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Acoustic propagation in shallow water environments is dominated by interactions

with the air/water and water/sediment interfaces, leading to complicated spatio-

temporal behavior of the acoustic field. This complexity has proven challenging to

the development of shallow ocean acoustic detection, communication, and tomo-

graphic applications. One approach to shallow ocean acoustics has been to combine

the physics of waveguides with thorough measurement and characterization of the

propagation environment to generate accurate acoustic models. However, the costs

of characterizing the environment often prove prohibitive. This dissertation devel-

ops self-adaptive methods for use in shallow ocean acoustic applications that require

no a-priori knowledge of the environment. In contrast to past trends that viewed

the complexity of the shallow ocean as a burden, these self-adaptive techniques

capitalize on the diversity of the propagation medium. Methods are developed for

using vertical geometry acoustic transducer arrays to extract information from the

sampled acoustic fields in a range-independent environment. In one scenario, the

acoustic response sampled between a pair of arrays is iterated to generate an esti-

mate for the response at longer ranges. In another scenario, a single array is used to

extract the modes of acoustic propagation in a range-independent waveguide using
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a single, partial water column spanning vertical array of acoustic transducers. The

mode extraction method is applied to both an ensemble of stationary broadband

sources as well as a moving narrowband source subject to arbitrary accelerations.

These methods are combined with existing time-reversal techniques to produce a

high resolution acoustic focus at an arbitrary location in the shallow ocean waveg-

uide. Simulation, laboratory and at sea experiments support the theory. Though

acoustic imaging applications are emphasized in this work, these methods may prove

useful for both communications and tomography applications as well.
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Chapter 1

Introduction

During the cold war, oceanographic research was dominated by a preoccupation with

locating nuclear-capable submarines in the deep ocean. More recently, conflicts be-

tween coastal nations, both military and social, have precipitated renewed emphasis

on research in the shallow ocean environment spanning the continental shelf. In par-

ticular, the rapid proliferation of computational technologies has opened the door

to a wide new range of acoustic-based environmental diagnostics. Consequently, in

addition to maintaining its indispensable role in submarine detection, the field of

shallow ocean acoustics has assumed a new relevance and priority in areas such as

communications, sea-floor mapping, mine location, tomography, and ocean biology.

Similar to a wide range of fields such as nondestructive testing, medical ultrason-

ics, multi-channel communications, seismic processing, adaptive optics, and radio

astronomy, shallow water acoustics problems involve propagating waves that carry

information to the boundaries of a minimally accessible, poorly known, complex,

noisy medium where they are detected [1]. Extracting a signal from noise can be

complicated, especially along a coastline filled with marine life, shipping lanes, un-

dersea waves, shelves, and fronts that scatter sound.

In order to develop an appreciation for the challenges and opportunities posed by

the shallow water acoustics, it is instructive to draw an analogy between the fields of

ocean acoustics (OA) and electromagnetism (EM) applied to source detection and

1
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communications where propagating waves transport information between a source

and a receiver. Source detection applications fall under the acronyms RADAR

(RAdio Detection and Ranging) and SONAR (SOund Navigation and Ranging) in

EM and OA respectively.

Table 1.1 presents a list of quantities fundamental to source detection and com-

munications in EM and OA. In both cases the working wavelengths are dictated by

human scales: ships, planes, transducers, and antennae are all on the order of a me-

ter. On the one hand, the wavelengths must be small enough to interact efficiently

with the transmitting, receiving, and reflecting devices. On the other hand, longer

wavelengths propagate farther than shorter wavelengths. As a result, the working

wavelengths are on the order of fractions of a meter. More importantly, they are

comparable in scale.

The propagation media, however, are quite different. While the EM case is

mainly concerned with electromagnetic waves propagating through the rarified gas

of the atmosphere, OA involves acoustic waves that propagate through salt water.

The disparity between the propagation speeds of these media require vastly disparate

working frequencies: GHz for EM and kHz for OA. One result of this disparity is

that while EM applications are often limited to incoherent methods, both coherent

and incoherent methods can be applied in OA. Furthermore, the ocean tends to

exhibit markedly greater complexity than the atmosphere. Scattering and reflection

from the boundaries of the shallow ocean present added challenges that must be

addressed. Additionally, variations of the refractive index tend to be much more

pronounced in the ocean, leading to greater refraction of the wavefronts over the

working range. Transmission times are also quite different between EM and OA

applications. In the EM case, the transmission time is so small that the atmosphere

can always be considered static. In the OA case, dynamic macroscopic changes

occur slowly enough, typically on the order of minutes to hours, that the ocean is

considered to be a static medium over the transmission time, which is limited to

seconds. Surface ocean waves, on the other hand, propagate quickly enough that
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their effect cannot generally be considered static. Because the scale of wave ampli-

tudes is generally small compared to the scale of the shallow ocean environment,

wave effects are often treated stochastically as dynamic perturbations resulting in

noise.

In any communications application, it is always important to consider bandwidth

effects. The normalized bandwidth of OA applications is orders of magnitude greater

than that of EM applications. Indeed, OA bandwidths can be considered extreme

by EM standards. As technology has progressed, EM communications has expanded

into ever more broadband regimes. With the trend toward increasingly broadband

EM applications expected to continue, the ultrabroadband methods of OA may

prove useful for adaptation to broadband EM applications.

Another important consideration is the Doppler shift resulting from relative mo-

tion of the source and receiver. For relative velocities small compared to the propa-

gation speed of the medium, Doppler frequency shifts are proportional to the Mach

number, v/c, where v is the relative velocity between the source and receiver, and

c is the propagation velocity of the medium. Though relatively small, the acoustic

Mach number characterizing OA applications is much much larger than the elec-

tromagnetic Mach number typical of EM applications. However, in OA, even small

Mach numbers lead to non-negligible Doppler complications.

At frequencies and intensities characterizing ocean acoustic SONAR and com-

munications applications, the acoustic pressure field is modeled with the linearized

fluid wave equation for a static medium,(
ρ(~r)∇ ·

(
1

ρ(~r)
∇
)
− 1

c(~r)

∂2

∂t2

)
p(~r, t) = S(~r, t), (1.1)

where S(~r, t) represents a source term. The sound speed, c(~r), and density, ρ(~r), of

the medium are considered functions of position. The boundary conditions dictate

the specificity and in turn the complexity of the model.

The accuracy and effectiveness of the model depend on the degree to which

the sound speed and density of the medium are known. Typically, the shallow

ocean environment is treated as a waveguide; the water column is modeled as a
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horizontally stratified medium bounded above by a pressure release surface and

below by a high impedance, high sound speed bottom whose depth may or may not

depend on range. The resulting acoustic field is complicated, comprising refracted,

and reflected components. Because they are nearly incompressible, the density of

the water and the various sediment layers are often considered constant. Whereas

its range variation is often negligible, the sound speed in water, being a function

of temperature and salinity, generally varies appreciably as a function of depth.

Measuring the sound speed of the water is a relatively simple undertaking, requiring

tens of temperature and salinity sensors spanning the depth of the water column.

Typical shallow ocean environments of interest range in depth from 20 to 300 meters.

More difficult to measure, and even more crucial, are the geo-acoustic properties

of the marine sediment. It is impractical and often impossible to comprehensively

probe the sediment. The costs associated with measuring the environment suf-

ficiently accurately to generate a useful acoustic propagation model have proven

prohibitive. One alternative to measuring the environment is to optimize for it. Us-

ing this approach, measured acoustic fields are matched to a guess generated from a

set of environmental parameters. However, this method is computationally limited

to a small number of parameters, making it impractical for all but the simplest

cases.

These limitations have motivated recent attempts to circumvent the need for

environmental knowledge, either through measurement or optimization, by extract-

ing an acoustic model directly from the measured acoustic signals themselves. This

self-adaptive approach to acoustics applications derives from the premise that the

acoustic field accumulates information about the medium as it propagates. Stated

mathematically, as an acoustic signal propagates it is convolved by the medium

though which it travels. By connecting the signal processing to the basic physics

of waveguide propagation, the goal has been to develop measurement and signal

processing techniques that facilitate the extraction of the environmental compo-

nents from measured acoustic signals. This dissertation discusses, develops, and
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expands on self-adaptive shallow ocean acoustic methods and applications to acous-

tic imaging. These self-adaptive techniques are directly applicable to the fields of

communication, and geo-acoustic inversion.

1.1 Time-reversal in the shallow ocean

One powerful and proven self-adaptive technique is time-reversal (TR). The time

symmetry of the wave equation in a static medium guarantees that for every solution,

p(~r, t), there exists a corresponding time conjugated solution, p(~r, t0 − t). Because

the medium is reciprocal, the point-to-point acoustic field traverses the same path

in either direction so that the field measured at one point due to an acoustic source

at the other is the same in either direction. By sampling the field due to a spatially

compact (point-like) acoustic source, termed a probe source (PS), with transducers

at many points and simultaneously rebroadcasting the time-reversed signals, it is

possible to reconstruct a spatially compact acoustic focus back at the probe source

location. The resolution of the focus approaches the diffraction limit. It is appli-

cable to all static environments, even those that are not azimuthally symmetric or

range independent. TR has been proven in shallow ocean applications and is quite

robust. Active research on TR is being conducted for detection and communications

applications [2].

In the shallow ocean, reflection and refraction by the surface and sediment bound-

aries effectively trap high angle components of the acoustic field in the water column

so that they propagate out in range. As demonstrated in Figure 1.1, reflection and

refraction at the boundaries results in a multi-path structure of the acoustic field.

Acoustic propagation in the shallow ocean can be thought of as arising from many

image sources covering a large virtual aperture. The virtual aperture effectively

samples a larger spectrum of the wavenumbers than would be sampled between sen-

sors in free space. The increased wavenumber diversity leads to high resolution in

the time-reversed field. At ranges long compared to the depth of the waveguide,
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the wavenumber content of the field is limited by the critical angle criterion of total

internal reflection, cos(θc) = cw

cb
, where θc is the critical angle, and cw and cb are

sound speeds characterizing the water column and bottom sediment respectively.

With slight modifications, the concept of an effective aperture applies more gen-

erally to environments in which the bathymetry and sound speed profile may be

mildly range dependent.

Typically, shallow ocean TR applications utilize linear vertical and/or horizontal

geometry transducer arrays to sample the wavenumber diversity. In the shallow

ocean, a vertical line array (VLA) is useful as it samples a large cross-section of

the acoustic field. Figure 1.2(a) depicts an experimental TR scenario. A VLA

measures the field from the probe source. The time domain field recorded over

the VLA resulting from a single broadband pulse is shown in Fig. 1.2(c). The

complex temporal structure of the measured field results from the refracted and

reflected components of the propagating field. Time-reversing the measured field

and rebroadcasting produces an acoustic focus back at the probe source location.

The focus, measured in this case by a second VLA at the source range, is displayed

in Fig. 1.2(b).

The ability to focus acoustic energy at a specific location in the water column

is what motivates the development of TR based applications. Because the time-

reversed signal is disperse in time, it possible to achieve very high SNR gains using

low intensity sources. Not only are low intensity sources more practical, their use also

reduces the impact on marine mammals and other marine wildlife associated with

high-intensity active SONAR. The ability to produce ensonify spatially compact

regions may prove useful in both directed SONAR and communications applications.

For example, a TR based SONAR system that has the ability to selectively scan for

targets would drastically reduce the effects of acoustic clutter. As a communications

application, the high resolution of TR could permit different messages, encoded in

the TR field, to be focused, with high SNR, simultaneously to different locations of

an underwater antenna, thereby increasing the data transfer rate.
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For all of their promise, current TR applications suffer from one major limitation:

the need for a probe source to broadcast from the desired focal spot. This require-

ment limits TR in the shallow ocean to highly controlled experimental applications.

The self-adaptive techniques developed in this dissertation, though applicable to

areas other than TR, have at their heart and as their main motivation, the aim of

expanding the situations to which TR can be applied.

1.2 Normal mode description of the acoustic field

To establish a foundation for the development of self-adaptive methods, an acous-

tic model is introduced. The theory is restricted to the case of linear phenomena

under the assumption of a static environment, so that linear wave equation in the

form of Eq. (1.1) defines the cannon. The static environment assumption does not

impose much of a restriction considering the disparity between the relevant time

scales. Whereas changes in oceanographic quantities, such as the sound speed and

density, occur on the order of several minutes to several hours, because of the high

value of the sound speed in water, acoustic propagation covers distances of kilome-

ters in a matter of a few seconds.

The theory is further restricted to the case of horizontally stratified propagation

media in which the sound speed and density are independent of range. By limiting

the scope to range-independent media, substantial analytic progress can be made

resulting in a model which predicts emergent range-invariant properties that mo-

tivate the development of the self-adaptive techniques that are the subject of this

dissertation. The obvious disadvantage is that range-dependent phenomena cannot

be modeled with this approach. Oceanographic observations show that the tem-

perature distribution, and hence the sound speed profile, of the shallow ocean tend

to be horizontally stratified, often remaining stable over many kilometers. Because

of the strong impedance mismatch at the water bottom interface, the assumption

of range-independence of the depth of the interface is much more critical. In sit-
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uations where the working range is much greater than the nominal depth of the

interface, the reflected components of the acoustic field assume added significance.

A particular component may experience many interactions with the interface over

the working range. The interface is well approximated as range-independent when

the variation of the interface depth over the working range is small compared to the

acoustic wavelength.

The following theoretical development is based on the normal mode derivation

presented in Chapter 5 of Ref. [3]. Though it considers the point-to-point acoustic

field between a single acoustic point source and a single receiver located in the water

column, the results are easily extended to collections of stationary point sources and

receivers. The added time component associated with a moving source complicates

matters considerably and is treated in Chapter 5. The prevailing geometry of point

sources and receivers in a horizontally stratified environment is most conveniently

addressed in cylindrical coordinates as azimuthal symmetry can be invoked to reduce

the analysis to 2 coordinates: range, r, and depth, z. Writing Eq. (1.1) for a point

source at (rs, zs) in cylindrical coordinates

1

r

∂

∂r

(
r
∂p

∂r

)
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
− 1

c2(z)

∂2p

∂t2
= −δ(r − rs)δ(z − zs)

2π(r − rs)
S(t). (1.2)

Applying the Fourier transform pair,

f̃(ω) =
1

2π

∫ ∞

−∞
f(t)e−iωtdt, (1.3)

f(t) =

∫ ∞

−∞
f̃(ω)eiωtdω,

where f(t) is an arbitrary function of time and its tranform, f̃(ω), is a function of

angular frequency, yields the Helmholtz equation in cylindrical coordinates,

1

r

∂

∂r

(
r
∂p̃

∂r

)
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p̃

∂z

)
+ k2(z)p̃ = −δ(r − rs)δ(z − zs)

2π(r − rs)
S̃(ω). (1.4)

k(z) ≡ ω
c(z)

is the magnitude of the acoustic wavenumber at depth z. Because it has

invoked transform (1.3), the solution of Eq. (1.4) is only rigorously valid at a single

frequency. Therefore, the resulting acoustic model is implicitely narrow band.
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Assuming a solution for the pressure field of the form p̃ = χ(r)φ(z) and using

the separation of variables technique yields

1

χ(r)

(
1

r

∂

∂r

(
r
∂χ(r)

∂r

))
+

1

φ(z)

(
ρ(z)

∂

∂z

(
1

ρ(z)

∂φ(z)

∂z

)
+ k2(z)φ(z)

)
(1.5)

= −δ(r − rs)δ(z − zs)

2π(r − rs)
S̃(ω).

Defining kr as the separation constant, the solution to the associated homogenous

equation is given by the following pair of equations,

ρ(z)
∂

∂z

(
1

ρ(z)

∂φ(z)

∂z

)
+
(
k2(z)− k2

r

)
φ(z) = 0, (1.6)

1

r

∂

∂r

(
r
∂χ(r)

∂r

)
+ k2

rχ(r) = 0. (1.7)

Eq. (1.6) is called the modal equation because it yields a discrete set of depth

dependent orthogonal mode functions. For the special cases of impenetrable bound-

aries, i.e. pressure release at the surface interface and either a pressure release

(zero impedance) or rigid (infinite impedance) bottom, the modal equation reduces

to a classical Sturm-Liouville eigenvalue problem. In this case the solutions form

a complete set of orthogonal eigenfunctions associated with a discrete set of real,

nondegenerate eigenvalues. The eigenvalues have the dimensions of wavenumber

and represent the radial component of the wavenumber of the pressure field. Each

eigenfunction and its associated eigenvalue characterize an acoustic mode. Physi-

cally, propagation at a discrete set of specific angles with respect to the air/water

and water/bottom interface surfaces results in constructive interference among the

reflected components. Propagation angles which support standing waves in the

vertical direction with respect to the boundaries lead to constructive interference

phenomena with an associated set of radial wavenumbers. These interference phe-

nomena are the modes. Each mode, then, has an associated propagation angle and

is characterized a vertical amplitude dependence (eigenfunction) and an associated

radial wavenumber (eigenvalue).
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Impenetrable boundaries, however, are an idealization that may or may not

be a good approximation to the physical ocean. Due to the extreme impedance

mismatch at the air-water interface, the ocean surface is well modeled as an im-

penetrable boundary. The impedance mismatch at the water-sediment interface, on

the other hand, though large, is generally not so drastic that it can be modeled

as an impenetrable surface. In the case of a penetrable bottom, Eq. (1.6) may

have solutions over a continuum of complex eigenvalues in addition to the set of

discrete, nondegenerate, real eigenvalues pertaining to the modal solutions. In this

case, the wavenumber spectrum of the eigenvalues comprises a continuous region

and a discrete region. As the sound speed profile characterizing typical marine sed-

iments is everywhere greater than the maximum sound speed of the water column,

the continuous region of the spectrum is significant for kr <
ω

cbmin
where cbmin is

the minimum sound speed characterizing the marine sediment. The discrete region

of the wavenumber spectrum falls in the range ω
cbmin

/ kr <
ω

cwmin
where cwmin is

the minimum sound speed characterizing the water column. The solutions associ-

ated with the discrete region of eigenvalues form an incomplete set of orthogonal

eigenfunctions. The discrete set of eigenvalues and their associated eigenfunctions,

labeled kn and φn(z) ({n = 1, 2, . . . , N}) respectively, define the modes of acoustic

propagation. As in the impenetrable boundary case, the discrete set of modes result

from constructive interference at a discrete set of angles. The labels are applied such

that k1 > k2 · · · > kN . This ordering results in eigenfunction φn(z) having m − 1

zero crossings. The modes are normalized such that∫ ∞

0

φ2
n(z)dz

ρ(z)
= 1. (1.8)

Figure 1.3 shows a schematic representation of the modal components. As the top

panel demonstrates the, the modes are characterized by a discrete set of propaga-

tion angles between the horizontal and a critical angle, θc ≈ arccos(cwmin/cbmin).

Field components propagating at angles steeper than the critical angle are partially

transmitted into the sediment. The bottom panel shows the modal depth depen-

dence. The modes are characteristically oscillatory in the water column and decay
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exponentially in the sediment. Also indicated are the wavenumbers associated with

each mode.

