
UC Davis
UC Davis Previously Published Works

Title
Fast Sparse Matrix and Sparse Vector Multiplication Algorithm on the GPU

Permalink
https://escholarship.org/uc/item/1rq9t3j3

Authors
Yang, Carl
Wang, Yangzihao
Owens, John D.

Publication Date
2015

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1rq9t3j3
https://escholarship.org
http://www.cdlib.org/

Fast Sparse Matrix and Sparse Vector Multiplication Algorithm on the GPU

Carl Yang, Yangzihao Wang, and John D. Owens
Dept. of Electrical & Computer Engr.

University of California, Davis
{ctcyang, yzhwang, jowens}@ucdavis.edu

Abstract—We implement a promising algorithm for sparse-
matrix sparse-vector multiplication (SpMSpV) on the GPU.
An efficient k-way merge lies at the heart of finding a
fast parallel SpMSpV algorithm. We examine the scalability
of three approaches—no sorting, merge sorting, and radix
sorting—in solving this problem. For breadth-first search
(BFS), we achieve a 1.26x speedup over state-of-the-art sparse-
matrix dense-vector (SpMV) implementations. The algorithm
seems generalizeable for single-source shortest path (SSSP)
and sparse-matrix sparse-matrix multiplication, and other core
graph primitives such as maximal independent set and bipartite
matching.

Keywords-parallel, GPU, graph algorithm, sparse matrix
multiplication

I. INTRODUCTION

Graphs are a useful abstraction for solving problems in
the fields of social networks, bioinformatics, data mining,
scientific simulation, and more. With the desire to solve
exascale graph problems comes the impetus to design high
performance algorithms. In this paper, we study the problem
of traversing large graphs. Traversal is the problem of
visiting all the vertices in a graph doing per-node or per-
edge computations along the way. Breadth-first search (BFS)
is one such traversal that is a key building block in several
more complicated graph primitives such as finding maxi-
mum flow and bipartite graph matching. Its importance is
such that it is one of the three benchmarks in the Graph5001

benchmark suite.
It is natural to try to solve these problems by leveraging

the computational, cost, and power efficiency advantages of
the modern graphics processing unit (GPU). Graphs present
a challenging problem, because the irregular data access and
work distribution are not an ideal fit for the architecture and
programming model of the GPU.

Linear algebra is a useful way to think about graph
problems, because linear algebra implementations on GPUs
have regular memory access patterns and balanced work dis-
tribution. Sparse-matrix dense-vector multiplication (SpMV)
is a key building block in modern linear algebra libraries.
It is a key kernel in many areas including scientific and
engineering computing, financial and economic modeling,
and information retrieval. SpMV is also a key operation that
links graph theory and linear algebra by the fact that SpMV

1http://www.graph500.org/specifications

can be thought of as one iteration of a BFS traversal on a
graph, which we discuss in more detail in Section III.

Despite being implemented quite efficiently on the GPU,
existing SpMV algorithms all focus on the optimization of
segmented reduction, first introduced by Sengupta et al. [1],
while ignoring the possibility that the vector could be sparse.
Sparse-matrix sparse-vector multiplication (SpMSpV) has
not received much attention on the GPU. Graph applications
where sparse vectors arise naturally include finding the
maximal independent set, bipartite graph matching, and the
aforementioned BFS.

If we use SpMV to perform BFS, each iteration visits
every vertex and the runtime should be at least linear with
the number of edges and vertices. Intuitively, when the
vector is known to be sparse and we don’t visit every edge,
we should be able to perform the calculation in less time
than O(E). This paper makes a case for SpMSpV being a
useful primitive when SpMV is too unwieldy and SAXPY
(Single-Precision A-X Plus Y) not wieldy enough.

Our contributions are as follows:
1) We implement a promising algorithm for doing fast

and efficient SpMSpV on the GPU.
2) We examine the various optimization strategies to

solve the k-way merging problem that makes SpMSpV
hard to implement on the GPU efficiently.

3) We provide a detailed experimental evaluation of the
various strategies by comparing with SpMV and two
state-of-the-art GPU implementations of BFS.

4) We demonstrate the potential of applying SpMSpV as
the building block for several other graph-based BLAS
operations.

II. RELATED WORK

Gilbert, Reinhardt and Shah [2] parallellize SpMSpV by
using distributed systems to launch several independent BFS
searches as well as using different processors to calculate
different rows. Buluç and Madduri [3] implemented the first
SpMSpV algorithm for solving BFS on distributed systems.
To the best of the authors’ knowledge, no equivalent imple-
mentation has been made for the GPU.

