
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
PMap : unlocking the performance genes of HPC applications

Permalink
https://escholarship.org/uc/item/1rq4w9r5

Author
He, Jiahua

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1rq4w9r5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

PMap: Unlocking the Performance Genes of HPC Applications

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Jiahua He

Committee in charge:

Professor Jeanne Ferrante, Co-Chair
Professor Allan E. Snavely, Co-Chair
Professor Sheldon Brown
Professor Sorin Lerner
Professor J. Andrew McCammon

2011

Copyright

Jiahua He, 2011

All rights reserved.

The dissertation of Jiahua He is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Co-Chair

Co-Chair

University of California, San Diego

2011

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . x

Acknowledgements . xi

Vita . xiii

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Performance Modeling and Prediction 2
1.2 Challenges of Performance Modeling and

Prediction in High Performance Computing 3
1.2.1 Parallel Computing 4
1.2.2 Grid Computing 6
1.2.3 Hybrid Computing 8
1.2.4 New Storage Technologies 8

1.3 PMap overview . 10
1.3.1 Online Performance Prediction for Computational

Grids . 11
1.3.2 Performance Idioms Recognition for Hybrid Com-

puting Platforms 12
1.3.3 Performance Characterization and Modeling of Flash

Storage Systems 12

Chapter 2 Performance and Reliability of Production Computational Grids 14
2.1 Measurement Infrastructure 15

2.1.1 Grid Assessment Probes 15
2.1.2 PreCo . 16
2.1.3 Inca . 16

2.2 Testbeds . 17
2.3 Experiments . 18

2.3.1 Inca Configuration 18
2.3.2 Schedule Configuration 19

2.4 Performance and Availability 20
2.4.1 TeraGrid . 20
2.4.2 Geon . 23

iv

2.5 Prediction of Application Performance based on Bench-
mark Measurements . 27
2.5.1 Prediction Methods 28
2.5.2 Prediction Results 30

2.6 Related Work . 31
2.7 Conclusions and Future Work 32

Chapter 3 Automatic Recognition of Performance Idioms in Scientific Ap-
plications . 35
3.1 Definitions of Five Idioms 37
3.2 Automatic Recognition by Compiler 41

3.2.1 LNG: Loop Nest Graph 42
3.2.2 ARG: Affinity Relation Graph 43
3.2.3 RAG: Reduced Affinity relation Graph 44
3.2.4 Idioms Recognition 45
3.2.5 Implementation on Open64 46

3.3 Experiment Results . 47
3.3.1 The NAS Parallel Benchmark 47
3.3.2 Code Coverage 47
3.3.3 Prototype Verification 49
3.3.4 Performance Approximation 49

3.4 Related Work . 53
3.4.1 Benchmarks and Application Requirements 53
3.4.2 Archetypes and Kernel Coupling 54
3.4.3 Machine Idioms 55
3.4.4 Reduction Recognition 55

3.5 Conclusions and Future work 56

Chapter 4 DASH: a Flash-based Data Intensive Supercomputer 58
4.1 System Overview . 61

4.1.1 Storage hierarchy 61
4.1.2 Cost efficiency 63
4.1.3 Power efficiency 64

4.2 I/O system design and tuning 65
4.2.1 Single drive tuning 67
4.2.2 Basic RAID tuning 69
4.2.3 Advanced tuning 72
4.2.4 RAM drive . 74

4.3 Performance of real-world data-intensive applications . . 75
4.3.1 External memory BFS 75
4.3.2 Palomar Transient Factory 77
4.3.3 Biological pathways analysis 78

4.4 More discussions on flash drives 80

v

4.4.1 Performance downgrading 80
4.4.2 Reliability and lifetime 80
4.4.3 Flash-oriented hardware and software 81

4.5 Related work . 82
4.5.1 ccNUMA machines 82
4.5.2 Distributed Shared Memory (DSM) 82

4.6 Conclusions and future works 83

Chapter 5 Performance Characterization of Flash Storage System 85
5.1 DASH System Architecture 85
5.2 Flash-based IO Design Space Exploration 86

5.2.1 Experiment Configurations 88
5.2.2 Data Pre-processing 90
5.2.3 Stripe Size . 93
5.2.4 Stripe Widths and Performance Scalability 94
5.2.5 File Systems . 97
5.2.6 IO Schedulers . 97
5.2.7 Queue Depths . 98

5.3 Conclusions . 100

Chapter 6 Performance Prediction of HPC Applications on Flash Storage
System . 102
6.1 Methodology . 103
6.2 Experimental Workload and Systems 105

6.2.1 Workload . 105
6.2.2 Systems . 106

6.3 Experiments and Results 106
6.3.1 Experiments . 106
6.3.2 Results . 107

6.4 Related Work . 107
6.5 Conclusions and Future Work 108

Chapter 7 Conclusions . 110

Appendix A TeraGrid Errors . 113

Appendix B GEON Errors . 115

Bibliography . 116

vi

LIST OF FIGURES

Figure 1.1: Overview of PMaC prediction framework. 5
Figure 1.2: Example MultiMAPS results from 3 different System. 6
Figure 1.3: The existing memory storage hierarchy. There is a 5-order-of-

magnitude latency gap between memory and spinning disks.
One solution is to adopt distributed shared memory and flash
drives to fill the gap. 9

Figure 2.1: Frequency of Gather probe runtime on TeraGrid falling between
x standard deviations of the mean. 22

Figure 2.2: Number of Gather and Circle Errors on TeraGrid. 23
Figure 2.3: Frequency of Gather probe runtime on GEON falling between

x standard deviations of the mean. 25
Figure 2.4: Number of Gather Errors on Geon. 26
Figure 2.5: Normalized Gather and PreCo measurements (excluding the

setup, cleanup and queue wait times) vs. time. 27
Figure 2.6: Taxonomy of Prediction Methods 28

Figure 3.1: A complete example of Fortran routine 42
Figure 3.2: Example CFGs of improper region and loops with the same header 43
Figure 3.3: LNG of the example in Figure 3.1 43
Figure 3.4: ARG of the example in Figure 3.1 44
Figure 3.5: RAG of the example in Figure 3.1 45
Figure 3.6: Execution time versus data set size of the Stream idiom bench-

mark and its instances in CG on Itanium2 50
Figure 3.7: Execution time versus data set size of the Stream idiom bench-

mark and its instances in CG on Power4 51
Figure 3.8: Execution time versus data set size of the idiom benchmarks on

Itanium2 . 52
Figure 3.9: Execution time versus data set size of the idiom benchmarks on

Power4 . 52

Figure 4.1: The memory hierarchy. Each level shows the typical access
latency in processor cycles. Note the five-orders-of-magnitude
gap between main memory and spinning disks. 60

Figure 4.2: Physical and virtual structure of DASH supernodes. DASH has
in total 4 supernodes IB interconnected of the type shown in
the figure. 62

Figure 4.3: Random read performance improvements with important tunings. 67

vii

Figure 4.4: Random read performance with and without RAID. The con-
figuration with RAID only scales up to 8 drives while the one
without RAID can scale linearly up to 16 drives. Tests with
raw block devices were also performed. 73

Figure 5.1: The original design of IO nodes. Each eight drives are grouped
by a hardware RAID controller into a hardware RAID-0. An-
other software RAID-0 is set up on top of the two hardware
RAIDs. The best random read IOPS achieved is about 88K,
which is about only 15\% of the theoretical upper bound. 86

Figure 5.2: The IO node design after switching to simple HBAs. All 16
drives are set up as a single software RAID-0. The random read
IOPS was improved by about 4x comparing with the original
design up to about 350K. 88

Figure 5.3: Average bandwidth over five passes of read tests. The first pass
tends to off the trend. 91

Figure 5.4: Average bandwidth over five passes of write tests. The first
pass tends to off the trend. The write tests are more sensitive
to pre-conditions but can adapt quickly right after the first run. 92

Figure 5.5: Coefficients of variation before outliers removal. With Chau-
venet's criterion [30], 1155 outliers were found out the 16,800
measured data. 92

Figure 5.6: Coefficients of variation after outliers removal. After removing
the first pass of each test, all the outliers are removed. 93

Figure 5.7: Average bandwidth with different stripe sizes. Deciding stripe
size is a trade-off between parallelism and striping overhead. . . 94

Figure 5.8: Random read IOPS scaling over drive amount. It scales almost
linearly up to 8 drives but not after that. 96

Figure 5.9: Random read IOPS scaling over drive amount without MSI-X.
With MSI disabled, it scales almost linearly up to 16 drives. . . 96

Figure 5.10: Average bandwidth with and without file system. The sequen-
tial performances with and without XFS are almost the same
while the XFS's random (especially write) performances are worse. 98

Figure 5.11: Average bandwidth with different IO schedulers. Simple algo-
rithms like No-op and Deadline work best. Most advanced opti-
mizations designed for spinning disks, such as elevator schedul-
ing, are not necessary, even harmful for flash drives. 99

Figure 5.12: Average bandwidth of sequential tests with different queue depths
1, 4 and 16. Although the request size (4MB) can span across
all the drives, higher queue depth can still improve bandwidth
because of the internal parallelism of each drive. 100

viii

Figure 5.13: Average bandwidth of random tests with different queue depths
32, 128 and 512. Performance increases until the queue depth
128 only because 512 exceeds the aggregated parallelism of the
16 drives. 101

Figure 6.1: Methodology Overview. 104

ix

LIST OF TABLES

Table 1.1: Classification of Performance Modeling Methods 2

Table 2.1: Resources used in GrASP and PreCo Configurations on TeraGrid. 18
Table 2.2: Resources used in GrASP and PreCo Configurations on Geon. . 19
Table 2.3: Statistics on the Execution of GrASP Gather on TeraGrid: GrASP-

Specific Steps Only (in Seconds). 21
Table 2.4: Statistics on the Execution of GrASP Gather on TeraGrid: Steps

Relevant to a Grid Application Only and Totals (in Seconds). . . 21
Table 2.5: Statistics on the Execution of GrASP Gather on Geon: Steps

Relevant to a Grid Application Only and Totals (in Seconds). . . 24
Table 2.6: Statistics on the Execution of GrASP Gather on Geon: GrASP-

Specific Steps Only (in Seconds). 24
Table 2.7: Relative Error (and Coefficient of Variance) Percentages for Dif-

ferent Prediction Methods. 34

Table 3.1: Static breakdown of the NPB by idioms 48
Table 3.2: Automatic idioms recognition for NPB 49
Table 3.3: Configurations of the experiment platforms 50

Table 4.1: Cost efficiency comparison between DASH and commercial prod-
ucts. 63

Table 4.2: Comparison of power metrics between SSD and HDD. 65
Table 4.3: Important tuning parameters for flash drives. 68
Table 4.4: I/O test results of a single flash drive. 68
Table 4.5: Important tuning parameters for the DASH I/O system. 70
Table 4.6: I/O test results with 2 different stripe sizes. 72
Table 4.7: I/O test results with and without RAID. 74
Table 4.8: I/O test results of the RAM drive. 75
Table 4.9: Average MR-BFS results on the Dash SuperNode from different

storage media. 77
Table 4.10: Comparison of PTF Query response times on DASH and PTF

production database with spinning disks. 78
Table 4.11: Query response times of popular queries in Biological Networks

on different storage media (Hard disk, SSD and memory) and
their speed-up in comparison to hard disk. 79

Table 5.1: Parameter Dimensions and Their Values 89

x

ACKNOWLEDGEMENTS

First of all I would like to express my deepest gratitude to my advisor

and friend, Allan Snavely. He is the one who led me into the challenging but

exciting world of performance characterization and modeling with his enthusiasm

and dedication. This dissertation could not have been completed without his

considerate guidance, selfless support, and stimulating inspiration.

I would also like to thank my other committee members, Jeanne Ferrante,

Sorin Lerner, Andrew McCammon, and Sheldon Brown, for their valuable time

and insightful advices.

Most of my time in UCSD was spent with my colleagues in the Gordon team,

the PMaC lab and the Grail lab. It is my honor to work with and learn from these

amazing people with intellect, passion, and commitment. I really apprecate all

their helps for my studies, work, and life during these years.

Lastly but not least, profound and heartfelt thanks are due to my family.

No matter what happens, they are always there for me. The love and joy from my

family is the most precious gift of my life.

Chapter 2, in part, is a reprint of the material as it appears in the 7th

IEEE/ACM International Conference on Grid Computing (Grid'06), a joint work

with Omid Khalili, Catherine Olschanowskyd, Allan Snavely, and Henri Casanova.

The dissertation author was the primary investigator and author of this paper.

Chapter 3, in part, is a reprint of the material as it will appear in the 25th

IEEE International Parallel and Distributed Processing Symposium (IPDPS'11),

a joint work with Allan Snavely, Rob Van der Wijngaart, and Michael Frumkin.

The dissertation author was the primary investigator and author of this paper.

Chapter 4, in part, is a reprint of the material as it appears in the 2010

International Conference for High Performance Computing, Networking, Storage

and Analysis (SC'10), a joint work with Arun Jagatheesan, Sandeep Gupta, Jeffrey

Bennett, and Allan Snavely. The dissertation author was the primary investigator

and author of this paper.

Chapter 5, in part, is a reprint of the material as it appears in the 2010

Teragrid Conference (TeraGrid'10), a joint work with Jeffrey Bennett and Allan

xi

Snavely. The dissertation author was the primary investigator and author of this

paper.

Chapter 6, in part, is a reprint of the material as it appears in the work-

shop on Application of Communication Theory to Emerging Memory Technologies

(ACTEMT'10) hold with Globecom'10, a joint work with Mitesh Meswani, Pietro

Cicotti, and Allan Snavely. The dissertation author was the primary investigator

and author of this paper.

xii

VITA

2000 B. S. in Computer Science, University of Science and Tech-
nology of China

2003 M. S. in Computer Science, University of Science and Tech-
nology of China

2011 Ph. D. in Computer Science, University of California, San
Diego

PUBLICATIONS

``Automatic Recognition of Performance Idioms in Scientific Applications"", J. He,
A. Snavely, R. Van der Wijngaart, and M. Frumkin, To appear in the 25th IEEE
International Parallel and Distributed Processing Symposium (IPDPS'11), An-
chorage, Alaska, May 16-20, 2011.

``Predicting Disk I/O Time of HPC Applications on Flash Drives"", M. Meswani, P.
Cicotti, J. He, and A. Snavely, Workshop on Application of Communication The-
ory to Emerging Memory Technologies (ACTEMT'10) with Globecom'10, Miami,
Florida, December 6-10, 2010.

``DASH: a Recipe for a Flash-based Data Intensive Supercomputer"", J. He, A.
Jagatheesan, S. Gupta, J. Bennett, and A. Snavely, In Proceedings of the 2010
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC'10), New Orleans, LA, November 13-19, 2010.

``Understanding the Impact of Emerging Non-Volatile Memories on High-Perfor-
mance, IO-Intensive Computing"" (Nominated as the best paper and the best
student paper), A. M. Caulfield, J. Coburn, T. I. Mollov, A. De, A. Akel, J. He,
A. Jagatheesan, R. K. Gupta, A. Snavely, and S. Swanson, In Proceedings of
the 2010 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC'10), New Orleans, LA, November 13-19, 2010.

``DASH-IO: an empirical study of flash-based IO for HPC"" (Nominated as the
best paper), J. He, J. Bennett, and A. Snavely, In Proceedings of the 2010
Teragrid Conference (TeraGrid'10), Pittsburgh, PA, August 2-5, 2010.

``Code coverage, performance approximation and automatic recognition of idioms
in scientific applications"" J. He, A. Snavely, R. F. Van der Wijngaart, and M.
A. Frumkin, In Proceedings of the 17th international Symposium on High Perfor-
mance Distributed Computing (HPDC'08), Boston, MA, June 23-27, 2008.

xiii

``Measuring the Performance and Reliability of Production Computational Grids"",
O. Khalili, J. He, C. Olschanowskyd, A. Snavely, and H. Casanova, In Proceedings
of the 7th IEEE/ACM International Conference on Grid Computing (Grid'06),
Barcelona, Spain, September 28-29, 2006.

xiv

ABSTRACT OF THE DISSERTATION

PMap: Unlocking the Performance Genes of HPC Applications

by

Jiahua He

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor Jeanne Ferrante, Co-Chair
Professor Allan E. Snavely, Co-Chair

Performance modeling, the science of understanding and predicting appli-

cation performance, is important but challenging. High Performance Computing

(HPC) with large-scale applications and aggressive technologies, such as dynamic

computational grids, hybrid computing platforms, and innovative storage systems,

further complicates the task. This dissertation proposed and proved the hypothesis

that a small number of performance primitives can be extracted from HPC applica-

tions and leveraged for fast application performance modeling and prediction even

on large-scale dynamic systems. PMap: a set of methods and tools to extract,

measure, and analyze performance primitives in HPC applications are proposed,

implemented, and verified under these challenging environments.

xv

Two production computational grids, Teragrid and Geon, were monitored

with periodically running benchmarks for about half a year. Their performance

fluctuated in the 50\% range. However, simple benchmarks that serve as perfor-

mance primitives can be used to predict application performance with a relative

error as low as 9\%.

To map program constructs to the best matched hardware components in

hybrid computing platforms, an automatic idioms (performance primitives) recog-

nition method was proposed and implemented based on the open source compiler

Open64. With the NAS Parallel Benchmark (NPB) as a case study, the proto-

type system is about 90\% accurate compared with idiom classification by a human

expert. The performance of the idiom benchmarks with their corresponding in-

stances in the NPB codes on two different platforms were compared with different

methods. The approximation accuracy is up to 97\%.

With the HPC data challenge and emerging storage technologies, a flash-

based supercomputer DASH was designed, built, and tuned. A large parameter

space was swept by fast and reliable measurements developed to investigate varying

design options, and the results showed that performance can be improved by as

much as 9x with appropriate existing technologies developed here. Finally, the

PMaC framework was extended to model and predict application performance on

flash storage systems. Results showed that the total I/O time can be predicted

with reasonable error of 15\%.

The end result of this body of work is that the performance of applications

on supercomputers can be understood by mapping their performance genetics.

xvi

Chapter 1

Introduction

Performance modeling and prediction is designed to catch the behavioral

characteristics of a specific algorithm-architecture or program-architecture combi-

nation. Understanding the range of characteristics is key for architecture design,

program optimization, and system evaluation. As a result, performance modeling

and prediction methods are widely used in almost all branches of computer science,

such as architecture design [25][143][41], job scheduling [77][125], software engineer-

ing [14], compiler optimization [136], storage systems capability planning [8], and

high performance computer acquisition and performance tuning [26][99].

However, it is not trivial to model and predict performance accurately and

quickly even for simple sequential programs. Metrics, such as the number of float-

ing point operations that an application contains, cannot predict actual perfor-

mance very well [26]. More advanced metrics are needed as the increasing speed

gap between processor and memory (and even I/O), as well as the features of

modern processors like multiple instruction issuing and out-of-order execution,

make memory hierarchy and instruction mix important. In parallel programs,

parallelism, synchronization, contention and communication even complicate the

situation further.

1

2

Table 1.1: Classification of Performance Modeling Methods

Input Level of detail Analysis
method

Software Hardware

Analytical
modeling

Pseudo code Computational
model param-
eters

Statement Model analy-
sis

Empirical
analysis

Source code
/Executable

Real architec-
ture

Program con-
struction

Profile analy-
sis

Simulation Executable
/Trace

Specification Instruction
cycle /Trace
event

Simulation
/Emulation

1.1 Performance Modeling and Prediction

There are several different classification approaches for performance mod-

eling and prediction methods in the literature [2][18][94]. This work summarizes

them and classifies the methods into three categories: analytical modeling, empir-

ical analysis and simulation, which are shown in Table 1.1.

Analytical modeling [45][135][38] is mainly used on the algorithm level and

is similar to complexity analysis of sequential algorithms. There is also some

work on analytical modeling of specific applications [67][80]. These models require

intensive labor and expertise to construct, and are not generally applicable to most

applications. An analytical model typically includes a simplified abstraction of its

hardware architecture. In order to describe a specific algorithm and architecture

combination, an analytical model takes pseudo code of the target algorithm and

parameters of the target architecture as inputs. Then the number of algorithmic

operations, such as floating-point computation and memory access, is counted on

the target architecture to predict the performance. Though they are generally

manual, analytical models can be used as underlying models for automatic tools

such as a simulator to analyze the performance of a program [12].

Empirical analysis [26][79] usually adopts measurement, profiling, and other

empirical methods to analyze and predict performance. Real programs in the form

3

of source code or executable and real architectures are required for measurement

and analysis. For measurement, static and dynamic program analysis are used

to collect program profiles, and micro benchmarks or hardware specifications are

exploited to identify architecture characteristics. Different approaches will ex-

pose details on various levels of programs, such as instructions, statements and

loops. For analysis, there are also many different approaches, such as convolu-

tion in PMaC model [26] and simulation in the model presented by Marin and

Mellor-Crummey [79]. They are all based on program profiles and architecture

characteristics collected, which is called profile analysis.

In contrast to the methods discussed above, simulation [25][36][12] usually

runs the program virtually step by step driven by execution or trace. A simulation

driven by execution is also called emulation, which actually executes the instruc-

tions in the program. On the other hand, a trace-base simulation takes a stored

trace of a program as input and runs off of the events in the trace. The specification

of the architecture is mainly embedded in the simulator with several adjustable

parameters. Most processor simulators, such as SimpleScalar [25], mimic each in-

struction cycle of the program to determine the timing precisely. Simulators of

other system components, such as I/O and communication, usually have coarser

granularities performing on I/O and communication event level.

1.2 Challenges of Performance Modeling and

Prediction in High Performance Computing

Performance modeling and prediction is challenging in terms of accuracy

and modeling time. Simulation is often believed to be the most accurate method

since it considers the details down to instruction cycles. However, its running time

is usually prohibitive. Though many accelerating techniques are proposed [143][110],

simulation time is still several order of magnitudes longer than that of direct exe-

cution, which usually limits the application of this method to small and medium

scales.

In high performance computing (HPC), the situation is even worse. HPC

4

users are generally trying to solve large-scale scientific problems, which may take

days, weeks, or even months to compute. Performance modeling and prediction

for HPC applications is more time-consuming than the application themselves.

Furthermore, to speed up these applications, the community tends to apply ag-

gressive technologies like parallel computing, grid computing, hybrid computing,

and out-of-core algorithms. The application of these technologies introduces more

complexities, such as parallelism, dynamic behavior, and online resource schedul-

ing. For instance, a dynamic computing platform like a computational grid might

need on-the-fly performance prediction. Otherwise, the prediction results will be-

come stale before they can be used. As a result, more advanced modeling and

prediction techniques are required for HPC applications.

1.2.1 Parallel Computing

In parallel computing, a problem is divided in the data dimension (data-

parallel) or the task dimension (task-parallel) and solved by multiple processes

running in parallel on different processors to speed up the computation. To co-

operate and finish the job, these separate processes usually communicate with

each other to exchange data or synchronize. In shared memory systems, processes

communication is through memory; while in distributed memory systems, they

communicate through the interconnection network. Since shared memory com-

munication can be modeled as an extra memory hierarchy level and distributed

memory system is the mainstream nowadays, this work will focus on the latter,

especially MPI [85] (Message Passing Interface) programs.

To model and predict the performance of parallel programs, people have

to consider not only the details of sequential programs referred to above but also

parallelism and communication. These two additional components for parallel

computing systems introduce more complexities and probably longer modeling

time than for serial applications. For example, to efficiently simulate parallel pro-

grams with cycle-accurate simulation, usually the simulator itself also has to run

in parallel.

In the PMaC (Performance Modeling and Characterization) lab [103], we

5

have worked on these challenges for years and proposed the PMaC prediction

framework [102] to ease and expedite the process. Figure 1.1 shows the compo-

nents and the steps of the framework. Instead of using slow simulation, the PMaC

framework adopts empirical analysis to achieve fast modeling and prediction. The

basic idea of the frameworks is to first collect the performance characteristics of

both the target architecture (called machine profile) and the target application

(called application signature), and then convolve them together with an analyti-

cal model, which is expressed in a closed-form formula. To simplify the model while

guaranteeing the accuracy, the framework only takes the two dominant factors, one

for local performance and another for remote communication, into account.

Figure 1.1: Overview of PMaC prediction framework.

To collect machine profiles, one can apply PMaC's MultiMAPS [104] bench-

mark and a simple MPI Ping-Pong benchmark to measure the memory and net-

work performance of the target machine. Figure 1.2 shows some example Mul-

tiMAPS results from 3 different systems. The stair-like curves indicate the per-

formance levels of the memory hierarchy in the modern computer architecture.

To obtain application signatures, one can utilize PMaC's instrumentation tools,

PMaCinst [107]/PEBIL [105] and PSiNS [106], to collect event traces and proceed

coarse-grain simulations. Finally, PMaC Convolver [101] is used to combine the

6

machine profile and the application signature into a specific analytical model and

generate the final prediction.

Figure 1.2: Example MultiMAPS results from 3 different System.

