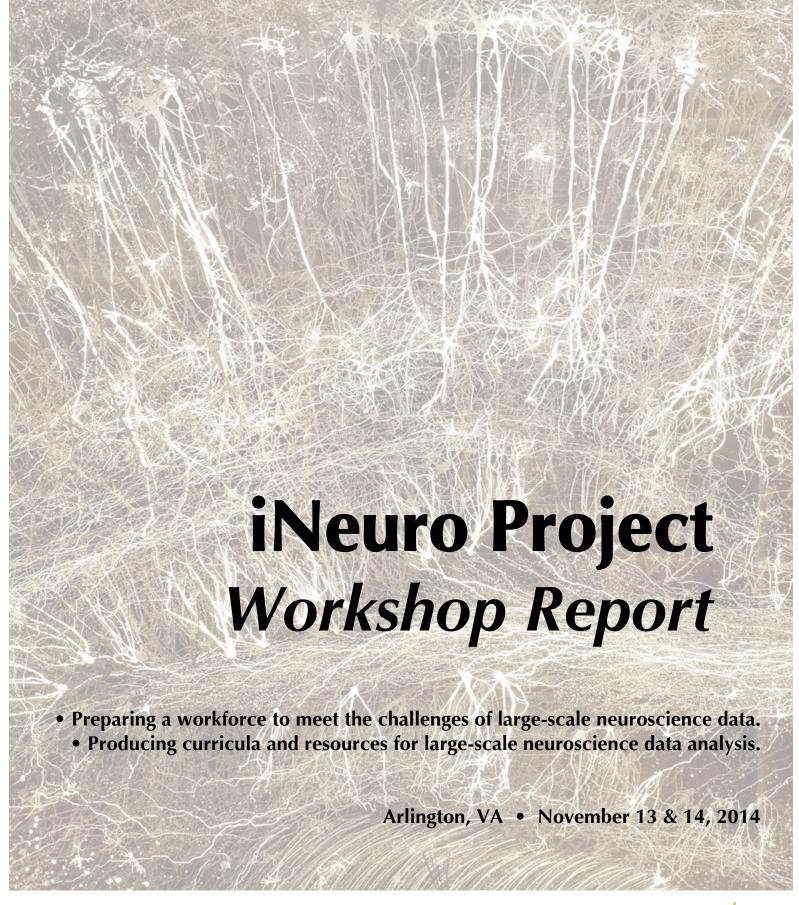
UCLA

Behavioral Neuroscience

Title

iNeuro Workshop White Paper

Permalink


https://escholarship.org/uc/item/1sf6k2gr

Author

Grisham, William

Publication Date

2016-04-01

Table of Contents

- A. Summary
- B. Introduction & Overview
- C. What are Large-Scale Data?
 - 1. Large-Scale Data
 - 2. Large-Scale Data in Neuroscience
- D. How Will Large-Scale Data Explain Mysteries of the Brain?
 - 1. Research
 - 2. Education
- E. What are the Challenges of Large-scale Data in Neuroscience?
 - 1. Standards
 - 2. Integration
 - 3. Training
- F. How Can Training Facilitate Advances in Information Neuroscience?
 - 1. Foundational Questions
 - 2. Skill Sets & Disciplinary Training
 - 3. Necessary Skills for Information Neuroscientists
 - a. Research Skills
 - b. Computational Skills
 - c. Strategic Skills
 - d. Relational Skills
 - 4. Degrees Associates vs. Bachelors vs. Masters vs. Doctoral
 - 5. Data Professionals in Neuroinformatics (Wranglers & Curators)
 - 6. Identifying Existing Training Programs & Building New Training Programs
 - a. Existing Training Programs
 - b. Creating Training Programs from Existing Resources
 - 7. Neuroinformatics Curricula
 - a. Undergraduate Foundations
 - b. Masters Curricula
 - c. Doctoral Curricula
 - d. Non-degree Training
 - e. Applying Neuroinformatics Training Beyond Neuroscience
 - f. Scientific Rigor, Data Sharing, & Reproducibility
 - g. Assessing, Sustaining, and Improving Neuroinformatics Training Programs
- G. Building Solutions for Training in Information Neuroscience
 - 1. The Problem
 - 2. Solutions
- H. Summary
- I. iNeuro Action Plan
 - 1. Short Term
 - 2. Intermediate Term
 - 3. Long Term
- J. Acknowledgements
- K. Appendix iNeuro Workshop Participants
- L. Agenda for the iNeuro Workshop

A. Summary

At the NSF-funded iNeuro Workshop in November 2014, 35+ neuroscientists, library/information scientists, computer scientists, bioinformatics scientists, administrators, and educators came together to discuss how to structure training programs that will allow scientists to use large-scale data (a.k.a. big data) to help advance understandings of the brain. This approach, called information neuroscience (a.k.a. neuroinformatics) is a rapidly emerging field that teams experimental neuroscience data with computational power and calls for training a new generation of talented scientists who can navigate both neuroscience and data science. As one iNeuro Workshop attendance remarked, "As technology makes it easier and easier to collect and store large amounts of data about the brain, there will be an increased need for researchers capable of exploring and analyzing these data."

High-profile initiatives such as the White House's Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative [www.whitehouse.gov/brain] and the European Commission's Human Brain Project [www.humanbrainproject.eu] recognize that with the ever-increasing production of data regarding nervous system structure and function, science has newfound and enormous potential to integrate previously unconnected insights into brain function in profound new ways. By combining information gathered about the nervous system at different scales (molecular, cellular, structural, behavioral, etc.) through different techniques (genetic, anatomical, physiological, behavioral, etc.) neuroscience is embarking on an exciting frontier with bold new opportunities to understand the nervous system. To use an analogy, in the past scientists worked on individual puzzle pieces to understand specific aspects of brain form and function in discrete and often unconnected ways. Large-scale data approaches now give new abilities to begin to put some of these complex and numerous puzzle pieces together. By connecting previously separate information, we will gain new perspectives that will lead to more comprehensive understanding of the brain. Moreover, information neuroscience will not only allow scientists to make new links between brain form and function, but strategic integration of these rich and diverse data sets will allow scientists to make sophisticated predictive models about the brain's function that were never before imaginable.

Yet, at this important and exciting moment in time with powerful experimental, computational, and analytical tools, strong interest in uncovering the mysteries of the brain, and prominent public initiatives, very few training programs in neuroinformatics exist to prepare the next generation of scientists to harness the potential of big data to unlock some of the mysteries of the nervous system. Indeed, few scientists have the necessary fluency in both neuroscience and computer/data science to link diverse datasets in neuroscience in powerful new ways. Although interest and potential are both in place for information neuroscience to generate new knowledge, the need for talented scientists in neuroinformatics is an immediate concern. If students are not trained to use big data in

neuroscience, we will lose an important opportunity to transform modern neuroscience with the use of important new computational and modeling tools.

Although all large data sets face significant organizational challenges, neuroscience data is unusually complex because experiments in different subfields of neuroscience vary widely in what aspects of brain function and on what scale the brain is investigated. By transcending scales from genetics to anatomy to physiology to behavior and examining model systems from single molecules to groups of organisms in complex environments, the datasets that describe the brain are enormously heterogeneous, ranging from genetic sequences to brain images to physiological activity patterns. This complexity and diversity makes neuroinformatics both unusually challenging as well as unusually exciting in its potential. Data describing brain structure and function have never been more plentiful and will become increasingly so. Consequently, the need to stimulate strong training programs is urgent in order to create the next generation of neuroinformatics scientists. These scientists will face several formidable challenges. One challenge is to support different communities of experimental neuroscientists in capturing, annotating, organizing and sharing their data to be harnessed in unprecedented ways. Another challenge is to develop and apply advanced techniques of data mining, data analysis, and modeling to harness the power of large-scale data to transform it into new knowledge and ultimately wisdom. There are tremendous opportunities (and returns on investment) by using largescale data in both education and research. An iNeuro participant remarked, "We have new computational tools that are helping to reveal the brain's mysteries, the better we can use them, the more we will learn."