On GPUs, parallel BFS algorithms are challenging be-
cause of irregular memory accesses and data dependency
between iterations. Harish and Narayanan [4] gave the first
level-synchronous parallel algorithm for the GPU. They

were able to obtain a speed-up of 20–50x compared to
CPU implementations of BFS. Luo et al. [5] demonstrated
an improvement to the Harish-Narayanan method showing
their algorithm is up to 10x faster than the Harish-Naranyan
method on recent NVIDIA GPUs. Hong et al. was the first
to address BFS workload irregularity [6]. They utilized an
innovative warp-centric algorithm that uses mapping groups
of 32 threads to vertices rather than a single thread to a
vertex.

Merrill, Garland and Grimshaw [7] gave the first efficient
and load-balanced BFS algorithm for the GPU. Observing
that atomic operations do not scale well, they emphasized
fine-grained parallelism based on efficient usage of prefix-
sum. Another state-of-the-art implementation of BFS is the
Gunrock library by Wang et al. [8]. They presented a high-
level GPU programming model that performs graph opera-
tions at a higher performance than most implementations.
We test our BFS implementation by comparing against
Merrill’s and Gunrock’s open-source implementations.

We also compare our implementation with SpMV. Both
our SpMSpV implementation and the SpMV implementation
use the matrix multiplication method of solving BFS from
Kepner [9]. We describe the problem in greater detail in
Section III.

By comparing with the SpMV method to solve BFS,
our goal is to demonstrate the superior efficiency and
performance of SpMSpV in the context of the GPU. After
testing several SpMV implementations, we chose the highly-
optimized one from the high-performance Modern GPU
library [10]. Besides using segmented reduction, Modern
GPU also uses clever load-balancing to maximize hardware
usage.

III. BACKGROUND & PRELIMINARIES

A graph is an ordered pair G = (V,E,we, wv) comprised
of a set of vertices V together with a set of edges E, where
E ⊆ V × V . we and wv are two weight functions that
show the weight values attached to edges and vertices in the
graph. Let n = |V | and m = |E|. A graph is undirected if
for all v, u ∈ V : (v, u) ∈ E ⇐⇒ (u, v) ∈ E. Otherwise,
it is directed. Among several graph data representations, the
adjacency matrix and a collection of adjacency lists are the
two main representations used in most existing parallel graph
processing works. The adjacency matrix is an n× n matrix
where the non-diagonal entry aij is the weight value from
vertex i to vertex j, and the diagonal entry aii can be used
to count loops on single vertices. Instead, the adjacency lists
provide more compact storage for more widespread sparse
graphs. A basic adjacency list stores all edges in a graph.

SpMV and graph traversal: Suppose we are inter-
ested in doing a graph traversal from a vector of vertices
represented by xk. This vector can be either sparse or
dense. Supposing it is dense, it would be a length n vector
with xk[i] = 0 meaning the the i’th vertex is not in the

group and xk[i] = 1 meaning it is. Performing a graph
traversal on graph G from the vector of vertices xk is
equivalent to performing the SpMV xk+1 ⇐ AT × xk
with conventional matrix multiplication operations (+,×)
replaced with (∪,∩).

The high-level pseudocode of the matrix multiplication
algorithm for BFS is given in Algorithm 1. The distinguish-
ing feature between a traditional SpMV formulation and our
SpMSpMV implementation is which multiplication kernel is
used in the MULTIPLYBFS procedure.

Algorithm 1 Matrix multiplication BFS algorithm.
Input: Sparse matrix G, source vertex s, diameter d.
Output: Dense vector π where π[v] is the shortest path

from s to v, or -1 if u is unreachable.
1: for each v ∈ V in parallel do
2: w[v]⇐ 0
3: π[v]⇐ −1
4: end for
5: w[s]⇐ 1
6: π[s]⇐ 0
7: for i← 1, d do
8: w ⇐ MULTIPLYBFS(GT , w)
9: for each v ∈ V in parallel do

10: if w[v]=1 and π[v] = −1 then
11: π[v]⇐ i
12: else
13: w[v]⇐ 0
14: end if
15: end for
16: end for

Graph representation: One typical way of representing
graph in the GPU memory is using one array to store a list
of neighbor nodes and another array to store the offset of the
neighbor list for each node. In this paper, we use the well-
known compressed sparse row (CSR) sparse matrix format.
The column-indices array C and row-offsets array R are
equivalent to the neighbor nodes list and the offset list in
the basic adjacency list definition.

