolution of Re[a]. (c) Comparison
of the evolution of the mean of the modulation mode (solid line) with the evolution of A0

from Eq. (2.82) (dashed line). Domain size: Γ = 200. Parameter values: a1 = 0.3, a2 = 2.2,
b = 0.5, and µ = µ0+5×10−6. The initial condition is a periodic wavetrain with a superposed
q = 2π/Γ right-traveling wave of O(10−2) amplitude.
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Figure 2.34: A 20 roll periodic wavetrain with PBC undergoing both amplitude and oscilla-
tory instabilities. (a) Time evolution of Re[A]. (b) Time evolution of Re[a]. (c) Comparison
of the evolution of the mean of the modulation mode (solid line) with the evolution of A0

from Eq. (2.82) (dashed line). Domain size: Γ = 200. Parameter values: a1 = 0.3, a2 = 2.2,
b = 0.5, and µ = µ0+5×10−6. The initial condition is a periodic wavetrain with a superposed
q = 4π/Γ left-traveling wave of O(10−2) amplitude.

2.6 Stability and dynamics of spatially localized

solutions near the Maxwell point

In this section we study the stability and dynamics of spatially localized solutions near the
Maxwell point. Dynamical properties of these solutions are important for understanding the
location of the snaking region and the process of nucleation of periodic patterns in convective
systems.
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Stationary and nonstationary fronts

Among the spatially localized solutions, the front solutions determine the location of
the Maxwell point and the associated protosnaking behavior. With the coefficients a1, a2,
and b fixed, there is at most one stationary front solution to within the symmetries given
in section 2.2. This solution connects the trivial state A = 0 to one of the periodic states.
As shown in section 2.2, the front solution exists when E = L = 0 with coefficients b > 0,
µ = µM ≡ b2/(16β) < 0. In order to simplify the discussion that follows, we set without loss
of generality b = 1 and obtain the explicit solution

R2 =
−4µM

e±2
√
−µMx + 1

, ϕx =
(a1 + a2)µM

e±2
√
−µMx + 1

. (2.83)

The selected wavenumber kM at the Maxwell point is given by kM = (a1 + a2)µM .
The front solution can only be stable when the asymptotic states as x → ±∞ are both

stable and no unstable point eigenvalue is present [45]. The same argument also applies to
other spatially extended solutions. Since µ is negative, the zero asymptotic state is always
linearly stable. The stability of the competing periodic state is determined by the sign of

the coefficient g here given by g =
8µ2

M

3
[4− a2(a1 + a2)]. Thus the competing periodic state

is unstable when a2(a1+a2) > 4 and stable when a2(a1+a2) < 4. To check for the existence
of unstable point eigenvalues when g > 0, we solve an eigenvalue problem analogous to
Eq. (2.40), viz.

at = axx +

[
2R−1Rx + i

(
a1 − a2

2
R2 +

2L

R2

)]
ax + ia2R

2a∗x

+

[
bR2 +

(
a21 − a22

4
− 2

)
R4 + (a2 − a1)L+ i(a1 + a2)RRx

]
(a+ a∗) . (2.84)

We solve this problem using the Ansatz a(x, t) = (u + v)eσt + (u∗ − v∗)eσ
∗t, where u and v

are functions of x. The resulting eigenvalue problem takes the form

σ

(
u
v

)
=

(
∂xx + A∂x + C i(B − a2R

2)∂x
i(B + a2R

2)∂x + iD ∂xx + A∂x

)(
u
v

)
. (2.85)

where

A = 2Rx/R, B =
a1 − a2

2
R2 +

2L

R2
,

C = 2bR2 +

(
a21 − a22

2
− 4

)
R4 + 2(a2 − a1)L, D = (a1 + a2)

(
R2
)
x
.

The temporal stability of the front solution depends on the coefficients a1 and a2; since L = 0
the stability of the solution with coefficients (a1, a2) is identical to that with coefficients
(−a1,−a2). The problem is solved using a spectral method with cosine and sine basis



CHAPTER 2. WEAKLY SUBCRITICAL PATTERNS 50

functions with wavenumbers equal to integer multiples of π/Γ, where Γ = 50/
√
−µM . The

spectral matrix is truncated after the first 512 modes. The same procedure is also used
for the stability calculation for the other spatially localized solutions examined below. The
numerical results indicate that there is no unstable point eigenvalue for solutions with stable
asymptotic states within the range |a1|, |a2| ≤ 10, suggesting that this family of solutions is
linearly stable. This results holds independently of the value of b provided only that b > 0.

Motion of the stable front can be generated by shifting the parameter µ slightly from
the Maxwell point, i.e., by introducing a difference in “energy” between the two competing
states. The existence of these moving front solutions has only been proved in the case
|a1 + a2| ≪ 1 [28] but our numerical simulations indicate that these traveling front solutions
continue to exist when |a1 + a2| = O(1). When µ < µM the trivial state has the lower
“energy” and the front therefore moves to eliminate the periodic wavetrain. The opposite
occurs for µ > µM . The time evolution of such moving fronts with coefficients a1 = 1, a2 = 1
is shown in figure 2.36. Here we give the details of an asymptotic calculation of the resulting
front speed when |µ− µM | ≪ 1.

Equation (1.6), written in terms of R and k ≡ ϕx, takes the form

Rt = (µ− k2)R +Rxx + [b+ k(a2 − a1)]R
3 −R5, (2.86)

kt =

(
k +

a1 + a2
2

R2

)
xx

+

(
2kRx

R

)
x

. (2.87)

According to the numerical results, both R and k drift slowly with certain speed c. In the
comoving frame, we have

−cRx = (µ− k2)R +Rxx + [b+ k(a2 − a1)]R
3 −R5, (2.88)

−ckx =

(
k +

a1 + a2
2

R2

)
xx

+

(
2kRx

R

)
x

, (2.89)

where x now refers to the space variable in the comoving frame. Equation (2.88) can also
be written as

−cRx = Rxx +
1

2
UR, (2.90)

where U is defined in Eq. (2.13). Integrating Eq. (2.89) once and multiplying it by R2 leads
to

Lx = R2c(k∞ − k), (2.91)

where k∞ is the wavenumber of the periodic state as x → −∞. Assuming that the trivial
solution is present at x→ ∞ we have

L = c

∫ ∞

x

R2(k − k∞) dx, (2.92)

indicating that L is proportional to the speed of the front c, at least when c is small. Let
R = Rf + r, where Rf is the amplitude of the stationary front solution and r is a small
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perturbation. Substituting R = Rf + r into Eq. (2.90) and collecting leading order terms
yield

−cRf,x ≈ (µ− µM)Rf +
3a2 − a1

2
LRf + rxx +

1

2
URR(Rf ;µM , 0)r. (2.93)

Multiplying this equation by −2Rf,x and integrating over the spatial domain we obtain

2c

∫
R
R2

f,x dx ≈ (µ− µM) R2
f

∣∣
x=−∞ + (a1 − 3a2)

∫
R
LRfRf,x dx. (2.94)

The contribution of the terms proportional to r vanishes since Rf,x corresponds to the in-
finitesimal translation mode in the stationary case. After evaluating the integrals we have

c ≈ 3(µ− µM)

2(−µM)3/2
[4− a2(a1 + a2)]

−1 . (2.95)

This expression reduces to the front speed as calculated in [28] when a1 + a2 = 0. The
coefficient in the denominator is always positive for stable stationary front solutions and the
sign of c is then in agreement with the energy argument. The approximate front speed agrees
well with the numerical results when µ is close to µM as shown in figure 2.35.
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Figure 2.35: cnum/cpre−1 versus µ/µM for the front solutions when a1 = a2 = 1, where cnum
is measured speed and cpre is the predicted value.

For unstable fronts, we perform numerical simulations initialized with the stationary front
solution and a superposed small amplitude localized perturbation at the center. Since the
unstable part of the front lies in between the stable trivial state and stable periodic state,
the perturbation can either grow or decay, depending on the details of the initial condition.
If the front solution is initially slightly suppressed at the center, simulations reveal that
the adjacent unstable part collapses, allowing the trivial state to invade the unstable state.
Figure 2.37(a) shows this behavior when a1 = 2, a2 = 3; the speed of the resulting front is
approximately 1.14. In figure 2.37(b), the coefficients used are the same as in figure 2.37(a)
but the initial profile is slightly augmented at the center instead. This perturbation leads to
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the growth of an unstable periodic state followed by a transition to a stable periodic state
which then invades both the stable zero state and the unstable periodic state. The measured
front speed between the stable and unstable periodic states is approximately 1.27 while that
between stable periodic state and A = 0 is approximately 0.24.

In all these simulations domain truncation has been applied. In order to implement
suitable boundary conditions we compute the dynamical behavior of Ã(x, t) ≡ A(x, t)e−ikMx,
where kM = (a1+a2)µM is the asymptotic wavenumber as x→ ±∞, instead of dealing with
A. Thus Ã tends to a constant as x → −∞ and this constant can be chosen to be a real
number. Cosine and sine functions are applied as the basis functions with wavenumbers
equal to integer multiples of π/Γ. A similar method is also used in the simulation of the
dynamics of perturbed hole and pulse solutions discussed below.
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Figure 2.36: Time evolution of the profile of a stable front with µ perturbed from µM .
Parameter values: a1 = 1, a2 = 1, b = 1. (a) µ = 1.01µM . (b) µ = 0.99µM .
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Figure 2.37: Time evolution of the profile of an unstable front. Parameter values: a1 = 2,
a2 = 3, b = 1, and µ = −0.0492. The center of the front is suppressed by a factor of 0.99 in
(a) and augmented by 1.01 in (b).

The front motion presented in figure 2.37 is an example of front propagation into an
unstable state. In many cases the speed of the resulting front is selected by the marginal
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stability condition [46, 32]. This prediction focuses on modes of the form

aq̃,λ ∼ β1e
iq̃x + β∗

2e
−iq̃∗x, (2.96)

where q̃ is now a complex wavenumber, q̃ ≡ q + iλ. Thus λ represents the spatial decay or
growth rate of the mode. This mode has the dispersion relation σ±(q̃), where σ± is given in
Eq. (2.43). In the present case it is the + branch of the dispersion relation that is relevant.
The linear spreading speed is thus given by the relation

v∗ ≡ i
dσ+
dq̃

=
Re[σ+(q̃)]

λ
, (2.97)

or equivalently

v∗ = min
λ

max
q

{
Re[σ+(q̃)]

λ

}
. (2.98)

Pinch point analysis in the complex q̃ plane [32] now leads to the prediction

q = 0, λ∗2 =
g

2(2g − f)

(
2f − 3g +

√
9g2 − 4fg

)
, (2.99)

and hence, from Eq. (2.98), to the explicit result

v∗ =
λ∗

1 + g/λ∗2
. (2.100)

For the parameter values of figure 2.37 this expression predicts that v∗ = 1.1642, com-
pared with the measured speeds v∗ = 1.14 in figure 2.37(a) and v∗ = 1.27 in figure 2.37(b).
Moreover, since q = 0 the wavenumber k∗ selected by the invading front [46]

k∗ ≡ Im[σ+(q̃) + iq̃v∗]

v∗
= 0. (2.101)

Figure 2.38 shows these results in the (a1, a2) plane.
Note that figure 2.37(b) shows a second front as well, in which the stable large amplitude

state invades the stable trivial state A = 0. The speed of this type of front cannot be
obtained from the linear stability analysis described above [32].

Stationary holes and pulses

Equation (1.6) possesses several other spatially localized solutions of interest, in addition
to the front solutions just described. We focus here on the case b = 1, β < 0 for which the
potential energy U(R,L = 0) takes the form shown in figure 2.39. Thus hole solutions exist
for µ both greater and less than µM .
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Figure 2.38: The linear spreading speed of the unstable front solution in the (a1, a2) plane.
As (a1, a2) approaches the line β = 0, v∗ diverges. We therefore cut off v∗ at v∗ = 3 and use
black color to indicate the parameter range where v∗ ≥ 3. In addition, v∗ is set equal to 0
in regions where either β or g is nonnegative (white color).
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Figure 2.39: The potential energy U(R,L = 0) when (a) µ > µM and (b) 4µM

3
< µ < µM .

When µ > µM the holes take the form

R2 =

ξ1ξ2sinh
2

(√
µ+ ξ1

2
x

)
ξ2cosh

2

(√
µ+ ξ1

2
x

)
− ξ1

(2.102)

with asymptotic wavenumber k∞ = −(a1 + a2)ξ1/4 as x→ ±∞, where

ξ1 = −4µM

3

(
2 +

√
4− 3µ

µM

)
, ξ2 =

8µM

3

(
−1 +

√
4− 3µ

µM

)
. (2.103)

The region of stability of these solutions in parameter space is shown in figure 2.40 for the
case µ = 0.99µM > µM and indicated by red (or gray) color. Most of the solutions with stable
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asymptotic states are stable except those with β ≈ 0, as indicated in the figure. Figure 2.41
shows the dynamical evolution in the unstable case (a1, a2) = (2, 0), starting from an initial
condition with L = 0. For these coefficients the asymptotic states x → ±∞ are stable but
the hole state is nevertheless unstable. To reveal the instability the amplitude |A| in a small
interval around the center of the hole has been multiplied by a factor 0.99 in (a) and by 1.01
in (b), and the results used as initial conditions in a time evolution code. In the former case
the solution converges quickly to a nearby stationary hole solution with L ̸= 0. In the latter
case the solution relaxes to the stable asymptotic state.
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Figure 2.40: (Color online) The case µ = 0.99µM . Solid line: β = 0. Dashed line: g = 0.
The quantity β is negative between the solid lines while g is positive between the dashed
lines. Hole solutions are stable in the red (or gray) region.

−100
−50

0
50

100 0

200

400

600

800

1000

0

1

2

(a)

x

t

|A|

−100
−50

0
50

100 0

200

400

600

800

1000

0

1

2

(b)

x

t

|A|

Figure 2.41: Dynamics of an unstable L = 0 hole solution when µ = 0.99µM and (a1, a2) =
(2, 0). The amplitude at center of the hole is multiplied by a factor 0.99 in (a) and by 1.01
in (b). In (a) the hole evolves to a nearby hole with L ≈ 0.01 ̸= 0 and nonzero amplitude at
the center; in (b) the hole disappears.
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When 4µM

3
< µ < µM the stationary hole solutions take the form

R2 =

ξ1ξ2cosh
2

(√
µ+ ξ1

2
x

)
ξ1 + ξ2sinh

2

(√
µ+ ξ1

2
x

) . (2.104)

Here ξ1 and ξ2 are as defined in Eq. (2.103) and the asymptotic wavenumber remains k∞ =
−(a1+a2)ξ1/4. The region of stability of these hole solutions in parameter space is shown in
figure 2.42 for the case µ = 1.01µM < µM and indicated by red (or gray) color. In contrast
with the case µ > µM , almost all of the solutions are now unstable except for those with
β ≈ 0. Figure 2.43 shows the dynamical evolution in the unstable case (a1, a2) = (1, 1) with
stable asymptotic states. To generate the initial condition the amplitude at the center of the
hole has been multiplied by a factor 0.99 in (a) and by 1.01 in (b). If the solution is initially
suppressed at the center the central part collapses to zero and invades the periodic structure
in both directions as expected. However, if the solution is initially augmented at the center
the amplitude at the central part overshoots the amplitude of the periodic state but then
decays back. This behavior is a consequence of the non-gradient nature of the system when
a2 ̸= 0.
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Figure 2.42: (Color online) The case µ = 1.01µM . Solid line: β = 0. Dashed line: g = 0.
The quantity β is negative between the solid lines while g is positive between the dashed
lines. Hole solutions are stable in the red (or gray) region.

Pulses connecting the trivial state to itself exist only when µM < µ < 0. These solutions
take the form

R2 =
ξ1ξ2

ξ1 + (ξ2 − ξ1) cosh
2(
√
−µx)

, (2.105)

where

ξ1 = −4µM

(
1−

√
1− µ

µM

)
, ξ2 = −4µM

(
1 +

√
1− µ

µM

)
.
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Figure 2.43: Dynamics of an unstable L = 0 hole solution when µ = 1.01µM and (a1, a2) =
(1, 1). The amplitude at the center of the hole has been multiplied by a factor 0.99 in (a)
and by 1.01 in (b). In (a) the hole expands; in (b) the hole decays.

All such solutions appear to be unstable when µ = 0.99µM at least within |a1|, |a2| ≤ 10.
Dynamical evolution of the unstable case (a1, a2) = (1, 1) is shown in figure 2.44. Depending
on the perturbation applied initially, the solution either collapses to A = 0 or broadens into
a periodic state.
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Figure 2.44: Dynamics of an unstable L = 0 pulse solution when µ = 0.99µM and (a1, a2) =
(1, 1). The amplitude at the center of the hole has been multiplied by a factor 0.99 in (a)
and by 1.01 in (b). In (a) the pulse decays to the flat state A = 0; in (b) the pulse broadens
into a periodic state.

In the previous discussion we focused on localized states with L = 0. Also of interest is
the case when k∞, the asymptotic wavenumber of the localized state as x → ±∞, is equal
to kM , the wavenumber at µ = µM . When µ is perturbed from µM , L becomes nonzero
but remains small. The only stationary spatially localized states allowed are holes and these
take the explicit form

R2 = ξ1 +
(ξ2 − ξ1)(ξ3 − ξ1)

ξ2 − ξ1 + (ξ3 − ξ2)cosh
2
[√

β(ξ3 − ξ1)(ξ1 − ξ2)x
] ,
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where ξ1 is the square of the amplitude of the asymptotic periodic state, ξ2 is the square of the
minimum amplitude of the solution, and ξ3 ̸= ξ1, ξ2 is the remaining root of the polynomial
ξ
[
E − U(

√
ξ)
]
. We computed the stability properties of these solutions at µ = 1.01µM and

0.99µM and found no stable solution when µ = 1.01µM within |a1|, |a2| ≤ 10. However,
when µ = 0.99µM the solutions are stable within |a1|, |a2| ≤ 10.

To examine the dynamics that result from the instability, we set µ = 1.01µM and choose
an unstable solution with (a1, a2) = (1, 1). The resulting time evolution is shown in fig-
ure 2.45 and resembles that in figure 2.43 in which the solution either collapses to A = 0
or approaches a periodic state in an oscillatory fashion. When µ = 0.99µM , we choose
(a1, a2) = (1, 1.5); the resulting time evolution is shown in figure 2.46. This time the per-
turbation applied at the center is larger and generates oscillatory behavior near the center
but the oscillation decays as time increases and the solution converges to the unperturbed
solution.
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Figure 2.45: Evolution of an unstable hole solution with k∞ = kM when µ = 1.01µM and
(a1, a2) = (1, 1). The amplitude at the center of the hole has been multiplied by a factor
0.99 in (a) and by 1.01 in (b). In (a) the hole broadens into a growing region filled with the
flat state A = 0; in (b) the hole decays into a constant amplitude periodic state.

2.7 Discussion

In this chapter, we explore in detail the properties of stationary solutions of GL35,
both analytically and numerically. The presence of the coefficients a1 and a2 in Eq. (1.6)
is responsible for a variety of new and interesting phenomena, many due to the loss of
variational structure when a2 ̸= 0. These coefficients are readily derivable from systems at
the transition between subcritical to supercritical bifurcation as shown in Appendix A. The
work can be used to predict and classify the stationary and dynamical properties of weakly
subcritical and supercritical pattern forming systems. Altogether, we identified four critical
codimension-one curves in the (a1, a2) plane, corresponding to β = 0 (Eq. (2.13)), a21−a22 = 4
(Eq. (2.14)) and (a2 − a1)

2 = 4 (Eq. (2.18)) and a2(a1 + a2) = 4 (Eq. (2.19)). Additional
codimension-one curves such as a1 + a2 = 0 and a2 = 0 can also be significant.
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Figure 2.46: Evolution of a stable hole solution with k∞ = kM when µ = 0.99µM and
(a1, a2) = (1, 1.5). The amplitude at the center of the hole has been multiplied by a factor
0.9 in (a) and by 1.1 in (b). The oscillations decay with increasing time.

We have computed a variety of both primary solution branches corresponding to peri-
odic patterns with either the critical wavenumber (k = 0, band center) or with a shifted
wavenumber (k ̸= 0, off-center) and determined their stability properties with respect to
wavelength changing perturbations of Eckhaus type. We have also computed the different
types of secondary branches that result. These correspond in general to quasiperiodic states,
although on a finite domain both the solution amplitude and phase must of course satisfy
the boundary conditions. The branches that bifurcate from the primary k = 0 branch ex-
hibit protosnaking near a point µ = µM . At this parameter value one finds a heteroclinic
connection between the trivial solution A = 0 and a periodic solution A = RM exp(ikMx)
with a well-defined wavenumber kM . The presence of these heteroclinic connections, and
the associated wavenumber selection process are of particular interest since they play a large
role in the interconnections between the k = 0 and k ̸= 0 branches.

On the stability of periodic wavetrains, these solutions become unstable through two dif-
ferent mechanisms: one is the result of an unstable phase mode (Eckhaus instability) while
the other is a consequence of an interaction between amplitude and oscillatory modes. In the
former case we examined the bifurcations to spatially localized solutions within appropriate
phase equations and investigated the evolution of the instability using direct numerical inte-
gration. The phase equation description breaks down at phase slips whereby the wavelength
of the solution changes abruptly but coarsening of the structure may take place prior to
this event. In the latter case the instability is oscillatory and the evolution takes the form of
waves. The evolution of these waves is described by a pair of equations of Fisher-Kolmogorov
type for the amplitudes of the left/right traveling waves coupled to an amplitude mode.

A systematic study of different spatially localized solutions was also performed. Solutions
homoclinic to the trivial state (pulses) or to a periodic state (holes) were found near the
heteroclinic connection (front) between the trivial and periodic states forms. The formation
of such a front is associated with protosnaking behavior. We have found that such fronts are
stable when the asymptotic states are stable and vice versa. Away from the Maxwell point
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the fronts persist but move with a speed that depends on the distance from the Maxwell
point. When the periodic state is unstable a wave of constant form can nonetheless be present
and takes the form of a invasion front whereby a stable state invades an unstable state. We
have computed the speed of such invasion fronts assuming that this speed is selected by the
marginal stability criterion and showed that the resulting speed is in reasonable agreement
with speeds measured in direct simulations of GL35. Stability properties of analytically
determined pulse-like and hole-like solutions were found numerically and in each case the
stability region in the (a1, a2) plane was determined.
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Chapter 3

Large-scale Mode in Pattern
Formation

Convection in a horizontal fluid layer rotating about the vertical or subject to an im-
posed vertical magnetic field provides one of the classic examples of hydrodynamic instability
[6]. The system is of interest because convection can set in either via an exchange of sta-
bility (a steady state bifurcation) or via overstability. Recent interest has focused on the
study of spatially localized structures in these systems. In two-dimensional convection with
stress-free boundary conditions, the formation of such states is strongly influenced by the
interaction between convection and a large scale mode: zonal velocity in rotating convection
and magnetic flux in magnetoconvection. The localized structures are embedded within a
self-generated shear layer or a magnetic field-free region with a compensating effect outside
of the structure. These states are organized within a bifurcation structure called slanted
snaking and are present even when periodic convection sets in supercritically.

In this chapter, I will present some numerical results and explain the observed bifurcation
behavior using a modulation equation approach. The emphasis will be put on the modulation
behavior near a codimension-two point where the leading order theory described in [18]
becomes invalid through the vanishing of a cubic term in the stationary equation. Another
aspect that will be discussed in the chapter is the breaking of stress-free boundary conditions.

Throughout this chapter, I use RC for rotating convection and MC for magnetoconvec-
tion. The chapter builds upon work that appears in [17, 47].