Participants at the iNeuro Workshop readily agreed on the magnificent potential and promise of neuroinformatics to reveal novel insights into brain function as well as its inherent challenges. Workshop participants concurred that educational institutions must delineate multiple new pathways to train a new generation of scientists to contribute to information neuroscience initiatives from a variety of perspectives because few current training programs exist to meet this need. Moreover, participants recognized that life science education is transitioning to student-centered pedagogies. In particular those outlined in Vision and Change [visionandchange.org], which outlines more active forms of teaching, including hands-on learning and training via participation in genuine research and projects. Articulated as a call to action in Vision and Change, future students will become scientists not by memorizing lists of facts, but by immersion in novel scientific problems. Neuroinformatics, as an emerging field, is particularly well positioned to borrow from best practices in neuroscience and informatics education to train future scientists encouraging them learn via team-based activities that immerse students into exciting and real problems that use data sets that describe the nervous system in various aspects. Workshop attendees recommended that examples of collecting, sharing, and analyzing data can (and should) be infused early and often throughout science curricula. Quantitative and integrative research strategies including but not limited to data mining and modeling should be emphasized in undergraduate science curricula where the power of large-scale data and the exciting challenges of understanding the human brain should

be introduced. Further, undergraduate curricula should impart research skills, computational skills, strategic skills, and relational skills.

Discussions at the iNeuro Workshop ultimately suggested that <u>information neuroscience</u> <u>curricula at the graduate level are urgently needed.</u> Participants envisioned that graduate education in neuroinformatics can be implemented in a wide variety of ways from non-degree training sessions (e.g., UC Berkeley's annual summer course (crcns.org/course), INCF's introductory short course (https://www.incf.org/community/events/incf-short-course-2015)) to certificate programs to tracks within existing degree programs, to degrees in neuroinformatics (e.g., University of Edinburgh (http://www.anc.ed.ac.uk/dtc/)). Although there was limited resolution on the specific components of such curricula because of the many disciplines that come together under a neuroinformatics umbrella, it was clear that neuroinformatics research questions are so large and diverse that they will continue to be pursued most effectively by transdisciplinary teams rather than solitary scientists. Although no single curricular formula will suffice to train information neuroscientists, existing and future curricular frameworks were suggested that included coursework in neuroscience, library and information science, and computer science along with experiences to foster strong communication and team science skills.

A wide variety of graduate curricula that provide students with rich opportunities to gain experience and expertise in contemporary information neuroscience can be created de novo and/or from existing personnel and programs by intentional collaborations between neuroscientists and computer scientists, data scientists, bioinformaticians, and/or library scientists. Such curricula should be proposed and piloted as soon as possible. In addition some iNeuro participants envisioned the need to train data curators, a relatively new category of professional scientists with graduate training that prepares them for important roles in transdisciplinary teams of scientists with responsibilities to ensure integrity and interoperability of large databases and repositories. In order to achieve the desired variety of training programs the scientific community needs leadership and resources to articulate explicit curricular design options, arrange strategic partnerships and build infrastructure then pilot and assess a variety of training programs in neuroinformatics.

Large-scale data will rapidly become the norm for cutting edge research. Being able to ask research questions on this scale and capitalize on this technology hinges on having a workforce that is able to work with large-scale data.

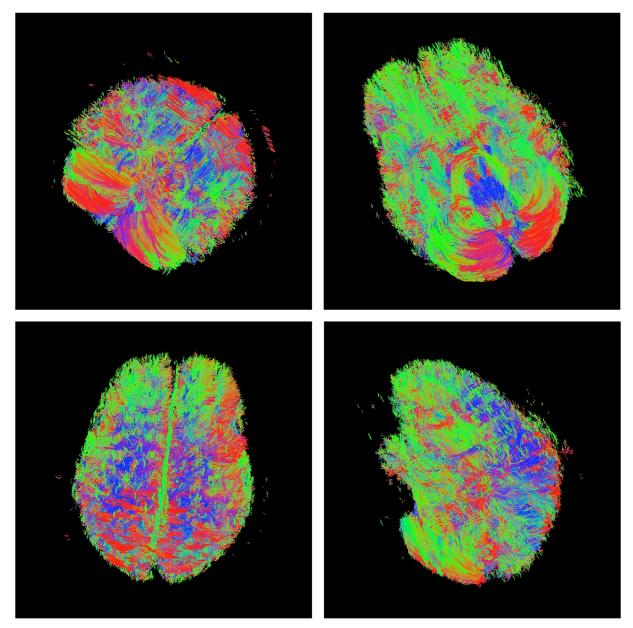
— iNeuro participant (2014)

Image: Angela He

B. Introduction & Overview

For centuries scholars and artists have been fascinated with the brain at every level from molecular to philosophical. The more we learn about the nervous system, the more we realize we do not understand. Even in the simplest organism, the nervous system's abilities are beyond remarkable, its mysteries are infinitely intriguing, and its sophisticated organizational structures beyond complex. Scientifically, the brain can be studied at many levels from the ions that cross its membranes in coordinated fashions to the intricate synaptic connections that cells make with each other to the sophisticated circuits and firing patterns that underlie sensations, thoughts, and interactions. Neuroscientists are generating important new data on the brain at these dramatically different scales in vastly different model systems. As examples, biochemistry in single-celled organisms (without a nervous system) can inform our understanding of protein interactions used by signaling neurons, physiological recordings from slices of rodent brains can help reveal how drugs act at synapses, and fMRI data from humans doing sophisticated mental tasks can reveal which portions of the brain are most active during behaviors. Both the quantity and diversity of neuroscience data being produced are rising exponentially. As neuroscience generates even more large-scale data, the field desperately needs talented scientists to organize and interrogate that data to produce predictive models and transformative knowledge and wisdom that will enhance our understanding of brain function in health and disease.

C. What are Large-scale Data?


1. Large-scale Data

The term "large-scale data" (a.k.a. "big data") describes information sets that are so complex in scale and/or structure/heterogeneity that they require sophisticated, specialized, and/or distributed computational resources in order to extract meaningful information, make predictions/hypotheses, and/or test models. An informal (and imperfect) definition asserts that if data fit on a hard drive or can be handled by a single computer, it is not big data. Large-scale data often require parallel processing by multiple platforms. Currently, big data of all types are being collected and analyzed to extract important knowledge that simply cannot be resolved by examining small or uncorrelated data sets. Large-scale data comprise a rapidly expanding array of measures being collected in increasingly automated fashions. Moreover, nearly every sector (science, technology, business, finance, government, health, etc.) has keen interests in using large data sets to improve their enterprises. These large data sets can be relatively easy to obtain, yet are far more challenging to manage and analyze in meaningful ways.

2. Large-scale Data in Neuroscience

Neuroscientists share a common goal of understanding and explaining the structure and function of the nervous system. They go about that guest using a remarkably broad array of tools, model systems, levels of analysis, and approaches. Given the complexity of event the simplest nervous system and the diversity of ways to study the brain, it is not surprising that neuroscientists work at vastly different levels of biological organization from molecules to societies using many different tools pull in very diverse animal species. Large-scale data collections are being created by and of interest to neuroscientists, for example, genetic sequences, epigenetic modifications, expression patterns, signaling cascades, neuronal morphologies, such as NeuroMorpho.org, synaptic connections, neurophysiology repositories, such as CRCNS.org, MRI data, such as from the Human Connectome Project (www.humanconnectomeproject.org), behavioral responses, disease conditions, and demographics, as well as the outputs of simulations from computational models of the brain. In many ways, however, neuroscience is still in a pre-large-scaledata stage. The size and numbers of neuroscience datasets are anticipated to increase by orders of magnitude and that large numbers of existing, unconnected datasets will become connected in new ways. Bringing previously disparate data together to build models and determine emergent properties will provide countless new insights into a better understanding of brain function.

D. How Will Large-scale Data Explain Mysteries of the Brain?

Images: Jack Van Horn

1. Research

The potential to create new knowledge and understanding of the brain is by far the most important benefit of applying big data strategies to neuroscience. Large-scale data will undoubtedly facilitate our abilities to uncover previously unknown links that transcend traditional levels of analysis. Current science is producing information principally at a single level of analysis (e.g., molecular, cellular, physiological, anatomical, behavioral). Many neuroscientists are ultimately interested in linking understandings at these

traditional levels in new ways to understand emergent properties of the brain. Indeed, it is likely that fundamental questions about brain function can only be answered by integrating data from many scales of investigation. As examples, neuroscientists might use big data techniques to understand how specific behaviors correlate with specific epigenetic markers or how physiological activity patterns in the brain predict specific actions that animals make. Thus, large-scale data provides new opportunities to identify and fill gaps in our fundamental understandings of the brain; it has the exciting potential to help merge previously disparate bodies of knowledge. Moreover, large-scale data allows increasingly sophisticated computational approaches to the brain, allowing the creation and testing of new models that can be compared to experimental data. Modeling has the important advantage of being able to substitute for experiments that are important but impossible to conduct because of ethical or resource constraints. Ultimately, by combining both theoretical and experimental data, scientists will be able to achieve a richer understanding of how the brain works.

