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Abstract. The multi-core trend in CPUs and general purpose graphics process-
ing units (GPUs) offers new opportunities for the database community. The in-
crease of cores at exponential rates is likely to affect virtually every server and
client in the coming decade, and presents database management systems with a
huge, compelling disruption that will radically change how processing is done.
This paper presents a new parallel indexing data structure for answering queries
that takes full advantage of the increasing thread-level parallelism emerging in
multi-core architectures. In our approach, our Data Parallel Bin-based Index Strat-
egy (DP-BIS) first bins the base data, and then partitions and stores the values in
each bin as a separate, bin-based data cluster. In answering a query, the proce-
dures for examining the bin numbers and the bin-based data clusters offer the
maximum possible level of concurrency; each record is evaluated by a single
thread and all threads are processed simultaneously in parallel.

We implement and demonstrate the effectiveness of DP-BIS on two multi-
core architectures: a multi-core CPU and a GPU. The concurrency afforded by
DP-BIS allows us to fully utilize the thread-level parallelism provided by each
architecture–for example, our GPU-based DP-BIS implementation simultane-
ously evaluates over 12,000 records with an equivalent number of concurrently
executing threads. In comparing DP-BIS’s performance across these architec-
tures, we show that the GPU-based DP-BIS implementation requires significantly
less computation time to answer a query than the CPU-based implementation. We
also demonstrate in our analysis that DP-BIS provides better overall performance
than the commonly utilized CPU and GPU-based projection index. Finally, due
to data encoding, we show that DP-BIS accesses significantly smaller amounts of
data than index strategies that operate solely on a column’s base data; this smaller
data footprint is critical for parallel processors that possess limited memory re-
sources (e.g. GPUs).

1 Introduction

Growth in dataset size significantly outpaces the growth of CPU speed and disk through-
put. As a result, the efficiency of existing query processing techniques is greatly chal-



2 Authors Suppressed Due to Excessive Length

lenged [1–3]. The need for accelerated I/O and processing performance forces many
researchers to seek alternative techniques for query evaluation. One general trend is to
develop highly parallel methods for the emerging parallel processors, such as multi-core
processors, cell processor, and the general-purpose graphics processing units (GPU) [4].
In this paper, we propose a new parallel indexing data structure that utilizes a Data Par-
allel Bin-based Index Strategy (DP-BIS). We show that the available concurrency in
DP-BIS can be fully exploited on commodity multi-core CPU and GPU architectures.

The majority of existing parallel database systems work focuses on making use of
multiple loosely coupled clusters, typified as shared-nothing systems [5–10]. Recently,
a new parallel computing trend has emerged. These type of parallel machines consist
of multiple tightly-coupled processing units, such as multi-core CPUs, cell processors,
and general purpose GPUs. The evolution of such machines in the coming decade is
to support a tremendous number of concurrent threads working from a shared memory.
For example, NVIDIA’s 8800 GTX GPU–the GPU used in this work–has 16 multi-
processors, each of which supports 768 concurrent execution threads. Combined, these
multiprocessors allow the GPU to manage over 12,000 concurrent execution threads.
Fully utilizing such thread-level parallelism on a shared memory system requires a dif-
ferent set of query processing algorithms than on shared-nothing systems.

A number of researchers have successfully demonstrated the employment of GPUs
for database operations [11–14]. Among the database operations, one of the basic tasks
is to select a number of records based on a set of user specified conditions, e.g., “SE-
LECT: records FROM: combustion simulation WHERE: pressure > 100.” Many GPU-
based works that process such queries do so with a projection of the base data [11, 15].
Following the terminology in literature, we use the term projection index to describe
this method of sequentially and exhaustively scanning all base data records contained
in a column to answer a query [16]. On CPUs, there are a number of indexing meth-
ods that can answer queries faster than the projection index [17–19], but most of these
indexing methods do not offer high enough levels of concurrency to take full advan-
tage of a GPU. DP-BIS fully utilizes the GPU’s parallelism when answering a selection
query; each thread on the GPU is used to independently access and evaluate an individ-
ual record. This one-to-one mapping of threads-to-records lets DP-BIS process large
amounts of data with 12,000 concurrent parallel operations at any one time.

Though GPUs offer tremendous thread-level parallelism, their utility for database
tasks is limited by a small store of resident memory. For example, the largest amount of
memory available on NVIDIA’s Quadro FX GPU is currently 4.0 GB, which is much
too small to hold projections of all columns from a dataset of interest [1–3]. DP-BIS
presents one method for ameliorating the challenges imposed by limited GPU mem-
ory. The DP-BIS index uses a form of data encoding that is implemented through a
multi-resolution representation of the base data information. This encoding effectively
reduces the amount of data we must access and transfer when answering a query. As
a result of the encoding, we can query dataset sizes that would otherwise not fit into
the memory footprint of a GPU. Additionally, by transferring smaller amounts of data
when answering a query, we utilize data bus bandwidth more efficiently.

In the DP-BIS approach, we bin the base data for each column. We augment each
column’s binned index by generating a corresponding Data Parallel Order-preserving
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Bin-based Cluster (OrBiC). To resolve a query condition on a column, we first deter-
mine the boundaries of the query. Consider an example. For range conditions such as
“pressure > 100”, we determine the bin whose range captures the constraint “100”. In
this example, assume that the value “100” is contained in the value range captured by
bin17. We refer to bins that capture one of the query’s constraints as “boundary bins”.
In our example, records contained in bins less than the boundary bin (i.e. bin0→ bin16)
fail the query. Correspondingly, records contained in bins greater than the boundary bin
pass the query. Boundary bin records can’t be characterized by their bin number alone,
they must be evaluated by their base data value. We call the records in the boundary
bin the candidates and the process of examining the candidate values the candidate
check [20]. Our strategy for answering a selection query is very similar to that of a
bitmap indexing strategy [21–23]. A central difference is that bitmap-based strategies
indicate the record contents of each bin with a single bitmap vector. These bitmap vec-
tors can then be logically combined to help form the solution to a query. In contrast, we
directly access the bin number for any given record from an encoded data table.