Returning to the inhomogenous problem, the full solution for the pressure field

can be written as a discrete sum over the modal solutions and an integration over the

continuum solutions, p̃ =
∑N

m=1 χn(r)φn(z) +
∫

continuum
. The continuum dominates

the near-field and becomes insignificant in the far field. Neglecting the continuum,

the pressure field at (r, z) due to an acoustic point source at (rs, zs) is written in

the far-field limit

p̃(R, z, ω) ' e
−iπ
4

8πρ(zs)

M∑
n=1

φn(z, ω)φn(zs, ω)
e−ikn(ω)R√
kn(ω)R

S̃(ω), (1.9)

where R ≡ |rs− r| is the absolute range separation. The frequency dependence has

been made explicit to facilitate the broadband considerations,

p(R, z, t− t0) =

∫ ∞

−∞
p̃(R, z, ω)eiω(t−t0)dω. (1.10)

Whereas in the narrowband limit the time domain acoustic field can be thought

of as a superposition of modal components that are spatially and temporally unlo-

calized, in broadband applications, modal propagation manifests as a superposition

of spatio-temporally localized modal group components. Over a finite bandwidth,

constructive interference about a given propagation angle results in a spatially lo-

calized coherent modal group of acoustic energy that propagates dispersively at a

constant velocity (the group velocity, vg). The full time domain pressure field due to

a broadband point source can be conceptualized as a synthesis of modal group com-

ponents. Indeed, modal groups are observed experimentally. For limited bandwidth,

the modal depth dependence is nearly constant so that the narrowband modal depth

dependence at the carrier frequency of the source signal, φn(z, ωc) (ωc is the source

signal carrier frequency) is well approximated by the depth dependence of the corre-

sponding modal group. Figure 1.4(a) shows a simulated example of finite bandwidth

modal propagation. Depicted is the envelope of the sampled time domain field due a

finite bandwidth point-source at a given range from the VLA. The depth dependen-

cies of the modal groups are evident. Notice both the intermodal and intramodal
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dispersion increase with mode number. Figure 1.4(b) shows an example of typical

modal group and phase velocity behavior as a function of frequency.

Revisiting TR focusing in a range-independent waveguide, the expected resolu-

tion of the focal spot can be elegantly estimated using normal mode theory. Fig-

ure 1.5 illustrates the physical basis underlying the focal resolution. Shown are

schematic representations of modal propagation both into the VLA (top panel) and

the TR field modal propagation away from the VLA (bottom panel). The vertical

extent of the source signal and the resulting focal spot are depicted on the right.

The spatial resolution of the focal spot depends on the number of modes arriving

back at the source location. The loss of the near-field contributions along with the

range attenuation of the propagating modes result in a reduction in resolution of the

focal spot compared to the initial source resolution. The depth and range extents

of the focal spot are approximately given by ∆z ≈ D/N and ∆R ≈ 2π/(k1 − kN)

respectively.

Thus from normal mode analysis under the assumption of range-independence

of the propagation medium emerges a set of robust, measurable field quantities that

offer the potential for the development of self-adaptive techniques for modeling the

acoustic field. This approach is particularly powerful in regimes supporting a small

number of modes where the acoustic field can be synthesized from a relatively small

number of modal components.

1.3 Applying self-adaptive acoustic modeling to

matched field signal processing

Modal based self-adaptive techniques provide opportunities for improving the

effectiveness of acoustic matched field signal processing applications. Matched field

processing (MFP) [4] encompasses a class of signal processing methods wherein a

measured acoustic field is matched to an acoustic model generated from a set of

parameters. Typically, the model is a function of one to many parameters that
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characterize the propagation medium and boundary conditions. A realization of a

particular parameter combination is called an acoustic replica. Fitting the measured

field to the acoustic model as a function of the input parameters (one point for each

replica) yields an M-dimensional ambiguity function where M is the number of

input parameters. The parameter realization that minimizes the ambiguity defines

the optimal replica.

There are numerous methods for generating acoustic replicas. Ray methods [5, 6,

7] and parabolic equation (PE) methods [8, 9, 10] are commonly used. Ray methods

based on the Eikonal equation [11] are valid in the high frequency limit. PE methods

based on the parabolic equation [12, 13] are valid in the far field limit under the

paraxial approximation. Both are numerical forward, or integration, methods. That

is they are numerical methods that proceed from a set of initial conditions to a final

configuration. Typically the initial conditions are a guess of the target location at a

given time and the final configuration is the replica field on an array of sensors. Both

methods require extensive characterization of the propagation medium to produce

accurate results. Accurate modeling of an environment as complex as the shallow

ocean generally requires a large number of parameters. This combined with the

computational load imposed by the integration implementation makes simultaneous

inversion for the source location and environmental parameters computationally

prohibitive. As a result, traditional model based MFP has proven ineffectual for

large dimensionality problems. MFP has met with limited success in shallow ocean

applications where most of the environmental inputs are known a-priori and treated

as constants so that the dimensionality of the problem can be drastically reduced.

While ray and PE methods may be the alternatives for generating replica fields

for range dependent propagation media, modal modeling provides an attractive al-

ternative for replica generation in range independent environments. Because modal

theory is founded on an analytic basis, it does not incur the computational cost

associated with the numerical integrations of the ray and PE methods. As shown in

Sec. 1.2, accurate characterization of the modal components requires a knowledge of
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the sound speed and density profiles in the water column and the bottom sediment.

Realistic profiles are generally sufficiently complex as to require a large number of

environmental inputs. As with the ray and PE methods, the computational cost

associated with generating an accurate multi-dimensional ambiguity function limits

the applicability of mode-based MFP to shallow ocean applications where most of

the environmental inputs are known a-priori. Thus, when applied in the traditional

manner, ray-based, PE-based, and mode-based MFP require extensive measurement

of the propagation media to determine as many of the a-priori model parameters

as possible. As mentioned, directly measuring the environment, the sediment in

particular, is very expensive and often not possible.

However, the self-adaptive methods developed in this work present a promising

opportunity for accurate mode-based MFP replica generation in range-independent

propagation media without the need for extensive environmental measurement. In

fact, the self-adaptive methods can be applied to the same collection of sensors

used to measure the matching field. As previously discussed, range-independence of

the media leads to the emergence of a tractable number of robust, experimentally

measurable modal field components. Each component individually is manifestly

consistent with the propagation medium, however complicated it may be. By com-

bining signal processing with the physics of modal propagation to extract the modal

components, it is possible to generate a self consistent ensemble of replica fields as

a function of initial conditions alone, i.e. source depth and range.

Self-adaptive techniques may also find applications in tomography. For example,

application of self-adaptive methods to matched mode processing (MMP) techniques

may lead to improved bottom parameter inversion. MMP is a variation on tradi-

tional MFP where the connection between the propagation medium and/or the

source location proceeds entirely through modal analysis [15, 16]. It is possible to

extract information about the propagation medium by making a comparison of the

the measured modal components to a modal model. Typically, the analysis is ren-

dered tractable by assuming a knowledge of the sound speed profile of the water
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column and solving for a simplified bottom model (perhaps 4 parameters).

This thesis introduces self-adaptive methods for manipulating TR imaging with-

out any a-priori knowledge of the shallow ocean environment under the assumption

of range-independence. In Chapter 2, a method is introduced for producing TR foci

at arbitrary locations (of both range and depth) using the frequency response sam-

pled between a pair of vertical arrays. The method is based on an iterative method

analagous to Huygens principle. Chapters 3 and 5 address self-adaptive mode ex-

traction. As discussed, an accurate knowledge of the modes provides opportunities

for TR, MFP, and tomography. Though recently introduced methods for extracting

the modal depth functions over a full-spanning VLA (one that covers the entire wa-

ter column) have shown promise, difficulties associated with deploying full-spanning

VLAs make them difficult to implement. Chapter 3 develops a method for extracting

the modal depth functions over a partial spanning VLA. The technique requires from

stationary broadband sources distributed in range. In Chapter 5 a similar method

is applied to extract the modes from a moving narrowband source. The method is

particularly relevant to at sea applications because it incorporates a technique for

self-adaptively compensating for Doppler effects caused by arbitrary accelerations.

Chapter 4 applies a knowledge of the extracted modal depth functions to the task

of shifting the TR focus in depth from the original source location. Finally Chapter

6 presents an analysis of the prospects for extracting modes self-adaptively from the

acoustic field scattered from features along water/sediment interface.

The following chapters present results from experiments conducted under con-

trolled conditions in a laboratory waveguide. For reference, Appendix A describes in

detail the experimental set up used in these experiments. In addition, the connection

is made between the laboratory set up and at sea applications.
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[6] V. Cervený, M. M. Popov, and I. Psencik, ”Computation of wave fields in
inhomogeneous media - Gaussian beam approach,” Geophys. J. R. Astr. Soc.
70 109-128 (1982).

[7] M. B. Porter, and H. P. Bucker, ”Gaussian beam tracing for computing ocean
acoustic fields,” J. Acoust. Soc. Am. 82, 1349-1359 (1987).

[8] D. Lee and S. T. McDaniel, Ocean Acoustic Propagation by FInite Difference
Methods (Pergamon, New York, 1988).

[9] J. S. Perkins and R. N. Baer, ”An approximation to the three-dimensional
parabolic equation method for acoustic propagation,” J. Acoust. Soc. Am. 72,
515-522 (1982).

[10] W. L. Siegmann, G. A. Kriegsmann, and D. Lee, ”A wide-angle three-
dimensional parabolic wave equation,” J. Acoust. Soc. Am. 78, 659-664 (1985).

[11] J. B. Bleistein, Mathematical Methods for Wave Phenomena (Academic, Or-
lando, FL, 1984).



17

[12] M. A. Leontovich and V. A. Fock, Zh. Eksp. Teor. Fiz. 16 557-573 (1946) [Engl.
transl.: J. Phys. USSR 10 13-24 (1946)].

[13] F. D. Tappert, ”The parabolic approximation method,” in Wave Propagation
in Underwater Acoustics, edited by J. B. Keller and J. S. Papadakis (Springer-
Verlag, New York, 1977) pp 224-287.

[14] P. Hursky, W. S. Hodgkiss, and W. A. Kuperman, ”Matched field processing
with data-derived modes,” J. Acoust. Soc. Am. 109 (4), 1355-1366 (2001).

[15] E. C. Shang, ”Source depth estimation in waveguides,” J. Acoust. Soc. Am.
77, 1413-1418 (1985).

[16] T. C. Yang, ”A method of range and depth estimation by modal decomposi-
tion,” J. Acoust. Soc. Am. 82 (5), 1736-1745 (1987).



18

Quantity Electromagnetism (EM) Ocean acoustics (OA)

Wavelength (λ) 0.3 m 0.5 m

Propagation speed (c) 3× 106 km/s 1.5 km/s

Carrier frequency (fc) 109 Hz 3× 103 Hz

Working range (R) 100 km 10 km

Round trip time (2R/c) 6.6× 10−4 s 13.3 s

Bandwidth (∆f) 106 Hz 103 Hz

Normalized (∆f/fc) 0.001 0.33

bandwidth (narrowband) (ultrabroadband)

Source speed (v) 100 m/s 10 m/s

Mach number (v/c) 3× 10−7 7× 10−3

Table 1.1: Comparison of physical quantities characterizing electromagnetic

RADAR and communications applications versus ocean acoustic SONAR and com-

munications applications.
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Figure 1.1: Virtual aperture of a shallow ocean waveguide. Multi-path propagation

due to reflection at the boundaries of the waveguide result in virtual acoustic image

sources. The vertical extent of the virtual images comprises a large virtual aperture.

Solid lines indicate multi-path within the waveguide. Dashed lines indicate the

free path to the corresponding virtual images. The shaded region represents the

waveguide.
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Figure 1.2: Schematic of TR in the shallow ocean. Shown in (a) is a typical ex-

perimental scenario. The field due to a point source is sampled by, time-reversed

and rebroadcast by a VLA (indicated as dashes above Source-Receiver Array title)

resulting in an acoustic focus back at the probe source location. The TR focus is

measured with another VLA (indicated by dots above Receiver Array title). Panel

(b) shows an example of an experimentally measured time domain field sampled

over the Source-Receive Array while panel (c) shows the resulting experimental TR

focus measured at the Receiver Array. Panels (b) and (c) show the envelopes of the

respective time domain fields.
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Figure 1.3: Schematic representation of the relation between modal propagation

and the modal depth functions. The top panel shows the discrete set of modal

propagation angles. The modal angles are all less than the critical angle, θc, of total

internal reflection at the water/sediment interface, θ1, θ2, . . . , θn < θc. The bottom

panel displays the modal depth functions typical of shallow ocean propagation. The

modes are characteristically oscillatory in the water column and decay exponentially

in the sediment. The wavenumbers associated with each mode, kr1, kr2, . . . , krn, are

represented by arrows. The sound speed profile for this example is depicted by c(z).

In both panels, the light shaded region is the water and the dark shaded region is

the sediment.
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Figure 1.4: Simulated finite bandwidth modal propagation. Panel (a) depicts is the

envelope of the sampled time domain field due a finite bandwidth point-source at a

given range from the VLA. Panel (b) shows an example of typical modal group and

phase velocity behavior as a function of frequency.
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Figure 1.5: Schematic of TR focal resolution. The top panel shows a schematic

representation of modal propagation from the source to the VLA (dark broken line

indicated as TRM). The modal depth functions are depicted as black curves, one

for each mode. The modes are ordered from lowest to highest left to right. The

vertical extent of the source field is indicated on the right. The curve to the left of

the VLA indicates the sound speed profile. The bottom panel depicts time-reversed

propagation from the VLA to the source location. The dashed curves indicate

modes that are attenuated from the signal. The vertical extent of the TR focus is

indicated on the right. ∆R and ∆z are the range and vertical extents of the focal

spot respectively. The focal resolution is a function of the number of modes, N ,

composing the acoustic field reaching the source location.



Chapter 2

Focusing at an arbitrary

waveguide location using

time-reversal

abstract

Recent experiments have demonstrated the ability of time-reversal (TR) methods

to selectively ensonify spatially compact regions of the water column in shallow

ocean environments [1]. The major limitation of current TR methods is that they

require an acoustic probe source at the desired focal location. This work introduces

a method for using a pair of vertical line transducer arrays (VLAs) to produce

TR foci at any location in a range-independent shallow ocean waveguide without

the need for a probe source. Modal theory suggests that the acoustic response

sampled between a pair of VLAs separated by a range R can be repeatedly iterated

to estimate the acoustic response at ranges that are integer multiples of R. The

process results in a virtual sampling of the acoustic response over long distances that

can applied to both passive and active shallow ocean acoustic imaging applications.

Array geometry effects are explored and theoretical and experimental results are

presented.

25
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2.1 Introduction

The evolution of technology and computation has opened new avenues of research

in underwater target acquisition and communications. Contrary to the traditional

view that reverberation from the surface and sediment boundaries of the shallow

ocean are a nuisance to be minimized, advances in recent research have suggested

that reverberation from complex propagation media can be exploited to improve

the performance of sonar and communications applications. In particular, recent

experiments have demonstrated the ability of time-reversal (TR) methods to se-

lectively ensonify spatially compact regions of the water column in shallow ocean

environments [1]. Such high resolution acoustic focusing capabilities could have a

direct impact on active and passive sonar and communications applications as well

as matched field processing techniques [2, 3]. The major limitation of current TR

methods is that they require an acoustic probe source at the desired focal location.

This work discusses a method for using a pair of vertical line transducer arrays

(VLAs) to produce TR foci at distant ranges at any depth in the water column

without the need for a probe source.

By Green’s theorem, the acoustic response over a closed surface completely de-

termines the response throughout the enclosed volume. In an experimental context,

a dense sampling of the point-to-point acoustic response between a pair of vertical

transducer arrays separated in range, can be used to uniquely determine the response

throughout the intervening volume. In the special case of a horizontally stratified

range-independent propagation medium, the point-to-point acoustic response is in-

dependent of absolute range, depending only the source and receiver depths and

on their relative range separation (throughout the remainder of this paper, the

relative range separation between the VLAs is referred to as the iteration-range).

Modal theory suggests that the point-to-point acoustic response between a pair of

VLAs can be iterated to estimate the acoustic response at integer multiples of the

iteration-range. According to Huygens principle, the response on one array due



27

to the other can be decomposed into wavelets that govern the phase evolution of

the field over the iteration-range. In a range-independent medium, iterating the

response function is equivalent to evolving the response phase over integer multiples

of the iteration-range. The iterated response estimates can be used to generate a

TR focus at integer multiples of the iteration-range at any sampled depth. The it-

eration process is applied as a cross-convolution of measured fields summed over the

array elements. As the convolution is a multiplicative process, repeated iteration

can lead to undesirable frequency spectrum modulation effects in the time-reversed

signal which must be considered. Applying the theory of acoustic field invariants in

a range-independent waveguide [4], the iteration process, termed sampled response

iteration (SRI), can be combined with variable range time-reversal [5] to extend the

method to intervening ranges, i.e. non-integral multiples of the iteration-range.

Section 2.2 presents a development of the theory of the iteration method and

accompanying simulation results. The experimental set up is described in Sec. 2.2.1

followed in Sec. 2.2.2 by a brief outline of the theory of time-reversal in a range-

independent waveguide. A treatment of the basic theory of the iteration method

is given in Sec. 2.2.2. The theoretical discussion addresses bandwidth equalization

and array geometry effects. In Sec. 2.2.2 the iteration method is extended to the

entire waveguide in combination with variable range TR. Results from ultrasonic

experiments in a laboratory are presented in Sec. 2.3. Section 2.4 gives a summary

and concluding remarks.

2.2 Theory and simulation of the sampled response

iteration procedure

2.2.1 Experimental set up

The experimental geometry for which the SRI procedure is designed is schemati-

cally represented in Fig. 2.1. A pair of parallel, vertical geometry transducer element
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arrays, labeled V α and V β, are located a distance R apart. R is defined to be the

iteration-range. A cylindrical coordinate system is chosen such that V α defines the

axis of azimuthal progression at r = 0. Because SRI is only rigorously applicable

to range-independent media, analysis is restricted to situations where the vertical

plane passing through V α and V β is horizontally stratified, i.e. characterized by

constant bathymetry and sound speed profile as a function of range. It is assumed

that any azimuthal dependence in the vicinity of the plane is sufficiently small that

acoustic refraction and reflection into and out of the plane is negligible.

The point-to-point acoustic response, sampled between all transducer elements

of the array pair, is iterated to generate response function estimates at successive

intervals of the iteration-range. The net result is that the point-to-point response

is virtually sampled in range with R as the range sampling interval. The gray dots

of Fig. 2.1 represent points at which the field is virtually sampled. By applying a

frequency shift to the iterated fields, it is possible to extend the virtual sampling

to intervening ranges. For the purposes of time-reversal, the set of virtual samples

represents an ensemble of fields from virtual sources. Time-reversal (phase conju-

gation) and transmission of a chosen virtual source field results in an acoustic focus

at the location of the virtual source. In order to simplify the analysis, the arrays

are always labeled such that V α corresponds to the transmission array. As seen in

Fig. 2.1, a third array, labeled V γ, is used to sample the resulting TR field.