After years of refinement, now the PMaC framework can handle large-scale

parallel programs with reasonable modeling time and accuracy [26]. However, it

was not designed for the stiffer environments like grid or hybrid computing plat-

forms. Moreover, we are in an era with emerging new storage technologies. How

to quickly predict application performance across different storage technologies is

also a challenge. The following sections will discuss these topics in details.

1.2.2 Grid Computing

Computational grids are dynamic in nature. First, grid resources are usu-

ally geographically distributed. As a result, they are connected together through

long distance networks, even public wide area networks. The available bandwidth

for a specific application is not stable. Sometimes, users may even experience fail-

ures. Second, grid resources can be shared by multiple users. The login nodes for

compilation and data staging are usually shared. Even compute nodes, especially

some ``fat"" nodes with a number of processors and large memory, can be shared.

7

Application performance running on shared resources will be affected by other

workloads. Finally, grid resources are heterogeneous, under different administra-

tion domains, and probably in different time zones. These factors make the loads

of different resources un-balanced. The performance of an application running on

the same resource at different time, or on different resources at the same time can

vary dramatically. Sometimes, a resource can be completely un-available because

of system maintenances or hardware/software failures.

In this work, two production grid platforms, TeraGrid [132] and Geon [116],

were monitored and benchmarked for about half a year. The results showed that

these production grids are rather unavailable, with success rates for benchmark and

application runs between 55\% and 80\%. It is found that performance fluctuation

was in the 50\% range. There is no one performance or reliability of a grid; there is

only a continually evolving time-series of performances and reliabilities that may

be observed and recorded. For this kind of dynamic environments, appropriate

modeling methods like online prediction are needed.

Furthermore, middlewares are widely applied for computational grids and

further complicate the situation. Computational grids subsume traditional com-

pute, storage, and data acquisition resources by federating them. These platforms

hold the promises of increased capacity and performance, which users/applications

should achieve by the use of high-level software abstractions. Furthermore, the goal

of the middleware infrastructure is to make it possible for users not to be concerned

about specific resource details, but rather to operate at a higher level and perform

tasks such as ``find sources of data matching this description, find some suitable

compute platforms to carry out a specified computation on the data, store the re-

sult in a suitable data archive and return a virtual handle to it"". However, under

the covers many resources and middleware services are involved and although the

high-level interface may be convenient it is difficult to understand the performance

and availability characteristics of such systems without appropriate benchmarking

and modeling.

8

1.2.3 Hybrid Computing

Hybrid hardware is emerging with different components designed to speed

up different program constructs. RoadRunner [15] is the first peta-flops super-

computer with hybrid hardware: Opteron \mathrm{R}\bigcirc cores plus Cell \mathrm{R}\bigcirc processors. GPU

computing is becoming more and more important. The first place of the current

Top500 list [133] is GPU machine, Tianhe-1A. How to recognize suitable program

constructs for GPU execution automatically will be critical for the usability and

efficiency of these GPU machines. FPGA machines will have even more diversities.

One example is Convey \mathrm{R}\bigcirc HC-1 [22], which provides a handful application-specific

co-processors called personalities for Intel \mathrm{R}\bigcirc processors. To explore the potential

of this kind of hardware requires automatic recognition of different program con-

structs (personalities) and mapping them to corresponding hardware components.

In one of our un-published works, we were able to recognize the Gather/Scatter

constructs in real applications and send it to the Convey FPGA accelerator thus

speeding as much as 20x.

On the road to exa-scale supercomputing, performance is not the only con-

cern. In fact, power consumption is becoming the limit for scalability. To solve

the problem, our colleague Professor Andrew Chien has proposed a new paradigm

called 10x10 [33]. The basic idea is to integrate 10 different specialized cores onto

one chip and use the best matched ones for specific program constructs. How to

recognize these program constructs and map them to corresponding cores is a real

challenge.

The key issue here is how to model and predict the performance of a specific

program construct on different hardware components. It will be ideal to build up a

connection between the performance and the structure of program constructs. In

this way, one can easily identify appropriate program constructs by their structure

and schedule them to proper hardware components.

1.2.4 New Storage Technologies

HPC applications are becoming more and more data-intensive. This work

has participated in and analyzed some user interviews [123][122][70][121] and found

9

two important data-intensive applications categories: data mining and predictive

science [129][48][11]. Both of these two kinds of applications share the same char-

acteristics: they are dominated by small random data access (especially read)

patterns.

To achieve satisfying performance for these kinds of applications, short

latency is the key. Unfortunately, the current architecture was not designed for

these kinds of latency-critical applications. Figure 1.3 shows the average latencies

of the existing memory storage hierarchy. As may be noticed, there is a 5-order-

of-magnitude latency gap between memory and spinning disks.

To fill the latency gap, one can make use of remote DRAM memory across

the network interface, which is 3-order-of-magnitude faster than spinning disks.

However, it requires special hardware [128] or software [114][1][29] to support.

Adopting new storage technologies like lash-based SSD [3][31][28][50][98][84] is

another choice, which is 2-order-of-magnitude faster than spinning disks and is

promising to take the place of them.

More new storage technologies, such as PCM and STTM [27], are coming.

Figure 1.3: The existing memory storage hierarchy. There is a 5-order-of-

magnitude latency gap between memory and spinning disks. One solution is to

adopt distributed shared memory and flash drives to fill the gap.

10

However, transferring to a new technology can be expensive and risky. People

would like to understand what the performance gain will be before they investi-

gate. How to model and predict application performance on these new storage

technologies is an interesting research topic further expounded below.

1.3 PMap overview

In scientific applications, space, time, local and long-range interactions are

represented by abstract programming constructs. Despite many different imple-

mentations, there are fundamental similarities in these abstractions: space is usu-

ally modeled by structured or unstructured grids, time is often modeled by the

outermost iteration loop (time step), and interactions are modeled by systems of

equations that are solved by iterative explicit or implicit methods. As a result,

a number of similar programming constructs can be found in various scientific

applications [46].

In grid computing, resources are heterogeneous and designed for specific

use scenarios. Large and complex grid applications can make use of the specialties

of these resources and schedule various components to matched resources. For

example, an application may acquire data from some sensors or a telescope, transfer

the data to a peta-scale supercomputer for simulation or data processing, then

visualize the output on a visualization cluster, and finally store the results into

an archive system. As a result, a number of similar work flow structures can be

identified in various grid applications.

In data-intensive applications, often out-of-core algorithms are adopted and

I/O performance will dominate. Basically, I/O performance is decided by type

(read/write), pattern (sequential/random), request size, and queue depth [7]. I/O

streams with these four similar characteristics result in similar bandwidth and

IOPS (I/O operations Per Second). As a result, a number of similar I/O streams

can be seen in different data-intensive application.

All of these programming constructs, work flow structures, and I/O streams

share the same feature: they are primitive components of applications and repre-

11

sent the critical structure related to the application performance. In this disser-

tation, these programming constructs, work flow structures, and I/O streams are

called performance primitives. A fundamental hypothesis of this dissertation

is that the application performance can be correlated to the performance of these

primitives and this work has developed a set of methods and tools to extract,

measure, and analyze these performance primitives. This set of methods and tools

is called PMap. In the rest of this section, how PMap can be used to solve the

challenges will be outlined.

1.3.1 Online Performance Prediction for Computational

Grids

Chapter 2 introduces the work on performance characterization and pre-

diction for computational grids [68]. To understand the performance fluctuation

and reliability of production computational grids, the test harness and reporting

framework Inca [58] was applied for deploying probe and application benchmarks

on two production computational grids: TeraGrid [132] and Geon [116]. The probe

benchmarks were designed to capture the performance of every stage of typical grid

application work flows. Both probe and applications benchmarks were executed

periodically for about half a year and the performance series were collected. With

these data, one can characterize the performance behaviors of various grid work

flow stages and find out the dominant fluctuation factor. Furthermore, because

of the internal structure similarity between the probe and the application bench-

marks, it is possible to make the probe application the performance primitive and

develop an online performance predictor for the application benchmark. By this

means, though computational grids are dynamic and vary a lot, one can still predict

the application performance with quick probe runs.

12

1.3.2 Performance Idioms Recognition for Hybrid Com-

puting Platforms

Chapter 3 discusses the work on performance idioms recognition [54]. Ex-

traction, measurement and analysis of representative program constructs can result

in a good understanding of the application performance and suggesting how best to

map the applications to computer architectures. The performance analysis com-

munity has long realized this and utilized the common programming constructs

and typical application kernels as benchmarks. But how to quantify the repre-

sentativeness of benchmarks remains a hard problem. Usually the selection of

benchmarks is to some extent subjective and decided by human sense. This work

tries to identify automatically these common constructs or data flow patterns, such

as stream, transpose, reduction, random access and stencil, in real applications,

along with their coverage coefficients. To this end, an automatic analysis tool based

on the open source compiler Open64 [96] was developed. Since these constructs

are extracted with program internal structure and coverage coefficients in mind,

they can work as the performance primitives of real applications. This allow us to

derive application requirements for new hardware based on the analysis of a few

simple primitives, as well as to map program constructs to appropriate hardware

components in hybrid computing platforms.

1.3.3 Performance Characterization and Modeling of Flash

Storage Systems

In chapter 4, 5, and 6, work on flash storage systems [53][52][83] are pre-

sented. HPC applications are becoming more data-intensive. At the same time,

new storage technologies are emerging. To leverage these storage technologies to

win the data challenge, we designed, built, and tuned a flash-based supercomputer

called DASH. Since the existing hardware and software were designed without

flash drives in mind, special system designs and technical workarounds had to be

adopted to accommodate these new drives. To further understand the performance

behaviors of flash drives, a systematic investigation with 16,800 tests was applied

13

for the flash storage system. With this detailed investigation, a complete picture

of how flash drives interact with other system components was obtained. Finally,

the PMaC framework was extended to model and predict application performance

on flash storage systems. As performance primitives, different I/O streams were

extracted from the target applications. Then the application performance can be

mapped to the performance of these primitives with specific analytical model.

Chapter 2

Performance and Reliability of

Production Computational Grids

Computational grids are dynamic in nature. Composing grid resources,

such as network connections, compute nodes, storage systems, are usually hetero-

geneous, geographically distributed and shared by multiple users. As a result, their

performance can vary dramatically. Moreover, middlewares are widely applied for

computational grids. These middlewares ease the usage of the complicated systems.

However, they hide the details of the systems and make performance evaluation

and modeling more difficult.

This work overcame these dynamism and middleware issues with four con-

tributions: (i) presented a generic grid measurement infrastructure, which was de-

ployed on two state-of-the-art grids for several months; (ii) quantified the availabil-

ity of the hardware and the middleware infrastructure in both platforms; (iii) quan-

tified the magnitude and the sources of performance fluctuations in both platforms;

and (iv) found that the performance experienced by simple ``benchmark probes""

can be used to predict the performance of a typical application with relative error

as low as 9\%.

Inca [58], a test harness and reporting framework, was used for periodically

capturing and recording time-series of grid performance and availability metrics.

Using Inca, the GrASP (Grid Assessment Probes) [34] benchmark probes and

the PreCo (from [88]) application were deployed on two state-of-the-art grid plat-

14

15

forms: TeraGrid [132] and Geon [116]. Sections 2.1, 2.2 and 2.3 describe the

measurement infrastructure, the target platforms, and the experimental method-

ology. Section 2.4 presents detailed performance and reliability data for both

grids. Section 2.5 presents and evaluates several application performance predic-

tion methods. Section 2.6 discusses related work and Section 2.7 concludes the

chapter with a brief summary of results.

2.1 Measurement Infrastructure

It was found that, in order to collect the type of data needed to characterize

the performance and reliability of a computational grid in a meaningful way, three

components are required: (i) a set of benchmark probes that exercise basic grid

functionality and that collect timing information and error messages as they run;

(ii) an actual Grid application for comparison to the probes; and (iii) a framework

for periodically running the probes and application, for archiving results, and for

providing a way to query the results. These requirements were met by the GrASP

probes, PreCo, and Inca respectively.

2.1.1 Grid Assessment Probes

The Grid Assessment Probes (GrASP) [34] are designed to serve as simple

grid application kernel exemplars as well as a set of diagnostic tools. They test

and measure performance of basic grid functions including file transfers, remote

execution, and Grid Information Services response. All probes perform the same

set of initial operations (check for a valid grid proxy, authenticate to all involved

resources, check for disk space availability, etc.). This chapter adopts the two

probes described below

Circle Probe -- The Circle probe takes a 100 MB file and passes it in a

ring around a given set of grid nodes, performing a checksum at each step along

the way to ensure that the file has come across intact. As a final step, the file is

transferred back to the originator, and a simple diff is applied to validate that the

16

file is identical to the original. There can be any number of nodes involved in the

probe. This probe is meant to emulate an application performing a token-passing

operation around grid sites.

Gather Probe -- The Gather probe transfers 100 MB data files in paral-

lel from any number of source nodes to a single compute node. A computation is

performed on the input files and a single 500MB output file is generated and trans-

ferred to a single destination site. This probe is meant to emulate an application

that performs a data aggregation operation across grid sites.

2.1.2 PreCo

PreCo (also called Transform-based Back Projection (TxBR)) is a research

code used by the National Center for Microscopy and Imaging Research [88]. The

computation component of this code uses a back projection algorithm to take 2-D

images collected from an electron microscope to generate 3-D images. PreCo is

a good exemplar of grid applications because data acquisition is potentially geo-

graphically separated from computation, computation is essentially embarrassingly

parallel (thus able to efficiently utilize distributed parallel computing resources),

while visualization from the results of computation is again potentially geograph-

ically separated from the previous two steps.

2.1.3 Inca

Inca [58] is a flexible framework for the automated testing, benchmarking

and monitoring of Grid systems. Originally developed for use within the Tera-

Grid [132] project Inca has been generalized and is in use on other computational

grids including Geon [116] and DEISA [40], it is included with the NMI [91] R7

release. Inca includes mechanisms to schedule the execution of information gath-

ering scripts, and to collect, archive, publish, and display data. Inca supports a

diverse set of use cases including, service reliability verification, monitoring, bench-

marking, site interoperability certification, and software stack validation.

17

For gathering data Inca makes use of a Reporter functionality further de-

scribed in [59]. A Reporter interacts directly with a resource to perform a test,

benchmark, or query. For example, a Reporter can publish the version of a soft-

ware package or perform a unit test to evaluate software functionality. An alpha

version of Inca 2.0 prior to its official release was adopted and the configuration

included a single Reporter Manager running on tg-login.sdsc.teragrid.org, three

Reporters (which were implemented for the two GrASP probes and for PreCo),

and the Depot which is the Inca measurement database.

2.2 Testbeds

TeraGrid -- TeraGrid [132] aggregates resources at eight partner sites to

create an integrated, persistent computational grid. Deployment of TeraGrid was

completed in September 2004, bringing over 40 teraflops of computing power and

nearly 2 petabytes of rotating storage into production, interconnected at 10-30

gigabits/second via a dedicated national network. All resources run the Tera-

Grid Common Software Stack (CTSS) which includes the Globus Toolkit version 2

(GT2). The resources in the grid include mostly clusters of Itanium2 IA-64, Alpha

EV68, Itanium IA-32, IBM Power3-II.

Geon -- The GEON grid [116], targeted to Earth Sciences applications,

aggregates resources over fifteen institutions. Each institution runs a ``GEON-

grid"" host, which provides an entry point into the system, runs a reference GEON

software stack which includes the Globus Toolkit version 3 (GT3), and may be

a gateway to local Data nodes and/or Compute nodes. The hardware consists of

commodity X86 systems purchased from Dell and ProMicro with various racks and

switches from Dell.

18

2.3 Experiments

Data was collected on both TeraGrid and Geon resources between Septem-

ber 6, 2005 and March 20, 2006, providing us with approximately 6 months of data

on the TeraGrid and 3 months of data on GEON.

2.3.1 Inca Configuration

Table 2.1: Resources used in GrASP and PreCo Configurations on TeraGrid.

Hostname Physical Location

tg-grid1.uc.teragrid.org ANL, Chicago, IL
tg-login1.iu.teragrid.org IU, Bloomington, IN
tg-login.ornl.teragrid.org ORNL, Oak Ridge, TN
lonestar.tacc.utexas.edu TACC, Austin, TX
tg-login.purdue.teragrid.org Purdue, West Lafayette, IN
tg-login.ncsa.teragrid.org NCSA, Urbana-Champaign, IL
tg-login.sdsc.teragrid.org SDSC, San Diego, CA

TeraGrid Resources

The Gather probe was run over the seven TeraGrid Resources shown in

Table 2.1. Data source nodes were ANL, IU, ORNL, TACC, and Purdue, the

compute node was NCSA and the destination node was SDSC. The NCSA com-

pute node has a cluster of Intel \mathrm{R}\bigcirc Itanium2 \mathrm{R}\bigcirc 1.3 GHz processors. A 100 MB

file was generated and transfered from each of the source nodes to NCSA where a

computation was executed and a file approximately 500 MB in size was then trans-

fered to SDSC. The Circle probe included the same seven nodes, each transferring

a 100 MB file to the next. The order of transfers was IU, ORNL, Purdue, TACC,

SDSC, NCSA, ANL and then back to IU.

The PreCo application was run on TeraGrid across a smaller set of resources

including Purdue, NCSA and SDSC. Data was sent from Purdue to NCSA where

a computation took place and the result was then sent to SDSC for storage.

19

Geon Resources

Table 2.2: Resources used in GrASP and PreCo Configurations on Geon.

Hostname Physical Location

utepgeon01.utep.edu UTEP, El Paso, TX
agassiz.la.asu.edu ASU, Phoenix, AZ
geon06.sdsc.edu SDSC, San Diego, CA
geonnet1.mines.uidaho.edu UI, Moscow, ID
geongrid.rice.edu RICE, Houston, TX
geongrid.geo.arizona.edu Arizona, Tucson, AZ
cgrid0.geol.iastate.edu ISU, Ames, Iowa

The GrASP probes were ported to use GT3. The Web Services (WS)

GRAM server is used to submit jobs to remote resources and GridFTP is used

to transfer files (as on the TeraGrid). At the time of benchmarking, the PBS

scheduler on the compute resource was not configured; instead all jobs were forked

and ran on the login node. PreCo requires its compute processes to be submitted

to a batch scheduler, and thus it was not possible to schedule PreCo on Geon.

Both the Gather and Circle probes were run on seven Geon resources. For

the Gather probe, UTEP, ASU, SDSC, UIDAHO and RICE acted as data sources.

The compute node is Arizona and the results node is CGRID. The login node

of the compute node, Arizona, has two hyperthreaded Intel \mathrm{R}\bigcirc Xeon \mathrm{R}\bigcirc 2.80GHz

processors. The same source file and results file sizes are used as on the TeraGrid.

The Circle probe has the same transfer file size as on TeraGrid and has the following

transfer order: ASU, SDSC, UIDAHO, RICE, Arizona, CGRID, UTEP and finally

back to ASU.

2.3.2 Schedule Configuration

Initially the probes were scheduled to run hourly one after the other. The

application was run simultaneously with the probes, immediately following the

probes and thirty minutes after the probes in order to find any instantaneous, short

delay, or long delay correlations between runtimes. This schedule was repeated

20

continuously throughout the data gathering period. After approximately three

months of measurements were taken with this schedule, it was changed to run

Gather and PreCo simultaneously every half hour in order to collect more data for

evaluating application performance prediction methods.

2.4 Performance and Availability

2.4.1 TeraGrid

Performance

Measuring the performance of the GrASP probes on TeraGrid involved

measuring the time spent transferring 500 MB of data to a compute site (100 MB

from five separate sites in parallel), time spent in batch scheduler queues, time

spent computing and time spent transferring a 500 MB result file.

Tables 2.3 and 2.4 show statistics for each step of the Gather probe over

six months. Table 2.3 shows statistics for GrASP-specific steps, while Table 2.4

shows statistics for those steps that any application would require. The GrASP-

specific steps are ones that a real grid application would probably not require on

every run (e.g., data generation and staging, compilation). Trends were similar

for the Circle probe and are not shown here. We can see in the tables that the

two leading causes of variability (i.e., the highest standard deviations relative to

the means) are: (i) initialization and finalization operations on the ``login"" node

(initialization, staging data, building executable, and cleanup); and (ii) queue wait

times. This was expected as the number of users actively working on a login node

varies greatly over time and queue wait times are known to exhibit variable and

non-stationary behaviors [118].

Table 2.4 shows three separate totals: (i) total probe runtime; (ii) probe

runtime excluding setup/cleanup; and (iii) probe runtime excluding setup/cleanup

and queue wait times. Total probe runtime has an average of 227.62 seconds and

a standard deviation of 116.02 seconds, which is approximately 50\% of the average

runtime, a large standard deviation. For illustration purposes, Figure 2.1 shows

21

Table 2.3: Statistics on the Execution of GrASP Gather on TeraGrid: GrASP-

Specific Steps Only (in Seconds).

Stage Build
Statistic Init. Data Executable Cleanup

Average 36.03 38.41 15.35 10.76
Min 26.11 33.48 4.44 3.14
Max 847.85 418.47 70.46 413.46
Stdev 37.14 21.18 3.91 20.37

Table 2.4: Statistics on the Execution of GrASP Gather on TeraGrid: Steps

Relevant to a Grid Application Only and Totals (in Seconds).

Statistics Average Min Max Stdev

Transfer Data to NCSA 8.38 5.28 194.09 9.20
Compute 18.40 17.99 61.21 2.04
Queue Wait Time 84.53 25.94 1008.60 101.13
Transfer Results 15.72 13.38 130.53 7.76
Total Runtime (i) 227.62 145.37 1142.66 116.02
Runtime w/o Setup/Cleanup (ii) 127.05 63.51 1055.52 102.46
Runtime w/o Setup/Cleanup/Q (iii) 42.51 36.87 260.31 14.36

the frequency of the probe's runtime falling between x standard deviations of the

mean. This histogram is skewed to the right; runtimes are clustered near the mean

but there is a significant probability of the occasional runtime exceeding the mean

by several standard deviations. After removing the setup/cleanup steps, which are

specific to the GrASP probes, the total average runtime is 127.05 seconds with a

standard deviation of 102.46 seconds. This is 80\% of the runtime, an even larger

standard deviation due to the fact that queue time is then a larger percentage of

the total runtime. As seen in Table 2.4, when the GrASP-specific stages and the

queue waiting times are removed, the total execution time is 42.51 seconds with a

standard deviation of only 14.36 seconds or 33\% of the mean. This demonstrates

that the middleware and network infrastructure of the TeraGrid perform rather

consistently; a major factor in observed performance variability comes from queue

wait times.

22

Figure 2.1: Frequency of Gather probe runtime on TeraGrid falling between x

standard deviations of the mean.

Failures

An environment like TeraGrid presents many opportunities for a distributed

application to fail. The GrASP probes were configured to run over seven distinct

resources in the grid and a successful run required all seven resources to be up

and the network connecting them to be operational. All error messages related to

scheduled preventive maintenance have been filtered out. The news.teragrid.org

web site was used to obtain the dates to be excluded from the measurements.

Over the first 6 weeks that the GrASP probes where running on TeraGrid

resources, a success rate of approximately 58\% on the gather probe and 78\% on

the Circle probe were observed. Figure 2.2 shows the types of errors and their

counts. (The error descriptions are cryptic, please see Appendix A for detailed

error descriptions). Two errors occurred far more often than the rest. The first is

a proxy error, which occurred over a period of a few days when the proxy necessary

for running the tests was not renewed. This error is considered a user error and

is filtered out when computing overall success rate. The second is a known GT2

error that occurs frequently. The error has been fixed in later releases of Globus

(however there are no plans to patch the problem in the version currently in use

23

Figure 2.2: Number of Gather and Circle Errors on TeraGrid.

on TeraGrid).

The middleware errors tend to surface for a block of time and after being

corrected do not reappear again. Most errors follow this pattern. Only the known

GT2 error, softenv error and the error with code 12 occur periodically.

2.4.2 Geon

Results on the Geon grid differed qualitatively and quantitatively from those

on TeraGrid. The heterogeneity of the TeraGrid presents great challenges to sta-

bility and software capability. The Geon grid benefits from dedicated hardware

and a homogeneous software stack. However, our deployment uses GT3, which

is a recently implemented web services based implementation of GT. The errors

and the variability in performance due to this new middleware infrastructure are

apparent in the measurements. Furthermore, while TeraGrid has dedicated net-

work links between most of their sites, Geon uses a shared network. Therefore, one

can see more variability in the transfer times on Geon. Finally, a major difference

between the two grids is that Geon does not use batch schedulers but instead time

slices compute resources in an interactive fashion.

24

Table 2.5: Statistics on the Execution of GrASP Gather on Geon: Steps Relevant

to a Grid Application Only and Totals (in Seconds).

Statistic Transfer
Data to
UA

Compute Job
Startup

Transfer
Results

Total
Run-
time

Runtime
w/o
Setup/
Cleanup

Average 29.12 10.58 38.40 15.88 369.01 93.95
Min 21.02 10.15 29.85 14.31 324.80 84.66
Max 81.30 22.67 69.58 189.03 720.24 286.01
STDEV 11.68 0.94 2.14 9.00 34.79 15.63

Performance

Table 2.6: Statistics on the Execution of GrASP Gather on Geon: GrASP-

Specific Steps Only (in Seconds).