The Data Parallel OrBiC structure we use during our candidate check procedure
provides an efficient way to extract and send boundary bin data from the CPU to the
GPU. Additionally, this structure facilitates a rapid, concurrent way for GPU threads
to access this data. Altogether, to answer a query, we access the bin numbers and the
base data values of the records in boundary bins. The total data contained in both these
data structures is much smaller than the column projections used by other strategies that
employ the GPU to answer a query. Additionally, the procedure for examining the bin
numbers and the process of performing the candidate checks offer the same high level
of concurrency as the GPU projection index.

In our work we assume that the base data will not (or seldom) be subjected to mod-
ification. This assumption too is made by other research database management systems
that operate on large data warehouses that contain read-only data: e.g. MonetDB [24],
and C-Store [25]. In addition to such database management systems, many scientific
applications also accumulate large amounts of data that is never modified or subjected
to transactions [26].

Finally, we specifically utilize and emphasize the GPU in our work because it pro-
vides some of the highest amounts of thread-level parallelism available in existing
multi-core architectures. To this extent we view the GPU as a representative case of
where multi-core architectures are evolving with respect to thread-level parallelism and
processing performance. In summary, this paper makes the following three contribu-
tions.

– We introduce a data parallel bin-based indexing strategy (DP-BIS) for answering
selection queries on multi-core architectures. The concurrency provided by DP-BIS
fully utilizes the thread-level parallelism emerging in these architectures in order to
benefit from their increasing computational capabilities.

– We present the first strategy for answering selection queries on a GPU that uti-
lizes encoded data. Our encoding strategy facilitates significantly better utilization
of data bus bandwidth and memory resources than GPU-based strategies that rely
exclusively on base data.



4 Authors Suppressed Due to Excessive Length

– We implement and demonstrate DP-BIS’s performance on two commodity multi-
core architectures: a multi-core CPU and a GPU. We show in performance tests
that both implementations of DP-BIS outperform the GPU and CPU-based projec-
tion index with respect to total query response times. We additionally show that
the GPU-based implementation of DP-BIS outperforms all index strategies with
respect to computation-based times.

2 Background and Related Work

2.1 Related Bitmap Index Work

The data stored in large data warehouses and the data generated from scientific applica-
tions typically consists of tens to hundreds of attributes. When answering queries that
evaluate such high-dimensional data, the performance of many indexing strategies di-
minishes due to the curse of dimensionality [27]. The bitmap index is immune to this
curse and is therefore known to be the most efficient strategy for answering ad hoc
queries over such data [28]. For this reason, major commercial database systems utilize
various bitmap indexing strategies (e.g. ORACLE, IBM DB2, and Sybase IQ).

Another trait of the bitmap index is that storage concerns for indices are ameliorated
through specialized compression strategies that both reduce the size of the data and that
facilitate the efficient execution of bitwise Boolean operations [29]. Antoshenkov et
al. [21, 22] present a compression strategy for bitmaps called the Byte-aligned Bitmap
Code (BBC) and show that it possess excellent overall performance characteristics with
respect to compression and query performance. Wu et al. [23] introduce a new com-
pression method for bitmaps called Word-Aligned Hybrid (WAH) and show that the
time to answer a range query using this bitmap compression strategy is optimal; the
worse case response time is proportional to the number of hits returned by the query.
Recent work by Wu et al. [30] extends the utility of the bitmap index. This work in-
troduces a new Order-preserving Bin-based Clustering structure (OrBiC), along with
a new hybrid-binning strategy for single valued bins that helps the bitmap index over-
come the curse of cardinality; a trait where both index sizes and query response time
increase in the bitmap index as the number of distinct values in an attribute increases.

Sinha and Winslet [31] successfully demonstrate parallelizable strategies for bin-
ning and encoding bitmap indexes, compressing bitmap vectors, and answering selec-
tion queries with compressed bitmap vectors. The content of their work focuses on
supporting bitmap use in a highly parallel environment of multiple loosely-coupled,
shared-nothing systems. In contrast, our work addresses the challenges of supporting
bin-based indexing on the newly emerging, tightly-coupled architectures that possess
tremendous thread-level parallelism; for example the graphics processor unit (GPU).

The basic attributes of the binned bitmap index (bin-based indexing, the use of
simple boolean operators to answer selection queries, etc.) can be implemented in a
highly parallel environment. For this reason, our new Data Parallel Bin-based Indexing
Strategy (DP-BIS) follows the general structure of a binned bitmap index. Unfortu-
nately, bitmap compression strategies, even the parallelizable strategies of Sinha and
Winslet [31], do not support enough concurrency to take advantage of the thread-level
parallelism offered by tightly-coupled architectures like GPUs. Thus one of the first
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objectives in our work is to develop a compression strategy, based upon the binning
techniques of the binned bitmap index, that supports high levels of concurrency and
reduces the amount of data required to answer a query.

2.2 Related GPU-Database Work

GPUs have been used to help support and accelerate a number of database functions [11–
14,32,33], as well as numerous general purpose tasks [34,35]. Sun et al. [15] present a
method for utilizing graphics hardware to facilitate spatial selections and intersections.
In their work, they utilize the GPU’s hardware-accelerated color blending facilities to
test for the intersection between two polygons in screen space.

Working within the constraints of the graphics API for fragment shaders, Govin-
daraju et al. [11] present a collection of powerful algorithms on commodity graphics
processors for performing the fast computation of several common database operations:
conjunctive selections, aggregations, and semi-linear queries. This work also demon-
strates the use of the projection index to answer a selection query. Additionally, Govin-
daraju et al. [12] present a novel GPU-based sorting algorithm to sort billion-record
wide databases. They demonstrate that their “GPUTeraSort” outperforms the Indy Pen-
nySort1 record, achieving the best reported price-for-performance on large databases.