2.2.2 Theoretical discussion

This section begins with an analytical summary of the basics of time-reversal

in a range-independent propagation medium. The discussion then progresses to a

development of the theoretical aspects of the range iteration method. Array geome-

try and bandwidth effects are addressed. Finally, the SRI method is combined with

the variable range TR method of Ref. [5]. The theoretical analysis is supplemented

with simulation results. For simplicity, the analysis is carried out for an azimuthally

symmetric medium.
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Time-reversal in a range-independent propagation medium

For the purposes of this discussion it is convenient to write the acoustic pressure

field in terms of the frequency response between the transducer elements composing

the vertical sensor arrays V α and V β. The elements of the respective arrays are

labeled by the indices a and b respectively. The ath element of array V α is at depth

z = za and likewise for V β. The arrays are separated by a distance R with V α at

r = 0 and V β at r = R. Array V α comprises a total of A elements while array V β

comprises B elements. The ω angular frequency component of the pressure response

is then written

P̃ab(R,ω) = G̃ab(R,ω)S̃(ω), (2.1)

where G̃ab(R,ω) denotes the ω component of the acoustic response between elements

a and b and S̃(ω) represents the ω component of the Fourier decomposition of the

time domain source signal. The Fourier transform pair is defined

F̃ (ω) =
1

2π

∫ ∞

−∞
F (t)e−iωtdt, (2.2)

F (t) =

∫ ∞

−∞
F̃ (ω)eiωtdω.

Equation (2.1) is an array specific projection, or discrete sampling, of the acoustic

field. In its more general, continuous form, Eq. (2.1) is written without subscripts

as a function of continuous varibles,

P̃ (r, z, z′, ω) = G̃(r, z, z′ω)S̃(ω). (2.3)

The two forms of the acoustic response will be employed interchangeably depending

on the context of the discussion. For the remainder of the paper, any appearance of

subscripts is to be interpreted as an array specific projection, with a or any variation

thereof always referring to the elements of V α and any variants of b referring to V β.

According to the Helmholtz equation, the ω component of the acoustic response

can be written as a superposition of modal components that are orthogonal over

depth,

G̃ab(R,ω) =
e−i π

4

ρ(zb)
√

8πR

M∑
m=1

φm(za, ω)φm(zb, ω)√
km(ω)

e−ikm(ω)R. (2.4)
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The normal mode functions, φm(z, ω), and their associated modal wavenumbers,

km(ω) (also referred to as propagating wavenumbers), are solutions to the modal

eigenvalue equation (at each value of ω),[
d2

dz2
+

((
ω

c(z)

)2

− k2
m(ω)

)]
φm(z, ω) = 0, (2.5)

for horizontally stratified media (no r dependence) and appropriate boundary con-

ditions [6]. In general, the normal modes comprise only a subset of the range of

solutions to Eq. 2.5 corresponding to real eigenvalue solutions. Depending on the

boundary conditions, there may be a continuum of complex eigenvalue solutions.

The normal modes solutions become evanescent in the sediment so that they are

confined to the water column. Because they do not propagate into the sediment, the

normal modes are weakly attenuated and may travel, or propagate, long distances

in the water column. The continuum of complex eigenvalue solutions of Eq. (2.5),

on the other hand, are oscillatory in the sediment and correspond components of

the acoustic field that strongly attenuated with range. Because the aim is to model

long range behavior, the attenuated components are neglected in Equation (2.4).

For convenience the following pair of equations are introduced,

M∑
m=1

φm(z, ω)φm(z′, ω)

ρ(z′)
= CM(z, ω) (2.6)

∫ z2

z1

φm(z, ω)φn(z, ω)

ρ(z)
dz = Lmn(z1, z2). (2.7)

Equation (2.6) is a generalization of the statement of closure relating the modes.

Equation (2.6) becomes a strict statement of closure and completeness in the limit

that the number of propagating modes approaches infinity,

lim
M→∞

CM(z, ω) → δ(z − z′). (2.8)

Neglecting the continuum of highly attenuated solutions and near field components

of the field guarantees that closure will only be approximate. The number of prop-

agating modes is a function of the frequency and the medium. As a general rule,
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M increases as both the depth of the water/sediment boundary and the frequency

increase.

Equation (2.7) is a generalization of the orthogonality conditions relating the

modes. This generalization is useful as a tool for describing array geometries that

do not sample the entire span of the modes. Identifying the limits of integration,

z1 and z2, with the depths of the shallowest and deepest elements, respectively, of

a linear geometry array, the right hand side of Eq. (2.7) becomes a Kroneker delta

function when the integration limits span the entire space over which the modes

exist,

lim
z1→0,z2→∞

Lmn(z1, z2) → δmn. (2.9)

In the realistic case of a finite impedance sediment layer (or layers), the modes pen-

etrate into the sediment making it impossible to completely sample the modes with

a water bound array. However, because the modal amplitudes decay exponentially

with depth in the sediment layer, orthogonality can be achieved to high accuracy

over the interval {z1 = 0, z2 = D} where D is defined to be the depth of the wa-

ter/sediment boundary. An array that spans the entire water column is referred to

as full-spanning.

To apply time-reversal focusing, the pressure field from an acoustic point source

at the location (r′, z′) is first sampled by the elements of array V α. P̃a(r
′, z′, ω)

represents the pressure response sampled over the array. Time-reversal in the time

domain is applied as phase conjugation in the frequency domain. Propagating the

phase conjugated sampled field through the medium is described by the following

sum over the elements of V α,

P̃ TR(r, z, ω) =
A∑

a=1

G̃a(r, z, ω)P̃ ∗
a (r′, z′, ω)

=
A∑

a=1

G̃a(r, z, ω)G̃∗
a(r

′, z′, ω)S̃∗(ω) (2.10)

≈ S̃∗(ω)

8πρ(z′)
√
rr′

M∑
m=1

(
φm(z, ω)φm(z′, ω)

km(ω)

)
e−ikm(ω)(r−r′).
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The hybridization of the discrete and continuous notation among the various quan-

tities of Eqs. (2.10) results from a combination of Eqs. (2.1) and (2.3). In order to

arrive at this expression, the response function, G̃a(r, z, ω), must be reciprocal in the

coordinate r. As well, the discretized form of the modal orthogonality relation of

Eq. (2.7) is invoked in summing over the elements of the array. This is valid in the

limit that the array densely samples most of the water column. Orthogonality can

be applied to every mode for which the array geometry samples the mode at 2 points

per period (in depth) over the entire effective span of the mode. Typically, an array

sampling interval equal to or less than half the characteristic acoustic wavelength of

the water column is sufficient to adequately sample all the modes.

For all ranges r 6= r′, most or all of the modes are out of phase and interfere more

or less destructively. At r = r′ however, all the modes arrive in phase. Applying the

closure relation of Eq. (2.6) leads to a focusing of the time-reversed pressure field

at the source depth,

P̃ TR(r′, z, ω) ≈ S̃∗(ω)δ(z − z′)

8πρ(z′)
√
rr′

(2.11)

In light of the discussion of Equations (2.6)-(2.9), obviously the focal resolution is

not infinite as predicted by Eq. (2.11). It has been shown that the resolution of the

focus in both range and depth depends directly on the number of propagating modes,

increasing with M [1]. Array geometry plays an important role as well. Though

full-spanning densely-sampling arrays yield the best results, good results have been

achieved with less than full-spanning arrays that sample at intervals greater than half

the acoustic wavelength. The high order modal components of the field most affected

by under sampling are also the most attenuated with range, thereby reducing the

impact of the resulting aliasing of under-sampled high order modal components. Of

course, range dependent attenuation also reduces the resolution of the TR focus.

Overall, TR has proven to be robust [1].
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Sampled response iteration

As outlined in the last section, time-reversal in the time domain is applied as

phase conjugation in the frequency domain. Introduction of another factor of the

acoustic response and summation over the array elements defines the propagation

operation. In the case of a full-spanning array that densely samples the modes,

summation over the array elements introduces an essential simplification; specifi-

cally mode orthogonality suppresses phase coupling between the modal components.

Analagously, applying the propagation operation to the unconjugated field and in-

voking the range reciprocity of the response and orthogonality of the modes results

in a virtual propagation of the field further down range. To demonstrate this, we

define the ω component of the virtually propagated field, P̃ V P (ω), and apply the

propagation operation,

P̃ V P (ω) =
A∑

a=1

G̃a(r, z, ω)G̃a(r
′, z′, ω)S̃(ω)

≈ e−iπ/2S̃(ω)

8πρ(z′)
√
rr′

M∑
m=1

(
φm(z, ω)φm(z′, ω)

km(ω)

)
e−ikm(ω)(r+r′)

(2.12)

≈ e−iπ/4S̃(ω)√
8π

√
r + r′

rr′
G̃(r + r′, z, z′, ω)

≈

(√
r + r′

8πrr′
e−iπ/4

)
P̃ (r + r′, z, z′, ω).

In proceeding from the second line above to the third line, a factor of 1√
km(ω)

has

been neglected for each modal component. For the present, this is justified by the

argument that the modal wavenumbers typically don’t differ significantly, so the

error in the relative modal modulation is negligible. For example, under realistic

shallow ocean conditions, the modal wavenumbers differ at most by a factor of

2 between the highest and lowest order modes. Most importantly, the operation

has preserved the relative phases of the modal components. Thus, except for a

cylindrical spreading error, the virtual propagation result closely approximates the
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frequency response between the array and a source at range r + r′. The procedure

has propagated the field an additional range increment, r′. Like time-reversal, this

exercise has potential for application to the shallow ocean waveguide.

We return to the case of sampling the acoustic pressure, P̃ab(R,ω), between the

array pair, V α/V β. Noting that the point-to-point acoustic response function is

embedded in the sampled pressure in the field, it is possible to construct the virtual

propagation operation in terms of the sampled field. Choosing element b′ of array

V β as the source, virtual propagation using the sampled pressure field yields,

P̃ V P
bb′ (ω) =

A∑
a=1

P̃ab(R,ω)P̃ab′(R,ω)

=
A∑

a=1

G̃ab(R,ω)G̃ab′(R,ω)S̃2(ω) (2.13)

≈ e−iπ/4S̃(ω)

(√
1

4πR

)
P̃bb′(2R,ω).

Ignoring for the moment the practical considerations involved with deploying a

pair of parallel, full-spanning, densely-sampling arrays, this result is compelling

because it implies that the field can be virtually sampled over long ranges without

any knowledge of the environment by simply iterating this procedure. In order to

demonstrate this, it is convenient to identify the indexed quantities as matrices and

vectors:

P̃VP
ω ≡ [P̃ V P

ab ],

P̃ω ≡ [P̃ab(R,ω)], (2.14)

G̃ω ≡ [G̃ab(R,ω)],

φm(ω) ≡ [φm(za, ω)].

For simplicity, the explicit dependence on R is suppressed.

In order to be as general as possible, the iteration method is developed for the

case of arrays comprised of differing numbers of elements (A 6= B) in which case

P̃ω is not a square matrix. As a practical issue, it is likely not desirable to deploy
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a pair of identical fixed arrays, but rather to have one fixed array at r = 0 (V α)

and a second more mobile and easily deployable array at r = R (V β) with the fixed

array designated as the array from which all TR signal shall ultimately originate.

To facilitate time-reversal from V α, the iteration is applied so that the virtually

sampled field P̃VP
ω always has A components. The following algorithm facilitates

such an implementation. The iterated virtually propagated field is given as(
P̃VP

ω

)N

≡ QN
ω Q0

ω, (2.15)

where N is the number of applied iterations and QN
ω is defined to be the matrix

inner product

QN
ω ≡

[
N∏

n=1

T(−1n)
ω (Γω)

]
. (2.16)

Here T is a transpose operation that operates on its argument such that

T−1
ω (Γω) = ΓT

ω , T1
ω(Γω) = Γω.

The starter field, Q0
ω, is defined

Q0
ω =

 [P̃a′b(ω)]T N = {1, 3, 5, . . . }

[P̃ab′(ω)] N = {2, 4, 6, . . . },
(2.17)

where a′ and b′ denote the virtual source depth on V α or V β respectively, depending

on which array is appropriate. Similarly Γω is chosen such that

Γω =

 A(ω)P̃ω N = {1, 3, 5, . . . }

A(ω)P̃T
ω N = {2, 4, 6, . . . }.

(2.18)

Equation (2.19) has been generalized to include a normalization factor, A(ω) whose

meaning will become clear shortly. At this point it is instructive to consider an

example. Using Eqs. (2.15)-(2.19) to explicitly expand the iteration algorithm for

N = 2 yields (
P̃VP

ω

)2

= Q2
ωQ

0
ω

= A2(ω)
(
S̃(ω)

)2 [
G̃ωG̃

T
ω

]
[P̃ab′(ω)] (2.19)

≈ A2(ω)

(
S̃(ω)

√
1

4πR

)2 [
P̃ab′(3R,ω)

]
.



36

The process is shown schematically in Fig. 2.2. As with Eqs. (2.12) and (2.13), a

factor of 1√
km(ω)

has been neglected for each modal component in writing the third

line above. This is justified in the case of multiple iterations due to the presence

of modal attenuation in any realistic waveguide. With each iteration the effect of

the cylindrical spreading error, through the 1√
km(ω)R

factor, is counteracted by the

effect of the exponential decrease resulting from modal attenuation. The net result

is that with each iteration the high order modes tend to attenuate more strongly

than the low order modes.

Bandwidth equalization

Because the source signal is embedded in the sampled pressure field, any struc-

ture in the frequency power spectrum will tend to compound with each iteration.

For example, consider a sampled pressure response resulting from a source signal

characterized by a Gaussian distribution of its frequency content (as results from a

Gaussian modulated time domain pulse). The frequency spectrum of the resulting

virtually sampled field will narrow with each iteration leading to a significant loss

of bandwidth after just a few iterations. Figure 2.3 shows a schematic of the effects

of such a narrowing for 8 iterations. Assuming the source signal is known, such a

loss of bandwidth can be overcome by defining the normalization constant of Eqs.

(2.19) in accordance with the source signal spectrum,

A(ω) =

√
4πR

|S̃(ω)|
. (2.20)

Including the term in the numerator, this frequency equalization scheme simulta-

neously compensates for the cylindrical spreading. However, due to the term in

the denominator, this equalization scheme may prove problematic for the case of a

complicated source signal spectra that approaches zero within the bandwidth.

Array geometry effects

How well the iteratively generated virtual sampled field can be expected to approx-

imate the true pressure response depends sensitively on array geometry. Errors
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introduced through insufficient array sampling compound with each iteration. It

has already been shown that for a full-spanning, densely-sampling array (one for

which Eq. (2.9) holds true), iteration results in an accurate approximation of the

true pressure response at an equivalent range, particularly with respect to the phase.

This is verified in Fig. 2.4. As the goal is to perform TR focusing, Fig. 2.4 shows a

simulated comparison of TR focusing between a simulated iteration result and the

standard modal model for the case of full-spanning, densely-sampling arrays. The

top panel shows the spatial component of the time-reversed virtual pressure field

resulting from 8 iterations of the simulated pressure field between the array pair.

Eight iterations of the iteration-range, R = 500 m, corresponds to a virtual source

at 4.5 km. The simulation is for a narrowband source at a depth of 45 m. The lower

panel shows the TR focus over the same range achieved using the standard modal

model for a true source at the same location. Even after 8 iterations, there is good

agreement between the results. It is noted here that all simulation results presented

in this paper are carried out for identical simulated Pekeris waveguide propagation

media for which the modal components are calculated using the KRAKEN mode

model including modal attenuation [7]. The water depth is 100 m, with bottom

parameters of sound speed and density given by cb = 1800 m
s

and ρb = 1800 kg
m3

respectively.

Due to the difficulties and impracticalities associated with the deployment of

full-spanning, densely-sampling arrays, particularly in the case of deep water, high

frequency applications, it is relevant to consider the effects of other array geometries

on the iteration procedure. The effects of array geometry on straightforward TR fo-

cusing in an ocean waveguide have been demonstrated [1]. Namely, under-sampling

in depth, both in terms of the sampling interval and the total aperture, leads to

reduced focal resolution performance. Because the effects of under-sampling com-

pound with each iteration, TR imaging using the iterated virtually sampled fields

is even more sensitive to array geometry. There are three elements of array geome-

try that affect the imaging performance of the SRI method in different ways; total
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array aperture, array depth sampling rate, and array tilt. Each element is consid-

ered separately in order to isolate their individual effects. We consider the cases of

(1) partial-spanning, densely-sampling arrays, (2) full-spanning, sparsely-sampling

arrays, and (3) full-spanning, densely sampling tilted arrays.

Figure 2.5 shows a comparison of simulated time domain fields for various array

geometries. The fields correspond to 8 iterations of the SRI method for a virtual

broadband source at 4.5 km. All iterated simulation results are frequency equalized

in accordance with the normalization introduced in Eqs. (2.19) and (2.20) in order

to suppress iterative bandwidth effects. As a benchmark for comparison, the modal

model result is displayed in Figure 2.5(a). That is, the field in Fig. 2.5(a) is the

field from a true source, sampled over a full-spanning, densely-sampling array, to

which the iteration results should be compared. The iteration result for a pair of

full-spanning, densely-sampling arrays shown in Fig. 2.5(b) is in good agreement

with the true field, particularly with respect to the low order modal components

(the early arrivals). In accordance with the increasing difference in propagating

wavenumber among the higher order modes, the relative weightings of the high

order modal components (late arrivals) are more sensitive to the extra factor of

1√
km(ω)

. Compounding this error over many iterations has resulted in the slight, but

observable, difference among the high order modal components of the iterated field

as compared to the benchmark. This effect is moderated by the inclusion attenuation

in the simulation. Without range dependent attenuation, the error resulting from

the extra factor of 1√
km(ω)

would lead to severe over excitation of the high order

modes after many iterations.

The time domain TR results for the iterated full-spanning, densely-sampling

case, shown in Fig. 2.6(b), are also in good agreement with the benchmark TR

result of Fig. 2.6(a). To clarify, time-reversal is applied by multiplying the phase

conjugated iterated (or benchmark) field by the modal model response from a given

range. All time domain TR results consist of 3 panels. Each panel is to be regarded

as the time domain pressure field measured over a receive array (V γ of Fig.2.1) at
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the specified range. The center panel corresponds to the expected focal range.

The case of partial-spanning, densely-sampling arrays is addressed in Fig. 2.5(c)

and Fig. 2.6(c). Figure 2.5(c) shows the time domain virtually sampled pressure field

after 8 iterations generated using a 90% spanning array for V α and an 80% spanning

array for V β. Deviation from the benchmark result (Fig. 2.5(a)) is apparent over

all modal components. This result is expected as partial coverage of the water

column results in deviations from orthogonality between all modal components.

The resulting TR field in Fig. 2.6(c) exhibits significant degradation of the temporal

resolution.

