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Resource Allocation with Unknown Constraints: An Extremum Seeking
Control Approach and Applications to Demand Response*

Kai Ma1, Guoqiang Hu1, and Costas J. Spanos2

Abstract— This paper studies a resource allocation problem
with unknown functions in the constraints. The resource alloca-
tion problem is formulated as a nonlinear optimization problem.
A sufficient condition is established to guarantee a unique global
optimal solution in the optimization problem, and an extremum
seeking control (ESC)-based primal-dual algorithm is developed
to generate the optimal solution. To implement extremum
seeking, the gradients of the unknown functions are estimated
by adding dither signals to the measurable inputs and outputs.
We prove the semi-globally practically asymptotically (SPA)
stability of the ESC-based primal-dual algorithm. The results
are further applied to the demand response program with
distributed heating ventilation air conditioning (HVAC) systems
with unknown relationship between the temperature settings
and the power consumption. Simulation results demonstrate
that the ESC-based primal-dual algorithm converges to a
neighborhood of the optimal solution and achieves the balance
between supply and demand in electricity markets.

I. INTRODUCTION

A. Motivation

Resource allocation has been an active topic in the re-
search of networked system, such as power systems [1],
[2], communication networks [3]–[5], and building systems
[6], [7]. Generally, the objective of resource allocation is
to optimize the social welfare under the resource limitation.
Both the efficiency and the robustness of the system can be
improved by optimizing the distribution of resource. To make
it applicable to large-scale systems, distributed algorithms are
required to search for the optimal resource allocation strate-
gies. For example, a primal-dual algorithm was developed
to generate the optimal solution for a convex optimization
problem [8], a better response strategy was proposed to
search for the Nash equilibrium of a noncooperative game
[9], and a local replicator dynamics was given for learning
in evolutionary game theory [10]. The existing literature on
resource allocation usually assume that the constraints are
exactly known, which is reasonable when physical operations
are not included in the resource allocation model. In fact, the
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physical operations can not be ignored in many applications,
such as the wind turbine speed regulation for the wind energy
conversion system, the transmission power allocation for the
wireless transmitter, and the temperature setting adjustment
for the heating ventilation air conditioning (HVAC) system.
Typically, the relationship between the physical operations
and resource consumption is unknown. In that case, we have
the unknown constraints in the resource allocation model.
However, few papers are devoted to the resource allocation
problem with unknown constraints. In this study, we use
the extremum seeking control (ESC) method to solve this
problem and apply it to the demand response program.
Specifically, we add dither signals to the input and output
of the equipment and measure the operation states and the
resource consumption to estimate the gradients of the un-
known functions. The novelty of this work is two-fold. First,
we develop a distributed ESC-based primal-dual algorithm
to generate the optimal solution of an optimization problem
with unknown functions in the constraints. Second, we apply
the ESC-based primal-dual algorithm to the demand response
program with unmodeled appliances. To the best of our
knowledge, this is the first work to use ESC in the research
of primal-dual algorithm and also the first application of ESC
to demand response.

B. Related Works

ESC is an adaptive learning method to search for the
optimal solution of a model-free optimization problem [11]
and has been applied to the wind energy conversion system
[12], axial-flow compressor [13], photovoltaic system [14],
and so on. Recently, some works applied ESC to the non-
cooperative game [15] and the constrained convex optimiza-
tion with unknown utility functions [16]–[18]. However, It
has not been used for solving the optimization problem with
unknown functions in the constraints.

Distributed optimization has been used for modeling de-
mand response in smart grid. For example, noncooperative
game theory was utilized to study the cost minimization of
interactive consumers [19], [20] and the charging control
of plug-in electric vehicles (PEV) [21]–[23]. Stackelberg
game theory was employed to model the interactions be-
tween the consumers and the utility companies [24]. Convex
optimization was used for minimizing the total costs to all
consumers, which can be decomposed into the minimiza-
tion of the individual cost to each consumer. Then, the
power consumption and the price were adjusted based on
a distributed primal-dual algorithm [25]. The volatility of
electricity markets under real-time price (RTP) was studied
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based on the primal-dual algorithm [26]. Furthermore, the
operation constraints of appliances were introduced to the
optimization models [27], [28]. The common assumption in
the above works is that the relationship between the operation
strategy and the resource consumption of the appliance is
exactly known to the consumer. In fact, the relationship is
unclear because of many uncertainties in the operations, such
as external environments, operation conditions, and human
factors. Thus, the operation-to-consumption function that
relates the operation strategies and the power consumption
is unknown. In that case, the primal-dual algorithm given in
the above works can not be used for generating the optimal
strategies because of the dependence on the gradients of the
unknown functions.

C. Organization

The rest of the paper is organized as follows. Preliminaries
are given in Section II. In Section III, the resource allocation
problem is formulated as an optimization problem, which
is equivalent to a convex optimization problem given the
established conditions. Then, the ESC-based primal-dual
algorithm is developed, and the semi-globally practically
asymptotically (SPA) stability is proved. Section IV applies
the ESC-based primal-dual algorithm to the demand response
program with distributed HVAC systems. Numerical results
are shown in Section V, and conclusions are summarized in
Section VI.

II. PRELIMINARIES

In this section, we introduce some notations and defini-
tions that will be used in the paper. Given a vector x, we
define ∥x∥ denotes the Euclidean norm and x ∈ L∞ denotes
∥x∥L∞ = ess supt≥0∥x(t)∥< ∞.

Definition 1: [29] A continuous function β : R+×R+ →
R+ is of class K L if it is nondecreasing in its first argument
and converging to zero in its second argument.

Definition 2: [30] A vector function f (x,ε) ∈ Rn is said
to be O(ε) if for any compact set D if there exist positive
constants k and ε such that ∥ f (x,ε)∥ ≤ kε , for ε ∈ (0,ε∗],
x ∈ D .