3.1 Rotating convection and magnetoconvection

The dimensionless equations governing two-dimensional convection in a Boussinesq fluid
layer subject to a vertical magnetic field B0ẑ or uniform rotation with angular velocity Ωẑ
are (MC)

σ−1
[
∇2ψt + J

(
ψ,∇2ψ

)]
= Raθx + ζQ

[
∇2Az + J

(
A,∇2A

)]
+∇4ψ, (3.1)

θt + J (ψ, θ) = ψx +∇2θ, At + J (ψ,A) = ψz + ζ∇2A, (3.2)
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and (RC)

σ−1
[
∇2ψt + J(ψ,∇2ψ)

]
= Raθx − Tavz +∇4ψ, (3.3)

θt + J (ψ, θ) = ψx +∇2θ, σ−1 [vt + J(ψ, v)] = Taψz +∇2v, (3.4)

where J(u, v) ≡ uxvz − uzvx. Here ψ(x, z, t) is the poloidal stream function with z the
vertical coordinate. The fluid velocity in the x-z plane is u = (−ψz, ψx). The field A(x, z, t)
represents the departure of the magnetic potential from that responsible for the imposed
magnetic field B0ẑ, v(x, z, t) represents the zonal velocity (i.e., the y component of the
velocity), while θ measures the departure of the temperature from the conduction profile.
We use the height h of the layer as the unit of length, the thermal diffusion time in the
vertical h2/κ (κ is the thermal diffusivity) as the unit of time and the imposed temperature
difference ∆Θ as the unit of temperature. The resulting systems are specified by the following
dimensionless numbers: the Prandtl number σ, the Rayleigh number Ra, the Chandrasekhar
number Q, the Taylor number Ta, and the diffusivity ratio ζ

σ =
ν

κ
, Ra =

gα△Θh3

κν
, Q =

B2
0h

2

µ0ρνη
, Ta =

2Ωh2

ν
, ζ =

η

κ
, (3.5)

where µ0 is the magnetic permeability, ρ is the density of the fluid, ν is the kinematic
viscosity, η is the magnetic diffusivity, g is the gravitational acceleration, and α is the
thermal expansion coefficient.

Stress-free and fixed temperature boundary conditions are applied at the upper and lower
boundaries

ψ = ψzz = θ = 0, Az or vz = 0 (3.6)

with periodic boundary conditions (PBC) in the horizontal with spatial period Γ that is large
compared with the onset wavelength λc of convection. With these boundary conditions,
both systems possess a trivial solution ψ = θ = 0, A = 0 (or v = 0), corresponding to
the pure conduction state. The solution is present for all values of Ra and its instability is
responsible for triggering convection. The onset of steady, spatially periodic convection from
the conduction state can be predicted by linear stability analysis [6]. A similar analysis will
be given later in section 3.6 with mixed boundary conditions. The critical Rayleigh number
Rac is the minimum Rayleigh number for which the conduction state is marginally stable,
and is equal to 2p3/π2 in MC and 3p2 in RC. The corresponding critical wavenumbers k
satisfy

Qπ4 = p2(2k2 − π2), Ta2π2 = p2(2k2 − π2), (3.7)

respectively, where p ≡ k2 + π2. The properties of the convection that results are in turn
affected by the symmetries of Eqs. (3.1)–(3.4) together with the given boundary conditions.
These include equivariance under horizontal translations, i.e., x → x + ℓ with the other
variables unchanged, as well as the two reflections

R1 : (x, z) → (−x, z), (ψ, θ) → (−ψ, θ), A→ −A or v → −v,
R2 : (x, z) → (x,−z), (ψ, θ, A or v) → (−ψ,−θ, A or v).
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The stress-free boundary conditions play important roles in what follows since with these
boundary conditions A and v are defined only up to a constant, i.e., A and v are phase-like
variables. Moreover, owing to the PBC applied in the horizontal the spatial averages of A
and v are constant in time. In the following subsections, we first show stationary solutions
of RC, obtained using a numerical continuation algorithm [17].

Localized states in the subcritical regime

As Ra increases steady convection sets in at Rac = 2p3/π2. As the Taylor number
Ta increases Rac moves to higher values: rotation stabilizes the conduction state against
convection. For small Ta convection is supercritical but becomes subcritical with increasing
Ta whenever the Prandtl number is sufficiently small. This is so for both stress-free and
no-slip boundary conditions [51, 52].

In this subsection we describe the results for σ = 0.1 and several different values of Ta.
Figure 3.1 shows the average poloidal kinetic energy,

E ≡ 1

2Γ

∫
D

(ψ2
x + ψ2

z) dx dz (3.8)

as a function of Ra when Ta = 20. Here D corresponds to the whole spatial domain. For this
value of Ta convection sets in at Ra = Rac ≈ 1179.2 and it does so with critical wavenumber
kc ≈ 3.1554. The results are obtained in a periodic domain of length Γ = 20π/kc. The figure
shows the branch of steady periodic convection with 10 wavelengths in the domain, labeled
P10. The branch bifurcates subcritically but turns around at a saddle-node. The figure also
shows a pair of branches of even and odd parity localized states, labeled L±

10, that bifurcate
subcritically from P10 at small amplitude. Initially both solutions take the form of weakly
modulated wavetrains, but as Ra approaches the leftmost saddle-nodes the modulation be-
comes strongly nonlinear resulting in the formation of convectons of even and odd parity
(figure 3.2). Beyond the leftmost saddle-nodes the two branches intertwine forming the so-
called slanted snaking structure, along which the convectons gradually increase in length by
nucleating new cells at either end. Because of the slant in the snaking structure the local-
ized states move towards larger values of the Rayleigh number and their wavelength grows
(figure 3.2). As a result of this Rayleigh number dependence of the convecton wavelength
the domain Γ becomes almost full when the convectons have grown to 4 wavelengths. At
this point the structure resembles a periodic wavetrain with defects a distance Γ apart and
the snaking stops. The branches now undergo a loop required to squeeze in an extra pair of
cells and terminate on P5 with 5 wavelengths in the domain Γ (figure 3.1).

The lower panels in figure 3.2 show the profile of the depth-integrated zonal velocity

V (x) ≡
∫ 1

0

v(x, z) dz. (3.9)

We see that the presence of convection imprints a step-like structure on this profile. This
structure turns into a saw-tooth profile by the time the branches terminate on the branch



CHAPTER 3. LARGE-SCALE MODE IN PATTERN FORMATION 64

 0

 2

 4

 6

 8

 10

 800  900  1000  1100  1200

P5

P10

L
−

10

L
+
10

E

Ra

Figure 3.1: Bifurcation diagram showing E as a function of Ra for slanted snaking when
Ta = 20 and σ = 0.1. The branches of localized states L±

10 in a Γ = 10λc domain are shown.
They bifurcate in a secondary bifurcation on the branch P10 of periodic convection with
10 pairs of counter-rotating rolls in Γ and connect to P5, the branch of 5 pairs of counter-
rotating rolls in Γ. The solutions at each saddle-node during the snaking process are shown
in figure 3.2.

P5 of periodic states.To understand this behavior we first note that the symmetry R2 im-
plies that clockwise and counterclockwise cells have the same effect on V (x); moreover, the
symmetry R1 implies that the slope of V (x) is unaffected by reflection in x = 0. In the peri-
odic state (top panels) V (x) varies linearly across each convection cell with steeper diffusive
layers of the opposite slope between adjacent cells. These diffusive layers are quite broad
since their dimensional width is Re−1/2h, where Re ≡ Uh/ν is the Reynolds number; since
the flow speed U ∼ κ/h when Ra ∼ Rac the dimensionless width ∼ σ1/2. The effect of the
cellular motion outside these layers is most easily discussed in terms of the relation

σ
dV

dx
= −

∫ 1

0

ψzv dz, (3.10)

obtained from the second equation in Eq. (3.4) upon integration over z followed by integration
once in x. Thus nonzero values of the averaged Reynolds stress are responsible for the
presence of a linear profile V (x) across the cell.
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Figure 3.2: Solution profiles at successive saddle-nodes on (a) L−
10, (b) L

+
10 in figure 3.1.

Upper panels show isovalues of the streamfunction with light (dark) regions corresponding
to clockwise (counterclockwise) flow. Lower panels show the profiles of V (x). Topmost
solutions correspond to the termination point on P5.

Localized states in the supercritical regime

As σ is increased, the primary branch of periodic states becomes less subcritical and a
transition occurs towards supercriticality. Figure 3.3 presents the bifurcation diagram for
σ = 0.6 and Ta = 40 in a domain Γ = 10λc where, at this Taylor number, the critical
wavenumber kc = 4.0481. For these parameter values the primary solution branch bifurcates
supercritically at Ra = Rac ≈ 2068. This branch loses stability almost immediately, creating
a pair of branches of spatially modulated states. These states behave in exactly the same way
as in the subcritical case. In the present case both L±

10 branches terminate together on the P7

branch. Figure 3.4 shows the solutions along these branches using the same representation
as used in figure 3.2. The solutions are qualitatively similar to those in figure 3.2 except for
broader diffusive layers between adjacent cells owing to the larger σ. However, the localized
states are still accompanied by strong negative shear within the structure that serves to
reduce the local rotation rate, with a compensating prograde shear zone outside. Thus the
convectons are embedded in a self-generated shear zone exactly as in the subcritical case.
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Figure 3.3: Bifurcation diagram showing E as a function of Ra for the periodic states P10, P7

and for the branches L±
10 of spatially localized states. The parameters are Ta = 40, σ = 0.6

and Γ = 10λc.

We also plot in figures 3.5 and 3.6 the bifurcation diagrams and the profiles along the
branches of even parity convectons for Ta = 50 and Ta = 100. While the convectons are in
both cases well localized near the left saddle-nodes (albeit less so when Ta is larger) the fig-
ures reveal a significant change in the wavelength of the cells comprising them. In figure 3.5
the cells are initially broad and remain so until maximum energy is reached; thereafter the
wavelength decreases rapidly and the branch terminates on P10. In contrast, the wavelength
of the cells when Ta = 100 (figure 3.6) hardly changes as E increases from small values to
large. At the same time the dimples representing nucleation events in figure 3.5 disappear
and the convecton branch exhibits ”smooth snaking” [53] with continuous and gradual ap-
pearance of new cells and no abrupt nucleation events. We surmise that the sudden change
in slope of the slanted snaking that takes place is related to this change in cell wavelength
and note, in particular, that broader cells are more efficient at transporting heat since in
narrower cells such as those favored at larger rotation rates the rising plumes exchange more
heat with falling plumes, thereby reducing their efficiency and hence the associated Nusselt
number. Thus for small Ta the length scale of convection is selected primarily by thermal
effects, while for large Ta the length scale is selected primarily by a competition between
the tendency towards a Taylor-Proudman balance and the requirement that the flow trans-
port heat at the level specified by the Rayleigh number. In the former regime localization
is strong and nucleation of new cells occurs at well-defined Rayleigh numbers. In contrast,
the latter regime is characterized by weak localization while new cells grow gradually over a
range of Rayleigh numbers.



CHAPTER 3. LARGE-SCALE MODE IN PATTERN FORMATION 67

R = 1812

R = 1916

R = 1978

R = 2108

R = 2232

R = 2432

R = 2641

R = 2901

R = 2391

V

V

V

V

V

V

V

V

V

R = 1810

R = 1850

R = 1892

R = 2002

R = 2093

R = 2247

R = 2427

R = 2648

R = 2872

R = 2391

V

V

V

V

V

V

V

V

V

V

a) b)

x

x

Figure 3.4: Same as figure 3.2 but for the localized solutions along (a) L−
10 and (b) L+

10 in
figure 3.3.



CHAPTER 3. LARGE-SCALE MODE IN PATTERN FORMATION 68

 0

 25

 50

 75

 2200  2700  3200

-3
 3

-33
 33

-46
 46

-62
 62

-48
 48

-24
 24

Ra

E

a) b)

P10

L
+
10

V

V

V

V

V

V

Figure 3.5: (a) Bifurcation diagram for the L+
10 branch when Ta = 50. The branch bifurcates

from P10 and terminates on P10. The solid dots indicate the location of the solutions shown
in (b).

 0

 2

 4

 6

 8

 10

 5300  5600  5900

-17
 17

-15
 15

Ra

E

a) b)

P10

L
+
10

V

V

V

Figure 3.6: As for figure 3.5 but for Ta = 100.



CHAPTER 3. LARGE-SCALE MODE IN PATTERN FORMATION 69

Figures 3.2 and 3.4 also reveal a systematic trend that merits explanation: the convecton
cells are always broader than the corresponding cells in the periodic state. We believe that
this is a reflection of the shear V ′ across the convecton. If we suppose that this shear
is smoothed out and is a linear function of x, i.e., V (x) = sx, where s < 0 (see, e.g.,
figure 3.2) we may include this shear in the base state and study the stability of the state
(ψ, θ, v) = (0, 0, sx) instead of the state (ψ, θ, v) = (0, 0, 0). The stability of this state
is described by the relations given in Eq. (3.7) with Ta2 replaced by Ta(Ta + σ−1s). It
follows that negative shear (s < 0) decreases both the critical Rayleigh number Rac and the
associated critical wavenumber kc relative to the case s = 0. However, this linear effect is
quickly overwhelmed by the nonlinear wavelength change that takes place with increasing
amplitude.

3.2 Theoretical understanding of the bifurcation

To study the modulation behavior of the resulting solutions in the weakly nonlinear
regime we suppose that Ra = Rac + ϵ2r, where r = O(1), ϵ ≪ 1, and introduce a slow
spatial scale X = ϵx and a slow time scale T2 = ϵ2t. We follow [18] and look for solutions in
the form

ψ =
ϵ

2

(
a(X,T2)e

ikx + c.c.
)
sin(πz) + h.o.t., (3.11)

θ =
ϵk

2p

(
ia(X,T2)e

ikx + c.c.
)
sin(πz) + h.o.t., (3.12)

and
A = ϵV (X,T2) +

ϵπ

2pζ

(
a(X,T2)e

ikx + c.c.
)
cos(πz) + h.o.t. (3.13)

for MC or

v = ϵV (X,T2) +
ϵTπ

2p

(
a(X,T2)e

ikx + c.c.
)
cos(πz) + h.o.t. (3.14)

for RC. The O(ϵ) terms are chosen as the superposition of the marginal modes. The large
scale variable V is necessary to capture the shear or magnetic field that builds up across a
convecton; its inclusion is a consequence of the phase-like quality of the large scale modes.
After simplification we obtain the equations

ηAT2 = rA+ AXX − 1− ξ2

2
|A|2A− ξAVX , (3.15)

VT2 = VXX + ξ
(
|A|2

)
X

(3.16)

at O(ϵ3), where r is proportional to Ra − Rac, η and ξ are coefficients rely on the physical

parameters of the underlying system. The coefficient ξ takes the form
(

2Qπ4p
Rack4ζ2+4Qπ4k2

)1/2
in
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MC and Taπ2
√
3pk2σ

in RC. The coefficient η is crucial in determining the dynamics of Eqs. (3.15)

and (3.16). In facts, it is proportional to RaH − Rac where RaH is the Rayleigh number
for the onset of Hopf mode at the same wavenumber as the steady convection. Here we
are interested in the case in which the conduction state loses stability at a steady state
bifurcation thus in this case η > 0.

Equations (3.15) and (3.16) can also be written in the form

AT2 = −η−1 δF

δA∗ , VT2 = −δF
δV

, (3.17)

where F is defined as

F [A,A∗, V ] =

∫
Γ′≡ϵΓ

{
−r|A|2 + |AX |2 +

1

2
|VX |2 +

1− ξ2

4
|A|4 + ξ|A|2VX

}
dX. (3.18)

The functional F [A,A∗, V ] is bounded from below when ξ2 < 1/3. It follows that in this
case the system (3.15)-(3.16) has gradient structure provided only that η > 0. This is not
the case for the original system (3.1)-(3.4).

In the stationary case with PBC on the large scale X Eq. (3.16) implies that

VX = ξ
(⟨
|A|2

⟩
− |A|2

)
, (3.19)

where ⟨·⟩ represents a spatial average over the domain. Thus VX > 0 if |A|2 < ⟨|A|2⟩, i.e.,
outside the convecton, while VX < 0 if |A|2 > ⟨|A|2⟩, i.e., inside the convecton, exactly as
found in figures 3.2 and 3.4. Moreover, using Eq. (3.19) to eliminate VX from Eq. (3.15) we
obtain the nonlocal equation [18]

rA+ AXX − 1

2
(1− 3ξ2)|A|2A− ξ2

⟨
|A|2

⟩
A = 0. (3.20)

Let A = ρeiϕ with ρ, ϕ ∈ R and ρ > 0. If ρ is independent of X, i.e., the solution is
periodic, then ⟨|A|2⟩ = ρ2 = 2(r−q2)/(1−ξ2), where q ≡ ϕX , and the solution is supercritical
when ξ2 < 1 and subcritical when ξ2 > 1, as determined already by [54]. Equation (3.19)
shows that the inclusion of amplitude modulation on the scale X = O(1) alters this picture
dramatically. In particular, the codimension two point for modulated wavetrains occurs at a
different location, as determined next. This shift is a consequence of the nonlinear interaction
between the unstable mode and the marginally stable longwave mode V .

Nonlocal equations of the form (3.20) have been studied before [55, 56, 57, 58, 59].
We summarize first the stability properties of the periodic solution A = ρeiqX , V = 0,
corresponding to a wavetrain (ψ, θ, v) with wavenumber k+ ϵq. We write A = ρeiqX(1 + Ã),
where |Ã| ≪ 1, and let V be the associated zonal velocity perturbation. The linearized
equations are

ηÃT2 = ÃXX + 2iqÃX − (1− ξ2)ρ2Re[Ã]− ξVX , (3.21)

VT2 = VXX + 2ξρ2Re[Ã]X . (3.22)
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The characteristic polynomial for the growth rate λ of a Fourier mode with wavenumber l
is [18]

η2λ3 + ηλ2
[
(1− ξ2)ρ2 + (2 + η)l2

]
+ λl2

[
(1− ξ2)ρ2 + η(1− 3ξ2)ρ2 − 4q2

]
+λl4(1 + 2η) + l4

[
l2 − 4q2 + (1− 3ξ2)ρ2

]
= 0.

Thus when |l| ≪ 1 there is a pure amplitude mode with O(1) eigenvalue λ ≈ (ξ2 − 1)ρ2/η+
O(l2) reflecting the supercriticality or subcriticality of the periodic state and two O(l2)
eigenvalues satisfying

ηρ2(1− ξ2)λ2 +
[
ηρ2(1− 3ξ2) + ρ2(1− ξ2)− 4q2

]
l2λ+

[
ρ2(1− 3ξ2)− 4q2

]
l4 ≈ 0. (3.23)

It follows that when q = 0 there are two longwave modes, λ = −l2/η and λ = 3ξ2−1
1−ξ2

l2. Thus

when η < 0 (RaH < Rac) the periodic state at band center is necessarily unstable. On
the other hand when η > 0 (no primary Hopf bifurcation) there is a longwave instability
when 1/3 < ξ2 < 1 but no longwave instability when ξ2 < 1/3. Thus the q = 0 mode
loses stability as ξ2 decreases through ξ2 = 1/3 (see figure 3.7). The resulting instability
generates an amplitude modulated wavetrain. When ξ2 > 1 the periodic state is subcritical
and therefore also unstable. Finally, when q ̸= 0 the two longwave modes become coupled
but no secondary Hopf bifurcation is possible when η > 0, which is a trivial result of the
underlying gradient structure. These results apply to infinite domains; in finite domains
they require modification as discussed further below [59].

The spatial dynamics of Eq. (3.20) is integrable with two conserved quantities:

K1 ≡ ρ2ϕX , K2 ≡
1

2
(ρX)

2 + U [ρ], (3.24)

where

U [ρ] ≡ 1

2
r′ρ2 +

K2
1

2ρ2
− 1

8
(1− 3ξ2)ρ4. (3.25)

Here r′ ≡ r − ξ2 ⟨ρ2⟩, implying that the bifurcation parameter r is increasingly modified as
the convection amplitude ρ grows. In a periodic domain with period Γ′ (Γ in terms of the
large scale X) PBC and the integral constraint imply

Γ′

2n
=

∫ ρmax

ρmin

dρ√
2(K2 − U)

,
⟨ρ2⟩Γ′

2n
=

∫ ρmax

ρmin

ρ2dρ√
2(K2 − U)

, (3.26)

where n ∈ N is the number of full periods of amplitude modulation within Γ′, and ρmin

(ρmax) corresponds to the minimum (maximum) of ρ during amplitude modulation. The
total change of phase across the domain (including the contribution from the fast oscillation
with wavenumber k) must be an integer multiple of 2π implying that the change of phase
across the domain must also be a constant unless a phase jump occurs. The wavenumber
q ≡ ϕX is a constant along the branch of periodic states. Secondary branching occurs when
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ρ attains a local minimum of U . To fit PBC, Uρρ must be equal to 4π2n2/Γ′2 which occurs
at r = rn where

rn ≡ 2π2n2

Γ′2
1− ξ2

3ξ2 − 1
+

5ξ2 − 3

3ξ2 − 1
q2 (3.27)

in both super and subcritical cases. When q is small, a secondary bifurcation is only possible
when ξ2 > 1/3. The branching direction at these points was calculated by [56], who shows
that when q = 0, the secondary bifurcation is supercritical when ξ2 < 3/7 and subcritical
when ξ2 > 3/7 (see Appendix F for an alternative derivation of this result). In summary,
there are four possible scenarios for the primary–secondary bifurcations with PBC: (1) both
bifurcations are subcritical (ξ2 > 1), (2) the primary bifurcation is supercritical while the
secondary bifurcation is subcritical (3/7 < ξ2 < 1), (3) both bifurcations are supercritical
(1/3 < ξ2 < 3/7), and (4) the primary bifurcation is supercritical but no secondary bifurca-
tion is present (ξ2 < 1/3). Figure 3.7 shows the regions of super and subcriticality in both
MC and RC.

The bifurcation diagrams and discussions below will be focused on RC. Figure 3.8 shows
sample bifurcation diagrams computed from Eq. (3.20) for (some of) the Taylor numbers used
in RC using the numerical continuation software AUTO [36]. Owing to translation symme-
try and spatial reversibility, we perform continuation on the half domain using Neumann
boundary conditions (NBC), i.e.,

Re[AX ] = Im[A] = 0 (3.28)

at the boundaries. The average poloidal kinetic energy E to O(ϵ4) takes the form

E =
1

8
ϵ2p
⟨
|a|2
⟩
+

1

8
iϵ3k ⟨aa∗X − a∗aX⟩+

1

8
ϵ4
⟨
|aX |2

⟩
, (3.29)

where the amplitude a is defined in Eq. (3.11). We use this expression to draw bifurcation
diagrams E-Ra for σ = 0.6. For this purpose we define ϵ using the ratio of the small and
large scales, ϵ ≡ λc/Γ = 0.1. We then solve Eq. (3.20) in the domain Γ′ = 2π/k varying
the parameter r. Owing to the relatively small domain (large value of ϵ) the calculation
requires quite large values of r in order to locate the secondary states. The resulting energy
E is therefore also large. Of course, as r and hence E increase the amplitude equation (3.20)
becomes less reliable, and comparison with the results of section 3.1 shows that in the full
problem the convecton branch always turns towards larger values of Ra as E increases, in
contrast to the predictions summarized below.

Figure 3.8 shows that for σ = 0.6 the convecton branch bifurcates supercritically from
the periodic states once Ta ≥ 119.2579 (i.e., ξ2 < 3/7). The bifurcation to convectons is also
supercritical when Ta < 6.1108 since for these values ξ2 < 3/7 also. As ξ2 decreases towards
ξ2 = 1/3 the secondary bifurcation moves to larger and larger amplitude and for ξ2 < 1/3
the secondary bifurcation to convectons is absent. Of course before this happens Eq. (3.20)
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Figure 3.7: Regions of super and subcriticality for primary–secondary branches in the (a) ζ-
Q plane (MC) and (b) σ-Ta plane (RC) on logarithmic scales. (c) Sketches of the bifurcation
diagrams characteristic of each of the four regions.

loses validity; in particular, a different scaling is required to understand the disappearance
of the convecton branch (see section 3.3).