Stage Build
Statistic Init. Data Executable Cleanup

Average 96.66 70.26 33.28 74.84
Min 73.30 63.14 29.54 50.14
Max 181.38 139.87 62.04 427.74
STDEV 9.30 8.39 7.50 20.21

Tables 2.5 and 2.6 show statistics for the execution of Gather on Geon as

for the TeraGrid, minus the time to start the job. For illustration purposes, Fig-

ure 2.3 shows the frequencies of individual execution times for the Gather probe

on Geon that fall within x standard deviations of the mean. The statistics dis-

played in Table 2.6 demonstrate that the time needed for steps on the login node

(initialization, staging, building the executable and cleanup) are fairly consistent.

Compared to the results on the TeraGrid, execution times are longer on Geon but

have a lower standard deviation. For example, the initialization step on the Ter-

aGrid, has a average runtime of 36.03 seconds with a standard deviation of 37.14

seconds, whereas on Geon the average runtime is 96.66 seconds with a standard

deviation of 9.30 seconds (less than 10\%). The runtime on the TeraGrid login

25

nodes for these steps vary so much because they can get heavily loaded, causing

occasional longer runtimes, but the average runtime is faster because GT2 is used

for job submission. On Geon, the runtime on the login nodes does not vary much

because there are only a few users on this new grid; nevertheless the runtime is

longer because of the added overhead of using the Web Services GRAM server to

start a remote job. Figure 2.3 and Table 2.5 show that a large number of execu-

tions fall outside of a standard deviation of the average runtime. This variability

is due to the fact that Geon does not have a dedicated network and the runtime

of Gather depends on the current network traffic.

Figure 2.3: Frequency of Gather probe runtime on GEON falling between x

standard deviations of the mean.

Failures

It is found that reliability on the Geon grid was much more dependent

on the reliability of the middleware than that of the hardware. As mentioned

previously, GT3 was used, which is essentially a web services implementation of

GT2. A smaller number of error messages were returned from this version of GT.

Figure 2.4 shows the error messages that occurred. The vast majority of errors

were difficult to track (either just timing out or not returning any error message).

26

Careful sleuth work uncovered many of these errors are caused by a problem with

GT3 cleaning up processes after a failure: once a failure has occurred and GT3 runs

out of processes, the software just waits for a connection that cannot be created.

The Gather and Circle probes experienced a combined success rate of 56\%

on Geon. In most cases once an error with GT3 occurred it took human inter-

vention to correct it and therefore the same error would happen hourly for a long

period of time. It was found that most errors happened continuously for a few

days before being corrected. (Appendix B lists the full error messages.) These

errors did not occur frequently. As can be seen in the histogram most of them

only occur a few times. The errors that occurred many times over large periods of

time generally did not generate an error message and they either died silently or

the Inca framework timed them out.

Figure 2.4: Number of Gather Errors on Geon.

27

Figure 2.5: Normalized Gather and PreCo measurements (excluding the setup,

cleanup and queue wait times) vs. time.

2.5 Prediction of Application Performance based

on Benchmark Measurements

The schedule of probe and application benchmark execution included times

when the Gather probe and PreCo application were started simultaneously, allow-

ing us to compute the correlation of their performance. This correlation, ignoring

the GrASP specific steps, to be 0.32. This correlation is low because the queue

wait time, which has been shown to be a significant source of variability, accounts

for most of the overall runtime. The runtimes without the GrASP specific steps

and the queue wait time have a correlation of 0.54. Although all these correlation

coefficients are fairly low, the trends can be seen more clearly in Figure 2.5, which

shows the normalized runtimes of Gather and PreCo counting just the time to

transfer the data file, run the computation and transfer the results file. This fig-

ure provides some evidence that a slow Gather runtime almost always corresponds

to a slow PreCo runtime. In what follows this work investigate whether probe

measurements can be used to predict an application's performance.

28

2.5.1 Prediction Methods

To predict the performance of an application, it will be great to predict the

next point in a time series of application runtimes. However, generating the time

series requires the application to run periodically, which is resource-consuming and

impractical, especially for large-scale applications. (Not many people would want

to regularly run their application just to be able to predict the next runtime.) To

solve the problem, this work try running the light-weight benchmark probes instead

and propose two kinds of methods to predict the performance of applications from

time series of the probe runtimes. Figure 2.6 provides a taxonomy starting at

the root of the tree with 3 classes of methods: 1) time series prediction (TSP)

which attempts to predict the next application runtime directly from a time series

of previous application runtimes, 2) linear regression prediction (LRP) and 3)

hybrid (TSP + LRP) methods. The latter two methods attempt to predict the

application runtime from time series of probe runtimes and can exploit variable

or fixed training set to train their prediction functions. Variable training sets

can have different sizes. This work only considers two training set sizes: the full

history or the last 10 measurements. Methods with fixed training sets use the

first x measurements to predict all following measurements. Details of all these

methods are listed below.

Figure 2.6: Taxonomy of Prediction Methods

\bullet Time Series Prediction (TSP) In this method, the timings of the PreCo

application are regarded as a time series and the NWS forecast tool is used to

29

predict the performance of future runs. This uses no knowledge of the Gather

probe measurements; predictions are based only based on the previous PreCo

runtime history.

\bullet Linear Regression Prediction (LRP) In this class of methods, it is

assumed that the relation between the performances of Gather and PreCo is a

linear function and one can manage to calculate the coefficients. Then Gather

is run periodically to collect a time series and use the last measurement to first

predict the next Gather runtime and then calculate the predicted runtime

of PreCo. Fixed or variable length training sets (portions of the previous

history time series) can be used to create the linear regression function.

-- Variable Training Set With this method, each prediction has its

own specific training set. These sets can have different sizes. This work

only considers two situations: the full history or the last 10 measure-

ments. When using the full history to make a prediction, all previous

measurements of both Gather and PreCo from 1 to n - 1 are used to

predict the nth PreCo measurement. For the method using the last 10

measurements, only the last 10 measurements of Gather and PreCo

are used to calculate the coefficients of the linear function. Either way,

this method requires PreCo to run periodically with Gather; this is im-

practical in most real application scenarios but studied here to reveal

the predictable relationship between the performances of probes and

applications.

-- Fixed Training Set Using the fixed-training-set method, first the

linear function is created using the first x measurements of both Gather

and PreCo. Unlike the variable-training-set method, the linear function

is not recreated for each new prediction; the linear function is used to

predict all future PreCo measurements. The advantage of this method

is that it is not necessary to regularly run the application; one only need

to run the application when producing the training set, to calculate out

the coefficients of the linear function; subsequently only the probe is

30

executed periodically and use that time series to make future runtime

predictions for the application.

\bullet TSP + LRP The above LRP methods can only be used to analyze the

predictability of the application performance offline since it requires the mea-

surement of the probe to ``predict"" the performance of the application sub-

mitted at the same time. To create a practical predictor scheme, the TSP

and the LRP methods are combined. First, one can apply the TSP method

to the time series of the probe, Gather, to predict its performance at the

future time. Then the LRP method is used to predict the performance of the

application, PreCo, with the previous prediction as input. The training set

classification is the same as above. The hybrid method using fixed training

set is a practical online prediction method without any requirement for the

application to run periodically.

2.5.2 Prediction Results

For each method, its average relative error was computed (i.e., absolute

error divided by actual observation) when predicting all of the observed application

execution times. Table 2.7 shows these relative error and coefficient of variance

(CV) percentages. Some stages of the application are more predictable than others.

All prediction methods predict the total runtime with a relative error of 10.55\% at

the worst and 8.42\% at the best and a coefficient of variance of 87.17\% and 90.74\%

respectively. The core of the application, namely, transferring the data, running

the computation, and finally transferring the results, has a relative error of 11.33\%

at the worst and 7.92\% at the best with a coefficient of variance of 98.15\% and

106.65\% respectively . (Note that, expectedly, all prediction methods have higher

relative error for more stages with high variability.)

From the data, one can observe that the time series prediction method

and the most accurate linear regression prediction method, namely, LRP with

full history, have the smallest relative errors. This indicates that predicting the

performance of an application by those of probes can be as good as predicting

31

by the history of the application itself. The hybrid method with full history pays

a little cost of accuracy due to its online attribute because both of its TSP and

LRP parts introduce errors. But it is still almost as accurate as the previous two

methods. Methods with last 10 measurements have worse accuracy, which may

seem counterintuitive. It appears that ``ancient history"" is of value in predicting

future runs of the probe. Methods with fixed training set have the worst accuracy

because the fixed linear function may not fully capture the relationship between

the probe and the application. Still, with error rates of about 10\%, these methods

may be deemed preferable and are probably more practical given that they do not

require the application to run periodically.

Overall, unless one's grid application spends most of its time in queues

(an unfortunate attribute of the system) or an inordinate amount of time staging

data on shared login nodes (an unfortunate design of the application), reasonably

accurate forecasts of application performance can be obtained from benchmark

probe measurements.

2.6 Related Work

This work is related to many previous projects that have produced bench-

marks developed for microprocessors and for High Performance Computing (HPC)

systems, and more recently for to Grid computing. Benchmarks for traditional mi-

croprocessors and HPC systems fall into at least two main categories. First are

low-level ``probes"" that measure the rates at which a machine can perform funda-

mental operations. Examples of this class include MAPS [119, 78], STREAM [126],

the Intel \mathrm{R}\bigcirc MPI Benchmark [62] (formerly Pallas PMB) and SKAMPI [117] MPI

benchmarks, and to some extent the LINPACK benchmark[74]. In the specific

context of probes for Grid platforms, one can find the GrASP project [34], which

is described and used in this work, and other projects such as RGRBench [100]

that measures the performance of Grid information service and was used in [69].

The second category of benchmarks are ones designed to capture the computa-

tional needs of a class of applications. In HPC, among the best known of these are

32

the NAS Parallel Benchmarks (NPB) [13] that are based on computational fluid-

dynamics problems. Some other influential suites of this kind are SPEC [124],

ParkBench [55] and SPLASH [138]. In the context of Grid computing, the NAS

Grid Benchmarks (NGB) [47] have been developed as and extension to the NPB

and other individual applications benchmarks have been developed such as the

PreCo benchmark used in this work.

2.7 Conclusions and Future Work

A key challenge for improving the infrastructure and the operation of large-

scale federated grid platforms is that of measuring and understanding resource

availability and performance. This chapter has used the Inca system in conjunc-

tion with the GrASP benchmark probes and the PreCo application to monitor

two state-of-the-art grids over a 6-month time period. The performance monitor-

ing data has made it possible to quantify the performance variability that may

be expected on such platforms and the sources of that variability. It has been

found that, expectedly, wait times in batch schedulers' queues is the most rele-

vant and prevalent source of performance variability. In terms of availability, the

benchmarks have experienced rather low success rates in the experiments (in the

55\%-80\% range), showing that these platforms are still far from having what one

would consider ``good"" availability. This work attempted to explain the sources of

all failures, and found that some key failures came from the middleware infrastruc-

ture. Most of these failures should be easily correctable. Although it was not the

focus of these experiments, it seems clear there is use for the probes as a diagnostic

tool for platform administrators to troubleshoot the infrastructure.

With three different prediction methods, predictions for the application's

total runtime were able to be made with a relative error of 10.55\% at the worst

and 8.42\% at the best using the different methods. Importantly, some of these

methods, after some training period, rely solely on the periodic execution of light-

weight benchmark probes.

This chapter, in part, is a reprint of the material as it appears in the 7th

33

IEEE/ACM International Conference on Grid Computing (Grid'06), a joint work

with Omid Khalili, Catherine Olschanowskyd, Allan Snavely, and Henri Casanova.

The dissertation author was the primary investigator and author of this paper.

34

Table 2.7: Relative Error (and Coefficient of Variance) Percentages for Different

Prediction Methods.

Total
Run-
time
(RT)

RT
w/o
Setup/
Cleanup

RT
w/o
Setup/
Cleanup
/Queue

Stage
Data

Build
Exe-
cutable

Actual
Com-
puta-
tion

Actual
Queue

Average
PreCo Mea-
surement

816.61 715.45 608.07 33.50 17.42 312.89 107.37

Stdev 112.52 103.74 72.16 37.65 5.82 19.93 77.79

TSP 8.57 8.47 7.92 29.44 3.84 4.39 29.37
(NWS) (90.32) (95.66) (106.65) (97.99) (165.64) (80.45) (91.05)
LRP w/ Full 8.42 8.73 8.08 27.62 4.86 5.83 33.8
History (90.74) (90.71) (110.68) (84.5) (136.44) (291.95) (74.25)
LRP w/ 9.13 9.35 9.44 67.89 6.29 11.95 28.31
Last 10
Measure-
ments

(78.62) (83.49) (125.48) (415.24) (293.72) (408.4) (81.85)

LRP w/ 9.96 10.64 10.57 24.65 4.55 4.41 37.13
Fixed Train-
ing Set

(90.61) (90.24) (92.33) (78.9) (140.17) (85.34) (76.33)

TSP+LRP 8.99 9.1 8.54 30.92 4.79 4.41 34.05
w/ Full His-
tory

(85.5) (87.69) (107.93) (82.14) (130.75) (75.72) (84.04)

TSP+LRP 9.14 9.11 8.49 65.88 4.27 5.38 29.22
w/ Last
10 Mea-
suremetns

(81.84) (87.4) (97.04) (227.4) (121.68) (105.91) (83.44)

TSP+LRP 10.55 11.11 11.33 28.43 4.69 4.55 37.84
w/ Fixed
Training Set

(87.17) (88.86) (98.15) (87.64) (133.39) (84.14) (84.64)

Chapter 3

Automatic Recognition of

Performance Idioms in Scientific

Applications

In scientific applications, space, time, local and long-range interactions are

represented by abstract programming constructs. Despite many different imple-

mentations, there are fundamental similarities in these abstractions: space is usu-

ally modeled by structured or unstructured grids, time is often modeled by the

outermost iteration loop (time step), and interactions are modeled by systems of

equations that are solved by iterative explicit or implicit methods.

As a result, a number of similar constructs, design patterns, and data flows

can be found in various scientific applications [46, 68, 54]. Extraction, measurement

and analysis of these representative constructs can result in a good understanding

of the application performance and suggesting how best to map the applications

to computer architectures. The performance analysis community has long realized

this and utilized the common programming constructs and typical application ker-

nels as benchmarks. But how to quantify the representativeness of benchmarks

remains a hard problem. Usually the selection of benchmarks is to some extent

subjective and decided by human sense. This research found that identification

of the common constructs or data flow patterns, such as stream, transpose, re-

duction, random access and stencil, in real applications, along with their coverage

35

36

coefficients, would allow us to use these constructs as performance proxies for real

applications quantitatively and allow us to derive application requirements for new

platforms based on the analysis of a few simple constructs.

Understanding these program constructs helps not only new hardware de-

sign not also performance optimizations. For example, reduction is one of the

program constructs well studied by the compiler communities. Quite a few com-

pilers [76, 108, 51] implemented advanced reduction recognition for program op-

timization. Furthermore, hybrid hardware is emerging with different components

designed for different program constructs. RoadRunner [15] is the first petaflops

supercomputer with hybrid hardware: Opteron \mathrm{R}\bigcirc cores plus Cell \mathrm{R}\bigcirc processors.

GPU computing is becoming more and more important. The first place of the

current Top500 list [133] is GPU machine, Tianhe-1A. How to recognize suitable

program constructs for GPU execution automatically will be critical for the us-

ability and efficiency of these GPU machines. FPGA machines will have even

more diversities. One example is Convey \mathrm{R}\bigcirc HC-1 [22], which provides a handful

application-specific co-processors called personalities for Intel \mathrm{R}\bigcirc processors. To ex-

plore the potential of this kind of hardware needs automatic recognition of different

program constructs (personalities) and mapping them to corresponding hardware

components. In one of our un-published works, we were able to recognize the

Gather/Scatter constructs in real applications and send it to the Convey FPGA

accelerator thus speeding as much as 20x.

On the road to exascale supercomputing, performance is not the only con-

cern. In fact, power consumption is becoming the limit for scalability. To solve

the problem, our colleague Professor Andrew Chien has proposed a new paradigm

called 10x10 [33]. The basic idea is to integrate 10 different specialized cores onto

one chip and use the best matched ones for specific program constructs. The recog-

nition technique can be used to recognize these program constructs and map them

to corresponding cores.

These similar constructs are called performance idioms or, for simplicity,

just idioms. Formally, idioms are primitive program components, which each

capture a pattern of computation and communication over arrays or sub-arrays

37

common in applications. Some questions about the idioms are: how many idioms

are needed to cover most application codes? Can these idioms approximate the

performance of real applications? And is it possible to find out these idioms from

application codes automatically? These are the questions explored in this chapter.

To this end, this work designs and develops a static analysis tool to recognize idioms

automatically, and then verifies the tool by manual analysis. Also the performance

of the idiom benchmarks with their corresponding instances in application codes

are compared. The NAS Parallel Benchmark (NPB) [13] suite will be used as a case

study. This work will be limited to Fortran code. Extending to other languages

will be one of the future works.

The rest of the chapter is organized as follows. In the next section, five

well-studied idioms, that is, Stream, Transpose, Random access, Reduction, and

Stencil are defined. Then section 3.2 proposes a compiler-based method to rec-

ognize these idioms within real application codes automatically and presents an

implementation based on the open source compiler Open64. The experimental re-

sults of the prototype system applied to the NPB will be described in section 3.3.

Also the code coverage and performance approximation results of NPB will be

presented. Section 3.4 includes some related work in the field. Conclusions and

future work will be given in the last section.

3.1 Definitions of Five Idioms

Idioms represent basic operations of applications. Systems used for scientific

computations should deliver high performance for all, or at least the dominant part

of, the idioms. The complete list, or even just a dominant list of idioms, has not

been identified yet. However, some idioms such as Stream, Transpose, Random

access, Reduction and Stencil are already well studied in the community. This

section formally defines these five idioms by the concept of affinity relation and

dependence.

One can write an array variable assignment of array B to array A inside a

38

loop nest using pointer arithmetic:

A+ V \cdot I = B +W \cdot I,

where I is the vector of loop variables (i, j, k . . .) and V and W are vectors ex-

pressing affinity. The matrix (V,W)T is called the affinity relation between A

and B. In another word, if variables A and B are on the left hand side (LHS)

and the right hand side (RHS) of an assignment, respectively, the affinity relation

between A and B is a matrix composed of the coefficients of their indexes if they

are array variables or just 0's otherwise. If a term including an index is not linear,

its coefficient is marked as FUNC. For example, the assignment a(i, j) = b(c(j), i)

can be transferred to its linearized form a(i + n \ast j) = b(c(j) + m \ast i), where n

and m are the sizes of the leading dimensions of a and b, respectively. Then the

affinity relation between a and b can be represented by:\left(1 n

m FUNC

\right)
where the first row is for a and the second is for b. The first column is for loop

variable i and the second one is for j. In general, an affinity relation A looks like:\left(a11 a12 . . .

a21 a22 . . .

\right)
where the first row is for the LHS variable and the second one is for the RHS

variable.

Dependence, or data dependence, is a constraint between statements to

guarantee the order in which data are produced and consumed. Dependence infor-

mation can be easily derived from a compiler's intermediate representation, such

as a dependence graph [4, 87]. A dependence cycle is a directed cycle in the

dependence graph.

With the above two definitions, one can define the five idioms as follows.

One thing worthy of mention is that every definition here is with respect to a

specific surrounding loop. More details will be given in section 3.2.4.

Definition 1 (Stream) An assignment is classified as Stream if

39

\bullet for each affinity relation A between LHS and an array variable on RHS, there

do not exist two loop indexes i and j such that a1i < a2i but a1j > a2j;

\bullet there is no FUNC element in any affinity relation;

\bullet it is not involved in a dependence cycle.

As follows is the triad version of the Stream benchmark designed by Mc-

Calpin [126]. If its data set size is big enough, a Stream idiom will consume the

full bandwidth between the processor and the main memory.

do i=1, m

a(i) = b(i) + const * c(i)

end do

Definition 2 (Transpose) An assignment is classified as Transpose if

\bullet for each affinity relation A between LHS and an array variable on RHS, there

exist two loop indexes i and j such that a1i < a2i but a1j > a2j.

Here is a typical example of the Transpose idiom. It reads a matrix by rows

and writes it by columns, which will challenge the strided access performance of

the memory system.

do i=1, m

do j=1, n

a(j,i) = b(i,j)

end do

end do

Definition 3 (Random Access) An assignment is classified as Random access

if

\bullet for each affinity relation A between LHS and an array variable on RHS,

there exist at least one element marked as FUNC (it is understood that, in

general, FUNC could represent a simple access pattern, but the assumption

of random is still useful for performance classification).

40

Here is an example of Random Access idiom, which reads unpredictable

memory locations and writes them into contiguous memory locations. Its perfor-

mance is limited by memory latency.

do i=1, m

a(i) = b(c(i))

end do.

Definition 4 (Reduction) An assignment is classified as Reduction if

\bullet the LHS variable appears on the RHS with the same subscript if any;

\bullet for each affinity relation A between LHS and an array variable on RHS, if

a1i \not = 0, there must be a2i \not = 0;

\bullet the first level operators of RHS are associative;

\bullet it is involved in dependence cycles.

A typical one-dimensional Reduction idiom looks like as follows, which re-

duces an array by an associative operation. Its performance can be optimized by

vectorization.

do i=1, m

s = s + a[i]

end do

Definition 5 (Stencil) An assignment is classified as Stencil if

\bullet for each affinity relation A between LHS and an array variable on RHS, there

do not exist two loop indexes i and j such that a1i < a2i but a1j > a2j;

\bullet it is involved in dependence cycles.

Below is a typical one-dimensional Stencil idiom. Each update of an ar-

ray element depends on the values of its neighbors. It tests the performance of

instruction scheduling.

41

do i=1, m

a(i) = a(i-1) + a(i+1)

end do

Sometimes more than one idiom definitions are satisfied. Then the as-

signment is classified as a hybrid idiom. For example, the Sparse-Matrix-Vector

multiplication (SMV) as follows is a hybrid idiom composed of Reduction and

Random.

do j=1, lastrow-firstrow+1

sum = 0.d0

do k=rowstr(j), rowstr(j+1)-1

sum = sum + a(k)*p(colidx(k))

enddo

q(j) = sum

enddo

3.2 Automatic Recognition by Compiler

Previous section has defined five well-studied idioms. It is unknown if it is

feasible to use such a small number of idioms to completely or mostly represent

certain scientific application codes and if these idioms are useful as performance

proxies of real applications. This section is proposing a compiler-based static

analysis method to extract idioms from real application codes automatically. A

prototype implementation will also be described in the last sub-section.

The method includes four stages. First, extract the loop nest structure

from the compiler intermediate representation to construct the Loop Nest Graph

(LNG). And then traverse the loop nest to scan all the assignments and extract

their affinity relations to construct Affinity Relation Graph (ARG). By removing

temporary variables, the Reduced Affinity relation Graph (RAG) will be built.

Finally, idioms are recognized by matching the RAG with idiom definitions. The

details of these four stages will be introduced in the rest of the section. At the

42

same time, the whole analysis process of the example Fortran routine shown in

Figure 3.1 will be gone through.

subroutine foo

integer i, j

do j = 1, 100

do i = 1, 100

tmp = a(i,j) - b(i)

sum(i) = sum(i) + tmp*tmp

enddo

enddo

return

end

Figure 3.1: A complete example of Fortran routine

3.2.1 LNG: Loop Nest Graph

The Loop Nest Graph (LNG) is used to represent the control flow struc-

ture of the whole routine, especially the loop nest structure. Its goal is to provide

context information for the following analysis such as surrounding loops, loop in-

dexes and loop-carried dependences. This work does not consider improper regions,

which are multiple-entry strongly connected components, or loops sharing the same

header. Figure 3.2(a) shows an example Control Flow Graph (CFG) [4, 87] of im-

proper regions. And an example CFG of loops with the same header is shown in

Figure 3.2(b).

A LNG is a directed tree. Its root represents the whole routine and other

nodes stand for natural loops or other control structures such as if-statements.

There is a directed edge between two nodes if and only if the control flow construct

of the parent node includes that of the child node. Usually, the LNG can be

easily built from the compiler intermediate representation such as Control Flow

Graph (CFG) or its intermediate language if it is designed to have the control flow

43

A

B C

(a) Improper region

A

B C

(b) Loops with the same header

Figure 3.2: Example CFGs of improper region and loops with the same header

structure embedded like the Open64 High WHIRL that will be introduced in the

next section. Figure 3.3 shows the LNG of the example in Figure 3.1.

Subroutine-foo

Loop-j

Loop-i

Figure 3.3: LNG of the example in Figure 3.1

3.2.2 ARG: Affinity Relation Graph

With the LNG in hand, one can traverse the whole control flow structure

recursively to scan all the assignments and build Affinity Relation Graphs (ARG)

for them. To obtain context information easily, each ARG is hung under its corre-

sponding control flow construct in the LNG.