More recent GPU-database work utilizes powerful, new general purpose GPU hard-
ware that is supported by new data parallel programming languages (see Section 3).
These hardware and software advances allow for more complex database primitives to
be implemented on the GPU. Fang et al. [13] implement the CSS-Tree in the software
GPUQP. This work characterizes how to utilize the GPU for query co-processing, un-
fortunately there is no performance data published about the implementation.

Lieberman et al. [36] implement an efficient similarity join operation in CUDA.
Their experimental results demonstrate that their implementation is suitable for similar-
ity joins in high-dimensional datasets. Additionally, their method performs well when
compared against two existing similarity join methods.

He et al. [34] improve the data access locality of multi-pass, GPU-based gather and
scatter operations. They develop a performance model to optimize and evaluate these
two operations in the context of sorting, hashing, and sparse matrix-vector multiplica-
tion tasks. Their optimizations yield a 2-4X improvement on GPU bandwidth utilization
and 30–50% improvement on performance times. Additionally, their optimized GPU-
based implementations are 2-7X faster than optimized CPU counterparts. He et al. [14]
present a novel design and implementation of relational join algorithms: non-indexed
and indexed nested loops, sort-merge, and hash joins. This work utilizes their band-
width optimizations [34], and extends the work of Fang et al. [13]. They support their
algorithms with new data-parallel primitives for performing map, prefix-scan and split
tasks. Their work achieves marked performance improvements over CPU-based coun-
terparts; GPU-based join algorithms are 2-7X faster than CPU-based approaches.

GPU-based strategies that address how to answer a selection query have yet to ad-
dress the significant limitations imposed by the GPU’s small memory, and those im-
posed by the data buses that transfer data to the GPU. To the best of our knowledge,
all relevant literature utilizes algorithms that operate on a column’s base data (i.e. non-
compressed data). Utilizing base data severely restricts the amount of data the GPU
can process. Further, streaming large amounts of base data to the GPU can impede the
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processing performance of many GPU-based applications. More specifically, GPU pro-
cessing performance can rapidly become bottlenecked by data transfer rates if these
transfer rates are not fast enough to keep the GPU supplied with new data. This bot-
tleneck event occurs on GPUs whenever the arithmetic intensity of a task is low; the
process of answering a simple range query falls into this classification.

In the following sections, we introduce some basic GPU fundamentals, as well as
the languages that support general purpose GPU programming. We then introduce our
Data Parallel Bin-based Indexing Strategy (DP-BIS) and show how it directly addresses
the challenges of limited GPU-memory and performance-limiting bus speeds with a
fast, bin-based encoding technique. This work is the first GPU-based work to present
such an approach for answering queries. We also show how our binning strategy en-
ables DP-BIS to support a high level of concurrency. This concurrency facilitates a full
utilization of the parallel processing capabilities emerging in multi-core architectures.

3 GPUs and Data Parallel Programming Languages

Recent GPU-database works utilize powerful new data parallel programming languages
like NVIDIA’s CUDA [37], and OpenCL. These new programming languages eliminate
the long standing tie of general-purpose GPU work with restrictive graphics-based APIs
(i.e. fragment/shader programs). Further, the GPUs supporting these languages also
facilitate random read and write operations in GPU memory—scatter I/O operations
are essential for GPUs to operate as a general-purpose computational machine.

The functional paradigm of these programming languages views the GPU as a co-
processor to the CPU. In this model, the programmer writes two separate kernels for a
general purpose GPU (GPGPU) application: code for the GPU kernel and the code for
the CPU kernel. Here the CPU kernel must proceed through three general stages.

1. Send a request to the GPU to allocate necessary input and output data space in
GPU memory. The CPU then sends the input data (loaded from CPU memory or
hard disk) to the GPU.

2. Call the GPU kernel. When the CPU kernel calls a GPU kernel, the CPU’s kernel
suspends and control transfers to the GPU. After processing its kernel, the GPU
kernel terminates and control is transferred back to the CPU.

3. Retrieve the output data from the GPU’s memory.

From a high level, the GPU kernel serves as a sequence of instructions that describes
the logic that will direct each GPU thread to perform a specific set of operations on a
unique data element. The kernel thus enables the GPU direct the concurrent and simul-
taneous execution of all GPU threads in a SIMT (single-instruction, multiple-thread)
workflow. The GPU executes its kernel (step two above) by first creating hundreds to
thousands of threads—the number of threads is user specified and application depen-
dent. During execution, small groups of threads are bundled together and dynamically
dispatched to one of the GPU’s numerous SIMD multiprocessors. These thread bundles
are then delegated by the multiprocessor to one of its individual processors for evalu-
ation. At any given clock cycle, each processor will execute the same kernel-specified
instruction on a thread bundle, but each thread will operate on different data.
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With respect to memory resources, each GPU multiprocessor contains a set of ded-
icated registers, a store of read-only constant and texture cache, and a small amount of
shared memory. These memory types are shared between the individual processors of
a multiprocessor. In addition to these memory types, threads evaluated by a processor
may also access the GPU’s larger, and comparatively slower, global memory.

There are two important distinctions to make between GPU threads and CPU threads.
First, there is no cost to create and destroy threads on the GPU. Additionally, GPU mul-
tiprocessors perform context switches between thread bundles (analogous to process
switching between processes on a CPU) with zero latency. Both of these factors enable
the GPU to provide its thread-level parallelism with very low overhead.

4 A Data Parallel Bin-based Indexing Strategy (DP-BIS)
4.1 Overview

To effectively utilize a GPU, an indexing data structure must provide high levels of con-
currency to fully benefit from the GPU’s large number of concurrent execution threads,
and make effective use of the GPU’s relatively small memory. In this section we explain
our new DP-BIS method and show how it successfully addresses these requirements by
integrating two key strategies: data binning (Section 4.2) and the use of Data Parallel
Order-preserving Bin-based Clusters (OrBiC) (Section 4.3).