We define the length L of a convecton as the interval where |A|2 > ⟨|A|2⟩. This inter-
val can be calculated explicitly by solving the nonlocal equation (3.20) in terms of elliptic
functions. The explicit form of the n = 1 solution is

ρ2/ρ2+ = 1− ζ2sn2

[
1

2

√
ρ2+(3ξ

2 − 1)X; ζ

]
, (3.30)

where

Γ′ =
4K (ζ)√
ρ2+(3ξ

2 − 1)
,

⟨
ρ2
⟩
=
E (ζ)

K (ζ)
ρ2+. (3.31)

The ratio L/Γ′ is thus equal to F
(
ζ−1
√
1− E(ζ)/K(ζ), ζ

)
/K (ζ). Here ζ ≡

√
1− ρ2−/ρ

2
+,

ρ± are the positive roots of U [ρ] = K2 with ρ− < ρ+, F is the incomplete elliptic integral of
the first kind, and K and E are the complete elliptic integrals of the first and second kind.
There are two limiting regimes which yield simple predictions for the parameter dependence
of L. In the case of weak spatial modulation, K2 is only slightly greater than the local
minimum of U and we have

L/Γ′ =
1

2
− Γ′

2π2

√
(3ξ2 − 1)(r − r1)

3− 7ξ2
+O(|r − r1|). (3.32)
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Figure 3.8: Bifurcation diagrams showing stationary solutions of Eq. (3.20) with ϕX = 0
satisfying NBC for σ = 0.6 and Γ = 10λc. Thick solid lines: k = 0 primary state (periodic
convection). Thin solid lines: modulated states (convectons). (a) Ta = 50 (ξ2 = 0.7032,
region (2)). (b) Ta = 70 (ξ2 = 0.5882, region (2)). (c) Ta = 120 (ξ2 = 0.4269, region (2)).
(d) Ta = 140 (ξ2 = 0.3877, region (3)). The periodic state is stable up to the secondary
bifurcation; in (d) the modulated state is stable up to the saddle-node.

In the strongly modulated case with large domain size (Γ′√−r′ ≫ 1), the solutions with
ϕX = 0 can be approximated by the sech function [18, 19],

ρ =

√
−4r′

3ξ2 − 1
sech

(√
−r′X

)
, (3.33)

where

r′ = −r̃
(
1±

√
1− r

r̃

)2

, r < r̃ ≡ 16ξ4

Γ′2(3ξ2 − 1)2
;

the + solution exists for all r < r̃ while the − solution exists for 0 < r < r̃ only. The resulting
solutions are homoclinic to ρ = 0 and so represent fully localized convectons. It should be
noted that due to finite domain size, ⟨ρ2⟩ is nonzero. The length of such a convecton is thus

L/Γ′ ≈
log
(
2Γ′√−r′

)
Γ′
√
−r′

. (3.34)
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Figure 3.9: Sample profiles of the stationary solutions of Eq. (3.20) when Γ = 10λc. The
amplitude |A| is shown as function of a scaled variable while the z-average of the zonal
velocity, V (x), is shown in terms of the original variable x. (a,b) σ = 0.1, Ta = 20 (ξ2 =
33.3308). (1) Ra = 1174.3. (2) Ra = 1171.8. (3) Ra = 1166.8. (4) Ra = 1161.7. (c,d)
σ = 0.6, Ta = 50 (ξ2 = 0.7032). (1) Ra = 2573.5. (2) Ra = 2573.3. (3) Ra = 2572.6. (4)
Ra = 2571.6. Note that the spatial frequency of V (x) is double that of ψ(x).

The stability of the solutions (3.30) on a finite domain was studied rigorously by [59] in
the case η > 0. In conjunction with Appendix F these results confirm that for 1/3 < ξ2 < 3/7
the secondary branch is supercritical and stable in the interval between the bifurcation point
and a saddle-node on the right and unstable thereafter. For ξ2 > 3/7 the secondary branch
is subcritical and unstable throughout (figure 3.8).

In RC, we can use the above results to calculate the local shear at the maximum of the
amplitude modulation. For the n = 1 secondary branch we obtain

s = − 8Taπ3

3p2k2σΓ

√
Ra−Ra1

(3ξ2 − 1)(3− 7ξ2)
+O(|Ra−Ra1|), (3.35)

where Ra = Ra1 denotes the location of the secondary bifurcation. To obtain this result we
include a nonzero constant of integration in Eq. (3.10), as required by PBC, and choose this
constant to cancel the mean Reynolds stress associated with periodic wavetrains. With this
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shear the critical wavenumber k̃c for instability of the sheared base state (ψ, θ, v) = (0, 0, sx)
differs from kc in Eq. (3.7) by

k̃c − kc ≈
Taπ2s

12pk3σ
= − 2Ta2π5

9p3k5σ2Γ

√
Ra−Ra1

(3ξ2 − 1)(3− 7ξ2)
+O(|Ra−Ra1|), (3.36)

showing that the wavelength of the instability of the sheared state will be larger than that
of the unsheared state (ψ, θ, v) = (0, 0, 0). Numerical measurements of the convecton wave-
length near onset (not shown) are consistent with the predicted square root behavior. Al-
though not exact this approach represents an attempt towards a self-consistent determination
of the convecton wavelength in the weakly nonlinear regime in a system where no spatial
Hamiltonian is available to set the wavelength.

Figure 3.9 shows the profiles of the resulting convectons for (a,b) ξ2 > 1 (the subcritical
case) and (c,d) ξ2 < 1 (the supercritical case). The results are in excellent qualitative
agreement with the continuation results in figures 3.2 and 3.4.

3.3 Modulation equations near a codimension-two

point

The leading order theory described in Eqs. (3.15) and (3.16) correctly predicts the bi-
furcation of periodic states and the subsequent secondary bifurcations to localized states
when the domain size is large. However, it cannot describe the stationary patterns near
the codimension-two point, i.e., (r0, ξ

2
0) = (0, 1/3). Moreover, due to the limitation that the

theory is of cubic-order certain interesting properties for localized branches such as phase
jump and the reconnection to original periodic branch are absent in the theory.

To study the modulation behavior near the codimension-two point we introduce the
slower scales X = ϵ2x and T = ϵ6t while retaining the assumption that A = O(ϵ). To
maintain the leading order balance in Eqs. (3.15) and (3.16) we promote the amplitude of
the large scale mode, V = O(1), obtaining

O(ϵ4) =

(
r2A− 1

3
|A|2A− 3−1/2AVX

)
+ ϵ2 (r4A+ AXX + f(A, VX)) , (3.37)

ϵ2VT =
(
VX + 3−1/2|A|2

)
X
+ ϵ2g(A, VX)X , (3.38)

Here r2 and r4 are parameters depending on Ra and Q (or Ta), and f and g are polynomials
in A and VX and their derivatives. Explicit expressions for f and g are given below.

For MC we assume the following asymptotic expansion

ψ ∼
∞∑
n=1

ϵnψn, θ ∼
∞∑
n=1

ϵnθn, A ∼ A0 +
∞∑
n=1

ϵnAn, (3.39)
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where A0 is a function of X and T alone while the remaining quantities are functions of x,
X, z, and T . The parameters Ra and Q are expanded with respect to the critical numbers
Rac and Qc (determined by (r0, ξ

2
0 = (0, 1/3))) in the form Ra = Rac + ϵ2r2 + ϵ4r4 and

Q = Qc + ϵ2q, where Rac = 2p3π2, Qc satisfies relation (3.7), and the critical wavenumber k
is defined by the relation

pk4ζ2 = π2(2k2 − π2)(k2 + 3π2). (3.40)

Figure 3.7 shows the dependence of Qc on ζ. We see that Qc exists only when ζ . 1.4238
and that within this region there are two critical numbers Q±

c of which Q+
c lies below the

fold and Q−
c lies above the fold.

Under the expansion, the linear system O(ϵ) of the equations allows the same marginal
mode as in section 3.2 except X and T are scaled differently. Proceeding to higher order
(see Appendix G) one obtains

O(ϵ4) = k2r2−pπ2q
2

a−Qcpπ
2aA0,X − Qcπ4

4ζ2
|a|2a+ ϵ2

{(
µ̃0 + µ̃1A0,X + µ̃2A

2
0,X

)
a

+d̃aXX + i (γ̃ + ã10|a|2) aX + iã20a
2a∗X +

(
b̃0 + b̃1A0,X

)
|a|2a− c̃0|a|4a

}
,(3.41)

ϵ2A0,T =
(
A0,X + π2|a|2

4pζ2

)
X
+ ϵ2

(
π2

4pζ
A0,X |a|2 − π4

32p2ζ3
|a|4 + kπ2

2p2ζ
Im[aa∗X ]

)
X
. (3.42)

Explicit expressions for the coefficients are also given in Appendix G.
The scaling for RC is the same as in MC. The dimensionless numbers Ra and Ta are

expanded around the corresponding critical numbers as

Ra = Rac + ϵ2r2 + ϵ4r4, Ta = Tac + ϵ2δ, (3.43)

where Rac and Tac satisfy

Ra = 3p2, Tac = Ta±c ≡ σπ2(2±
√
1− σ2)

(1±
√
1− σ2)2

. (3.44)

Thus Tac exists only when σ ≤ 1. The detailed calculations for RC can be found in the
supplementary material to [17] and here we simply present the results

O(ϵ4) =

(
k2r2
2

− Tcπ
2δ

)
a− pk2

2
av0,X − pk4

8
|a|2a+ ϵ2

{
(µ̃0 + µ̃1v0,X + iµ̃2v0,XX) a+ d̃aXX

+i
(
γ̃0 + γ̃1v0,X + ã10|a|2

)
aX + iã20a

2a∗X +
(
b̃0 + b̃1v0,X

)
|a|2a− c̃0|a|4a

}
, (3.45)

ϵ2v0,T
σ

=

(
v0,X +

k2

4
|a|2
)

X

+ ϵ2
(
k3

2p
Im[aa∗X ] +

π2|a|2(v0,X + δσ)

4pσ2
− k2π2|a|4

32pσ2

)
X

. (3.46)

Here v0 denotes the large scale zonal velocity. Explicit expressions of the coefficients are
given in Appendix H.
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3.4 Stationary nonlocal Ginzburg-Landau equation

The modulation equations derived in the previous section can be used to describe the
bifurcation near the codimension-two point (Ra,Q) = (Rac, Qc) or ((Ra, Ta) = (Rac, Tac)).
In the stationary case, the large scale mode can be eliminated in favor of the amplitude
function resulting in a nonlocal fifth order Ginzburg-Landau equation. To demonstrate this,
let us focus on Eqs. (3.42) and (3.46) in the stationary case(

A0,X +
π2|a|2

4pζ2

)
X

+ ϵ2
(
π2

4pζ
A0,X |a|2 −

π4

32p2ζ3
|a|4 + kπ2

2p2ζ
Im[aa∗X ]

)
X

= 0, (3.47)(
v0,X +

k2

4
|a|2
)

X

+ ϵ2
(
k3

2p
Im[aa∗X ] +

π2|a|2(v0,X + δσ)

4pσ2
− k2π2|a|4

32pσ2

)
X

= 0. (3.48)

These equations can be integrated once with respect to X and leave the integration constants
to be determined. Before doing so we note that each equation consists of two parts with
different orders in ϵ. We use this fact to solve for A0,X and v0,X iteratively. The integration
constants are then determined imposing periodic boundary conditions. The calculation gives

A0,X =
π2 (⟨|a|2⟩ − |a|2)

4pζ2
+
π2ϵ2

p2ζ

{
k

2
Im [⟨aa∗X⟩ − aa∗X ]

+
π2

32ζ2

(
3|a|4 − 2|a|2

⟨
|a|2
⟩
+ 2

⟨
|a|2
⟩2 − 3

⟨
|a|4
⟩)}

, (3.49)

v0,X =
k2 (⟨|a|2⟩ − |a|2)

4
+
ϵ2

p

{
k3

2
Im [⟨aa∗X⟩ − aa∗X ] +

δπ2

4σ

(⟨
|a|2
⟩
− |a|2

)
+
k2π2

32pσ2

(
3|a|4 − 2|a|2

⟨
|a|2
⟩
+ 2

⟨
|a|2
⟩2 − 3

⟨
|a|4
⟩)}

. (3.50)

After substituting these relations into the equations of a we arrive at

k2r2 − pπ2q =
Qcπ

4 ⟨|a|2⟩
2ζ2

(MC), r2 − 2pσδ =
pk2 ⟨|a|2⟩

4
(RC) (3.51)

at leading order, and at

µ̃a+ d̃aXX + i
(
γ̃aX + ã1|a|2aX + ã2a

2a∗X
)
+ b̃|a|2a− c̃|a|4a = 0 (3.52)

at next order. Equation (3.52) is nonlocal and of fifth order in a; expressions for the coef-
ficients can be found in Appendices G and H. Note that r2 ̸= 0 even when a = 0; this is a
consequence of the fact that Rac is determined at Q = Qc and not at Q and similarly for
RC. The shift of Q and Ta from their critical values also changes the critical wavenumber
by ϵ2qπ4

6pk3
in MC and ϵ2δσ

6k
in RC. This effect is responsible for the nonzero value of γ̃0 in the

coefficient γ̃.
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Equation (3.52) can be written in the simpler form

µA+ AXX + i
(
γAX + a1|A|2AX + a2A

2A∗
X

)
+ b|A|2A− sgn(c̃)|A|4A = 0, (3.53)

where A is the scaled amplitude function

A(X) =
(
|c̃|/d̃

)1/4
a(X) exp

(
iγ̃0X

2d̃

)
(3.54)

and the exponential factor offsets the shift in critical wavenumber. The coefficients in
Eq. (3.53) are defined as

µ =
µ̃

d̃
−
(
γ̃0

2d̃

)2

, b =
b̃

(|c̃|d̃)1/2
+
γ̃0

2d̃
(a1 − a2),

γ =
γ̃ − γ̃0

d̃
, a1 =

ã1

(|c̃|d̃)1/2
, a2 =

ã2

(|c̃|d̃)1/2
,

implying that

µ = µ0 + µ1

⟨
|A|2

⟩
+ µ2

⟨
|A|2

⟩2
+ µ3

⟨
|A|4

⟩
+ µ4 ⟨Im[AA∗

X ]⟩ ,
γ = γ1

⟨
|A|2

⟩
, b = b0 + b1

⟨
|A|2

⟩
,

where µn, γn, and bn are constant coefficients that are independent of the nonlocal terms
while c̃, a1, and a2 are intrinsic coefficients independent of the parameters r2, r4, q (or δ)
and of nonlocal contributions. The dependence of a1 and a2 on the parameters ζ and σ in
MC and RC are given in figures 3.10 and 3.11.

Equation (3.53) is valid only when c̃ and preferably positive. In MC, c̃ is independent of
the Prandtl number σ and is always positive when Qc = Q+

c . But for Qc = Q−
c , c̃ is positive

when 1.0300 . ζ . 1.4238 and negative when 0 < ζ . 1.0300. In RC, c̃ is always positive
when Tac = Ta+c . But for Tac = Ta−c , c̃ is negative when the Prandtl number lies within
0.59796 . σ < 1 and negative otherwise. These conditions limit the applicability of Eq.
(3.53).

To study the bifurcation properties of Eq. (3.53) in the presence of PBC, we pick r4
as the control parameter. The parameter r2 is determined by the spatial average of |A|2.
Equation (3.53) can be solved by quadrature under polar coordinate A(X) ≡ ρ(X)eiϕ(X)

with the aid of the spatially conserved quantities

E1 = ρ2ϕX +
γ

2
ρ2 +

a1 + a2
4

ρ4, E2 =
1

2
(ρX)

2 + U [ρ], (3.55)

where

U [ρ] =
E2

1

2ρ2
+

(
µ+

γ2

4
+

3a2 − a1
2

E1

)
ρ2

2
+

(
b+

a1 − a2
2

γ

)
ρ4

4
+
βρ6

2
(3.56)
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Figure 3.10: Dependence of a1 and a2 on ζ for different σ when (a,b) c̃ > 0 and (c,d) c̃ < 0.
Black line: σ = 0.2. Red line: σ = 0.4. Blue line: σ = 2. Qc = Q+

c is indicated in a solid
line while Qc = Q−

c is indicated in a dashed line.

with β ≡ (a1+a2)(3a1−5a2)
48

− 1
3
sgn (c̃). Thus constant amplitude (ρX = 0) phase-winding

(ϕX = K0, a constant) solutions have amplitude ρ0 given by

ρ20 = ρ2± ≡ b′ ±
√
b′2 + 4cµ′

2c
> 0, (3.57)

where c ≡ sgn(c̃)−b1−µ2−µ3, b
′(K0) ≡ b0+µ1+K0(a2−a1−γ1−µ4), and µ

′(K0) ≡ µ0−K2
0 .

As known in [20] in the absence of nonlocal coupling localized solutions of Eq. (3.53)
exhibit protosnaking behavior around the Maxwell point µ = µM ≡ b2

16β
, which is defined

as the parameter value of µ for the existence of a stationary front solution. This solution is
characterized by E1 = 0 and serves as a connection between the zero state and a periodic
state with wavenumber kM = (a1 + a2)µM . But here due to the presence of nonlocal terms
in Eq. (3.53) the Maxwell point is replaced by a Maxwell curve satisfying

16β

(
µ+

γ2

4

)
=

(
b+

a1 − a2
2

γ

)2

. (3.58)

Here γ and b depend of µ through their dependence on ⟨|A|2⟩ as computed from the front
solution at each µ. In figure 3.12 we show the resulting Maxwell curve in the (Ra,Q) plane
(MC) and in the (Ra, Ta) plane (RC) for fixed ζ and σ. The asymptotic periodic state

has amplitude square − 1
4β

[
b+ (a1−a2)γ

2

]
and wavenumber a1+a2

16β

(
b+ γa2

3

)
+ γ

6β
sgn (c̃). The

relation (3.58) can be used to predict the location of localized states but the nonlocal terms
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Figure 3.11: Coefficients (a) a1 and (b) a2 as functions of σ when (a,b) c̃ > 0 and (c,d) c̃ < 0.
Solid line: Tac = Ta+c . Dashed line: Tac = Ta−c .
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Figure 3.12: The existence region of Maxwell curve in (a) MC with ζ = 0.5 and σ = 1 and
(b) RC with σ = 0.6.

should be taken into account. A case that yields simple albeit approximate result is when
the domain size ϵ2Γ is large and the regions of periodic state and zero state are large compare
with the transition region between the two states. If the periodic state occupies a portion
e ≡ l/(ϵ2Γ) of the whole spatial domain (l is the length of the periodic state), the nonlocal
terms are approximately equal to

⟨
|A|2

⟩
= eρ20,

⟨
|A|4

⟩
= eρ40, ⟨Im[AA∗

X ]⟩ = eρ40

(
eγ1
2

+
a1 + a2

4

)
. (3.59)
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The occupation portion e can be determined by the requirement ρ20 = − 1
4β

[
b+ (a1−a2)γ

2

]
which gives

eρ20 = − b0 + 4βρ20
b1 +

a1−a2
2

γ1
. (3.60)

The relation for the Maxwell curve can then be determined by substituting these relations
into Eq. (3.58).

Another important property of the localized states is the onset of secondary bifurcation.
The bifurcation of secondary branches from the periodic states only occur at the point which
Uρρ is nonnegative with spatial period 2π/U

1/2
ρρ . It can be shown Uρρ takes the form

Uρρ = 4K2
0+2 [b0 +K0(a1 + a2 + 2γ1)] ρ

2+
(
a21 − a22 + γ21 + 2a1γ1 + 2b1 − 4sgn(c̃)

)
ρ4 (3.61)

on the periodic state. For systems of finite domain, the spatial period of the modulated
solution should fit the size of domain thus leads to discrete bifurcation points instead of
continuous bands along the periodic branches when the domain size is infinite. According
to this we can define a number n which corresponds to the number of spatial modulations
across the whole domain.

In the followings, we study the bifurcation under physical coefficients using numerical con-
tinuation package AUTO. The bifurcation diagrams are plotted with respect to the Rayleigh
number Ra in the horizontal and the H1 norm of ϵA in the vertical. Here the H1 norm is
defined as

∥u∥H1 =

(
1

Γ

∫ Γ

0

|u|2 + |uX |2 dX
)1/2

. (3.62)

Due to spatially reversibility in Eq. (3.53), instead of imposing periodic boundary conditions
we perform the computation on half domain [0, ϵ2Γ/2] with

Re[AX ] = 0, Im[A] = 0

at both ends. The effect of nonlocal contributions can be included by introducing auxiliary
variables. As an illustration, in order to the get the spatial average of f = f(X) we include
two variables u1 and u2 which satisfy

u1,X = u2, u2,X = −fX

with boundary conditions u1 = 0 at both ends. The spatial average of f is then equal to
u2 + f . Under this setting AUTO is able to detect and switch to the modulated branches
and the locations of secondary branching agree with analytical prediction.

Here we focus on K0 = 0, i.e., the band center. The twice derivative of U takes the
following form along the primary branch

Uρρ = 2b0ρ
2 +

(
a21 − a22 + γ21 + 2a1γ1 + 2b1 − 4sgn(c̃)

)
ρ4. (3.63)
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The coefficient b0, which is proportional to Q − Qc in MC and Ta − Tac in RC, has its
importance in determining the bifurcation behavior. When the coefficient of ρ4 in Eq. (3.63)
is positive, there are countably infinite number of secondary bifurcations with each modulated
branch of different n = 1, 2, 3 . . . and appears exactly once. The locations of the branching
points move into larger amplitude as b0 decreases. However, when the coefficient of ρ4 in
Eq. (3.63) is negative there is no secondary bifurcation if b0 is negative. As b0 becomes
positive, the secondary bifurcation points appear in pairs while b0 increases and each pair
have the same modulation number n.
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Figure 3.13: Bifurcation diagrams of K0 = 0 primary branch in rotating convection with
σ = 0.6 and Γ = 50λc. (a) Ta = Tac = 5.1176. (b) Ta = 5.7176. (c) Ta = 5.8176. (d)
Ta = 6.1176.

We demonstrate these two bifurcation scenarios under RC since the behavior in MC is
qualitatively the same. The bifurcation diagrams and solution profiles are shown in figures
3.13–3.15. The bifurcation of primary branches are all strongly supercritical due to the
codimension-two point is located in the supercritical region. In figure 3.13, the primary
branches (K0 = 0) has the coefficient of ρ4 in Eq. (3.63) negative and b0 has the same sign as
Ta−Tac. The Maxwell curves are indicated as thin-dashed lines in the figures. As expected
there is no secondary bifurcation when Ta is less than critical Taylor number Tac which
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Figure 3.14: Spatial profiles of solutions in (a) figure 3.13(b) and (b) figure 3.13(c). Solid
line: Re[ϵA]. Dashed line: Im[ϵA].

agrees with the bifurcation picture depicted in section 3.2. Secondary bifurcations appear
as Ta increases above Tac and the modulated branches first appear at small amplitude and
then reconnect back at larger amplitude. These branches appear in (b), which connects
point 1 to point 2 (n = 1), and (d), which connects point 3 to point 4 (n = 2). As Ta
increases these branches break up as shown in (c) and the ones bifurcate at small amplitude
(point 1) undergo phase jump and terminate on primary branches with K0 ̸= 0 (point 3 with
n = 2) while the ones bifurcate at larger amplitude (point 2) evolve into defect states as Ra
increases.