Definition 3: [30] Given a parameterized family of sys-
tems:

ẋ = f (t,x,ε), (1)

where x ∈ Rn, t ∈ R+, and ε ∈ Rl
+ are the state vector, time

variable, and parameter vector, respectively. The system (1) is
said to be SPA stable, uniformly in (ε1, . . . ,ε j), j ∈ {1, . . . , l},
if there exists β ∈ K L and constructed parameters ε =
(ε1, . . . ,εl) such that

∥x∥ ≤ β (∥x(0)∥,(ε1 · ε2 · · · · · εl)(t − t0))+ v,

for all t ≥ t0, where the constructed parameters ε and the
initial state vector x0 = x(t0) satisfy: For each pair of strictly
positive real numbers (∆,v), the initial state ∥x(0)∥ ≤ ∆
and there exist real numbers ε∗k = ε∗k (∆,v) > 0,k = 1, . . . , j
and for each fixed εk ∈ (0,ε∗k ),k = 1, . . . , j there exist εi =
εi(ε1, . . . ,εi−1,∆,v), with i = j+1, . . . , l.

Definition 4: [31] The Taguchi loss function is a statistical
method that captures the cost to society due to the manufac-
ture of imperfect products. The loss function is given as

V = γ(y− ŷ)2,

where y is the value of quality characteristic, ŷ is the target
value of y, V is the loss in dollars, and γ is a constant
coefficient. The quadratic representation of the loss function
is minimum at y = ŷ, increases as y deviates from ŷ. The
Taguchi loss function defines the relationship between the
economic loss and the deviation of the quality characteristic
from the target value. For a product with target value ŷ,
ŷ±∆0 represents the deviation at which functional failure
of the product occurs. When a product is manufactured with
the quality characteristic at the extremes, ŷ+∆0 or ŷ−∆0,
some countermeasure must be undertaken by the customers.
Assuming the cost of countermeasure is A0 at ŷ + ∆0 or
ŷ−∆0, we define the constant γ as

γ =
A0

∆2
0
.

Lemma 1: [29] Suppose that W : [0,∞)→ R satisfies

D†W (t)≤−αW (t)+ γ(t),

where D† denotes the upper Dini derivative, α is a positive
constant, and γ(t) ∈ L∞. Then,

∥W (t)∥ ≤ e−αt∥W (0)∥+α−1∥γ(t)∥L∞ .

III. MAIN RESULTS

A. Problem Formulation

We consider a networked system consisting of N con-
sumers that are served by a single resource coordinator. Sup-
pose that consumer i (i ∈N= {1, . . . ,N}) has Ki equipments,
the set of operation strategies for the equipments are denoted
as xi = (xi,1, . . . ,xi, j, . . . ,xi,Ki)

T, where xi, j is operation strat-
egy of consumer i on equipment j ( j ∈Ki = {1, . . .Ki}). For
each equipment, the consumer has a cost function ci, j(xi, j)
that denotes the discomfort caused by changing the normal
operation strategy xn

i, j to the actual operation strategy xi, j and
an operation-to-consumption function fi, j(xi, j) that defines
the relationship between the operation strategy and the
resource consumption of the equipment. We denote xmin

i, j and
xmax

i, j as the lower limit and the upper limit of the operation
strategy of consumer i on equipment j, respectively. The cost
to the coordinator is represented by a function w(q), where
q is the resource supply.

The objective of resource allocation is to minimize the
total costs under the balancing constraints and operation
restrictions and can be formulated as the following optimiza-
tion problem:

(P1) maximize −τ
N

∑
i=1

Ki

∑
j=1

ci, j(xi, j)− (1− τ)w(q)

subject to
N

∑
i=1

Ki

∑
j=1

fi, j(xi, j) = q

xmin
i, j ≤ xi, j ≤ xmax

i, j , i ∈ N, j ∈Ki,
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where τ ∈ [0,1) is the parameter to achieve the desired
tradeoff between the costs to the consumers and the resource
coordinator. Without loss of generality, we assume that each
consumer has only one equipment. Then, (P1) is reduced to

(P2) maximize −τ
N

∑
i=1

ci(xi)− (1− τ)w(q)

subject to
N

∑
i=1

fi(xi) = q

xmin
i ≤ xi ≤ xmax

i , i ∈ N,

Before proceeding further, we give an assumption used in
this paper:

Assumption 1: ci(xi) and fi(xi) are convex on [xmin
i ,xmax

i ]
and w(q) is convex on [0,∞).

Generally, (P2) is nonconvex when fi(xi) is not an affine
function in the balancing constraints [32]. Next, we will give
the conditions to guarantee a unique global optimal solution
in (P2).

Theorem 1: The optimization problem (P2) has a unique
global optimal solution if w(q) is strictly increasing, and the
global optimal solution of (P2) is the same as the global
optimal solution of the following optimization problem:

(P3) maximize −τ
N

∑
i=1

ci(xi)− (1− τ)w(q)

subject to
N

∑
i=1

fi(xi)≤ q

xmin
i ≤ xi ≤ xmax

i , i ∈ N.
Proof: We first prove that (P2) has a unique global

optimal solution. (P2) is equivalent to

(P4) maximize −τ
N

∑
i=1

ci(xi)− (1− τ)w(
N

∑
i=1

fi(xi))

subject to xmin
i ≤ xi ≤ xmax

i , i ∈ N.

Taking the second derivative of w(∑N
i=1 fi(xi)) with respect

to xi, we obtain

d2w(∑N
i=1 fi(xi))

dx2
i

=
d2w(∑N

i=1 fi(xi))

d(∑N
i=1 fi(xi))2

· (
N

∑
i=1

d fi(xi)

dxi
)2

+
dw(∑N

i=1 fi(xi))

d(∑N
i=1 fi(xi))

· (
N

∑
i=1

d2 fi(xi)

dx2
i

).