In the case of full-spanning, sparsely-sampling arrays, it is possible that orthog-

onality may exist differentially among the modal components. While the low order

modes may be well sampled in depth and be orthogonal, the high order modes may

not. Figure 2.5(d) shows the compounded effects arising from iterating a sparsely

sampled field. The sampling interval of both arrays is equivalent to the wavelength

at the carrier frequency, dz = 5 m. While there is good agreement between the

low order modal components in comparison to the benchmark, there is an obvious

deviation between the high order modal components. The TR result of Fig. 2.6(d)

displays the characteristic aliasing errors associated with under-sampling. One so-

lution for dealing with under-sampling errors is to clean the high order components

from the signal prior to time-reversal. Due to the temporal dispersion of the modes,

as shown in Fig. 2.5(e), the high order components are easily isolated and removed

in the time domain. As demonstrated in Fig. 2.6(e), cleaning the sparsely-sampled

signal results in a significant improvement in TR focal resolution.

The final aspect of array geometry considered is array tilt. It has been demon-

strated that array tilt has no performance effect on straightforward TR imaging. In

contrast, even small deviations from perpendicularity among the arrays turn out to

have a drastic effect on the SRI method. The appearance of the transpose operation

in the iteration method implicitly assumes reciprocity of the sampled point-to-point

pressure response between the arrays. However, tilt on either or both of the arrays
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destroys the reciprocity of the sampled pressure response. Because tilt results in

phase differences, even a small tilt can prove disastrous after only a few iterations.

Array tilt is typically remedied by utilizing the measured mutual range offset

among the array elements to apply a plane wave time delay, ∆ta/b, to the elements,

P̃ab(R,ω) → P̃ab(R,ω)eiω(∆ta+∆tb). (2.21)

Denoting as ∆ra (∆rb) the measured range offset of element a (b) with respect to a

given reference element, the time delay compensation on element a (b) is given as

∆ta = ∆ra

cs
(∆tb = ∆rb

cs
) where cs is a sound speed characterizing acoustic propagation

in the waveguide. Applied in this manner, this form for the time delay can be

thought of as an angular beam form operation. Because the arrival angles of the low

order modes are more densely packed than those of the higher order modes, choosing

an angle from among the low order modes (or equivalently choosing a sound speed

from among the group speeds of the lowest modes) results in the best compensation

for the greatest number of modes. Additionally, due to attenuation, high order

modal contributions tend to be less significant because they carry less energy. As a

result, though the choice for cs is somewhat arbitrary, it is advantageous to choose

it to be among the group speeds of the lowest order modes. To good approximation

the mode 1 group speed can be estimated by the sound speed of the water column.

If the sound speed varies with depth, it is useful to average the sound speed over

depth. If nothing is known about the sound speed profile, as is the case in the

experimental results presented in the next section, a good guess should suffice.

Array tilt simulation results are presented in Figs. 2.5(f) and 2.6(f). While array

V α remains vertical, the initial tilt profile of array V β is depicted in Fig. 2.7. This

profile exhibits a realistic curvature that might result from strong currents along the

ocean bottom. As well, the tilt profile is rather severe, having a maximum element

range offset of nearly 10 m, or 2 acoustic wavelengths. Iterating the sampled field

in this geometry quickly leads to large errors and is not shown. However, applying

the tilt compensation method outlined above (for cs = 1500 m
s
) to the sampled field

under the assumption that the relative array positions (∆rb) are perfectly known
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leads to the result shown in Fig 2.5(f). As expected, there is good agreement

between the low order modal components of the iterated and benchmark fields with

small, but observable, accumulated errors appearing among the higher order modal

components. The time-reversal result is seen in Fig. 2.6(f). To make the analysis

more realistic, applying a random uncertainty between −30 cm and 30 cm to each

element range offset (of the tilted array) leads to little observable difference in the

iterated time-reversed field (not shown), indicating that small random deviations

from perpendicularity are tolerable.

Combining SRI with variable range TR

It is known that the interference structure of a shallow ocean waveguide exhibits

a regular pattern of striations of the acoustic intensity as a function of frequency and

range, I(ω, r) [4, 8, 9]. The striations, resulting from interference among a group of

modal components, are characterized by invariant slope β,

β ≡ r

ω

(
∆ω

∆r

)
= −d(1/vφ)

d(1/vg)
, (2.22)

where vφ and vg represent average phase and group velocities characterizing the

group of modes contributing to the observed interference pattern of the waveguide.

The invariant β, then, is a function of the physical properties of the propagation

medium itself, independent of source and receiver locations and the source signal. In

Ref. [5] the theory of acoustic field invariants is applied to TR imaging as a method

for shifting the TR focus in range from the initial source location. As demonstrated,

time-reversing the frequency domain acoustic field sampled on a vertical array from

an acoustic point source at range r0 to which a frequency shift, ∆ω, has been applied

leads to a range shift of the TR focus,

r′ ≈ r0

(
1 +

1

β

∆ω

ω

)
, (2.23)

where r′ denotes the range shifted focal range. Due to the frequency dependence

of the depth dependent amplitudes of the modal components of the acoustic field,
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the focal resolution of variable range TR is expected to degrade for large absolute

values of the fractional frequency shift, |∆ω/ω|. Empirical evidence suggests that

variable range TR focusing is effective for fractional frequency shifts in the range

−0.1 < ∆ω/ω < 0.1.

Applying variable range TR to the virtually sampled iterated field, it is possible

to extend the TR focusing capability of the SRI technique to include all points of

the waveguide. Recall that iteration of the sampled point-to-point acoustic pressure

response leads to an ensemble of virtual sources at integer multiples of the iteration-

range. Placing a conservative restriction on the fractional frequency shift of the

carrier frequency, |∆ω/ω|max = 0.05, it is possible to generate a high resolution TR

focus at all ranges and depths of the waveguide after 8 iterations of the sampled

field (assuming β ≈ 1). This can be seen by substituting |∆ω/ω|max = 0.05 and

β = 1 into Eq. (2.23) for positive and negative range shifts of ranges corresponding

to 8 and 9 iterations respectively,

9R(1 + 0.05) ≈ 10R(0.95).

The imaging capability of variable range TR applied to SRI is schematically

presented in Fig. 2.8. The diagram has been generalized to the case of arrays of

differing geometry. Using the iterated virtually sampled field alone, TR foci can

be generated at the ensemble of points indicated by the open and closed circles.

The open and closed circles correspond to the array element depths of V α and V β

respectively. Notice the points span the array depths at multiple integer intervals of

the iteration-range. Combining SRI with variable range TR, TR focusing is possible

at all ranges within the shaded regions within the depth spans of the corresponding

arrays.

Figure 2.9 shows a simulated variable range TR result for the case of full-

spanning, densely-sampling arrays. The top panel shows the spatial component

of the time-reversed virtual pressure field resulting from 8 iterations. A +5% frac-

tional frequency shift has been applied resulting in a positive range shift of the TR

focus. For the purposes of comparison, the variable range TR iteration result is
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accompanied by the the variable range TR result for the standard modal model for

the same range and fractional frequency shift (bottom panel). The initial range of

the source in both cases (virtual source in the former and real source in the latter)

is 4.5 km. The expected range shift indicated in the figures, ∆r = 225 m, is for an

ideal waveguide, β = 1. However, the actual range shift of the TR focus is about

∆r ≈ 350 m, indicating that β < 1 for this waveguide. This is indeed the case for

the simulated Pekeris waveguide. Figure 2.10 shows the time domain range shifted

TR focus corresponding to the simulation of Fig. 2.10. The resolution of the it-

erated result (Fig. 2.9(a)) is comparable to the standard model benchmark result

(Fig. 2.10(b)).

2.3 Experimental results

This section presents results of an experimental study of the SRI method. The

experiment was conducted under controlled laboratory conditions in a small scale

range-independent waveguide at ultrasonic frequencies. As illustrated in Fig. 2.1,

the point-to-point acoustic response sampled between a pair of VLAs, V α and V β,

separated by iteration-range R, was iterated to generate a virtual sampling of the

point-to-point response at successive integer multiples of the iteration-range. The

virtually sampled response was then applied to TR imaging with the aim of gen-

erating TR foci at the virtually sampled points. A third VLA, V γ, was positioned

down range to measure the time-reversed fields.

2.3.1 Set up

The experiment was designed to model the shallow ocean at small scales. The

waveguide comprised well mixed fresh water over a uniform steel bottom maintained

at a constant depth over the extent of the waveguide. The working length of the

waveguide, was roughly a meter. In order to far-field scaling of working length

to water depth, R/D � 1, the steel bottom was maintained at a depth of D =
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26.5 mm. All point-to-point pressure response measurements were sampled using

a ∆f = 1.5 MHz bandwidth Gaussian modulated signal at carrier frequency of

fc = 1.5 MHz. Hence, the acoustic wavelength, λw, characterizing propagation in

the water was λw ≈ 1 mm.

Each VLA, V α and V β, consisted of 50 evenly spaced linearly arranged trans-

ducer elements spanning 24.5 mm. The element spacing was 0.5 mm (≈ λw/2).

Due to the small scale of the set up, it was not possible to determine the array tilt

a-priori. Rather the tilt was deduced from the performance of the TR results. It was

determined that a tilt of 0◦ for Vα and 0.5◦ for Vα yielded the optimal TR imaging

performance. It is emphasized that the optimization for array tilt is a by-product

of the small experimental dimensions. At the larger scales characterizing shallow

ocean applications, the tilt is directly measurable. The iteration-range separating

the VLAs were separated by a distance R = 82.8 mm. The VLA used to measure

the TR fields, V γ has similar geometry to V α.

2.3.2 Results

Figure 2.11 shows the measured SRI TR foci generated from several virtually

sampled fields. Panels (a) and (b) are the fields for 2 different virtual source depths

at a range of r = 5R = 414 mm corresponding to 4 iterations of the sampled

response function. In each case, The dashed lines indicate the expected focal depths.

For comparison, the measured TR focus due to a real source at the same range,

r = 414 mm, is included in panel (c). Similarly, panels (d) and (e) show SRI TR

focus results due to virtual sources at r = 10R = 828 mm (9 iterations). Again,

the measured TR focus due to a real source at the same range is presented in panel

(f) for comparison. The experimental SRI TR result in panel (g) resulted from

application of the iteration procedure without accounting for array tilt. The tilt

was relatively small, accounting for a total maximum absolute inter-element range

displacement of |∆rb|max = .2 mm ≈ λw/5. After 9 iterations, however, even such

a small tilt results in a significant degradation of imaging performance.
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Figures 2.12(a) and 2.12(b) present a comparison of the time domain pressure

fields used to generate the TR focus results of Figs. 2.11(e) and 2.11(f), respectively.

In comparison with the direct sampled field due to a real source shown in panel (b),

the iteration procedure has resulted in an observable attenuation of the late arrivals

of the virtual field shown in panel (a). The attenuation of the high order modal

components increases with each iteration, resulting in a cumulative reduction in the

imaging resolution. Noting that the temporal extent of the TR foci remained con-

stant over many iterations, it is encouraging that the frequency equalization scheme

of the iteration procedure resulted no iterative bandwidth loss. In experimental

applications, it is important to consider the frequency response of the transducer

devices. As it is embedded in the sampled point-to-point pressure response, the

transducer response will be propagated with each iteration[10]. Ideally, it should be

measured and accounted for in the equalization scheme.

Similar experimental results were achieved at all depths spanned by the VLAs

out to 9 iterations. The experiment could not be continued beyond 9 iterations

due to the limitations imposed by the working range of the experimental waveguide.

Judging from the results, it is conceivable that doing so would have yielded favorable

results out to at least a few more iterations. It is noted that 8 iterations are sufficient

to cover all ranges in conjunction with the variable range TR method of Ref. [5]

assuming a conservative 5% range shift maximum. The experimental design did not

allow for combination with variable range, however.

2.4 Summary and discussion

A method for using a pair of vertical transducer arrays to ensonify a spatially

compact region at any location of a shallow ocean waveguide has been presented.

The method is fully self-adaptive, requiring no a-priori knowledge of the environ-

ment other than that the medium is nearly range-independent. Denoting the initial

sampling range separating the arrays as the iteration-range, the sampled point-to-
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point acoustic pressure response between the arrays can be multiply iterated to

generate accurate estimates of the point-to-point acoustic response projected over

the arrays at integer multiples of the iteration-range. The procedure results in a

virtually sampled acoustic field that can be time-reversed to produce high intensity,

high resolution acoustic focusing at any of the virtually sampled locations. The

method has been combined with the variable range time-reversal (TR) technique

proposed by H. C. Song et. al. [5] to demonstrate the potential to produce TR foci

at ranges other than the virtually sampled ranges.

As the process is iterative, array geometry effects assume great importance. Any

deficiencies in the sampling geometry of the arrays compound with each iteration.

The method has proven effective over many iterations for full water column span-

ning geometries, even in the case of sparse intra-array sampling. In the case that

one or both of the arrays are partially spanning, the effectiveness of the iteration

procedure is limited to fewer iterations, with the limit depending on the extent of

the array coverage. Of particular importance is the issue of array tilt. For the iter-

ation procedure to be effective, array tilt must be compensated for, requiring that

the arrays be equipped with tilt measurement devices. So long as the arrays can

be rendered vertical on average, small uncertainties in tilt compensation are tol-

erable. The method is proven effective experimentally under controlled laboratory

conditions out to 9 iterations.

Because the iteration invokes range invariance, the analysis presented in this

paper has been limited to range-independent applications. However, there is reason

to suspect that the method may be extendable to weakly range dependent environ-

ments, suggesting a possible avenue of future study. The sampled range iteration

(SRI) method has potential as both a passive and active sonar application. As a

passive sonar application, SRI is a natural candidate for matched field signal pro-

cessing (MFP) methods. As demonstrated by [11], cross-correlation of the ambient

noise acoustic field over the array elements leads to the array pressure response

between the elements. The signal from any source, then, could be cross-correlated
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and iterated to determine the source location. As an active sonar application, the

demonstrated ability of SRI, when combined with time-reversal, to ensonify spa-

tially compact regions of the shallow ocean make an it a promising candidate for

directed sonar. Additionally, as as it is a method for generating a large virtual range

aperture, the iteration method may prove useful as a mode extraction application.

Of particular interest is the potential for extracting the lowest order modes requiring

the greatest range aperture.
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Figure 2.1: Experimental set up. The point-to-point acoustic pressure response

sampled between arrays V α and V β (indicated by the corresponding dotted black

lines) is propagated to generate virtual sampling at integer multiples of the array

separation, R. The virtual sampling locations are marked with gray dots. Time-

reversing the virtual field corresponding to one of the virtual samples results in a

TR focus that is measured by a third array, V γ.
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Figure 2.2: Schematic of the iteration procedure for 2 iterations generalized to

arrays of differing geometry. Elements of V α and V β are indicated by closed and

open circles respectively. Larger circles denote actual array elements while smaller

circles mark virtual sample locations. The pressure field sampled by V α due to a

source at a chosen element depth on V β (indicated by the black lines) is chosen as

the starter field. Two iterations of the point-to-point array pressure response (gray

lines) are applied to propagate the starter field in range.
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Figure 2.3: Iterative bandwidth narrowing. The black curve marks the Gaussian

frequency spectrum of the source signal. The gray line is the bandwidth of the

virtual field after 8 iterations. The carrier frequency is indicated by fc.
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Figure 2.4: Comparison of the spatial components of simulated iterated and modal

model benchmark time-reversed fields for the case of full-spanning, densely-sampling

arrays. The top panel shows the result after 8 iterations of the field while the bottom

panel is the benchmark result for the modeled field for a source at 4.5 km. The water

depth is 100 m and the source depth is 45 m. The depth aperture and element

spacing interval of array V α(V β) are given by ∆zα(∆zβ) and dzα(dzβ) respectively.

The source signal carrier frequency is given by fc.
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Figure 2.5: Simulated time domain pressure fields for various array geometries. All

iteration results are for 8 iterations of the sampled point-to-point pressure response

between arrays separated by 500m. The source signal is characterized by a Gaussian

modulated 200 Hz bandwidth at a carrier frequency of fc = 300 Hz. (a) Benchmark

result generated from the modal model for a source at 4.5 km from full-spanning,

densely-sampling array. (b) Iteration result for a pair of full-spanning, densely-

sampling arrays. (c) Iteration result for the case of partial-spanning, densely-

sampling arrays. Arrays V α and V β spanned 90% and 80% of the water column

respectively. (d) Iteration result for full-spanning, sparsely-sampling arrays. The

sampling interval of the arrays is equivalent to the acoustic wavelength at the car-

rier frequency in water, dz = 5 m. (e) Iteration result for full-spanning, sparsely-

sampling arrays, cleaned to remove aliased high order modal components. (f) Itera-

tive result for tilted full-spanning, densely-sampling arrays compensated to remove

the tilt.
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Figure 2.6: Simulated time domain time-reversed pressure fields corresponding to

the array geometries of Fig. 2.5. All TR results consist of 3 panels with each

panel corresponding to the TR field measured over a receive array (V γ of Fig. 2.1)

located at the indicated range. Dashed line indicates the expected focal depth. (a)

TR result for the benchmark field of Fig. 2.5(a). (b) TR result for full-spanning,

densely-sampling field of Fig. 2.5(b). (c) TR result for partial-spanning, densely

sampling case of Fig. 2.5(c). (d) TR result for full-spanning, sparsely-sampling

field of Fig. 2.5(d). (e) TR result for cleaned full-spanning, sparsely-sampling field

of Fig. 2.5(e). (f) TR result for compensated tilted array case of Fig. 2.5(f). The

depth aperture and element spacing interval of array V α(V β) are given by ∆zα(∆zβ)

and dzα(dzβ) respectively. The source signal bandwidth and carrier frequency are

indicated by ∆f and fc respectively.
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Figure 2.7: Array tilt schematic. Dots indicate locations of array elements of V β

relative to the deepest element.
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Figure 2.8: Schematic of the coverage of the waveguide resulting from combining

the iteration method with variable range TR generalized to the case of arrays of

differing geometry. Closed and open circles indicate the element depths of arrays

V α and V β respectively. As a set these points represent the ensemble of virtual

samples generated by the iteration process. The shaded gray areas indicate the

regions of the waveguide to which TR focusing can be achieved when the iteration

method is combined with variable range TR.
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Figure 2.9: Comparison of the spatial components of simulated iterated and modal

model benchmark range-shifted time-reversed fields for the case of full-spanning,

densely-sampling arrays. The top panel shows the result after 8 iterations of the

field while the bottom panel is the benchmark result for the modeled field for a

source at 4.5 km. In both cases a fractional frequency shift of ∆ω/ω = +0.05 has

been applied resulting in the perceived range shift of the fields. The expected range

shift, δr, for a β = 1 waveguide is indicated. The water depth is 100 m and the

source depth is 45 m. The depth aperture and element spacing interval of array

V α(V β) are given by ∆zα(∆zβ) and dzα(dzβ) respectively. The source signal carrier

frequency is indicated by fc.
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Figure 2.10: Simulated time domain range-shifted time-reversed pressure fields cor-

responding to the fields shown in Fig. 2.9. Each TR result consists of 3 panels

with each panel corresponding to the TR field measured over a receive array (V γ

of Fig. 2.1) located at the indicated range. (a) Range-shifted iterated result. (b)

Range-shifted benchmark result. The time axes indicate the delay with respect to

the arrival time of the non-range-shifted TR focus at r = 4.5 km. The dashed line

indicates the expected focal depth. The expected range shift, δr, for a β = 1 waveg-

uide is indicated. The depth aperture and element spacing interval of array V α(V β)

are given by ∆zα(∆zβ) and dzα(dzβ) respectively. The source signal bandwidth and

carrier frequency are indicated by ∆f and fc respectively.
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Figure 2.11: Experimental time domain time-reversed pressure fields. In all cases,

the dashed line indicates depth of the source from which the TR field originated

(real or virtual). Panels (a) and (b) show the TR foci produced by iterated fields

(4 iterations) corresponding to virtual sources at r = 414 mm = 5R. Panel (c) is

the TR result for a real source at the same range. Similarly, (d) and (e) show the

TR foci produced by iterated fields (9 iterations) corresponding to virtual sources at

r = 828 mm = 10R with panel (f) giving the TR result for a real source at the same

range. Panel (g) corresponds to panel (e). In this case, array tilt was not accounted

for. The source signal bandwidth and carrier frequency were fc = 1.5 MHz and

∆f = 1.5 MHz, respectively.
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Figure 2.12: Experimental time domain pressure fields used to generate TR fields.