2. Education

In addition to the obvious implications for enhancing research on the brain, large-scale data approaches also offer unprecedented opportunities for enhancing math and science education at multiple levels. The nervous system is an inherently intriguing topic with many unanswered questions and great potential to engage young minds. With publically accessible databases accompanied by calls for enhancing research transparency and access by providing raw data as publication supplements, students have exciting opportunities to query exiting data sets to learn techniques, confirm previous findings, and ask new questions from existing data. Students can learn to become scientists by actively doing science; they can grapple with real data to address unique questions. An iNeuro Workshop participant commented, "current educational structures need to change to better adapt to a changing world of data availability." Thus, in both research and educational settings, the use of large data sets has the powerful ability to transform existing data into both new knowledge and new scientific talent in neuroscience and many other areas of study.

E. What are the Challenges of Large-scale Data in Neuroscience?

Big data provide several challenges that need to be met by an adequately educated and trained workforce. Data are not useful if they cannot be understood. Simply creating data sets is not enough; data sets need to be organized, and curated in smart ways so that the information they contain can be shared, related, and interrogated by multiple groups. Moreover, knowing what data types are useful (and which are not) is important as summarized in the maxim by William Cameron (1963), "not everything that can be counted counts; and not everything that counts can be counted." Specifically, the challenges of using large-scale data in neuroscience fall into three broad categories:

1. Standards

An infusion of talented neuroscientists with fluency in working with large-scale data is vital to provide leadership in establishing standards and best practices for future work. There is an obvious need to train a workforce to help establish standards for this field. Workshop participants noted that such training is largely absent at least in the United States. The scientific community has a large, urgent, and important task at its doorstep to create and sustain necessary standards for data as soon as possible so that large data sets can be shared in efficient and coherent ways. Groups currently addressing these challenges include task forces of the Standards for Data Sharing Program of the INCF and the Neuroscience Information Framework.

The development and implementation of standards in neuroinformatics will draw from a variety of resources as well as input from stakeholders. Ultimately, a coordinated global effort is required since a broad community of stakeholders must collaborate to determine best practices and standards. Funding agencies such as the National Science Foundation (NSF), National Institutes of Health (NIH), the European Commission, and collaborative organizations such as the International Neuroinformatics Coordinating Facility (INCF) are the most likely centralizing factors to generate, support, and sustain standards. NSF's 2011 requirement for data management plans (DMPs) in all grant proposals is an important (though small) first step in developing practices that encourage and facilitate mindsets for protecting, organizing, and sharing data throughout the scientific community. Similarly, INCF's task forces on standards for data sharing that concentrate on electrophysiology and neuroimaging were viewed as critical community initiatives to reach these goals. Future data standards, support mechanisms, and sharing platforms must be developed from both the perspectives of funding agencies (top-down) as well the scientists who generate and use data (bottom-up). It is the focus of this report to describe and detail how to educate those individuals who will create and establish appropriate and useful standards for the scientific and education communities.

2. Integration

Secondly, substantial cross-integration tasks demand a talented workforce capable of integrating existing data and anticipating ways to integrate future data sets that have yet to be imagined or collected. Large, hierarchical, heterogeneous, and/or incomplete data sets need to be integrated coherently into interoperable repositories. The vast differences in experimental methods, levels of analysis, and model systems make connecting individual databases a substantial challenge in neuroscience. For example, how can neurophysiological data from a specific neuron or network be considered in the context of relevant genomic and anatomical data in ways that will allow useful new insights into brain function? The ability to link datasets will require both spatial and semantic methods of integration. To some degree, models of cross-integration are presented by the Neuroscience Information Framework (NIF) and task forces of the INCF, but these are not formalized into any curriculum.

3. Training

In addition to the development of best practices, infrastructure, and standards that will make it achievable to collect data sets in ways that will facilitate meaningful insights into nervous system function, it is critical that all scientists be trained with the skills necessary to navigate these large data sets. Urgent needs for the development of best practices and data standards repeatedly emerged throughout iNeuro Workshop conversations because such standards and practices are necessary foundations of curricula to educate future scientists to become adept at working with large-scale data. At the same time, training programs simply cannot afford to wait to design curricula until common standards are in place. Strong programs will prepare their trainees to contribute directly to the conversations that build and revise such standards. Moreover, a recent call to reform life science education [visionandchange.org] recommends undergraduate curricula be transformed from a focus on content or unsustainable lists of facts to be memorized learned by passive means to a focus on conceptual frameworks and the process of scientific inquiry via student-centered, active courses.

F. How Can Training Facilitate Advances in Information Neuroscience?

1. Foundational Questions

To address how current and future training programs can facilitate the use of large data sets to reveal new information about brain function, iNeuro participants considered several organizing questions such as:

- What **skill sets** does a scientist/curator of large-scale neuroscience data need?
- What **disciplinary training** does a scientist/curator of large-scale neuroscience data need (neuroscience, computer science, information science, mathematics, etc.)?
- What **degree** level(s) should these individuals hold (AA, BA/BS, MA/MS, MD, PhD, etc.)?
- Are **new and/or existing training programs** sufficient to generate individuals with the desired skills?
- What is the desired **curriculum** in programs that train individuals to use large-scale neuroscience data?
- How can the *Vision and Change* recommendations for transforming undergraduate life sciences education inform the curricula training individuals using large-scale neuroscience data?

2. Skill Sets & Disciplinary Training

It is unlikely that scientists using big data to decode the mysteries of the brain will be able to do so from strictly computational approaches, without at least some foundational knowledge of neuroscience concepts, dimensions, and experimental methodologies used to generate the data they are analyzing. At the same time, it is also unlikely that a robust understanding of experimental neuroscience by itself without knowledge of computation or informatics will be sufficient to navigate big data in ways that deepen our understanding of the brain. Thus, neuroinfomatics requires scientists with experience in both the "wet" bench sciences and the "dry" computational and data sciences. Very few individuals will be able to invest the time necessary to develop fluency in both areas. Instead, there is a great need for transdisciplinary training programs that help students become proficient in both the neuroscience and the computation (or perhaps fluent in one and conversant in the other). It is expected that transdisciplinary teams of individuals will make advances in neuroinformatics, each member bringing strong expertise in one aspect and sufficient knowledge in complementary aspects to engage productively with professionals who bring different skills and expertise to the table. Moreover, individuals with the interests and skills to advance neuroinformatics will need to navigate dynamic and evolving conditions over the long term because new methods of acquiring, organizing, and analyzing data sets will undoubtedly continue to be developed. Accordingly, information neuroscientists must expect to continue learning and expand their skills throughout their careers. Neither single dimensional skills in one area, nor static skill sets will be sufficient for an individual to contribute successfully to questions that rely on neuroinformatics approaches.

Consequently, a consensus repeatedly emerged among iNeuro participants that effective information neuroscience training programs will feature active, team-based transdisciplinary experiences to prepare a new generation of scientists with skills to collaborate effectively with peers who have different vet complementary expertise. Such hands-on challenges with real data sets are ideally integrated throughout a curriculum as case studies, assignments, examples, capstones, and/or theses. Importantly, such training programs also need to emphasize skills, traits, and environments where continuous development and learning is expected to extend far beyond the boundaries of the formal training period. A training program needs to provide its students with opportunities to develop an understanding of contemporary neuroscience research, gain experience with transdisciplinary approaches to interesting and applied problems, understand both data curating and data sharing through first-hand experience working in large-scale and centralized databases, be able to work across scales and modalities (genetic, molecular, cellular, physiological, anatomical, behavioral, etc.), and understand experimental designs and workflows. The inherent challenges of multidisciplinary training in any field of study (scientific and beyond) were noted. These challenges are both theoretical and practical and in no way unique to neuroinformatics. Such challenges include differences in vocabularies, spatial referencing schemes, cultures, criteria, protocols, priorities, and organizational structures. Much can be learned from successful interdisciplinary training STEM programs that have been established. Moreover, neuroscience itself is an inherently multidisciplinary area of study and most existing neuroscience training programs effectively navigated such challenges in bringing together multiple disciplines in an educational framework.

