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Abstract 

Knowledge Graph Reasoning (KGR) is an effective method 
to solve the incompleteness and sparsity problems of 
Knowledge Graph (KG), which infers new knowledge based 
on existing knowledge. Especially, the Graph Convolution 
Network (GCN)-based approaches can obtain state-of-the-art 
effectiveness, but there are still some problems such as weak 
reasoning ability, incomplete local information acquisition, 
insufficient attention score, and high learning cost, which lead 
to limited prediction accuracy. This paper proposes a multi-
head self-attention mechanism architecture based on cognitive 
transfer learning, named CogTrans, to make effective 
improvements in the above problems. Shaped like a cross, 
CogTrans horizontally includes intuition and reasoning stages, 
which can achieve a faster convergence rate and obtain 
prediction results that are more in line with human intuition. 
Furthermore, CogTrans longitudinally includes source and 
target domains, and benefit from transfer learning, it can not 
only obtain the advantages of the horizontal architecture but 
also can “draw inferences from one instance”, which is more 
conducive to realizing the human brain-like reasoning effect 
of the architecture. Extensive experimental results show that 
our CogTrans architecture can obtain the most advanced 
accuracy of current GCN-based methods. 
 
Keywords: Knowledge Graph; Knowledge Graph Reasoning; 
Cognitive Science Theory; Attention Mechanism; Transfer 
Learning 

Introduction 

A Knowledge Graph (KG) is essentially a semantic network 

that reveals the relationships between entities. Existing KGs 

such as Freebase (Bollacker, Evans, Paritosh, Sturge, & 

Taylor, 2008), DBpedia (Auer et al.,2007), and WordNet 

(Miller,1992) have been widely used for Knowledge-Based 

Question Answering (Ye et al., 2021), Semantic Analysis 

(Al-Obeidat et al., 2020), Personalized Recommendation 

Systems (Ye et al., 2021), etc. However, the KG is usually 

incomplete and sparse, which leads to it having some 

limitations in the above applications. 

Knowledge Graph Reasoning (KGR) is one of the main 

methods to solve these problems. It inferences new 

knowledge based on the existing knowledge in the KG (Lin, 

Socher & Xiong, 2018), and its main objectives include link 

prediction (Zhang & Chen, 2018), fact prediction (Wang et 

al., 2022), entity prediction (Wickramarachchi, Henson & 

Sheth, 2022) and relation prediction (Zhao, Li, Hou, & Bai, 

2022), etc. In this paper, we will focus on the link prediction 

approaches. Recent studies on KGR have shown that GCN-

based methods can achieve state-of-the-art results, which: (i) 

modeling relations (Schlichtkrull et al., 2017; Tian et al., 

2020; Wang, Zhong & Wang, 2021); (ii) modeling entities 

and relations jointly (Zhang et al., 2020; Vashishth, Sanyal, 

Nitin & Talukdar, 2019; Yao, Mao & Luo, 2019). However, 

there are still exist four kinds of problems. First, a more 

intellective ability for reasoning at the level of knowledge is 

lacking. Second, the acquisition of domain information is 

incomplete. Third, the calculation of the attention score is 

single. Finally, the cost of learning is significant. 

In this paper, we present a cross-shaped multi-head self-

attention mechanism architecture based on cognitive 

transfer learning, referred to as CogTrans. From a horizontal 

perspective, CogTrans consists of two stages: intuition and 

reasoning, which can make CogTrans’ training more in line 

with human intuition and carry out knowledge sharing. 

From a longitudinal perspective, CogTrans has two domains:  

source and target, which can make CogTrans’ training more 

quickly and effectively learn new knowledge. The main 

contributions of this paper are as follows: 

-We use the dual channel theory of cognitive science to 

achieve the prediction effect closer to the human brain. In 

the intuition stage, the graph after hierarchical knowledge 

expansion is pre-trained by random walk; The reasoning 

stage integrates and deduces by using a fine-grained multi-

head self-attention mechanism to obtain scores for each 

layer of entities and relations. 

-We further establish new associations for the entities and 

relations of the same level in the hierarchical process, so as 

to expand the scale of the initial KG, which is more 

conducive to the acquisition of local information. 

-We propose a hierarchical fine-grained multi-head self-

attention mechanism encoding pattern, which obtains scores 

for each layer of entities and relations to fully learn and train 

our model. 