An ARG itself is also a directed tree graph. Its root represents the variable

on LHS, which equals the whole expression on RHS, and other nodes stand for

the sub-expressions (or variables on leaf nodes) on RHS. There is a directed edge

between two nodes if and only if the expression of the parent node includes that

of the child node. The affinity relation matrix rows are distributed across the cor-

responding variable nodes. Since data might flow from one assignment to another

by temporary variables, a method similar to Static Single Assignment (SSA) [39]

is adopted to connect these assignments together to be a so-called combined as-

signment. Specifically, a version number is attached to each variable. If it is a

44

scalar variable, its number is incremented only while it is on LHS. Being an array

variable, its number is incremented every time it appears in an assignment in order

to keep the subscript information for each instance. This work does not consider

data flows across borders of control flow constructs and so phi-nodes [39] are not

added.

Figure 3.4 shows the ARG of the example in Figure 3.1. Here the extensions

of variable names stand for version numbers. Since only incrementing the version

number of a scalar variable when it is on LHS, all three instances of the variable

tmp have the same version number and they are represented by a single node in

the ARG. As a result, the two assignments are connected together and finally

recognized as a single idiom instance. In contrast, the instances of the same array

variable sum have different version numbers and they are represented by different

nodes in the ARG. In fact, array variables are used as the borders of combined

assignments.

sum.v2

sum(i)+tmp*tmp

sum.v1 tmp*tmp

tmp.v1

a(i,j)-b(i)

a.v1 b.v1

Figure 3.4: ARG of the example in Figure 3.1

3.2.3 RAG: Reduced Affinity relation Graph

Though affinity relation between variables have been caught in the ARG,

it is still not enough for idiom recognition because there are temporary variables

in the middle to interfere. It is needed to remove these and reduce the ARG into

a Reduced Affinity relation Graph (RAG). A RAG is still a directed tree graph.

45

Instead of deleting the nodes directly from the ARG, it is chosen to build a new

graph by copying the root and the leaves from the ARG and connecting them

accordingly. By keeping the ARG intact, one can turn back to the original graph

in case he needs more information. The affinity relation matrix rows are still

distributed across the variable nodes. Figure 3.5 shows the RAG of the example

in Figure 3.1. Now we can easily see that the LHS of the combined assignment is

sum.v2 and the RHS includes sum.v1, a.v1 and b.v1. The next part will analyze

the affinity relations between sum.v2 and the RHS variables to match the idiom

patterns.

sum.v2

sum.v1 a.v1 b.v1

Figure 3.5: RAG of the example in Figure 3.1

3.2.4 Idioms Recognition

Having a RAG for each combined assignment, also being able to obtain

dependence information from the compiler dependence graph easily, one can check

each RAG to see if it satisfies any idiom definitions given in the section 3.1 and

classify the assignment as the matched idiom. Since both affinity relations and

dependence cycles are related to the surrounding loops, an idiom has to be classified

with respect to a specific surrounding loop. To this end, an algorithm similar to

Allen and Kennedy's vectorization algorithm [66] is adopted to classify idioms

from the outer most loop to the inner ones. For a given loop, only the dependence

cycles whose maximum levels equal the current loop are considered. Here level

means the index of the leftmost non-equal element of the dependence direction

vector [66]. Specifically, this work only keep the dependences whose levels are

higher than the current loop, that is, the loop carried dependences over the loops

inside and including the current loop plus the loop independent dependences. Next

the maximal Strongly Connected Components (SCC) of the dependence graph is

46

constructed. During the construction, the maximum level of each SCC is recorded.

While being matched with the idiom definitions, an assignment is classified as ``in

dependence cycle"" if and only if it belongs to an SCC whose size is more than one

and the maximum level equals the current loop, or it has a self-dependence carried

by the current loop.

Let us continue to analyze the example in Figure 3.1. As you may observe,

over the j loop, there is a self-dependence for sum, from sum.v2 to sum.v1. Since

the assignment also satisfies the other requirements of the Reduction definition, it

is classified as Reduction with respect to the j loop. Now we come to the i loop.

Since the dependence over the j loop is removed, there is no dependence cycle on

the assignment at this point. The assignment also satisfies the other requirements

of the Stream definition and is classified as Stream with respect to the i loop.

3.2.5 Implementation on Open64

The Open64 compiler was originally developed by SGI \mathrm{R}\bigcirc as MIPSpro,

and was open-sourced later. It also benefited from the Open Research Compiler

(ORC) [97] project by Intel \mathrm{R}\bigcirc and the Chinese Academy of Sciences, which fo-

cused on IA64 architecture. Open64 is an industrial-strength compiler and contains

an advanced and complete optimization framework, including scalar optimization

(WOPT), loop nest optimization (LNO), inter procedural optimization (IPA) and

code generation (CG). Its intermediate language called WHIRL was designed to

have five levels (Very High, High, Mid, Low and Very Low) to fit the different

requirements of different analyses and optimizations. The prototype was imple-

mented in the LNO phase of the High WHIRL level. In this phase, the high level

control flow constructs such as loops and if-statements are preserved and array

structures are kept, which aids the implementation, particularly the construction

of the LNG. The LNO phase also provides the facilities for dependence analysis,

which is essential for the implementation.

47

3.3 Experiment Results

The previous section has described a 4-stage method and its implementation

for automatic idioms recognition. This section will verify the accuracy of the

prototype system. Also it is interesting to check if a small number of idioms can

cover most scientific codes and approximate the performance of real applications

To this end, this work starts with a manual analysis of code coverage on the NPB

codes. And then, the result of the manual analysis is used to verify the prototype

system. Finally, compare the performance of the idiom benchmarks with their

corresponding instances in the NPB codes.

3.3.1 The NAS Parallel Benchmark

This section uses the NAS Parallel Benchmark (NPB) suite [13] as a case

study. NPB is a set of benchmarks designed by NASA Advanced Supercomputing

division (NAS) to evaluate the performance of supercomputers. The benchmarks

are derived from Computational Fluid Dynamics (CFD) applications. The reasons

to choose NPB are two fold. First, it was originally developed in 1990's and has

been well studied and widely used by the scientific computing community [130,

79, 93, 137, 32]. In a recent Berkeley technical report [10], the authors found that

most of the important modern numerical methods have their corresponding NPB

benchmarks. Second, the code size of NPB is reasonable for manual analysis of

code coverage, whose results are necessary to verify the automatic recognition tool.

NPB includes five kernels (EP, MG, CG, FT, and IS) and three pseudo

applications (BT, LU and SP). Since EP (representative of input generation) is

not a numerical, array traversing, application, which is theorized the idioms may

cover, and IS is written in the C language, this work only applied the analysis to

the other six programs.

3.3.2 Code Coverage

As mentioned above, it will be helpful to understand how many idioms are

needed to cover most application codes; specifically, whether a small number of

48

idioms, say, the above five idioms can cover most application codes. To answer

the question, a good way is to analyze some typical scientific applications to find

out all the idioms and their code coverage, that is, the percentages of the static

code classified as idioms (dynamic code coverage will be the next step). This

work started with analyzing the NPB codes to prove the feasibility. The manual

analytical results presented here will also act as the verification of the automatic

tool later.

Table 3.1: Static breakdown of the NPB by idioms

MG CG FT BT SP LU

Stream 76 43 19 501 283 390
Transpose 0 0 2 3 3 0
Random 18 3 1 0 0 0
Reduction 2 7 0 7 47 4
Stencil 2 4 0 0 45 5
SMV 0 2 0 0 0 0

Total 98 59 22 511 378 399

The analysis results show that the above five idioms suffice to cover all the

assignments of the six NPB programs within loops. Table 3.1 shows the static

breakdown of the NPB by the five idioms. There are two examples worthy of

mention here. The subroutine Swarztrauber() in FT can be viewed as a ``shuffle""

on the function level. But the analysis proceeds on the statement level and all

the assignments of the subroutine are classified as Stream. Another example is

the Sparse-Matrix-Vector multiplication (SMV) in CG. As mentioned above, it is

classified as a hybrid idiom composed of Reduction and Random. For clarity, it is

still shown separately in the table. Though real application codes might be much

more complicated and versatile than the NPB, the results verified that it is feasible

to use a small number of idioms to cover application codes.

49

3.3.3 Prototype Verification

To verify the prototype system, this work applied it to the NPB and com-

pared the results with those of the manual analysis. The results are shown in

Table 3.2. The column ``Number of mis-recognized assignments"" shows the num-

ber of differences between the automatic and manual analyses. And the column

""Relative error"" shows the ratio of the above number to the total number of as-

signments. We can see that the highest error is 10.2\%. The results show that

automatic idiom recognition is feasible.

Table 3.2: Automatic idioms recognition for NPB

Benchmarks Total Number of Relative
number of mis-recognized error
assignments assignments

MG 98 2 2.0\%
CG 59 6 10.2\%
FT 22 2 9.1\%
BT 511 5 1.0\%
SP 378 21 5.6\%
LU 399 13 3.3\%

3.3.4 Performance Approximation

By definition, idioms represent the basic components of scientific applica-

tions. But what can be said about their performance? Can one use the performance

of idiom benchmarks to approximate the performance of idiom instances in real ap-

plication codes? If yes, it will be easier to extract application requirements for new

systems and allow compiler and hardware designers to focus on the performance

of a few simple idioms rather than on full applications.

To investigate the question, this work developed a set of idiom benchmarks

and tried to use their measured performance to approximate the performance of

idiom instances in the NPB programs. For simplicity, each idiom benchmark was

written in a single typical form of the idiom. For example, though there are several

50

Table 3.3: Configurations of the experiment platforms

Itanium2 Power4

Frequency 1.5 GHz 1.7 GHz
L1 Instruction Cache 16 KB 64 KB

L1 Data Cache 16 KB 32 KB
L2 Data Cache 256 KB 1.5 MB
L3 Data Cache 6MB 128 MB
Main Memory 4 GB 32 GB

versions of Stream idiom in McCalpin's Stream benchmark [126], only the triad

version is adopted in the experiment. Also, in each NPB benchmark, only the

performance-dominant instances are considered. For a specific idiom benchmark,

there may be quite a few corresponding instances. The benchmark was scaled

across a large enough range of data set sizes to cover those of all the corresponding

instances in the NPB codes. The benchmarks and the NPB codes were measured

on two different platforms: Intel \mathrm{R}\bigcirc Itanium2 [64] processor and IBM \mathrm{R}\bigcirc Power4 [109]

processor. Table 3.3 shows the detailed configurations of these two platforms.

Figure 3.6: Execution time versus data set size of the Stream idiom benchmark

and its instances in CG on Itanium2

51

Figure 3.7: Execution time versus data set size of the Stream idiom benchmark

and its instances in CG on Power4

The average difference between the idiom benchmarks and their instances

in the NPB on Intanium2 is 30.2\% and that on Power4 is 36.8\%. To make it more

intuitive, it is shown here the comparison between the Stream benchmark and its

corresponding instances in CG on the two platforms in Figure 3.6 and Figure 3.7,

respectively. CG xy's in the figures are the Stream instances in CG. As referred to

above, since each idiom benchmark scales across a large enough range of data set

sizes to cover those of all the corresponding instances in the NPB codes, the data

set size range of a specific instance is usually smaller than that of its corresponding

idiom benchmark as shown in the figures. From the curves we can see that the

Stream benchmark and its corresponding instances in CG have similar trends,

which also happens between other idioms and NPB programs.

The relative matching between the idioms and their instances were also

investigated. The best predictor of an instance is the idiom benchmark with mini-

mum performance difference from the instance. If the best predictor of an instance

is its corresponding idiom classified by the static analysis, it is a hit. Otherwise,

it is a miss. The investigation was applied to the performance-dominant instances

measured. The hit rate on Itanium2 is 79.3\% and that on Power4 is 48.3\%, which

52

Figure 3.8: Execution time versus data set size of the idiom benchmarks on

Itanium2

Figure 3.9: Execution time versus data set size of the idiom benchmarks on

Power4

are not satisfying. It is because different idioms might have similar performance

and interfere with each other though they have different data flow patterns. As

shown in Figure 3.8 and Figure 3.9, the performance trend of Transpose is quite

53

similar to that of Random, and the trends of the other three idioms are similar.

Observing this leads to grouping the idioms with similar performance together

and applying the investigation again. The hit rates are much improved: 96.6\% on

Itanium2 and 79.3\% on Power4.

This section showed both the absolute and the relative performance match-

ings between idioms and their corresponding idioms in the NPB code. To improve

the absolute performance matching, it might be necessary to consider idiom vari-

ations, e.g. the same idiom with different memory access strides. In contrast, for

relative matching, it will be better to group the idioms with similar performance

together and have less categories. The work will continue on these two directions

to explore the trade-off between them. The performance matching between the

idioms and their instances in the NPB codes shows that it is feasible to use simple

idioms to approximate the performance of real applications.

3.4 Related Work

This work is based on many successful investigations. This section will

survey some related works in different fields.

3.4.1 Benchmarks and Application Requirements

This work is not the first to propose the idea to use common program-

ming constructs as benchmarks or application requirements. The HPC Chal-

lenge (HPCC) benchmark suite [56] was developed by the University of Tennessee,

Knoxville, to measure and evaluate the performance of different components, such

as processor, memory and interconnection, of high performance computers. It

consists of 7 tests, ranging from low level idioms such as Stream, Parallel Ma-

trix Transpose (PTRANS) and RandomAccess to high level kernels such as High

Performance Linpack (HPL) and FFT. Though the HPCC test set has overlap

with the idiom set, the idioms are all on the same low level and more general in

application codes.

The Seven Dwarfs project [10] from the University of California, Berkeley

54

tried to identify a number of basic numerical methods such as N-body method,

structured and unstructured grids, and MapReduce, which are important for sci-

ence and engineering applications and representative for application requirements.

Dwarfs are algorithmic methods whose levels are much higher than those of our

idioms. They can even be the highest level algorithm of a large application. The

high level of abstraction allows reasoning about the Dwarfs' behavior across a

broad range of applications. But they are not easy to be recognized automatically.

3.4.2 Archetypes and Kernel Coupling

Parallel programming archetype [112] is an abstraction composed of com-

putational structure, parallelization strategy and implied patterns of data flow

and communication, proposed by researchers from California Institute of Tech-

nology for parallel program developing and performance analysis. A program de-

veloped using archetype includes two parts: archetype-specific communications

and application-specific computations. To analyze its performance, one need to

measure the execution time of these two parts respectively, and then build a per-

formance model or simulation according to the computation and communication

structure implied by the archetype to calculate the whole execution time. Though

the compositional performance analysis idea of the archetype is similar to ours,

its granularity is much larger than us. Furthermore, it is a manual method and a

programmer has to understand the program structure to decompose the program

and build the performance model or simulation by hand.

The Prophesy project [131] from Texas A\&MUniversity has a similar idea of

compositional performance analysis dividing a large program into small kernels to

analyze. Since significant works has been done on performances of small kernels,

the project focuses on kernel coupling [130], the performance relations between

different kernels in a single program. By this way, performance predictions can

be greatly improved over the traditional technique of just simply summing up the

execution times of the individual kernels in a program. Again, comparing with

this work, the granularity of kernel coupling is larger, usually on the function

level, and the application decomposition (during database building) is manual.

55

The kernel coupling idea is interesting and may be also necessary for this work

if later aiming at a higher goal of performance prediction instead of just defining

application requirements. However, it will be difficult if not impossible to apply

kernel coupling directly on the fine-grain idioms. Some variations are probably

needed.

3.4.3 Machine Idioms

Machine idioms [4] are special instruction sequences common in assembly

codes. Such a sequence usually comes from a specific high-level operation (e.g.,

increment of a variable). Though the operation is considered by the program-

mer as atomic, it might be translated into a sequence of instructions on a target

machine. If such an operation is common and the sequence repeats frequently,

one might want to add a new instruction (e.g., instruction INC) into the ISA of

the target machine and then a compiler can replace the whole sequence with a

single instruction. There are quite a few works [9, 113] in the community trying

to recognize high-coverage machine idioms for optimal ISA extensions or other

architecture designs. Usually they also use graph matching to recognize idioms.

However, these works are quite different from ours. First, a machine idiom is de-

fined as an instruction sequence in dynamic context. It does not consider iterative

behaviors over loops and sometimes is even limited in a basic block. Second, since

machine idioms are specific instruction sequences, they only need simple exact

graph matching to recognize.

3.4.4 Reduction Recognition

Reduction recognition is well studied in compiler research, especially in

parallelizing compilers. The HPF compiler [76] from Rice University, the Polaris

compiler [108] from University of Illinois and the SUIF compiler [51] from Stan-

ford University are three of such systems. All of them apply dependence analysis

and pattern matching methods to recognize reductions. The SUIF compiler can

even recognize and parallelize inter-procedural and sparse reductions. However,

56

their goal is for optimization instead of workload characterization and performance

analysis. They usually focus on only a few of the idioms that can be optimized,

especially reductions. Even in these considered idioms, they avoid some compli-

cated forms to avoid errors or expensive optimization costs. In contrast, this work

is more general and tries to catch as many idioms as possible.

3.5 Conclusions and Future work

By definition, performance idioms are the basic components of scientific

applications. This chapter proposed an automatic idioms recognition method and

implemented the method, based on the open source compiler Open64. Applied to

the NAS Parallel Benchmark (NPB), the prototype system achieved an accuracy

of more than 90\% compared with a manual idioms classification. It was also

found that five idioms suffice to cover 100\% of the six NPB codes (MG, CG, FT,

BT, SP and LU) and the performance approximation between the idioms and

their corresponding instances in the NPB codes is up to 96.6\% accurate. The

automatic recognition method and prototype system enable people to find out the

representative idioms of real scientific applications automatically. The preliminary

results proved to some extend that a small number of idioms can cover most

scientific codes and approximate the performance of real applications.

With the verified automatic tool, it is possible to prove the code coverage

hypothesis by examining more and larger application codes such as CPU2006 [37].

This work is limited to static code coverage. One of the next steps is to calculate

the dynamic code coverage by combining the static results with the dynamic profile

information. With dynamic code coverage, one can approximate the application

performance automatically and check more application codes to test the hypothesis

about performance approximation. It is in progress to apply the technique for

performance optimization on GPU and FPGA machines. Moreover, according to

previous research on non-volatile memory [53, 27, 52, 83], performance behaviors

on these new storage technologies are totally different from traditional spinning

disks. As a result, similar ideas can be applied for hybrid storage systems.

57

This chapter, in part, is a reprint of the material as it will appear in the 25th

IEEE International Parallel and Distributed Processing Symposium (IPDPS'11),

a joint work with Allan Snavely, Rob Van der Wijngaart, and Michael Frumkin.

The dissertation author was the primary investigator and author of this paper.

Chapter 4

DASH: a Flash-based Data

Intensive Supercomputer

Certain domains of science, such as genomics [35] and astronomy [144],

are literally ""drowning in a sea of data"" in that disks are filling up with raw

data from sequencing machines and space telescopes faster than that data can

be analyzed. Some data analysis problems can be solved by parallel processing

with many compute nodes thus spreading out the data across many physically

distributed memories. Others, limited by low parallelism or challenging access

patterns depend on fast I/O or large fast shared memory for good performance.

By talking to users, examining their applications, and participating in com-

munity application studies [123][122][70][120], data intensive HPC applications

were identified spanning a broad range of science and engineering disciplines that

could benefit from fast I/O and large shared memory packed onto a modest num-

ber of nodes; included are applications in the growing areas of 1) data mining and

2) predictive science used to analyze large model output data.

In a typical data mining application, one may start with a large amount of

raw data on disk [129]. In the initial phase of analysis, these raw data are read

into memory and indexed; the resulting database is then written back to disk.

In subsequent steps, the indexed data are further analyzed based upon queries,

and the database will also need to be reorganized and re-indexed from time to

time. As a general rule, data miners are less concerned about raw performance

58

59

and place higher value on productivity, as measured by ease of programming and

time to solution [48]. Moreover, some data mining applications have complex data

structures that make parallelization difficult [11]. Taken together, this means that

a large shared memory and shared memory programming will be more attractive

and productive than a message passing approach for the emerging community of

data miners. I/O speed is also important for accessing data sets so large that they

do not fit entirely into DRAM memory.

A typical predictive science application may start from (perhaps modest)

amounts of input data representing initial conditions but then generate large in-

termediate results that may be further analyzed in memory, or the intermediate

data may simply be written to disk for later data intensive post-processing. The

former approach benefits from large memory; the latter needs fast I/O to disk.

Predictive scientists also face challenges in scaling their applications due to the

increasing parallelism required for peta-scale and beyond [11]; they benefit from

large memory per processor as this mitigates the scaling difficulties, allowing them

to solve their problems with fewer processors.

With forecasting the characteristics of data intensive applications in the

future, it is found that today's supercomputers are, for the most part, not par-

ticularly well-balanced for their needs. Creating a balanced data intensive system

requires acknowledging and addressing an architectural shortcoming of today's

HPC systems.

The deficiency is depicted graphically in Figure 4.1; while each level of

memory hierarchy in today's typical HPC systems increases in capacity by 3 orders

of magnitude, the costs of each capacity increase are latencies that increase and

bandwidths that decrease by at least an order of magnitude at each level. In fact,

today's systems have a latency gap after main memory. The time to access disks

is about 10,000,000 processor cycles - five orders of magnitude greater than the

access time to local DRAM memory. It is almost as though today's machines are

missing a couple of levels of memory hierarchy that should read and write slower

than local DRAM but orders of magnitude faster than disk. Since some data sets

are becoming so large they may exceed the combined DRAM of even large parallel

60

supercomputers, a data intensive computer should, if possible, have additional

levels of hierarchy sitting between DRAM and spinning disk. To fill these missing

levels, a data intensive architecture has at least two choices: 1) aggregate remote

memory and 2) faster disks. A system named DASH was designed to make use

of both. With these two additional levels (depicted in the Figure 4.1 as Remote

Memory and Flash Drives), this work managed to fill the latency gap and to present

a more graceful hierarchy to data intensive applications.

Section 4.1 describes the high-level design of DASH and compares its effi-

ciency to other designs in the same space. Section 4.2 supplies the detailed ``recipe""

used to design and tune the high performing flash-based I/O nodes of DASH - the

intent is that the description is detailed enough so that anyone can understand

the design choices and duplicate them. Section 4.3 describes the performance of

some scientific applications - the experiments showed that DASH can achieve up to

two-orders-of-magnitude speedup over traditional systems on these data intensive

applications. Section 4.4 discusses flash generally and lessons-learned. Section 4.5

is related work.

Figure 4.1: The memory hierarchy. Each level shows the typical access latency

in processor cycles. Note the five-orders-of-magnitude gap between main memory

and spinning disks.

61

4.1 System Overview

DASH is comprised of 4 ``supernodes"" connected by DDR Infiniband. Each

supernode is physically a cluster composed of 16 compute nodes and 1 I/O node,

virtualized as a single shared memory machine (see Figure 4.2) by the vSMP

system software from ScaleMP \mathrm{R}\bigcirc Inc. [114]. Each compute node comprised of 2

Intel \mathrm{R}\bigcirc quad-core 2.4GHz Xeon Nehalem E5530 processors with 48GB of local

DDR3 DRAM memory. As a result, each supernode has 128 cores, 1.2TFlops

of peak capability, and 768GB of global (local + remote) shared memory. The

I/O node is loaded with 16 Intel \mathrm{R}\bigcirc X25-E 64GB flash drives, which amount to

1TB in total capacity. DASH has 4 such supernodes in all, 64 compute nodes

with 4.8 TFlops, 3 TB of DRAM and 4 TB of flash. DASH is a prototype of the

larger National Science Foundation (NSF) machine code-named Gordon slated for

delivery in 2011, which will have more (32) and larger (32-way) supernodes and

will feature 245 TFlops of total compute power, 64 TB of memory, and 256 TB of

flash drives.

4.1.1 Storage hierarchy

Flash drives provide the first level (closest to the level of spinning disks)

to fill the latency gap. NAND Flash is a lively research and industry topic re-

cently [31][3][84][98][50]. Unlike traditional electromechanical hard disks, flash

drives are based on solid-state electronics and have quite a few advantages over

hard disks, such as high mechanical reliability, low power consumption, high band-

width, and low latency. Their latency is about 2 orders of magnitude lower than

that of spinning disks. With these faster drives, it is possible to bring user data

much closer to the CPU. Flash drives can be classified as MLC (Multi-Level Cell)

and SLC (Single-Level Cell) drives. SLC was chose for longer lifetime, lower bit

error rate, and lower latency. The prototype system DASH has 1 TB of flash drives

per supernode (4 TB in all). Gordon will get more (8 TB per supernode, 256 TB

in all).

Though flash drives are much faster than spinning disks, there is still a

62

big latency gap between DRAM memory and flash drives (see Figure 4.1). DASH

is equipped on each compute node with 48GB of local DDR3 DRAM memory,

that is, 6GB per core. In contrast, most existing supercomputers have only 1 to

2GB per core. So DASH already has a better ratio of DRAM to compute power -

suitable for data intensive computing. Furthermore, as the second layer of latency-

gap filler, the vSMP software is exploited to aggregate distributed memory into a

single address space. That means every single core in the supernode can access all

768GB of (local + remote) memory possessed by (all 16 compute nodes of) one

supernode. With such a large shared memory, users can deal with applications

with large memory footprint but limited parallelism, or just use all that memory

as a RAM disk for fast I/O. Users with less than 3/4 of a TB of data can move

Figure 4.2: Physical and virtual structure of DASH supernodes. DASH has in

total 4 supernodes IB interconnected of the type shown in the figure.