Since w(·) is strictly increasing and convex and fi(xi)
is convex, we prove that d2w(∑N

i=1 fi(xi))/dx2
i > 0, i.e.,

w(∑N
i=1 fi(xi)) is convex. Combining with the convexity of

ci(xi), we prove that (P4) is a convex optimization problem.
Assuming x∗ is the unique global optimal solution of (P4),
we obtain a feasible solution of (P2) as (x∗,q∗), where
q∗ = ∑N

i=1 fi(x∗i ). Next, we use the mathematical induction to
prove that (x∗,q∗) is also the unique global optimal solution
of (P2).

Let −τ ∑N
i=1 ci(x′i)− (1− τ)w(q′) ≥ −τ ∑N

i=1 ci(x∗i )− (1−
τ)w(q∗) for some (x′i,q

′
i) ∈ {xi|∑N

i=1 fi(xi) = q,xmin
i ≤ xi ≤

xmax
i , i ∈ N}. Combining with q′ = ∑N

i=1 fi(x′i), we obtain
−τ ∑N

i=1 ci(x′i)−(1−τ)w(∑N
i=1 fi(x′i))≥−τ ∑N

i=1 ci(x∗i )−(1−

τ)w(∑N
i=1 fi(x∗i )) for some x′i ∈ {xmin

i ≤ xi ≤ xmax
i , i ∈ N},

which is contradictory to the unique global optimality of x∗i .
Then, we conclude that (x∗,q∗) is the unique global optimal
solution of (P2). Similarly, if (x∗,q∗) is the unique global
optimal solution of (P2) and q∗ = ∑N

i=1 fi(x∗i ), we can also
prove that x∗ is the unique global optimal solution of (P4).

Since ci(xi), fi(xi), and w(q) are all convex, (P3) is a
convex optimization problem that generates a unique global
optimal solution (x∗,q∗). Next, we will prove the global
optimal solution of (P3) is also the global optimal solution
of (P2). The Karush-Kuhn-Tucker (KKT) condition [32] of
(P3) is denoted as

−τ dci(xi)
dxi

|x∗i −λ ∗ d fi(xi)
dxi

|x∗i +µ∗
i −ν∗

i = 0

λ ∗− (1− τ) dw(q)
dq |q∗ = 0

λ ∗(∑N
i=1 fi(x∗i )−q∗) = 0

µ∗
i (x

min
i − x∗i ) = 0

ν∗
i (x

∗
i − xmax

i ) = 0
λ ∗ ≥ 0
µ∗

i ≥ 0
ν∗

i ≥ 0

(2)

where λ ∗, µ∗
i , and ν∗

i are the optimal Lagrangian multipliers.
Recalling that w(q) is strictly increasing and τ ∈ [0,1), we
obtain λ ∗ > 0 and ∑N

i=1 fi(x∗i )−q∗ = 0. The KKT condition
(2) can be reduced to

−τdci(xi)
dxi

|x∗i −(1−τ)dw(∑N
i=1 fi(xi))

d(∑N
i=1 fi(xi))

|x∗i ·
d fi(xi)

dxi
|x∗i +µ∗

i −ν∗
i =0

µ∗
i (x

min
i − x∗i ) = 0

ν∗
i (x

∗
i − xmax

i ) = 0
µ∗

i ≥ 0
ν∗

i ≥ 0

which is the KKT condition of (P4). Since (P4) is convex, the
KKT condition is the sufficient condition for the optimality.
Thus, x∗ is the global optimal solution of (P4). Following the
equivalence of (P2) and (P4), (x∗,q∗) is the unique global
optimal solution of (P2). Similarly, we can also prove that
the global optimal solution of (P2) is also the global optimal
solution of (P3) given the conditions in Theorem 1.

Theorem 1 shows that the optimal solution of (P2) can be
obtained by solving (P3) given the established conditions.
Since (P3) is a convex optimization problem, we can solve
it by the Lagrangian dual method [32]. The Lagrangian
function of (P3) is defined as

L(xi,q,λ ,µi,νi) =
N

∑
i=1

(−τci(xi)−µi(xmin
i −xi)−νi(xi−xmax

i ))

−λ (
N

∑
i=1

fi(xi)−q)− (1− τ)w(q),

where λ , µi, and νi are the Lagrangian multipliers. Specifi-
cally, λ can be seen as the unit price for resource consump-
tion, µi and νi are the ancillary variables, which ensure xi
to be within the interval [xmin

i ,xmax
i ]. Since the Lagrangian

function is concave in xi and q and convex in λ , µi, and

Page 4 of 11



νi, the saddle point of the Lagrangian function is the global
optimal solution of (P3). Then, we can transform (P3) into
the following individual optimization problems:

x∗i = argmax−τci(xi)−λ fi(xi)+µixi −νixi, (3)

and

q∗ = argmaxλq− (1− τ)w(q). (4)

The corresponding dual problems are defined as

λ ∗ = argmin
λ≥0

D(λ ,µi,νi), (5)

µ∗
i = arg min

µi≥0
D(λ ,µi,νi), (6)

and

ν∗
i = argmin

νi≥0
D(λ ,µi,νi), (7)

where D(λ ,µi,νi) = L(x∗i ,q
∗,λ ,µi,νi) is the dual function.

Then, the primal-dual algorithm corresponding to (3)–(7) are
given as

ẋi = kx
i (−τ

dci(xi)

dxi
−λ

d fi(xi)

dxi
+µi −νi), (8)

q̇ = kq(λ − (1− τ)
dw(q)

dq
), (9)

λ̇ = gλ [
N

∑
i=1

fi(xi)−q]+λ , (10)

µ̇i = gµ
i [x

min
i − xi]

+
µi
, (11)

ν̇i = gν
i [xi − xmax

i ]+νi
, (12)

where kx
i , kq, gλ , gµ

i , and gν
i are the adaptive gains. [ϕ ]+ψ = ϕ

if ϕ > 0 or ψ > 0, and [ϕ ]+ψ = 0 otherwise. In practice, (8)
models the dynamics of the operation strategy, (9) models
the dynamics of the resource supply, and (10) models the
dynamics of the resource price.