-We apply transfer learning to the GCN-based KGR by 

treating the KG as a hierarchical structure and taking 
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advantage of this structural similarity to faster and better 

learn new knowledge, which is conducive to reasoning. 

-We conduct plentiful comparison experiments on four 

benchmark datasets and the results show that our proposed 

CogTrans architecture can obtain optimal experimental 

results of existing GCN-based models. 

Related Work 

In this section, we mainly stated KG's incompleteness and 

sparsity (Pujara, Augustine & Getoor, 2017) and briefly 

introduced the solution to these problems based on KGR 

methods. As shown in Figure 1, we give the general 

manifestations of incompleteness and sparsity in KG: (i) 

incompleteness of entities and relations: entity 

incompleteness is represented by missing knowledge about 

people related to “David Beckham” and others; relation 

incompleteness is instantiated in the absence of the “Father 

& Son” relation of “David Beckham” and “Romeo James 

Beckham”. (ii) Sparsity of entities and relations:  it can be 

obviously found from Figure.1 that the ratio of entities' kind 

(6) and relations' kind (3) to the number of facts (10) is 

relatively small. 

 
Figure 1: An example of KG.  

 

 KGR is one of the main methods to improve the above 

problems and recent studies have shown that GCN-based 

methods can obtain the most advanced reasoning results. 

Next, we give a brief categorical overview of the solutions 

in these methods: (i) modeling relations, which introduced 

parameter sharing techniques, strengthened sparsity 

constraints, and applied them to multigraphs with a large 

number of relations to better extract topological relation 

features (Schlichtkrull et al., 2017; Tian et al., 2020; Wang, 

Zhong & Wang, 2021). (ii) Modeling entities and relations 

jointly, which jointly embedded both entities and relations 

in a KG and shared relation embeddings across layers that 

can effectively aggregate the local neighborhood 

information of each entity to alleviate the problem of over-

parameterization (Zhang et al., 2020; Vashishth, Sanyal, 

Nitin & Talukdar, 2019; Yao, Mao & Luo, 2019). 

 Although the existing GCN-based KGR methods can 

reason knowledge effectively, there are still some problems. 

Firstly, reasoning ability at the knowledge level is 

excessively lacking, resulting in insufficient prediction 

results. Secondly, the acquisition of local information is 

deficient so that loss much effective reasoning information. 

Thirdly, the single-layer calculation of the attention score 

may affect the encoding effect. Finally, it is too expensive to 

learn directly from scratch in the target domain information. 

These problems will be described in detail in Problems 1, 2, 

3, and 4 in Section.3.2, respectively. This paper focuses on 

these problems and proposes a cognitive transfer learning-

based architecture CogTrans that first expands and pre-

trains hierarchical KG, next presents a fine-grained 

encoding pattern to obtain local domain information 

effectively, then uses a decoder to accomplish the KGR task, 

and last use transfer learning achieves quick and efficient 

learning. 

Methodology 

Preliminaries 

Definition 1 (Knowledge Graph). A Knowledge Graph 

𝒢 = (ℇ, ℛ, ℱ), where ℰ is the entity set, ℛ is the relation set, 

and ℱ is the fact set. If ∃ℎ, 𝑡 ∈ ℰ, ℎ
𝑟
→ 𝑡 ∈ (ℎ, 𝑟, 𝑡), the fact 

set can be expressed as ℱ = {(ℎ, 𝑟, 𝑡)|ℎ, 𝑡 ∈ ℰ, 𝑟 ∈ ℛ}.  

Definition 2 (Link Prediction). Given a partial subset 

𝑝 ∈ ℛ, a scoring function 𝑓(ℎ, 𝑟, 𝑡) is designed to judge the 

possibility that any given edge (ℎ, 𝑟, 𝑡) ∉ 𝑝 belongs to ℛ. In 

this paper, we use the same 𝑓(ℎ, 𝑟, 𝑡)  score as R-GCN, 

which perform well on standard link prediction bench: 

 𝑓(ℎ, 𝑟, 𝑡) = 𝑝ℎ
𝑇ℛ𝑟𝑝𝑡                        (1) 

And we use the loss function as follows (Schlichtkrull et 

al., 2017): 

             ℒ = −
1

(1 + 𝜔)|ℛ̂|
∑ log 𝑙(𝑓(ℎ, 𝑟, 𝑡))𝑦

(ℎ,𝑟,𝑡,𝑦)∈𝒯

 

    +(1 − 𝑦)log (1 − 𝑙(𝑓(ℎ, 𝑟, 𝑡)))                      (2) 

where 𝜔  is a negative set, ℛ̂  is incomplete subset of 

relations, 𝒯 is the whole set of real and corrupted triples, 𝑙 is 

a logistic sigmoid function, and the 𝑦 is an indicator, which 

set to 0 for negative triples and set to 1 for positive triples. 