When answering a query, the binning strategy we utilize significantly reduces the
amount of data we must access, transfer, and store on the GPU. The Data Parallel OrBiC
structure we employ ensures that candidate checks only access the base data of the
boundary bins. The concurrency offered by both of these data structures facilitates full
utilization of the GPU’s thread-level parallelism. In this approach, DP-BIS builds one
index for each column in a database, where each index consists of an encoded data table
(i.e. the bin numbers), and a Data Parallel OrBiC structure. When answering a simple
range query with DP-BIS, we access the encoded data table, and the base data of two
bins (the boundary bins) from our data parallel OrBiC structure.

4.2 Base Data Encoding

The index construction process begins by binning all of the base data records contained
in a single column. To minimize data skew in our binning strategy, we select the bin
boundaries so that each bin contains approximately the same number of records. In
cases where the frequency of a single value exceeds the allotted record size for a given
bin, a single-valued bin is used to contain all records corresponding to this one value.
This technique to address data skew is consistent with other binning strategies [30]. We
then encode the base data by representing each base data record with its associated bin
number. Figure 1 (Step 1) in Section 4.3 shows an example of this encoding. In later
discussions, we refer to the bin numbers as low-resolution data and the column’s base
data as full-resolution data. We always utilize 256 bins in our encoding procedure. As
we now show, the amount of data generated by using this number of bins facilitates
near-optimal usage of bus bandwidth and GPU memory space when answering a query.

Assume that all full-resolution data is based on 32-bit values, and that there are N
records in a given database column. If we use x bits to represent each bin, we can then
create 2x bins where each bin will contain, on average, N

2x records. The total size of
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Number of Bins Low-Resolution Size(%) Boundary Bin Size(%) Total Data Size(%)
232 = 4294967296 100.0 0.0 100.0

216 = 65536 50.0 100.0× 2
65536 = 0.003 50.0 + 0.003 = 50.0

28=256 25.0 100.0× 2
256 = 0.78 25.0 + 0.78 = 25.8

Table 1. This table presents the total benefit for DP-BIS to utilize a specific number of bins in its
encoding strategy. All values in column two, three, and four are given in terms of a percentage
of the total full-resolution data (assuming 32-bits are utilized to represent each full-resolution
record). Note the Boundary Bin Size reflects the cost for two boundary bins. From this table we
see that the use of 256 bins reduces the amount of data we must transfer and store by over 74%.

the low-resolution data will then be x×N bits. The candidate data for each boundary
bin, assuming each row-id can be stored in 32-bits, will consist of 32×N

2x bits for row-

identifiers, and 32×N
2x bits for data values. The total number of bits (written as B below)

we utilize to answer a simple range query is therefore:

B = x×N︸ ︷︷ ︸
Low−Resolution Bits

+ (4× 32×N
2x )︸ ︷︷ ︸

Candidate Check Bits f or Boundary Bins

(1)

Note that the candidate check bit cost for boundary bin data is based on two boundary
bins; this data size represents the more typical, and expensive, workload for answering
a simple range query. Taking the derivative of B with respect to x, we get:

dB
dx = N− (128×N× ln2

2x ) (2)

By setting this derivative to 0 and solving for x, we compute the optimal number of bits
to use for our strategy:

Bmin = 7+ log2 (ln(2))≈ 6.4712(bits) (3)

In our encoding strategy, bins can be represented with either 32-bits, 16-bits, or 8-bits;
these are the most easy and efficient data sizes for GPUs and CPUs to evaluate. Use of
alternate data sizes, like the “optimal” 6-bit data type we have derived in Equation 3,
are not convenient for GPU-processing. The closest integer type that is conveniently
supported on the GPU is the 8-bit integer. Therefore we use 8-bit integers to represent
bin numbers and we utilize 256 bins in our encoding strategy.

Table 1 illustrates the benefit of using 256 bins from a less formal standpoint. This
table shows realized data transfer costs for answering a simple range query based on
data types efficient for CPU and GPU computation. The last row validates Equation 3;
8-bit bins provide the best encoded-based compression by reducing the amount of data
that must be accessed, transferred, and stored on the GPU by over 74% .

4.3 Extending OrBiC to Support Data Parallelism

Wu et al. [30] introduce an Order-preserving Bin-based Clustering (OrBiC) structure;
this structure facilitates highly efficient candidate checks for bitmap-based query evalu-
ation strategies. Unfortunately, the OrBiC structure does not offer enough concurrency
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Fig. 1. This figure shows the two-step DP-BIS index construction process. The first step encodes
a column’s full-resolution base data (Section 4.2). The second step (Section 4.3) utilizes this same
full-resolution information to generate a modified (i.e. Data Parallel) OrBiC Structure.

to take advantage of the GPU’s parallelism. In this section, we present the constructs of
the original OrBiC data structure, and then address how we extend this index to provide
greater levels of concurrency.

In the approach presented by Wu et al., the full-resolution data is first sorted accord-
ing to the low-resolution bin numbers. This reordered full-resolution table is shown as
the “OrBiC Base Data” table in Figure 1. In forming this table, each bin’s start and end
positions are stored in an offset table. This offset table facilitates contiguous access to
all full-resolution data corresponding to a given bin.

We extend the work of Wu et al. by building an OrBiC-directed table; this is the
“OrBiC-directed Row-ID” table in Figure 1. This table holds row-identifier information
for the full-resolution data records. The appended “directed” statement refers to the fact
that the ordering of this table is directed by the ordering of the OrBiC Base Data table.
With consistent ordering between these tables, start and end locations for a given bin in
the offset table provide contiguous access to both the full-resolution data contained in
this bin and the correct row-identifier information for each of the bin’s records.