On GPUs: Modern GPUs are throughput-oriented
manycore processors that rely on large-scale multithreading
to attain high computational throughput and hide memory
access time. The latest generation of NVIDIA GPUs have up
to 15 multiprocessors, each with hundreds of arithmetic logic
units (ALUs). GPU programs are called kernels, which run
a large number of threads in parallel. Threads run in parallel
in single-instruction, multiple-program (SPMD) fashion. For
problems that require irregular data access, a successful
GPU implementation needs to: 1) ensure coalesced memory
access to external memory and efficiently use the memory
hierarchy, 2) minimize thread divergence within a warp, 3)
expose enough parallelism to keep the entire GPU busy.

IV. ALGORITHMS & ANALYSIS

Algorithm 2 gives the high-level pseudocode of our
parallel algorithm that can be used for MULTIPLYBFS in
Algorithm 1. The sparse vector x is passed into the MUL-
TIPLYBFS in dense representation. The STREAMCOMPACT
consisting of a scan and scatter is used to put the sparse
vector into a sparse representation. The natively-supported
scatter operation here is a moving of elements from the
original array x into a list of new indices given by scan.

This sparse vector representation can be considered an
analogue of the CSR format, with the simplification that
since there is only one row, so the column-indices array C–
which simplifies to the array with two elements [0,m]–will
be replaced by a single variable, m.

Since the vector is sparse, we use something akin to outer
product rather than SpMV’s inner product. We do a linear
combination on the rows of the matrix G. Even though the
product we get is GT × x, we do not need to do a costly
transposition in both memory storage and access since that
is exactly the product we need for BFS. This way, we are
only performing multiplication when we know for certain
the resulting product is nonzero. This is the fundamental
reason why SpMSpV is more work-efficient than SpMV.

Algorithm 2 SpMSpV multiplication algorithm for BFS.
Input: Sparse matrix G, sparse vector x (in dense repre-

sentation)
Output: Sparse vector w = GT × x

1: procedure MULTIPLYBFS(G, x)
2: STREAMCOMPACT(x)
3: ind⇐ GATHER(G, x)
4: SORTKEYS(ind)
5: w ⇐ SCATTER(ind)
6: end procedure

To get the rows of G, we do a gather operation on the rows
we are interested in and concatenate them into one array.
The use of this single array is our attempt of solving the
multiway merging problem in parallel, which is mentioned
in [3]. By concatenating into a single array, we are able to
avoid atomic operations, which are known to be costly.

Going into more detail about this gather operation, we use
the sparse vector x to get an index into graph G. (1) Then for
all i ∈ ind we gather from the graph’s column-indices array
obtaining two indices C[i] and C[i+ 1]. These two indices
give us the beginning and end of row i we are interested in.
(2) Next, for all h ∈ [C[i], C[i+ 1]) we gather elements of
row-offsets array R[h] and call this set indi. The first two
gather operations are shown as a single gather in Line 3 of
Algorithm 2 and Algorithm 3.

In the case of Algorithm 3, we perform a third gather. This
is to obtain the corresponding value GVal[h] of node index
R[h] over the same interval [C[i], C[i+ 1]). We are now

faced with the problem of doing a k-way merge of different-
sized indi within ind. We tried three different approaches:

1) No sort.
2) Merge sort.
3) Radix sort.
We first try no sorting. Since the array is unsorted,

adjacent threads do not write adjacent values; we instead
scatter outputs to their memory destinations. The result is
uncoalesced writes into GPU memory, with a resulting loss
of memory bandwidth. Davidson et al. [11] use a similar
strategy when they remove duplicates in parallel in their
single-source shortest-path (SSSP) algorithm.

Since we are skipping the sorting, we avoid the logarith-
mic time factor of merge sort mentioned by Buluç et al. [3].
We scatter 1’s into a dense array using the concatenated
array value as the index. This approach trades off less work
in sorting for lower bandwidth from uncoalesced memory
writes.

Algorithm 3 Generalized SpMSpV multiplication algo-
rithm.
Input: Sparse matrix G, sparse vector x (in dense repre-

sentation), operator ⊕, operator ⊗.
Output: Sparse vector w = GT × x.