In figure 3.15, the coefficient of ρ4 in Eq. (3.63) is positive. In contrast with figure
3.13, b0 and Ta − Tac take different sign thus in (a) Ta < Tac = 311.7656 the location of
secondary bifurcation is lower compare with (b) Ta > Tac. This bifurcation behavior does
not coincide with the prediction in section 3.2 but however as Ta increases to value far above
Tac the secondary bifurcation move up to larger amplitude and thus no secondary bifurcation
can be observed at O(1) amplitude. All the secondary branches (bifurcate from points 1–3)
undergo phase jump and terminate on primary branches with nonzero wavenumber (K = ϵ2Γ

n
,

n = 1, 2, 3). In figure 3.15 we only show the primary branches with K0 = 0 and ϵ2Γ. It
appears that all these secondary branches bifurcate subcritically from the K0 = 0 primary
branch. The direction of branching can be inferred by a local analysis around the branching
point. The change of bifurcation parameter Rac is dominated by the change of r2 which is
linearly related to ⟨|A|2⟩. In order to get the branching direction of secondary branches, we
need to figure out how ⟨|A|2⟩ changes after the bifurcation. A sketch of this calculation can
be found in Appendix I which agrees well with the numerical result.
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Figure 3.15: Bifurcation diagrams of K0 = 0 primary branch in rotating convection. σ = 0.5.
Γ = 50λc. (a) Ta = 310.7656. (b) Ta = 312.7656. (c) Spatial profiles of solutions in (b).
Solid line: Re[ϵA]. Dashed line: Im[ϵA].

3.5 Temporal stability of the stationary solutions

To study the stability of the solutions obtained in section 3.4, we consider the dynamical
equations Eqs. (3.42) and (3.46). These relations indicate the time dependence of |A| should
be of the form(

|A|2
)
T
= −

[
A−1 (AXX + iγAX) + i(a1A

∗AX + a2AA
∗
X) + b|A|2 − sgn(c̃)|A|4

]
XX

. (3.64)

Combining Eq. (3.64) with spatial periodicity, the imaginary part implies the gradient of
phase ϕX is slaved by ρ2 as

ϕX =
E1

ρ2
− γ

2
− a1 + a2

4
ρ2, (3.65)

where E1 is the spatial constant introduced in the previous section but is time dependent
here in this section. This time dependent spatial constant can be determined by spatial
periodicity which gives

E1 =

[(
γ1
2

+
a1 + a2

4

)⟨
ρ2
⟩
+

∆ϕ

ϵ2Γ

]
/
⟨
ρ−2
⟩
, (3.66)



CHAPTER 3. LARGE-SCALE MODE IN PATTERN FORMATION 86

where ∆ϕ is the phase change of A across the domain and is equal to integer multiples of
2π. The real part of Eq. (3.64) can thus be written as

(ρ2)T = −
{
ρXX

ρ
− E2

1

ρ4
+

(
b+

a1 − a2
2

γ

)
ρ2 + 3βρ4

}
XX

, (3.67)

or equivalently

sT = −
{
sXX

2s
− s2X

4s2
− E2

1

s2
+

(
b+

a1 − a2
2

γ

)
s+ 3βs2

}
XX

(3.68)

with s ≡ ρ2. The coefficients are defined as in section 3.4 and T is redefined suitably to
include the overall factor. It is clear that ⟨ρ2⟩ is time independent. If E1 remains zero at all
time, as indicated in [49], the equation has Lyapunov functional

F ≡
⟨
ρ2X − 1

2

(
b+

a1 − a2
2

γ

)
ρ2 − βρ6

⟩
(3.69)

which decreases monotonically over time.
The temporal stability of stationary solutions can be obtained via studying the eigenvalue

problem of the linearized equation. Consider s = s0 + δs where s0 is the amplitude square
of the stationary solution. The linearized equation can be written as

δsT = −
{[

s2X,0 + 4E2
1,0

2s30
− sXX,0

2s20
+

(
b+

a1 − a2
2

γ

)
+ 6βs0

]
δs

+
δsXX

2s0
− sX,0δsX

2s20
−

2E2
1,0

s20
⟨
s−1
0

⟩ ⟨δs
s20

⟩}
XX

, (3.70)

where E1,0 is E1 evaluated at the stationary solution. This equation can be further simplified
for stationary solutions with constant amplitude in space

2s0δsT = −
(
Uρρ|ρ=s

1/2
0
δs+ δsXX

)
XX

, (3.71)

where Uρρ is given in Eq. (3.61). This indicates the primary branch is temporally unstable in

the region where Uρρ|ρ=s
1/2
0

>
(

2π
ϵ2Γ

)2
(the domain is finite periodic). The temporal instability

of the primary branch always accompanies with the secondary bifurcation and the number of
unstable eigenvalues either increases or decreases by 2 while passing through the branching
points. According to this the primary branch is stable in figure 3.13(a), twice unstable
between point 1 and point 2 in figure 3.13(b,c) and point 1 and point 3, point 4 and point 2
in figure 3.13(d), and quadrice unstable between point 3 and point 4 in figure 3.13(d). For
the primary branches in figure 3.15, they are stable only at small amplitude and the number
of unstable eigenvalues increases by 2 while passing through each successive branching point
along the primary branch from below.
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For stationary modulated solutions, we compute their temporal stability numerically
based on Eq. (3.70) and focus on the solutions given in figures 3.13 and 3.15. Spectral
method with Fourier basis functions is used to construct the spectral matrix and the modes
included are k = 0, ± 2π

ϵ2Γ
, . . . , ±256π

ϵ2Γ
. We have examined this by including more modes (up

to 512×2+1) in the calculation but the result on the stability is identical. In figure 3.13(b),
the modulated branch is stable along the lower part of the branch and becomes once unstable
after passing through the saddle-node before reconnecting back to the primary branch. The
same property holds for modulated branches bifurcate from point 1 in figure 3.13(c,d) but
however all the other modulated branches, including the ones in figure 3.15, are temporally
unstable.

There exists no stable modulated state when c̃ is negative and the only stable solutions
are periodic states occur before the onset of secondary bifurcation. But when c̃ is positive,
besides stable periodic states there exist also stable modulated states on the first secondary
branch (n = 1) while the other solutions are all unstable. Furthermore, the stable region (in
Ra) of the modulated states overlaps with the stable region of the periodic states as shown
in figure 3.13 which indicates a bistability between these two states.

3.6 Effects of boundary conditions

The presence of the large scale phase-like mode in MC can be attributed to the definition
of magnetic flux, but in RC the zonal velocity v is itself a physical variable and the phase-
like property is due to the stress-free boundary conditions. According to this, it would
be worth to see how the bifurcation behavior changes under weakly broken of stress-free
boundary conditions. In this section, we examine this effect by imposing mixed boundary
conditions of Robin type, with the stress-free boundary conditions in RC replaced by a linear
interpolation between stress-free (β = 0) and no-slip (β = 1) boundary conditions:

(1− β)ψzz ± βψz = 0, (1− β)vz ± βv = 0, (3.72)

where β is in between [0, 1] and the plus sign is chosen at the upper boundary while the
minus sign is for the lower one. All the other boundary conditions remain unchanged. Under
these boundary conditions, the two reflection symmetries mentioned in section 3.1 still hold
and the choice of sign agrees with the physical intuition in which the fluid velocity at the
boundary is in the same direction as the fluid stress. These boundary conditions can be
regarded as the first order approximation of slip boundary conditions.

A direct consequence of these boundary conditions is a change in the critical Rayleigh
number when β becomes nonzero. To analyze this we consider the linearized version of
Eqs. (3.3) and (3.4)

σ−1∇2ψt = Raθx − Tavz +∇4ψ, (3.73)

θt = ψx +∇2θ, σ−1vt = Taψz +∇2v. (3.74)
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Assume ψ, θ, and v have horizontal wavenumber equal to k. In the case of steady convection
the linear equations can be combined into a single equation of ψ which takes the form[

(∂zz − k2)3 +Rak2 + Ta2∂zz
]
ψ = 0. (3.75)

The corresponding characteristic equation is

(λ2 + k2)3 + Ta2λ2 = Rak2. (3.76)

While treating Eq. (3.76) as a polynomial of degree 3 with respect to λ2, the three roots
are (λ20, λ

2
1, λ

∗2
1 ), where λ20 is real positive and (λ21, λ

∗2
1 ) is a complex conjugate pair. Steady

convection first occurs with even parity thus we restrict our attention to solutions that are
even in z. The general form of even solutions is

ψ = A cos(λ0z) + {B cos(λ1z) + c.c.} , (3.77)

θ = i

[
Ak cos(λ0z)

p0
+

{
Bk cos(λ1z)

p1
+ c.c.

}
+
CTa2 cosh(kz)

Ra

]
, (3.78)

v = −Ta
[
Aλ0 sin(λ0z)

p0
+

{
Bλ1 sin(λ1z)

p1
+ c.c.

}
+ C sinh(kz)

]
, (3.79)

where pn ≡ k2 + λ2n, and A, B, C are constants to be determined. Here we define a matrix
M as M = (M0,M1,M

∗
1,N) with

Mn =


cos(λn/2)

(1− β)λ2n cos(λn/2) + βλn sin(λn/2)
[(1− β)λ2n cos(λn/2) + βλn sin(λn/2)] /pn

cos(λn/2)/pn

 ,

N =


0
0

(1− β)k cosh(k/2) + β sinh(k/2)
Ta2

Rak
cosh(k/2)

 ,

In order to satisfy the boundary conditions at z = ±1/2, the linear homogeneous system

M (A,B,B∗, C)T = 0 (3.80)

must have nontrivial solutions. This implies the determinant of M is zero. With these
relations we can obtain the critical Rayleigh number Rac by minimizing Ra via varying k
for given values of Ta and β. Figure 3.16 shows the dependence of the critical wavenumber
kc and the critical Rayleigh number Rac on β when Ta = 20, 60, 100, and 140. As shown
in the figure, Rac increases as β increases for small Taylor numbers but Rac decreases as
β increases for Taylor numbers greater than 60 and the minimum value of Rac occurs at a
value of β less than but close to 1.
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Figure 3.16: Dependence of (a) Rac and (b) kc on β. Solid line: Ta = 140. Dotted line:
Ta = 100. Dashed line: Ta = 60. Dashed-dotted line: Ta = 20.

The large scale mode is no longer marginal with mixed boundary conditions. Regarding
this, we calculate the corresponding temporal eigenvalue to find out the dependence of growth
rate on β. When β is nonzero, the large scale mode is referred as the mode with nonzero v
component and is non-oscillatory in the horizontal direction (k = 0). As shown in section
3.1, the phase-like mode (ψ, θ, v) = (0, 0, 1) is marginal when β = 0 but this is no longer
true as β becomes nonzero. Let µ be the growth rate of the large scale mode. According to
Eqs. (3.3) and (3.4) these modes should satisfy

−Tavz + ∂zz(∂zz − σ−1µ)ψ = 0, (3.81)

(∂zz − µ)θ = 0, Taψz + (∂zz − σ−1µ)v = 0. (3.82)

Here θ is independent of v and ψ hence we can ignore it in the later computation. Combining
Eqs. (3.81) and (3.82) together we have

Ta2vzz = −(∂zz − σ−1µ)2vzz. (3.83)

There are six linearly independent solutions in Eq. (3.83) but only the even modes of v in z
are relevant in the calculation. In this case the general form of the solution is

ψ =
σ−1µ

Ta
Az +

{
iλ−1

1 B sin(λ1z) + c.c.
}
, (3.84)

v = A+ {B cos(λ1z) + c.c.} , (3.85)

where λ21 = −σ−1µ+ iTa. The boundary conditions at z = ±1/2 imply that

σ−1µA

2Ta
+

{
i sin(λ1/2)B

λ1
+ c.c.

}
= 0,

βσ−1µA+

{
iTa

[
(β − 1)λ1 sin

(
λ1
2

)
+ β cos

(
λ1
2

)]
B + c.c.

}
= 0,

βA+

{[
(β − 1)λ1 sin

(
λ1
2

)
+ β cos

(
λ1
2

)]
B + c.c.

}
= 0.
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Applying the solvability condition (determinant of the matrix vanishes) for this linear ho-
mogeneous system again we can obtain the dependence of µ on other parameters, which
is shown in figure 3.17. The growth rate is always negative when β becomes nonzero and
decreases monotonically as β increases. The slope of µ with respect to β when β ≈ 0 is
approximately equal to −2σ.
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Figure 3.17: The dependence of µ on β. (a) σ = 0.6. Solid line: Ta = 100. Dashed line:
Ta = 60. Dashed-dotted line: Ta = 20. (b) Ta = 60. Solid line: σ = 1.1. Dashed line:
σ = 0.6. Dashed-dotted line: σ = 0.1.

From the calculations above, the weakly nonlinear theory should include a damping term
in the large scale mode whenever the stress free boundary conditions are weakly broken.
Under the same scaling as in [18], together with β = ϵ2β2, the scaled modulation equations
are

ηAT = rA+ AXX − 1− ξ2

2
|A|2A− ξAVX , (3.86)

VT = −λV + VXX + ξ
(
|A|2

)
X
, (3.87)

where λ = 24pβ2. In the stationary case, the gradient of the large scale mode is given by

VX = ξ

(
1

2

∫
R
e−|y| ∣∣A(X + λ−1/2y)

∣∣2 dy − |A|2
)
. (3.88)

Here the domain of integration is extended to the whole real line due to periodicity in X.
The presence of λ provides another length scale in the problem and acts as a connection
between local and nonlocal coupling. When λ is large or equivalently the magnitude of β
is larger than O(ϵ2), the large scale mode becomes irrelevant and the governing modulation
equation reduces into the cubic real Ginzburg-Landau equation as in Eq. (2.1).

Figure 3.18 shows the bifurcation diagrams of Eqs. (3.86) and (3.87) for several different
values of β with the primary branches all located at the band center. The thin lines corre-
spond to n = 1 modulated solutions. The solution branches with β ̸= 0 are shifted such that
the primary branches all lie at the same location for comparison. The cubic real Ginzburg-
Landau equation only allows stationary modulated solution when the primary bifurcation is
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subcritical (ξ2 > 1). The secondary bifurcation point in the subcritical case converges to the
location r = − 2π2

ϵ2Γ2 predicted by Eq. (2.1) as λ increases, while the branching point moves
up to infinity in the supercritical case (ξ2 < 1).
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Figure 3.18: Bifurcation diagrams of K0 = 0 primary branch in rotating convection for the
mixed boundary conditions (3.72). Γ = 10λc. (a) σ = 0.4, Ta = 80 (ξ2 = 1.2263). (b)
σ = 0.6, Ta = 70 (ξ2 = 0.5882). (c) σ = 0.6, Ta = 140 (ξ2 = 0.3877).

On the effect of slanted snaking, since the large scale mode becomes linearly damped as
β increases it can be expected that the structure of slanted snaking will reduce into regular
homoclinic snaking. Figure 3.19 [60] shows the snaking behavior of RC for the parameter
values given in figure 3.1 (Ta = 20, σ = 0.1 and Γ = 10λc) except that the boundary
conditions are now given by the relation (3.72). Notice that the snaking becomes less slanted
as β increases and is nearly vertical for β = 0.6.
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Figure 3.19: Bifurcation diagram showing the average poloidal kinetic energy E (vertical
axis) as a function of the Rayleigh number Ra (horizontal axis) for slanted snaking when
Ta = 20, σ = 0.1, and Γ = 10λc for the mixed boundary conditions (3.72). From left to
right, the snaking branches correspond to β = 0, 0.2, 0.4, and 0.6. These results are provided
by Dr. Beaume [60].
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3.7 Discussion

In this chapter we have described strongly nonlinear solutions of the equations describ-
ing two-dimensional RC. Localized solutions are present regardless of whether the primary
branch of periodic states is subcritical or supercritical, provided only that ξ2 > 1/3. The
localized structures are embedded in a self-generated zonal shear layer with a compensating
shear profile outside the structure. The shear rate V ′ < 0 inside the convecton while V ′ > 0
outside, implying that the convecton locally reduces the angular velocity by expelling angu-
lar momentum; this angular momentum increases the angular velocity outside the convecton
and creates a shear layer. Similar symbiotic coexistence between anticyclonic shear and
localized vortex structures is familiar from other rotating fluid systems [61, 62, 63, 64].

The convectons can be present over a substantial range of Rayleigh numbers in contrast to
other fluid systems exhibiting localized states [9, 12]. This is a consequence of the large scale
mode in the presence of stress-free boundary conditions at the top and bottom boundaries.
Because of this conserved quantity the amplitude equations describing the localized structure
are nonlocal, and the spatially periodic states are unstable at small amplitude even when
they bifurcate supercritically. This nonlocal aspect of the problem has four consequences:
(i) it leads to slanted snaking of the localized structures, (ii) it permits localized structures
to be present outside the region of bistability between the conduction state and periodic
convection, (iii) it destabilizes the spatially periodic convection at small amplitude even
when the bifurcation to convection is supercritical, and (iv) it permits localized states even
when periodic convection bifurcates supercritically.

Based on weakly nonlinear analysis, we derived the modulation equations for two-dimensional
RC and MC for stress-free boundary conditions near a codimension-two point. In both cases,
the modulation equation takes the form of a nonlocal fifth order Ginzburg-Landau equation.
Extensive study of the bifurcation and stability properties of this equation indicates that the
higher order theory we derived can capture important phenomena that are not present in
the leading order theory [18]. The bifurcation scenario can be qualitatively separated into
two classes, c̃ < 0 and c̃ > 0. When c̃ < 0, the primary branch is only stable at small ampli-
tude. The instability sets in at larger amplitude and leads to countably infinite number of
unstable modulation branches all of which undergo phase jumps to K0 ̸= 0 periodic states.
However, when c̃ > 0, the region of instability of the primary branch is bounded within
certain range of Rayleigh numbers and the first modulation branch that bifurcates closest
to the primary bifurcation is stable before reaching a saddle node. There is also a region of
bistability between periodic and modulated states. These results suggest a possible inves-
tigation of the full problem near the codimension-two point focusing on dynamical aspects
such as coarsening type behavior which could exist in the system.

We also examined the case when the stress-free boundary conditions are weakly broken.
Mixed boundary conditions of Robin type were introduced to destroy the marginal stability
property of the large scale mode. But when the boundary conditions are close to free-
slip, they permit the interpolation between nonlocal to local coupling connecting Cox and
Matthew’s equation [18] to the cubic real Ginzburg-Landau equation. Moreover, the snaking
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behavior is changed from slanted snaking to regular homoclinic snaking as β increases. These
results indicate that the formation of localized states in two-dimensional RC is sensitive to
the chosen boundary conditions.
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Chapter 4

Exact solutions of the cubic-quintic
Swift-Hohenberg equation

In this chapter, we study the Swift-Hohenberg equation with cubic-quintic nonlinearity
(SH35), which takes the form

ut = µu− (1 + ∂xx)
2 u+ bu3 − cu5. (4.1)

Here u is a real-valued scalar function and the coefficients are also real. In our consideration,
both b and c are positive which b > 0 is responsible for the subcritical bifurcation of periodic
states and c > 0 is responsible for saturating the growth of the instability. In principle, we
can set c = 1 by rescaling u and b but here we retain the coefficient c for later convenience.
Equation (4.1) is equivariant under

R1 : x→ −x, u→ u, R2 : x→ x, u→ −u (4.2)

together with translations Tℓ : x → x + ℓ, u → u, and these symmetries will prove
important in what follows.

The bifurcation of Eq. (4.1) has been studied in [70] and [74, 37] with the former focus-
ing on the spatially localized states on an extended domain and the later focusing on the
modulated structures formed on a finite domain. But there remains the question whether
there are nontrivial O(1) solutions that are not related to the states which bifurcate from
the periodic solutions that originate from the homogeneous state u = 0. To investigate this
possibility we adopt a method developed in [75, 76] to construct exact meromorphic solutions
of related equations and use the resulting exact solutions as initial conditions for numerical
continuation. The approach has also been used to search for exact meromorphic solutions
of the standard Swift-Hohenberg equation [77] and for the quadratic-cubic Swift-Hohenberg
equation (SH23) with a dispersive term uxxx [78].

Another aspect that will be covered is SH23 with a dispersive term uxxx. Some pre-
liminary estimate on the traveling solutions is given and a modulation equation approach
is applied to study the small amplitude bifurcation behavior near the onset. The chapter
builds upon works that appear in [80].
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4.1 Exact meromorphic solutions

In this section we give a brief overview of the method of deriving exact meromorphic
solutions of ordinary differential equations (ODEs) in the complex plane. Consider an au-
tonomous algebraic ODE of order n defined on a neighborhood of z = z0 in the complex
plane, ∑

j

ajΠ
n
k=0(w

(k))jk = 0, (4.3)

where the superscript (k) denotes the k-th derivative with respect to z, j = (j1, . . . , jn) is a
multi-index and aj ∈ C are constants. The degree of a monomial is defined as

∑n
k=0 jk. We

seek a solution in the form of a formal Laurent series,

w(z) =
∞∑

k=−p

ck+p(z − z0)
k, (4.4)

with a finite principal part. Here z0 ∈ C is an arbitrary constant and p is a positive integer
indicating the order of the pole at z = z0. Substitution of Eq. (4.4) into Eq. (4.3) allows one
to solve for the coefficients {c0, c1, . . .} recursively. For j ≥ 1 one obtains relations of the
form

P (c0, j)cj = Qj({cl|l < j}), (4.5)

where P (c0, j) are polynomials in c0 and j, while Qj are polynomials in {cl|l < j}. Fuchs
indices are the values of j for which P = 0. If one of the Fuchs indices is a positive integer
k, say, the corresponding Qk = 0 and the coefficient ck is undetermined. Note that k = −1
is always a Fuchs index, reflecting the arbitrariness of z0.

Equation (4.3) is said to have the finiteness property if it only admits finitely many
formal Laurent series with finite principal part and degree p ≥ 1. If this property holds and
the equation contains only one monomial of the highest degree, all meromorphic solutions
fall into one of three classes [75]: (A) elliptic solutions, (B) singly periodic solutions, or
(C) rational solutions. Each solution is periodic in C with a fundamental cell: a periodic
parallelogram in (A), a periodic stripe in (B), and the whole complex plane in (C). Owing to
the finiteness property each periodic cell contains at most N poles, where N is the number
of different formal Laurent series. This classification is a consequence of Nevanlinna theory
and the restriction on the number of poles is a consequence of the uniqueness of solutions of
ODEs. Meromorphic solutions of these three types will be referred as belonging to class W
in later discussion. If an equation does not possess the finiteness property (this is the case
if one of the Fuchs indices is a positive integer), we may still look for solutions that belong
to class W although we are no longer guaranteed that all meromorphic solutions are of this
class.

It follows that meromorphic solutions in W can be written as linear superpositions of
functions with poles of suitable order. In case (A) these are the Weierstrass ζ function ζ(z−
zi;ω1, ω2) (order 1 pole), the Weierstrass ℘ function ℘(z− zi;ω1, ω2) (order 2 pole) and their
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derivatives, in case (B) the appropriate functions are the cotangent function cot(π(z−zi)/ω)
(order 1 pole) and its derivatives, while in case (C) the functions are {1/(z − zi)

n|n ∈ N}.
Here zi are the locations of the poles, ω1, ω2 are the periods of the elliptic solutions in case
(A), while ω is the period of the singly periodic functions in case (B). To obtain these solutions
the locations of the poles zi need to be determined. This can be done by matching the general
expressions with the formal Laurent series obtained above. The procedure requires the use of
addition formulae and the knowledge of Laurent expansions of Weierstrass and trigonometric
functions [79]. For convenience we list here the relevant formulae for Weierstrass functions.
The addition formula for the Weierstrass ζ function is

ζ(z − zi) = ζ(z)− ζ(zi) +
1

2

℘′(z) + ℘′(zi)

℘(z)− ℘(zi)
. (4.6)

Here ℘ is the Weierstrass ℘ function and solves the ODE

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3. (4.7)

The Weierstrass ℘ function has the Laurent expansion

℘(z) = z−2 +
g2z

2

20
+
g3z

4

28
+O(|z|6) (4.8)

around the pole at z = 0. The constants g2 and g3 are elliptic invariants defined by

g2 ≡
∑

m,n̸=(0,0)

60

(mω1 + nω2)4
, g3 ≡

∑
m,n̸=(0,0)

140

(mω1 + nω2)6
,

where ω1 and ω2 represent the two periods of the function.