Problem Presentation and Solution 

Based on the problems of GCN-based methods mentioned 

in the above sections, we provide their detailed description 

and specific solutions in this section.  

Problem 1. When reasoning with the existing GCN-based 

KGR algorithms, the computer may only find local 

fragments. So, its ability to reason at the knowledge level 

and take a panoramic view of the KG is somewhat deficient. 

Recently, the dual process theory (Ding et al., 2019) is used 

to improve this problem. As shown in Figure 2, there are 

two systems in the cognitive system of the human brain: 

System 1 is an intuitive system, which can find answers 

quickly and simply through an intuitive match of relevant 

information; System 2 is an analytic system, which finds 

answers through certain reasoning and logic. 

 
Figure 2: Dual process theory in the cognitive science. 

 

Solution 1. To ameliorate Problem 1, we retain the 

causal structure of the two systems but reorganize their 

internal components and divide them into two new stages. 
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As shown in Figure 2, in this paper, the intuitive system 

corresponds to the intuition stage, which can gain the 

reasoning ability closer to the human brain by using random 

walking on hierarchical KG. The analytic system is 

represented as the reasoning stage, which can achieve more 

fine-grained knowledge-sharing information and more 

accurate reasoning results through encoding and decoding. 

Problem 2. Most of the existing GCN-based KGR 

models trained triples independently and simply, as shown 

in “Pattern 1” in Figure 3, so that the local information 

cannot be captured adequately, which furthermore limited 

the reasoning accuracy. Although Zhang et al. (Zhang et al., 

2020) collectively trained entities under the same relation to 

improve the interpretability of the model, as shown in 

“Pattern 2” in Figure 3, there is still the problem of 

incomplete local information acquisition.  

 
Figure 3: Different training patterns in GCN-based methods. 

 

Solution 2. To improve Problem 2, we present to expand 

the knowledge between entities and relations under the same 

layer in the pre-training phase to enhance the knowledge-

sharing ability and obtain more local information for 

reasoning. 

Problem 3. In the encoding phase, the coarse-grained 

calculation of attention score only for entities and 

relationships independently, which may lose some 

knowledge-sharing information, thus affecting the encoding 

effect. 

Solution 3. To refine Problem 3, we propose an encoding 

structure based on the fine-grained multi-head self-attention 

mechanism to achieve more accurate score aid reasoning by 

calculating attention scores for each layer of entities and 

relations respectively after pre-training. 

Problem 4. In a large-scale KG, because of the expensive 

cost to learn the target domain directly from scratch, it is 

expected to use the existing relevant knowledge to assist in 

learning new knowledge as soon as possible, which is the 

lack of the current GCN-based KGR method.  

Solution 4. To solve Problem 4, we propose to use the 

similarity of the hierarchical structure of KG to construct a 

bridge between old and new knowledge by transferring 

learning to learn better and faster adaptively. 

The Proposed CogTrans Architecture 

Overview Based on the solutions mentioned above, we 

propose the CogTrans architecture to approach KGR. As 

shown in Figure 4 and Figure 5, the proposed CogTrans 

architecture can be viewed from two perspectives: 

horizontal  

and longitudinal. Horizontally, as shown in Figure 4, the 

CogTrans is equipped with a three-phase structure: (i) the 

first phase is pre-training, which will be elaborated on in the 

next subsection. It regards KG as a relational hierarchical 

 
Figure 4: Overview of the CogTrans Architecture with horizontal perspective. 

 

 
Figure 5: Overview of the CogTrans Architecture with longitudinal perspective. 
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structure and achieves more abundant local information by 

extending knowledge under the same hierarchical level, 

which is more in line with human intuition; (ii) the second 

phase is encoding, which will be presented in the next 

subsection. It constructs fine-grained multi-head self-

attention for each layer of entities and relations to obtain 

fine-grained knowledge-sharing information and feature 

scores. (iii) the third phase is decoding, which will be 

described in the next subsection. It can be replaced by 

various existing KGR models that can guarantee our 

architecture's flexibility and extendibility, i.e., can adapt to 

the changes in parameters or other variables. Longitudinally, 

as shown in Figure 5, the CogTrans contains two domains: 

source and target.  By using the similarity of hierarchical 

KG, it transfers the source domain learning to the target 

domain and adaptively performs target reasoning. 