3. Necessary Skills for Information Neuroscientists

Participants at the iNeuro Workshop outlined numerous dimensions of skills and knowledge that will make a student most likely to make new insights into the brain via large-scale data. These competencies fit into four general categories as described below that emphasize research, computation, strategy, and relational skills.

a. Research Skills

Conversations at the iNeuro Workshop spent relatively little time discussing wet lab or bench research skills because these skills were relatively easy to identify as fundamental principles and experimental methodologies currently forming the basis of nearly all existing undergraduate and graduate neuroscience training programs. Such wet neuroscience skills are firmly based in the life sciences overlapping considerably with fields such as biochemistry, genetics, cell biology, physiology, anatomy, medicine, and behavior. It was also acknowledged that neuroscience training intersects meaningfully and abundantly with statistics, engineering, math, physics, social sciences, computer science, and health sciences. Although no individual neuroscientist will be trained in all the interconnecting fields mentioned, whatever suite of experimental techniques that a student learns as part of her/his training, emphasis on strong experimental design and analysis was expected to be foundational to all neuroscience programs.

b. Computational Skills

In comparison to the wet neuroscience research skills and knowledge, computational and modeling skills received far more attention in conversations, drawing directly from skills emphasized in existing quantitative training programs offering computing principles such as high performance computing, data visualization, programming, database design, web technologies, and data transfer methods. Additional skills from library science, data science, and/or informatics programs were also expected and included examples such as: understanding existing resources, data formats, standards, vocabularies, lexicons, ontologies, semantics, lifecycles, workflows, annotation, metadata, and interoperability. Finally, necessary skills from the quantitative sciences included: data analysis, machine learning, programming, coding, probability, statistics, signal processing, signal analysis, and standardization of workflows.

c. Strategic Skills

Conversations at the iNeuro Workshop that described how scientists interact with large data sets frequently generated lively terms that went far beyond "managing" data toward more active verbs that included: hacking, curating, translating, wrangling, stewarding, and advocating. Although each individual term has important and distinct nuances, taken together this collection suggests <u>current and future neuroinformatics practitioners need to be particularly imaginative, nimble, collaborative, and strategic if they are to engage effectively with large and diverse data sets as well as with other scientists who create and interrogate the data. No matter how well organized, collections of data are fashioned, profound new insights into how the brain is organized and operates will require savvy and creative minds with perseverance and creativity to overcome new challenges at multiple stages of transforming data into powerful new knowledge.</u>

d. Relational Skills

In addition to disciplinary and attitudinal skills described above, iNeuro participants acknowledged that scientists best positioned to make advances in neuroinformatics also need skills and experiences in communication, collaboration, and ethics. Strong interpersonal communication skills are critical to collaborations that transcend multiple boundaries (disciplinary, structural, institutional, international) to build successful teams that communicate effectively and efficiently. Moreover, robust written, oral, and visual communication skills are needed to communicate research outcomes with a wide variety of audiences from scientists to administrators to policy makers to the general public. Finally, future scientists should balance responsible stewardship of shared and open data for the scientific community's use with the relevant ethical and legal understandings of sensitive privacy, legal, licensing, and attribution responsibilities for various data types.

4. Degrees – Associates vs. Bachelors vs. Masters vs. Doctoral

iNeuro Workshop conversations focused on undergraduate foundations and developing graduate degrees as pathways to encourage and train young scientists to use large-scale data to understand the brain. Few, if any, participants suggested that an undergraduate degree alone could provide sufficient training, given the depth and range of skills expected for information neuroscience, though the necessity of strong undergraduate training was repeatedly acknowledged. Similarly, there was little support for a single, stand-alone neuroinformatics course at any level as sufficient training. Instead, conversations assumed that excitement for and skill in neuroinformatics would be best achieved by infusing neuroscience and informatics throughout curricula so that students have repeated and varied exposures to and experiences in information neuroscience in multiple contexts.

Despite the emphasis on graduate training, the need to introduce the principles and excitement of using big data in neuroscience as well as cultivating an ethos of generating and sharing data as part of undergraduate scientific training, were widely and repeatedly endorsed as fundamental throughout a wide variety of existing undergraduate majors most likely to produce neuroinformaticians (biology, computer science, engineering, informatics, math, neuroscience, psychology, etc.). Simply put, graduate school is far too late for a scientist to have a first encounter with the power and utility of big data, to work with a computational model, to practice good data sharing habits, or appreciate the mysteries of the nervous system; these elements must also appear throughout undergraduate science curricula. Most undergraduates will not likely have deep understandings or skill sets in neuroscience, information science, and computation, but they should emerge from college with strong disciplinary skills and experiences in one area that have primed them to see the potential of large-scale data applied to the brain. If undergraduate programs prepare STEM students with the skills and experiences necessary to see how neuroscience and computation collaborate to make a powerful insights into neural function and point them toward strong, transdisciplinary graduate programs, then a new generation of scientists can develop the skills and knowledge to use big data to understand the brain in exciting new ways.

This workforce will require unique and unprecedented combinations of skill sets.

— iNeuro participant (2014)

Images: Angela He

5. Data Professionals in Neuroinformatics (Wranglers & Curators)

Scientific teams addressing novel questions in neuroinformatics will benefit tremendously by strategically employing data specialists who may not directly create or analyze data, but can assume the important responsibilities of organizing, annotating, and/or making data accessible. Data specialists were envisioned as a new professional position with training at a M.S. level or beyond who work closely with neuroscientists and

computational experts. At the acquisition stage a data professional in something of a data wrangler role makes critical contributions by ensuring all data are collected and organized in appropriate ways to facilitate its efficient use in hypothesis-driven scientific inquiry. At post-acquisition stages, a data professional in a curator role transports and maintains data appropriately within repositories so data may be integrated meaningfully with additional data sets and accessed by others. Incorporating professional data positions such as these wranglers and curators acknowledges the significant and necessary (often overwhelming) tasks of collecting, developing, and organizing interoperable data sets with appropriate metadata so data can be shared broadly and mined deeply. Data professionals might be employed in a variety of ways: by individual labs, by transdisciplinary teams, as consultants, and/or by institutional core service providers. While the utility of professional data specialists was acknowledged, it was challenging for iNeuro participants to delineate a specific training curriculum for this critical role. Data professionals were viewed as essential members of transdisciplinary teams who likely possessed strong training in computer science, data science, and/or library science as well as interest or experience in neuroscience. Moreover, data professionals play important roles in developing and upholding much-needed standards and best practices for ensuring data consistency, quality, and interoperability. In these roles, data professionals are also important hubs, connecting members of transdisciplinary teams with distinct expertise and facilitating new insights. An iNeuro attendee commented, "Neuroscience data cannot be used to their fullest extent without dedicated personnel concerned with their curation."

6. Identifying Existing Training Programs & Building New Training Programs

a. Existing Training Programs

Although it is very easy to identify numerous examples of strong undergraduate and graduate training programs in disciplines such as neuroscience, bioinformatics, computer science, and data science, it is more difficult to identify existing training programs that intentionally coordinate these disciplines to train students in ways that specifically advance neuroscience via big data. Some students within traditional graduate programs are unquestionably doing research in neuroinformatics as part of their training. Yet, few graduate training programs exist. The Computational Neuroscience and Neuroinformatics graduate program at the University of Edinburgh, was cited by iNeuro participants as an example where a specific graduate curriculum was constructed to train students to use large-scale data in neuroscience [http://www.anc.ed.ac.uk/dtc/]. Similarly, a single specific neuroinformatics undergraduate degree at the University of Warsaw was identified [http://neuroinformatyka.pl]. The Warsaw curriculum, based in biomedical physics, intentionally integrates traditional undergraduate coursework in biology, mathematics, and physics along with research apprenticeships in neuroscience labs to prepare undergraduates to understand and analyze neurophysiological data and advance to graduate programs. The Edinburgh PhD program begins with an emphasis on the range of inquiry and methods in neuroscience, then stresses computational and informational expertise to prepare its graduate students to relate theory to experimental during their

thesis research. Additional examples of undergraduate and graduate programs in computational neuroscience and neuroinformatics at institutions in the US, Canada, Europe, Israel, and Japan are listed at www.incf.org/resources/training. Not surprisingly, the curricular structures of these programs feature strong quantitative skills and neuroscience context via a wide variety of curricular models that take advantage of local expertise and resources. Most neuroscience programs around the globe lack the integration of neuroinformatics techniques. Specific short courses have been developed in an attempt to fill this gap, such as INCF's "Introduction to Neuroinformatics" and UC Berkeley Redwood Center for Theoretical Neuroscience's cross-disciplinary training course "Mining and Modeling of Neuroscience Data". These courses are available to only limited student numbers each year, but the online "hub" of training and education materials planned by INCF provides an accessible and ongoing set of resources for instructors.