4.2 Meromorphic solutions of stationary SH35

In the stationary case, i.e., u(x, t) = w(x), Eq. (4.1) reduces to

w′′′′ + 2w′′ − aw − bw3 + cw5 = 0. (4.9)

This equation can be integrated once by multiplying w′ and gives

w′′′w′ − w′′2

2
+ w′2 − aw2

2
− bw4

4
+
cw6

6
− E = 0, (4.10)

where E is an integration constant. Here a ≡ µ − 1 and c is set equal to 3/2 to simplify
the calculations that follow. To recover the usual case c = 1, we may rescale w and the
coefficient b as w → (2/3)1/4w and b →

√
3/2 b. In the following we extend the domain

of w to the whole complex plane, and demand that w(z) is meromorphic and hence locally
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representable in terms of a formal Laurent series as in Eq. (4.4). The parameters a and b are
assumed to be real although the results that follow hold when a and b are complex numbers.

Before proceeding we note that the autonomous ODE Eq. (4.9) is equivariant with respect
to two different reflections,

R1 : z → −z, w → w, R2 : z → z, w → −w. (4.11)

However, in the complex domain there is a third symmetry

R3 : z → z∗, w → w∗. (4.12)

Under this operation, R3w remains a function of z but the coefficients ck of the Laurent
series transform to c∗k. If a and b are complex, we also transform (a, b) → (a∗, b∗) so that
R3w remains a function of z and solves Eq. (4.9) with parameters (a, b).

The degree of the pole at z = 0 and the coefficient c0 can be determined by balancing
w′′′w′ − w′′2

2
and the sextic term in Eq. (4.10),

p = 1, c40 = −16. (4.13)

The Fuchs indices are

j1 = −1, j2,3 =
5± i

√
39

2
. (4.14)

Since there is no positive integer Fuchs index and only one monomial of highest degree,
w6, the finiteness property holds and all meromorphic solutions belong to class W . Equa-
tion (4.10) admits four different Laurent series all of which are odd functions of z:

w1(z) =
√
2(1 + i)

{
1

z
+

1− bi

30
z +

2ib− 4− 15a− 2b2

1800
z3
}
+ . . . , (4.15)

w2(z) = R2w1(z), (4.16)

w3(z) =
√
2(1− i)

{
1

z
+

1 + bi

30
z − 2ib+ 4 + 15a+ 2b2

1800
z3
}
+ . . . , (4.17)

w4(z) = R2w3(z). (4.18)

The Laurent series w1 and w3 are related by the symmetry R3, i.e., w3 = R3w1.
In the following subsections, we seek solutions belonging to class W and derive explicit

expressions for the corresponding meromorphic solutions. There are at most four poles
within each periodic cell. Moreover, the symmetries relating {wn|n = 1, 2, 3, 4} imply that
if w has Laurent expansions wn and wm with n ̸= m around the poles zn and zm, then w is
periodic with period 2(zn − zm). To see this explicitly, assume n = 1 and m = 2 so that

w(z − z1) = w1(z) = R2w2(z) = R2w(z − z2). (4.19)

Thus w(z) = R2w(z + z1 − z2) = w(z + 2z1 − 2z2) with period 2(z1 − z2). Since the ODE is
autonomous and the Laurent series are related to one another by the symmetries, we may
assume that w has Laurent expansion w1 around z = 0.

We remark that traveling solutions of the form u(x, t) = w(x− Ct), C ∈ R, do not have
a Laurent series for C ̸= 0.
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Elliptic solutions

Elliptic functions are meromorphic functions w defined on C/Γ satisfying

w(z) = w(z + ω1) = w(z + ω2), ω1, ω2 ∈ C, ω1/ω2 /∈ R, (4.20)

where ω1 and ω2 are the two periods of the function w(z) and Γ is the lattice generated by
these two periods. Due to double periodicity,∮

w dz = 0 (4.21)

over the fundamental parallelogram and the sum over the residues vanishes. Expansions
(4.15)–(4.18) imply that elliptic solutions of Eq. (4.10) can only have two or four distinct
poles within the fundamental parallelogram.

For the case of four distinct poles, one pole may be placed at the origin (z0 = 0) with the
remaining poles located at z1, z2, and z3. The general form of the elliptic solution is thus

w(z) = h̃+ 2eiπ/4
3∑

m=0

imζ(z − zm)

= h+ eiπ/4
3∑

m=1

im
℘′(z) + ℘′(zm)

℘(z)− ℘(zm)
, (4.22)

where the relation (4.6) was used to obtain the second expression. Here h̃ and h are constants.
By comparing the Laurent expansion of Eq. (4.22) with w1 at z = 0, we obtain h = 0 together
with

3∑
m=1

im−1℘(zm)
n = fn,

3∑
m=1

im−1℘(zm)
n−1℘′(zm) = 0, (4.23)

where n ∈ {1, 2, 3} and

f1 =
i+ b

30
, f2 =

(b− i)b+ 15a
2

− 90g2 + 2

900i
, f3 =

c6(1 + i)

2
√
2

+
g2(i+ b)

200
+

3ig3
28

.

In addition ℘(zm) and ℘
′(zm) are related by Eq. (4.7). Owing to the symmetries we know,

without solving the algebraic equations, that the poles are located at points of half-period
which are ω1/2, ω2/2, and (ω1 + ω2)/2. Hence ℘

′(zm) = 0 for all m and ℘(zm) = em, where
em are the roots of the polynomial

4℘3 − g2℘− g3 = 0. (4.24)

After some manipulations, it can be shown that

e1 =
(b+ i)(i+ 2) + (1− i)f

180
, e2 =

1 + i(f − b)

90
, e3 =

(b+ i)(i− 2)− (1 + i)f

180
,
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and

g2 =
ib− 2− b2 − 15a/2 + (i+ b)f

810
, g3 = 4e1e2e3,

where

f = ±
(
11b2 − 8ib+ 19 + 75a

2

)1/2

.

The periods ω1 and ω2 can be obtained numerically from g2 and g3.
Since

∮
wdz = 0, the general expression for the case of two distinct poles is

w(z) =
√
2 {(1 + i)ζ(z)− (1 + i)ζ(z − z2)}+ h̃,

= −
(
1 + i√

2

)
℘′(z) + ℘′(z2)

℘(z)− ℘(z2)
+ h, (4.25)

where the second equality again follows from relation (4.6). Here h̃ and h are constants
and z2 is the location of the pole with Laurent expansion w2. By comparing the Laurent
expansion of Eq. (4.25) with w1 at z = 0, we obtain h = 0 together with

℘′(z2) = 0, ℘(z2) = e1 =
1− ib

30
,

g2 =
1− ib

30
+

a

12
, g3 = 4e31 − g2e1.

Singly periodic solutions

Singly periodic functions are meromorphic functions w defined on C/ {nω |n ∈ Z} that
satisfy

w(z) = w(z + ω), ω ∈ C \ {0} . (4.26)

Here ω is the period of the singly periodic function. Meromorphic solutions of this type only
admit either one or two poles within each periodic stripe (a third distinct pole would provide
an additional period and hence break the assumption of single periodicity). In the following,
we assume the Laurent expansion around z = 0 is of the form w1.

In the one pole case, the general form of the meromorphic solution is

w(z) =

√
2π(1 + i)

ω
cot
(πz
ω

)
+ h, (4.27)

where ω is the period and h is a constant. Comparing the Laurent expansion of Eq. (4.27)
with w1, we obtain h = 0 together with

a = −2(b+ i)(2b− 3i)

25
, ω = π

√
10

ib− 1
. (4.28)
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If there are two poles within a single periodic stripe, three possible cases arise since the pole
with Laurent expansion w1 can only pair with either w2, w3, or w4. The general expressions
in these three cases are

w12(z) =
2
√
2π(1 + i)

ω
csc

(
2πz

ω

)
+ h, (4.29)

w13(z) =
2
√
2π

ω

[
cot

(
2πz

ω

)
+ i csc

(
2πz

ω

)]
+ h, (4.30)

w14(z) =
2
√
2π

ω

[
csc

(
2πz

ω

)
+ i cot

(
2πz

ω

)]
+ h, (4.31)

where w1n is the general expression for two pole singly periodic solutions with Laurent series
w1 and wn. Comparing Eqs. (4.29)–(4.31) with w1 at z = 0, we obtain h = 0 in all three
cases, together with

w12 : a = −(b+ i)(b− 9i)

25
, ω = 2π

√
5i

b+ i
,

w13 : a =
(97 + 21i)(i+ b)

123125
(−197 b+ 105 + 288 i) , ω = 2π

√
5(i− 2)

(1− i)(b+ i)
,

w14 : a = −(97− 21i)(b+ i)

123125
(197 b+ 105− 288 i) , ω = 2π

√
5(1− 2i)

(1− i)(b+ i)
.

Rational solutions

Rational functions are meromorphic functions w defined on C ∪ {∞} that satisfy

w(z) =
Q1(z)

Q2(z)
(4.32)

with Q1 and Q2 polynomials in z and Q2 ̸≡ 0. Since the solution is nonperiodic only one
pole can be present and the general expression for meromorphic solutions of this type is

w(z) =

√
2(1 + i)

z
+ P (z), (4.33)

where P is a polynomial in z. Since there is only one monomial of highest degree in Eq. (4.10),
P can only be a constant and by comparing with w1 we have P = 0. It is straightforward

to see that w(z) =
√
2(1+i)
z

is a rational solution only when a = 0 and b = − i
2
.

4.3 Real meromorphic solutions

In the previous section, we obtained exact solutions of the stationary SH35 equation
by considering meromorphic solutions belonging to class W . But solutions of interest in
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applications are those for which w is real when z is restricted to the real line. A meromorphic
solution is said to be real if

{w(z + z0) | z ∈ R} ⊂ R (4.34)

for some z0 ∈ C. Evidently there is no real rational solution so that in the following we may
focus on the elliptic and singly periodic cases. Before proceeding to find exact real solutions,
we remark that we have shown in section 4.2 that exact elliptic solutions are of codimension
zero in the parameter space (a, b) while exact singly periodic solutions are of codimension
one. It follows that exact real solutions are generically of codimension one in the elliptic
case and of codimension two in the singly periodic case. Owing to the symmetries R1, R2,
and spatial translations in x, each exact real solution is embedded in a larger family of real
exact solutions.

In order that a real elliptic solution exists, the periodic lattice Γ must admit one set of
generators {ω1, ω2} with ω1 real, for otherwise the set {z0 + R} /Γ will be dense in C/Γ and
no real solution is possible. To seek real solutions in the elliptic case, we suppose that the
periodic lattice Γ is real rectangular, i.e., that there exists a pair of generators {ω1, ω2} with
ω1 real and ω2 imaginary. For this to be the case g2 and g3 must be real and the modular
discriminant

∆ ≡ g32 − 27g23 (4.35)

must be positive. If there are four poles in the periodic parallelogram, Γ is real rectangular
when

b2 = −25a

3
− 3, a ∈ I1 ∪ I2, (4.36)

where I1 ≡
(
−∞,−36

25

)
and I2 ≡

(
−36

25
,− 9

25

)
. The corresponding elliptic invariants are

g2 = − a

108
, g3 =

1

6750
+

a

3240
. (4.37)

In the following we shall be interested in b > 0, i.e., the hysteretic regime, implying that
a < −9/25. In this case a one parameter family of real exact periodic solutions parametrized
by a can be found by a translation of z0 = ω2/4 (ω2 is pure imaginary) and the solutions
can be represented as

w(z) = eiπ/4
3∑

m=1

im℘′(z + ω2/4)

℘(z + ω2/4)− em
, (4.38)

where

e1 =
b− 1

60
, e2 =

1

30
, e3 = −b+ 1

60
.

Sample profiles of the resulting exact solutions are shown in figure 4.1 for a ∈ I1 and
in figure 4.2 for a ∈ I2. In the former case the exact solutions are invariant under the
symmetry R1. In the latter case they are invariant under R2 followed by a translation in
z by the half period ω1/2, i.e., under the symmetry TR2. The modular discriminant ∆
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Figure 4.1: Solution profiles of the exact real elliptic solution (4.38) when a ∈ I2 and

b =
(
−25a

3
− 3
)1/2

. The solutions are TR2-symmetric. (a) a = −0.4. (b) a = −0.5. (c)
a = −1. (d) a = −1.4.

vanishes when a = −36/25, −9/25 and the solution becomes degenerate as a approaches
these two points. When a increases to −9/25 from below in I2, (ω1, ω2) → (2

√
5π, i∞) and

the solution decreases to zero in the supremum norm. In contrast, when a → −36/25 from
either side, it is ω1 that tends to infinity and the solution approaches a front (heteroclinic
solution) that is discussed further below. Figure 4.3 shows the spatial average of w, i.e.,

⟨w⟩ ≡ L−1
∫ L

0
w(x) dx, the spatial period L ≡ ω1, and the free energy F/L of the solutions

as a function of µ ≡ a+ 1. Here F is defined as

F [u] ≡
∫ L

0

{
1

2
|(1 + ∂xx)u|2 −

1

2
µu2 − 1

4
bu4 +

1

6
cu6
}
dx (4.39)

and Eq. (4.1) has been rewritten in variational form, ut = − δF
δu
. We found no real solutions

in the two pole case.
In the singly periodic case the only situation that yields a nontrivial real solution is w13

with a purely imaginary ω, i.e., ω = iT, T ∈ R. By shifting the origin to ω/4 as in the
elliptic case, w13 can be rewritten as

w13(z) =
2
√
2π

T

[
−tanh

(
2πz

T

)
+ sech

(
2πz

T

)]
, (4.40)

where T = π
√
10 and the parameters (a, b) = (−36/25, 3). These parameter values corre-

spond to the degenerate point separating the intervals I1 and I2 in the four pole elliptic case.
This front solution connects two unstable (with respect to time) flat states u = ±2/

√
5 as

shown in figure 4.4.
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Figure 4.2: Solution profiles of the exact real elliptic solution (4.38) when a ∈ I1 and

b =
(
−25a

3
− 3
)1/2

. The solutions are R1-symmetric. (a) a = −1.45. (b) a = −1.5. (c)
a = −2. (d) a = −3.
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Figure 4.3: (a) The spatial average ⟨w⟩ ≡ 1
L

∫ L

0
w(x)dx, (b) the spatial period L, and (c) the

free energy F/L of the exact real solutions as functions of µ ≡ a+ 1.
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Figure 4.4: Exact front solution (4.40) for a = −36
25
, b = 3.
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Figure 4.5: Time evolution of the front solution (4.40) perturbed in the middle at t = 0 with
O(10−3) random noise.

Similar results can be derived for SH23 with dispersion, viz.,

ut = (α + 1)u− (1 + ∂xx)
2 u+ σuxxx + βu2 − γu3. (4.41)

Meromorphic traveling solutions of Eq. (4.41) of class W were studied for γ < 0 in [78]; the
corresponding results for γ > 0 are summarized in Appendix J.

Linear stability properties of the exact real solutions determined in the preceding section
are obtained using a spectral method with Fourier basis functions. When a ∈ I2 the solutions
are always unstable and the number of unstable modes increases with decreasing a. The
stationary front solution is always unstable since the asymptotic states w(+∞) and w(−∞)
are both unstable flat states. Time evolution of this solution with O(10−3) random noise
superposed in the middle at t = 0 is shown in figure 4.5. The solution breaks down in the
middle and leads to a spatially periodic state at both ends.

The simulation was carried out in a domain of size L = 50π with Neumann boundary
conditions using the time stepper ETD4RK [40] with cosine basis functions. In contrast,
when a ∈ I1 the number of unstable modes decreases with decreasing a and the solutions
acquire stability with respect to perturbations with spatial period L when a decreases below
a ≈ −4.15.

4.4 Numerical bifurcation analysis

In this section we use the exact real solutions derived in section 4.3 to initialize numerical
continuation. The parameter µ (or equivalently a) is taken as the control parameter. To
implement AUTO [36], the spatial dynamical ODE is written as

w′
0 = Lw1, w′

1 = Lw2, w′
2 = Lw3, (4.42)
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w′
3 = L(−2w2 + aw0 + bw3

0 − cw5
0), (4.43)

where wn is the n-th spatial derivative of u, each scaled with the domain length L so that the
system is defined on the interval [0, 1]. Periodic boundary conditions are applied on variables
w0, w1, w2 with L fixed and equal to the period of the starting solution (the normalization
c = 3/2 is retained). The phase fixing condition∫ 1

0

(w0 − w0,old)w
′
0,olddx, (4.44)

is implemented to eliminate translates of the solution. Here w0,old is the solution at the
previous continuation step. The bifurcation diagrams below show the H2 norm

∥w∥H2 =

(
1

L

2∑
n=0

∫ L

0

|w(n)(x)|2 dx

)1/2

(4.45)

of the solution as a function of µ. In all cases we maintain the spatial period L selected by
the exact solution.

The relative position between the saddle-node (computed numerically) of the primary
branch with wavenumber k = 1 (L = 2π) and the exact real solutions is shown in figure
4.6 in the (µ, b) plane. A bound µ > −3b2

10
for the presence of either periodic or pulse-like

solutions is derived in [69]. This bound can be improved as follows. Multiply Eq. (4.9) by
w and integrate it over Γ to obtain

µ

∫
Γ

w2dx =

∫
Γ

[(1 + ∂xx)w]
2 − bw4 +

3

2
w6dx ≥

∫
Γ

w2

(
3

2
w4 − bw2

)
dx, (4.46)

where Γ is either the whole real line for the pulse solution or a single period for the periodic
solution. Since 3

2
w4 − bw2 ≥ − b2

6
it follows that µ > − b2

6
. The comparison between this

bound and the actual location of the k = 1 saddle-node is also shown in the figure. All the
exact real solutions lie to the right of the saddle-node of the k = 1 primary branch.

The exact solutions with a ∈ I2 are symmetric with respect to TR2 and the branches
obtained by continuation share this symmetry. When a = −0.4 (i.e., b = 0.5774) the
corresponding exact solution has L = 14.1492 and lies on a secondary branch that bifurcates
from a primary branch with wavenumber k = 0.4441; this primary branch is the third
branch that bifurcates from u = 0 as µ increases. This secondary branch bifurcates from
the primary branch above the saddle-node and reconnects back to it as shown in figure 4.7.
Similar behavior is also present for a = −0.9 (b = 2.1213, L = 15.9311) as shown in figure 4.8.
In the latter case there are two additional secondary branches (the upper of these is indicated
in red (gray) in figure 4.8(a)) that also connect the primary branch to itself. Both consist of
solutions withR1 symmetry. With further decrease in the value of a ∈ I2, the spatial period of
the initial solution increases and the bifurcation diagram becomes increasingly complicated.
Figure 4.9 shows the bifurcation diagram for a = −1.35 (b = 2.8723, L = 21.1801). The
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Figure 4.6: The (µ, b) plane showing the location of the exact real solutions obtained in
section 4.3 (dashed line) together with the position of the saddle-node of the primary branch
with k = 1 (solid line). The dashed-dotted line corresponds to the bound µ > − b2

6
for the

existence of periodic or pulse-like solutions. The solid dot indicates the location of the front
solution (4.40).
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Figure 4.7: (a) Bifurcation diagram for stationary periodic solutions with b = 0.5774, c = 3/2
and period L = 14.1492. Point 1 corresponds to the exact real solution when a = −0.4. (b)
Sample profiles along the black dashed line.

inset in (a) indicates the bifurcation behavior near the first appearance of secondary branches
and shows there are in fact three branches that bifurcate from the primary branch in close
succession. The dashed and dotted branches consist of states with TR2 and R1 symmetries,
respectively, while the red (gray) branch consists of asymmetric states generated through
a parity-breaking bifurcation. In nongradient systems states of this type travel, although
here they correspond to stationary states. The asymmetric states do not reconnect to the
primary branch. The exact solution (point 1) lies on the dashed branch.

As the parameter a approaches the critical value a = −36/25 from above the exact real
solutions fall on isolas instead of secondary branches. Figure 4.10 shows an example of such
an isola when a = −1.43 > −36/45. In addition to the isola there is also a crosslink (dashed
curve in figure 4.10(a)) consisting of asymmetric stationary solutions. The structure of these
isolas becomes more and more complex as a decreases through the critical value a = −36/25
(figure 4.11). However, for a ∈ I1 (i.e., a < −36/45) the exact solutions are symmetric with
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Figure 4.8: (Color online) (a) Bifurcation diagram for stationary periodic solutions with
b = 2.1213, c = 3/2 and period L = 15.9311. Point 1 corresponds to the exact real solution
with a = −0.9. (b) Sample profiles along the red (gray) and black dashed lines.
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Figure 4.9: (Color online) (a) Bifurcation diagram for stationary periodic solutions with
b = 2.8723, c = 3/2 and period L = 21.1801. Point 1 corresponds to the exact real solution
with a = −1.35. (b) Sample profiles along the dashed and red (gray) branches. (c) Sample
profiles along the dotted branch.
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Figure 4.10: (a) Bifurcation diagrams for stationary periodic solutions with b = 2.9861, c =
3/2 and period L = 27.9881. Point 1 corresponds to the exact real solution with a = −1.43 >
−36/25 and lies on an isola. The inset at top left indicates the relative position between the
primary branch of 2π periodic states and the isola of periodic states with L = 27.9881. (b)
Sample profiles along the secondary branch connecting points 2 and 5 (dashed line, panel
(a)).
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Figure 4.11: Bifurcation diagrams for stationary periodic solutions c = 3/2 and (a) b =
2.9930, L = 30.1667, (b) b = 2.9965, L = 32.3511, (c) 3.0035, L = 32.3321, and (d)
b = 3.0069, L = 30.1327. The points labeled 1, 2, 3, 4 correspond to the exact real solutions
(shown in the insets with x/L as the horizontal coordinate) at (a) a = −1.435, (b) a =
−1.4375, (c) a = −1.4425, and (d) a = −1.445, respectively; all lie on isolas. Secondary
crosslinks consisting of asymmetric solutions are omitted.
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Figure 4.12: (a) Bifurcation diagrams for stationary periodic solutions with b = 3.0139, c =
3/2 and period L = 27.9276. Point 1 corresponds to the real exact solution with a = −1.45 <
−36/25. The inset at top left indicates the relative position between the primary branch of
2π periodic states and the isola of periodic states with L = 27.9276. (b) Bifurcation diagram
for the stationary asymmetric states connecting points 2 and 7. (c) Sample profiles along
the isola (solid line, panel (a)). (d) Sample profiles along the asymmetric branch connecting
points 2 and 7 (solid line, panel (b)).

respect to R1 instead of TR2 and the solutions obtained from these solutions by numerical
continuation share this symmetry. Figure 4.12(a) shows details of the bifurcation diagram
obtained from such an exact solution at a = −1.45 for comparison with figure 4.11(c). Here,
too, the exact solution lies on an isola consisting of seven leaves but this time we have seven
crosslinks consisting of asymmetric states. These crosslinks connect the pairs of points (2, 7),
(3, 6), (4, 5), (8, 11), (9, 10), (12, 15) and (13, 14); the (2, 7) crosslink is highlighted in figure
4.12(b). The corresponding solutions are shown in figures 4.12(c,d).