63

their data from spinning disks up to the shared memory in the memory hierarchy,

a full 3 orders of magnitude closer to the CPU in terms of latency. Users with less

than 1 TB of data can still avoid spinning disk and operate 2 orders of magnitude

faster by loading their data on the flash of one supernode. And if a user uses the

whole machine he can gain access of up to 7 TB of DRAM + Flash (3TB + 4TB)

for truly large data analysis problems.

4.1.2 Cost efficiency

DASH is designed to provide cost-effective data-performance. The design

focused the architecture on providing cost-efficient IOPS which should benefit all

data-intensive applications. It is interesting to compare the three lowest levels of

data hierarchy on DASH (the HDD, SSD, and virtually aggregated DRAM layer)

to each other and some commercial offerings. Table 4.1 shows a cost efficiency com-

parison between DASH data hierarchy levels and two popular commercial products

offered by 1) Fusion-I/O (ioDrive [49]) and 2) Sun Microsystems/Oracle (F5100

configuration-1 [43]).

Table 4.1: Cost efficiency comparison between DASH and commercial products.

Generic
HDD
(SATA)

DASH-
I/O
node

DASH
Super
node

Fusion
--IO

Sun --
F5100

GB 2048 1024 768 160 480
MB/s/\$ \~0.4 0.16 0.49 0.12 0.07
\$/GB \~0.15 19.43 112.63 41.06 90.62
IOPS/\$ 0.4-1.0 28 52 18 9
IOPS/GB 0.05-0.1 549 5853 725 828

The cost metrics in Table 4.1 are collated and averaged from different

sources including the technical specifications of each product available from its

vendor and reseller [49][43][139]. The listed prices of these products were observed

on the first week of February, 2010. The second column (Generic HDD) was chosen

to represent that category within a range of values (price, density, and speed varies

64

by vendor product). The cost of DASH I/O node includes the flash drives, the

controllers, and the Nehalem processor; the cost of DASH supernode includes the

cost of 16 dual socket Nehalem nodes, their associated memory, and the IB inter-

connect but not the I/O node (its performance was measured with RAM drive).

The comparison to commercial products then gives an unfair cost disadvantage to

DASH as the vendor's offerings are just storage subsystems and lack any substan-

tial compute power - nevertheless, it is useful as a relative comparison. The third

row (MB/s/\$) can be seen as saying that bandwidth per dollar is more favorable for

spinning disks and DRAM than for flash and DASH scores the best by this metric

at all levels. The forth row (\$/GB) says (common sense) that capacity per dollar

is (in the order high to low) HDD (spinning disk), SSD (flash), DRAM and that

DASH has the cheapest flash for the systems compared (the vendor system's don't

have any general-use DRAM just some DRAM cache). The fifth row (IOPS/\$) can

be seen as saying that IOPS per dollar is more favorable for DRAM and flash than

for spinning disk and DASH scores the best by this metric again. As shown on row

two (GB) DASH also has more than twice as much flash capacity than either of

the vendors. Row six (IOPS/GB) shows that because of having this more capacity

the metric IOPS/GB looks better for the vendors at the flash but that is in part

because they have less than 1/2 the flash (DASH still has the highest value in the

row six category not due to flash but due to its virtual DRAM supernode layer).

DASH then is a very high performing and cost-effective system compared to com-

mercial offerings in the same space and since this chapter describes how to build

and tune it from commodity parts, people in the market for such a data-intensive

system could consider simply building their own DASH by this recipe.

4.1.3 Power efficiency

Power and cooling costs form a major part of large data center's operating

cost. Power and cooling costs can even exceed the server hardware acquisition costs

over the lifetime of a system. The power consumption of flash SSDs is low, making

them the right choice for DASH. Table 4.2 compares power metrics between flash

SSD, HDD, and DRAM.

65

Table 4.2: Comparison of power metrics between SSD and HDD.

DRAM 7x2
GB Dimms
(14 GB)

Flash SSD
64GB

HDD 2TB

Active Power 70 W 2.4 W 11 W
Idle Power 35 W 0.1 W 7 W
IOPS per
Watt

307 712 35

The numbers in Table 4.2 were averaged from technical specifications of

various products and independent hardware evaluation tests [139][65][140]. The

second and the third rows are self-explanatory. The forth row compares the IOPS

that can be performed per watt. Since drives are partly active and partly inactive

during the course of an application's execution, one can say that in general the time

savings resulting from flash come with an additional power savings over spinning

disk. IOPS/Watt may be as much as two-orders-of magnitude better than spinning

disk. The substantially higher IOPS of DRAM (an order of magnitude higher than

flash) comes at a higher power cost. So if one wishes to optimize IOPS per Watt

(or IOPS for operating cost) then a system like DASH may be considered.

Overall, it can be seen that the experimental system DASH is a powerful,

high capacity and fast system design even by commercial standards, and offers

cost-efficient, power-efficient IOPS for data intensive computing.

4.2 I/O system design and tuning

The DASH supernode (shared memory) results simply from deploying vSMP

software on what is otherwise a standard IB connected system. This work mainly

focuses on the design and tuning process for the I/O node describing how to choose

the controller and tune the RAID system.

To evaluate the performance of storage systems, bandwidth and IOPS are

both important metrics. Bandwidth measures sequential performance while IOPS

66

shows the throughput of random accesses. This section presents the whole tuning

process of the DASH storage system. Since the target applications are character-

ized as intensive random accesses, this work biased towards achieving high IOPS

more than bandwidth in the design. To pursue and measure the peak I/O perfor-

mance of the system, RAID 0 is adopted for this work.

IOR [63] and XDD [141] are two of the most accurate, reliable, and well-

known I/O benchmarks. Both are used to verify each other and their results were

always similar in the tests. For each software and hardware configuration, four

tests are run: sequential write, sequential read, random write and random read

respectively.

Figure 4.3 summarizes a series performance results obtained relative to the

starting baseline obtained by default settings, about 46K IOPS with 4KB blocks.

Basic tunings led to 88K IOPS (1.9x of the baseline) random read rate with 4KB

blocks out of one I/O node; this is only about 15\% of the theoretical upper bound

of 560K IOPS (16x35K = 560K IOPS since the manufacturer spec is 35K IOPS

random read per Intel \mathrm{R}\bigcirc X25-E SSD and each I/O node has 16 drives). It was

figured out that a bottleneck came from the low-frequency processor embedded in

the first RAID controllers (RS2BL080) and switched to simpler HBAs (9211-4i)

and software RAID (using the fast Nehalem processor on each I/O node as the I/O

controller rather than the embedded processor). This helped the system to scale

linearly up to 8 drives, with obtained performance of about 255K IOPS (5.6x of

the baseline). To keep the linear scaling up to 16 drives though one have to remove

even the software RAID and handle the separated drives directly, which leads to

(a little more than) theoretical upper-bound performance of 562K IOPS (12.4x of

the baseline). The vSMP distributed shared memory system is able to exploit the

shared memory of DASH as a single RAM drive and boost the performance again

up to 4.5 million random read IOPS, (98.8x of the baseline using DRAM in place

of flash). Details of how these results were obtained are described in the following

sections.

Since a single hard disk (HDD) can only do about 200 IOPS per disk (ran-

dom read 4KB blocks) depending on manufacturer, it can be seen that DASH can

67

provide two orders of magnitude higher IOPS from its flash-equipped I/O nodes

and yet another two orders of magnitude from aggregated DRAM as RAM disk.

These options effectively fill the latency gap.

4.2.1 Single drive tuning

Before tuning the whole I/O system, let's start with tuning a single flash

drive first. Table 4.3 shows some important tuning parameters for flash drives. It

is also needed to tune the software components, such as I/O benchmarks and the

operating system, for single-drive tests, which will be discussed later.

Write caching and read ahead on other system levels might not be helpful

for an intensive random workload. However, the situation is a little bit different

on the flash drive level. Since the internal structure of a flash drive is highly

parallel and logically continuous, pages are usually striped over the flash memory

array, prefetching multiple pages and background write-back can be very efficient,

while disabling these options, especially write caching, could cause a dramatic

performance drop [31].

Advanced Host Controller Interface (AHCI) is Intel \mathrm{R}\bigcirc 's API specification

Figure 4.3: Random read performance improvements with important tunings.

68

Table 4.3: Important tuning parameters for flash drives.

Parameters Descriptions DASH set-
ting

Write
Caching

Write through or write back in the drive
ram-cache

Write back

Read
Ahead

Read the data into the drive ram-cache be-
fore they are requested according to the
access pattern

On

AHCI Advanced Host Controller Interface, API
for SATA host bus adapters

On

Table 4.4: I/O test results of a single flash drive.

Sequential
Write
(MB/s)

Sequential
Read
(MB/s)

Random
Write
(4KB
IOPS)

Random
Read (4KB
IOPS)

Measured 203 261 10724 39756
Spec 170 250 3300 35000

for SATA host-controllers. One of its advantages is to enable Native Command

Queuing (NCQ). In a traditional spinning disk, NCQ is designed to hold (and also

schedule) the I/O requests not served by the disk fast enough. In flash drives, the

purpose is the opposite. It is used to stock I/O requests in case the CPU is busy

and cannot summit new requests in time [89]. For backward compatibility, AHCI

is disabled by default in the system. Enabling the option led to more than 10x

improvements on random read IOPS. Table 4.4 shows the I/O test results with a

single flash drive. These performance numbers actually exceed the published specs

of the Intel \mathrm{R}\bigcirc X25-E which are also listed in the table.

69

4.2.2 Basic RAID tuning

The tuning parameter space of the DASH storage system is large. To

achieve maximum performance, one have to coordinate all the software and hard-

ware components of the system: I/O benchmarks, the operating system, and hard-

ware RAID. Table 4.5 summarizes the important tuning parameters of these com-

ponents.

Usually the operating system will try to cache the data from/to disks for

future uses. The RAID controller also has its own RAM cache for similar purposes.

Unfortunately, cache doesn't always help. For example it may not help large-scale

random I/Os (or even very large sequential I/Os) with low temporal locality. Even

worse, it will introduce extra overhead on the data path. Direct I/O is enabled to

bypass the OS buffer cache and the RAID cache is turned off.

There are quite a few APIs (libraries) one can use for I/O accesses. IOR

supports four: POSIX, MPIIO, HDF5 and netCDF while XDD only supports

POSIX. Since POSIX is the most common and typical in application code, it is

chosen for the tests. MPIIO is also widely used in HPC community. Unfortunately,

it doesn't support direct I/O.

Chunk size is decided according to the test type and the stripe size. Se-

quential tests are designed to measure the maximum bandwidth across all the

underlying flash drives and the chunk size should be larger than the stripe size

times the number of flash drives (16 in this case). In this work, 4MB is chosen,

which is big enough for the stripe sizes. Random tests are designed to evaluate

how well the system deals with small chunks of random access. Since the access

unit (page size) of the flash drives is 4KB, it should be a reasonable (minimal)

setting.

Queue depth also depends on the test type and the number of underlying

flash drives. For sequential tests, since each request already covers all the underly-

ing flash drives, it is set to 1 to guarantee a strict sequential access pattern. As for

random tests, to maximize the throughput, 128 is chosen, which is large enough

comparing with the number of flash drives (16 in this case), and hopefully can

make a full use of each flash drive.

70

Table 4.5: Important tuning parameters for the DASH I/O system.

Components Parameters Descriptions Final DASH
setting

I/O
Benchmarks

Cache Pol-
icy

Cached or direct I/O, use the OS
buffer cache or not.

Direct I/O

API I/O APIs to access drives such
as POSIX, MPIIO, HDF5 and
netCDF.

POSIX

Chunk Size The data size of each request.
I/O benchmarks usually generate
fixed-sized requests.

4MB for se-
quential tests,
4KB for ran-
dom tests

Queue
Depth

The number of outstanding I/O
requests.

1 for sequen-
tial tests and
128 for ran-
dom tests

Operating
System

I/O Sched-
uler

Schedule and optimize I/O ac-
cesses. There are 4 algorithms
in the 2.6 Linux kernel: CFQ
(default), Deadline, Anticipatory,
and No-op.

No-op

Read
Ahead

Read the data into cache before
they are requested according to
the previous access pattern.

Off

Hardware
RAID

Cache Pol-
icy

Cached or direct I/O, use the
RAID controller cache or not.

Direct I/O

Write Pol-
icy

Write through or write back. Write through

Read
Ahead

RAID-level read ahead. Off

Stripe Size The block size in which RAID
spread data out to drives.

64KB

There are 3 goals for I/O scheduler: merging adjacent requests together, re-

ordering the requests to minimize seek cost (elevator scheduling), and controlling

the priorities of requests. Since there is no drive head movement in flash drives,

elevator scheduling is not necessary. Also, the system is not designed to run any

71

time critical applications and does not need prioritization either. In the experi-

ments, the simplest No-op scheduler, which only proceeds request merging, always

gave the best result.

One can set read ahead on 3 levels: operating system, RAID controller,

and flash drive. The settings per SSD on the drive level was discussed above, but

things are different on the other two levels. Read ahead is good for sequential

performance, but it doesn't help random accesses. Sometimes it may even waste

bandwidth with extra reads and hurt random performance. Since direct I/O was

adopted and read ahead became irrelevant, it is turned off.

Again, it was already discussed about write-back and write-through on the

drive level, but it is different on the RAID level. The common wisdom is that

write-back is always better. However, it is only true for light workloads. With

intensive random accesses, the write-back cache is not helpful. Also, the extra

copy on the data path will hurt the performance. As a result, write-through is

adopted on the RAID level.

To decide the stripe size is a difficult optimization. Usually, small stripe size

will hurt sequential bandwidth because the start-up overhead dominates. For flash

drives, it is even worse by causing serious fragmentation, which was proved to cause

dramatic performance downgrading [31]. However, larger is not always better.

After some threshold, large stripe size will limit the parallelism of I/O accesses

and then the RAID system cannot exploit the bandwidth of all the underlying

flash drives. Different sizes are tried from 8 KB to 1024 KB and it was found

that 64 KB and 128 KB are the best configurations for this specific system and

workload.

With the settings in Table 4.5, the system obtained the performance num-

bers for the stripe sizes of 64KB and 128KB shown in Table 4.6. As measured

in Table 4.4, the random read performance of a single flash drive is 39,756 4KB

IOPS. That means the upper bound for the whole IO node should be more than

600K IOPS, which is much higher than what has been obtained at this stage. The

next sub-section will continue the adventure to figure out the problem.

72

Table 4.6: I/O test results with 2 different stripe sizes.

Stripe
Size(KB)

Sequential
Write
(MB/s)

Sequential
Read
(MB/s)

Random
Write
(4KB
IOPS)

Random
Read (4KB
IOPS)

64 1179 2199 3749 87563
128 1275 2056 3121 79639

4.2.3 Advanced tuning

As shown above, only about 15\% of the maximum performance was achieved

after all those tunings. What's the problem? It is suspected that the bottleneck

might be the RAID controller. To implement the RAID function and other ad-

vanced features, also to reduce the CPU loads, the controller is embedded with

a low-frequency processor (800MHz in this case). This small processor is enough

for spinning disk, but not fast enough to work with flash drives. Are there any

faster RAID controllers? To our best knowledge, it is the state-of-the-art RAID

controller (Intel \mathrm{R}\bigcirc RS2BL080) one can get that is compatible with the drives.

Another option is to use simple Host Bus Adapters (HBA) without embedded

processors and share the power from the host CPU. The motherboard happens

to have an on-board HBA similar to the RAID controllers but without embedded

processor or hardware RAID function. Six flash drives were connected to compose

a software RAID and 153, 578 4KB IOPS was achieved, which is almost 2x of the

hardware RAID performance. This confirmed the speculation.

The on-board HBA has a corresponding external version, which is rated

higher than 150K 4KB IOPS by the vendor. Each HBA can connect 4 flash drives.

The motherboard can hold 4 HBAs. By this means, with the same number (16)

of flash drives, one can expect the random read performance of about 600K 4KB

IOPS, which is very close to the upper bound.

With similar settings as the previous sub-section except replacing the hard-

ware RAID with the HBAs plus the Linux software RAID, the tests were repeated.

The random read performance scaled almost linear as expected at the beginning.

73

With 8 drives, about 250K IOPS were obtained, which is almost 3x as before.

However, the scaling stopped after that. In Figure 4.4, we can see that there is a

plateau from 8 to 16. Is it the RAID problem again? To answer the question, the

software RAID were removed and the tests were performed directly on separate

drives. This time the performance scaled almost linearly from 1 up to 16 drives.

The highest performance was 562, 364 IOPS. Also removed the file system (XFS)

and tested directly on the raw block devices. The results were almost the same.

It seems the upper bound have been reached.

Table 4.7 lists all the I/O test results on 16 drives with and without RAID.

You can see that the configuration without RAID is not only good for the random

read test, but all the other tests. However, the performance with software RAID

in fact is not too bad. By comparing with the results in Table 4.6, you will find

that it still beats the original hardware RAID on almost all the tests. For the

random tests, it achieved up to 5x the original performance. Though investigation

of the RAID problem continues [52], it is safe to conclude that the software RAID

configuration delivers a good balance between high performance and convenience.

Figure 4.4: Random read performance with and without RAID. The configuration

with RAID only scales up to 8 drives while the one without RAID can scale linearly

up to 16 drives. Tests with raw block devices were also performed.

74

For the users who still need higher performance and don't care about the hassle

to deal with 16 separate drives, the configuration without RAID is still an option

and in fact there are some programming libraries around like STXXL [127] that

can help to ease the job of managing the separate SSDs.

Table 4.7: I/O test results with and without RAID.

Sequential
Write
(MB/s)

Sequential
Read
(MB/s)

Random
Write
(4KB
IOPS)

Random
Read (4KB
IOPS)

With
RAID

1395 2119 19784 254808

Without
RAID

2958 3225 143649 562365

4.2.4 RAM drive

With the flash drives, the system obtained optimal results at the limit of the

existing hardware technologies. However, with the special design of DASH, it is still

possible for us to achieve even higher performance. As mentioned above, DASH

adopts vSMP distributed shared memory software system to aggregate separate

physical memories into a single virtual memory. Besides the part of the memory

used by the vSMP software and reserved for cache, a user has access to about

650GB visible memories from any processor in each supernode. Such a big memory

space can be used as a RAM drive by mounting with the RAMFS file system.

Since DRAM accessed over IB is even faster than flash drives (by up to 3 orders of

magnitude!), RAM drives are expected to achieve much higher performance and

the results in Table 4.8 show this.

75

Table 4.8: I/O test results of the RAM drive.

Sequential
Write (MB/s)

Sequential
Read (MB/s)

Random
Write (4KB
IOPS)

Random Read
(4KB IOPS)

11,264 42,139 2,719,635 4,495,592

4.3 Performance of real-world data-intensive ap-

plications

The behavior of I/O benchmarks as described above may be interesting

and useful for comparison by simple metrics but the question remains ``what is the

implication for real applications""? To partially answer this question, one applica-

tion core from predictive science and two full applications from data mining are

investigated. This section presents the performance results of 1) external memory

BFS, a common component in several predictive science graph-based applications

2) Palomar Transient Factory a database application used to discover time-variable

phenomena in astronomy data. 3) Biological pathway analysis in an integrated

data-mining of heterogeneous biological data framework. All three applications

generate intensive random data accesses.

4.3.1 External memory BFS

Data in several domains such as chemistry, biology, neuroscience, linguistics,

and social science, are implicitly graph structured or graphs may be induced upon

them. For example, semantic tagged information is encoded as a graph where nodes

represent concepts and labeled edges are relationships. Search engines model the

World Wide Web as a graph, with web-pages as nodes and hyperlinks as edges.

Researchers in linguistics use graphs to represent semantics expressed in sentences.

Networks of roads, pipelines, neurons etc. can all be viewed as graphs. Moreover,

due to technological advancements, scientists are increasingly harvesting massive

graphs in their respective fields. For example, human interaction networks as

76

large as 400 million edges in size are already extant [44]. Information repository

such as NIH's Neuroscience Information Framework (NIF) [90] is projected to

have more than a billion edges. Web-graphs which are studied by social scientist,

mathematicians, and linguistics can be on the order of tens of billions nodes. As

semantic web gains prominence and natural language processing improves, we shall

see an exponential growth in graph structured data sets.

A basic type of computation over graphs that appears frequently in all such

domains is that of graph traversal. Although the nature and characteristics of a

graph exploration varies across domains and even across problems within a do-

main, they are commonly modeled after breadth-first-search (BFS). Further, other

domain specific problems such as finding complexes in protein-interaction network,

clustering of web-graphs, computing distance-distribution in graph models etc. uti-

lize BFS operation. Since the total size of the graph and the content associated

with every nodes and edges can run up to the order of several tera-bytes, scalable

and efficient BFS computation when graphs reside in external memory would help

advanced research across all these domains. This problem in literature has been

referred to as external memory BFS or EM-BFS.

The external memory package 0.39 implemented by Deepak Ajwani et al. [16]

is adopted in the experiments. Table 4.9 shows the results of one of the algorithms,

MR-BFS. A range of tests are executed on a dataset size of 200 GB and compared

the performance of three different storage media (RAM drive, flash drives, and

spinning disks) with similar and comparable configurations. The results showed

that RAM drive is on average about 2.2x faster than flash drives, and flash drives

are about 2.4x faster than spinning disks for an overall speedup of 5.2x. The

speedup is substantial but not as good as expected, which could be explained by

the mix of bandwidth and latency bound (sparse and dense) accesses in travers-

ing the test graph. As previous works [98] observed, write-intensive nature of an

application might also be the cause.

77

Table 4.9: Average MR-BFS results on the Dash SuperNode from different storage

media.

RAM
Drive

Flash
Drives

Spinning
Disks

Total I/O Time (sec) 854 (5.2x) 1862 (2.4x) 4444
Total Run Time (sec) 1917 (3.0x) 3130 (1.8x) 5752

4.3.2 Palomar Transient Factory

Astrophysics is transforming from a data-starved to a data-swamped disci-

pline, fundamentally changing the nature of scientific inquiry and discovery. New

technologies are enabling the detection, transmission, and storage of data of hith-

erto unimaginable quantity and quality across the electromagnetic, gravity and

particle spectra. These data volumes are rapidly overtaking the cyber infrastruc-

ture resources required to make sense of the data within the current frameworks for

analysis and study. Time-variable (``transient"") phenomena, which in many cases

are driving new observational efforts, add additional complexity and urgency to

knowledge extraction: to maximize science returns, additional follow-up resources

must be selectively brought to bear after transients are discovered while the events

are still ongoing.

Current transient surveys like the Palomar Transient Factory (PTF) [111]

and the La Silla Supernova Search [71] (100GB/night each) are paving the way for

future surveys like the Large Synoptic Survey Telescope (LSST) [75] (15TB/night

producing petabytes of data each year). The future sky surveys assess their ef-

fectiveness and scalability on current surveys such as PTF, in order to maximize

the scientific potential of the next generation of astrophysics experiments. Two of

the major bottlenecks currently confronting PTF are I/O issues related to image

processing (convolution of a reference image with a new one followed by image sub-

traction) and performing large, random queries across multiple databases in order

to best classify a newly discovered transient. PTF typically identifies on the order

of 100 new transients every minute it is on-sky (along with 1000 spurious detec-

78

tions related to image artifacts, marginal subtractions, etc.). These objects must

be vetted and preliminarily classified in order to assign the appropriate follow-up

resources to them in less than 24 hours, if not in real-time. This often requires

performing more than 100 queries every minute through 8 different and very large

(\~100GB - 1 TB) databases. The response times of these queries are crucial for

PTF. The forward query and the backward query are two most significant queries

used repeatedly by PTF. The average times to run these queries on DASH and the

existing production infrastructure used by PTF (with same cache-size, indexes) are

provided in Table 4.10. The difference in query response times can be attributed to

the random IOPS provided by SSDs which allow faster index scans of the database

rather than sequential table scans. The two-order-of-magnitude improvement in

response times makes it possible for PTF to keep up with real-time demands.

Table 4.10: Comparison of PTF Query response times on DASH and PTF pro-

duction database with spinning disks.

Query type Forward
Query

Backward
Query

DASH-IO (SDSC) 11ms (124x) 100s (78x)
Existing DB 1361ms 7785s

4.3.3 Biological pathways analysis

Systems level investigation of genomic information requires the develop-

ment of truly integrated databases dealing with heterogeneous data, which can be

queried for simple properties of genes as well as for complex biological-network

level properties. BiologicalNetworks [17] is a Systems Biology software platform

for analysis and visualization of biological pathways, gene regulation and protein

interaction networks. This web-based software platform is equipped with filtering

and visualization tools for high quality scientific presentation of pathway analysis

results.