Remark 1: If τ is equal to 1 in (P2), the objective of
resource allocation is to minimize the costs to consumers
without considering the cost to the resource coordinator. The
resource allocation problem can be reformulated as

(P5) maximize −
N

∑
i=1

ci(xi)

subject to xmin
i ≤ xi ≤ xmax

i , i ∈ N,

which is also a convex optimization problem and can be
solved by the lagrangian dual method.

Remark 2: In practice, the operation-to-consumption
function may be a combination of multiple step functions.
In that case, we can employ the continuous convex function
to approximate it and obtain the optimal operation strategy
for the equipment. Then, the sub-optimal strategy can be
obtained by approximating the optimal operation strategy to
the step value.

  Resource

Coordinator

   Price 

+ ×

sin( )a tω sin( )tω

  Resource
 Consumption

  Resource
 Consumption

  Operation
      Strategy

Equipment

Consumer N

+ ×

sin( )a tω sin( )tω

  Operation
      Strategy

Equipment

Consumer i

+ ×

sin( )a tω sin( )tω

  Resource
 Consumption

  Operation
      Strategy

Equipment

Consumer 1

Fig. 1. ESC-based resource allocation scheme.

B. ESC-Based Primal-Dual Algorithm

The primal-dual algorithm needs the gradient information
of fi(xi), which is easy to obtain when fi(xi) is accurately
known to the consumers. In fact, the accurate formulations
are infeasible because of many unpredictable and time-
varying factors in the operations of the equipment. Next,
we utilize ESC to estimate the gradients of the unknown
operation-to-consumption functions. As shown in Fig. 1, the
core idea is to estimate the gradients by adding dither signals
to the inputs and outputs of the equipments. Then, the ESC-
based primal-dual algorithm is denoted as

˙̂xi = kx
i (−τ

dci(x̂i)

dx̂i
− λ̂ ξi + µ̂i − ν̂i), (13)

˙̂q = kq(λ̂ − (1− τ)
dw(q̂)

dq̂
), (14)

˙̂λ = gλ [
N

∑
i=1

fi(x̂i +asin(ωt))− q̂]+
λ̂
, (15)

˙̂µi = gµ
i [x

min
i − x̂i]

+
µ̂i
, (16)

˙̂νi = gν
i [x̂i − xmax

i ]+ν̂i
, (17)

ξ̇i = −ω̂c
i (ξi −

2
a

f̂i(x̂i +asin(ωt))sin(ωt)), (18)

where ω̂c
i is the adaptive gain, sin(ωt) is the dither signal,

a is the signal amplitude, and ξi is a filtered signal that
represents the gradient estimation of fi(xi). To separate the
dynamics of ξi from the other variables, we assume that ω̂c

i
is much larger than kx

i , kq, gλ , gµ
i , and gν

i . We denote that
ω̂c

i = ωLωc
i , kx

i = δωLωx
i , kq = δωLωq, gλ = δωLωλ , gµ

i =
δωLωµ

i , and gν
i = δωLων

i , where δ is a small scalar, ωL is a
positive, real number, and ωc

i , ωx
i , ωq, ωλ , ωµ

i , and ων
i are

positive and rational numbers. Different from the traditional
primal-dual algorithm, the ESC-based primal-dual algorithm
only requires to measure the input and output values of
fi(xi) without regard to the mathematical formulations. Next,
we will prove that the ESC-based primal-dual algorithm
converges to a neighborhood of the global optimal solution
of (P3).

Theorem 2: The ESC-based primal-dual algorithm (13)–
(18) is SPA stable at the global optimal solution of (P3) with
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respect to a, δ , and ωL if d2ci(xi)/dx2
i ≥ η1 for i ∈ N and

d2w(q)/dq2 ≥ η2, where η1 and η2 are positive scalars.
Proof: Let κ = ωLt, we obtain the ESC-based primal-

dual algorithm in the new time-scale κ:
dx̂i

dκ
= δωx

i (−τ
dci(x̂i)

dx̂i
− λ̂ ξi + µ̂i − ν̂i), (19)

dq̂
dκ

= δωq(λ̂ − (1− τ)
dw(q̂)

dq̂
), (20)

dλ̂
dκ

= δωλ [
N

∑
i=1

fi(x̂i +asin(ωt))− q̂]+
λ̂
, (21)

dµ̂i

dκ
= δωµ

i [x
min
i − x̂i]

+
µ̂i
, (22)

dν̂i

dκ
= δων

i [x̂i − xmax
i ]+ν̂i

, (23)

dξi

dκ
= −ωc

i (ξi −
2
a

fi(x̂i +asin(ωt))sin(ωt)). (24)

According to the averaging theory [29], the dynamic
system with periodic disturbance can be approximated by
its average system:

dx̂A
i

dκ
= δωx

i (−τ
dci(x̂A

i )

dx̂A
i

− λ̂ Aξ A
i + µ̂A

i − ν̂A
i ), (25)

dq̂A

dκ
= δωq(λ̂ A − (1− τ)

dw(q̂A)

dq̂A ), (26)

dλ̂ A

dκ
= δωλ [

N

∑
i=1

hA
i − q̂A]+

λ̂ A , (27)

dµ̂A
i

dκ
= δωµ

i [x
min
i − x̂A

i ]
+
µ̂A

i
, (28)

dν̂A
i

dκ
= δων

i [x̂
A
i − xmax

i ]+ν̂A
i
, (29)

dξ A
i

dκ
= −ωc

i (ξ A
i − 2

a
f A
i ), (30)

where f A
i and hA

i are defined as

f A
i =

1
2π

∫ 2π

0
fi(x̂i +asin(ωt))sin(ωt)dt,

and
hA

i =
1

2π

∫ 2π

0
fi(x̂i +asin(ωt))dt.