c. Creating Training Programs from Existing Resources

Most scientists currently engaging in neuroinformatics developed their skills through ad hoc training fueled by a combination of curiosity, necessity, personal motivation, and accessible resources. Very few are products of a coherent training program or intentional institutional structure in neuroinformatics. Instead, they built the professional networks they needed. iNeuro participants commented that scientists at many institutions likely have access to existing personnel and resources that might allow a meaningful assemblage of essential constituencies (neuroscience, data science, bioinformatics, etc.) necessary to navigate neuroscience databases to generate new knowledge.

It is easy to identify institutions where many of the essential curricular elements of neuroinformatics training are currently in place, yet it is unusual to identify institutions where those elements are coordinated or encouraged to come together to address questions of brain function at new levels. Many iNeuro participants indicated that numerous public and private educational institutions have significant and diverse expertise in house, but lack incentives or structure to coalesce into research teams and curricula addressing information neuroscience. If individuals currently housed in existing departments or programs could be catalyzed around common neuroinformatics goals and provided with appropriate resources, then new educational programs could be developed relatively rapidly and easily. With the proper catalysts, new degree programs in neuroinformatics could be created largely from existing substrates at many institutions. Moreover, many universities have considerable experience building and sustaining transdisciplinary and/or interdepartmental graduate programs in related areas such as life sciences, neuroscience, bioinformatics, applied computation, etc. The lessons learned in creating and sustaining other interdepartmental graduate programs translate readily to launching neuroinformatics training programs.

Institutions not interested or able to construct discrete neuroinformatics degree programs could also train bright young scientists for neuroinformatics futures by creating curricular emphases (or tracks or certificates) that promote "cross-training" within existing graduate

programs such as an informatics track within a neuroscience graduate program or a neuroscience track within a computer science graduate program. Similarly, an informatics certificate pathway as an add-on open to graduate students, postdocs, and other professionals in a variety of programs such as physiology, neuroscience, cell biology, cognitive psychology, etc. may be a structure better suited to some institutions. In addition to creating tracks or certificate programs, iNeuro participants suggested that existing neuroscience graduate programs looking to prepare their students for a big data future should include a quantitative informatics component as part of the training for all neuroscience graduate students. Even those students who may not use big data in their graduate thesis research face a future in which large-scale data will be part of many scientific discourses. Moreover these students training in "small data" labs can benefit tremendously by learning quantitative skills and best practices for data sharing and experiencing transdisciplinary collaboration. Regardless of how institutions build neuroinformatics programs, the necessary catalysts will depend on inherently unique institutional cultures and resources. Appointing personnel, reconfiguring research spaces, creating and supporting infrastructure, articulating priorities, strategically recruiting talent, and/or targeting funding to priorities are a few examples of the many stimuli needed to create and sustain neuroinformatics training programs.

7. Neuroinformatics Curricula

Preliminary curricular design drafts that emerged from conversations at the iNeuro Workshop were, not surprisingly, both ambitious and diverse. Regardless of emphasis or level, however, a singularly important and essential priority of future neuroinformatics training emerged: active, multidisciplinary, team-based learning on genuine and compelling challenges in neuroinformatics using real data sets must be key features of any neuroinformatics training. Learning science by doing authentic scientific inquiry was strongly endorsed by iNeuro Workshop participants as a necessary approach to train emerging scientists. Because neuroinformatics is such a contemporary, multidisciplinary, and rapidly evolving field, for its training programs to prepare scientists effectively for large and complicated challenges of understanding the brain through large-scale data, these training programs must be ambitious, forward-looking, and focused on developing skills and attitudes. Insisting on designing training programs that immerse students in hand-on, authentic, research experiences with unknown outcomes aligns remarkably well with recommendations articulated in Vision and Change [visionandchange.org]. Though Vision and Change addressed undergraduate biology curricula specifically, its recommendations that curricula emphasize core concepts and competencies, data fluency, student-centered learning, community engagement, and strategic partnerships all echo curricular elements emphasized by iNeuro curricular conversations.

a. Undergraduate Foundations

In creating graduate programs or tracks in neuroinformatics, undergraduate curricular preparations for such graduate work are essential considerations. The next generation of successful life scientists will undoubtedly need a computational foundation; wet bench skills are necessary, but insufficient to navigate in the "-omics" age of life science where data can be mined in genomes, epigenomes, proteomes, metabolomes, connectomes, interactomes, and many more dimensions. Workshop participants suggested that competitive applicants to MS or PhD neuroinformatics degrees would likely enter with some undergraduate training in several (but rarely all) of the following diverse disciplinary foundations:

Computing Theory
Database Design
Web Programming
Data Structures
Statistics
Research Methodology and Design
Ethics
Intellectual Property
Neuroscience
Biology
Physical Science
Engineering
Psychology

Regardless of major, both quantitative literacy and hands-on research experience with at least one novel scientific question were essential and expected components of an undergraduate degree. In addition to disciplinary content knowledge, iNeuro participants emphasized that undergraduate science curricula should cultivate a mindset of good data habits where students both learn the value of collecting strong and reproducible data and develop an ethos that strongly encourages sharing that data with others. Finally, encouraging undergraduates to develop creative and hacking mindsets that allow them to view challenges as exciting open frontiers to be navigated (rather than obstacles) will prepare them for success in information neuroscience. Such emphases on experiential learning, original research questions, and thoughtful integration of quantitative skills with the life science are cornerstones of the *Vision and Change* call to action. These *Vision and Change* recommendations aim to transform undergraduate biology education by creating curricula that emphasize foundational concepts (not facts or details that can be looked up), and provide novel educational experiences with scientific problems that allow students to develop scientific skills and cultivate inquisitive and flexible mindsets.

Hands-on research experience with at least one novel scientific question are essential and expected components of an undergraduate degree.

Image: Natalie Schottler

b. Masters Curricula

Although conversations at iNeuro produced recommendations for undergraduate preparation in traditional, existing disciplines, there was less agreement regarding how graduate curricula should be structured. A comprehensive list of knowledge and skills desired far exceeds what training might prudently and sustainably fit into a masters degree trajectory of two to four years of full-time study. Necessarily, an MS degree in informatics would need to address both breadth across transdisciplinary fields and depth within an area of expertise. Hands-on experiences using large datasets, where transdisciplinary teams investigate original questions in neuroscience, were expected foundations of any graduate degree. Such work would provide experiences with not only large-scale data, but with team science and open-ended research challenges. Additional elements of masters degree programs in neuroinformatics included curricular elements addressing:

Neuroscience

Methodologies & techniques

- -data collection
- -analysis
- -information and data science
- -metadata
- -annotation
- -data lifecycle management
- -data formats and standards
- -data wrangling and integration
- -data and information bases
- -standard workflows and software applications
- -semantic web: vocabularies, lexicons, ontologies, semantics
- -interoperability

Computer Science

- -machine learning
- -data mining
- -coding

Communication

- -data visualization
- -writing
- -speaking

Regulatory environment

- -ethics and privacy
- -national/international data sharing regulations

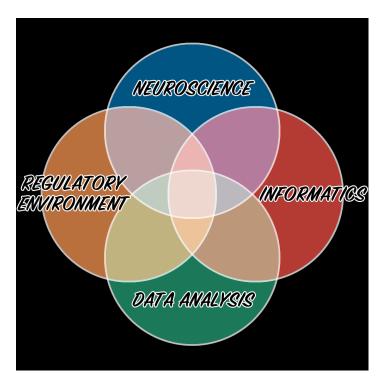


Image: Natalie Schottler

Hands-on experiences using large datasets, where transdisciplinary teams investigate original questions in neuroscience, were expected foundations of any graduate degree.