1: procedure MULTIPLY(G, x, ⊕, ⊗)
2: STREAMCOMPACT(x)
3: ind⇐ GATHER(G, x)
4: GVal⇐ GATHER(G, ind)
5: SORTPAIRS(ind, GVal)
6: for each j ∈ ind in parallel do
7: flag[j]⇐ 1
8: val[j]⇐ GVal[j]⊗ x[j]
9: if ind[j] = ind[j − 1] then

10: flag[j]⇐ 0
11: end if
12: end for
13: wVal⇐ SEGREDUCE(val, flag, ⊕)
14: w ⇐ SCATTER(wVal, ind)
15: end procedure

To increase our achieved memory bandwidth, we could
perform the k-way merge by sorting. We first try a merge
sort, which does O(f log f) work, where f is the size of
the frontier. Though this asymptotic complexity—which is
O(m logm) in the worst case—sounds bad compared to the
O(m) work of SpMV, it is actually much faster in practice
due to the nature of BFS on typical graph topologies, which
rarely visits a large fraction of the graph’s vertices on a
single iteration.

We also try radix sort, which has O(kf) work, where k
is the length of the largest key in binary. We expect merge
sort to be compute-bound; no-sorting to be memory-bound;
and radix sort somewhere between the two. We investigate
which is more efficient in practice.

Runtime (ms) Dataset Description

Dataset SpMSpV Gunrock b40c Vertices Edges Max Degree Diameter

ak2010 1.686 0.932 0.104 45K 25K 199 15
belgium osm 63.937 13.053 1.277 1.4M 1.5M 9 630

coAuthorsDBLP 4.530 2.829 0.452 0.30M 0.98M 260 36
delaunay 13 1.085 0.820 0.117 8.2K 25K 10 142
delaunay 21 11.511 2.207 0.259 2.1M 6.3M 17 230

soc-LiveJournal1 73.722 33.953 21.117 4.8M 68.9M 20333 16
kron g500-log21 70.935 15.194 23.423 2.1M 90M 131503 6

Table I
DATASET DESCRIPTIONS AND PERFORMANCE COMPARISON OF OUR SPMSPV IMPLEMENTATION AGAINST TWO STATE-OF-THE-ART BFS

IMPLEMENTATIONS ON A SINGLE GPU FOR SEVEN DATASETS.

Algorithm 3 is a generalized case of matrix multiplication
parameterized by the two operations (⊕,⊗). If we set those
two operations to (∪, ∩), we obtain Algorithm 2. For low-
diameter, power-law graphs, it is well-known that there are
a few iterations when f becomes dense and these are the
iterations that dominate the overall running time. For the
remainder of BFS iterations, it is wasteful to use a dense
vector.

We will investigate whether this crossing point is a fixed
number independent of the total number of vertices or edges
in the graph or whether it is determined by the percent
of descendants f out of the total number of edges. The
former would indicate a limit to SpMSpV’s scalability since
it would only be interesting for a small number of cases,
while the latter would demonstrate that SpMSpV could
outperform SpMV for BFS calculations on graphs of any
scale provided they have a topology similar to those we
perform our scalability tests.

V. EXPERIMENTS & RESULTS

We ran all experiments in this paper on a Linux
workstation with 2× 3.50 GHz Intel 4-core E5-2637 v2
Xeon CPUs, 528 GB of main memory, and an NVIDIA
K40c GPU with 12 GB on-board memory. The GPU
programs were compiled with NVIDIA’s nvcc compiler
(version 6.5.12). The C code was compiled using gcc
4.6.4. All results ignore transfer time (from disk-to-memory
and CPU-to-GPU). The Gunrock code was executed using
the command-line configuration --src=0 --directed
--idempotence --alpha=6. The merge sort is from
the Modern GPU library [10]. The radix sort is from the
CUB library [12].

The datasets used in our experiments are shown in Table I.
The graph topology of the datasets varies from small-degree
large-diameter to scale-free. The soc-LiveJournal1 (soc) and
kron g500-logn21 (kron) datasets are two scale-free graphs
with diameter less than 20 and unevenly distributed node
degree. The belgium-osm dataset has a large diameter with
small and evenly distributed node degree.