The OrBiC-directed row-identifier table facilitates data parallelism by addressing
a fundamental difference between our data parallel bin-based strategy and the bitmap
work of Wu et al. [30]. Specifically, Wu et al. create a single bitmap vector for each bin
in the OrBiC Base Data table. As the bitmap vector associated with a given bin stores
the bin’s row-identifier information implicitly, their procedure does not need to keep
track of the row-identifiers. In our case such a strategy is not inherently parallelizable.
We thus employ an explicit representation of the row-identifier information by storing
them in the OrBiC-directed Row-ID table. Using this table, threads can simultaneously
and in parallel perform candidate checks on all records in a given boundary bin.

4.4 DP-BIS: Answering a Query

In this work, we focus on using DP-BIS to solve simple and compound range queries.
Range queries in general are a common database query expressed as a boolean combi-
nation of two simple predicates: (100.0≤X) AND (X ≤ 250), or alternatively (100.0≤
X≤ 250). Compound range queries logically combine two or more simple range queries
using operators such as AND, and OR: (X ≤ 250) AND ( Y ≤ 0.113).
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Algorithm 1
GPU Kernel for Low-Resolution Data
Require: Integer lowBinNumber, Integer highBin-

Number, Integer [] lowResolution

1: position← ThreadID
2: binNum← lowReslution[position]
3: if (binNum>lowBinNumber) then
4: if (binNum<highBinNumber) then
5: Sol[position]← TRUE
6: end if
7: end if
8: if (binNum<lowBinNumber) then
9: Sol[position]← FALSE

10: end if
11: if (binNum>highBinNumber) then
12: Sol[position]← FALSE
13: end if

Algorithm 2
GPU Kernel for Candidate Checks
Require: Float lowReal, Float highReal, Float [] full-

Resolution, Integer [] rowID

1: position← ThreadID
2: recordVal← f ullReslution[position]
3: record RowID← rowID[position]
4: if (recordVal>lowReal) then
5: if (recordVal < highReal) then
6: Sol[record RowID]← TRUE
7: end if
8: end if
9: if (recordVal< lowReal) then

10: Sol[record RowID]← FALSE
11: end if
12: if (recordVal>highReal) then
13: Sol[record RowID]← FALSE
14: end if

Strategies that answer range queries efficiently and rapidly are a crucial underpin-
ning for many scientific applications. For example, query-driven visualization (QDV)
integrates database technologies and visualization strategies to address the continually
increasing size and complexity of scientific data [38–40]. In QDV, large data is intel-
ligently pared down by user-specified selection queries, allowing smaller, more mean-
ingful subsets of data to be efficiently analyzed and visualized.

Simple Range Queries The DP-BIS process for answering a simple range query con-
sists of three stages: load necessary input data onto the GPU, execute the GPU kernel,
and download the output data (i.e. the query’s solution) from the GPU to the CPU. The
input for this process consists of a single low-resolution database column, all necessary
full-resolution record and row-identifier data, and two real values that will be used to
constrain the column. The process returns a boolean bit-vector—a boolean column with
one entry per data record that indicates which records have passed the query.

Given a query, the CPU kernel first accesses the appropriate low-resolution data
column from disk. Next, space is allocated in GPU memory to hold both this data as
well the query’s solution. After allocating memory, and sending the low-resolution data
to the GPU, the CPU kernel proceeds by identifying the boundary bins of the query.
The query’s boundary bins are the bins whose ranges contain the query’s real-valued
constraints. The CPU kernel uses these bin numbers as an index into the OrBiC offset
table. Values in the offset table provide the start and end locations in the OrBiC Base
Data, and Row-ID tables for the candidate record’s full-resolution data and correspond-
ing row-identifiers. After the candidate data is sent to the GPU, the CPU kernel then
calls the necessary GPU kernels.

The first GPU kernel, shown in Algorithm 1, processes the column’s low-resolution
data. In setting up this kernel, the CPU instructs the GPU to create one thread for each
record in the column. The CPU then calls the GPU kernel, passing it the boundary bin
numbers; these boundary bin numbers enable threads to answer an initial low-resolution
query. At launch time, each thread first determines its unique thread identifier1. Threads
use their identifier to index into the lowResolution data array (line 2); this array is the

1 Each GPU thread has a unique ID that aids in coordinating highly parallel tasks. These unique
IDs form a series of continuous integers, 0→maxThread, where maxThread is the total thread
count set for the GPU kernel
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Logic-Based Algorithm 1 line 1.4, and Algorithm 1 line 1.7, and
Kernel Algorithm 2 line 2.5 change to: Algorithm 2 line 2.8 change to:
AND “Sol[x]← Sol[x]” “Sol[x]← FALSE”
OR “Sol[x]← TRUE” “Sol[x]← Sol[x]”

Table 2. This table shows the required changes to make to Algorithms 1 and 2 to form the logic-
based kernels DP-BIS uses to answer a compound range queries.

low-resolution data column loaded earlier by the CPU. The thread characterizes its
record as passing or failing depending on whether the record’s bin number lies interior,
or exterior to the boundary bins (lines 3, 4, 8, and 9). The answer to each thread’s
query is written to the query’s solution space in GPU memory. This space, previously
allocated by the CPU kernel, is shown in Algorithm 1 as Sol[].

The next GPU kernel, shown in Algorithm 2, performs a candidate check on all
records contained in a given boundary bin. In our approach we launch the candidate
check kernel twice: once for the lower boundary and once for the higher boundary bins.

The candidate check kernel is similar to the previous GPU kernel. Thread identifiers
enable each thread to index into the Full-Resolution and rowID arrays of their respective
boundary bin; these arrays are the OrBiC tables previously loaded onto the GPU. These
arrays enable the kernel’s threads to access the full-resolution data and corresponding
row-identifier information for all records that lie in the boundary bin. Threads charac-
terize each record as passing or failing based on comparisons made with the accessed
full resolution data (lines 4, 5, 9, and 12 in Algorithm 2). The results of these logical
comparisons are written to Sol[], not using the thread’s identifier as an index, but the
accessed row identifier (obtained from rowID) corresponding to the evaluated record.