 

Pre-training Phase Pre-training is the phase of the intuition 

stage in CogTrans. As shown in Figure 4, we first regard the 

KG as a hierarchical structure under the same relation, 

different from the Zhang et al. (Zhang et al., 2020), then we 

extend KG’s knowledge scale by adding new knowledge 

between each entity and relation in the same layer, which is 

marked as red dashed line, such as (“R1,1”, 

“same_layer_rel”, “R1,2”), (“E”, “same_layer_ent”, “F”), 

(“F”, “same_layer_ent”, “C”) and so on. Finally, we sample 

the KG by using the random walk strategy, that is, in each 

step of sampling, an entity 𝒆𝒋 is randomly selected from the 

neighbor entities of the current entity 𝒆𝒊 as the next entity to 

be sampled, with a probability of 𝒑𝒊,𝒋 as follows: 

𝑝𝑖,𝑗 = {

1

𝒩𝑒𝑖

,      𝑖𝑓 𝑒𝑗  𝑖𝑠 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑒𝑖

0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (3) 

where 𝒩𝑒𝑖
 denotes the neighbor set of 𝑒𝑖. 

 

Encoding Phase Encoding is the first phase of reasoning 

stage in CogTrans. As shown in Figure 4, based on the 

previous work of Zhang et al. (Zhang et al., 2020), we 

propose the hierarchical fine-grained self-attention model to 

gain more granular scores to help reason, which embeds 

multi-head self-attention mechanisms for each entity layer 

and relation layer respectively to obtain composite scores to 

further facilitate knowledge sharing among triples. 

To be specific, the input embedding 𝐻, which is created 

by the pre-training phase, is projected onto corresponding 

representations 𝑄,𝐾, and 𝑉 by three matrices 𝑊𝑄 ∈ ℝ𝑑×𝑑𝑄 , 

𝑊𝐾 ∈ ℝ𝑑×𝑑𝐾  and 𝑊𝑉 ∈ ℝ𝑑×𝑑𝑉 , where 𝑑  is hidden 

dimension. Then, the self-attention is calculated as follows: 

𝑄 = 𝐻𝑊𝑄 , 𝐾 = 𝐻𝑊𝐾 , 𝑉 = 𝐻𝑊𝑉                 (4) 

𝐴𝑡𝑡𝑛(𝐻) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝐾
)𝑉                 (5) 

where 
𝑄𝐾𝑇

√𝑑𝐾
 is used to prevent the result from being too large. 

Each set of self-attention is used to map the input to a 

different sub-representation space, which allows the 

architecture to focus on different locations in diverse sub-

representation spaces. The process of multi-head self-

attention calculation is shown in Figure 6, which can be 

expressed as follows: 

𝑀(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑𝑛)𝑊𝑂  (6) 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)                 (7) 

where 𝑛 is the number of scaled dot-product attention. 

 
Figure 6: Overview of multi-head self-attention mechanism. 

 

After calculating the hierarchical fine-grained attention 

scores of different layers, for entity ℎ , the relation-level 

attention is defined as follows: 

  𝑎ℎ,𝑟 = 𝑊1[ℎ ∥ 𝑣𝑟]                          (8) 

  𝛼ℎ,𝑟 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑟(𝑎ℎ,𝑟) =
exp (𝜎(𝑝∙𝑎ℎ,𝑟))

∑ 𝑒𝑥𝑝(𝜎(𝑝∙𝑎ℎ,𝑟′))𝑟′∈𝒩ℎ

    (9) 

where 𝑊1 , 𝑣𝑟  and 𝑝  are training parameters, ∥  is a 

concatenation operation, 𝒩ℎ is the neighboring relations of 

ℎ, 𝜎 is the LeakyReLU function. 