Approximating fi(x̂i + asin(ωt)) with the Taylor series, we
have

2
a

f A
i =

1
aπ

∫ 2π

0
( fi(x̂i)+asin(ωt)

d fi(x̂i)

dx̂i

+
∞

∑
n=2

(asin(ωt))n

n!
dn fi(x̂i)

d(x̂i)n )sin(ωt)dt

=
d fi(x̂A

i )

dx̂A
i

+O f
i (a

2), (31)

and

hA
i =

1
2π

∫ 2π

0
( fi(x̂i)+asin(ωt)

d fi(x̂i)

dx̂i

+
∞

∑
n=2

(asin(ωt))n

n!
dnhi(x̂i)

d(x̂i)n )dt

= fi(x̂A
i )+Oh

i (a
2). (32)

Let α = δκ and substitute (31) and (32) into the average
system (25)–(30), we have the dynamic system in time-scale
α:

dx̂A
i

dα
= ωx

i (−τ
dci(x̂A

i )

dx̂A
i

− λ̂ Aξ A
i + µ̂A

i − ν̂A
i ), (33)

dq̂A

dα
= ωq(λ̂ A − (1− τ)

dw(q̂A)

dq̂A ), (34)

dλ̂ A

dα
= ωλ [

N

∑
i=1

( fi(x̂A
i )+Oh

i (a
2))− q̂A]+

λ̂ A , (35)

dµ̂A
i

dα
= ωµ

i [x
min
i − x̂A

i ]
+
µ̂A

i
, (36)

dν̂A
i

dα
= ων

i [x̂
A
i − xmax

i ]+ν̂A
i
, (37)

δ
dξ A

i
dα

= −ωc
i (ξ A

i − d fi(x̂A
i )

dx̂A
i

−O f
i (a

2)). (38)

The system (33)–(38) is the standard singular perturbation
form with fast dynamics ξ A

i when δ is small. “Freezing”
the dynamics (38) at the equilibrium ξ A∗

i = d fi(x̂A
i )/dx̂A

i +

O f
i (a

2), we obtain the reduced system:

dx̂r
i

dα
= ωx

i (−τ
dci(x̂r

i )

dx̂r
i

− λ̂ r(
d fi(x̂r

i )

dx̂r
i

+O f
i (a

2))

+µ̂r
i − ν̂r

i ), (39)
dq̂r

dα
= ωq(λ̂ r − (1− τ)

dw(q̂r)

dq̂r ), (40)

dλ̂ r

dα
= ωλ [

N

∑
i=1

( fi(x̂r
i )+Oh

i (a
2))− q̂r]+

λ̂ r . (41)

dµ̂r
i

dα
= ωµ

i [x
min
i − x̂r

i ]
+
µ̂r

i
, (42)

dν̂r
i

dα
= ων

i [x̂
r
i − xmax

i ]+ν̂r
i
, (43)

Next, we will prove the stability of the reduced
system. We assume that the optimal solution of
(P3) is denoted as (x∗i ,q

∗,λ ∗,µ∗
i ,ν∗

i ) and define
x̂r = (x̂r

1, . . . , x̂
r
i , . . . , x̂

r
N)

T, x̂r∗ = (x̂r∗
1 , . . . , x̂r∗

i , . . . , x̂r∗
N )T, x̂min =

(x̂min
1 , . . . , x̂min

i , . . . , x̂min
N )T, x̂max = (x̂max

1 , . . . , x̂max
i , . . . , x̂max

N )T,
µ̂r = (µ̂r

1, . . . , µ̂r
i , . . . , µ̂r

N)
T, µ̂r∗ = (µ̂r∗

1 , . . . , µ̂r∗
i , . . . , µ̂r∗

N )T,
ν̂r = (ν̂r

1, . . . , ν̂r
i , . . . , ν̂r

N)
T, ν̂r∗ = (ν̂r∗

1 , . . . , ν̂r∗
i , . . . , ν̂r∗

N )T,
x̃r = x̂r − x̂r∗, q̃r = q̂r − q̂r∗, µ̃r = µ̂r − µ̂r∗, ν̃r = ν̂r − ν̂r∗, and
λ̃ r = λ̂ r − λ̂ r∗, where “–” denotes element-wise operation.
We choose the following candidate Lyapunov function:

V = V1 +V2 +V3 +V4 +V5

=
1
2

x̃rTΦ−1x̃r +
1
2

µ̃rTΨ−1µ̃r +
1
2

ν̃rTΘ−1ν̃r

+
1

2ωq (q̃
r)2 +

1
2ωλ (λ̃

r)2,

where Φ = diag{ωx
i }, Ψ = diag{ωµ

i }, and Θ = diag{ων
i }

are diagonal matrices. Defining O f = (O f
1 , . . . ,O

f
i , . . . ,O

f
N)

T,
Oh = (Oh

1, . . . ,O
h
i , . . . ,O

h
N)

T, and RN = (1, . . . ,1) with |RN |=
N. Then, the derivative of the Lyapunov function along the
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reduced system (39)–(43) is denoted as

V̇ = x̃rT(−τ ĉ′(x̂r)− λ̂ r( f ′(x̂r)+O f (a2))+ µ̂r − ν̂r)

+µ̃rT[xmin − x̂r]+µ̂r + ν̃rT[x̂r − xmax]+ν̂r + q̃r(λ̂ r −

(1− τ)w′(q̂r))+ λ̃ r[RN f (x̂r)+RNOh(a2)− q̂r]+
λ̂ r ,

where c′(x̂r)=(dc1(x̂r
1)/dx̂r

1,. . .,dci(x̂r
i )/dx̂r

i ,. . .,dcN(x̂r
N)/dx̂r

N)
T,

f ′(x̂r) = (d f1(x̂r
1)/dx̂r

1,. . .,d fi(x̂r
i )/dx̂r

i ,. . .,d fN(x̂r
N)/dx̂r

N)
T,

f (x̂r) = ( f1(x̂r
1),. . ., fi(x̂r

i ),. . ., fN(x̂r
N))