Compound Range Queries From a high level, we answer a compound range query
by logically combining the solutions obtained from a sequence of simple range queries.
To perform this task efficiently, we direct each simple query’s kernel to utilize the same
solution space in GPU memory. The compound range query’s solution is produced once
each simple query has been answered. In more complicated cases, e.g. “(X1 AND X2)
OR (X3 AND X4)”, the solution to each basic compound query can be written to a
unique bit in the GPU’s solution space; the bits can then be combined in each GPU
kernel as needed (through bit-shifts) to form the solution to the query.

From a lower level, DP-BIS answers the first simple range with the kernels outlined
in Algorithms 1 and 2. These kernels perform unconditional writes to the compound
range query’s solution space. More specifically, all threads “initialize” this solution
space with the first simple range query’s solution. All subsequent simple range queries,
however, utilize logic-based (AND, OR, etc.) derivatives of these kernels. These logic-
based kernels only differ from the kernels outlined in Algorithms 1 and 2 in the final
write operation each thread performs (lines 5, 9, and 12, and lines 6, 10, and 13 respec-
tively). These changes, shown in table 2, ensure that each thread, logically combines
the current simple range query’s solution with the existing compound range query’s so-
lution. Section 6.2 demonstrates the implementation and performance of this approach.
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Column Size (-in millions of rows-)
50 100 145 200 250 300 350

Base Data Size (-in MB-) 200 400 580 800 1000 1200 1400
DP-BIS Index Size (-in MB-) 450 900 1305 1800 2250 2700 3150

Index Build Time (-in minutes-) 1.22 2.65 4.12 5.82 7.49 9.37 11.36
Table 3. This table shows the index sizes and DP-BIS index build times for each column used in
our tests. The size for the DP-BIS index includes the size for the encoded data table, as well as
the size for the OrBiC base and row identifier data tables. All times represent an average build
time calculated from ten test builds.

5 Datasets, Index Strategies, and Test Setup

In this section we describe the datasets and index strategies we use in our performance
analysis. We discuss testing parameters at the end of this section.

All tests were run on a desktop machine running the Windows XP operating sys-
tem with SP2. All GPU kernels were run utilizing NVIDIA’s CUDA software: drivers
version 1.6.2, SDK version 1.1 and toolkit version 1.1. Our hardware setup consists of
an Intel QX6700 quad-core multiprocessor, 4 GB of main memory, and a SATA storage
system that provides 70 MB/s sustained data transfer rates. The GPU co-processor we
use is NVIDIA’s 8800GTX. This GPU provides 768 MB of memory and can manage
over 12,000 concurrent execution threads.

5.1 Datasets

We use two datasets in our analysis. The first dataset is produced by a scientific simula-
tion modeling the combustion of hydrogen gas in a fuel burner. This dataset consists of
seven columns where each subsequent column increases in row size: 50 million rows for
column one, 100 million rows for column two,. . . , 350 million rows for column seven.
We use this dataset in Section 6.1 to measure and compare the effect that increasing
column size has on processing and I/O performance.

The second dataset we use is synthetically produced. This dataset consists of 7
columns each with 50 million rows. Each column consists of a series of randomly se-
lected, randomly distributed values from a range of floating point values [-32767.0,
32767.0]. In Section 6.2 we answer a series of compound range queries over this data.
This experiment measures and compares the processing and I/O costs of finding the
union or intersection between an increasing number of columns.

In both datasets, the records consist of 32-bit floating point data. The time to build
the DP-BIS index for each column in our datasets is shown in Table 3; note the cost in
time to build the indices scales well with the increasing size of the base data. In this
table, the size for the DP-BIS index includes the size for the encoded data table, as well
as the size for the OrBiC base and row identifier data tables.

5.2 Index Strategies

In our tests, we evaluate the I/O and processing performance of two indexing strategies:
DP-BIS and the projection index. We independently evaluate the concurrency each in-
dex affords by implementing and testing the performance of a CPU-based and a GPU-
based version of the index.
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The CPU-based DP-BIS index is implemented on a multi-core CPU that contains
four CPU cores. In this implementation, the work of answering the query is divided
separately and equally over each CPU core through the use of Pthreads [41]; here each
CPU core is assigned an individual thread and a portion of the DP-BIS low-resolution
and full-resolution data to evaluate.

The GPU-based DP-BIS index is implemented on a GPU using the constructs of the
data parallel programming language CUDA. This implementation is directly based on
the method presented in Section 4.4.

The CPU projection index begins by reading each full-resolution column into CPU
memory space. The query is answered by simply performing comparisons on the ar-
ray(s) without any additional data structure. We use this strategy in our tests because it
provides a good baseline for assessing performance.

The GPU projection index is similar to the CPU projection index, with the exception
that the full-resolution columns are read into GPU memory space. Additionally, all
indexed values in a given column are simultaneously evaluated in parallel by the query.
This indexing strategy supports the same level of concurrency offered by DP-BIS (i.e.
each thread evaluates a single record), but does not provide the benefits of encoding.
On the other hand, this index approach does not require performing candidate checks;
a procedure that requires additional computation and read requests to GPU memory.

5.3 Test Setup

To ensure that all queries reflect cold-start, cold-cache behavior, we force all read op-
erations to bypass the OS cache to prevent Windows-based data caching. Therefore, all
performance times, unless otherwise stated, are based on the complete time to answer
the query. This time measurement, which we refer to as the query’s “total performance
time”, includes:

1. Disk access and data transfer times (including the cost for allocating necessary
memory on the CPU and GPU),

2. time to upload data to the GPU (not applicable for the CPU-based index),
3. the time to answer a query on the uploaded data, and
4. the time to download the solution from the GPU to the CPU (again, not applicable

for the CPU-based index).

In our performance analysis, we divide this total performance time into two separate
time metrics, based on work-related tasks. The first time we refer to as the “I/O perfor-
mance time”. This time includes the time to perform all data transfers and memory
allocation: numbers 1, 2, and 4 from the list above. The second time, which we refer
to as “processing performance time”, includes the time to perform all computation-
related work (number 3 from the list above). In our experiments realized total, I/O, and
processing performance times are recorded individually, and simultaneously. Finally,
unless specified, each reported performance value represents the mean value calculated
from 25 separate test runs.