The BiologicalNetworks platform includes a general-purpose scalable ware-

79

house of biological information, which integrates over 20 curated and publicly

contributed data sources including experimental data and PubMed data for eight

representative genomes such as S.cerevisiae and D.melanogaster. BiologicalNet-

works identifies relationships among genes, proteins, small molecules and other

cellular objects. The software platform performs a large number of long-running

and short queries to the database on postgres. These queries are a bottleneck for

researchers on this domain when they have to work on the pathways using the

visual interface. In the performance tests, some popular queries of BiologicalNet-

works were run on three different media on SDSC DASH including hard disks,

SSDs and memory (using vSMP).

Table 4.11: Query response times of popular queries in Biological Networks on

different storage media (Hard disk, SSD and memory) and their speed-up in com-

parison to hard disk.

Query Q2C Q3D Q5F Q6G Q7H
RAMFS
(vSMP)

11338ms
(1.42x)

62850ms
(3.60x)

3ms (186x) 17957ms
(1.54x)

211ms
(5.64x)

SSD 11120ms
(1.45x)

176873ms
(1.28x)

11ms
(50.73x)

24879ms
(1.11x)

495ms
(2.41s)

HDD 16090ms 226023ms 558ms 27661ms 1191ms

Again, as observed in the PTF queries (Table 4.10), the queries of the Bio-

logicalNetworks also show improvement in their response times. However, speedup

is not linear or constant across all the queries as each query uses a different query

plan producing different quantity of results (or the number of rows scanned and

selected from the relational database). Heavily random access patterns speedup

by as much as two orders-of-magnitude while long sequential accesses run just a

bit faster.

In summary, some real applications speed up between 5x and nearly 200x

on DASH depending on the I/O access patterns and how much the application can

benefit from the random IOPS offered by DASH.

80

4.4 More discussions on flash drives

4.4.1 Performance downgrading

Performance downgrading is one of the concerns about replacing spinning

disks with flash drives. There are mainly two causes for the problem. First, frag-

mentation has proved to be very harmful to the performance [31]. Fortunately,

with the high-end SLC flash drives, most of the performance downgrading is still

acceptable, especially the random read performance. Furthermore, some test con-

ditions in the above paper are extreme and not common in normal uses.

Also, filling up a new drive will also hurt the performance. A new drive out

of factory might be marked as free. However, since there is no abstraction of free

blocks in flash drives [3], the drive will be ``full"" permanently after each block is

written at least once. This will keep the full cleaning pressure and downgrade the

performance. To solve the problem, the operating system and the drive firmware

have to support the TRIM instruction [134] to inform the drive when the content

of a block is deleted. Linux has already supported this since the version 2.6.28.

Intel \mathrm{R}\bigcirc already released a firmware update with TRIM for its similar product

X25-M [61] and the result is promising [57]. Hopefully, the X25-E drives will be

supported in a near future.

4.4.2 Reliability and lifetime

By system reliability, both functional failures and bit errors are concerned.

Mean Time Between Failures (MTBF) is a widely-used metric for functional failure

rate. Without movable mechanical parts, flash drives are more robust and easier to

protect. The X25-E drives used in DASH have an MTBF of 2,000,000 hours [139].

As for bit errors, the raw Bit Error Rate (BER) of SLC NAND flash is about

10 - 9 - 10 - 11, commercial products usually apply Error Correction Code (ECC)

with different strengths to lower the rate. The final error rate after ECC correction

is called Uncorrectable Bit Error Rate (UBER) [84]. The UBER of X25-E is

10 - 15 [139]. That means you will get one bit flip in about 6 days if you keep

reading with the sustained speed of 250 MB/s. For practical workloads, the time

81

will be much longer. Moreover, some products such as those from Fusion-IO or

Pliant claim UBERs several orders of magnitude lower.

The lifetime of a flash drive is related to its reliability, especially BER. BER

increases while a block ages because of writes, i.e. Program/Erase (P/E) cycles.

After some point, the flash controller will disable the block. The typical expected

lifetime for SLC is 100,000 P/E cycles [50]. Manufacturers usually apply wear-

leveling to distribute writes evenly across all the blocks. Calculations indicate that

under extreme use (constant write random access patterns at peak rate) the drives

will not exhaust their write endurance for over 1 year. Real usage patterns will

result in longer lives. To protect the system, people can adopt traditional methods

such as RAID. Furthermore, flash lifetime can be predicted quite accurately with

enhanced SMART (Self Monitoring, Analysis and Reporting Technology) including

P/E cycle information.

4.4.3 Flash-oriented hardware and software

Flash-based SSD is a promising technology to replace traditional spinning

disk. Its low latency and high throughput are going to improve the performance

of storage systems dramatically. For example, in database systems, capacity is

often traded for throughput. With flash drives' high throughput, it is possible

to replace hundreds of small spinning disks with just a few large flash drives [3].

To release the full potential of flash drives, the related hardware and software,

such as host peripheral chipset, interconnect, RAID, and operating system, have

to be modified or even re-designed. Especially, it was found that RAID (hardware

or software) is a limiting factor during the tuning process, and this work is not

the first one to observe the phenomenon [3]. As referred to above, operating

systems and drive firmware need to support TRIM instruction to avoid dramatic

performance downgrading. With flash drives becoming widely accepted, these

related technologies will be stimulated to improve soon.

82

4.5 Related work

4.5.1 ccNUMA machines

ccNUMA means Cache Coherent Non-Uniform Memory Access. It is a hy-

brid architecture combining the merits of SMP (Symmetric Multi-Processing) and

cluster. With SMP, people can program in the same way as on their PCs. It

is the most desired architecture for parallel programmers. However, such archi-

tecture is not scalable and usually limited by 32 processors/cores. To scale up,

people usually group a bunch of SMP nodes together into a larger cluster. By this

way, programmers might need to apply shared-memory programming model intra-

node and message-passing model inter-nodes for optimal performance. ccNUMA

machines try to turn the distributed memory on these SMP nodes into a single

shared memory space by special hardware. There are a few commercial products

around like the SGI Altix 4000 series, HP Superdome, and Bull NovaScale 5000

series [128]. With these machines, people can program across all the nodes in

shared-memory model. However, these products usually adopt proprietary tech-

nology based on customized hardware, and need a long development period, which

makes their ratios of performance to price pretty low. As discussed in the next

sub-section, vSMP is a software implementation of ccNUMA and is much more

cost efficient.

4.5.2 Distributed Shared Memory (DSM)

Since ccNUMA is an expensive solution, people try to achieve the same func-

tion with a software implementation called Distributed Shared Memory (DSM).

The idea was first proposed and implemented in IVY [73]. During the late 1980s

and early 1990s, there were a lot of projects, such as TreadMarks [6], Shrimp [19],

and Linda [5], inspired by the idea and trying to improve in different ways.

Though the idea is very attractive, these systems didn't get widely adopted. How-

ever, there appeared several commercial and academic DSM systems again re-

cently [114][29][1]. It should be the right time to revisit the problem for several

reasons. First, most of those old systems were developed in late 1980s and early

83

1990s and mainly worked with Ethernet. The high network latency limited their

performance. With the low-latency inter-connect like Infiniband [60] today, the

limitation is largely eliminated. Second, the workloads today are changing. Data

intensive applications are becoming dominant, and the requirement for large shared

memory is becoming stronger. Last but not least, most of the new systems exploit

the virtual machine technology and implement the DSM layer under the operating

system and right above the hardware. This might bring more opportunities to op-

timize. Also, it provides a single system image to the operating system and eases

the management burden.

4.6 Conclusions and future works

We are entering the HPC era of data intensive applications. Existing su-

percomputers are not suitable for this kind of workloads. There is a 5-orders-of-

magnitude gap in the current storage hierarchy. This work designed and built a

new prototype system called DASH, exploiting flash drives and remote memory

to fill the gap. Targeting at random workloads, this work tuned the system and

achieved 560K 4KB IOPS with 16 flash drives and 4.5M 4KB IOPS with 650GB

RAM drive. With 3 real applications from graph theory, biology, and astronomy,

up to two-orders-of-magnitude speedup with RAM drives were attained compared

with traditional spinning disks. As for cost efficiency, flash is cheaper than DRAM

but more expensive than disk yet the cost of operation (power) of flash is less than

spinning disk.

DASH is a prototype system of the even larger machine called Gordon,

which has much more flash drives and memory. To achieve good performance with

such a huge system, it is needed to figure out how to scale up the storage system

and the DSM system.

New storage media like flash and PCRAM is a hot research direction. How

to integrate flash into the storage hierarchy is one of the difficult topics. It can be

used as disk replacement, memory extension, disk cache, and more. It will be an

interesting topic to investigate what is the best way to use flash in HPC systems.

84

This chapter, in part, is a reprint of the material as it appears in the 2010

International Conference for High Performance Computing, Networking, Storage

and Analysis (SC'10), a joint work with Arun Jagatheesan, Sandeep Gupta, Jeffrey

Bennett, and Allan Snavely. The dissertation author was the primary investigator

and author of this paper.

Chapter 5

Performance Characterization of

Flash Storage System

As shown in the previous chapter, flash drives are promising for data inten-

sive HPC applications. However, what is the best way to integrate flash technology

into the existing HPC architecture is still an open problem. Since most the existing

hardware and software were designed for slow spinning disks, there will be a lot of

surrounding components like operating system and RAID (hardware or software),

which might not be able to catch up with the high-speed flash drives.

To explore the potentials and issues of the flash technology, A large pa-

rameter space was swept by fast and reliable measurements to investigate different

design options. Also, some lessons learned and suggestions for future architecture

design are presented.

5.1 DASH System Architecture

DASH is composed of four so-called supernodes connected by InfiniBand [60].

Each supernode is a 16-way cluster with 16 compute nodes and 1 IO node. All

the nodes are equipped with two Intel \mathrm{R}\bigcirc Nehalem quad-core 2.4GHz CPUs and

48GB DDR3 memory. Each IO node has in addition 16 Intel \mathrm{R}\bigcirc X25-E [139] 64GB

flash-based SSDs (Solid State Disks), with the total capacity of 1TB, serving the

affiliated supernode. The whole supernode (including the compute nodes and the

85

86

Figure 5.1: The original design of IO nodes. Each eight drives are grouped by a

hardware RAID controller into a hardware RAID-0. Another software RAID-0 is

set up on top of the two hardware RAIDs. The best random read IOPS achieved

is about 88K, which is about only 15\% of the theoretical upper bound.

I/O node) is virtualized into a single system image by the vSMP system from

ScaleMP \mathrm{R}\bigcirc inc. [114]. From users' perspective, a supernode has 128 cores, 768GB

main memory, and 1TB flash drives. A single Linux image runs on top of the

vSMP system. In fact, DASH is just a prototype system for the even larger Ter-

agrid system called Gordon coming next year. Gordon will have more (32) and

larger (32-way) supernodes.

DASH is the prototype solution to the memory-disk latency gap problem.

Two innovations are adopted to fill the gap: flash drives and distributed shared

memory. Flash drives can accelerate IO by about 2 orders of magnitude in term

of latency. Access to remote DRAM memory provided by the vSMP system can

improve the performance by another order of magnitude albeit to a smaller(768GB)

pool of storage. This work will focus on the flash technology and try to explore

the design space.

5.2 Flash-based IO Design Space Exploration

Figure 5.1 shows the original design for IO nodes using hardware RAID plus

software RAID. To connect the 16 flash drives, two Intel \mathrm{R}\bigcirc RS2BL080 PCIe 2.0

RAID controllers are adopted with 8 up-to-6Gb/s SAS/SATA ports each. Every

87

eight drives are configured as a hardware RAID-0. Another software RAID-0 was

set up above the two hardware ones. There are several RAID levels like 0, 1, 5, 6.

Since the flash drives will be used as a working area instead of a permanent storage

system, redundancy or reliability is not guaranteed. To pursue high performance

without any parity computation overhead, this work only investigates RAID-0.

Without any tuning, the out-of-box random read performance is about 46K IOPS

with 4KB requests. Exhaustive tuning led to about 88K 4KB IOPS, which was

about 2x improvement. However, since each X25-E drive can perform about 35K

4KB IOPS, the upper bound performance of 16 drives should be about 600K and

only about 15\% of the upper bound was obtained, which was quite disappointing.

After some investigations, it is suspected that the bottleneck could be the embed-

ded 800MHz IO processor of the RAID controller, which was designed for spinning

disks and might not be able to work with the much faster flash drives. One obvious

solution to the issue is to use faster RAID controllers. However, RS2BL080 was

already the best RAID controller one could find at the time the machine was built

(fall 2009). It seems the existing hardware RAID controllers are not ready for flash

drives yet. In fact, this work is not the only one encountering the issue. Previous

work [3] observed the same problem. Another workaround is to avoid hardware

RAID and adopt software RAID instead. By this approach, one can leverage the

powerful Nehalem processors of the host. To verify the hypothesis that this might

improve matters, 6 flash drives were attached to the on-board HBA (Host Bus

Adapter) of the motherboard and repeated the test with software RAID. Only 6

drives could easily achieve about 150K IOPS, which is about 2x of hardware RAID

performance.

With the hypothesis confirmed, the controllers were replaced by simple

HBAs (LSI \mathrm{R}\bigcirc 9211-4i) with 4 up-to-6Gb/s SAS/SATA ports each. Besides the

software/hardware RAID issue, it is believed there are more design dimensions,

such as stripe size, stripe width (number of drives), file system, IO schedulers,

queue depth, write caching, and read ahead, that are critical to the performance

of the flash storage system. To explore the complete parameter space might cause

exponential explosion in design space and seems infeasible. In fact, it is possible

88

Figure 5.2: The IO node design after switching to simple HBAs. All 16 drives

are set up as a single software RAID-0. The random read IOPS was improved by

about 4x comparing with the original design up to about 350K.

to reason about the appropriate range for each dimension and limit the space to

explore. The following subsections will discuss how to choose the parameter space,

set up the experiments, and what the results imply.

5.2.1 Experiment Configurations

Figure 5.2 shows the IO node configuration after switching to the LSI \mathrm{R}\bigcirc

HBAs. Instead of the hierarchical structure with hardware RAID plus software

RAID, this time simply group up all 16 drives with a single software RAID-0.

There are quite a few IO benchmarks around and one of the most accurate and

stable benchmarks XDD [141] was chosen. To measure the pure performance of

the flash drives without interference from OS buffer cache, direct IO is adopted

across all the tests.

Table 5.1 shows all the parameter dimensions measured and their tested

values. With direct IO, write caching and read ahead become irrelevant. Since

targeting applications with large amount of small random accesses, write caching

and read ahead are not helping.

Stripe size is the chunk size in which a RAID spreads out data into different

drives. The range from 16KB to 256KB should cover the reasonable sizes. Stripe

89

Table 5.1: Parameter Dimensions and Their Values

Parameters Descriptions Values
Stripe size The chunk size of RAID 16KB, 64KB, 256KB
Stripe width Number of drives 1, 2, 4, 8, 16
File system With or without XFS Raw, XFS
Read ahead Linux prefetching Off, On
IO scheduler Linux IO scheduling algo-

rithms
No-op, CFQ, Deadline and
Anticipatory

Request size Size of IO requests 4MB for sequential tests;
4KB for random tests

Seek position Start addresses of IO re-
quests

sequential-seeking, random-
seeking

Queue depth Number of outstanding IO
requests

1, 4, 16 for sequential tests;
32, 128, 512 for random tests

IO operation Read or write 100\% read, 100\% write

width is the number of drives in a RAID. This work tested the numbers from 1 to

16 to investigate the performance scalability.

File systems may add some overhead to the system. It will be interesting

to compare the situation with and without file system to see how big the overhead

is. XFS [142] is a file system designed for large compute and storage system with

excellent performance and scalability. Read ahead is the mechanism the operating

system tries to prefetch data the user will request. As referred to above, read

ahead should not be effective with direct IO, which is confirmed by measured

results (not shown in this chapter). Linux has four IO scheduler choices: No-op,

CFQ, Deadline and Anticipatory. This work explored to see how these scheduling

algorithms perform with flash drives.

Request size means how big the requests generated by the IO benchmark

(XDD in this case) are. 4MB should be large enough to guarantee the sequential

access behavior and 4KB is a common size used in random tests and is found in

many applications. Seek positions are the start addresses of the IO requests; these

can be sequential or random. One thing worth mentioning is that random seeking

does not necessarily mean random accesses. Random-seeking with 4MB requests

still generates sequential accesses i.e. the pattern is occasional repositioning of

90

start address followed by a long sequential access. Queue depth is the number of

outstanding IO requests that can be outstanding at a given time. Small numbers

like 1, 4, 16 should be enough for sequential tests. Random tests will try large

numbers like 32, 128, 512 to see what the performance impact is. The final di-

mension is read or write. This work only considers 100\% read and 100\% write.

14 combinations of the above four parameters are tested as follows. The following

sections will refer to them as test types and use the numbers from 1 to 14 to present

them in some of the figures.

\bullet 4MB sequential tests with sequential seeking, queue depth 1, read and write;

\bullet 4MB sequential tests with random seeking, queue depth 1, 4, and 16, read

and write;

\bullet 4KB random tests with random seeking, queue depth 32, 128, and 512, read

and write.

Each test is repeated five times. There were in total 16,800 runs (it can

be seen why some search-space limiting is needed). By limiting each run to 10

seconds, it is feasible to finish the entire data gathering experiment in about four

days - analysis took a lot longer.

For each run, the benchmark will report both bandwidth and IOPS (In-

put/Output Per Second). Though people usually talk about bandwidth of sequen-

tial tests and IOPS of random tests, they are in fact the same thing and can be

translated to each other as long as you know the request size. Since the sequential

tests and random tests are using different request sizes, the bandwidth numbers

will be preseted for a uniform view while talking about both sequential and random

tests in the following sections.

5.2.2 Data Pre-processing

As referred to above, each test is repeated five times. After collecting the

data, the data was pre-processed and outliers were searched for with Chauvenet's

criterion [30]. According to the criterion, with five measured data, one can be

91

Figure 5.3: Average bandwidth over five passes of read tests. The first pass tends

to off the trend.

classified as an outlier if it is 1.65 standard deviations away from the mean value.

With the criterion, 1155 outliers were found out of the 16,800 measured data (about

7 percent).

Figure 5.3 and Figure 5.4 show the average measured values over the 5

passes for read and write tests respectively. Here we can observe some interesting

phenomena. The first value of each test tends to be off the trend. It seems

the performances of the flash drives are quite sensitive to the pre-conditions, but

they can adapt to the conditions very fast right after the first run. The write

performance is more sensitive than the read one, which is almost constant.

With the above observations, all the data of the first pass were dropped

and the Chauvenet test was repeated. This time no outlier could be found at all.

Figure 5.5 and Figure 5.6 show the coefficients of variation across all the tests

before and after the change. The data became much more stable after removing

the outliers.

92

Figure 5.4: Average bandwidth over five passes of write tests. The first pass

tends to off the trend. The write tests are more sensitive to pre-conditions but can

adapt quickly right after the first run.

Figure 5.5: Coefficients of variation before outliers removal. With Chauvenet's

criterion [30], 1155 outliers were found out the 16,800 measured data.

93

Figure 5.6: Coefficients of variation after outliers removal. After removing the

first pass of each test, all the outliers are removed.

5.2.3 Stripe Size

The stripe size of a RAID is critical for performance. Small sizes are easier

for applications to make use of the parallelism across the composing drives and

increases the resultant bandwidth. However, too small sizes may cause significant

overhead of striping and IO processing.

Figure 5.7 shows the average bandwidth with different stripe sizes. The X

axis represents the test types referred above. We can see that 16KB is too small to

achieve reasonable performance. The performance of 64KB and 256KB are almost

the same. 256KB is a little bit better.

Since the random test size (4KB) is smaller than all the stripe sizes, a

single request would not be striped across more than one drive. However, the

queue depths are all larger than the drive number (16) and the requests should

spread out evenly onto different drives. In this situation, smaller stripe sizes cannot

take advantage of parallelism. Instead, they suffer from the striping overhead. For

sequential tests with the request size of 4MB, all the stripe sizes tested can benefit

from IO parallelism. Within the range, smaller stripe sizes will suffer from the

striping overhead again. As a conclusion, the optimal stripe size depends on the

94

Figure 5.7: Average bandwidth with different stripe sizes. Deciding stripe size is

a trade-off between parallelism and striping overhead.

application characteristics. The sweet spot may be the largest stripe size to make

the requests span over all the drives. Of course the queue depth is also a factor.

More discussion of this will be in the queue depth section.

5.2.4 Stripe Widths and Performance Scalability

The stripe width (the number of composing drives) of a RAID is another

important factor for performance. Ideally, one would like to see the bandwidth or

throughput (like IOPS) scale up with the number of drives. This work is especially

interested in the IOPS performance of the random tests for a couple of reasons.

First, the target applications are dominated by small random accesses. Also, since

the IOPS number of a single flash drive is already pretty high compared to spinning

disks, scaling the performance up can be challenging for the surrounding compo-

nents such as RAID. In this section, we will see how the random IOPS scale up

95

from 1 drive to 16 drives.

Figure 5.8 shows the random read IOPS scaling over the number of drives.

The good news is that comparing with the 88K IOPS result of the original design

with hardware RAID, the tuning managed to improve the performance by about

4x, leveraging the horsepower of the Nehalem host processors. How about the scal-

ability? Here things become more tricky. The performance scales almost linearly

up to 8 drives, which is great. However, it almost stops scaling after 8 drives. With

16 drives, the performance can only scale up a little bit to about 350K IOPS from

250K with 8 drives.

Further investigations showed that the issue origins from the high IOPS

of flash drives, which introduces a flood of hardware interrupts. The existing

Linux kernel and HBA drivers do not work well enough to balance the workload

to all the CPU cores. To be more specific, there is an existing issue [24] in the

current kernel to configure interrupt binding for devices using message signaled

interrupts (MSI) [86] but without MSI per-vector masking capability, which is the

case for the HBAs. To work around the issue, one can disable the MSI and fall

back to the legacy pin-based interrupt. Figure 5.9 shows the same results with

the new configuration. With MSI disabled, now the random read performance

can scale almost linearly up to 16 drives with the queue depth of 512. The peak

performance is about 460K IOPS, which is about 80\% of the theoretical upper

bound (600K IOPS). However, the legacy interrupt may have some disadvantages

such as limited number of interrupts and higher overheads. As you might have

noticed, the performances with queue depth of 32 drop about 2x. That is because

there are not enough outstanding requests to overlap and hide the long overheads

in these tests.

The curves with the same queue depth are represented with the same color

in both the figures. It is easy to see that the queue depth is very important. More

threads usually means better performance.

96

Figure 5.8: Random read IOPS scaling over drive amount. It scales almost

linearly up to 8 drives but not after that.

Figure 5.9: Random read IOPS scaling over drive amount without MSI-X. With

MSI disabled, it scales almost linearly up to 16 drives.

97

5.2.5 File Systems

File system is an important factor at the operating system level. Since

most of the existing file systems were designed before flash drives came into batch

production, they might not be able to work with flash drives well. It will be inter-

esting to figure out what the overhead of existing file systems will be. This work

uses XFS [142] as an example. XFS was designed for large compute and storage

system from day one and is famous for its excellent performance and scalability. It

will be a good fit for the large-scale data-intensive supercomputer if its overhead

on flash drives is small enough.

Figure 5.10 compares the bandwidth with and without XFS. The sequential

performances (the first eight categories in the figure) are almost the same. That is

because the overhead of the file system is amortized because of the large request

size. However, the overhead becomes dominant in the random tests and XFS

performs quite poor. One interesting phenomenon is that the random write per-

formances (the categories 10, 12, and 14 in the figure) drops dramatically, whose

reason is still under investigation. It will be interesting to also compare the per-

formance with other file systems such as ext4 [42] or Brtfs [23]. It is one of the

future topics.

5.2.6 IO Schedulers

For traditional spinning disks, people developed all kinds of IO schedul-

ing algorithms mainly to serve three purposes: adjacent request merging, request

reordering (elevator scheduling), and request prioritizing. Most of these optimiza-

tions are redundant for flash drives. For example, since there is no head moving

and the seeking cost is trivial for flash drives, elevator scheduling is not neces-

sary. Request prioritizing is not needed either by the target applications. Without

any benefits, these optimizations might even introduce unnecessary overhead for

flash drives. There are four IO schedulers in Linux: No-op, CFQ (Completely Fair

Queuing), Deadline, and Anticipatory. No-op is the simplest one with only request

merging function. This work tries to figure out if the other advanced algorithms

can bring any benefits for flash drives.

98

Figure 5.10: Average bandwidth with and without file system. The sequential

performances with and without XFS are almost the same while the XFS's random

(especially write) performances are worse.

Figure 5.11 shows the average bandwidth with different IO schedulers.

Deadline is the best for sequential (random-seeking with 4MB requests) tests;

No-op is the best for random (with 4KB requests) tests; CFQ varies a lot; while

Anticipatory is systematically bad. We can see that advanced optimizations de-

signed for spinning disks are not necessary for flash drives. Simple algorithms like

No-op and Deadline work best.