Image: Natalie Schottler

c. Doctoral Curricula

As described above for MS degrees, the list of desirable knowledge and skills for a PhD in neuroinformatics goes well beyond what can be accomplished by most students during four to six years of full-time doctoral work. A PhD in neuroinformatics expects both breadth across transdisciplinary fields and depth within an area of expertise and indicates more substantial original research experiences using large-scale datasets in collaborative, transdisciplinary teams environments to investigate original questions in neuroscience. In addition to the curricular elements for MS programs, desirable elements of doctoral program in neuroinformatics included: math (probability, statistics, linear algebra), machine learning, signal processing, information technology, systems, and networks. PhD training in neuroinformatics would include both the wet and dry aspects of contemporary information neuroscience, expecting students to produce PhD theses that directly linked laboratory experimentation (and/or validation) with modeling or informatics using large-scale data sets.

d. Non-traditional and Non-degree Training

Neuroinformatics training should not be limited to graduate degree programs, nor can a graduate degree provide a scientist will all the skills necessary for success over a career trajectory given how rapidly neuroscience, computation, and data technologies evolve. All scientists engaged in neuroinformatics will need, at multiple points, to get up to speed, keep up with changes, and/or learn about new resources, knowledge, tools, and strategies. iNeuro participants (similarly to participants of three INCF workshops on Training in Neuroinformatics in 2008-09: www.incf.org/activities/workshops/scientific-workshops/) recognized that a holistic educational strategy goes well beyond graduate degrees, acknowledging the dynamic nature of neuroinformatics as well as the diverse and understandably incomplete expertise of individuals who engage in information neuroscience. Therefore, it is necessary to make information neuroscience training widely accessible for all those who aim to use large-scale data to comprehend the brain.

Collectively, non-degree neuroinformatics training methods must serve many different constituents with goals of both increasing audience and broadening participation through a variety of formats. Individually, each training experience will be most effective if it has a clear topic, sharp focus, and well-defined target audience. Examples of such training units might include tutorials, seminars, bootcamps, massive open online courses (MOOCs), workshops, short courses, jamborees, on-going training plans, trainer training, and hackathons. Individuals, teams, universities, professional societies, government agencies, private foundations, and businesses are all appropriate sponsors of such non-degree training opportunities. As discussed for graduate curricula above, because neuroinformatics assumes a team approach to scientific discovery, many of these continuing education formats will necessarily emphasize and organize different teams with different backgrounds collaborating, potentially at multiple levels of work.

e. Applying Neuroinformatics Training Beyond Neuroscience

Although by name neuroinformatics may sound like a highly specialized program of study, iNeuro participants envisioned the skills trainees acquire in working with large-scale data will be broadly applicable well beyond the research sciences to extend to public and private pursuits of many types. Because nearly all sectors are actively exploring frontiers and opportunities in large-scale data, iNeuro participants envisioned that most neuroinformatics training programs have strong potential to produce graduates that will be able to apply their coding, quantitative, and analytical skills in domains well beyond neuroscience if desired. Challenges of curating data and shortages of talented people (a.k.a. the "big data gap") are in no way limited to scientific research; businesses and industries well beyond the sciences are also very concerned with developing sufficient talent in this area and have developed informatics training programs often within business schools. Consequently, training programs in neuroinformatics are likely to produce graduates with skills that will be valuable across myriad sectors using big data. In fact, some training programs might consider partnering with industry in order to provide students with case studies, data sets, exercises, or internships directly that reveal the links between information neuroscience and other endeavors. Thus, talented students with a

passion for scientific questions, but reluctant to commit to a future in scientific research perhaps because of gloomy prospects for funding and/or academic job opportunities, may consider neuroinformatics training because the quantitative and transdisciplinary skills cultivated in neuroinformatics are both marketable and readily transferrable to other sectors in ways that traditional scientific training may not be. Current conversations in the academy are acutely aware that most PhDs in the life sciences will not become tenured faculty members and thereby investigating best practices for training for "alternative" or non-academic careers. Thus, graduate programs in neuroinformatics will be uniquely positioned to allow graduates a variety of academic and non-academic career paths that may be less dependent on federal funding.

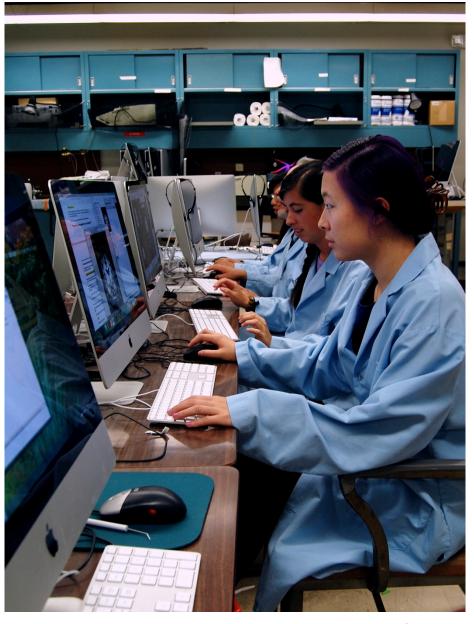


Image: Natalie Schottler

f. Scientific Rigor, Data Sharing, & Reproducibility

Although the topics of scientific rigor, reproducibility, and data sharing were not explicitly listed on the iNeuro Workshop agenda, these topics emerged in interwoven ways in many discussions. All scientific training programs must emphasize rigorous experimental design, analysis, and ethics to ensure the contemporary scientific record presents the best possible understanding of the natural world. Contemporary media reports suggest a crisis of confidence in peer-reviewed scientific results that subsequently do not pass tests of reproducibility due to inappropriate reagents, bias, design, and/or analysis with neuroinformatics research included in these concerns. Efforts to enhance transparency, access, rigor, and replication include statements of best practices in research design and analysis, symposia, courses, editorials, manuscript checklists, data management plans, data sharing expectations, and data repositories. Training programs as early as the undergraduate level have strong potential to emphasize these important principles in active, hands-on ways advocated by Vision and Change by incorporating reproduction or reanalysis in ways that allow students to make contributions by verifying or updating the scientific record as they simultaneously learn to create, share, and analyze large data sets. Consequently, information neuroscience with its emphases on design, interoperability, modeling, statistics, and careful analysis is well positioned to lead initiatives that encourage thoughtful data annotation, repositories, electronic lab notebooks, open source code and other best practices. In doing so neuroinformatics students can take active roles in confirming and/or correcting the scientific record as they learn. When datasets and code are made widely accessible students and scientists in resource-limited situations such as undergraduate programs, small institutions, and/or poorly funded labs can advance science by confirming, correcting, or annotating previous analyses. Changes in both incentives and infrastructures are necessary to encourage scientists to share their data and invest time investigating questions of reanalysis and reproducibility. The scientific community must acknowledge the considerable time and talent required to create, curate, share, integrate, and interrogate large data sets. With the current emphasis on novel discovery by largely independent research labs seen as key to obtaining jobs and funding, incentives that make sharing interoperable datasets through affordable and accessible repository structures are critical both to enhancing scientific rigor and to providing opportunities to all skilled scientists to contribute to the advancement of scientific knowledge. As one iNeuro attendee stated, "Neuroscience data of many types are rapidly growing. They cannot be effectively used nor fully appreciated without thoughtful and consistent curation." A new category of trained data professionals who can shift such daily burdens of data automation, annotation, and/or analysis away from the experimental scientists has strong potential to advance both scientific rigor and access to data sets.

g. Assessing, Sustaining, and Improving Neuroinformatics Training Programs

It is important to note that in creating neuroinformatics training programs of all types, the designers and providers need to delineate clear and measurable educational goals at the outset. A careful assessment of any curriculum necessarily measures how well students develop the concepts and skills deemed most important and foundational to the program's design. Metrics such as student applications to, satisfaction with, and completion of the degree program are important indicators. As well, program outcomes such as research catalyzed, methodologies

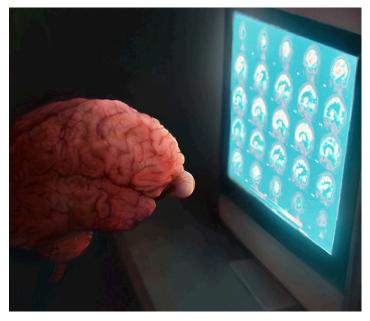


Image: Angela He

devised or improved, data sets created or analyzed, presentations given, papers published, and placement of graduates all provide valuable information to assess a program's ability to meet its goals by making adjustments and improvements. As neuroinformatics programs are deployed in various forms these goals should be regularly assessed to make smart changes that allow this new and rapidly evolving transdisciplinary training to as effective as possible in producing much-needed smart and nimble scientists who can harness the potential of large scale data to advance understandings of the nervous system.