6 Query Performance

Typically, when answering a simple or compound range query over a large amount of
data, far more time is spent accessing and transferring data than computing the query’s
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Indexing Method Mean Time Spent Transferring Data Mean Time Spent Answering the Query
-as a percentage of the total time- -as a percentage of the total time-

CPU-Projection 96.70 ± 0.19 3.30 ± 0.19
GPU-Projection 99.48 ± 0.26 0.52 ± 0.26
DP-BIS (GPU) 98.13 ± 1.03 1.87 ± 1.03
DP-BIS (CPU) 93.33 ± 0.7 6.67 ± 0.7

Table 4. This table shows how the total performance time for each index strategy is composed
based on I/O-related workloads, and compute-based workloads. Each value in this table rep-
resents the mean percentage of time observed for a given index strategy, based upon all tests
performed in Figure 2.

solution. The performance of such I/O-intensive tasks are commonly limited by data
transfer speeds. This I/O-based performance bottleneck is an especially significant chal-
lenge for multi-core architectures, like GPUs, where processing rates can far exceed
bandwidth speeds [37].

We demonstrate in this section how the strategy behind DP-BIS presents one way to
ameliorate this I/O-based performance bottleneck. By operating primarily on encoded
data, the DP-BIS index significantly reduces the effects of this bottleneck, and uses CPU
and GPU memory resources more efficiently. Additionally, the level of concurrency
afforded by DP-BIS facilitates a full utilization of the thread-level parallelism provided
by both multi-core CPU and GPU architectures. In this section we demonstrate the
benefits of this concurrency by directly comparing processing performance times for
CPU and GPU-based DP-BIS implementations. From this comparison, we show that
the GPU-based implementation accelerates processing performance by a factor of 8X
over the CPU-based implementation.

6.1 Answering a Simple Range Query

In our first performance evaluation, each index strategy answers a series of seven sim-
ple range queries, where each query operates on one of our scientific dataset’s seven
columns. In this dataset, the size of each subsequent column increases: 50 million rows,
100 million rows,..., 350 million rows.

In these experiments, we expect both CPU and GPU-based DP-BIS index to answer
a simple range query using approximately 75% less time than either the CPU or GPU
projection index strategies. We base this expectation on the fact that DP-BIS primarily
utilizes 8-bit low-resolution data, whereas the projection index strategies utilize 32-bit
full-resolution data. We additionally expect that the GPU-based DP-BIS index will be
very competitive, with respect to computational performance, with the GPU projection
index. This expectation is based on the fact that both strategies support the same level
of concurrency: a one-to-one mapping of threads-to-records.

Analysis Figure 2(a) shows the realized total performance time of each index strategy.
These performance times show that both DP-BIS implementations answer queries ap-
proximately 3X faster than both the GPU and CPU projection index. Table 4 shows how
these total performance times are composed based on I/O and processing performance.
Note values in Table 4 represent the average I/O and processing performance times real-
ized for each index strategy based on the performance observed for all columns. Table 4
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Fig. 2. Here, (a) shows the total performance times for our three indexing strategies. In contrast (b)
shows, based on the data from the same test series, only the processing performance time for each
index. Side by side, these figures show how performance is effected by I/O plus computational
workloads versus pure computational work.

confirms the majority of time spent answering a simple range query is used to transfer
data; each index uses over 93% of their total performance time for I/O-related tasks.

Note the GPU projection index and GPU-based DP-BIS index support the same
level of concurrency when answering a simple range query. When performing this task
we know both indexing strategies spend the vast majority of their time transferring
data. We conclude that the disparity in total performance time experienced by the GPU
projection index is directly attributable to an I/O-based performance bottleneck. This
experiment illustrates the benefit of the encoding-based compression utilized by DP-
BIS to accelerate the process of transferring data, and therefore the task of answering a
selection query.

Aside from the performance benefits offered by DP-BIS, Figure 2(a) also highlights
the benefits DP-BIS provides for GPU memory space. The GPU projection index ex-
hausts all memory resources after columns have reached a size of 150 million rows.
In comparison, DP-BIS is able to continue answering queries on columns until they
reach in excess of 350 million rows. The data encoding DP-BIS utilizes thus provides
over 233% better utilization of GPU memory resources when compared to the GPU
projection index.

Figure 2(b) shows the processing performance times from our experiment; note that
the scale of the y-axis is log10. Label 2 in Figure 2(b) highlights a sharp loss in per-
formance for both the GPU-based projection index (between 50-100 million records)
and DP-BIS (between 100-145 million records). This performance loss is due to a GPU
implementation detail associated with how the query’s solution is written for columns
containing in-excess of 95 million (for the projection index) or 145 million (for DP-
BIS) rows. Specifically, for columns whose row numbers exceed these values, the GPU
projection index and DP-BIS can no longer store the query’s solution with a 32-bit vari-
able type (due to limited memory resources); instead an 8-bit variable type is utilized to
conserve space. Writing 8-bit data to the GPU’s global memory incurs significant per-
formance penalties for both indexing strategies (as Label 2 highlights). Note however
that based on the data in Table 4, this processing performance loss minimally impacts
the total performance time for either of these two indexing strategies.
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Figure 2(b) shows that before this performance loss, the GPU-based DP-BIS index
answers queries up to 13X faster than the CPU projection index, 8X faster than the
CPU-based DP-BIS index, and (for columns containing more than 95 million records)
3.4X faster than the GPU projection index. After this loss in performance, the GPU-
based DP-BIS index outperforms the CPU-based projection and DP-BIS index by 4.9X
and 3X respectively.