A similar but rather more complex example obtains for a = −2 as shown in figure 4.13.
Figure 4.13(a) shows a branch of R1-symmetric states obtained by continuation from the
exact solution at point 1. The entire branch connects point 2 to point 3 and consists of
R1-symmetric solutions about x = L/4, 3L/4. At both end points the solutions acquire an
additional TR2 symmetry, and both points lie on the branch of R1 × TR2-symmetric states
shown in red (gray) in figure 4.13(b). Thus the bifurcation at point 2 is a symmetry-breaking
bifurcation on the red (gray) branch that breaks the TR2 symmetry; figure 4.13(b) reveals
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that this point lies very close to a fold of this branch. The bifurcation at point 8 is also a
symmetry-breaking bifurcation that lies close to a fold but this time it breaks R1 symmetry.
The branch of TR2-symmetric states that results (dashed line in figure 4.13(b)) connects to
the vicinity of a fold on the primary branch of R1×TR2 symmetric states (thin black line in
figure 4.13(b)) that bifurcates from u = 0 at µ = 0.6739. With L = 14.8473 (the period of
the exact solution at point 1) this branch is the first primary branch and the branches shown
in figure 4.13(a,b) are therefore associated with the first nonzero states with this period as
µ increases. It is unclear why the various symmetry-breaking bifurcations occur so close to
folds.

As already mentioned point 3 does not lie on the black branch in figure 4.13(a) or close to
a fold but lies on the red (gray) branch in figure 4.13(b) and represents a pitchfork bifurcation
of the R1×TR2-symmetric states on this branch. This bifurcation creates a pair of branches
of solutions with R1 symmetry. However, because of the remaining TR2 symmetry the two
branches coincide in the bifurcation diagram. Figure 4.14 represents a blowup of the region
near this bifurcation.

Figure 4.13(d) shows sample solutions along the red (gray) branch at larger values of
µ. The figure reveals that as µ increases both ends of the branch evolve into front-like
states. The solution with the smaller H2 norm (lower panels) takes the form of a front
connecting a pair of symmetry-related spatially uniform states while the solution with the
larger H2 norm (upper panels) takes the form of a “nonmonotonic” front [81] connecting
the same states. These states resemble the heteroclinic orbits computed in Ref. [81] for a
system with the same symmetry properties, the forced Ginzburg-Landau equation with 2:1
resonance, although here they are of course computed on a finite domain. The possibility
exists therefore that such heteroclinic orbits are indeed present when Eq. (4.1) with a = −2,
b = 3.6968, c = 3/2 is posed on the real line, suggesting that continuation in L could
also be worthwhile. We have not carried out a systematic study of crosslinks consisting of
asymmetric states such as that shown in figure 4.13(a), dashed line.

When the value of a is decreased to a = −4.5, the branch of R1-symmetric states obtained
by continuation from the exact solution is still a secondary branch of the first primary branch
albeit somewhat less convoluted (figure 4.15, dashed line). As shown in the inset in figure
4.15(a) this secondary branch connects to the primary branch (solid line) already at small
amplitude and does so in a supercritical bifurcation. It follows that the dashed branch
is initially once unstable and hence can easily acquire stability at secondary bifurcations.
Stability calculation with periodic boundary conditions shows that the solutions on this
branch are indeed stable between the first and second folds and again between the third and
fourth folds.

A further destabilization of the primary periodic branch occurs via the red (gray) branch
(figure 4.15(a), inset). This branch is initially twice unstable but becomes only once unstable
after a tertiary bifurcation (point 6 in figure 4.15(a)) prior to the first fold. As a result
solutions on this branch also acquire stability at the first fold and these remain stable until
the second fold. Sample solutions are shown in figure 4.15(b,c).
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Figure 4.13: (a) Bifurcation diagram for stationary R1-symmetric solutions (solid line) with
b = 3.6968, c = 3/2 and period L = 14.8473. Point 1 corresponds to the exact solution with
a = −2. The inset indicates the relative position between the branch of 2π periodic states
and the branch originating from the exact solution with the period held at L = 14.8473. The
dashed line shows one of the crosslinks consisting of asymmetric solutions. (b) The branch
of R1×TR2-symmetric front-like states that bifurcate from the branch in panel (a) at points
labeled 2 and 3 together with a second branch of R1×TR2-symmetric states that bifurcates
from u = 0 at µ = 0.6739. The two branches are connected at points 8 and 14, respectively,
by a branch of asymmetric states (dashed line). (c) Sample profiles at the points indicated
in panel (a). (d) Sample profiles at µ = 1 and µ = 25 along the red (gray) branch in panel
(b) (top row: upper branch; bottom row: lower branch). (e,f) Sample profiles at the points
indicated in panel (b); points (2, 3), (5, 6), (9, 11), (10, 12) are connected by crosslinks (not
shown). The fold labeled 7 indicates the transition to front-like states at larger µ.
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branch near point 3 is a projection effect.
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Figure 4.15: (a) Bifurcation diagrams for stationary periodic solutions with b = 5.8737, c =
3/2 and period L = 9.7914. Point 2 corresponds to the exact solution with a = −4.5. Point
6 on the red (gray) branch is a tertiary bifurcation point. The dashed line shows one of
the R1-symmetric branches connecting the original periodic branch to itself, with the inset
showing details of its appearance at small amplitude. (b) Sample profiles along the dashed
branch. (c) Sample profiles along the red (gray) branch.
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4.5 Discussion

In this chapter we have explored in detail of obtaining exact meromorphic solutions of
SH35 and show that no other solutions of the same class can be found. Based on results
of exact meromorphic solutions, two one-parameter families of exact real solutions were
identified. These consist of elliptic solutions with different symmetries and are separated,
at a = −36/25, by an exact real solution in the form of a front, i.e., a heteroclinic solution.
The solutions for a < −36/25 (parameter interval I1) are R1-symmetric, while those for
−36/25 < a < −9/25 (parameter interval I2) are TR2-symmetric. Explicit expressions for
these exact solutions are given in section 4.3. Numerical continuation with periodic boundary
conditions shows that when a ≡ µ− 1 is close to −9/25 the amplitude of the exact solution
is small and the branches identified using continuation lie on primary branches of periodic
solutions, generally above a fold. In contrast, when a is close to −36/25 the solution branches
obtained from the exact solutions can exhibit a variety of complex bifurcation behavior. In
particular, the exact solution may lie on a secondary branch or an isola depending on the
value of a. The discovery of these isolas is a nontrivial consequence of the exact solutions
we have identified. We conjecture that the appearance of these isolas is associated with the
passage of the parameter a through the critical value a = −36/25. Indeed, we believe that
the plethora of periodic solutions present near this parameter value is directly associated
with the presence of the heteroclinic orbit at a = −36/25, cf. [82].

Of the great variety of solutions we have identified stable solutions were typically found
only for larger negative values of a for which the exact solutions are associated with secondary
branches bifurcating from the first primary branch of periodic states that bifurcates from
u = 0 as a increases.

The technique used in this chapter and in earlier work [75, 76, 78, 77] could be useful
for studies of other one-dimensional partial differential eqquations arising in simple mod-
els of physical systems since in these cases waves of constant form (periodic, homoclinic or
heteroclinic) are usually described by nonlinear ODEs of algebraic type. As an example we
obtained in Appendix J analogous results for the SH23 with dispersion, thereby extending
the results given in [78]. The technique provides a different approach to finding exact so-
lutions, one that is independent of additional structure such as a Hamiltonian structure or
spatial reversibility that are required of other approaches, and hence has a potentially far
greater range of applicability. In addition, since the method is not perturbative, the solutions
found are fully nonlinear. On the other hand not all physically interesting solutions have
meromorphic extensions to the entire complex plane, and such solutions cannot be identified
using the present approach.
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Chapter 5

Conclusions

5.1 Summary of results

This thesis focuses on the formation of spatially modulated structures in convective sys-
tems, especially in the codimension-two bifurcation region. The modulation equation and
spatial dynamics approaches substantially enhance our understanding of these degenerate
bifurcation points. The presented theories are of higher order and take the form of fifth order
local or nonlocal Ginzburg-Landau equations. The study of these fifth order equations is of
great value since they are generic when the underlying system is translation invariant and
reflection symmetric in horizontal direction. The genericity implies they have wide applica-
tions not only in convective systems but also in other pattern forming systems that share
the same bifurcation properties.

Chapter 2 is the study of the canonical amplitude equation (1.6) that describes the bifur-
cation of stationary weakly subcritical and supercritical patterns. With control parameters
µ and b, the system is characterized by the coefficients of the nonlinear gradient terms a1 and
a2. These two coefficients allow us to predict and classify the properties of weakly subcriti-
cal or supercritical pattern forming systems. Several codimension-one curves in the (a1, a2)
plane are discovered and each corresponds to different bifurcation behaviors. These two co-
efficients also have significant influence on the dynamics, especially the presence of gradient
structure (a2 = 0). Nonvariational dynamics are present when a2 ̸= 0 and are elucidated
in the numerical results. Among the stationary solutions, the front solution which connects
zero state to a spatially periodic state plays the most important role. The location of the
front in parameter µ is treated as a Maxwell point. The spatially modulated solutions which
bifurcate from the periodic solutions demonstrate protosnaking behavior near this point.
These results allow us to locate the parameter region of localized states and also shed light
on their behavior in general pattern forming systems.

Chapter 3 is the study of two-dimensional convective systems with a large scale mode
(rotating convection and magnetoconvection) in which the localized states form a slanted
snaking structure in the bifurcation diagram. To study the formation of such localized states,
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I examined the behavior near the codimension-two point (r, ξ2) = (0, 1/3) (described in sec-
tion 3.2) described by a fifth order Ginzburg-Landau equation with nonlocal terms. With
periodic boundary conditions, two possible bifurcation pictures are discovered. When c̃ > 0
(cf. section 3.53), the primary branch at the band center allows only a finite number of
secondary branches and the number of secondary branches increases as the Taylor number
Ta (or Chandrasekhar number Q) increases. Regarding stability, among the modulated solu-
tions, only the ones lying on the secondary branch closest to the onset of primary bifurcation
are stable while the others are all unstable. The primary branch itself is stable before the first
and after the last secondary branching points. There are also regions of bistability between
modulated and periodic states. When c̃ < 0 the primary branch at the band center allows
an infinite number of secondary branches but all the secondary branches are unstable. The
effects of boundary conditions on the large scale mode and slanted snaking are examined
at the end of the chapter. With mixed boundary conditions (3.72), the large scale mode
becomes linearly damped and we observe a transition from slanted to regular homoclinic
snaking.

Chapter 4 is the study of stationary SH35 (4.9), a fourth order nonlinear ODE. This
chapter is different from the previous two chapters in several aspects. The motivation is to
explore the solution space of stationary SH35 by deriving nontrivial exact solutions of the
equation. Instead of relying only on the standard bifurcation theory approach, I applied tech-
niques from complex analysis to the nonlinear ODE and discovered all the possible classes
of meromorphic solution and found exact expressions for them. Based on these results, a
one parameter family of real exact solutions was obtained. These solutions are of two types,
differing in their symmetry properties, and are connected via an exact heteroclinic solution.
The real exact solutions are then used as initial conditions for a numerical bifurcation analy-
sis. Most of the exact solutions lie on modulated branches that bifurcate from k ̸= 1 periodic
states. But as the parameter b approaches the value corresponding to the exact heteroclinic
solution, a plethora of isolas is observed.

5.2 Ongoing work

There are several ongoing projects which I am currently studying. One of these is the
study of SH23 with a dispersive term which breaks spatial reversibility

ut = µu+ γuxxx − (1 + ∂xx)
2 u+ bu2 − u3. (5.1)

This equation has been studied before in [83] which is mainly a numerical investigation
of localized states. The effect of breaking spatial reversibility occurs in convective systems
when the direction of gravity is not exactly aligned with the direction of applied temperature
difference. Here the dispersive term uxxx leads to drifting patterns and no stationary localized
or periodic solution exists when γ ̸= 0. The system is no longer variational due to the
presence of uxxx and there could be interesting dynamics associated with this. I analyze
the dependence of the drift speed of the traveling solutions on γ and use these results to
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demonstrate the nonexistence of traveling periodic solutions in certain parameter regions.
More precisely, there is no periodic solution with period Γ less than

√
2π when µ < 1− b2/4

and 2π/
√
1 +

√
µ+ b2/4 when µ > 1 − b2/4. This condition holds as the speed c and γ

tend to zero. In addition, I also show the localized and periodic solutions exist only when
µ > − b2

4
. This result yields a better bound compared with the one given in [69].

The modulation equation approach is also applied in Eq. (5.1). The periodic wavetrain
moves at velocity γ while the amplitude modulation moves at group velocity 3γ. The small
amplitude solutions thus take the asymptotic form

u(x, t) ∼
{
A(η, t2)e

i(x−γt) + c.c.
}
+ h.o.t., (5.2)

where η ≡ ϵ(x−3γt) and t2 ≡ ϵ2t. When the parameter b is chosen away from the transition
region between subcritical and supercritical bifurcation, the amplitude function A satisfies

At2 =
[
µ2 + (4 + 3iϵγ1) ∂

2
η − 4iϵ∂3η

]
A

+

(
38

9
b2 − 3− 4iϵb2γ1

27

)
|A|2A+

32iϵb2

27
|A|2Aη +O(ϵ2), (5.3)

where µ2 ≡ ϵ−2µ and γ1 ≡ ϵ−1γ. The steady solution of this equation can be compared with
the perturbed 1:1 resonance normal form with broken reversibility.

When b is close to the transition region, i.e., b2 = 27/38 + ϵ2b2, a different scaling needs
to be considered and the small amplitude solutions now take the form

u(x, t) ∼
{
A(η, t4)e

i(x−γt) + c.c.
}
+ h.o.t., (5.4)

where η ≡ ϵ2(x− 3γt) and t4 ≡ ϵ4t. Here the amplitude function A is governed by

At4 =
(
µ4 + 4∂2η

)
A+

16i

19
|A|2Aη +

(
38

9
b2 −

2iγ2
19

)
|A|2A− 8820

361
|A|4A, (5.5)

where µ4 ≡ ϵ−4µ and γ2 ≡ ϵ−2γ. Through the study of these amplitude equations, we can
obtain useful information about the bifurcation behavior and explore new dynamics which
are not present in the case γ = 0. The results have useful implications for convective systems
with broken reflection symmetry.

Another topic is the investigation of the generalized Swift-Hohenberg equation under
non-homogeneous forcing. In the practical setup of convection experiments, it is extremely
difficult to achieve the condition of homogeneous forcing due to various practical and physical
limitations. It will be useful to see how spatially dependent forcing alters the behavior of
convection, and especially of localized structures. I consider SH35 with two different types
of spatially dependent forcing:

µ(x) = r (1 + α cosx) , (5.6)

µ(x) = r

[
1 + α exp

(
− x2

2σ2

)]
. (5.7)
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The first forcing corresponds to a periodic forcing with mean r and relative oscillation am-
plitude α. The cosine profile in the forcing allows a resonance with the intrinsic wavelength.
The second forcing models a homogeneous forcing locally perturbed by a Gaussian bump
with width σ.

When α = 0, there are two types of localized solutions, each satisfying either even or odd
parity. Figures 5.1 and 5.2 show the bifurcation results with periodic forcing with α = ±0.1,
±0.4, and ±0.7. For even states, the snaking structure persists and increasing |α| leads

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0

Figure 5.1: Bifurcation diagrams showing the L2-norm (vertical) of u as a function of r
(horizontal) for even parity branches with α = ±0.1, ±0.4, and ±0.7 (from left to right) in
SH35 with periodic forcing. Localized branches represented in a solid line have α > 0 while
those in a dashed line have α < 0.
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Figure 5.2: Bifurcation diagrams showing the L2-norm (vertical) of u as a function of r
(horizontal) for odd parity branches with α = ±0.1, ±0.4, and ±0.7 (from left to right) in
SH35 with periodic forcing. Localized branches represented in a solid line have α > 0 while
those in a dashed line have α < 0.
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to a broadening of the snaking region. When |α| is small, instead of lying on two specific
values of r, the saddle-nodes appear at sequential locations r1 → r4 → r2 → r3 → r1 . . . for
positive α, or r2 → r3 → r1 → r4 → r2 . . . for negative α. These values have relative order
ri < rj if i < j. As |α| increases further, the branches connecting the saddle-nodes between
r2 and r3 annihilate and the number of oscillations in r decreases by half.

In bump forcing, the localized branches bifurcate directly from the trivial state as shown
in figure 5.3. These localized branches do not reconnect back to any other branch after
snaking but rather continue their way to larger amplitude states with a defect at the location
of the bump. Figure 5.3 shows the bifurcation diagram of even states with bump forcing
when α = ±0.1 and ±0.7. The bifurcation diagram of odd states is qualitatively similar to
the bifurcation diagram of even states. The behavior of the solutions depends significantly
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Figure 5.3: Bifurcation diagrams showing the L2-norm (vertical) of u as a function of r
(horizontal) for the even parity branches for α = ±0.1 and ±0.7 (from left to right) in SH35
with bump forcing. Localized branches represented in a solid line have α > 0 while those in
a dashed line have α < 0.

on the sign of α. When α is negative (forcing is larger at the center) we have localized states
located at the center but when α is positive (forcing is smaller at the center) the localized
states are located at the edge instead.

Future study will focus on the stability of these solutions and the associated dynamics
when r is perturbed slightly from the snaking region. I expect the spatial dependence of the
forcing selects the localized states and also their spatial locations. If there is a mismatch
in location, the localized state will drift and shift to the location with lower free energy.
This mechanism allows us to manipulate the localized states to desired length and location
dynamically by altering the forcing, which could have interesting applications.
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5.3 Future work

The generalized Swift-Hohenberg equation appears to be a good model equation for con-
vection problems, at least it captures the essential mechanism which governs the bifurcation
properties observed in the fluid systems. But little is known about the relation between
the model equation and the underlying physics. For modulation equations, which are only
valid under certain conditions (small amplitude, large domain,. . .), the derivation can be
rigorously justified and the coefficients are physically meaningful. This is not the case for
the generalized Swift-Hohenberg equation. For example, how do we pick the nonlinear co-
efficients in order to match a certain convection problem with given physical parameters?
This cannot be answered by the work done in previous literature.

A missing link that should be established is to rigorously derive a lower dimensional
equation that effectively captures the bifurcation behavior of convection problems, possibly
under certain approximation. This has only been done in the case of classical Rayleigh-
Bénard convection [84] but not for other convection problems. The effective equation may
not take the same form as the generalized Swift-Hohenberg equation but they should match
at least at the linear level. Such a study is definitely important since otherwise the study of
the generalized Swift-Hohenberg equation is more of mathematical interest than of physical
interest.

A topic I would like to study in the near future is to revisit the problem of inclined
layer convection in a more theoretical fashion, especially to establish the connection between
the full Navier-Stokes system and the Swift-Hohenberg equation. According to author’s
knowledge, besides the results from experiments [85], direct numerical simulations [86, 87],
and linear stability analysis [88], there has not been any nonlinear analysis performed on
such a system. It is surprising that such an important problem has not been well-studied.

Another aspect is the study of two-dimensional Swift-Hohenberg equation. According
to [84], in order to describe the three-dimensional convection the Swift-Hohenberg equation
should be effectively two-dimensional and the nonlinear terms are nonlocal. This renders the
two-dimensional Swift-Hohenberg equation an integro-differential PDE. This fact seems to
be overlooked by contemporary researchers. I am interested to study this type of equations
and compare them with the local version.

The last aspect I would like to mention is how do physical limitations affect the patterns
that can be observed. In a real set-up, there are no idealized boundary conditions such as
stress-free boundary conditions and an important question is how to suitably incorporate
the experimental boundary conditions. In principle, the properties of the boundaries can be
calculated from first principles using techniques like molecular dynamics simulation. But in
the theoretical aspect, it will be more useful to derive the effective theory for the boundary
conditions from microscopic physics that match with the experimental results and are, at
the same time, applicable to the macroscopic formulation. Besides the boundary conditions,
the applied temperature difference would be practically impossible to be a constant in both
space and time. Due to thermal fluctuation or other physical limitations, the forcing itself
will be either stochastic or deterministic but with spatial-temporal dependence. These could
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have significant effects of pattern selection as indicated in our modeling result of the Swift-
Hohenberg equation (section 5.2) and the study of rotating convection (section 3.6).

The investigation of these topics will lead to better understanding of pattern formation
in fluid systems.
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Appendix A

The generalized Swift-Hohenberg
equation near the subcritical to
supercritical transition

We start from the generalized Swift-Hohenberg equation

ut = ru− (1 + ∂xx)
2 u+ f(u), (A.1)

where u = u(x, t) is a real-valued function and f(u) is a smooth function with Taylor
expansion

f(u) = f2u
2 + f3u

3 + f4u
4 + f5u

5 +O(u6). (A.2)

Here r is the bifurcation parameter and the transition from subcriticality to supercriticality
occurs at r = 0 when 27f3 + 38f 2

2 = 0.
To focus on the vicinity of this transition we write r = ϵ4µ and f3 = −38

27
f 2
2 + ϵ2b, where

µ and b are O(1) unfolding parameters, and consider the following multiscale asymptotic
expansion

u(x, t) ∼
∞∑
n=1

ϵnun
(
x,X ≡ ϵ2x, T ≡ ϵ4t

)
. (A.3)

Substitution of this expansion into Eq. (A.1) leads to the following sequence of linear prob-
lems

Mu1 = 0,

Mu2 = f2u
2
1,

Mu3 = −4 (u1,xx + u1)Xx −
38

27
f 2
2u

3
1 + 2f2u2u1,

Mu4 = −4 (u2,xx + u2)Xx −
38

9
f 2
2u

2
1u2 + 2f2u1u3 + f2u

2
2 + f4u

4
1,
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Mu5 = −4(u3 + u3,xx)Xx + 2f2(u1u4 + u2u3) + bu31 −
38

9

(
u22 + u1u3

)
f 2
2u1

+µu1 − u1,T − 2u1,XX − 6u1,XXxx + f5u
5
1 + 4f4u

3
1u2.

Here M is the linear self-adjoint operator M ≡ (1 + ∂xx)
2.

At each order the homogeneous problemMu = 0 has four independent solutions, two that
are periodic in x and two that diverge as |x| → ∞. Thus at each order the homogeneous
solutions must take the form An(X,T )e

ix + c.c., where the An denote the corresponding
amplitude. Without loss of generality we set A1 = A(X,T ) and An = 0 for n > 1, and seek
an evolution equation for A(X,T ).

The solutions un for n = 1, . . . , 4 are

u1 = Aeix + c.c.,

u2 = f2

{
A2

9
e2ix + c.c.

}
+ 2f2|A|2,

u3 = −f
2
2A

3

54
e3ix + c.c.,

u4 =

{(
f4 −

40f 3
2

81

)
A4e4ix

225
+

(
4f4 −

727f 3
2

81

)
|A|2A2e2ix

9
+

16if2AAXe
2ix

27
+ c.c.

}
+

(
6f4 −

1118f 3
2

81

)
|A|4.