G. Building Solutions for Training in Information Neuroscience

1. The Problem

An urgent problem facing neuroscience is how to train scientists who will transform the breathtaking power of large-scale data at multiple scales into novel insights explaining how the nervous system forms and functions. Long gone are the days when scientists worked in relative isolation, built most of their instruments, purified their reagents, wrote their own code, and reasonably mastered all the relevant literature of their field. It is not uncommon for contemporary scientists to use kits, equipment, and software without fully understanding the components of the tools they rely on to do their research. Additionally, today teams of scientists report the vast majority of contemporary scientific discoveries. Such changes have undoubtedly accelerated the pace of scientific discovery and created scientists who are more narrowly specialized, more broadly aware, and more collaborative in practice than scientists of previous generations. As we embark on the exciting frontiers of information neuroscience, fueled by high-profile initiatives and impressive achievements in imaging, sequencing, physiology, and computation, talented and trained minds that can nimbly and bravely navigate these new territories are urgently needed. Without an appropriately trained workforce in information neuroscience, tremendous potential will be wasted and our understanding of the brain unnecessarily limited.

2. Solutions

Participants at the iNeuro Workshop articulated long lists of disciplinary knowledge, experimental skills, and quantitative proficiencies needed in neuroinformatics research. These lists far exceed what one talented individual could reasonably achieve in graduate and postdoctoral training. Consequently, most neuroinformatics questions will require teams of scientists with distinct but overlapping skill sets. To contribute to teams using large-scale data to understand the brain, individual scientists need to develop quantitative literacy and expertise in at least one area as well as sufficient familiarity in one or more related areas. Despite the iNeuro Workshop's ambitious goal of articulating curricular frameworks to train information neuroscientists, no single curricular formula emerged from the Workshop to train a multi-dimensional scientific workforce. Instead iNeuro conversations focused on active engagement strategies within a wide variety of new and existing curricula, emphasizing hands-on, team-based experiences using big data in training programs. iNeuro conversations also focused on common skills, traits, and collaborative qualities needed by all team members to make advances in neuroinformatics. This emphasis on quantitative literacy and developing skills through team-based learning experiences echoed recommendations in Vision and Change [visionandchange.org], which aims to convert undergraduate biology away from timeworn curricula of canned lab exercises and list of facts to be memorized toward dynamic curricula where doing biology research is an integral part of biology training with an intentional focus on teaching foundational knowledge and building quantitative skills that will help students

continue to learn and innovate long after their formal education ends. Much like *Vision and Change*, iNeuro Workshop participants advocated that universities <u>develop curricula that train information neuroscientists</u> by direct immersion in real scientific data and research experiences rather than by transferring content knowledge outside the context by <u>which that knowledge was acquired</u>. Ultimately, when any training program articulates a specific course of study in neuroinformatics within its institutional framework, those information neuroscience programs must propose an educational pathway that develops scientists with solid quantitative and experimental skills and understandings who are creative, rigorous, collaborative, and resilient.

As an example of the difficulty in specifying a discrete curriculum, participants discussed basic software expectations for coding and statistical analysis. It was clear that quantitative proficiency beyond basic spreadsheet programs was a baseline expectation. Several contemporary software programs were suggested as gateways to programming, yet there was no one program or scripting language that emerged as necessary. Instead it was the experiences of coding, quantitative literacy, and hands-on experiences with large-scale data sets that were viewed as necessary. Ultimately, the ability to work nimbly with quantitative information, experience with programming logic and languages, experience working in transdisciplinary teams, and competence in statistics were articulated as expected competencies for information neuroscientists (as well highly desirable outcomes for scientists who use "small" data). It is unlikely that these elements can be conveyed appropriately in a single course, but instead should be intentionally interwoven throughout a curriculum in neuroinformatics in ways that take advantage of each institution's unique sets of strengths and resources.

While there was no question that existing undergraduate or graduate neuroscience program would be enhanced by emphasis on quantitative skills that will allow brain scientists to use big data, there were no suggestions for what aspects of current training could or should be eliminated to make room for additional training in large-scale data approaches. Similarly, there is little room in computational degrees such as data science or computer science to infuse experimental life sciences experiences. Recognizing that there will be continued needs for focused scientific training and maximum capacity on what any undergraduate or graduate degree program can reasonably accommodate, the potential emerged that a new type of scientific data specialists be developed. These specialists would serve crucial roles on research teams to facilitate appropriate data standards are developed and maintained for proper data acquisition, analysis, and integration and could presumably be developed in existing and future neuroinformatics training programs.

H. Summary

iNeuro Workshop participants agreed that there was a pressing need to train and educate a workforce to deal with the impending data deluge in neuroscience. Although participants widely acknowledged that this workforce would function in integrated teams, they also foresaw that there would be three levels/types of individuals in this field: Data Wranglers and Curators as well as Computational Neuroscientists. The Data Wranglers and Curators were conceived as new positions that are not currently in the extant workforce. These jobs were seen as new alternatives to the traditional academic career path for which students in neuroscience currently prepare. Thus, educational and training pathways in neuroinformatics may also break from tradition in content and/or delivery.

The content, which is to say the skills, that professionals in this neuroinformatics will need include research skills, especially bench skills, with an emphasis on experimental design and analysis. Professionals will also need computational and modeling skills with additional expertise in information science, data science, and/or informatics. Further, these professionals will need skills such as advocating, hacking, curating, translating, wrangling, and stewarding. These professionals will need to use strong communication and collaborative skills while being imaginative and nimble. Notably, neuroinformatix professionals will also need to be mindful of ethical standards, particularly HIPAA rules for dealing with human data.

The delivery, which is to say the pedagogical techniques, were envisioned by iNeuro participants as active and novel whenever possible. Curricula suggested by participants included team-based projects that incorporate hands-on experience with genuine questions in the field. Thus, the advocated pedagogical approaches are in accord with the principles put forward by the NSF/AAAS *Vision and Change* report. Participants also felt that skills in neuroinformatics would be learned best by infusing neuroscience and informatics throughout curricula, allowing students to have repeated and varied exposures to and experiences in information neuroscience in multiple contexts.

Although there was no absolute consensus on what the curriculum should entail, most participants felt that the skills would be acquired through graduate training. Nonetheless, participants also felt that graduate school is far too late to first encounter the power and utility of big data, to work with a computational model, and to practice good data sharing habits. Participants often noted that firm foundations for graduate training could be shaped in undergraduate experiences and even in community college education.

At present, there did not seem to be any model programs in the United States embodying the appropriate training. There are, however, some models at the undergraduate level at the University of Warsaw [http://neuroinformatyka.pl] and the graduate level at the University of Edinburg at [http://www.anc.ed.ac.uk/dtc/].

Workshop participants noted courses currently offered at some institutions could be coalesced into a distinct degree-granting program. Nonetheless, there were clear administrative barriers to establishing new training programs from existing parts. If courses need to be created, then either new faculty will be needed or some presently offered courses will need to be cut from other curricula. Clearly, some investment in faculty development is also required to create such degree programs. Support from professional societies for building such programs will also be important and have strong potential to aid in the development of evaluation standards to guide the formation of such programs.

For the present, educational needs in this field are being met by workshops, such as those offered by INCF and UC Berkeley Redwood Center for Theoretical Neuroscience. Hopefully, short courses will be offered via the Society for Neuroscience (SfN) or Federations of European Neuroscience Societies (FENS). Hopefully, workshops will evolve into summer courses that will ultimately be the models for full-scale degree granting programs.

Although the present educational programs are praiseworthy, it is clear that greater efforts are needed if we are to have a workforce in place to deal adequately with big data in neuroscience and help bring to fruition its great promises. The quantitative and transdisciplinary skills cultivated in neuroinformatics will be marketable and readily transferrable to other sectors. Thus establishing such programs will be of value to both the private as well as public sectors of our nation.