Panel (a) is the iterated pressure field due to a virtual source used to produce the

TR focus of Fig. 2.11(e). Panel (b) is the direct sampled pressure field due to a real

source that resulted in the TR focus of Fig. 2.11(f).



Chapter 3

Data-based mode extraction with

a partial water column spanning

array

abstract

In a shallow ocean waveguide the acoustic field can be characterized by depth de-

pendent modes propagating in range with an associated propagating wavenumber.

Though recently developed methods for determining the modes from recorded acous-

tic data alone without ocean or bottom modeling have shown promise, they are only

applicable when the acoustic field is sampled over the entire water column. This

paper presents a method for determining the acoustic modes from measured data

alone when the field is sampled over only a portion of the water column. The

method requires broadband sources at many ranges, e.g., a moving source, in order

to construct the frequency-wavenumber (f-k) structure of the waveguide. Because

modal propagation is dispersive, the modes are characterized by a discrete set of

wavenumbers that vary continuously with frequency. Due to the discreteness of the

modal wavenumbers, it is possible to isolate the modes in the f-k domain and extract

them individually with a singular value decomposition (SVD). Because the modes
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are extracted individually the full-spanning and degeneracy limitations of the SVD

are removed. Theory, simulation, and laboratory data confirm the process.

3.1 Introduction

The normal mode structure of an ocean waveguide is not only fundamental to de-

scribing propagation, but also provides opportunities for various types of array and

signal processing[1]. In range-independent environments, matched mode or mode

filtering methods [2, 3, 4] offer an effective alternative to more general matched

field methods [5] that tend to be computationally costly and highly sensitive to

environmental mismatch. Matched mode methods apply a knowledge of the modal

components of the field to measured data over a vertical array of sensors. Typically,

the modal components are constructed from theory using parameters derived from a

detailed knowledge of the environment. The difficulty and high cost of obtaining the

necessary environmental information has motivated research into the development

of model-free methods for determining the modes of acoustic propagation. Of par-

ticular interest are methods that can be directly applied to acoustic data measured

on a vertical line array (VLA) without any a-priori information. Current research

strategies range from active methods involving feedback between a pair of VLAs [6]

to passive methods in which a VLA is used to accumulate information from acoustic

sources and/or noise in the environment [7, 8, 9, 10]. This paper demonstrates that,

under certain conditions, normal modes can be extracted passively from the received

acoustic field in a waveguide without a full water column spanning array, without

environmental information and without any modeling.

We introduce a method for determining the acoustic modes of propagation from

sound received on a partial-spanning VLA from a horizontally moving source. The

method involves a combination of masking individual modal dispersion curves con-

tained in a frequency-wavenumber (f-k) analysis of the data, and a subsequent sin-

gular value decomposition (SVD). The method is related to earlier work by Frisk
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and Lynch [11] in which they Hankel transformed (over range) acoustic data (at a

single frequency) recorded on a single receiver from sources spanning a range aper-

ture at a single depth in order to estimate the Green’s function characterizing the

shallow ocean waveguide. Extending this idea to broadband signals measured at

many depths using the receivers of the VLA leads to a comprehensive knowledge of

the depth-dependent f-k structure of the waveguide. By combining this knowledge

with the physics of modal dispersion, it possible to overcome the inherent limitations

to the applicability of other SVD based methods; namely singular value degeneracy

and the full-spanning requirement.

SVD methods are based on the premise that the equation describing the decou-

pled full-spanning cross spectral density matrix (CSDM) of the frequency domain

acoustic field is isomorphic to its SVD. Existing SVD methods rely on range, fre-

quency, and ambient noise ensemble averaging to decouple the modes in the CSDM

[9, 10]. In this paper we introduce a frequency-wavenumber (f-k) modal dispersion

curve isolation, or mode isolation (MI), scheme for decoupling the modes in the

CSDM. By decomposing the acoustic field into its wavenumber components, it is

possible to isolate the modes in the f-k domain prior to formation of the CSDM.

Our scheme involves the formation of several CSDMs, each of which contains sig-

nificant contributions from only one modal component of the acoustic field. Then

a SVD is applied to each f-k averaged CSDM in order to extract each modal depth

dependence one at a time. Not only does this eliminate the ambiguities arising from

singular value degeneracies, it frees the SVD from its fully-spanning constraint so

that modes can be extracted over any portion of the water column for any sound

speed profile.

Sec 3.2 reviews the theory of SVD based mode extraction. The conditions under

which the SVD of the CSDM is expected to be isomorphic to the depth-dependent

modes are discussed in Sec. 3.2.3. The range averaged form of the CSDM introduced

in Ref. [9] is used as an example. As well, the limitations of the SVD are addressed,

namely those involving singular value degeneracies and normalization over a partial
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half-space (Throughout this paper, the term ”half-space” is meant to refer to all

media below the surface of the water, i.e. the water column and all bottom layers).

The MI method is introduced and its advantages over other SVD methods are

discussed in Sec. 3.2.4. Mode extraction results for both simulated and laboratory

data are presented in Sec. 3.3.

3.2 Theory: Singular value decomposition mode

extraction from vertical line array data

In this section we explicitly develop the relationship between acoustic data on an

array, normal mode expansions and the SVD process. After presenting this analysis,

we then formally develop our extraction method.

3.2.1 Normal mode theory applied to the VLA pressure

field

Normal mode theory states that the single frequency component, at angular

frequency ωj, of pressure field, p(z′, zq, ωj, rh), at receiver point (z = zq, r = 0)

in a range-independent waveguide with depth varying density, ρ(z), due to a time

varying pressure signal originating from point source, S(t−t0), located at the source

point (z = z′, r = rh) is given by

Pqhj(z
′) ≡ p(z′, zq, ωj, rh) =

√
2πe

iπ
4

ρ(z′)

M∑
m=1

φm(z′, ωj)φm(zq, ωj)√
km(ωj)rh

e−ikm(ωj)rhS̃(ωj).

(3.1)

Here M is the number of propagating modes supported by the environment, S̃(ωj)

represents the Fourier transform of S(t− t0)

S̃(ωj) ≡
1

2π

∫ +∞

−∞
S(t− t0)e

−iωjtdt, (3.2)
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and km(ωj) is the modal wavenumber. The φm(zq, ωj) are the normalized, orthogonal

depth dependent mode functions satisfying∫ D′

0

φm(zq, ωj)φm(zq, ωj)

ρ(zq)
dzq ≡ δmn. (3.3)

Rigorously, δmn represents a Kronecker-delta function when D′ spans the entire

half space. The variables zq, ωj, and rh are subscripted in order to facilitate the

connection between the theoretical discussions in the continuous limit to follow

and their discretized experimental implementations. Explicitly, discretization is

introduced to describe the experimental situation shown in Fig. 3.1 such that zq

is the depth of the qth VLA receiver element, rh is the range of the hth source,

and ωj is the jth signal frequency component. Under an integral, a subscript serves

as a label on a continuous variable. Under a summation, a subscript serves as a

proper index. Functions of subscripted independent variables may also adopt the

subscripted notation. Two notable examples are

km(ωj) → kmj

φm(zq, ωj) → φqmj.

3.2.2 The SVD

Any Q × Q complex matrix A can always be written as a product of matrices

such that

A = USV†, (3.4)

Aqq′ =
N∑

α=1

uqαsααv
∗
αq′ ,

where U and V are unitary matrices, V† is the complex conjugate transpose of V,

and S is a diagonal matrix whose elements are the singular values of A and are

positive. N is the number of rows of Q (and V). U and V are unique when the

singular values are nondegenerate . Performing a SVD on A yields U, V, and S.

By design, the SVD implementation we use orders the column vectors of U and V
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according to their respective singular values, with the vector corresponding to the

greatest singular value appearing in the first column, the vector corresponding to

the next highest singular value in column 2, and so forth.

3.2.3 The SVD of the decoupled CSDM and the normal

modes

The SVD based mode extraction algorithms defined in Refs. [8] and [9] involve

the formation of the spatial Cross Spectral Density Matrix (CSDM), C, as the

outer product of the complex frequency domain pressure field, P ≡ Pqhj(z
′) data

array, with its complex conjugate transpose (for either constant h or constant j),

P†, averaged over range and/or frequency. In general, C is a complex Q × Q

matrix where Q is the number of elements on the VLA. In accordance with Sec.

3.2.2, C may be written as a product of matrices U, V, and S. Under the proper

conditions, an isomorphism exists between some of the columns of U and the some

of the propagating depth-dependent modes. The remainder of this section briefly

summarizes the connection between the SVD of the CSDM and the depth-dependent

modes using the range averaging or Multiple Range (MR) method of [9] as an

example.

In the MR method, the CSDM, CMR, is defined as an average over ranges,

CMR ≡
〈
PP†〉MR

(3.5)

CMR
qq′ =

1

H

H∑
h=1

Pqhj(z
′)P ∗

hq′j(z
′)

=

M,M∑
m,n=1

φqmjφ
∗
nq′jδ

MR
mn

where

δMR
mn ≡

2π|S̃j|2φmj(z
′)φ∗nj(z

′)

Hρ2(z′)
√
kmjknj

(
H∑

h=1

e−ikmnjrh

rh

)
, (3.6)

kmnj ≡ kmj − knj. (3.7)
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The MR method utilizes the information from a single frequency component, ωj,

of many acoustic pressure fields recorded at points zq on the receiver VLA. The

pressure fields are accumulated sequentially from sources at many ranges, rh, all

at the same depth z′. For a single frequency (constant j) then, Pqhj(z
′) are the

elements of a Q×H matrix for Q VLA elements and H range samples. For the case

of adequate range sampling over a sufficiently large aperture, the summation over

range in Eq. (3.6) results in the term in parentheses approaching an unnormalized

Kronecker-delta function in the indices m and n. In this case, δMR
mn approaches a

diagonal matrix so that Eq. (3.5) reduces to the approximation

CMR
qq′ ≈

M∑
m=1

φqmjφ
∗
mq′jδ

MR
mm . (3.8)

Comparison to Eq. (3.4) makes explicit the isomorphism between the matrices U

and V and the depth dependent modes, φqmj, as well as the isomorphism between

the singular values and the diagonal elements δMR
mm ,

Uqα ≡ ~Uα ↔ ~φmj ≡ φqmj (3.9)

sαα ↔ δMR
mm .

As the quantity δMR
mm is proportional to the intensity of mode m, the modes will be

ordered according to their intensities measured at the VLA. Therefore, column 1 of

the matrix U (and V as well), ~U1, returned by applying a SVD to the CSDM is iso-

morphic to the depth-dependent mode of greatest intensity normalized to unity, and

so forth. This isomorphism is valid only for modes which are completely decoupled

from all other modes, i.e. for modes m for which δMR
mn approaches a Kronecker-

delta function for all n 6= m. CSDM mode decoupling depends on the total number

of sources, H, the span in range, or range aperture, of the sources, ∆r, and the

sampling interval of the sources, dr [8, 9].

Applying similar reasoning to a frequency averaged form of the CSDM, a method

we refer to as the frequency averaging or Multiple Frequency (MF) method, an iso-

morphism can be established between the frequency averaged acoustic modes and
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the SVD column vectors in the case of limited bandwidth where the frequency aver-

aged acoustic modes are an adequate approximation to the true frequency dependent

modes. Proceeding further, it is possible to improve mode decoupling, and hence

the mode extraction results, by combining the MR and MF methods. This hybrid

method, MRMF, applies the SVD to a time and range averaged form of the CSDM

to extract the modes.

CSDM mode decoupling is a necessary but not sufficient condition for the ex-

traction of a given mode. For the case of degenerate singular values, U and V

are not unique. Specifically, all column vectors of U whose corresponding singular

values are degenerate are not unique. Hence, an isomorphism cannot be established

between these vectors and any of the depth-dependent modes. As well, because U is

unitary, the isomorphism is valid only when the matrix formed by the set of modes,

Φj ≡ {φqmj} (the subscript j is included in reference to the MR case where a single

frequency component is considered), is unitary. This is only true when Φj spans

the entire half space, otherwise,
∑Q

q=1 φmqjφqnj is not diagonal. This requires that

the VLA cover the entire water column and that none of the propagating modes

penetrate significantly into the bottom. Not only are the range, frequency, and am-

bient noise averaging techniques so far proposed in the literature constrained by the

full-spanning requirement, but they are also hampered by degeneracy limitations

(See Sec. 3.2.2).

As a final note, because U is comprised of Q columns, Q is the maximum number

of modes that can be extracted. All the modes can be extracted when Q ≥M .

3.2.4 Using the f-k structure of the waveguide to extract

the normal modes

In this section we augment the utility of range and frequency information in SVD

based methods by considering the underlying physics of modal dispersion in the f-k

domain. Not only will such considerations allow us to overcome the degeneracy
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limitations of the earlier methods, but they also make it possible to extract all the

depth dependent modes projected over a partially spanning VLA.

The mode isolation (MI) method capitalizes on an extra bit of information not

considered by the previously discussed mode extraction algorithms: namely, the

modal wavenumber pattern of an f-k dispersion representation. By accumulating

the frequency domain VLA pressure fields from sources at many ranges all at the

same depth, it is possible to apply a Fourier transformation over range as well as

time. We note that the source ranges need not be evenly spaced [12]. In the case

of varying sampling interval, the sampling intervals must be known. The range-

wavenumber transformation results in the frequency-wavenumber structure of the

waveguide projected over the VLA. This information is useful because in a horizon-

tally stratified waveguide the modal wavenumbers are discrete and localized in the

f-k domain, making it possible to isolate the modes (depending on the wavenum-

ber resolution) from one another so that their depth dependence may be extracted

individually. The effect of the isolation process is to reweight each isolated mode

such that its effective excitation is much greater than the effective excitations of

the other modes. This ensures that, upon applying the SVD to the isolated mode

CSDM, the column vector of U corresponding to the greatest singular value, denoted

here as ~U1, is associated with the isolated mode. By design, the SVD calculates the

orthogonal column vectors of U sequentially according to their singular value. As

each vector is calculated, it is constrained to be orthogonal with respect to each and

every previously calculated vector. Because ~U1 is calculated first, it is not is not

constrained by the orthogonalization process. Rather, it is merely normalized to

unity over the spanning space. Furthermore, in the infinite wavenumber resolution

limit (∆r →∞), the mode isolation process guarantees ~U1 to be nondegenerate. As

a result, we conclude that ~U1 is isomorphic to the isolated depth-dependent mode

projected over the VLA, regardless of the amount of the water column spanned by

the VLA.

The remainder of this section is dedicated to the characterization of the MI
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process in a quantitative framework. Taking the discrete Fourier transform over the

sampled ranges of the pressure field, we define the f-k domain VLA pressure field

P̃qh′j(z
′) ≡

H∑
h=1

Pqhj(z
′)e−ik̃h′rh . (3.10)

k̃h′ represents the wavenumber conjugate to the range, rh. Because it is assumed that

all the recorded pressure fields originate from the same source depth, the explicit

dependence of the f-k domain pressure field shall be suppressed for the remainder

of the paper. Substituting Eq. (3.1) and rearranging yields

P̃qh′j =

√
2πe

iπ
4

ρ(z′)

M∑
m=1

φmj(z
′)φqmj√
kmj

S̃jγmh′j, (3.11)

where all the wavenumber dependent phase factors have been included in γmh′j,

γmh′j ≡
H∑

h=1

e−i(k̃h′+kmj)rh . (3.12)

For constant range sampling interval, dr, γmh′j reduces to the classical array diffrac-

tion result,

γmh′j = e−i(k̃h′+kmj)R0

sin
((
k̃h′ + kmj

)
Hdr

2

)
sin
((
k̃h′ + kmj

)
dr
2

) . (3.13)

where R0 is the range of the nearest source (at r = r1). The relevance of this result

is that γmh′j is peaked around k̃h′ = −kmj. Equation (3.13) demonstrates explicitly

the dependence of the wavenumber resolution of the f-k pressure field on the range

aperture, ∆r = Hdr. γmh′j approaches a delta function, γmh′j → δ(k̃h′ + kmj),

in the infinite wavenumber resolution limit (∆r ≡ |rH − r1| → ∞). For each q

then, we recognize P̃qh′j to be the f-k diagram of modal propagation at depth zq

defining the frequency dependent wavenumber characteristics of the propagating

depth dependent modes. In the f-k domain, the modes appear as distinct, localized

curvilinear regions centered on lines defined by k̃h′ = −kmj. The localization is a

consequence of the discreteness of the modal wavenumber spectrum. Figure. 3.2(a)

shows an example of the discrete wavenumber spectrum of a simulated ocean Pekeris
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waveguide. All f-k domain dispersion figures show the depth averaged modulus of

the spectrum. Because the modal wavenumbers are localized in the f-k domain, it

is possible to isolate them. The isolation is accomplished by means of a 2D mask

applied in the vicinity of a given mode projected over all VLA elements.

At this point, it is convenient to introduce a modification to our transforma-

tion procedure that facilitates the mode isolation process. We emphasize that this

modification in no way affects the analysis of the underlying waveguide dispersion

physics. Returning to Eq. (3.10), we introduce a frequency dependent weighting

factor (in parentheses) and define the rotated pressure field

ˆ̃
P qh′j ≡

H∑
h=1

Pqhj

(
eik̂jrh

)
e−ik̃h′rh . (3.14)

Analogously to Eq. (3.12), the wavenumber dependent complex phase dependence

of the rotated pressure field is

γmh′j ≡
H∑

h=1

e−i(k̃h′+kmj−k̂j)rh . (3.15)

As before, for the case of constant range sampling, Eq. (3.15) reduces to the array

diffraction result similar to Eq. (3.13), only it is peaked about k̃h′ = k̂j − kmj.