At O(ϵ5) the solvability condition yields the amplitude equation

AT = µA+ 4AXX +
32if 2

2

27
|A|2AX + 3b|A|2A− 2

(
1960f 4

2

81
− 58f2f4

3
− 5f5

)
|A|4A. (A.4)

This equation can be identified with Eq. (1.6) after a rescaling, yielding

a1 =
4f 2

2

21
√
5

(
f 4
2 − 783

980
f2f4 −

81

392
f5

)−1/2

, a2 = 0, (A.5)

provided f 4
2 − 783

980
f2f4 − 81

392
f5 > 0.
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Appendix B

Heteroclinic and homoclinic solutions
in GL35

When E = L = 0 and µ = µM , if b > 0 and β < 0, the heteroclinic solution connecting
the states A = 0 and A = RM exp(ikMx) can be found explicitly:

R2 = − b

4β

1

exp
(
∓ bx

2
√
−β

)
+ 1

, ϕ = ∓a1 + a2

8
√
−β

log

1 + exp
(
± bx

2
√
−β

)
2

 . (B.1)

Here and hereafter we have omitted arbitrary constants x0 and ϕ0 determining the location
of the front and its phase at this location. The resulting solution is shown in figure 2.7.
This solution remains valid when µsn = µM , i.e., when the condition (2.19) holds and the
heteroclinic orbit connects the origin to a non-hyperbolic equilibrium (in time).

When L = 0 the amplitude R can take on both positive and negative values since the
phase ϕ jumps by π each time the amplitude R passes through zero. Thus homoclinic orbits
are present in figures 2.5(a)–(f) provided the energy E is selected to coincide with the local
maximum of the potential U(R;µ, L). There are three type of homoclinic orbits when L = 0:

(1) Homoclinic orbit to the origin: This type of solution occurs when E = 0 and µ < 0,
and has the form

R2 =
ξ1ξ2

ξ1 + (ξ2 − ξ1) cosh
2 (
√
−µx)

, (B.2)

where ξ1 =
−b+

√
b2−16µβ

4β
, and ξ2 =

−b−
√

b2−16µβ

4β
. When β < 0, the coefficient b must

satisfy b > 4
√
µβ. The phase varies according to

ϕ = −a1+a2
4
√
β

tan−1
(√

ξ1
−ξ2

tanh
√
−µx

)
, if β > 0; (B.3)

ϕ = −a1+a2
4
√
−β

tanh−1
(√

ξ1
ξ2
tanh

√
−µx

)
, if β < 0. (B.4)



APPENDIX B. HETEROCLINIC AND HOMOCLINIC SOLUTIONS IN GL35 130

The potential U(R;µ, 0) for β > 0 is shown in figure 2.5(a) while that for β < 0 is
shown in figure 2.5(c). In the degenerate case µ = 0, there is a homoclinic orbit that
decays algebraically to the origin. This occurs when E = 0, b < 0, and β > 0:

R2 = − b

2β

(
1 +

b2x2

4β

)−1

, ϕ =
a1 + a2

4
√
β

tan−1

(
bx

2
√
β

)
. (B.5)

A typical solution of this form is shown in figure 2.8.

(2) Homoclinic orbit to a nonzero equilibrium crossing R = 0:

R2 =

ξ1ξ2sinh
2

(√
µ+ bξ1

2
x

)
ξ2cosh

2

(√
µ+ bξ1

2
x

)
− ξ1

. (B.6)

Here ξ1 =
−b−

√
b2−12µβ

6β
, ξ2 =

−b+2
√

b2−12µβ

6β
, and E = U

(√
ξ1
)
corresponding to the

local maximum of U . When β > 0, µ must be positive with b < −2
√
3µβ. When

β < 0, µ can be either positive or negative. But if µ is negative, b must satisfy
b > 4

√
µβ. The phase varies according to

ϕ = − (a1+a2)
4

[
ξ1x− 1√

β
tan−1

(
tanh

√
µ+(bξ1)/2x√

(ξ2/ξ1)−1

)]
, if β > 0; (B.7)

ϕ = − (a1+a2)
4

[
ξ1x− 1√

−β
tanh−1

(
tanh

√
µ+(bξ1)/2x√

1−(ξ2/ξ1)

)]
, if β < 0. (B.8)

The relevant potential U(R;µ, 0) for β > 0 is shown in figure 2.5(d,f) and for β < 0 in
figures 2.5(b,c).

(3) Homoclinic orbit to a nonzero equilibrium which does not cross R = 0:

R2 =

ξ1ξ2cosh
2

(√
µ+ bξ1

2
x

)
ξ1 + ξ2sinh

2

(√
µ+ bξ1

2
x

) . (B.9)

Here ξ1 and ξ2 are as in (2) above, and E = U
(√

ξ1
)
again corresponds to the local

maximum of U . When β > 0, µ must be positive with b < −2
√
3µβ. When β < 0, µ

must be negative with 2
√
3µβ < b < 4

√
µβ. The phase varies according to

ϕ = − (a1+a2)
4

[
ξ1x+

1√
β
tan−1

(√
ξ2
ξ1
− 1tanh

√
µ+ bξ1

2
x

)]
, if β > 0; (B.10)

ϕ = − (a1+a2)
4

[
ξ1x− 1√

−β
tanh−1

(√
1− ξ2

ξ1
tanh

√
µ+ bξ1

2
x

)]
, if β < 0. (B.11)

The relevant potential U(R;µ, 0) for β > 0 is shown in figures 2.5(d,f) and for β < 0
in figure 2.5(e).
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When L ̸= 0, only homoclinic orbits are present (figures 2.6(a,c)). For such an orbit the
energy E again coincides with the local maximum of the potential U(R;µ, L), assumed to be
located at R1 =

√
ξ1. With ξ2 and ξ3 as the other two roots of the polynomial ξ

[
E − U(

√
ξ)
]
,

assumed distinct and different from ξ1, a homoclinic orbit with a turning point at
√
ξ2 has

the form:

R2 = ξ1 +
(ξ2 − ξ1)(ξ3 − ξ1)

ξ2 − ξ1 + (ξ3 − ξ2)cosh
2
[√

β(ξ3 − ξ1)(ξ1 − ξ2)x
] (B.12)

with the phase

ϕ = −(a1 + a2)

4

{
ξ1x−

1√
β
tan−1

[(
ξ1 − ξ2
ξ3 − ξ1

)1/2

tanh
√
β(ξ3 − ξ1)(ξ1 − ξ2)x

]}
(B.13)

+

(
k∞ +

a1 + a2
4

ξ1

)x+
tan−1

[√
ξ3(ξ1−ξ2)
ξ2(ξ3−ξ1)

tanh
√
β(ξ3 − ξ1)(ξ1 − ξ2)x

]
√
βξ2ξ3

 , if β > 0;

ϕ = −(a1 + a2)

4

{
ξ1x−

1√
−β

tanh−1

[(
ξ1 − ξ2
ξ1 − ξ3

)1/2

tanh
√
β(ξ3 − ξ1)(ξ1 − ξ2)x

]}
(B.14)

+

(
k∞ +

a1 + a2
4

ξ1

)x+
tan−1

[√
ξ3(ξ1−ξ2)
ξ2(ξ3−ξ1)

tanh
√
β(ξ3 − ξ1)(ξ1 − ξ2)x

]
√
βξ2ξ3

 , if β < 0.

Here k∞ is the wavenumber at the equilibrium. The relevant potential U(R;µ, L) for β > 0
is shown in figure 2.6(c) and for β < 0 in figure 2.6(a).
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Appendix C

Bifurcation analysis near µ = 1 in
GL35

As already noted that the first primary bifurcation occurs at µ = 0 generates steady
spatially homogeneous states characterized by wavenumber k = 0. Here we study the second
primary instability, characterized by states with wavenumber k = ±1.

C.1 The case a1 = a2 = 0

When a1 = a2 = 0 Eq. (1.6) has the symmetry O(2)×O(2) with the first O(2) generated
by the operations x→ x+ x0, A→ A and x→ −x,A→ A, and the second O(2) generated
by the operations x → x,A → A exp iϕ0 and x → x,A → A∗. At µ = 1 the trivial state
A = 0 loses stability at a steady state bifurcation to modes with wavenumber k = ±1. Over
C the multiplicity of the zero eigenvalue is therefore two while over R its multiplicity is four.
The bifurcation is thus properly analyzed as a mode interaction problem and we write

A(x, t) = v(t)eix + w(t)e−ix + h.o.t. (C.1)

The symmetries of the problem act on the amplitudes (v, w) as follows:

x→ x+ x0 : (v, w) → (veix0 , we−ix0), x→ −x : (v, w) → (w, v); (C.2)

A→ eiϕ0A : (v, w) → (veiϕ0 , weiϕ0), A→ A∗ : (v, w) → (w̄, v̄). (C.3)

It follows, cf. [44], that the normal form near µ = 1 is

v̇ = λv + b1|v|2v + b2|w|2v + h.o.t., ẇ = λv + b2|v|2w + b1|w|2w + h.o.t., (C.4)

where λ = µ−1 and the coefficients b1 = b, b2 = 2b are real. It follows that near µ = 1 there
are two distinct nontrivial solutions corresponding to (v, w) = (v, 0) and (v, w) = (v, v). We
refer to these solutions as RW: A = v exp ix and SW: A = 2v cosx. The stability of these
solutions is determined by the coefficients b1, b2 [44].
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C.2 Nonzero a1 or a2 (or both)

When a1 or a2 is nonzero Eq. (1.6) has the smaller symmetry O(2) × SO(2) generated
by the operations x → x + x0, A → A and x → x,A → A exp iϕ0 and the reflection x →
−x,A → A∗. Since the linear problem is unchanged the multiplicity of the zero eigenvalues
remains four over R, but the amplitude equations must now respect the symmetries:

x→ x+ x0 : (v, w) → (veix0 , we−ix0), A→ eiϕ0A : (v, w) → (veiϕ0 , weiϕ0), (C.5)

together with
x→ −x, A→ A∗ : (v, w) → (v̄, w̄). (C.6)

Thus

v̇ = λv + b11|v|2v + b12|w|2v + h.o.t., ẇ = λv + b21|v|2w + b22|w|2w + h.o.t., (C.7)

where λ = µ − 1 and the coefficients b11 = b − a1 + a2, b12 = 2(b − a2), b21 = 2(b + a2),
and b22 = b + a1 − a2 are real. These equations admit a pair of distinct RW solutions
(v, w) = (v, 0) and (v, w) = (0, w), hereafter RW+: A = v exp ix and RW−: A = w exp−ix,
both of which bifurcate from µ = 1. The equations, in addition, admit mixed modes of the
form (v, w), vw ̸= 0, hereafter MW: A = v exp ix+ w exp−ix, given by

|v|2 = −λ(b− a1 − a2)/∆, |w|2 = −λ(b+ a1 + a2)/∆. (C.8)

Here ∆ ≡ 3b2 + (a1 − 3a2)(a1 + a2) is assumed to be nonzero. These expressions imply that
the MW only exist for |a1 + a2| < |b|, in agreement with the calculation in Appendix D.
In particular, when |a1 + a2| = |b| the MW degenerate into one or other RW. In contrast,
when a1 = a2 = 0 the RW± branches become identical and the MW branch becomes SW
in agreement with the preceding section. In the special case a1 = a2 the RW± branches
become identical (cf. Eq. (2.18)) while in the case a1 + a2 = 0 the MW become SW with
|v| = |w|. These results explain the absence of an MW branch in figures 2.17(a,b) and the
presence of an SW branch in figure 2.18. They also explain the presence of an MW branch in
figure 2.19, where the MW branch bifurcates simultaneously with the RW±. The stability of
the above solutions is determined by the coefficients b11, b12, b21, b22, although the branches
are initially all unstable owing to the inherited unstable k = 0 eigenvalue.

The above results describe fully the bifurcation behavior near the k = 1 primary bifurca-
tion and are readily generalized to k ̸= 0, 1. Global results based on the particle-in-a-potential
formulation are summarized in the corresponding bifurcation diagrams.
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Appendix D

Calculation of dEdµ and dL
dµ on primary

branches

The direction of branching at the bifurcation point is determined by the sign of the
quantity dE

dµ
−U0,L

dL
dµ

−U0,µ. This quantity measures the parameter dependence of the energy

difference between that of the periodic orbit and the minimum of the potential U(R;µ, L)
and must be of the same sign as µ−µ0 for a periodic orbit to be created as µ changes. Here
µ0 is the value of µ at the bifurcation point. Hence to determine the direction of branching,
we need to compute dE

dµ
and dL

dµ
. At the bifurcation point, the following conditions hold:

U(R0;µ0, L0) = E0, UR(R0;µ0, L0) = 0, URR(R0;µ0, L0) =
2π2n2

Γ2
. (D.1)

The subscript 0 indicates that the quantity is evaluated on the primary branch. If µ is
changed by a small amount, µ0 → µ0 + δµ, then E0 → E0 + δE, L0 → L0 + δL, and the
position of the local minimum of U will be shifted from R0 to R0 + δR0. Since UR = 0 along
the primary branch, it follows that ∂RU(R0 + δR0;µ0 + δµ, L0 + δL) = 0, and hence that

δR0

δµ
= −U−1

RR

(
URL

δL

δµ
+ URµ

)
. (D.2)

To calculate the period of amplitude modulation under small perturbation, we need to expand
the potential energy locally up to fourth order in r ≡ R−(R0 + δR0). To simplify expressions,
let U0 = U (R;µ0, L0) with U representing U (R;µ0 + δµ, L0 + δL) unless otherwise specified.
The potential can be expressed in the form

U(R) = U(R0 + δR0) +
URR(R0 + δR0)

2!
r2 +

URRR(R0 + δR0)

3!
r3

+
URRRR(R0 + δR0)

4!
r4 +O

(
r5
)
, (D.3)
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and this expansion employed in the computation of the half period of amplitude modulation:∫ Rmax

Rmin

dR√
E0+δE−U(R)

. To calculate the integral, consider the change of variable

∆s2 = U(R)− U(R0 + δR0), (D.4)

where ∆ ≡ E0 + δE − U(R0 + δR0). Then

r =

√
2∆

URR

[
s− URRR∆

1/2

3
√
2U

3/2
RR

s2 +
(5U2

RRR − 3URRRRURR)∆

36U3
RR

s3

]
+O

(
∆2
)
. (D.5)

Substituting this expression into the integral yields√
URR

U0,RR

− 1 =
5U2

RRR − 3URRRRURR

24U3
RR

∆+O
(
∆3/2

)
, (D.6)

and hence

U0,RRR
δR0

δµ
+ U0,RRL

δL

δµ
+ U0,RRµ

=

(
δE

δµ
− U0,L

δL

δµ
− U0,µ

)
5U2

0,RRR − 3U0,RRRRU0,RR

12U2
0,RR

. (D.7)

A similar calculation to match the change of phase
∫ Rmax

Rmin

kdR√
E−U(R)

yields

2

(√
URR

U0,RR

k0 − k

)
=

(
5U2

RRR − 3URRRRURR

12U3
RR

k0 −
kRURRR

U2
RR

+
kRR

URR

)
∆+O

(
∆3/2

)
and hence

2

(
kR
δR0

δµ
+

1

R2
0

δL

δµ

)
=

(
δE

δµ
− U0,L

δL

δµ
− U0,µ

)[
U0,RRR

U2
0,RR

kR − kRR

U0,RR

]
, (D.8)

where k ≡ ϕx is a function of R and L. The derivatives in these two relations are all
evaluated at the bifurcation point µ = µ0. From the three relations above, we obtain the
quantity dE

dµ
− U0,L

dL
dµ

− U0,µ and thereby determine the direction of branching.
The direction of branching of SW can be calculated in the same way. Since the SW are

characterized by L = k = 0 and are only present as primary bifurcations when a1 + a2 = 0
the direction of branching is only determined by dE

dµ
, where

dE

dµ
= U0,µ +

12U2
0,RR

(
U0,RRµ − U0,RRRU

−1
0,RRU0,Rµ

)
5U2

0,RRR − 3U0,RRRRU0,RR

= −4µ

3b
. (D.9)
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Since µ must be positive in order that the bifurcation be from A = 0 the direction of
branching is determined solely by the sign of b (subcritical if b > 0, supercritical if b < 0).

The direction of branching of quasiperiodic states that bifurcate from A = 0 can also
be calculated. These branches appear at µ0 > 0 when a1 + a2 ̸= 0. The condition µ0 > 0
implies that R = 0 is a local minimum for U when L = 0. As L becomes nonzero, U becomes
singular at R = 0. But since µ0 > 0, a local minimum of U appears close to R = 0. With
the change of variable

ρ =
R2

|L|
− E

2µ′|L|
, (D.10)

the half period of amplitude modulation and the corresponding phase change can be written
as: ∫ Rmax

Rmin

dR√
E − U

=
1

2

∫ ρmax

ρmin

dρ√
µ′γ2 − 1− u(ρ;µ, L, γ)

, (D.11)∫ Rmax

Rmin

kdR√
E − U

=
1

2

∫ ρmax

ρmin

sgn(L) (ρ+ γ)−1 − a1+a2
4

|L| (ρ+ γ)√
µ′γ2 − 1− u(ρ;µ, L, γ)

dρ, (D.12)

where µ′ = µ+ 3a2−a1
2

L, γ = E
2µ′|L| and

u(ρ;µ, L, γ) = µ′ρ2 +
b|L|
2

(ρ+ γ)3 + βL2 (ρ+ γ)4 . (D.13)

As L tends to 0, these integrals equal to π
2
√
µ0

and π
2
, respectively, and are independent of γ.

To compute the asymptotic behavior of these integrals for small L, we assume that L = ϵL̃,
µ = µ0 + ϵµ̃ with µ0 = k2, and γ = γ0 + ϵγ̃, where ϵ≪ 1. We next define ρϵ by the following
relation:

µ′ρ2ϵ = µ′ρ2 +
b|L|
2

[
(ρ+ γ)3 − γ3

]
+ βL2

[
(ρ+ γ)4 − γ4

]
,

with the property that limϵ→0 ρ(ϵ) = ρ. When ϵ is small,

ρ = ρϵ −
ϵb|L̃|
4µ0

(
ρ2ϵ + 3ρϵγ + 3γ2

)
+O(ϵ2).

Substituting this into the integrals (D.11)–(D.12), we see that the O(ϵ) terms give

2µ̃+ (3a2 − a1)L̃+ 3γ0b|L̃| = 0, sgn(L)b+ µ0γ0(a1 + a2) = 0. (D.14)

Since γ0 > 0, µ0 > 0 the sign of L must be the same as −b(a1+a2). As ϵ→ 0, µ0γ
2
0 −1 must

be positive implying that |b| > √
µ0|a1 + a2| in order that a branch of quasiperiodic states

exists. Substituting γ into the first relation in Eq. (D.14), we obtain a relation between µ
and L along the branch, viz.,

L = − 2(µ− µ0)

3a2 − a1 − 3b2

µ0(a1+a2)

+O
(
|µ− µ0|2

)
.

This prediction agrees with the result shown in figure 2.19.
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Appendix E

Derivation of the nonlinear phase
equation in GL35

Here we present the derivation of the nonlinear phase equation as described in section 2.5.
Before presenting the calculations, we remark that at the onset of phase instability f = 0
is equivalent to 2g0 = −b+b−, where b± are given in Eq. (2.56). This relation will be used
several times in the calculation to simplify expressions. Applying the scaling assumption
introduced in Eq. (2.54) the O(ϵ2) equation yields

2g0r
(0) = b−ϕ

(0)
X , (E.1)

indicating that the perturbed amplitude is slaved to the gradient of the phase. The relation
at O(ϵ3) is automatically satisfied. At O(ϵ4) and O(ϵ5) one obtains, after using the relation
in Eq. (E.1),

−2g0r
(1) + b−ϕ

(1)
X = ∂3Xϕ

(0)/b+ + ϕ
(0)2
X

[
(8k0 + b−)/(2b+) + (2R2

0,+b
′)/b2+ + 1

]
+µ2ϕ

(0)
X

[
(a1 − a2)∂µR

2
0,+ − 2(b′∂µR

2
0,+ + 2)/b+

]
, (E.2)

b+r
(1)
X + ϕ

(1)
XX = ϕ

(0)
T + ∂µR

2
0,+µ2(a1 + a2)ϕ

(0)
XX/b+ + (b+ + 4k0)ϕ

(0)
XXϕ

(0)
X /b2+. (E.3)

Since 2g0 = −b+b− we see that Eq. (E.3) is proportional to the spatial derivative of Eq. (E.2).
The nonlinear phase equation (2.55) now follows on eliminating r(1) between these two equa-
tions.
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Appendix F

Branching direction of the convecton
branches

We begin with Eqs. (3.15) and (3.16) and compute the secondary branch of stationary
modulated solutions using weakly nonlinear theory, following [19]. These equations have the
stationary equilibrium (A, V ) = (A0, 0), where without loss of generality A0 =

√
2r/(1− ξ2).

We seek nearby solutions in the form

A = A0(1 + Ã(X, τ ; ϵ)), V = Ṽ (X, τ ; ϵ), (F.1)

where τ = ϵ2T2 and Ã = ϵÃ1+ϵ
2Ã2+ϵ

3Ã3+ . . ., Ṽ = ϵṼ1+ϵ
2Ṽ2+ϵ

3Ṽ3+ . . .. Here ϵ is defined
implicitly by the relation r = r1 + ϵ2r̃, where r = r1 denotes the location of the secondary
bifurcation. Since the imaginary part of Ã decays to zero we take Ã to be real. At O(ϵ)
we obtain a linear eigenvalue problem for r1 with solution Ã1 = Ã11 cos lX, Ṽ1 = Ṽ11 sin lX,
where

r1 =
l2

2

(
1− ξ2

3ξ2 − 1

)
, Ṽ11 = − 4ξr1

l(1− ξ2)
Ã11. (F.2)

In the following we assume that ξ2 < 1 so that the periodic state (A0, 0) is supercritical.
Thus a secondary bifurcation requires that 3ξ2 − 1 > 0.

Second order

At O(ϵ2) we obtain

Ã2XX − 2r1Ã2 − ξṼ2X = 3r1Ã
2
1 + ξÃ1Ṽ1X , (F.3)

Ṽ2X +
4ξr1
1− ξ2

Ã2 = − 2ξr1
1− ξ2

Ã2
1 + C2, (F.4)

where C2 is a constant of integration. The requirement that ⟨Ṽ2X⟩ = 0 determines C2 and
leads to the solution

Ã2 = Ã20 + Ã22 cos 2lX, Ṽ2X = Ṽ22 cos 2lX, (F.5)
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where

Ã20 =
7ξ2 − 3

4(1− ξ2)
Ã2

11, Ã22 =
1

4
Ã2

11, Ṽ22 = − 2ξr1
1− ξ2

Ã2
11. (F.6)

Third order

At O(ϵ3) we obtain

Ã3XX − 2r1Ã3 − ξṼ3X = 2r̃Ã1 + 6r1Ã1Ã2 + r1Ã
3
1 + ξÃ2Ṽ1X + ξÃ1Ṽ2X , (F.7)

Ṽ3X +
4ξr1
1− ξ2

Ã3 = − 4ξr̃

1− ξ2
Ã1 −

4ξr1
1− ξ2

Ã1Ã2 + C3. (F.8)

The requirement ⟨Ṽ3X⟩ = 0 establishes that C3 = 0. Elimination of terms proportional to
cos lX from the equation for Ã3 leads to the solvability condition

r̃ =
l2

4

(3− 7ξ2

3ξ2 − 1

)
Ã2

11, (F.9)

where l = 2π/Γ′ and Γ′ is defined in Eq. 3.31. It follows that the secondary branch is
supercritical (r̃ > 0) if ξ2 < 3/7 and subcritical (r̃ < 0) if ξ2 > 3/7, in agreement with the
numerical results in section 3.2. These results can also be obtained from a careful study of
the conditions (3.26) using the potential U [ρ] given in Eq. (3.25) with K1 = 0 [20].
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Appendix G

Derivation of the modulation
equations for magnetoconvection near
the codimension-two point

Here we apply the scaling assumption given in section 3.3 for the perturbation expansion.
To simplify expressions, we use in the following notation

∇2 ≡ ∂xx + ∂zz, J(u, v) ≡ uxvz − uzvx, J̃(u, v) ≡ uXvz − uzvX ,

pnm ≡ −
(
n2k2 +m2π2

)3
+Racn

2k2 −Qcm
2π2
(
n2k2 +m2π2

)
.