Image: Natalie Schottler

I. iNeuro Action Plan

1. Short Term

- Propose a symposium on neuroinformatics training at an upcoming Society for Neuroscience (SfN) meeting
- Share this iNeuro Workshop report with SfN (cNDP), NSF, White House (OSTP), and iNeuro participants, and any other interested parties
- Write a short white paper based on this report for submission to a relevant journal

2. Intermediate Term

- Articulate specific graduate curricular models for certificate programs, neuroinformatics tracks within existing graduate programs, and de novo degree programs in neuroinformatics
- Encourage the scientific community to articulate standards and best practices in data sharing
- Host information neuroscience workshops and bootcamps for scientists (modeled after INCF and/or SfN short courses and MBL/CSH summer courses)
- Collaborate with INCF on the development of its online hub for training and education materials which could be utilized by instructors to deliver neuroinformatics courses

3. Long Term

- Develop incentives and infrastructure that allow scientists to follow best practices in sharing data sets
- Pilot and assess a variety of graduate program models in neuroinformatics

J. Acknowledgements

This report summarizes a 1.5-day meeting held in November 2014 in Arlington, VA. The iNeuro Workshop was generously supported by funds from the National Science Foundation. It brought together a group of approximately 35 professionals from neuroscience, education, bioinformatics, engineering, mathematics/statistics, computer science, data science, and library/information science to discuss training strategies for developing a workforce that will catalyze transdisciplinary advances in understanding the brain via approaches that make use of large-scale data. Thanks are extended to each participant who attended and engaged in the Workshop and to Lisa McCauley for surveying attendees. Special thanks also go to Barbara Lom who not only served as an iNeuro participant but also drafted this report. Further thanks go to iNeuro organizer Bill Grisham (UCLA) for his leadership and vision that brought together a diverse team and stimulated a unique and focused conversation on an important topic. Questions and comments can be directed to Dr. Grisham at dr. billgrisham@gmail.com. This workshop and this report were funded by National Science Foundation grant DUE 1441416 to WG.

K. Appendix of iNeuro Workshop Participants

Katherine Akers (Wayne State University)

Brian Athey (University of Michigan)

Diane Baxter (San Diego Supercomputer Center)

Reed Beaman (National Science Foundation

Lukas Buehler (Southwestern College)

Melissa Cragin (University of Illinois)

Chiquito Crasto (University of Alabama at Birmingham)

Chinh Dang (Allen Institute for Brain Science)

Heather Dean (National Science Foundation)

Ying Ding (University of Indiana)

Pauline Fujita (University of California, Santa Cruz)

Daniel Gardner (Weill Cornell Medical College)

William Grisham (University of California, Los Angeles)

Amy Hodge (Stanford University)

Lisa Johnston (University of Minnesota)

Mark Kramer (Boston University)

Aric LaBarr (North Carolina State University)

Linda Lanyon (International Neuroinformatics Coordinating Facility)

Mahria Lebow (University of Washington)

Mike Levine (University of California, Los Angeles)

Monica Linden (Brown University)

Barbara Lom (Davidson College)

Amitava Majumdar (University of California, San Diego)

Maryann Martone (National Center for Microscopy and Imaging Research)

Lisa McCauley (Immaculata University)

Tom Morse (Yale University)

David Patterson (University of Sydney)

Russ Poldrack (Stanford University)

Raddy Ramos (New York Institute of Technology)

Gary Reiness (Lewis & Clark College)

David Sheinberg (Brown University)

Friedrich Sommer (University of California, Berkeley)

Cathy Strasser (California Digital Library)

Chuck Sullivan (National Science Foundation)

Laura Symonds (Michigan State University)

Brian Westra (University of Oregon)

Martin Wiener (National Science Foundation)

Rob Williams (University of Tennessee)

Diane Witt (National Science Foundation)

Terry Woodin (National Science Foundation)

Lisa Zilinski (Purdue University)

L. Agenda for the iNeuro Workshop

The iNeuro Project 2014 Workshop convened at the Holiday Inn Rosslyn at Key Bridge. The agenda for this meeting is detailed below.

Day 1 Thursday, November 13, 2014

Part I: Defining the Problem

(01) 08:00 am - 08:30 am

Continental breakfast is served.

(02) 08:30 am - 09:00 am

Welcome and thanks. Terry Woodin (NSF), Bill Grisham (formerly NSF), Diane Witt (formerly NSF) give background.

(03) 09:00 am - 10:15 am

Break into focus groups divided by stakeholders. That is, segregate groups into:

- managers and purveyors of data resources
- individuals involved in bioinformatics training
- library and information scientists
- computer scientists
- neuroscience educators

Each of these groups will meet to determine what they want to get out of the large-scale data realm and how properly trained curators can get them there. Each group will produce a one-page outline that will be shared and given to the project's science writer.

(04) 10:15 am - 10:45 am

Break for 30 minutes.

(05) 10:45 am - 11:45 am

Statement of the problem. Round table discussion in which each person spends two minutes making a statement and/ or elaborating on a previous statement.

(06) 12:00 pm - 01:00 pm

Lunch is served.

(07) 01:00 pm - 01:30 pm

Summarize the problem. This will be assigned to the project's science writer.

(08) 01:30 pm - 02:30 pm

Discern where we are now. Describe the training that currently exists for curators of large-scale data. Perhaps managers and purveyors of data resources and individuals involved in bioinformatics training should take the lead on this. This should be a "fishbowl" discussion led by those who work in the field, while others listen (though listeners are not forbidden from commenting).

Part II: Building Solutions to the Problem

(09) 02:30 pm - 03:30 pm

Split up different stakeholder groups to create mixed groups of various stakeholders, with a maximum group size of n = 8.

Decide what skills a curator/ scientist of large-scale data would need. Each group will produce a two-slide outline describing the desired skill set.

(10) 03:30 pm - 04:00 pm

Break for 30 minutes.

(11) 04:00 pm - 04:30

Each group will report-out key points in the desired skill set with two slides. The project's science writer will summarize the report-out.

(12) 04:30 pm - 05:30 pm

Groups will split to form new mixed groups of various stakeholders, with a maximum group size of n = 8.

Decide what curricular mix would be needed to impart the desired skill set. Each group will produce at least a two-slide outlines of a suggested curriculum, which will be shared with the project's science writer and in a report-out.

(13) 05:30 pm - 06:00 pm

Report-out of each group's conclusions regarding a curriculum. The project's science writer will summarize the report-out.

(14) 06:00 pm - 07:00 pm

Buffet dinner is served.

Day 2 Thursday, November 14, 2014

Part II: Building Solutions to the Problem [continued]

(01) 08:00 am - 08:30 am

Continental breakfast is served.

(02) 08:30 am - 09:00 am

Primer on Vision and Change. Bill Grisham and Terry Woodin speak.

(03) 09:00 am - 10:00 am

Break into focus groups of mixed constituencies. Perhaps managers and purveyors of data resources as well as those involved in bioinformatics training should lead these discussions.

Discuss whether existing training programs could serve as models for the desired training, or if these desired training programs have to be developed *de novo*. Discuss teaching approaches for these training programs, particularly as related to the **Vision and Change** report. Prepare a two-slide report.

(04) 10:00 am - 10:30 am

Two-slide report-out on whether or not current training programs could serve as models for the desired training. The project's science writer will summarize the report-out.

(05) 10:30 am - 11:00 am

Break for 30 minutes.

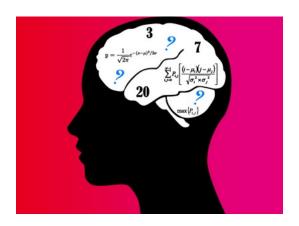
Part III: Assessing Solutions to the Problem

(06) 11:00 am - 12:00 pm

Reconstitute stakeholder groups.

Discuss whether or not they will get what they need out of the consensus. That is, determine if the proposed curricula and approaches are capable of meeting the needs of curators/ scientists of large-scale neuroscience data.

(07) 08:30 am - 09:00 am


Report-out of perceived strengths and weaknesses of the proposed curricula and approaches.

Thanks and adjournment.

The iNeuro Project https://mdcune.psych.ucla.edu/ineuro

Funding: National Science Foundation

Logo: Natalie Schottler
Cover Image: Greg Dunn