The concurrency afforded by DP-BIS is evident in comparing the processing per-
formance times for the CPU-based and GPU-based implementations. The GPU-based
DP-BIS index answers the query up to 8X faster than the CPU-based implementation.
This acceleration in processing performance is a direct consequence of the GPU’s in-
creased thread-level parallelism over the multi-core CPU. Accelerated processing per-
formance times are critical for many scientific applications, e.g. query-driven visualiza-
tion (QDV) [38–40], where data can be presumed to be read once, cached by the OS,
and queried repeatedly during analysis stages. In these applications, user workloads are
driven more by processing performance times, which make up a larger percentage of
the analysis workload, then by disk access times. For these applications, GPU-based
implementations of DP-BIS provide significant performance benefits.

6.2 Answering a Compound Range Query

In this second performance evaluation, we use both indexing strategies to answer seven
separate compound range queries. The columns our queries evaluate are taken from
our synthetic dataset, where each column contains 50 million rows. In this series of
tests, each subsequent query will constrain an additional column; in the final test, each
index strategy will answer a query constraining seven columns. In this experiment, we
perform this series of tests twice: once where we find the intersection, and once where
we find the union of all columns queried. We refer to these logic-based series of tests as
conjunction (X1

∧
X2

∧
...

∧
X7), and disjunction (Y1

∨
Y2

∨
...

∨
Yn) tests.

We expect to see some level of disparity in processing performance times between
the conjunction and disjunction tests. This expectation is based on the fact that, in our
kernels, identifying the intersection between two records requires slightly more com-
putational overhead than identifying their union. We additionally note on these tests
that the GPU-based DP-BIS implementation will not require a variable change for the
GPU’s solution space. More specifically, 50 million rows is a comparatively small so-
lution space and therefore DP-BIS will be able to utilize the more efficient 32-bit data
type throughout the entire experiment. As a result, we expect DP-BIS will maintain
its performance trend and not suffer the performance drop highlighted by Label 2 in
Figure 2(b) from the previous experiment.

Analysis Figure 3(a) shows the total performance times of all index strategies for both
the conjunction and disjunction tests. In both experiments, the DP-BIS implementations
answer compound range queries some 3–3.7X faster than the projection strategies. Note
that Figure 3(a) shows no disparity between the conjunction and disjunction tests; such
performance disparities are processing based and are more easily revealed in the pro-
cessing performance times, shown in Figure 3(b).

Figure 3(b) highlights several important trends. First, as expected, the conjunction
tests require more time to answer than the disjunction tests: 5–7% more time for the
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Fig. 3. Here, (a) shows the total performance times for our three indexing strategies when they
perform a series of conjunction and disjunction tests. In contrast (b) shows, based on the data
from the same test series, only the processing performance time for each index.

CPU projection index, and 20–27% more time for the CPU and GPU-based DP-BIS in-
dex. This performance trend is not readily seen in the GPU projection index; the lack of
data points, due to exhausted memory resources (Label 1), obscures this performance
disparity. Label 2 in Figure 3(b) highlights the loss of performance experienced by
the GPU projection index due to the variable type change made in the GPU’s solution
space (see Section 6.1). In comparison, DP-BIS does not require such a change to the
solution pace. Unlike the experiments performed in Section 6.1 (see Figure 2(b)), the
smaller solution space employed by these tests (50 versus 350 million rows) enables
DP-BIS to consistently use the more efficient 32-bit variable type. Finally, the process-
ing performance benefits for a GPU-based implementation of DP-BIS are clearly seen
in Figure 3(b); the GPU-based implementation of DP-BIS is 8X faster then the CPU-
based implementation.

7 Conclusions
In the next decade, the evolution and predominance of multi-core architectures will sig-
nificantly challenge and change the way data processing is done in the database commu-
nity. As CPUs rapidly continue to become more like parallel machines, new strategies
must be developed that can fully utilize the increasing thread-level parallelism, and thus
the processing capabilities, of these architectures.

In presenting DP-BIS, we provide a parallel indexing data structure that will scale
effectively with the future increase of processor cores on multi-core architectures. We
also provide a parallelizable encoding-based compression strategy that enables DP-BIS
to significantly reduce the I/O overhead associated with answering a range query.

We are currently developing a nested binning strategy (i.e., binning the records con-
tained in bins) that will enable DP-BIS to provide even further processing and I/O per-
formance benefits. Related to this work, we are additionally optimizing DP-BIS perfor-
mance with the development of a two-level cache: one cache for the GPU and one for
the CPU. This two-level cache will increase DP-BIS I/O performance by caching more
frequently used boundary bin data in the GPU cache, and less frequently used bound-
ary bin data in a larger CPU cache. Finally, we are integrating DP-BIS with several
scientific data formats (netCDF, and HDF) to generate a new query API. This API will
enable users to efficiently generate complex selections on netCDF and HDF datasets.
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A survey of general-purpose computation on graphics hardware. Computer Graphics Forum
26 (2007) 80–113

36. Lieberman, M.D., Sankaranarayanan, J., Samet, H.: A fast similarity join algorithm using
graphics processing units. In: Proc. of ICDE. (2008) 1111–1120

37. NVIDIA Corporation: NVIDIA CUDA compute unified device architecture programming
guide. http://developer.nvidia.com/cuda (2007)

38. Bethel, E.W., Campbell, S., Dart, E., Stockinger, K., Wu, K.: Accelerating network traffic
analysis using query-driven visualization. In: Proc. of the Symposium on Visual Analytics
Science and Technology. (2006) 115–122

39. Stockinger, K., Shalf, J., Wu, K., Bethel, E.W.: Query-driven visualization of large data sets.
In: Proc. of IEEE Visualization. (2005) 167–174

40. Gosink, L., Anderson, J.C., Bethel, E.W., Joy, K.I.: Variable interactions in query driven
visualization. In: IEEE Trans. on Visualization and Computer Graphics. Volume 13. (2007)
1400–1407

41. Nichols, B., Buttlar, D., Farrell, J.P.: Pthreads Programming. O’Reilly, 101 Morris Street,
Sebastopol, CA 95472 (1998)