5.2.7 Queue Depths

A traditional spinning disk is a serial device, which can only access one

data block at a given time. Flash drives are totally different. Even a single drive

may contain tens of data buses and packages internally, which can be accessed

in parallel. To explore the full potential of a flash drive, a user has to utilize

99

Figure 5.11: Average bandwidth with different IO schedulers. Simple algorithms

like No-op and Deadline work best. Most advanced optimizations designed for

spinning disks, such as elevator scheduling, are not necessary, even harmful for

flash drives.

asynchronous IO or multi-thread to keep the drive busy.

Figure 5.12 and Figure 5.13 show the average bandwidth with different

queue depths for sequential and random tests respectively. Both figures are loga-

rithmic. All the tests (sequential or random, read or write) shared a similar rising

trend with increasing queue depth. Even though the request size (4MB) of the

sequential tests is large enough to span all the composing drives, higher queue

depth can still improve bandwidth. The extra performance improvement comes

from the internal parallelism of each drive. Random tests have a similar trend

until the queue depth reaches 128. This makes sense because 512 is a big number

for 16 drives with tens of internal packages each. In another word, queue depth of

512 exceeds the aggregated parallelism of the 16 drives.

100

Figure 5.12: Average bandwidth of sequential tests with different queue depths

1, 4 and 16. Although the request size (4MB) can span across all the drives, higher

queue depth can still improve bandwidth because of the internal parallelism of each

drive.

5.3 Conclusions

Data-intensive HPC applications are becoming more and more common.

Existing memory storage hierarchy has a 5-order-of-magnitude gap between mem-

ory and spinning disks, and is not able to respond to the challenge well. Distributed

shared memory and high-speed flash drives are adopted to fill the gap, and the

prototype system called DASH was built, which is a Teragrid resource. This work

focused on the flash technologies and tried to explore the complete design space of

a flash storage system. A large multi-dimensional parameter space was swept to

figure out how the other system components, such as operating system and RAID

(hardware and software), interfere with flash drives. These exhaustive search-

ing managed to improve the performance from the original design by about 9x.

However, it is found that some existing technologies like RAID don't fit the new

technology very well. Future work includes to keep investigating the origins of

these limitation and try to remove them and release the potential of the flash

101

Figure 5.13: Average bandwidth of random tests with different queue depths 32,

128 and 512. Performance increases until the queue depth 128 only because 512

exceeds the aggregated parallelism of the 16 drives.

technology. Other emerging storage technologies such as PCM (Phase Change

Memory) and STTM (Spin-Torque Transfer Memory) are also interesting. The

goal is to re-shape the memory storage hierarchy to fit the high performance data

trend ahead.

This chapter, in part, is a reprint of the material as it appears in the 2010

Teragrid Conference (TeraGrid'10), a joint work with Jeffrey Bennett and Allan

Snavely. The dissertation author was the primary investigator and author of this

paper.

Chapter 6

Performance Prediction of HPC

Applications on Flash Storage

System

As the gap between the speed of computing elements and the disk subsystem

widens, it becomes increasingly important to understand and model disk I/O.

While the speed of computational resources continues to grow, potentially scaling

to multiple peta-flops and millions of cores, the growth in the performance of I/O

systems lags well behind. In this context, data-intensive applications that run

on current and future systems depend on the ability of the I/O system to move

data to the main memories. As a result, the I/O system becomes a bottleneck

for application performance. Additionally, due to the higher risk of component

failure that results from larger scales, the frequency of application check-pointing

is expected to grow and put an additional burden on the disk I/O system [95].

Emergence of new technologies such as flash-based Solid State Drives (SSDs)

presents an opportunity to narrow the gap between speed of computing and I/O

systems. With this in mind, San Diego Supercomputer Center (SDSC) is investi-

gating the use of flash drives in a new prototype system called DASH [92][53][52].

This chapter applies and extends the PMaC prediction framework to model disk

I/O time on DASH. The methodology consists of the following three steps: 1) at-

tain an application's I/O characteristics on a reference system; 2) using a config-

102

103

urable I/O benchmark, collect statistics on the reference and target systems about

the I/O operations that are relevant to the application; 3) calculate a ratio be-

tween the measured I/O performance of the application on the reference system

with respect to target systems to predict the application's I/O time on thetar-

get systems without actually running the application on the target system. This

cross-platform prediction can greatly reduce the effort needed to characterize

the I/O performance of an application across a wide set of machines and can be

used to predict the I/O performance of the application on systems that have not

been built yet. The cornerstone of this approach is that the I/O operations in

the application have to be measured once on the reference system. The target

systems then need only to be characterized by how well they can perform certain

fundamental I/O operations, from which the I/O performance of the application

on the target system can be predicted.

A data-intensive application benchmark called MADbench2 [21] is used as

a case study here. The proposed methodology is evaluated by predicting the total

I/O time of MADbench2. An I/O benchmark called IOR is used to characterize

I/O operations of MADbench2 on target systems. The results show the method-

ology has prediction errors in the range of 8.59\% to 20.66\%, and the prediction

error for total I/O time is 14.79\%. The rest of the chapter is organized as follows:

Section 6.1 gives an overview of the I/O performance prediction methodology; Sec-

tion 6.2 describes the workloads and systems used for evaluation of the method-

ology and Section 6.3 presents the results of the evaluation; Section 6.5 presents

conclusions and future work and finally, Section 6.4 presents related work.

6.1 Methodology

Given an application, a reference system, and target systems for which

prediction is required, Figure 6.1 shows the modeling and prediction work flow

used in the experiments. As shown in this figure, using PEBIL [72], a binary

instrumentation tool developed in PMaC, one should first instrument all I/O calls

in the application. The instrumented application is then executed on the reference

104

system and the application's I/O profile is stored for further analysis. The profile

contains the time spent in all I/O calls. Additionally, one should also collect data

that pertains to each call. For example, data size for read/write calls are collected.

For seeks, the seek distances will be collected. Next, each I/O call is simulated

using I/O micro benchmarks such as IOR [115]. The time spent by the I/O micro

benchmark on the reference system and target systems are collected. An I/O ratio

is calculated as shown in Equation 6.1. This ratio is the prediction for the predicted

speedup or slowdown of the application's I/O on the target system relative to the

reference system. One then use these ratios, as shown in Equation 6.2, to predict

the applications total I/O time on target systems. To calculate accuracy of the

predictions, one can run the application on the target systems and compare the

Figure 6.1: Methodology Overview.

105

predicted times with the actual time spent in I/O. This work extends the PMaC

prediction framework to model patterns of I/O operations and predict I/O time

on flash storage systems.

For each I/O call i,target system x, calculate ratios as follows:

Ratioi,x =
IOTimei,x

IOTimei,reference
(6.1)

For each target system x, calculate predicted total time spent in I/O as

follows:

PredictedT imex =
n\sum

i=0

Ratioi,x \ast ApplicationT imei,reference (6.2)

6.2 Experimental Workload and Systems

6.2.1 Workload

MADbench2 is a benchmark that is derived from Microwave Anisotropy

Dataset Computational Analysis Package (MADCAP) Cosmic Microwave Back-

ground(CMB) power spectrum estimation code [20]. CMB data is a snapshot

of the universe 400,000 years after the big bang. MADbench2 tries to simulate

the most computationally challenging aspect of MADCAP to calculate the spec-

tra from the sky map. To this end, MADbench2 retains the full complexity of

computation, communication, and I/O, while removing the redundant details of

MADCAP. The nature of the large calculations required for CMB data means that

the large matrices used do not fit in memory. As a result, the benchmark uses an

out-of-core algorithm. Each processor requires enough memory to fit five matri-

ces at a given time. MADbench2 stores the matrices to disk when they are first

calculated and reads them back into memory when required.

In this work, MADbench2 was configured to run in synchronous I/O mode

with concurrent readers/writers. The application is configured to run with 25 MPI

tasks using POSIX and MPIIO APIs in separate runs. A total of 8 matrices of 7.2

GB size are used and stored in a single shared 57.6 GB file. These 8 matrices are

106

distributed among the 25 MPI processes, and thus, each process works on 2.3 GB

of data. The application makes I/O calls in three distinct phases. During phase 1,

the matrices are written to disk. During phase 2, the matrices are read back and

updated contents are written back to disk. Finally in the last phase, the matrices

are read back from disk. Thus, a total of 16 reads/writes of size 288 MB are issued

by each process.

6.2.2 Systems

DASH with Flash -- Target System In the DASH system, flash drives are

attached to the batch nodes and the I/O nodes. Each batch node is equipped

with two Nehalem 2.4GHz quad-core processors and 48GB DDR3 memory. One

Intel \mathrm{R}\bigcirc X25-E 64GB flash drives is attached directly to a batch node. As for the

I/O nodes, they have the same processors and memories as the batch nodes but

more flash drives. Specifically, 16 Intel \mathrm{R}\bigcirc X25-E 64GB, totally 1TB, flash drives

are installed on each I/O node and set up as a software RAID-0. The XFS file

system is applied to the flash dives on DASH.

Jade -- Reference System Jade is a Cray XT4 system and has a total of 2152

compute nodes. Each node runs Compute Node Linux (CNL) and has one quad-

core AMD Opteron processor and 8 GB of main memory. All nodes are connected

in a 3D torus using a HyperTransport link to a Cray Seastar2 engine. The system

has a total of 379 TB fiber channel RAID disk space that is managed by a Lustre

file system.

6.3 Experiments and Results

6.3.1 Experiments

In this section, the disk I/O times of MADbench2 will be predicted, with

a DASH I/O node as the target system and Jade as the reference system. IOR is

used to simulate the I/O operations of MADbench2 and the results will be reported

107

in the next section.

6.3.2 Results

Since wall clock time of an application may differ from run to run, each ap-

plication was executed five times on the machine and an average run time was used

in the above two equations. Thus, the average run times of I/O micro benchmark

was used to predict run times of the applications under study. To calculate the pre-

diction error, the predicted time is compared against the average run time of five

executions of the applications under study. Accuracy for each target application x

is calculated using Equation 6.3.

PredictionErrorx = 100 \ast PredictedT imex - ActualT imex
ActualT imex

(6.3)

In this equation, a negative value indicates that actual I/O time was greater

than the predicted time, and a positive value indicates that the actual I/O time

was less than the predicted time. For MADbench2 the prediction errors are as

follows:

\bullet POSIX API: -20.66\%, -8.59\%, and -14.79\% for reads, writes, and total I/O

time respectively

\bullet MPIIO API: -19.92\%, -14.76\%, and -17.50\% for reads, writes, and total I/O

time respectively

6.4 Related Work

Related work has pursued I/O modeling and prediction by using script

based benchmarks to replay an applications causal I/O behavior [81][82] or using

parameterized I/O benchmarks [115] to predict run time on the target system.

The modeling approach of this work differs from the related work by using param-

eterized benchmarks to compute speedup ratios on target systems for each call and

use that to predict an applications I/O time.

108

Pianola [81] is a script based I/O benchmark that captures causal informa-

tion of I/O calls made by a sequential application. The information is captured

by a binary instrumentation tool that, for each call, captures wall clock time of

the call, the time spent servicing the call, and arguments passed to the call. Using

this information a script is constructed which has sufficient information to replay

an application's I/O calls and time between two successive calls. Additionally,

the script is also augmented to simulate the memory used by an application be-

tween calls. A replay engine can then use this script to replay an applications I/O

behavior on any platform.

Like Pianola, TRACE [82] is a script-based I/O benchmark that simulates

an I/O behavior of an application using causal information about the I/O calls.

Unlike Pianola, TRACE uses interposed I/O calls to capture information regarding

I/O calls. TRACE is targeted for parallel applications and hence captures I/O

events for each parallel task. In addition to I/O events, for each task, TRACE

also includes information related to synchronization delays and computation time.

Using this information a replayer simulates the I/O characteristic of each task of

the original application.

In [115], IOR was used to simulate the I/O behavior of HPC applications. In

this research an application's I/O behavior is first obtained by code and algorithm

analysis and this information is then used to prepare inputs for the IOR benchmark.

Next, IOR is then run on the target system to predict the actual I/O time of an

application.

6.5 Conclusions and Future Work

This chapter presented a methodology to predict disk I/O performance of

flash storage systems. The method used a configurable I/O benchmark to measure

speedup ratios of each I/O operation of an application and used them to predict

an applications total I/O time. The evaluation showed that for large size IO calls

reasonable accuracy may be obtained by using this simple model and in the best

case the prediction error is only 8.59\%.

109

To further improve the predictions, other parameters such as file caching,

contention, and synchronization delays are being investigated. File caching is the

ability to cache files in the memory subsystem; file caching can significantly speed

up disk I/O. Contention affects the share of I/O resources that each application

receives and thus is important to model. Finally, synchronization delays reflect how

barrier synchronization and other data dependencies in the application change the

rate at which I/O calls are made.

This chapter, in part, is a reprint of the material as it appears in the work-

shop on Application of Communication Theory to Emerging Memory Technologies

(ACTEMT'10) hold with Globecom'10, a joint work with Mitesh Meswani, Pietro

Cicotti, and Allan Snavely. The dissertation author was the primary investigator

and author of this paper.

Chapter 7

Conclusions

This dissertation presented PMap: a set of methods and tools mapping

HPC application performance to a small number of performance primitives. These

performance primitives can be extracted manually or automatically using tools

provided from real applications. With these small primitives, application perfor-

mance can be predicted quickly (even on the fly) with reasonable accuracy for

aggressive HPC environments, such as dynamic computational grids, complicated

hybrid computing platforms, and innovative storage systems.

Performance Characterization and Online Prediction for Computation

Grids Performance series were gathered via a deployment of a monitoring and

benchmarking infrastructure on two production grid platforms, TeraGrid and Geon.

The results showed that these production grids are rather unavailable, with suc-

cess rates for benchmark and application runs between 55\% and 80\%. It was found

that performance fluctuation was in the 50\% range, expectedly mostly due to batch

schedulers. This work also investigated whether the execution time of a typical

grid application can be predicated based on previous runs of simple benchmarks

(performance primitives). Perhaps surprisingly, application execution time can be

predicted with a relative error as low as 9\%.

Performance Idioms Recognition for Scientific Applications Basic perfor-

mance primitives called performance idioms, such as stream, transpose, reduc-

110

111

tion, random access and stencil, are common in scientific numerical applications.

It was hypothesized and then proven that a small number of idioms can cover most

programming constructs that dominate the execution time of scientific codes and

can be used to approximate the application performance. To check these hypothe-

ses, this work proposed an automatic idioms recognition method and implemented

the method, based on the open source compiler Open64. With the NAS Parallel

Benchmark (NPB) as a case study, the prototype system is about 90\% accurate

compared with idiom classification by a human expert. The results showed that

the above five idioms suffice to cover 100\% of the six NPB codes (MG, CG, FT, BT,

SP and LU). The performance of the idiom benchmarks with their corresponding

instances in the NPB codes were also compared on two different platforms with dif-

ferent methods. The approximation accuracy is up to 96.6\%. The contribution is

to show that a small set of idioms can cover more complex codes, that idioms can

be recognized automatically, and that suitably defined idioms may approximate

application performance.

DASH: a Flash-based Data Intensive Supercomputer Data intensive com-

puting can be defined as computation involving large datasets and complicated I/O

patterns. Data intensive computing is challenging because there is a five-orders-

of-magnitude latency gap between main memory DRAM and spinning hard disks;

the result is that an inordinate amount of time in data intensive computing is

spent accessing data on disk. To address this problem, a prototype data inten-

sive supercomputer named DASH was designed and built, exploiting flash-based

Solid State Drive (SSD) technology and also virtually aggregated DRAM to fill the

``latency gap"". DASH uses commodity parts including Intel \mathrm{R}\bigcirc X25-E flash drives

and distributed shared memory (DSM) software from ScaleMP \mathrm{R}\bigcirc . The system is

highly competitive with several commercial offerings by several metrics including

achieved IOPS (input output operations per second), IOPS per dollar of system

acquisition cost, IOPS per watt during operation, and IOPS per gigabyte (GB)

of available storage. This work presented an overview of the design of DASH, an

analysis of its cost efficiency, then a detailed recipe for how to design and tune

it for high data-performance, lastly showed that running data-intensive scientific

112

applications from graph theory, biology, and astronomy, as much as two orders-

of-magnitude speedup were achieved compared to the same applications run on

traditional architectures.

Performance Characterization of Flash Storage System Flash-based SSDs

(Solid State Disks) are promising for data intensive HPC applications. However,

since all the existing hardware and software were designed without flash in mind,

the question is how to integrate the new technology into existing architectures. To

explore the potentials and issues of integrating flash into today's HPC systems,

a large parameter space was swept by fast and reliable measurements to investi-

gate varying design options. Some lessons learned and also suggestions for future

architecture design were provided. The results showed that performance can be

improved by as much as 9x with appropriate existing technologies and probably

further improved by future ones.

Performance Prediction of HPC Applications on Flash Storage System

This work extended the PMaC framework to model and predict application per-

formance on flash storage systems. A data-intensive application benchmark called

MADbench2 was studied. The results showed that the total I/O time can be

predicted with reasonable error of 14.79\% for MADbench2.

PMap The end result of this body of work is that the performance of applications

on supercomputers can be understood by mapping their performance genetics. It

is possible to extract performance primitives reflecting common patterns of com-

putation and data access from real applications manually or automatically. These

primitives can then be applied for fast performance modeling and prediction of

HPC applications.

Appendix A

TeraGrid Errors

\bullet 0: No valid proxy found

\bullet 1: GRAM Job submission failed because the connection to the server failed

(check host and port) (error code 12)

\bullet 2: `[homedir]': Transport endpoint is not connected

\bullet 3: GRAM Job submission failed because the job manager detected an invalid

script status (error code 25)

\bullet 4: GRAM Job submission failed because the job manager failed to create the

temporary stderr filename (error code 70)

\bullet 5: GRAM Job submission failed because the job manager failed to create the

temporary stdout filename (error code 69)

\bullet 6: SoftEnv 1.4.2: updating your software environment, one moment...

\bullet 7: GRAM Job submission failed because data transfer to the server failed

(error code 10

\bullet 8: GRAM Job failed because the executable does not exist (error code 5)

\bullet 9: Assertion GLOBUS FALSE \&\& ``listen() failed"" failed in file globus io

tcp.c at line 681 /usr/local/apps/globus-2.4.3-gcc-r5/bin/globus-job-run: line

1: 12738 Aborted

113

114

\bullet 10: Network is Unreachable

\bullet 11: No such File or Directory

\bullet 12: gram init failure: GSS Major Status: General failure GSS Minor Status

Error Chain:acquire cred.c:125: gss acquire cred: Error with GSI credential

globus i gsi gss utils

\bullet 13: error: the server sent an error response: 425 425 Can't open data con-

nection.

\bullet 14: GRAM Job failed because the job manager failed to stage the executable

(error code 43)

\bullet 15: GRAM Job submission failed because authentication with the remote

server failed (error code 7)

\bullet 16: Stale NFS file handle

\bullet 17: GRAM Job submission failed because authentication failed: GSS Major

Status: Unexpected Gatekeeper or Service Name GSS Minor Status Error

Chain

\bullet 18: GRAM Job submission failed because the cache file could not be opened

in order to relocate the user proxy (error code 75)

\bullet 19: an end-of-file was reached

\bullet 20: proxy is not valid long enough

\bullet 21: Error detected on file transfer: error: the server sent an error response:

550 550 /scratch/local/millsc/hpf3.preali.rot.SL: not a plain file.

\bullet XXX: GRAM Job submission failed because authentication failed: GSS Ma-

jor Status: Unexpected Gatekeeper or Service Name GSS Minor Status Error

Chain: init.c:499: globus gss assist

Appendix B

GEON Errors

\bullet Error detected on file transfer: error: globus xio: System error in connect:

Connection timed out globus xio: A system call failed: Connection timed

out

\bullet org.globus.ogsa.impl.base.gram.client.GramJob [setStatusFromServiceData:

1226] ERROR: Error staging RSL element ns1:value [URL] to the GASS

\bullet Invalid ns1:value path

\bullet ERROR utepgeon01.utep.edu: Execution returned non-zero status: 256 100

[09/20/2005 06:18:54:368] org.globus.ogsa.impl.base.gram.client.GramJob

[request: 479] ERROR: problem accessing Managed Job service AxisFault

faultCode: http://schemas.xmlsoap.org/so at time 2005-09-20 06:18:54

115

Bibliography

[1] 3Leaf System Inc. http://www.3leafsystems.com/.

[2] V. S. Adve, R. Bagrodia, J. C. Browne, E. Deelman, A. Dube, E. N. Houstis,
J. R. Rice, R. Sakellariou, D. J. Sundaram-Stukel, P. J. Teller, and M. K.
Vernon. Poems: End-to-end performance design of large parallel adap-
tive computational systems. IEEE Transactions on Software Engineering,
26(11):1027--1048, 2000.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and P. R.
Design tradeoffs for ssd performance. pages 57--70. USENIX Annual Techni-
cal Conference, 2008.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers --- Principles, Techniques,
and Tools. Addison Wesley, Pearson Education, Inc., 1986.

[5] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE Computer,
19(8):26--34, 1986.

[6] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
Z. W. Treadmarks: Shared memory computing on networks of workstations.
IEEE Computer, 29:18--28, 1996.

[7] E. Anderson. Simple table-based modeling of storage devices. Technical
Report HPL-SSP-2001-4, HP Laboratories, Palo Alto, California, July 2001.

[8] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch.
Hippodrome: running circles around storage administration. In Conference
on File and Storage Technology (FAST'02), pages 175--188, Jan. 2002.

[9] G. Araujo, P. Centoducatte, M. Cortes, and R. Pannain. Code compression
using operand factorization. Proceedings of the 31th Annual International
Symposium on Microarchitecture, 1998.

[10] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The landscape of parallel computing research: A view

116

http://www.3leafsystems.com/

117

from berkeley. Technical Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Dec. 2006.

[11] D. Bader, editor. Petascale Computing: Algorithms and Applications. Chap-
man \& Hall/CRC Press.

[12] R. M. Badia, J. Labarta, J. Gimenez, and F. Escale. Dimemas: Predict-
ing mpi applications behavior in grid environments. In Workshop on Grid
Applications and Programming Tools (GGF8), 2003.

[13] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The NAS Paral-
lel Benchmarks. The International Journal of Supercomputer Applications,
5(3):63--73, 1991.

[14] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based per-
formance prediction in software development: A survey. IEEE Transaction
of Software Engineering, 30(5):295--310, MAY 2004.

[15] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and
J. C. Sancho. Entering the petaflop era: the architecture and performance
of roadrunner. In SC '08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, pages 1--11, Piscataway, NJ, USA, 2008. IEEE Press.

[16] External memory bfs code. http://www.madalgo.au.dk/\~ajwani/em\.bfs/.

[17] Biological networks website. http://biologicalnetworks.net/.

[18] V. Blanco, J. A. Gonzalez, C. Leon, C. Rodriguez, G. Rodriguez, and
M. Printista. Predicting the performance of parallel programs. Parallel
Computing, 30(3):337--356, 2004.

[19] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J. Sandberg.
Virtual memory mapped network interface for the shrimp multicomputer.
pages 142--153. International symposium on Computer architecture, 1994.

[20] J. Borrill. Madcap-the microwave anisotropy dataset computational analysis
package. Arxiv preprint astro-ph/9911389, 1999.

[21] J. Borrill, L. Oliker, J. Shalf, H. Shan, and A. Uselton. HPC global file sys-
tem performance analysis using a scientific-application derived benchmark.
Parallel Computing, 35(6):358--373, 2009.

[22] T. Brewer. Instruction Set Innovations for Convey's HC-1 Computer. The
21st Symposium of High Performance Chips (HotChips), 2009.

http://www.madalgo.au.dk/~ajwani/em_bfs/
http://biologicalnetworks.net/

118

[23] Btrfs project. https://btrfs.wiki.kernel.org/index.php/Main\.Page.

[24] RedHat bugzilla: Setting IRQ affinity does not work with MSI devices.
https://bugzilla.redhat.com/show\.bug.cgi?id=432451.

[25] D. Burger and T. Austin. The simplescalar tool set, version 2.0. Technical
Report Technical Report 1342, University of Winsconsin-Madison, Computer
Science Department, 1997.

[26] L. C. Carrington, A. E. Snavely, M. Laurenzano, R. L. C. Jr., and L. P.
Davis. How well can simple metrics represent the performance of hpc ap-
plications? In SC'05: Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, NOV 2005.

[27] A. M. Caulfield, J. Coburn, T. Mollov, A. De, A. Akel, J. He, A. Jagath-
eesan, R. K. Gupta, A. Snavely, and S. Swanson. Understanding the Im-
pact of Emerging Non-Volatile Memories on High-Performance, IO-Intensive
Computing. In Proceedings of the 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
SC '10, pages 1--11, Washington, DC, USA, 2010. IEEE Computer Society.

[28] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon: using flash mem-
ory to build fast, power-efficient clusters for data-intensive applications. In
ASPLOS '09, pages 217--228, New York, NY, USA, 2009. ACM.

[29] M. Chapman and G. Heiser. vNUMA: A virtual shared-memory multipro-
cessor. USENIX Annual Technical Conference, 2009.

[30] Chauvenet's criterion page at widipedia. http://en.wikipedia.org/wiki/
Chauvenet\%27s\.criterion.