Performance summary: Looking at the comparison
with two state-of-the-art BFS implementations, SpMSpV is

Runtime (ms)

Dataset SpMSpV SpMV

ak2010 1.686 0.427
belgium osm 63.937 97.280

coAuthorsDBLP 4.530 6.213
delaunay 13 1.085 0.568
delaunay 21 11.511 22.241

soc-LiveJournal1 73.722 214.357
kron g500-log21 70.935 230.609

Table II
PERFORMANCE COMPARISON OF OUR SPMSPV WITH SPMV FOR

COMPUTING BFS ON A SINGLE GPU FOR SEVEN DATASETS.

between 2–4x slower. Nevertheless, this shows our imple-
mentation is a reasonable implementation, with runtime re-
sults in the same ballpark. With some Gunrock optimizations
turned off, the results are even closer.

One such BFS-specific optimization is direction-
optimized traversal. This optimization is known to be
effective when the frontier includes a substantial fraction
of the total vertices [13]. Another reason may be kernel
fusion [7]: b40c is careful to take advantage of producer-
consumer locality by merging kernels together whenever
possible. This way, costly reads and writes to and from
global memory are minimized. Apart from that, both
b40c and Gunrock use load-balancing workload mapping
strategies during the neighbor list expanding phase of the
traversal. Compared to b40c, Gunrock implements the
direction-optimized traversal and more graph algorithms
than BFS.

Comparison with SpMV: Table 2 compares SpMSpV’s
performance against SpMV. SpMSpV is 1.26x faster than
SpMV at performing BFS on average. The primary reason
is simply that SpMV does more work, performing multi-
plications on zeroes in the dense vector. The speed-up of
SpMSpV is most prominent on scale-free graphs “soc” and
“kron” where it is 2.9x and 3.3x faster. This is likely because
on larger graphs, the work-efficiency of SpMSpV becomes
prominent.

Such a conclusion is supported by the road network graph

ak2010

belgium_osm

coAuthorDBLP

delaunay_n13

delaunay_n21

Soc-LiveJournal1

kron-g500_n21
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Common
Scatter
Sort

No Sort
Radix Sort
Merge Sort

Figure 1. Workload distribution of three SpMSpV implementations. Shown
are no sorting, radix sort and merge sort for the datasets listed in Table 1.

“belgium”. It has a large number of edges, but both the
average and max degrees are low while the diameter is
high. In spite of being a graph of similar size to “delau-
nay 21”, since not many edges need traversal every iteration
there is not much difference in work-efficiency between the
SpMSpV and SpMV. Perhaps superior load-balancing in the
SpMV kernel is the difference maker. In the same vein, it
can be seen that on the two smallest graphs “ak2010” and
“delaunay 13”, SpMV is 3.9x and 1.9x faster.

Figure 1 shows the impact of coalesced memory access on
the scatter operation. Without sorting, scatter write takes up a
majority of computation time for large datasets, but becomes
neglible if prior sorting has been done. The only exception
is for the road network graph belgium-osm, which has a
high diameter and low node degree. This could be because
the neighbor list is small every time and everything in the
neighbor list is kept in sorted order, so there is little gained
from performing a costly sort operation. The unnormalized
data is given in Table III.

Some parts of our SpMSpV implementations are common
to all three of our approaches. We see some variance in this
common code across our tests. Some of this variance is due
to the method by which the execution times were measured,
which was using the cudaEventRecord API. The rest of the
variance is due to natural run-to-run variance of the GPU.
This is why when possible, the runtimes taken were the
average of ten iterations.

Figure 2 shows the runtime of BFS on a scale-free net-
work (“kron”) plotted against the number of edges traversed.
SpMSpV implemented using radix sort and merge sort scale
linearly, while SpMV (shown in Table IV and SpMSpV with
no sorting scale superlinearly. For a small number of edges,
it is faster to do SpMSpV without sorting. Since SpMSpV
seems to perform better than SpMV on bigger datasets,
it seems that the answer as to whether the crossing point

0 10 20 30 40 50 60 70 80 90
Edges Traversed (millions)

0

20

40

60

80

100

120

140

Ru
nt

im
e

(m
s)

No Sorting
Radix Sort
Merge Sort

Figure 2. Performance comparison of three SpMSpV implementations on
six differently-sized synthetically-generated Kronecker graphs with similar
scale-free structure. The raw data used to generate this figure is given in
Table IV. Each point represents a BFS kernel launch from a different node.
Ten different starting nodes were used in this experiment.

beyond which SpMV becomes more efficient than SpMSpV
is governed not by a fixed frontier size, but rather as a
function of both frontier size and the total number of edges
as well. This indicates that SpMSpV is competitive with
SpMV not just on datasets of limited size, but large datasets
as well.