Next, the entity-level attention is computed as follows: 

𝑏ℎ,𝑟,𝑡 = 𝑊2[𝑎ℎ,𝑟 ∥ 𝑡]                          (10) 

  𝛽𝑟,𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑡(𝑏ℎ,𝑟,𝑡) =
exp (𝜎(𝑞∙𝑏ℎ,𝑟,𝑡))

∑ 𝑒𝑥𝑝(𝜎(𝑞∙𝑏ℎ,𝑟,𝑡′))𝑡′∈𝒩ℎ,𝑟

    (11) 

where 𝑊2  and 𝑞  are training parameters, 𝒩ℎ,𝑟  is the tail 

entities of ℎ under relation 𝑟. 

Then, the triple-level attention is obtained as follows: 

𝜇ℎ,𝑟,𝑡 = 𝛼ℎ,𝑟 ∙ 𝛽𝑟,𝑡                          (12) 

Finally, the information aggregator aggregates the local 

information to the central entity, and combines it with ℎ, 

which can be expressed as follows: 

ℎ̂ = ∑ ∑ 𝜇ℎ,𝑟,𝑡𝑡∈𝒩ℎ,𝑟𝑟∈𝒩ℎ
𝑏ℎ,𝑟,𝑡                          (13) 

ℎ′ =
1

2
(𝜎 (𝑊3(ℎ + ℎ̂)) + 𝜎 (𝑊4(ℎ⨀ℎ̂)))              (14) 

where 𝑊3  and 𝑊4  are the training parameter, and ⨀ is the 

Hadamard multiplication. 

 

Decoding Phase Decoding is the second phase of the 

reasoning stage in CogTrans. The decoding method can be 

replaced by most of the existing KGR models to ensure the 

flexibility and extendibility of our proposed CogTrans 

architecture. In this paper, we use the RotatE (Sun, Deng, 

Nie & Tang, 2018) method to approach the link prediction 

task after encoding to evaluate the performance of our 

proposed models. 

Experiments and Results 

Datasets and Experimental Settings 

To sufficiently verify the effectiveness of the CogTrans 

architecture proposed in this paper, we use four different 

KGR standard datasets: FB15K, WN18, FB15K-237, and 
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Table 1: Overview of the experimental datasets 

Datasets #Entity #Relation #Train #Test #Valid 

FB15K 14,951 1,345 483,142 59,071 50,000 

WN18 40,943 18 141,442 5,000 5,000 

FB15K-237 14,541 237 272,115 20,466 17,535 

WN18RR 40,943 11 86,835 3,134 3,034 

WN18RR in the experiment, as shown in Table 1. Among 

them, WN18RR and FB15K-237 respectively remove all 

inverse triples based on WN18 and FB15K. Therefore, the 

model’s performance can be better evaluated by adding 

these datasets.  

Besides, we set layer's number to 6, attention heads to 32, 

each head’s hidden dimension to 16, hidden dimension 𝑑 to 

512, dropout to 0.1, batch size to 1024, warm-up step to 

60K, max step to 1M, max epoch to 300, peak learning rate 

to 3e-4 and so on. 

Baselines and Evaluation Metrics 

The experiment regards the GCN-based methods as 

baselines, including ConvE (Dettmers, Minervini, Stenetorp 

& Riedel, 2017), R-GCN (Schlichtkrull et al., 2017), RotatE 

(Sun, Deng, Nie & Tang, 2018), KG-BERT (Yao, Mao & 

Luo, 2019), CompGCN (Vashishth, Sanyal, Nitin & 

Talukdar, 2019), RGHAT (Zhang et al., 2020), comparing 

our proposed architecture CogTrans to verify its validity 

thoroughly. 

In the link prediction task, two kinds of standard metrics 

were used to evaluate the experimental performance, 

including Mean Reciprocal Ranking (MRR) and 𝐻𝑖𝑡𝑠@𝐾. 

For each metric, a higher score indicates a better effect. The 

𝑀𝑅𝑅 is calculated as follows: 

𝑀𝑅𝑅 = 
1

|𝑁|
(

1

𝑟𝑎𝑛𝑘1
+

1

𝑟𝑎𝑛𝑘2
+ ⋯ +

1

𝑟𝑎𝑛𝑘|𝑁|
) =

1

|𝑁|
∑

1

𝑟𝑎𝑛𝑘𝑖
  (15) 

where 𝑁 is the set of triples and 𝑟𝑎𝑛𝑘𝑖  is the link prediction 

ranking of the 𝑖 -th triple. In addition, 𝐻𝑖𝑡𝑠@𝐾 (𝐾 =
1,3,10)is the average proportion of triples that rank less 

than 𝐾, which is described as follows: 

 𝐻𝑖𝑡𝑠@𝐾 =
1

|𝑁|
∑ 𝕀(𝑟𝑎𝑛𝑘𝑖 ≤ 𝐾)                   (16) 

where 𝕀(∙) is an indicator function that if the condition is 

true, the function value sets to 1, otherwise it sets to 0. 