[31] F. Chen, D. Koufaty, and X. Zhang. Understanding intrinsic characteristics
and system implications of flash memory based solid state drives. pages
181--192. SIGMETRICS/Performance, 2009.

[32] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov. Characteristics of
workloads used in high performance and technical computing. In ICS '07:
Proceedings of the 21st annual international conference on Supercomputing,
pages 73--82, New York, NY, USA, 2007. ACM.

[33] A. Chien. Does 10x10 replace 90/10, Salishan'10. http://www.lanl.gov/

orgs/hpc/salishan/index10.shtml.

[34] G. Chun, H. Dail, H. Casanova, and A. Snavely. Benchmark Probes for
Grid Assessment. In Proceedings of the High-Performance Grid Computing
Workshop, April 2004.

https://btrfs.wiki.kernel.org/index.php/Main_Page
https://bugzilla.redhat.com/show_bug.cgi?id=432451
http://en.wikipedia.org/wiki/Chauvenet%27s_criterion
http://en.wikipedia.org/wiki/Chauvenet%27s_criterion
http://www.lanl.gov/orgs/hpc/salishan/index10.shtml
http://www.lanl.gov/orgs/hpc/salishan/index10.shtml

119

[35] F. Collins, M. Morgan, and A. Patrinos. The human genome project: Lessons
from large scale biology. Science, 300(5617):286--290, 2003.

[36] W. V. Courtright II, G. A. Gibson, M. Holland, and J. Zelenka. RAID-
frame: rapid prototyping for disk arrays. In Proceedings of the 1996 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Sys-
tems, pages 268--269, Philadelphia, PA, 1996. ACM Press.

[37] SPEC CPU2006 home page. http://www.spec.org/cpu2006/.

[38] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Sub-
ramonian, and T. Eicken. Logp: Towards a realistic model of parallel compu-
tation. In ACM Symp. on Principles and Practice of Parallel Programming,
pages 1--12, San Diego, CA, May 1993.

[39] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Systems,
13(4):451--490, Oct. 1991.

[40] Distributed European Infrastructure for Supercomputing Applications.
http://www.deisa.org/, 2006.

[41] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S. Mukher-
jee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan. Asim: A
performance model framework. The Computer Journal, 35(2):68--76, Feb.
2002.

[42] EXT4 page at Wikipedia. http://en.wikipedia.org/wiki/Ext4.

[43] Sun f5100 technical specification and price information. http://www.sun.

com/storage/disk\.systems/sss/f5100/specs.xml.

[44] Facebook website. http://www.facebook.com.

[45] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceed-
ings of the 10th Annual Symposium on Theory of Computing, pages 114--118,
1978.

[46] M. Frumkin. Data flow pattern analysis of scientific applications. In Work-
shop on Patterns in High Performance Computing, May 2005.

[47] M. Frumkin and R. Van der Wijngaart. NAS Grid Benchmarks: A Tool for
Grid Space Exploration. Cluster Computing, 5(3), 2002.

[48] A. Funk, V. Basili, L. Hochstein, and J. Kepner. Analysis of parallel software
development using the relative development time productivity metric. CT
Watch, 2:4A, 2006.

http://www.spec.org/cpu2006/
http://www.deisa.org/
http://en.wikipedia.org/wiki/Ext4
http://www.sun.com/storage/disk_systems/sss/f5100/specs.xml
http://www.sun.com/storage/disk_systems/sss/f5100/specs.xml
http://www.facebook.com

120

[49] Fusionio technical specification of 160 gb slc pcie iodrive. http://www.

fusionio.com/products/iodrive/?tab=specs.

[50] L. Grupp, A. Caulfield, J. Coburn, E. Yaakobi, S. Swanson, and P. Siegel.
Characterizing flash memory: Anomalies, observations, and applications.
MICRO, 2009.

[51] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lain.
Interprocedural parallelization analysis in SUIF. ACM Transactions on Pro-
gramming Languages and Systems, 27(4):662--731, Jul. 2005.

[52] J. He, J. Bennett, and A. Snavely. DASH-IO: an empirical study of flash-
based IO for HPC. In Proceedings of the 2010 TeraGrid Conference, TG '10,
pages 10:1--10:8, New York, NY, USA, 2010. ACM.

[53] J. He, A. Jagatheesan, S. Gupta, J. Bennett, and A. Snavely. DASH: a
Recipe for a Flash-based Data Intensive Supercomputer. In Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC '10, pages 1--11, Washington,
DC, USA, 2010. IEEE Computer Society.

[54] J. He, A. E. Snavely, R. F. Van der Wijngaart, and M. A. Frumkin. Code
coverage, performance approximation and automatic recognition of idioms
in scientific applications. In Proceedings of the 17th international symposium
on High performance distributed computing, HPDC '08, pages 223--224, New
York, NY, USA, 2008. ACM.

[55] T. Hey and D. Lancaster. The development of Parkbench and performance
prediction. The International Journal of High Performance Computing Ap-
plications, 14(3):205--215, 2000.

[56] HPC Challenge benchmark. http://icl.cs.utk.edu/hpcc/.

[57] The ssd improv: Intel \& indilinx get trim, kingston brings intel down to
\$115. http://www.anandtech.com/storage/showdoc.aspx?i=3667\&p=1.

[58] TeraGrid Inca Test Harness and Reporting Framework. http://tech.

teragrid.org/inca/.

[59] The Inca Reporter Guide. http://tech.teragrid.org/inca/www/

documentation.html.

[60] InfiniBand page at Wikipedia. http://en.wikipedia.org/wiki/

InfiniBand.

[61] Intel \mathrm{R}\bigcirc ssd firmware update. http://www.intel.com/go/ssdfirmware.

http://www.fusionio.com/products/iodrive/?tab=specs
http://www.fusionio.com/products/iodrive/?tab=specs
http://icl.cs.utk.edu/hpcc/
http://www.anandtech.com/storage/showdoc.aspx?i=3667&p=1
http://tech.teragrid.org/inca/
http://tech.teragrid.org/inca/
http://tech.teragrid.org/inca/www/documentation.html
http://tech.teragrid.org/inca/www/documentation.html
http://en.wikipedia.org/wiki/InfiniBand
http://en.wikipedia.org/wiki/InfiniBand
http://www.intel.com/go/ssdfirmware

121

[62] Intel \mathrm{R}\bigcirc MPI Benchmarks 2.3. http://www.intel.com/cd/software/

products/asmo-na/eng/cluster/mpi/219848.htm, 2005.

[63] Ior benchmark. http://sourceforge.net/projects/ior-sio/.

[64] Itanium wikipedia page. http://en.wikipedia.org/wiki/Itanium.

[65] ixbt labs, hdd power consumption and heat dissipation of enterprise hard disk
drives. http://ixbtlabs.com/articles2/storage/hddpower-pro.html.

[66] K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures:
A dependence-based approach. Morgan Kaufmann Publishers Inc., 2002.

[67] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and
M. Gittings. Predictive performance and scalability modeling of a large-scale
application. 2001.

[68] O. Khalili, J. He, C. Olschanowsky, A. Snavely, and H. Casanova. Measuring
the performance and reliability of production computational grids. In Pro-
ceedings of the 7th IEEE/ACM International Conference on Grid Comput-
ing, GRID '06, pages 293--300, Washington, DC, USA, 2006. IEEE Computer
Society.

[69] D. Kodeboyina and B. Plale. Experiences with OGSA-DAI: Portlet Access
and Benchmark. In Global Grid Forum Workshop on Designing and Building
Grid Services, September 2003.

[70] P. Kogge, editor. ExaScale Computing Study: Technology Challenges in
Achieving Exascale System. http://www.sdsc.edu/\~allans.

[71] La silla observatory website. http://www.eso.org/sci/facilities/

lasilla/.

[72] M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely. PEBIL: Efficient
static binary instrumentation for Linux. In Performance Analysis of Systems
\& Software (ISPASS), 2010 IEEE International Symposium on, pages 175--
183. IEEE, 2010.

[73] K. Li. Ivy: A shared virtual memory system for parallel computing. pages
94--101. International Conference on Parallel Processing, 1988.

[74] LINPACK Benchmark. http://www.top500.org/lists/linpack.php,
2005.

[75] Large synoptic survey telescope (lsst) website. http://www.lsst.org/lsst/
about.

http://www.intel.com/cd/software/products/asmo-na/eng/cluster/mpi/219848.htm
http://www.intel.com/cd/software/products/asmo-na/eng/cluster/mpi/219848.htm
http://sourceforge.net/projects/ior-sio/
http://en.wikipedia.org/wiki/Itanium
http://ixbtlabs.com/articles2/storage/hddpower-pro.html
http://www.sdsc.edu/~allans
http://www.eso.org/sci/facilities/lasilla/
http://www.eso.org/sci/facilities/lasilla/
http://www.top500.org/lists/linpack.php
http://www.lsst.org/lsst/about
http://www.lsst.org/lsst/about

122

[76] B. Lu and J. Mellor-Crummey. Compiler optimization of implicit reductions
for distributed memory multiprocessors. Proceedings of the 12th Interna-
tional Parallel Processing Symposium (IPPS), 1998.

[77] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, B. Liu, L. Johnsson, and
J. Mellor-Crummey. Scheduling strategies for mapping application workflows
onto the grid. In 14th IEEE Symposium on High Performance Distributed
Computing (HPDC 2005). IEEE Computer Society Press, 2005.

[78] MAPS Benchmark. http://www.sdsc.edu/PMaC/MAPs, 2005.

[79] G. Marin and J. Mellor-Crummey. Cross-architecture performance predic-
tions for scientific applications using parameterized models. In SIGMET-
RICS 2004/PERFORMANCE 2004: Proceedings of the joint international
conference on Measurement and modeling of computer systems, pages 2--13.
ACM Press, 2004.

[80] M. Mathis, D. Kerbyson, and A. Hoisie. A performance model of nondeter-
ministic particle transport on large-scale systems. In Proc. Computational
Science - ICCS, 2003.

[81] J. May. Pianola: A script-based I/O benchmark. In Petascale Data Storage
Workshop, 2008. PDSW'08. 3rd, pages 1--6. IEEE, 2008.

[82] M. Mesnier, M. Wachs, R. Sambasivan, J. Lopez, J. Hendricks, G. Ganger,
and D. O'Hallaron. TRACE: Parallel trace replay with approximate causal
events. In Proceedings of the 5th USENIX Conference on File and Storage
Technologies, page 24. USENIX Association, 2007.

[83] M. Meswani, P. Cicotti, J. He, and A. Snavely. Predicting Disk I/O Time of
HPC Applications on Flash Drives. In Workshop on Application of Commu-
nication Theory to Emerging Memory Technologies with Globecom'10, 2010.

[84] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. Nevill. Bit error rate in NAND Flash
memories. In Reliability Physics Symposium, 2008. IRPS 2008. IEEE In-
ternational, pages 9--19. IEEE, 2008.

[85] The Message Passing Interface (MPI) standard. http://www-unix.mcs.

anl.gov/mpi/.

[86] Message Signaled Interrupts page at Wikipedia. http://en.wikipedia.

org/wiki/Message\.Signaled\.Interrupts.

[87] S. Muchnick. Advanced Compiler Design and Implementation. Academic
Press, 1997.

 http://www.sdsc.edu/PMaC/MAPs
http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/
http://en.wikipedia.org/wiki/Message_Signaled_Interrupts
http://en.wikipedia.org/wiki/Message_Signaled_Interrupts

123

[88] National Center for Microscopy and Imaging Research. http://ncmir.

ucsd.edu/, 2005.

[89] Ncq page at wikipedia. http://en.wikipedia.org/wiki/Native\.Command\.
Queuing.

[90] Neuroscience information framework (nif). http://nif.nih.gov/.

[91] NSF Middleware Initiative Release 7. http://www.nsf-middleware.org/

Lists/NMIR7/AllItems.aspx.

[92] M. Norman and A. Snavely. Accelerating data-intensive science with Gordon
and Dash. In Proceedings of the 2010 TeraGrid Conference, pages 1--7. ACM,
2010.

[93] J. Odom, J. K. Hollingsworth, L. DeRose, K. Ekanadham, and S. Sbaraglia.
Using dynamic tracing sampling to measure long running programs. In SC
'05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing,
page 59, Washington, DC, USA, 2005. IEEE Computer Society.

[94] D. Ofelt and J. L. Hennessy. Efficient Performance Prediction for Modern
Microprocessors. In Proceedings of ACM SIGMETRICS 2000, pages 229--
239, June 2000.

[95] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela, R. Riesen, and
P. Roth. Modeling the impact of checkpoints on next-generation systems.
In Mass Storage Systems and Technologies, 2007. MSST 2007. 24th IEEE
Conference on, pages 30--46. IEEE, 2007.

[96] Open64 compiler. http://www.open64.net/.

[97] Open Research Compiler. http://ipf-orc.sourceforge.net/.

[98] S. Park and K. Shen. A performance evaluation of scientific i/o workloads
on flash-based ssds. Workshop on Interfaces and Architectures for Scientific
Data Storage (IASDS'09), 2009.

[99] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing supercom-
puter performance: Achieving optimal performance on the 8,192 processors
of ASCI Q. In SC---03: Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, page 55, Nov. 2003.

[100] B. Plale, C. Jacobs, Y. Liu, C. Moad, R. Parab, and P. Vaidya. Benchmark
Details of Synthetic Database Benchmark/Workload for Grid Resource In-
formation. Technical Report TR-583, Dept. of Computer Science, University
of Indiana, August 2003.

http://ncmir.ucsd.edu/
http://ncmir.ucsd.edu/
http://en.wikipedia.org/wiki/Native_Command_Queuing
http://en.wikipedia.org/wiki/Native_Command_Queuing
http://nif.nih.gov/
http://www.nsf-middleware.org/Lists/NMIR7/AllItems.aspx
http://www.nsf-middleware.org/Lists/NMIR7/AllItems.aspx
http://www.open64.net/
http://ipf-orc.sourceforge.net/

124

[101] PMaC Convolver. http://www.sdsc.edu/PMaC/projects/convolver.

html.

[102] PMaC Prediction Framework. http://www.sdsc.edu/PMaC/projects/

index.html.

[103] PMaC Lab. http://www.sdsc.edu/PMaC/.

[104] MultiMAPS Benchmark. http://www.sdsc.edu/PMaC/projects/mmaps.

html.

[105] PEBIL. http://www.sdsc.edu/PMaC/projects/pebil.html.

[106] PSiNS. http://www.sdsc.edu/PMaC/projects/psins.html.

[107] PMaCinst. http://www.sdsc.edu/PMaC/projects/pmacinst.html.

[108] B. Pottenger and R. Eigenmann. Idiom recognition in the Polaris paralleliz-
ing compiler. In International Conference on Supercomputing, 1995.

[109] Power4 wikipedia page. http://en.wikipedia.org/wiki/POWER4.

[110] S. Prakash and R. Bagrodia. MPI-SIM: Using parallel simulation to evaluate
MPI programs. In Winter Simulation Conference, pages 467--474, 1998.

[111] Palomar transient factory (ptf) website. http://www.astro.caltech.edu/
ptf/.

[112] A. Rifkin and B. L. Massingill. Performance analysis for archetypes. In
Proceedings of the 1998 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'98), 1998.

[113] P. Sassone and D. Wills. On the extraction and analysis of prevalent dataflow
patterns. Workload Characterization, 2004. WWC-7. 2004 IEEE Interna-
tional Workshop on, pages 11--18, 2004.

[114] ScaleMP Inc. http://www.scalemp.com/.

[115] H. Shan, K. Antypas, and J. Shalf. Characterizing and predicting the I/O
performance of HPC applications using a parameterized synthetic bench-
mark. In High Performance Computing, Networking, Storage and Analysis,
2008. SC 2008. International Conference for, pages 1--12. IEEE, 2008.

[116] A. K. Sinha, B. Ludaescher, B. Brodaric, C. Baru, D. Seber, A. Snoke, and
C. Barnes. GEON: Developing the Cyberinfrastructure for the Earth Sci-
ences - A Workshop Report on Intrusive Igneous Rocks, Wilson Cycle and
Concept Spaces. http://www.geongrid.org/workshops/conceptspace/

igneous\.rocks/workshop\.report\.intrusive\.igneous\.rocks.pdf, 2004.

http://www.sdsc.edu/PMaC/projects/convolver.html
http://www.sdsc.edu/PMaC/projects/convolver.html
http://www.sdsc.edu/PMaC/projects/index.html
http://www.sdsc.edu/PMaC/projects/index.html
http://www.sdsc.edu/PMaC/
http://www.sdsc.edu/PMaC/projects/mmaps.html
http://www.sdsc.edu/PMaC/projects/mmaps.html
http://www.sdsc.edu/PMaC/projects/pebil.html
http://www.sdsc.edu/PMaC/projects/psins.html
http://www.sdsc.edu/PMaC/projects/pmacinst.html
http://en.wikipedia.org/wiki/POWER4
http://www.astro.caltech.edu/ptf/
http://www.astro.caltech.edu/ptf/
http://www.scalemp.com/
http://www.geongrid.org/workshops/conceptspace/igneous_rocks/workshop_report_intrusive_igneous_rocks.pdf
http://www.geongrid.org/workshops/conceptspace/igneous_rocks/workshop_report_intrusive_igneous_rocks.pdf

125

[117] SKaMPI-Benchmark. http://liinwww.ira.uka.de/\~skampi/, 2005.

[118] W. Smith, V. Taylor, and F. I. Using Run-Time Predictions to Estimate
Queue Wait Times and Improve Scheduler Performance . In Source Lecture
Notes In Computer Science; Proceedings of the Job Scheduling Strategies for
Parallel Processing table of contents, volume 1659, pages 202--219, 1999.

[119] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha. A framework for application performance modeling and
prediction. In Proceedings of Supercomputing, November 2002.

[120] A. Snavely, X. Gao, C. Lee, L. Carrington, N. Wolter, J. Labarta, J. Gimenez,
and P. Jones. Performance Modeling of HPC Applications. In PARCO, pages
777--784, 2003.

[121] A. Snavely, X. Gao, C. Lee, N. Wolter, J. Labarta, J. Gimenez, and J. P.
Performance modeling of hpc applications. ParCo, 2003.

[122] A. Snavely, G. Jacobs, and D. A. Bader, editors. Workshop Report: Petascale
Computing in the Biological Sciences. http://www.sdsc.edu/\~allans.

[123] A. Snavely, R. Pennington, and R. Loft, editors. Workshop Report: Petascale
Computing in the Geosciences. http://www.sdsc.edu/\~allans.

[124] The SPEC Benchmarks. http://www.specbench.org.

[125] D. P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd. Performance-
aware workflow management for grid computing. The Computer Journal,
48(3):347--357, May 2005.

[126] STREAM: Measuring Sustainable Memory Bandwidth in High Performance
Computers. http://www.cs.virginia.edu/stream/, 1995.

[127] Stxxl project. http://stxxl.sourceforge.net/.

[128] Overview of recent supercomputers 2009. http://www.nwo.nl/nwohome.

nsf/pages/NWOA\.F7X8HXB\.FEng.

[129] A. Szalay and J. Gray. Science in an exponential world. Nature, 440:413--414,
2006.

[130] V. Taylor, X. Wu, J. Geisler, and R. Stevens. Using kernel couplings to pre-
dict parallel application performance. In HPDC '02: Proceedings of the 11th
IEEE International Symposium on High Performance Distributed Comput-
ing, page 125, Washington, DC, USA, 2002. IEEE Computer Society.

http://liinwww.ira.uka.de/~skampi/
http://www.sdsc.edu/~allans
http://www.sdsc.edu/~allans
http://www.specbench.org
http://www.cs.virginia.edu/stream/
http://stxxl.sourceforge.net/
http://www.nwo.nl/nwohome.nsf/pages/NWOA_F7X8HXB_FEng
http://www.nwo.nl/nwohome.nsf/pages/NWOA_F7X8HXB_FEng

126

[131] V. Taylor, X. Wu, and R. Stevens. Prophesy: an infrastructure for perfor-
mance analysis and modeling of parallel and grid applications. SIGMETRICS
Perform. Eval. Rev., 30(4):13--18, 2003.

[132] The TeraGrid Project. http://www.teragrid.org.

[133] Top500 (Nov. 2010). http://www.top500.org/lists/2010/11.

[134] TRIM page at Wikepedia. http://en.wikipedia.org/wiki/TRIM.

[135] L. G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103--111, 1990.

[136] K.-Y. Wang. Precise compile-time performance prediction for superscalar-
based computers. In PLDI, pages 73--84, 1994.

[137] J. Weinberg and A. Snavely. User-guided symbiotic space-sharing of real
workloads. In ICS '06: Proceedings of the 20th annual international confer-
ence on Supercomputing, pages 345--352, New York, NY, USA, 2006. ACM.

[138] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
Programs: Characterization and methodological considerations. In Proceed-
ings of the 22nd International Symposium on Computer Architecture, Santa
Margherita Ligure, Italy, June 1995.

[139] Intel \mathrm{R}\bigcirc x25-e datasheet and technical documents. http://download.intel.
com/design/flash/nand/extreme/extreme-sata-ssd-datasheet.

pdf and http://www.intel.com/design/flash/nand/extreme/

technicaldocuments.htm.

[140] Tom's hardware, intel \mathrm{R}\bigcirc 's x25-m solid state drive reviewed. http://www.

tomshardware.com/reviews/Intel-x25-m-SSD,2012-13.html.

[141] XDD benchmark, version 6.5. http://www.ioperformance.com/, retrieved
in September 2009.

[142] XFS project. http://oss.sgi.com/projects/xfs/.

[143] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins. Char-
acterizing and comparing prevailing simulation techniques. In 11th Interna-
tional Symposium on High Performance Computer Architecture (HPDC-11),
2005.

[144] D. York. The sloan digital sky survey. Astronomical Journal, 2000.

http://www.teragrid.org
http://www.top500.org/lists/2010/11
http://en.wikipedia.org/wiki/TRIM
http://download.intel.com/design/flash/nand/extreme/extreme-sata-ssd-datasheet.pdf
http://download.intel.com/design/flash/nand/extreme/extreme-sata-ssd-datasheet.pdf
http://download.intel.com/design/flash/nand/extreme/extreme-sata-ssd-datasheet.pdf
http://www.intel.com/design/flash/nand/extreme/technicaldocuments.htm
http://www.intel.com/design/flash/nand/extreme/technicaldocuments.htm
http://www.tomshardware.com/reviews/Intel-x25-m-SSD,2012-13.html
http://www.tomshardware.com/reviews/Intel-x25-m-SSD,2012-13.html
http://www.ioperformance.com/
http://oss.sgi.com/projects/xfs/

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Performance Modeling and Prediction
	Challenges of Performance Modeling and Prediction in High Performance Computing
	Parallel Computing
	Grid Computing
	Hybrid Computing
	New Storage Technologies

	PMap overview
	Online Performance Prediction for Computational Grids
	Performance Idioms Recognition for Hybrid Computing Platforms
	Performance Characterization and Modeling of Flash Storage Systems

	Performance and Reliability of Production Computational Grids
	Measurement Infrastructure
	Grid Assessment Probes
	PreCo
	Inca

	Testbeds
	Experiments
	Inca Configuration
	Schedule Configuration

	Performance and Availability
	TeraGrid
	Geon

	Prediction of Application Performance based on Benchmark Measurements
	Prediction Methods
	Prediction Results

	Related Work
	Conclusions and Future Work

	Automatic Recognition of Performance Idioms in Scientific Applications
	Definitions of Five Idioms
	Automatic Recognition by Compiler
	LNG: Loop Nest Graph
	ARG: Affinity Relation Graph
	RAG: Reduced Affinity relation Graph
	Idioms Recognition
	Implementation on Open64

	Experiment Results
	The NAS Parallel Benchmark
	Code Coverage
	Prototype Verification
	Performance Approximation

	Related Work
	Benchmarks and Application Requirements
	Archetypes and Kernel Coupling
	Machine Idioms
	Reduction Recognition

	Conclusions and Future work

	DASH: a Flash-based Data Intensive Supercomputer
	System Overview
	 Storage hierarchy
	 Cost efficiency
	 Power efficiency

	 I/O system design and tuning
	 Single drive tuning
	 Basic RAID tuning
	 Advanced tuning
	 RAM drive

	 Performance of real-world data-intensive applications
	 External memory BFS
	 Palomar Transient Factory
	 Biological pathways analysis

	 More discussions on flash drives
	 Performance downgrading
	 Reliability and lifetime
	 Flash-oriented hardware and software

	 Related work
	 ccNUMA machines
	 Distributed Shared Memory (DSM)

	 Conclusions and future works

	Performance Characterization of Flash Storage System
	DASH System Architecture
	Flash-based IO Design Space Exploration
	Experiment Configurations
	Data Pre-processing
	Stripe Size
	Stripe Widths and Performance Scalability
	File Systems
	IO Schedulers
	Queue Depths

	Conclusions

	Performance Prediction of HPC Applications on Flash Storage System
	 Methodology
	 Experimental Workload and Systems
	 Workload
	Systems

	 Experiments and Results
	Experiments
	Results

	 Related Work
	 Conclusions and Future Work

	Conclusions
	TeraGrid Errors
	GEON Errors
	Bibliography