The weighting factor transforms the f-k dispersion structure according to the

choice for k̂j. The transformation is arbitrary. For example, choosing k̂j equal to a

constant results in a simple translation in wavenumber of the dispersion structure.

For our purposes, we find it convenient to define k̂j ≡ k1j where k1j is the frequency

dependent mode 1 wavenumber. This choice of transformation effectively rotates

the f-k structure such that mode 1 curve appears at k̃h′ ≈ 0 for all frequencies. We

approximate the mode 1 wavenumber k1j ≈ ωj

vg1
, where vg1 is a frequency independent

approximation to the mode 1 group velocity, vg1 = 1500 m
s

over the bandwidth

[13]. Because the modal wavenumber spectrum density increases as mode number

decreases, modal wavenumbers of modes 1 and 2 will be the most difficult to resolve,

and therefore, the most difficult to isolate. This choice of rotation facilitates the

isolation of the low order modes by rendering them nearly vertical. Fig. 3.2(b)
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shows the rotation applied to the f-k structure of Fig. 3.2(a). In this example using

simulated shallow ocean waveguide data, all 5 propagating modes are well resolved

in wavenumber.

Referring to the f-k dispersion structure, the mask of mode ν is defined as the

set of k̃h′ for which

k̂j − kνj − εν ≤ k̃h′ ≤ k̂j − kνj + εν (3.16)

for each frequency component of interest. The width (in wavenumber) of the mode

ν mask is determined by the quantity εν . The mask width, and hence εν , should be

large enough that the mask contains all the important features of mode ν, but still

small enough that it does not incorporate significant features of adjacent modes. We

adopt the notation {X}ν to represent the mode ν masking operation applied to the

quantity X where X is a synthesis of modal components, X =
∑M

m=1 xm. Because

it is an isolation operation, the masking operation conceptually behaves similarly to

the Kronecker delta function, δmν . It isolates the mode ν component of quantity X,

{X}ν ≈ xν . Applying the masking operation to the rotated f-k pressure field yields,

{ ˆ̃
P qh′j}ν ≈

√
2πe

iπ
4

ρ(z′)

φνj(z
′)φqνj√
kνj

S̃jγνh′j. (3.17)

This form for the masking operation applied to the pressure field is valid in the

limit that γmh′j −→ γνh′j over the mask region (the region defined by condition

(3.16)). This is indeed the case when mode ν is well isolated and a mask containing

only mode ν can be defined unambiguously. That is, as long as the wavenumber

resolution is adequate to render mode ν distinct from its neighboring modes, ν − 1

and ν + 1, in the f-k domain, the dominant contribution to the the pressure field,

and hence the CSDM, within the mask comes from mode ν.

Because the depth dependence of the modes is unaffected by the transformation

process (r → k), it is not necessary to transform back from wavenumber to range in

order to form the CSDM. Defining the mask such that there are the same number

of wavenumber elements, H ′, for each frequency, { ˆ̃
P qh′j}ν is a Q × H ′ × J array

which can be used to form the CSDM directly. J here is the number of frequency
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components included in the mask. The CSDM is then defined as the double sum

over the mode ν mask region

Cqq′ =
1

H ′J

H′J∑
h′,j=1

{ ˆ̃
P qh′j}ν{

ˆ̃
P qh′j}∗ν . (3.18)

Notice the sum over range is replaced by a sum over the wavenumbers defined by

the mask.

Because the CSDM involves frequency averaging, care must be taken in estab-

lishing an isomorphism between the modes and the column vectors of the SVD

matrix U. Rigorously, the isomorphism is only valid when the depth-dependence of

the modes can be considered frequency independent. In practice this means that the

frequency must be limited to a bandwidth over which the modal depth dependence

is nearly constant. In this case the extracted modes can be thought of as an average

over the bandwidth, φqνj → 〈φqν〉, so that upon substitution by Eq. (3.17), Eq.

(3.18) takes the form

Cqq′ = 〈φqν〉
〈
φ∗νq′

〉
δ̃ν , (3.19)

where

δ̃ν ≡
2π 〈φν(z

′)〉 〈φ∗ν(z′)〉
H ′Jρ2(z′)

(
H′J∑

h′,j=1

(
|S̃j|2√
kνjkνj

)
γνh′jγ

∗
νh′j

)
. (3.20)

Clearly then, when mode ν is well resolved in wavenumber (as is the case with

mode 4 in Fig. 3.2(c)), performing the singular value decomposition of C yields the

matrix U such that the column vector ~U1 is isomorphic to the frequency averaged

depth-dependent mode ν with corresponding singular value s11 proportional to δ̃ν ,

Uq1 ↔ 〈φqν〉 (3.21)

s11 ↔ δ̃ν .

In the case where the masked mode is not well resolved in wavenumber, it is not

possible to define a mask that contains only mode ν and the SVD will not work for

this mode.
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To determine the resolvability of the modal wavenumbers, we consider the range-

wavenumber relations of numerical Fourier transform implementations such as the

FFT,

∆r =
2π

dk̃
(3.22)

dr =
2π

∆k̃
.

The mode ν wavenumber will be well resolved when the rotated wavenumber sam-

pling interval is much less than the minimum interval separating adjacent modes

within the bandwidth, dk̃ � |kνj − k(ν−1)j|min. This condition determines the mini-

mum range aperture required to resolve mode ν, ∆rν , in wavenumber,

∆rν �
2π

|kνj − k(ν−1)j|min

. (3.23)

Because |kνj − k(ν−1)j|min decreases as ν decreases, this effectively sets a lower limit

on the lowest mode that is extractable for a given range aperture. At the other

end of the spectrum, the width of the rotated wavenumber domain, ∆k̃, of the f-k

diagram determines the highest order mode appearing in the f-k structure. Then

the upper limit on ν that is extractable for a given range sampling interval is set by

the condition

dr =
2π

|kνj − k1j|max

. (3.24)

In the context of ocean applications, the range aperture needed to resolve mode

ν (in the low mode order limit, ν � 2D
λw

) is governed by the inequality

∆rν �
8D2

λw (2ν − 1)
. (3.25)

Here D is the water depth, and λw ≡ f0

cw
is the acoustic wavelength in the water

(characterized by sound speed cw) at frequency f0. For example, in order to extract

all the propagating modes excited by a moving broadband source radiating at a

central frequency of 150 Hz in a 100 m deep waveguide, the source would have to

cover greater than 8 km in range aperture. However, extracting modes 3 and greater

would require only 1
5

the range aperture. The sampling interval requirement can be
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written in terms of physical parameters as dr ≈ λw

(
cb

|cb−cw|

)
. For water and bottom

sound speeds cw = 1500 m
s

and cb = 1800 m
s
, the sampling interval can be as large

as 18 m (= 6 λw).

3.3 Results: Application of the MI method to

data

In this section we include comparisons of the depth-dependent mode extraction

results of the MRMF and MI methods. Mode extractions using both simulated and

experimental data are shown. The simulated mode extractions are useful because

they allow us to compare the extracted modes with the true modes used to gen-

erate the simulated pressure fields. The experimental mode extractions provide a

demonstration that the MI mode extraction method is experimentally applicable, a

crucial first step proof of concept for shallow ocean applications. In the following

sections, the vectors returned by the SVD operation are called SVD-vectors. This

is done in order to differentiate them from the theoretical modes used to generate

the simulation. This differentiation also serves to emphasize that these objects are

not always faithful representations of (isomorphic to) the true modes of acoustic

propagation.

The effectiveness of range averaging (MR) and ambient noise decoupling SVD

methods over a full-spanning array have been demonstrated [9]. Except for degen-

eracy limitations, our work shows that the MRMF technique works as well as the

MI method when applied to data over a full spanning array. Therefore, we shall not

dwell on full-spanning applications, and instead discuss the more interesting case of

partial-spanning applications.
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3.3.1 Comparison of MI and MRMF methods applied to a

partial-spanning VLA simulation

Range and frequency averaging CSDM decoupling scheme SVD methods, such

as the MR, MF, and MRMF methods, have been applied to experimental data.

The success achieved by such methods has been demonstrated to be limited by the

constraints mentioned in Sec. 3.2.3, namely the degree of mode decoupling in the

CSDM, the degeneracy of the singular values, and the full-spanning requirement.

Of these, the latter is by far the most stringent constraint. Whereas, some of the

modes may be successfully extracted under conditions in which only some of the

modes are decoupled and some of the modes are degenerate, these methods fail to

extract any of the modes when the VLA does not span the entire water column. The

MI technique, on the other hand, can extract all modes for which the wavenumber

resolution is adequate over a partial-spanning array. In this section we use simulation

to demonstrate the MRMF and MI methods’ respective abilities to extract the depth

dependent modes of acoustic propagation over a partial-spanning VLA. Because the

data is simulated it is possible to compare the extracted modes to theory.

We simulated the VLA pressure fields resulting from distant broadband (400-

600 Hz) sources in a shallow ocean Pekeris waveguide characteristic of near shore

environments of interest. The water depth was 60 m. The VLA consisted of 33

evenly spaced elements with element 1 at a depth of 12 m and element 33 at depth

44 m. The resulting f-k dispersion is shown in Fig. 3.3. Clearly, there are many

propagating modes. The first 12 modes are labeled for clarity. Modes 2, 4, and 6

are weakly excited and do not appear on the dispersion plot. This results from the

source depth being chosen to be at the midpoint of the water column.

Fig. 3.4(a) shows the SVD-vectors produced by the MRMF method applied

to the simulated pressure field. The MRMF SVD-vectors were matched to all the

theoretical modes. Each SVD-vector is plotted with its closest matching theoretical

mode. On the other hand, as seen in Fig. 3.4(b), when it comes to extracting
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depth-dependent modes projected over only a portion of the water column, the

MI method performs remarkably well. Whereas in the MRMF case we do not

automatically know to which mode a given SVD-vector corresponds, in the MI case

we know which mode we are attempting to extract. As the wavenumber separation

between the modes decreases, each mask contains increasing residuals from adjacent

modes. If the mode for which the mask is defined is weakly excited compared to an

adjacent mode, the extraction process will result in a mix of adjacent modes. As a

result, we see that the weakly excited modes (2, 4, and 6) are not well extracted.

The remaining modes are well extracted, with one caveat. It is possible to properly

determine mode 1 in this example only because mode 2 is absent. Otherwise, due to

the limited wavenumber resolution, it would not have been possible to isolate mode

1 from mode 2.

3.3.2 MI method applied to experimental data

Fig. 3.5 shows mode extraction results of the MI method applied to experi-

mental data. The experiment was designed to mimic a typical shallow ocean range-

independent environment at approximately a 1:10000 scale. Whereas ocean environ-

ments of interest typically involve ranges on the order of kilometers, depths on the

order of tens of meters, and wavelengths on the order of meters, the experimental

ranges were on the order of a meter (ranges between 390 mm and 990 mm), the

experimental depth was on the order of tens of millimeters (D ≈ 27 mm), and the

acoustic wavelength was on the order of millimeters (λ ≈ 2.5 mm). The waveguide

consisted of approximately 27 mm (≈ 10.5 λ) of fresh water over a homogenous sand

bottom. A vertical line array (VLA) measured the pressure fields individually from

H = 301 identical broadband ultrasonic sources (400 kHz bandwidth at 600 kHz

carrier frequency) located at evenly spaced range intervals between 390 mm and

990 mm (≈ 160−400 λ). The VLA consisted of Q = 31 evenly spaced hydrophones

spanning most of the water column (see Fig. 3.1). The absolute depths of the array

elements were unknown. The minimum and maximum source ranges were con-
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strained by the physical dimensions of the waveguide apparatus. The water depth

and source frequency were chosen to produce 10 propagating modes in a regime

where the wavenumber resolution produced by the range aperture would be ade-

quate for resolving most of the modal wavenumbers. The source depth was chosen

to be near the bottom to ensure that all the modes would be excited by the source.

As seen in the resulting f-k diagram of Fig. 3.5(a), there were indeed 10 propagat-

ing modes, 7 of which were well isolated. Fig. 3.5(b) shows the MI SVD-vectors

resulting from both full-spanning (dashed lines) and partial-spanning (dark lines)

VLA geometries. The full spanning case utilized data from all 31 VLA elements,

while the partial-spanning extraction used data from elements 8-22 (≈ 6− 17 mm).

Excluding mode 1, the full-spanning SVD-vectors appear remarkably sinusoidal.

Furthermore, the partial-spanning SVD-vectors coincide perfectly with the corre-

sponding portions of the full-spanning vectors. As mentioned, this would not be

the case for the MRMF method. The wavenumber resolution was not adequate to

isolate modes 1 and 2 (and perhaps mode 3).

3.4 Summary and discussion

We have demonstrated the conditions under which the singular value decompo-

sition (SVD) of a cross spectral density matrix (CSDM) is expected to yield column

vectors that are isomorphic to the depth-dependent modes of acoustic propagation.

Typically, in order for the isomorphism to be valid (i) the CSDM must sample the

entire half space (the vertical line array (VLA) over which acoustic data is recorded,

must at least span the entire water column); (ii) the modes must be decoupled in

the CSDM; and (iii) the singular values returned by the SVD must be nondegener-

ate. The constraints posed by these conditions limit the applicability of the current

collection of SVD and eigenvalue decomposition mode extraction methods in the lit-

erature. The full spanning requirement alone is a formidable constraint to overcome

in ocean applications. Add to this the degeneracy limitation, which arises whenever



77

two or more modes arrive at the VLA with nearly equal intensities, and it is unlikely

that such techniques will have significant practical applications in the ocean.

In order to address these shortcomings, we introduced a variation on the current

SVD methods which incorporates a knowledge (by measurement) of the dispersion

characteristics of the waveguide environment. Because the modes are disperse and

localized in the frequency-wavenumber (f-k) domain, it is possible to isolate and

deal with them individually. Our mode isolation (MI) technique proved effective at

extracting the modes of acoustic propagation over a VLA covering only a portion

of the water column. In addition, because the modes are extracted individually, the

MI technique does not suffer from degeneracy limitations.

The MI method is subject to two constraints: the soft constraint that the band-

width be limited to a regime in which the depth dependence of the modes is weakly

frequency dependent, and the hard constraint imposed by the available range aper-

ture. The latter constraint, related to the CSDM mode decoupling requirement

mentioned in (ii) above, determines the wavenumber resolution. It is the wavenum-

ber resolution that dictates whether or not a given modal wavenumber will be well

localized in the f-k domain. The MI technique is expected to perform well when the

modes are well localized in the f-k domain regardless of the sound speed profile.

As a practical matter, it is worth mentioning that it is not necessary to deter-

mine the absolute ranges of the sources under the condition that they are evenly

spaced. In this case transforming to wavenumber leads to the same fundamental f-k

modal dispersion. Any error in estimating the range interval between the sources

results only in a simple linear wavenumber scaling of the modal dispersion. In ocean

applications, time gating the acoustic signal from a passing ship traveling at a con-

stant velocity far from its closest point of approach might fulfill our requirement of

evenly spaced acoustic sources. A misestimation of the ship’s velocity would result

in a linear scaling of the ranges and would not adversely affect the application of

the MI mode extraction technique.
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Figure 3.1: Experimental set up. VLA composed of Q transducers at depths zq

(open circles) located at range r = 0 records acoustic field from sources at ranges

r = rh and depth z′. The acoustic fields from sources at the same depth for many

ranges (closed circles) are recorded individually.

(a) (b) (c)

Figure 3.2: Depth averaged modulus of the f-k structure of a simulated waveguide.

Propagating modes appear as localized dark curves. (a) Unrotated f-k structure.

(b) Rotated f-k structure. (c) Magnified rotated f-k structure showing the mode

4 mask region (black lines). Simulated waveguide parameters: Pekeris waveguide,

D = 15 m, cw = 1500m
s
, cb = 1800m

s
, ρb = 1800 kg

m3 , dr = 2 m, ∆r = 1 km, rc = 3 km

(rc is the range to the center of the range aperture), z′ = 15 m.
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Figure 3.3: Depth averaged modulus of the rotated f-k structure of a simulated

waveguide. Propagating modes appear as dark gray curved regions. Modes are

enumerated for clarity. Modes 2, 4, and 6 were weakly excited by the source. Hence,

they appear to be missing. The mode 7 mask is shown (solid black lines) as an

example. Simulation parameters: Pekeris waveguide, D = 60 m, cw = 1500m
s
,

cb = 1800m
s
, ρb = 1800 kg

m3 , dr = 20 m, ∆r = 2 km, rc = 3 km, z′ = 30 m.
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Figure 3.4: Comparison of MRMF and MI method mode extractions using simulated

pressure field data over part of water column (12 − 44 m). (a) Depth-dependent

modes extracted using the MRMF method. (b) Depth-dependent modes extracted

using MI method. The SVD-vectors (solid lines) are plotted with the theoretical

modes (dashed lines) used to generate the data. Each numbered panel shows one

SVD-vector along with corresponding theoretical mode. In the MRMF case only

the real components of the 8 best matching MRMF SVD-vectors are shown along

with their best matching theoretical modes. Simulation parameters: Same as Fig.

(3.3).
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Figure 3.5: MI method mode extraction results using ultrasonic experimental pres-

sure field data over full-spanning (VLA elements 1-31) and partial-spanning (ele-

ments 8-22) VLAs. (a) Depth averaged modulus of the rotated f-k structure of

the experimental waveguide. Propagating modes appear as dark gray curved re-

gions. Modes are enumerated for clarity. (b) MI SVD-vectors from partial-spanning

VLA data are indicated with solid lines. Full-spanning VLA SVD-vectors appear as

dashed lines. Only modes 1-10 are shown. Experimental parameters: fresh water

over sand bottom, D = 27 mm, cw ≈ 1490m
s
, cb unknown, ρb unknown, z′ ≈ 26 mm,

dr = 1 mm, ∆r = 600 mm, rc = 690 mm.



Chapter 4

Focal depth shifting of a time

reversal mirror in a

range-independent waveguide

abstract

A time-reversal mirror (TRM) refocuses back at the original probe source position.

A goal has been to refocus at different positions without model based calculations.

A method to refocus at different ranges has already been developed using frequency

shifting. Here we present a technique to refocus at different depths than the original

probe source in a shallow ocean range-independent waveguide. The requirement is

to collect data from various ranges at a single depth, as from a moving broadband

radiator, over a distance sufficient to construct the relevant frequency-wavenumber

(f-k) structure of the waveguide. With this information, it is then possible to focus

at arbitrary depth at any of the ranges that the probe source data were taken.

Experimental results confirm the theory.

85



86

4.1 Introduction

Acoustic time-reversal (TR) focusing has been demonstrated to produce tem-

porally and spatially focused acoustic signals in a static ocean environment. TR

focusing consists of recording the pressure field from a distant probe source over

a portion of the water column, reversing the signal in time and propagating the

time-reversed signal back through the medium resulting in a pressure field that is

temporally and spatially focused at the probe source location. The spatio-temporal

focusing is a consequence of the time-reversal invariance of the linear lossless wave

equation describing acoustic propagation in the ocean environment [1]. In waveguide

acoustic environments that are range independent, the acoustic field propagates as

dispersive normal modes[2]. In shallow ocean waveguide applications, TR is often

implemented using a vertical line array (VLA) of acoustic transducers covering some

or all of the water column. The VLA is often referred to as a time-reversal mirror

(TRM) [1].