The equation takes the following form at each order of ϵ

MΨn =

 ∇4 Rac∂x Qcζ∂z∇2

∂x ∇2 0
∂z 0 ζ∇2

Ψn = fn, (G.1)

where Ψn represents (ψn, θn, An)
T and fn is a vector with components as a polynomials of

ψ1, ..., ψn−1, θ1, ..., θn−1, A0, ..., An−1, and their derivatives. Eq. (G.1) can also be written as
a single equation with respect to ψn,

Mψn ≡
(
∇6 −Rac∂xx −Qc∂zz∇2

)
ψn = ∇2fn1 −Rac∂xfn2 −Qc∂z∇2fn3. (G.2)

We solve this equation for ψn and determine the corresponding θn and An from Eq. (G.1).

First & second order

At O(ϵ), f1 = 0. The resulting homogeneous problem has a solution of the form

ψ1 =
a

2
eikx sin(πz) + c.c.,

θ1 =
ika

2p
eikx sin(πz) + c.c.,

A1 =
πa

2pζ
eikx cos(πz) + c.c.
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Note that the linear operator M in Eq. (G.2) is self-adjoint with kernel e±ikx sin(πz). This
facts simplifies the solvability condition at each subsequent order.

At O(ϵ2) f2 is given by

f21 = σ−1J(ψ1,∇2ψ1)−QcζJ(A1,∇2A1),

f22 = −J(θ1, ψ1),

f23 = −J(A1, ψ1).

The solvability condition for ψ2 is always satisfied at this order and Ψ2 is given by

ψ2 = 0,

θ2 = −k
2|a|2 sin(2πz)

8πp
,

A2 = A20(X,T ) +

{
iπ2e2ikxa2

16kζ2p
+ c.c.

}
.

The homogeneous term A20 plays an important part in what follows.

Third order

At O(ϵ3) f3 is given by

f31 = −4∇2ψ1,Xx −Racθ1,X − qζ∇2A1,z + σ−1
[
J(ψ2,∇2ψ1) + J(ψ1,∇2ψ2)

]
−Qcζ

[
2A1,Xxz + J

(
A1,∇2A2

)
+ J

(
A2,∇2A1

)
+ A0,X∇2A1,z

]
− r2θ1,x,

f32 = J (ψ1, θ2) + J(ψ2, θ1)− ψ1,X − 2θ1,Xx,

f33 = J (ψ1, A2) + J(ψ2, A1)− 2ζA1,Xx − ψ1,zA0,X .

The solvability condition for ψ3 gives

k2r2 − pπ2q

2
a−Qcpπ

2aA0,X − Qcπ
4

4ζ2
|a|2a = 0, (G.3)

which corresponds to the O(ϵ3) terms in Eq. (3.37). The solution Ψ3 is

ψ3 =
a31e

3ikxQcπ
4(9k2 + π2)(k2 − π2) sin(πz)

8p2ζ2p31
− |a1|2a1eikxRack4 sin(3πz)

16pp13
+ c.c.,

θ3 =
ik3|a|2eikxa(p13 −Rack

2) sin(3πz)

16pp13(k2 + 9π2)
+

3iQckπ
4e3ikxa3(k2 − π2) sin(πz)

8p2p31ζ2

−aXe
ikx(k2 − π2) sin(πz)

2p2
− ik3|a|2eikxa sin(πz)

16p2
+ c.c.,

A3 =
πeikxA0,Xa cos(πz)

2ζp
+
ikπeikxaX cos(πz)

p2ζ
− eikx|a|2aπ3 cos(πz)

16p2ζ3
− 3Rack

4πeikx|a|2a cos(3πz)
16pp13ζ(k2 + 9π2)

+
a3e3ikx cos(πz)π3 [2Qcπ

2(9k4 − 8k2π2 − π4)− pp31]

16p2ζ3p31(9k2 + π2)
+ c.c.
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Fourth order

At O(ϵ4) f4 is given by

f41 = σ−1

[
2J (ψ1, ψ1,Xx) + J̃

(
ψ1,∇2ψ1

)
+

3∑
n=1

J
(
ψn,∇2ψ4−n

)]
−Racθ2,X − qζ

(
∇2A2,z + J

(
A1,∇2A1

))
− 2QcζA2,Xxz − 4∇2ψ2,Xx − r2θ2,x

−Qcζ

[
A0,X∇2A2,z + 2J (A1, A1,Xx) + J̃

(
A1,∇2A1

)
+

3∑
n=1

J
(
An,∇2A3−n

)]
,

f42 = −ψ2,X − 2θ2,Xx − J̃ (θ1, ψ1)−
3∑

n=1

J (θn, ψ4−n) ,

f43 = −2ζA2,Xx − ζA0,XX − A0,Xψ2,z − J̃ (A1, ψ1)−
3∑

n=1

J (An, ψ4−n) .

The solvability condition for ψ4 is always satisfied. But while solving A4, the Laplace operator
gives another solvability condition that corresponds to the O(ϵ4) terms in Eq. (3.38)(

A0,X +
π2|a|2

4pζ2

)
X

= 0. (G.4)

The solution Ψ4 is

ψ4 = −k
2π (|a|2)X sin(2πz)(4ζσ−1p2π2 +Racζp+ 12Qcπ

4)

2p2ζp02
...

θ4 =
k4|a|4 sin(2πz)(p13 −Rack

2)(k2 + 5π2)

32p2p13π(k2 + 9π2)
+

{
ikπa∗aX sin(2πz)

8p2
+ c.c.

}
+ ...

A4 = −(|a|2)X cos(2πz)k2(8ζσ−1p2π2 + 2Racζp+ 24Qcπ
4 + p02)

8p2p02ζ2
+

{
−π

2e2ikxaaX(3k
2 + π2)

16p2ζ2k2

+
iπ4e2ikx|a|2a2(5k2 + π2)(18Qck

4π2 − 16Qck
2π4 − 2Qcπ

6 − pp31)

64kp3p31ζ4(9k2 + π2)

+
iπ2e2ikxa2A0,X

16kpζ2
+ c.c.

}
+ ...

Here we only list the terms which are relevant to the solvability conditions at O(ϵ5) and
O(ϵ6).

Fifth & sixth order

At O(ϵ5) and O(ϵ6), f5 and f63 are given by

f51 = σ−1

{
2

2∑
n=1

[
J(ψn, ψ3−n,Xx) + J̃(ψn,∇2ψ3−n)

]
+

4∑
n=1

J(ψn,∇2ψ5−n)

}
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−4ψ1,XXxx − 2∇2ψ1,XX − 4∇2ψ3,Xx −Racθ3,X − r2θ1,X − r2θ3,x − r4θ1,x

−ζ
[
q(∇2A3,z + 2A1,Xxz) +Qc(A1,XXz + 2A3,Xxz + 2A1,XxzA0,X + A0,X∇2A3,z)

]
−Qcζ

{
2∑

n=1

[
J̃(An,∇2A3−n) + 2J(An, A3−n,Xx)

]
+

4∑
n=1

J(An,∇2A5−n)

}
−qζ

[
J(A1,∇2A2) + J(A2,∇2A1) + A0,X∇2A1,z

]
,

f52 = −ψ3,X − θ1,XX − 2θ3,Xx −
4∑

n=1

J(θn, ψ5−n)−
2∑

n=1

J̃(θn, ψ3−n),

f53 = −ζ(A1,XX + 2A3,Xx)−
4∑

n=1

J(An, ψ5−n)−
2∑

n=1

J̃(An, ψ2−n)− A0,Xψ3,z,

f63 = A0,T − ζ (A2,XX + 2A4,Xx)−
5∑

n=1

J(An, ψ6−n)−
3∑

n=1

J̃(An, ψ3−n)− A0,Xψ4,z.

The solvability conditions for ψ5 and A6 are(
µ̃0 + µ̃1A0,X + µ̃2A

2
0,X

)
a+ d̃aXX + i

(
γ̃aX + ã1|a|2aX + ã2a

2āX
)

+
(
b̃0 + b̃1A0,X

)
|a|2a− c̃0|a|4a−Qcpπ

2aA20,X = 0, (G.5)

and

A0,T =

(
A20,X +

π2

4pζ
A0,X |a|2 −

π4

32p2ζ3
|a|4 + kπ2

2p2ζ
Im[aa∗X ]

)
X

. (G.6)

These two relations correspond to the O(ϵ5) and O(ϵ6) terms in Eq. (3.37) and (3.38). The
phase-like variable A0 can be redefined suitably to garner the A20 terms hence A0 contains
both the contribution of O(1) and O(ϵ2). The coefficients given in Eq. (G.5) are

µ̃0 =
k2r4
2
, µ̃1 = −pπ2q, µ̃2 = −Qcpπ

2

2
, d̃ = 6k2p,

γ̃ = −kπ2r2/p, b̃0 =
2qπ4(π2 − k2)− r2k

4ζ2

16pζ2
, b̃1 =

Qcπ
4(π2 − k2)

4pζ2
,

ã10 =
k3(4ζp2π2 +Rcσζp+ 12Qcσπ

4)[3Qcπ
4σ + pζ(k2π2 + 2pσk2 − 3π4)]

4p2p02σ2ζ2

+
pk3(9π2 − k2)

16π2
+
Qckπ

4(2k2 + 3π2)

4p2ζ2
,

ã20 =
k3(4ζp2π2 +Rcσζp+ 12Qcσπ

4)[3Qcπ
4σ + pζ(k2π2 + 2pσk2 − 3π4)]

4p2p02σ2ζ2

+
pk3(π2 − k2)

16π2
+

3Qck
3π4

4p2ζ2
,

c̃0 =
Q2

cπ
8(k2 − π2)(3k4 − 16k2π2 − 3π4)

32p31p3ζ4
+

k8p4(3k2 + 19π2)

32p13π4(k2 + 9π2)



APPENDIX G. DERIVATION OF THE MODULATION EQUATIONS FOR
MAGNETOCONVECTION NEAR THE CODIMENSION-TWO POINT 144

− k6p(k2 + 5π2)

32π2(k2 + 9π2)
− Qcπ

6(21k4 − 14k2π2 − 3π4)

64ζ4p2(9k2 + π2)
.

The coefficients for the stationary nonlocal Ginzburg-Landau equation Eq. (3.52) are

µ̃ = µ̃0 +
µ̃1π

2

4pζ2
⟨
|a|2
⟩
− Qcπ

4

2pζ

(
kIm[⟨aa∗X⟩]−

3π2

16ζ2
⟨
|a|4
⟩
+

(
π2

8ζ2
− µ̃2

8pζ3Qc

)⟨
|a|2
⟩2)

,

ã1 =
Qckπ

4

4pζ
+ ã10, ã2 = −Qckπ

4

4pζ
+ ã20, γ̃ = −kπ

2r2
p

= −π
4

k

(
q +

Qcπ
2 ⟨|a|2⟩
2pζ2

)
,

b̃ = − µ̃1π
2

4pζ2
+
k2r2 − pπ2q

2pQcπ2

(
b̃1 −

µ̃2π
2

2pζ2
+
Qcπ

4

4ζ

)
+ b̃0

= − µ̃1π
2

4pζ2
+

π2

4pζ2

(
b̃1 −

µ̃2π
2

2pζ2
+
Qcπ

4

4ζ
− Qcπ

2k2

8

)⟨
|a|2
⟩
+
qπ4(π2 − k2)

8pζ2
− k2π2q

16
,

c̃ =
3Qcπ

6

32pζ3
+
b̃1π

2

4pζ2
− µ̃2π

4

16p2ζ4
+ c̃0.



145

Appendix H

Coefficients of the modulation
equation for rotating convection near
the codimension-two point

Here we give the explicit expressions of coefficients in Eq. (3.45).

pnm = −
(
n2k2 +m2π2

)3
+Racn

2k2 − Ta2cm
2π2,

µ̃0 =
k2r4 − δ2π2

2
, µ̃1 = −δπ

2

2σ
, d̃ = 6k2p, γ̃0 = −kπ

2(r2 + 2Tacδ)

p
,

µ̃2 = γ̃1 = −k3, b̃0 =
2pδπ2 − k2r2σ

16pσ
k2, b̃1 =

k2π2

16σ2
,

ã10 =
k3p(4k2 + 2π2 + 3pσ)(2k4 − 9π4 + 7k2π2 + 6k2π2σ)

8p02σ2
+

9k3(3π2 + k2)

32
+

k7

16π2
,

ã20 =
k3p(4k2 + 2π2 + 3pσ)(2k4 − 9π4 + 7k2π2 + 6k2π2σ)

8p02σ2
+
k3(3π2 + k2)

32
+

k7

16π2
,

c̃0 =
p2k8(19k2 + 3π2)

128p31(9k2 + π2)
+
k4π2(5k2 + π2)

64σ2(9k2 + π2)
+

9k8p2

128p13
− 3k6(k2 + 5π2)(p13 − 3k2p2)

64p13(k2 + 9π2)
.

The coefficients for the stationary nonlocal Ginzburg-Landau equation Eq. (3.52) are

µ̃ = µ̃0 +
µ̃1k

2

4

⟨
|a|2
⟩
− k4

8

(
2kIm[⟨aa∗X⟩] +

δπ2

k2σ

⟨
|a|2
⟩
− 3π2

8σ2

⟨
|a|4
⟩
+

π2

4σ2

⟨
|a|2
⟩2)

,

ã1 =
k2

4

(
k3

2
− µ̃2 − γ̃1

)
+ ã10, ã2 = −k

5

8
− µ̃2k

2

4
+ ã20,

γ̃ =
r2(γ̃1 − kπ2)

p
− 2δσ(γ̃1 + k3) = −2pkσδ +

(
γ̃1k

2

4
− k3π2

4

)⟨
|a|2
⟩
,

b̃ =
k2

4

(
δπ2

σ
− δk2σ

2
− µ̃1

)
+

(
r2
p
− 2σδ

)(
b̃1 −

k4

16
+
π2k2

8σ2

)
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=
k2

4

(
δπ2

σ
− δk2σ

2
− µ̃1

)
+
k2

4

(
b̃1 −

k4

16
+
π2k2

8σ2

)⟨
|a|2
⟩
,

c̃ =
3k4π2

64σ2
+
b̃1k

2

4
+ c̃0.
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Appendix I

Direction of branching in the fifth
order nonlocal Ginzburg-Landau
equation

In order for a modulated branch to bifurcate from the primary state, the ”energy” E2

should increase above the local minimum of U [ρ]. This provides a route to compute the
change of ⟨|A|2⟩. To see this, first note that at the branching point we have

U0 = E2,0, U0,ρ = 0, U0,ρρ =

(
2nπ

ϵ2Γ

)2

. (I.1)

The subscript 0 indicates the quantity is evaluated on the primary branch. If µ is changed by
a small amount, i.e., µ0 → µ0 + δµ, the quantities E1, E2, ρe, ⟨|A|2⟩, ⟨|A|4⟩, and ⟨Im[AA∗

X ]⟩
will change accordingly by δE1, δE2, δρe, δ ⟨|A|2⟩, δ ⟨|A|4⟩, and δ ⟨Im[AA∗

X ]⟩ and are of
the same order as δµ. Here ρe corresponds to the local minimum of U [ρ] which satisfies
Uρ|ρ=ρe

= 0. A leading order expansion of the condition Uρ|ρ=ρe
= 0 around the branching

point takes the form

0 = U0,ρµδµ+ U0,ρE1δE1 + U0,ρρδρe + U0,ρ⟨|A|2⟩δ
⟨
|A|2

⟩
+ U0,ρ⟨|A|4⟩δ

⟨
|A|4

⟩
+U

0,ρ⟨Im[AA∗
X ]⟩δ ⟨Im[AA∗

X ]⟩ . (I.2)

The modulated solutions are subjected to the constraints∫ ρmax

ρmin

dρ√
2(E2 − U)

=
ϵ2Γ

2n
,

∫ ρmax

ρmin

ϕXdρ√
2(E2 − U)

= 0, (I.3)

where ρmin and ρmax are the minimum and maximum of the modulated amplitude. To evalu-
ate these integrals and the perturbation of nonlocal terms δ ⟨|A|2⟩, δ ⟨|A|4⟩, and δ ⟨Im[AA∗

X ]⟩,
we introduce the change of variable

∆s2 = U [ρ]− U [ρe], (I.4)
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where ∆ ≡ E2 − U [ρe] is small and of the same order as δµ. The dependence of ρ on s has
the form

ρ− ρe =

(
2∆

Uρρ

)1/2
(
s− Uρρρ∆

1/2s2

3
√
2U

3/2
ρρ

+
5U2

ρρρ − 3UρρρρUρρ

36U3
ρρ

∆s3

)
+O(∆2). (I.5)

Substituting these into the integrals yield

U0,ρρµδµ+ U0,ρρE1δE1 + U0,ρρρδρe + U0,ρρ⟨|A|2⟩δ
⟨
|A|2

⟩
+ U0,ρρ⟨|A|4⟩δ

⟨
|A|4

⟩
+U

0,ρρ⟨Im[AA∗
X ]⟩δ ⟨Im[AA∗

X ]⟩ −
5U2

0,ρρρ − 3U0,ρρρρU0,ρρ

12U2
0,ρρ

∆ = 0, (I.6)

δE1

ρ20
− γ1

2
δ
⟨
|A|2

⟩
− (γ1 + a1 + a2)ρ0δρe

+

[
(γ1 + a1 + a2)

U0,ρρρρ0
U0,ρρ

+ 3γ1 + a1 + a2

]
∆

2U0,ρρ

= 0, (I.7)

δ
⟨
|A|2

⟩
= 2ρ0δρe +

(
1− U0,ρρρρ0

U0,ρρ

)
∆

U0,ρρ

, (I.8)

δ
⟨
|A|4

⟩
= 4ρ30δρe + 6ρ20

(
1− U0,ρρρρ0

3U0,ρρ

)
∆

U0,ρρ

, (I.9)

δ ⟨Im[AA∗
X ]⟩ = γ1ρ

2
0δ
⟨
|A|2

⟩
+
a1 + a2

4
δ
⟨
|A|4

⟩
− δE1 (I.10)

when K0 = 0. Here we ignore the terms higher than δµ. With Eq. (C2) and relations
(I.6)–(I.10), we can determine how the conserved quantities and the nonlocal terms change
while varying parameter µ locally at the leading order. But to get the dependence of δ ⟨|A|2⟩
on ∆, only Eq. (C2) and relations (I.6)–(I.8) are needed. After some calculations we have

[
5U2

0,ρρρ − 3U0,ρρρρU0,ρρ − 6(ρ−1U0,ρρ − U0,ρρρ)
2 + 24ρ2U0,ρρ(2γ1 + a1 + a2)

2
] ∆

12U2
0,ρρ

+2
(
b0 − ρ−2U0,ρρ

)
δ
⟨
|A|2

⟩
= 0. (I.11)

Since ∆ becomes positive right after branching we can thus determine the sign of δ ⟨|A|2⟩
and obtain the branching direction.
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Appendix J

Exact real solutions of SH23 with
dispersion

Here we study exact real solutions of SH23 with dispersion, Eq. (4.41), based on general
expressions for meromorphic traveling solutions presented in [78]. Traveling solutions of
Eq. (4.41) satisfy the ODE [83]

w′′′′ − σw′′′ + 2w′′ − Cw′ − αw − βw2 + γw3 = 0, (J.1)

where w(z) = u(x, t), z ≡ x−Ct and C is the speed of the traveling solution. Meromorphic
traveling solutions require σ ̸= 0; no such solutions are present when σ = 0 [78] although
traveling fronts are of course present in this case, too. As before, we are primarily interested
in the physically more relevant case γ > 0; the destabilizing case (γ < 0) considered in [78]
can be transformed into the stabilizing case using the transformation

w → −iw, β → iβ. (J.2)

We assume that all coefficients are real with σ, β ≥ 0 and set γ = 30. Equation (J.1) yields
two Laurent series with different principal parts,

w1(z) =
2

z2
+

σ

7z
+O(1), w2(z) = − 2

z2
− σ

7z
+O(1). (J.3)

When σ ̸= 0 exact real elliptic solutions, periodic on the real axis, are present. These
possess two poles within the periodic parallelogram when 28√

127
< σ <

√
7 or

√
7 < σ . 3.015

and take the form

w(z) =
1

2i

[
℘′ (z + ω

2

)
℘
(
z + ω

2

)
− ℘(z1)

]2
+

σ

14i

℘′ (z + ω
2

)
℘
(
z + ω

2

)
− ℘(z1)

+ 4i℘
(
z +

ω

2

)
+i

23σ2 − 196

2940
+

√
42(13384σ2 − 43904− 941σ4)

5880
, (J.4)
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where

℘(z1) =
23σ2 − 196

5880
, C = −σ(3627σ

4 − 38640σ2 + 21952)

1372(93σ2 − 56)
,

g2 =
2311σ4 − 38024σ2 + 153664

6914880
, g3 = −(23σ2 − 196)(9439σ4 − 154056σ2 + 614656)

203297472000
,

β =
3
√

42(13384σ2 − 43904− 941σ4)

196
, α =

β2

135
.

The modular discriminant ∆ vanishes when σ = 28/
√
127,

√
7,
√

833/89, and
√
32/41.

The periodic lattice Γ is rectangular when 28√
127

< σ <
√
7 and rhombic (Γ admits a basis

{ω1, ω
∗
1}) when

√
7 < σ . 3.015. In the former case, ω is chosen as one half of the pure

imaginary period; in the latter case ω is set equal to ω1. The solutions decrease to zero in
supremum norm as σ approaches 28/

√
127. When σ tends to

√
7, the real period increases to

infinity and the solutions become homoclinic (pulse or hole, depending on the sign of Im[ω]).
These solutions take the form

w(z) = ±cosh(
√
7z/14) + sinh(

√
7z/14)

14 cosh2(
√
7z/14)

+
1

4
√
14
. (J.5)

At this value of σ the speed C = 17/(28
√
7) while α = −15/56, β = 45/(2

√
14).

Stationary (C = 0) real meromorphic solutions of Eq. (J.1) with σ = 0 obtain when
β = 0 (i.e., the standard Swift-Hohenberg equation) and α ∈

(
−16

25
, 11
25

)
∪
(
11
25
,∞
)
in the two

poles case. These take the form

w(z) =
℘′ (z + ω

2

)
2i(℘

(
z + ω

2

)
+ 1

30
)2

+ 4i℘
(
z +

ω

2

)
− i

35
, (J.6)

with

g2 =
4− 5α

540
, g3 =

8− 25α

81000
. (J.7)

The modular discriminant ∆ vanishes when α = −16/25 and 11/25. The periodic lattice Γ
is rectangular when −16

25
< α < 11

25
and rhombic when α > 11/25. As before, ω is chosen as

half of the pure imaginary period in the rectangular case and as the generator of the lattice
in the rhombic case. The solutions decrease to zero in supremum norm when α approaches
−16/25. As α → 11/25, the solutions become homoclinic and take the form

w(z) = ± 2 sinh(z/
√
5)

5 cosh2(z/
√
5)
. (J.8)

The elliptic solutions and the homoclinic solution computed in Eqs. (J.6), (J.8) have also
been derived in [77]. Sample solution profiles for σ ̸= 0 and σ = 0 are shown in figures J.1
and J.2, respectively.
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Figure J.1: Solutions of Eq. (J.1) when σ ̸= 0 as given by (J.4). (a) σ = 2.5. (b) σ =
√
7.

(c) σ = 2.8. The solid (dashed) line corresponds to Im[ω] > 0 (Im[ω] < 0). The solid and
dashed lines coincide in (c).
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Figure J.2: Solutions of Eq. (J.1) when σ = 0, β = 0 as given by (J.6). (a) α = −0.4. (b)
α = 11

25
. (c) α = 1.