Results and Analysis 

The link prediction overall results for the four standard 

datasets are shown in Table 2 and Table 3. Compared with 

baselines, the link prediction results of our proposed 

CogTrans architecture on all experimental datasets are 

obviously improved. This is because: (i) by establishing 

new associations for entities and relations at the same level 

during the layering process of the intuition stage, richer 

local information can be obtained to enhance inference at 

the scale of the initial KG; (ii) the fine-grained multi-head 

self-attention mechanism is proposed to encode in the 

reasoning stage, which can fully learn and train our model  

to realize more effective knowledge sharing; (iii) by taking 

the advantage of the similarity of KG hierarchical structure,  

 

transfer learning is designed to transfer source domain 

information into target domain information, which can learn 

new knowledge more effectively and improve the accuracy 

of link prediction. 

 

Table 2 Overview of results on FB15K and WN18 

  Metric 

  Hits@K  

Dataset Model @1 @3 @10 MRR 

FB15K 

ConvE 0.558 0.723 0.831 0.657 

R-GCN 0.601 0.760 0.842 0.696 

RotatE 0.746 0.830 0.884 0.797 

KG-BERT 0.761 0.840 0.902 0.811 

RGHAT 0.760 0.843 0.812 0.812 

CogTrans 0.769 0.848 0.911 0.815 

WN18 

ConvE 0.935 0.946 0.956 0.943 

R-GCN 0.697 0.929 0.964 0.819 

RotatE 0.944 0.952 0.959 0.949 

KG-BERT 0.944 0.951 0.952 0.958 

RGHAT 0.949 0.951 0.964 0.954 

CogTrans 0.958 0.965 0.968 0.964 

 

Table 3 Overview of results on FB15K-237 and WN18RR 

  Metric 

  Hits@K  

Dataset Model @1 @3 @10 MRR 

 

 

 

FB15K 

-237 

ConvE 0.237 0.356 0.501 0.325 

R-GCN 0.10 0.181 0.30 0.164 

RotatE 0.241 0.375 0.533 0.338 

KG-BERT 0.197 0.289 0.420 0.268 

CompGCN 0.264 0.390 0.535 0.355 

RGHAT 0.462 0.546 0.631 0.522 

CogTrans 0.465 0.551 0.637 0.533 

WN18

RR 

ConvE 0.40 0.44 0.52 0.43 

R-GCN 0.08 0.137 0.207 0.123 

RotatE 0.428 0.492 0.571 0.476 

KG-BERT 0.412 0.465 0.524 0.438 

CompGCN 0.443 0.494 0.546 0.479 

RGHAT 0.425 0.499 0.588 0.483 

CogTrans 0.452 0.506 0.593 0.488 

Conclusion 

In this paper, we proposed a cross-shaped multi-head self-

attention mechanism architecture based on the cognitive 

transfer learning for KGR named CogTrans. Horizontally, 

CogTrans’ intuitive stage completed pre-training in the 

global KG through a hierarchical random walk to obtain 

entity and relation characteristics that are more in line with 

human intuition. Then, in the reasoning stage, a fine-grained 
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multi-head self-attention mechanism is designed to calculate 

the attention score of each entity layer and relation layer, 

which is aggregated to complete the encoding for more 

granular knowledge sharing, and then the existing KGR 

method is used to decode the reasoning to improve the 

scalability of the architecture. Longitudinally, CogTrans 

uses the similarity of the hierarchical structure of the KG to 

transfer the knowledge from the source domain to the target 

domain to learn new knowledge faster and more effectively, 

which so enables our CogTrans model to accomplish the 

ability to “draw inferences from one instance”. Extensive 

comparison experiments on classical benchmarks 

demonstrably certified our CogTrans architecture can 

achieve the SOTA performance against current GCN-based 

baselines. 

Although this work can make accessibility improvements 

to current GCN-based models, the prediction scores need to 

be further advanced. In the future, we are interested in 

putting forward more novel graph attention mechanisms and 

cognitive-aware models. 
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