To explain the superlinear scaling, we offer a few likely
explanations. One is that congestion degrades memory ac-
cess latency [14]. As Figure 1 shows, the scatter writes are
the difference between no sort and sort. One phenomenon
that was observed was that if only a few iterations of merge
and radix sort were performed, there would be no effect
on scatter time and thereby increase the total execution
time. Perhaps if a sorting algorithm that divides the array
in a manner like quick sort or bucket sort were used, more
coalesced memory access could be attained at the cost of
additional computation.

Another way to express this idea is that there is an
optimal compute to memory access ratio specific for each
particular GPU hardware model. It is possible that the no sort
implementation reached peak compute to memory access for
dataset “kron g500-logn18”, but for larger datasets memory
access grew faster than the amount of gather operations, so
memory accesses were becoming degraded by congestion.
The sorting methods may be closer to the compute-limited
side of the compute to memory access peak, so the increased
memory accesses are bringing them closer to peak perfor-
mance.

VI. CONCLUSIONS

In this paper we implement a promising algorithm for
computing sparse matrix sparse vector multiplication on
the GPU. Our results using SpMSpV show considerable

Runtime (ms)

No Sort Radix Sort Merge Sort

Dataset Common Scatter Sort Common Scatter Sort Common Scatter Sort

ak2010 0.5979 0.0556 0 0.5349 0.05433 1.2820 0.5387 0.0499 0.1128
belgium osm 64.60 4.1906 0 63.03 4.1906 0 62.85 4.1843 5.1752

coAuthorsDBLP 5.4573 0.4067 0 5.3658 0.4403 9.5211 5.3508 0.3984 1.6931
delaunay 13 0.9395 0.0839 0 0.9146 0.0627 2.5720 0.9290 0.0573 0.2295
delaunay 21 11.18 0.7558 0 11.00 0.7479 6.9629 11.02 0.7506 0.6574

soc-LiveJournal1 21.71 41.80 0 21.67 3.1452 50.40 21.67 3.1452 50.40
kron-g500 n21 11.13 67.90 0 11.10 2.7280 58.24 11.12 2.7659 108.93

Table III
WORKLOAD DISTRIBUTION OF THREE SPMSPV IMPLEMENTATIONS SHOWING RUNTIME (MS) ON A SINGLE GPU FOR SEVEN DATASETS. COMMON

REFERS TO TIME SPENT RUNNING THE KERNELS COMMON TO ALL THREE IMPLEMENTATIONS.

Runtime (ms) Edge rate (MTEPS)

Dataset No Sorting SpMV Radix Sort Merge Sort No Sort SpMV Radix Sort Merge Sort

kron g500-logn16 (n = 216,m = 2.5M) 1.37 2.21 4.74 3.81 1401.9 868.3 405.07 503.9
kron g500-logn17 (n = 217,m = 5.1M) 1.71 4.02 5.81 5.35 1923.5 819.6 567.3 615.2

kron g500-logn18 (n = 218,m = 10.6M) 2.85 7.70 9.79 11.37 2764.8 1022.8 804.7 692.4
kron g500-logn19 (n = 219,m = 21.8M) 6.79 19.94 16.85 22.31 2372.0 807.9 955.8 721.8
kron g500-logn20 (n = 220,m = 44.6M) 21.08 75.97 29.25 43.13 1469.0 407.7 1058.7 718.2
kron g500-logn21 (n = 221,m = 91.0M) 68.09 259.86 64.23 105.92 1087.7 285.0 1153.0 699.2

Table IV
SCALABILITY OF THREE SPMSPV IMPLEMENTATIONS AND ONE SPMV IMPLEMENTATION (RUNTIME AND EDGES TRAVERSED PER SECOND) ON A

SINGLE GPU ON SIX DIFFERENTLY-SIZED SYNTHETICALLY-GENERATED KRONECKER GRAPHS WITH SIMILAR SCALE-FREE STRUCTURE. RADIX SORT
AND MERGE SORT SCALE LINEARLY; NO SORTING AND SPMV SHOW NON-IDEAL SCALING.

performance improvement for BFS over the traditional
SpMV method on power-law graphs. We also show that our
implementation of SpMSpV is flexible and can be used as
a building block for several other graph primitives.