T, and w′(q̂r) =
dw(q̂r)/dq̂r. Combining with µ̃rT[xmin − x̂r]+µ̂r ≤
µ̃rT(xmin − x̂r), ν̃rT[x̂r − xmax]+ν̂r ≤ ν̃rT(x̂r − xmax), and
λ̃ r[RN f (x̂r)+RNOh(a2)− q̂r]+

λ̂ r ≤ λ̃ r(RN f (x̂r)+RNOh(a2)−
q̂r), we obtain

V̇ ≤ x̃rT(−τ ĉ′(x̂r)− λ̂ r( f ′(x̂r)+O f (a2))+ µ̂r − ν̂r)

+µ̃rT(xmin−x̂r)+ν̃rT(x̂r−xmax)+q̃r(λ̂ r−(1−τ)w′(q̂r))

+λ̃ r(RN f (x̂r)+RNOh(a2)− q̂r).

At the global optimal solution of (P3), we have q̂r∗ =
RN f (x̂r∗), τRNc′(x̂r∗) = −λ̂ r∗RN f ′(x̂r∗) + RN µ̂r∗ − RN ν̂r∗,
and (1− τ)w′(q̂r∗) = λ̂ r∗. Then, the derivative of the Lya-
punov function can be further bounded by

V̇ ≤ −τ x̃rTc′(x̂r)+ τ x̃rTc′(x̂r∗)− x̃rTλ̂ r( f ′(x̂r)+O f (a2))

+x̃rT(µ̂r − ν̂r)− x̂rT(µ̃r − ν̃r)+(xmin)Tµ̃r

−(xmax)Tν̃r−x̃rT(µ̂r∗− ν̂r∗)+q̃rλ̂ r−(1− τ)q̃rw′(q̂r)

+(1− τ)q̃rw′(q̂r∗)− q̃rλ̂ r∗+ λ̂ r∗x̃rT f ′(x̂r∗)

−λ̂ r∗(RN f (x̂r)+RNOh(a2)− q̂r)

+λ̂ r(RN f (x̂r)+RNOh(a2)− q̂r)

= −τ x̃rTc′(x̂r)+ τ x̃rTc′(x̂r∗)

−(1− τ)q̃rw′(q̂r)+(1− τ)q̃rw′(q̂r∗)

−x̃rTλ̂ r( f ′(x̂r)+O f (a2))+ λ̂ r∗x̃rT f ′(x̂r∗)

+λ̃ r(RN f (x̂r)−RN f (x̂r∗))+ λ̃ rRNOh(a2)

−x̂r∗Tµ̃r + x̂r∗Tν̃r +(xmin)Tµ̃r − (xmax)Tν̃r. (44)

Using the Mean Value Theorem [33], we have

RN f (x̂r)−RN f (x̂r∗) = x̃rT f ′(x̂m1), (45)

where x̂m1 = (x̂m1
1 , . . . , x̂m1

i , . . . , x̂m1
N )T such that x̂m1

i ∈ [x̂r
i , x̂

r∗
i ]

or x̂m1
i ∈ [x̂r∗

i , x̂r
i ]. Substituting (45) into (44), we obtain

V̇ ≤ −τ x̃rTc′(x̂r)+ τ x̃rTc′(x̂r∗)

−(1− τ)q̃rw′(q̂r)+(1− τ)q̃rw′(q̂r∗)

−x̂r∗Tµ̃r + x̂r∗Tν̃r +(xmin)Tµ̃r − (xmax)Tν̃r

+λ̂ r x̃rT( f ′(x̂m1)− f ′(x̂r))+λ̂ r∗x̃rT( f ′(x̂r∗)− f ′(x̂m1))

+λ̃ rRNOh(a2)− x̃rTλ̂ rO f (a2). (46)

Following the Mean Value Theorem, we obtain

RN f ′(x̂r∗)−RN f ′(x̂m1) = (x̂r∗− x̂m1)AN f ′′(x̂m2), (47)

and

RN f ′(x̂m1)−RN f ′(x̂r) = (x̂m1 − x̂r)AN f ′′(x̂m3), (48)

where AN = diag{1, . . . ,1} with |AN | = N, x̂m2 =
(x̂m2

1 , . . . , x̂m2
i , . . . , x̂m2

N )T such that x̂m2
i ∈ [x̂m1

i , x̂r∗
i ]

or x̂m2
i ∈ [x̂r∗

i , x̂m1
i ], x̂m3 = (x̂m3

1 , . . . , x̂m3
i , . . . , x̂m3

N )T

such that x̂m3
i ∈ [x̂m1

i , x̂r
i ] or x̂m3

i ∈ [x̂r
i , x̂

m1
i ], and

f ′′(x̂r) = (d f ′1(x̂
r
1)/dx̂r

1,. . .,d f ′i (x̂
r
i )/dx̂r

i ,. . .,d f ′N(x̂
r
N)/dx̂r

N)
T.

Substituting (47) and (48) into (46), we have

V̇ ≤ −τ x̃rTc′(x̂r)+ τ x̃rTc′(x̂r∗)

−(1− τ)q̃rw′(q̂r)+(1− τ)q̃rw′( ˆqr∗)

−x̂r∗Tµ̃r + x̂r∗Tν̃r +(xmin)Tµ̃r − (xmax)Tν̃r

+λ̂ r∗(x̂r − x̂r∗)T(x̂r∗− x̂m1)RN f ′′(x̂m2)

+λ̂ r(x̂r − x̂r∗)T(x̂m1 − x̂r)RN f ′′(x̂m3)

+λ̃ rRNOh(a2)− x̃rTλ̂ rO f (a2). (49)