A TRM is limited by the requirement that a probe source initially broadcast

from the desired focal spot. A method for shifting the TR focus in range by altering

the frequency characteristics of the pressure field has been experimentally demon-

strated [3]. As well, a method for shifting the TR focus in both depth and range in

an iso-velocity waveguide in the high bandwidth limit has been proposed [4]. The

ability to depth shift a TR focus might find applications to MIMO communications

[5, 6]. For example, the data rate can be increased by sending different information

to different depths simultaneously. This paper introduces a method for shifting the

TR focus in depth from the initial probe source depth in the finite bandwidth modal

propagation regime. The method is an extension of the frequency-wavenumber (f-k)

mode extraction method introduced in Ref. [3]. Although other methods for ex-

tracting the depth dependence of the propagating modes exist (such as the control

feedback method introduced in Ref. [8], the amient noise eigen-value decompostion

methods discussed in Refs. [9, 10], and the moving source singular-value decompo-
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sition method proposed in Ref. [2]), we find the f-k analysis of Ref. [3] particularly

useful for depth shifting.

Similarly to the method of Ref. [12] generalized to broadband signals in the

far-field regime, the f-k structure of the waveguide is constructed by Fourier trans-

forming, in both range and time, the acoustic pressure fields measured over a TRM

from sources at many ranges all at the same depth, z′. Due to the dispersion of the

waveguide, it is possible to isolate the modes according to their discrete wavenum-

bers in the f-k domain and extract them individually. In addition, their wavenumber

components may be modulated independently. Noting that the relative intensities

of the modal components of the f-k structure are a function of the source depth and

the depth dependence of the modes, the extracted modes can be used to remodu-

late the isolated modal components individually resulting in a depth shifting of the

f-k structure. Transforming the depth shifted f-k structure back to the time-range

domain yields the desired depth shifted time-domain TRM pressure fields for each

initial source range. The depth shifted pressure fields can be time-reversed to pro-

duce TR foci at any of the initial ranges. The process is presented schematically

in Fig. 4.1. The dimensions of Fig. 4.1 describe our experiment at ultrasonic fre-

quencies (∼ 600 kHz, D
λ
≈ 10, ∆r

λ
≈ 250), where λ is the carrier wavelength of the

acoustic field, D is the water depth, and ∆r is the range over which data is recorded.

The process is equally applicable to spatial scales characteristic of the shallow ocean

in the regime ∆r
λ
≈
(

D
λ

)2
[13]. Choosing a practical limit on the range aperture,

∆r ≤ 5km, limits the applicability of this technique to regimes involving 5 to 40

propagating modes, 5 ≤ D
λ
≤ 40, where the lower limit results from the minimal TR

focus resolution for which depth shifting is useful.

Though this technique may be adapted to weakly range-dependent (adiabatic)

bathymetries, we have chosen to limit our analysis to range-independent environ-

ments in order to facilitate the description of the underlying physics. Broadening the

scope of the discussion to range-dependent environments would overly complicate

the analysis.
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The theory of depth shifting by mode remodulation is presented in Sec. 4.2. It is

developed and presented in conjunction with experimental results in Sec. 4.3. The

experimental results serve to illustrate the theory. Complications associated with

the depth shifting procedure are dealt with in Sec. 4.4. A discussion and summary

is given in Sec. 4.5.

4.2 Theory of mode remodulation depth shifting

According to normal mode theory, the pressure field at angular frequency compo-

nent, ω, measured over a vertically oriented TRM (with elements at discrete depths

zq {q = 1, 2, . . . , Q}) located at r = 0 due to a point source at (r, z′) in a range-

independent waveguide can be expanded into a superposition of depth-dependent

normal modes,

~P (z′, r, ω) =
M∑

m=1

~φm(ω)φm(z′, ω)ψm(r, ω), (4.1)

where

ψm(r, ω) ≡ iS̃(ω)

4ρ0

H
(1)
0 (km(ω)r) . (4.2)

S̃(ω) is the complex frequency component of the source signal, km(ω) is the mode m

propagating wavenumber, and ρ0 is the medium density. ~φm(ω) ≡ {φm(zq, ω)} and

~P (z′, r, ω) ≡ {Pq(z
′, r, ω)} are Q component vectors representing the projections

over the TRM of the mode m depth dependence and the pressure field respectively.

M is the total number of propagating modes supported by the waveguide.

Each normal mode arrives at the TRM with an associated amplitude and phase

given by φm(z′, ω)ψm(r, ω). The depth dependence of the mode amplitudes, φm(z′, ω),

has been isolated in Eq. (4.1) in order to emphasize the dependence of the mode

amplitudes on the source depth. The pressure fields from point sources at different

depths at the same range differ only by the relative amplitudes of the modes and
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are related through

~P (z′′, r, ω) =
M∑

m=1

~φm(ω)φm(z′′, ω)ψm(r, ω) (4.3)

=
M∑

m=1

~φm(ω)

(
φm(z′′, ω)

φm(z′, ω)

)
φm(z′, ω)ψm(r, ω).

Noting that a TRM produces an acoustic focus back at the source depth, depth

shifting can be achieved by remodulating the relative weighting of the modes ac-

cording to the term in parentheses. This remodulation strategy requires that the

mode amplitudes at depths z′ and z′′ be known and that the modes be isolated, or

uncoupled, so that they may be individually remodulated.

There are 2 basic strategies for isolating the modes so that they may be indepen-

dently modulated. The first strategy capitalizes on the orthonormality of the modes

over a full spanning array, 1
ρ0

~φn · ~φm = δnm. Here, the dot notation (·) indicates an

inner product. The modal amplitudes can be isolated by projecting the individual

modal depth dependencies over the measured array data,

1

ρ0

~φn · ~P (z′, r, ω) = φn(z′, ω)ψn(r, ω). (4.4)

In this sense, the projection operation acts as a filter. The isolated modal amplitudes

can be remodulated and the modal depth-dependence reintroduced. The depth

shifted pressure field is synthesized from the depth shifted modal components. It is

important to emphasize that projection requires an accurate knowledge of the modes

over the entire water column and is only effective in full-spanning applications.

Projection will be revisited in Sec. 4.4.1. In the second strategy, mode isolation

is achieved by directly localizing the wavenumber characteristics of the modes [3].

By performing a wavenumber analysis, it is possible to isolate the modes according

to their discrete propagating wavenumbers. Though this requires the accumulation

of pressure fields from many ranges, it has the advantages that it can be applied

over a limited aperture TRM and that it results in depth shifting over many ranges

(see Fig. 4.1). As a result, the depth shifting procedure developed throughout the

remainder of the paper is based on the latter strategy.
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4.3 Laboratory demonstration of depth shifting

Depth shifting is now developed in the context of wavenumber isolation based

on the mode extraction method of Ref. [3]. Experimental results are presented

and used to illustrate the development of the wavenumber isolation depth shifting

technique. The development is carried out in three phases: mode extraction, depth

shifting, and time-reversal. For the sake of clarity, a discussion of complicating

factors that arise during the development is delayed until Sec. 4.4.

4.3.1 Mode extraction from experimental data

The first step of the depth shifting method requires the extraction of the acoustic

modes from measured data alone. Applying the mode extraction method of Ref. [3],

the modes are extracted from the f-k structure of the waveguide according to their

discrete propagating wavenumbers. The f-k structure results from applying Fourier

transforms over both time and range to accumulated pressure field data from many

ranges,

~P (z′, k, ω) = Fr{Ft{~P (z′, r, t)}} =
M∑

m=1

~φm(ω)φm(z′, ω)ψm(k, ω). (4.5)

Here Ft{} and Fr{} indicate the Fourier transforms over time and range respectively.

The ranges need not be evenly spaced [14]. The modal wavenumber components of

the f-k structure, ψm(k, ω), are peaked about k(ω) = km(ω). For example, for the

case of uniform range sampling at interval dr over a range aperture ∆r centered at

range rc in the far-field limit (limkmr→∞H
(1)
0 (kmr) ∼ eikmr) of a range-independent

waveguide (see Eq. 4.2), the modal components of the f-k structure can be approx-

imated by the classical array diffraction result,

ψm(k, ω) ≈ iS̃(ω)e−ikm(ω)rc

4ρ0

√
km(ω)rc

(
sin
(
(km(ω)− k(ω)) ∆r

2

)
sin
(
(km(ω)− k(ω)) dr

2

) ) . (4.6)

In deriving Eq. (4.6) we neglected the effects of cylindrical spreading in applying

the range-wavenumber transform. The FFT in range results in a signal-to-noise
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ratio (SNR) gain that is proportional to the number of range samples, ∆r
dr

(dr is the

nominal sampling interval).

The first phase of the experiment involved the accumulation of pressure field

data over range. The experiment was performed in a laboratory waveguide using an

ultrasonic transducer (400 kHz bandwidth at a carrier frequency of 600kHz). The

waveguide consisted of approximately 27 mm (≈ 10.5 λ) of water over a homoge-

nous sand bottom. Together, the far-field requirement and the finite length of the

waveguide constrained the operational range limits to between 400 and 1000 mm

(≈ 160− 400 λ).

The experimental configuration is illustrated in Fig. 4.1. A TRM (open black

circles) located at r = 0 individually recorded pressure fields from the acoustic

source at many ranges (closed black circles) all at the same depth, z′. The TRM

consisted of Q = 31 evenly spaced hydrophone elements spanning most of the water

column. Denoting the TRM elements by the index q, the time-domain pressure

field measured at element q due to a source at depth z′ and range r′ is represented

by the notation Pq(z
′, r′, t). Panels (a) and (c) of Fig. 4.2 show typical measured

time-domain pressure fields (the remaining panels of Fig. 4.2 are discussed later).

Figure 4.3(a) shows the depth averaged modulus of the f-k structure,

1

Q

Q∑
q=1

|P̂q(z
′, k, ω)|,

that results from Fourier transforming the measured data over range. The hat

notation, ~̂P ≡ {P̂q}, indicates that a frequency-wavenumber rotation transformation

has been applied to the time-range domain pressure field prior to applying the

Fourier transformations. This initial rotation transformation, introduced in Ref.

[15], facilitates mode extraction. As discussed in Ref. [3], the rotation transforms

the location of the modal wavenumbers in the f-k domain, km(ω) → k1(ω)− km(ω).

In addition to exaggerating the intermodal intervals, this choice of rotation mitigates

aliasing of the high order modes. As a result, the range sampling interval can

be increased, dr = 2π
|kw−kb|

, where kw and kb are the wavenumbers at the carrier
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frequency in the water and bottom respectively. The inverse transformation is well

defined and easily applied to the depth shifted pressure field discussed in Sec. 4.3.2.

Most of the modes (appearing as dark curved regions) are localized and distinct

from one another in wavenumber. Following the mode extraction method detailed in

Ref. [3], the well localized modes were masked and extracted individually. A mask

defines a region in the f-k domain containing only one mode that is projected over all

TRM elements. The only requirement on the masking procedure is that each mask

contain a significant contribution from only one mode. Other than that the mask

shape is arbitrary. The mode 7 mask is plotted on Fig. 4.3(a) as an example. Figure

4.3(b) shows the resulting extracted mode 7. Modes 3-10 were successfully extracted

in this manner. Because the extraction process involves frequency averaging, the

extracted modes are the modes averaged over their respective masks. To denote this

averaging, the set of extracted modes are written with an over-line notation, φm(z).

Due to the frequency averaging associated with the mode extraction process, it is

necessary to limit the frequencies spanned by each mask to bandwidths where the

modes are weakly frequency dependent. The major advantage of this method is that

the modes can be extracted over a partial spanning array (in this case the TRM)

using data alone.

Modes 1 and 2 were not well extracted. Due to the limited range aperture of the

experiment, the low order modes were not well localized and could not be separated

and individually masked. In addition to limiting mode extraction, poor localization

resulting from insufficient reange aperture also complicates depth shifting. Poorly

localized modes cannot be modulated independently. Due to SNR considerations,

the range aperture limitation is likely to be encountered in at sea applications of

the depth shifting (DS) method. The issues of determining poorly extracted modes

and remodulating poorly localized modes are dealt with in Secs. 4.4.1 and 4.4.2.
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4.3.2 Depth shifting experimental data

In addition to facilitating mode extraction, the mode masking technique makes

it possible to independently remodulate the modes with only a knowledge of the

source depth. The source depth need not be known a-priori. It can be determined by

applying mode matching techniques to the set of extracted modes [16, 17, 18]. Once

the source depth, z′, is determined, the set of extracted modes are used to calculate

the modal remodulation coefficients, φm(z′′)

φm(z′)
, (the parentheses term of Eq. (4.3)).

Remodulation is accomplished simply by multiplying each mask by its corresponding

remodulation coefficient. This is valid since the method has been restricted to weakly

frequency dependent regimes. Intermodal f-k structure not included in any masks

is irrelevant to far-field modal propagation and is discarded (set to zero). As well,

it is possible to discard high order modes for which the TRM depth sampling is

inadequate. Figure 4.4 shows the experimental masked f-k structure (compare to

Fig. 4.3(a)). Modes 3-10 were remodulated by directly multiplying each mask by its

corresponding remodulation coefficient. The independent remodulation of modes 1

and 2 was achieved by the method described in Sec. 4.4.1.

Since the array data now represents an ensemble of acoustic fields excited at

depth z′′ rather than z′, applying the inverse f-k rotation transformation and inverse

Fourier transforming the depth shifted f-k structure back to the time and range

domains yields depth shifted time domain pressure fields for all original data ranges,

~P (z′ → z′′, r, t) = F̃r{F̃t{~P (z′ → z′′, k, ω)}}. (4.7)

F̃t{} and F̃r{} indicate the respective inverse Fourier transformations. Panel (b) of

Fig. 4.2 shows an experimental depth shifted time domain pressure field from a se-

lected range. The depth shifted pressure field resembles the pressure field measured

from a source at the desired depth, z′′, at the selected range shown in panel (c),

particularly with respect to the early arrivals (low order modes). Close examination

of panels (b) and (c) reveals that there is more energy in the high order modes

relative to the low order modes in the depth shifted pressure field than in the mea-
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sured pressure field. This is likely due to errors associated with the remodulation

procedure. As a result, the depth shifted TR pressure more intense sidelodbes in

depth than the expected TR result (panel (c)).

4.3.3 TR focusing experimental data

Time-reversing the depth shifted pressure fields produces TR foci at any of the

initial source ranges. This result was experimentally verified. Depth shifted TR foci

were experimentally observed at all initial source ranges (represented schematically

in Fig. 4.1 by the closed gray circles). The foci were measured at selected ranges

with a limited aperture Vertical Receive Array (VRA). Figure 4.2(e) shows the

experimental TR focus produced by the depth shifted pressure field shown in panel

(b). The limited aperture of the VRA resulted in observed clipping at the shallowest

and deepest depths. The data source depth and desired focal depth are indicated

by (*) and (#) respectively. As a control, this result is compared to the optimal

TR foci (panels (d) and (f)) produced by the measured pressure fields from the

source and desired depths shown in panels (a) and (c) respectively. Figure 4.5

shows experimental depth shifted TR foci at various depths at a given selected

range. Figure 4.6 shows experimental depth shifted TR foci at various ranges at a

given desired focal depth.

4.4 Overcoming some complications

Thus far the DS procedure has been developed in the context of ideal conditions;

namely, that all modes are well localized and maskable in the f-k domain. In practice,

this is often not the case. In this section we discuss methods for dealing with poorly

localized modes.
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4.4.1 Remodulating coupled modes

As mentioned in Sec. 4.3.1, wavenumber resolution may limit the localization of

the low order modes which complicates the masking procedure. The range aperture,

∆r, sampled by the data determines the wavenumber resolution,

dk =
2π

∆r
. (4.8)

Adjacent modes (in the f-k domain) for which the intermodal spacing is of the

order of the wavenumber sampling interval, dk, cannot be masked, extracted or

independently remodulated. Because intermodal spacing decreases with mode order,

the lowest order modes are the most prone to the effects of wavenumber resolution

limitations.

The simplest strategy for dealing with modes that cannot be separated is to

eliminate them from the depth shifted f-k structure entirely. Neglecting the low order

modal contributions leads to side lobes in the time-reversed field. The experimental

TR field resulting from a depth shifted pressure field from which modes 1 and 2

were eliminated is shown in Figure 4.7. Comparing this to a case where the depth

shifted pressure field included properly remodulated contributions from modes 1

and 2 (Fig. 4.2(e)), we see that neglecting the low order modes leads to poor depth

shifting results.

In the special case where the depth dependence of the poorly localized modes is

known over most of the water column (by most here we mean the portion of the bot-

tom half-space over which the modes can be considered orthogonal to one another),

modal wavenumber isolation and remodulation can be achieved by the projection

procedure mentioned in Sec. 4.2. However, recalling that the mode extraction proce-

dure of Ref. [3] is also limited by the wavenumber resolution, the depth dependence

of poorly localized modes cannot be determined by this technique. Later on in this

section we outline an optimization procedure for determining the depth dependence

of poorly localized modes from a knowledge of the depth dependence of the known,

well-localized modes. Here we continue with the projection remodulation procedure
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under the assumption that the depth dependence of the poorly localized modes is

known over most of the water column.

Applying the projection of a given mode to f-k domain rotated pressure field,

~P (z′, k, ω), yields

Ψα(k, ω) ≡ 1

ρ0

~Φα · ~P (z′, k, ω) (4.9)

≈ φα(z′, ω)ψα(k, ω),

where ~Φα represents an optimized poorly localized mode projected over the TRM.

The wavenumber components are then remodulated independently,
(

Φα(z′′)
Φα(z′)

)
Ψα(k, ω).

The depth dependence of the corresponding modes, ~Φα, is reintroduced and the com-

ponents summed with the masked regions of the depth shifted f-k structure. Figure

4.8 shows a schematic of the process applied to experimental data. Panel (a) shows

a magnification of the unlocalized low order modes (see Fig. 4.3). Panels (c) and (e)

show the modulus of the isolated mode 1 and 2 wavenumber components, |Ψ1(k, ω)|

and |Ψ2(k, ω)| respectively, resulting from the projection procedure. The mode 1

and 2 depth dependences used to make the projections appear in panels (b) and (d).

The array diffraction behavior predicted by Eq. (4.6) is apparent for each mode.

The projection would not have succeeded in separating modes 1 and 2 had the TRM

spanned only a small portion of the water column.

Remembering that mode extraction only works in the case of well localized,

maskable modes, we point out that modes 1 and 2 shown in panels (b) and (d)

did not result from the original extraction technique. Rather they resulted from an

optimization algorithm.