An open research question now is how to optimize the
compute to memory access ratio to maintain linear scaling.
We showed merge sort and radix sort are good options, but
it is possible a partial quick sort or a hybrid k-way merge
algorithm such as the one presented by Leischner [15] can
be used to obtain a better compute to memory access ratio,
and better performance.

The SpMSpV algorithm used in this paper is generalizable
to other graph algorithms through Algorithm 3. This algo-
rithm is still being implemented in CUDA. By setting (⊕,⊗)
to (+,×), one performs standard matrix multiplication.
A direction may be using SpMSpV as a building block
for sparse matrix sparse matrix multiplication. Buluç and
Gilbert’s work in simulating parallel SpGEMM sequentially
using SpMSpV has been promising [16]. Similarly, by set-
ting (⊕,⊗) to (min,+), one performs single-source shortest
path (SSSP).

A natural question would be whether SpMSpV brings
similar speed-ups to SSSP too. More research will be
needed. The analogy to linear algebra is held to bring
advances to graph algorithms, so another natural question
would be whether advances in graph algorithms can be used

to improve sparse matrix multiplication.

VII. ACKNOWLEDGEMENTS

This work was funded by the DARPA XDATA program
under AFRL Contract FA8750-13-C-0002 and by NSF
awards CCF-1017399 and OCI-1032859.

REFERENCES

[1] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan
primitives for GPU computing,” in Graphics Hardware 2007,
Aug. 2007, pp. 97–106.

[2] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “High-
performance graph algorithms from parallel sparse matrices,”
in Applied Parallel Computing: State of the Art in Scien-
tific Computing, ser. Lecture Notes in Computer Science.
Springer, Mar. 2007, vol. 4699, pp. 260–269.

[3] A. Buluç and K. Madduri, “Parallel breadth-first search on
distributed memory systems,” in Proceedings of the 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov. 2011, pp. 65:1–
65:12.

[4] P. Harish and P. J. Narayanan, “Accelerating large graph algo-
rithms on the GPU using CUDA,” in Proceedings of the 14th
International Conference on High Performance Computing,
ser. HiPC’07. Berlin, Heidelberg: Springer-Verlag, Dec.
2007, pp. 197–208.

[5] L. Luo, M. Wong, and W. Hwu, “An effective GPU imple-
mentation of breadth-first search,” in Proceedings of the 47th
Design Automation Conference, Jun. 2010, pp. 52–55.

[6] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Ac-
celerating CUDA graph algorithms at maximum warp,” in
Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’11. New
York, NY, USA: ACM, Feb. 2011, pp. 267–276.

[7] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU
graph traversal,” in Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, ser. PPoPP ’12, Feb. 2012, pp. 117–128.

[8] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and
J. D. Owens, “Gunrock: A high-performance graph process-
ing library on the GPU,” CoRR, vol. abs/1501.05387, no.
1501.05387v1, Jan. 2015.

[9] J. Kepner and J. Gilbert, Eds., Graph Algorithms in the
Language of Linear Algebra. SIAM, 2011, vol. 22.

[10] S. Baxter, “Modern GPU library,” http://nvlabs.github.io/
moderngpu/, 2015, accessed: 2015-02-22.

[11] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-
efficient parallel GPU methods for single source shortest
paths,” in Proceedings of the 28th IEEE International Parallel
and Distributed Processing Symposium, May 2014, pp. 349–
359.

[12] D. Merrill, “CUB library,” http://nvlabs.github.io/cub, 2015,
accessed: 2015-02-22.

[13] S. Beamer, K. Asanović, and D. Patterson, “Direction-
optimizing breadth-first search,” in Proceedings of the In-
ternational Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12, Nov. 2012,
pp. 12:1–12:10.

[14] S. S. Baghsorkhi, I. Gelado, M. Delahaye, and W. W. Hwu,
“Efficient performance evaluation of memory hierarchy for
highly multithreaded graphics processors,” in Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’12, Feb. 2012,
pp. 23–34.

[15] N. Leischner, “GPU algorithms for comparison-based sorting
and merging based on multiway selection,” Ph.D. dissertation,
Karlsruhe Institute of Technology, 2010.

[16] A. Buluç and J. R. Gilbert, “On the representation and
multiplication of hypersparse matrices,” in IEEE Interna-
tional Symposium on Parallel and Distributed Processing, ser.
IPDPS 2008, Apr. 2008.