Combining with the convexity of fi(xi) and the pos-
itivity of λ̂ r and λ̂ r∗, we obtain λ̂ r∗(x̂r − x̂r∗)T(x̂r∗ −
x̂m1)RN f ′′(x̂m2)≤ 0 and λ̂ r(x̂r − x̂r∗)T(x̂m1− x̂r)RN f ′′(x̂m3)≤
0. Then, the derivative of Lyapunov function can be further
bounded by

V̇ ≤ −τ x̃rTc′(x̂r)+ τ x̃rTc′(x̂r∗)

−(1− τ)q̃rw′(q̂r)+(1− τ)q̃rw′( ˆqr∗)

−x̂r∗Tµ̃r + x̂r∗Tν̃r +(xmin)Tµ̃r − (xmax)Tν̃r

+λ̃ rRNOh(a2)− x̃rTλ̂ rO f (a2). (50)

Using the Mean Value Theorem, we have

RNc′(x̂r)−RNc′(x̂r∗) = c′′(x̂m4)Tx̃r, (51)

and
w′(q̂r)−w′(q̂r∗) = w′′(q̂m)q̃r, (52)

where x̂m4 = (x̂m4
1 , . . . , x̂m4

i , . . . , x̂m4
N )T such that x̂m4

i ∈
[x̂r

i , x̂
r∗
i ] or x̂m4

i ∈ [x̂r∗
i , x̂r

i ], q̂m ∈ [q̂r, q̂r∗] or q̂m ∈ [q̂r∗, q̂r],
c′′(x̂r)=(dc′1(x̂

r
1)/dx̂r

1,. . .,dc′i(x̂
r
i )/dx̂r

i ,. . .,dc′N(x̂
r
N)/dx̂r

N)
T, and

w′′(q̂r) = dw′(q̂r)/dq̂r. Substituting (51) and (52) into (50)
and combining with the convexity of ci(x̂r

i ) and w(q̂r), we
obtain

V̇ ≤ −τη1∥x̃r∥2 − (1− τ)η2(q̃r)2 +(xmin − x̂r∗)Tµ̃r

+(x̂r∗− xmax)Tν̃r + λ̃ rRNOh(a2)− x̃rTλ̂ rO f (a2),

≤ −2τη1ωx
minV1 −2(1− τ)η2ωqV4 +(xmin − x̂r∗)Tµ̃r

+(x̂r∗− xmax)Tν̃r + λ̃ rRNOh(a2)− x̃rTλ̂ rO f (a2),

where ωx
min = min{ωx

1 , . . . ,ω
x
N}, η1 and η2 are the lower

bounds of c′′i (x̂
r
i ) and w′′(q̂r). There exists a positive scalar

η∗ such that

η∗V = 2τη1ωx
minV1 +2(1− τ)η2ωqV4.

When η ∈ [0,η∗], we have

V̇ ≤ −ηV +(xmin − x̂r∗)Tµ̃r +(x̂r∗− xmax)Tν̃r

+λ̃ rRNOh(a2)− x̃rTλ̂ rO f (a2).

For sufficiently small a, there exists θ such that

θ
√

V ≥ (xmin − x̂r∗)Tµ̃r +(x̂r∗− xmax)Tν̃r

+λ̃ rRNOh(a2)− x̃rTλ̂ rO f (a2),

and
V̇ ≤−ηV +θ

√
V .
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Following Lemma 1, we have

∥V∥ ≤ e−
η
2 α∥W (0)∥+ 2

η
θ .

Let z̃r =(x̃r
1, . . . , x̃

r
N , µ̃r

1, . . . , µ̃r
N , ν̃r

1, . . . , ν̃r
N , q̃

r, λ̃ r)T, we obtain

∥z̃r∥ ≤
√

2ωmax∥W∥

≤
√

2ωmax(e−
η
2 α∥W (0)∥+ 2

η
θ),

where ωmax = max{ωx
1 , . . . ,ω

x
N ,ω

µ
1 , . . . ,ω

µ
N ,ων

1 , . . . ,ω
ν
N ,ωq,

ωλ}. Thus, the reduced system (39)–(43) is SPA stable with
respect to a.

Defining the boundary system as ex
i = ξ A

i − 2
a f A

i for i =
1, . . . ,N. According to (38), the boundary system is globally
asymptotically stable. Combining with the SPA stability of
the reduced system and Lemma 2 in [34], the average system
(25)–(30) is SPA stable with respect to a and δ in the κ-time
scale. Following the Lemma 1 in [34], the original system
(13)–(18) is SPA stable with respect to a, δ , and ωL.

IV. APPLICATIONS TO DEMAND RESPONSE WITH
DISTRIBUTED HVAC SYSTEMS

In this section, we apply the results to the demand response
program with inverter-based HVAC systems. The discomfort
costs to consumers can be denoted by the following Taguchi
loss function:

ci(Ti) = γi(Ti −T N
i )2,

where γi is a constant coefficient, Ti and T N
i are the actual and

normal temperature settings, respectively. Each consumer has
a temperature requirement denoted by T min

i ≤ Ti ≤ T max
i ,

where T min
i and T max

i are the minimal and maximal temper-
ature requirements of consumer i. In the demand response
program, we need to balance the total power consumption
and the supply in the sense of

N

∑
i=1

li = q,

where li is the power consumption of HVAC i, which is
determined by the actual temperature setting Ti. We assume
that the relationship between the actual temperature setting
and the power consumption can be defined by a convex
function li = fi(Ti). Then, the balancing constraints can be
denoted as

N

∑
i=1

fi(Ti) = q.

According to [35], the cost to the utility company is
denoted as

w(q) = ρ1q2 +ρ2q+ρ3,

where ρ1, ρ2, and ρ3 are positive cost coefficients.

+ × ×

×+

_

_

+

_

+

_+
_

+

+

_

_
__

_

_+

   Reference system:

temperature-to-power 

sin( )a tω sin( )tω 2/a

1( )f ⋅

( )Nf ⋅

M

M

g

s

λ

[ ]
+
⋅

λ̂

12(1 )− τ ρ 2(1 )− τ ρ

[ ]
+
⋅

[ ]
+
⋅

T

ik

s

2 iτγ

iT̂

iT̂

iT̂

iT̂

iT̂

N

iT

max

iT

min

iT

ig

s

µ

ig

s

ν

qk

s

Fig. 2. ESC-based primal-dual algorithm for demand response with
distributed HVAC systems.

Then, the demand response program with distributed
HVAC systems can be formulated as the following optimiza-
tion problem:

(P6) maximize −τ
N

∑
i=1

ci(Ti)− (1− τ)w(q)

subject to
N

∑
i=1

fi(Ti) = q

T min
i ≤ Ti ≤ T max

i ,

where τ is a parameter to achieve the desirable tradeoff
between the costs to the consumers and the utility company.
Following Theorem 1, (P6) has a unique optimal solution.

In general, the relationship between li and Ti is complex
because of the non-linear relationship among the charac-
teristic parameters, such as the power consumption, the
compressor frequency, the mass flow rate of refrigerant, the
cooling/heating capacity, and the temperature settings. The
analytical models for the power consumption at different
temperature settings are hardly to obtain, i.e., fi(Ti) is
unknown. The traditional gradient-based methods can not be
used for generating the optimal response strategies. Recently,
some calculation methods have been proposed to obtain the
power consumption of the HVAC at different temperature
settings [36], [37]. The calculation methods provide a refer-
ence system for the unmodeled HVAC system and make it
feasible to measure the temperature settings and the power
consumption. Thus, we can use the following ESC-based
algorithm to generate the optimal response strategies:

˙̂Ti = kT
i (−2τγi(T̂i −T N

i )− λ̂ ξi + µ̂i − ν̂i), (53)
˙̂q = kq(λ̂ −2(1− τ)ρ1q̂− (1− τ)ρ2), (54)

˙̂λ = gλ [
N

∑
i=1

fi(T̂i)− q̂]+
λ̂
. (55)

˙̂µi = gµ
i [T

min
i − T̂i]

+
µ̂i
, (56)

˙̂νi = gν
i [T̂i −T max

i ]+ν̂i
, (57)

ξ̇i = −ω̂c
i (ξi −

2
a

f̂i(T̂i +asin(ωt))sin(ωt)), (58)
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Following Theorem 2, the ESC-based algorithm (53)–(58)
is SPA stable with respect to a, δ , and ωL. We give the
schematic diagram of the ESC-based algorithm for demand
response in Fig. 2, where the ESC is used for estimating the
gradient of the temperature-to-consumption function.

V. NUMERICAL RESULTS

We consider a retail electricity market consisting of a sin-
gle utility company and 10 consumers with HVACs. Without
loss of generality, we assume that the HVAC is a cooler.
The normal temperature settings for all the consumers are
assumed to be 24◦C, and the cost functions of the consumers
are denoted as ci(Ti) = 10(Ti − 24)2. The temperature-to-
consumption functions are assumed to be li = φi(Ti − 30)2,
where φi varies with different consumers and the outdoor
temperature is 30◦C. The cost function of the utility company
is assumed to be w(q) = 0.1q2 +0.5q+2. The maximal and
minimal temperature settings are assumed to be 26◦C and
24◦C, respectively. The adaptive gains of the primal-dual
algorithm are defined as kx

i = 0.01, kq = 0.05, gλ = 0.1,
gµ

i = 0.1, and gν
i = 0.1. We set the parameters of the ESC

as a = 0.1, ω̂c
i = 2, and ω = 20. To evaluate the balance

between supply and demand, we define the matching errors:

E =
∑N

i=1 x̂i −q

∑N
i=1 x̂i

×100%.

The SPA stability is demonstrated in figures 3–5. It is
shown that the ESC-based primal-dual algorithm converges
to a neighborhood of the optimal temperature settings, the
optimal electricity supply, and the optimal price, respectively.
The matching errors versus the iterations of the ESC-based
primal-dual algorithm are shown in Fig. 6. It is shown that
the matching errors converge to a neighborhood of 0 and the
fluctuations are bounded within [-6%, +6%].

The costs to the consumers and the utility company versus
the tradeoff parameter are shown in Fig. 7. The costs to
the consumers decrease with τ , and the cost to the utility
company increases with τ . Therefore, different tradeoffs can
be achieved between the costs to the consumers and the
utility company by tuning the tradeoff parameter. As shown
in figures 8–10, we can obtain different temperature settings,
electricity supplies, and retail prices by changing τ . It means
that various market equilibriums can be achieved by tuning
the tradeoff parameter.

VI. CONCLUSIONS

In this study, we utilize ESC to study the resource allo-
cation problem with unknown functions in the constraints.
A distributed ESC-based primal-dual algorithm is developed
to generate the optimal resource allocation strategies. It is
shown that the ESC-based algorithm can converge to a
small neighborhood of the optimal solution. The algorithm
is further applied to the demand response with distributed
HVACs. It is also shown that the balance between supply
and demand is achieved and various market equilibriums can
be obtained by tuning the value of the tradeoff parameter.

As shown in the numerical results, the dither signals will
cause fluctuations to the system. Therefore, it is necessary
to study the impact of the frequencies of the dither signals
on the fluctuations. Furthermore, the ESC-based primal-dual
algorithm will be executed in a discrete form in practice. It
is meaningful to find the critical sampling rate to stabilize
the discrete-time primal-dual algorithm. For the applications
to demand response, the ESC-based primal-dual algorithm is
applied to the reference system of the HVAC. The objective
is to obtain the optimal power consumption and price in an
offline mode, which can be used by the consumers and the
utility company to set the electricity usage and pricing plans,
respectively. The actual electricity usage may not coincide
with the plan. In that case, the direct load control method
can be used as a supplement for load balancing. Another
interesting issue is to consider more complicated market
models with the integration of renewable power, which gives
a stochastic optimization problem.
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