We developed a genetic algorithm [19], based on the orthogonality conditions

relating the modes, to construct a small subset of the lowest order modes from a

larger subset of known higher order modes. Based on the appearance of the f-k

structure (Fig. 4.3) we assumed that modes 4-10 were well extracted, modes 1

and 2 were poorly extracted, and mode 3 was questionable. The optimization cost



97

functions for modes 1-3 were defined as

Fα ≡ |~Φα · ~Φα − cαα|+
10∑

m=4

|~Φα · ~φm − cαm|. (4.10)

The ~Φα (α = 1, 2, 3) represent the optimized modes. cαm and cαα are scalars in-

troduced to account for the fact that the optimization was not performed over the

entire half space. Because the TRM spanned most of the water column and did not

sample the bottom, the set of known modes are not expected to be strictly orthogo-

nal to one another, nor are they expected to be strictly orthogonal to the optimized

modes. These scalars were calculated using a crude environmental model based on

minimal knowledge of the environment, namely an estimate of the bottom sound

speed, bottom density, and the sound speed profile. The resulting optimized modes

(solid black curves) are plotted along with the modes derived from the masking

extraction process (gray dashed curves) in Figure 4.9. That the optimized mode 3

so closely resembles the extracted result tells us that the mode 3 mask was valid.

Therefore, only modes 1 and 2 were remodulated by projection.

4.4.2 Complications due to weakly excited modes

Depth shifting achieves optimal results when the source excites all propagating

modes. Modes whose excitations are too low to appear distinctively in the f-k

structure cannot be masked nor extracted. Hence, these modes cannot be included

in the depth shifted pressure fields which in turn adversely effects the resulting TR

focus. Therefore, the efficacy of the DS algorithm depends on the source depth.

Optimal TR focusing results when the source is not near any of the modal nodes.

In a Pekeris waveguide, for example, the bottom is an ideal depth for the source.

As well, care must be taken in the case of maskable modes whose excitations

are small but measurable. Because the source depth excitation appears in the de-

nominator of the mode remodulation coefficient, φm(z′′)

φm(z′)
, small errors in either the

denominator or numerator may result in large errors in remodulation. Remodula-

tion errors resulting in over-excitation are avoided by defining a threshold, βmax, for
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the remodulation coeffiecients. All coefficients above the threshold are set to zero

removing the given mode from the depth shifted f-k structure. Under-excitation is

preferable to over-excitation.

4.5 Summary and discussion

Depth shifting of a TR focus over a large portion of a range independent waveg-

uide using broadband sources from many ranges has been experimentally demon-

strated at ultrasonic frequencies in a laboratory setting that scales to typical shal-

low water scenarios. Data from many ranges were used to perform a frequency-

wavnumber (f-k) analysis of the waveguide so that the modes could be isolated

according to their characteristic wavenumbers. The isolated modes were extracted

and remodulated independently resulting in a depth shifting of the waveguide f-k

structure. The depth shifted f-k structure was used to produce depth shifted TR

foci over the extent of the original range aperture. In cases where the range aper-

ture is large enough to resolve the characteristic wavenumbers of all the modes, it

is possible to achieve optimal depth shifted TR focusing with a partial spanning

Time-Reversal Mirror (TRM). In cases, such as our experiment, where the range

aperture is not adequate to resolve all the modes, optimal depth shifted TR focus-

ing can only be achieved with a TRM that spans most of the water column. We

achieved good experimental results using a 90%-spanning TRM.
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Figure 4.1: Experimental set up. A Time-Reversal Mirror (TRM) composed of Q

transducers at depths zq (black open circles) located at range r = 0 individually

recorded pressure fields from acoustic point sources (black closed circles) at ranges

r = rh and depth z′. The resulting depth shifted TR foci at depth z′′ at selected

ranges (gray closed circles) were measured with a Vertical Receive Array (VRA -

gray open circles) with elements at depths zq′ .
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Figure 4.2: Experimental depth shifting (DS) result at a single range. (a) Time

domain pressure field, Pq(z
′, r′, t), recorded on the Time-Reversal Mirror (TRM)

due to an acoustic source at (r′, z′) produced (d) Time-Reversal (TR) focus at

(r′, z′). (b) Depth shifted time domain TRM pressure field, Pq(z
′ → z′′, r′, t), and

(e) resulting TR focus at (r′, z′′). (c) TRM pressure field, Pq(z
′′, r′, t), due to acoustic

source at (r′, z′′) and (f) its TR focus at (r′, z′′). (∗) and (#) indicate the source

depth, z′, and desired focal depth, z′′, respectively. z′ ≈ 25 mm, z′′ ≈ 7 mm.
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Figure 4.3: (a) Depth averaged modulus of the rotated f-k structure of the exper-

imental waveguide. Propagating modal wavenumbers appear as dark gray curved

regions. The modal wavenumbers, which are enumerated for clarity, appear at their

rotated values, km(ω) → k1(ω)− km(ω).Solid black lines indicate the mode 7 mask

region. (b) Mode 7 depth dependence extracted from masked region.
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set to zero.

*

#

r=790 mm

D
ep

th
 (

m
m

)

−4 0 4

10

20

*

#

r=790 mm

−4 0 4
*
#

r=790 mm

Time (× 10−5s)
−4 0 4

*
#

r=790 mm

−4 0 4

dB

−20

−10

0

Figure 4.5: Experimental depth shifting results at multiple depths. TR foci pro-

duced at several depths at same range. (∗) and (#) indicate the source depth, z′,

and desired focal depth, z′′, respectively.
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Chapter 5

Mode extraction from an

accelerating narrowband source in

shallow water

abstract

A Doppler-based method for using a moving narrow-band source to extract the

modes over a partial-water-column spanning Vertical Line Array (VLA) has been

developed. Acceleration due to source motion, ocean currents, wind and waves has

a significant degrading impact on frequency estimation. This paper introduces a

technique to compensate for the time-dependent Doppler shift from an accelerat-

ing source so that the modal depth functions can be extracted from the frequency

response. The technique is applied to simulation, and ocean data.

5.1 Introduction

Recently, matrix decomposition methods have been proposed for extracting the

depth-dependence of the propagating modes in the shallow ocean from acoustic

data measured over a vertical line array (VLA). These methods involve applying an

eigenvalue decomposition or a singular value decomposition (SVD) to the spatial

109
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cross-spectral density matrix (CSDM) formed from the measured array data. For

these matrix decomposition techniques to be successful the CSDM must be prop-

erly conditioned. Conditioning typically involves an averaging over range and/or

frequency. References [1] and [2] discuss averaging the measured ambient noise field

over time. Reference [3] investigates averaging the signal measured from a moving

source over both range and frequency. To ensure proper conditioning, the averaging

must be carried out over an effective range aperture which samples several modal

interference wavelengths. In the case of a moving source, the range aperture can

be constructed by relating received signal times to source ranges. In the case of a

broadband signal from a stationary source, an effective range aperture may be con-

structed by identifying normalized bandwidth with range diversity. Because these

methods involve unitary matrix operations, they may only be properly applied to

full water column spanning VLAs.

In contrast, the SVD mode extraction technique introduced in Ref. [4] can be

applied to the acoustic field received from a broadband source over only a partial-

spanning VLA. In this case the measured field is Fourier transformed over both time

and range yielding the frequency-wavenumber structure of the waveguide. Because

the modes are dispersive, they can be isolated according to their discrete wavenum-

bers. Constructing the CSDM with only the field from a single isolated mode then

renders the CSDM well conditioned for SVD mode extraction. Each well-isolated

mode can be extracted in this manner. Interestingly, the conditions for which the

modes are expected to be well isolated are identical to the averaging conditions re-

quired of the other matrix decomposition methods, namely that the range aperture

sample several modal interference wavelengths.

This paper introduces a method for extracting the depth dependence of the

modes of acoustic propagation from a moving cw source over a partial water column

spanning VLA. As pointed out by Hawker [5] and Schmidt and Kuperman [6], one

consequence of the discreteness of the modal wavenumber spectrum is that the

modes from a moving source are Doppler shifted relative to the source frequency
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in direct relation to their wavenumbers and the source velocity. As a result, each

mode from a moving source propagates at a discrete frequency different from the

other modes.This paper proposes a method for isolating the modes according to

their Doppler shifted discrete frequency spectrum so that they may be extracted

individually.

Associating the measured time with the source range, the frequency resolution

depends on the range aperture traversed by the source. The modal frequencies

will be well resolved when the range aperture approaches several modal interference

wavelengths. As an example, a minimum of 5 km of range aperture is required

to extract modes 1 and 2 from a 100 Hz source moving in a realistic 150 m deep

shallow ocean waveguide. To make this technique practical for ocean applications,

a method for measuring and compensating for radial accelerations of the source is

presented. The time varying Doppler effects arising from radial accelerations of the

source are measured using a time domain least-mean-squares fit to short duration

harmonic tones. The resulting information is then applied to compensate for radial

accelerations in the received signal. The compensation technique extends the scope

of the mode extraction procedure and other wavenumber inversion procedures, such

as that developed by Frisk and Lynch [7], to include radially accelerating non-end

fire sources subject to currents, wind and waves.

Section 5.2.1 introduces the theory of the mode extraction method applied to

a harmonic source traveling at a constant radial velocity. The theory is illustrated

with simulation results for the case of a constant radial velocity source in Sec. 5.2.2.

In Section 5.3.1, the theory is expanded to include radially accelerating sources.

Section 5.3.2 develops the Doppler compensation formalism. The frequency tracking

algorithm is presented and applied to a spectral integration simulation of a radially

accelerating cw source. The mode extraction procedure is further discussed and

simulated mode extraction results are presented. Section 5.4 presents the results

of the mode extraction method applied to experimental data measured during the

SWellEx experiment conducted in 1996. In that experiment a source was towed
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along an isobath following a straight line non-endfire trajectory. The source was

broadcasting several cw tones. Compensation and mode extraction results for one

of the tones are presented. The final section provides a summary and discussion.

5.2 Mode extraction from a constant radial ve-

locity cw source

The first part of this section summarizes Doppler theory applied to a constant

radial velocity cw source in the context of a shallow ocean waveguide in which the

acoustic field propagates as a set of depth dependent modes. The second part of

this section introduces the method for isolating the modes according to their discrete

Doppler-shifted frequency spectrum and the mode extraction procedure.

5.2.1 Theory: Doppler shift of a moving cw source in a

range-independent waveguide

According to Doppler theory, the angular frequency, ω, measured by a stationary

receiver from a cw acoustic source at angular frequency ωs traveling at a constant

radial velocity, vs, in an unbounded, homogenous, isotropic medium of sound speed,

c, is given by ω = ωs

1+ vs
c

. This paper focuses on sources, such as ships, that travel

at velocities much slower than the speed of sound in the ocean so that vs

c
� 1.

Therefore, for the remainder of this paper, the Doppler shift is applied using the

approximation ω ≈ ωs

(
1− vs

c

)
.

As stated in Ref. [8], the pressure field measured at a stationary receiver at

depth zr and range r = 0 due to a distant cw source traveling at a constant radial

velocity, vs, in a range-independent waveguide is written

P (zr, zs, t
′) =

M∑
m=1

φm(zr, ωm)φm(zs, ωm)
e−i(kmr0+θ0)√

kmr(t′)
ei(ωs−ωm)t′ . (5.1)

In Eq. (5.1) time, t′ = t − t0, is measured relative to a specified time, t0, at
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which the phase of the source signal and location of the source are θ0 = ωst0, and

r0 = r(t0) respectively. The source trajectory is given by r(t′) = r0 + vst
′. Each

mode propagates at a unique frequency, ωm ≡ ωs − kmvs. The modal wavenumbers

are given by

km ≈ km(ωs)

(
1 +

vs

um

)
(5.2)

to first order in the low velocity limit, vs

um
� 1 [5]. Here um ≡ dω

dkm
denotes the group

velocity of mode m. For a source moving toward the sensor vs < 0, the measured

frequency is greater than the source frequency.

5.2.2 Theory: Mode extraction from the frequency response

of a moving cw source

Defining

am(zs, t
′) ≡ φm(zs, ωm)

e−i(kmr0+θ0)√
kmr(t′)

, (5.3)

and taking the short aperture (in time) Fourier transform of Eq. (5.1) yields

P̃ (zr, zs, ω) =
M∑

m=1

P̃m(zr, zs, ω), (5.4)

where

P̃m(zr, zs, ω) = φm(zr, ωm)

(
1√
2π

∫ t1

0

am(zs, t
′)ei(ωm−ω)t′dt′

)
(5.5)

is the short time aperture Fourier transform of the mode m component. Figure

5.1 shows a schematic of the magnitude of the pressure field frequency spectrum

(Eq. (5.4)) for an approaching constant velocity source. Though all formalism is

developed in terms of the angular frequency, all figures are given in units of Hz for

convenience. The 3 propagating modes are shifted to higher frequencies (indicated

by f1, f2, and f3) than the source frequency (fs). The pressure frequency spectra

of the individual modal components are also plotted for the purposes of illustra-

tion. Comparing Eq. (5.5) to Fig. 5.1 demonstrates that the mode m component

dominates in the vicinity of its modal frequency. This suggests the possibility of
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extracting its depth dependence by selecting the appropriate frequency component

of the spectrum projected over the VLA.

Figure 5.2 shows the absolute value of a simulated pressure frequency response

projected over the VLA. The normalized pressure response summed incoherently

over the VLA elements (black line) is superimposed on the image. The simulation

was carried out for a source moving toward the VLA at 4 m
s

along an endfire trajec-

tory at a constant depth of 145 m in a 150 m deep Pekeris waveguide using a spectral

method [8]. The water sound speed, water density, bottom sound speed, and bot-

tom density were cw = 1500 m
s
, ρw = 1026 kg

m3 , cb = 1800 m
s
, and ρb = 1800 kg

m3 ,

respectively. The VLA consisted of 28 elements evenly spaced between 10 m and

145 m of depth. Evident are 11 propagating modes, with mode 11 appearing at the

lowest frequency. Since the source is moving toward the array the modes are shifted

to higher frequencies than the source frequency, fs = 100.17 Hz. The frequency

resolution is such that modal frequencies for modes 5 -11 appear well-isolated and

their depth dependencies can be extracted. In contrast, the frequency resolution is

not adequate to resolve the modal frequencies of modes 1-4. Interestingly, it is the

range aperture traversed by the source that determines the resolution of the Fourier

frequency response,

dω = 2π
∆t
,

∆r = |vs∆t|,

dω � |(km − km+1)vs|

 −→ ∆r � 2π

|km − km+1|
. (5.6)

In order to resolve modal frequency m from modal frequency m + 1, the source

must cover a distance significantly longer than the mode m mode m + 1 interfer-

ence wavelength regardless of the source velocity. Figure 5.3 shows the minimum

range aperture (as defined by resolution relations (5.6)) needed to resolve the theo-

retical modes of the simulation. The range aperture of the simulation was 2400 m.

Because the modal components are monochromatic and coherent in the constant ve-

locity case, the Fourier analysis results in a coherent summation of the modal depth

dependencies. The gain in intensity of the modes at their respective frequency max-
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ima is directly proportional to the size of the time aperture used to calculate the

frequency response. As a result, SNR increases with time aperture. SNR, then,

is velocity dependent. For a given range aperture, the SNR increases inversely to

the source velocity, SNR ∝ ∆t = ∆r
vs

. For a large time aperture with high SNR

it is possible to extract the modes simply by isolating the depth dependence at a

given frequency maximum. Returning to Eq. (5.5), the depth dependence will be

multiplied by a complex phase that is constant over depth. A method for removing

the phase and mode extraction results will be given in the next section.

5.3 Mode extraction from a radially accelerating

cw source

In light of the frequency resolution arguments outlined in the last section, ef-

fective mode isolation in shallow ocean applications requires several kilometers of

range aperture. Because the ocean is such dynamic environment with waves, wind,

and currents, it is necessary to adapt the basic technique to radially accelerating

sources, particularly if the end goal is mode extraction from sources of oppportu-

nity. This section extends the mode extraction technique to radially accelerating

sources. It is divided into three subsections. In part 5.3.1 modal theory is developed

in the context of a radially accelerating source for which the modal Doppler shift

varies with time. Part 5.3.2 of this section introduces a method for detecting and

compensating for the time varying Doppler effects associated with radial acceler-

ation. Section 5.3.3 presents simulated compensation and mode extraction results

and further develops the extraction procedure.
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5.3.1 Theory: Modal Doppler shifts from a radially accel-

erating source

As shown in Sec. 5.2, the pressure field measured by a stationary sensor from

a constant radial velocity source can be written analytically. For the case of a

source that accelerates arbitrarily in the radial direction, an analytic solution is

not always possible. Though a time domain expression for the case of a constant

velocity, nonendfire source has been derived [5, 8], this paper treats the case of

arbitrary acceleration. The difficulty in treating the arbitrary acceleration case

derives from the dependence of the modal wavenumbers and the associated set of

depth dependent orthogonal mode functions, on the radial velocity of the source. For

a radially accelerating source, the modal wavenumbers and depth functions become

implicit functions of time. Intuitively, it seems logical that a solution of the form

P (zr, zs, t
′) ≈

M∑
m=1

φm(zr, ω̃m(t′))φm(zs, ω̃m(t′))
ei(ωst′−km(t′)r(t′)−θ0)√

km(t′)r(t′)
(5.7)

should exist, where the ω̃m(t′) represent the set of frequencies at which the mode

depth functions are to be evaluated. It must be stressed that determining the modal

wavenumbers and the set of associated depth functions in the arbitrary acceleration

case is generally not possible analytically.

However, it is not the aim of this paper to derive an expression for the time

domain pressure field from an arbitrarily accelerating source. Equation (5.7) serves

merely to illustrate the nature of the proposed problem. Rather, the aim is to

extract the depth dependent mode functions from a Fourier frequency analysis of

the measured time domain field. In analogy to Eqs. (5.3) - (5.5), the short time

aperture Fourier frequency response of the radially accelerating source is given by

P̃ (zr, zs, ω) =
M∑

m=1

P̃m(zr, zs, ω), (5.8)

where

P̃m(zr, zs, ω) =

(
1√
2π

∫ t1

0

am(zr, zs, t
′)ei((ωs−ω)t′−km(t′)r(t′))dt′

)
(5.9)
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is the short time aperture Fourier transform of the mode m component, and am is

defined by

am(zr, zs, t
′) ≡ φm(zr, ω)φm(zs, ω)√

km(t′)r(t′)
eiθ0 . (5.10)

It is illustrative to decompose the range into a component associated with uniform

motion at velocity r0+vct and an acceleration component, r̂(t′), such that r(t′) = r0+

vct
′+r̂(t′). Here vc is defined to be the average velocity on the interval. Additionally,

the acceleration component satisfies the following boundary conditions: r̂(0) = 0,

and ˙̂r(tc) = 0, 0 ≤ tc ≤ t1. The range has been written in this form for convenience as

will be made apparent in Sec. 5.3.2. Notice that this set of equations is encumbered

by the implicit time dependence of the wavenumbers. The time dependence is made

explicit to emphasize the dynamic response of the modal wavenumbers which vary

with time as a function of the radial source velocity. Expansion (5.2) is still valid in

the accelerating case in the limit, |vs(t′)|
um(t′)

� 1. Identifying the radial source velocity as

the first time derivative of the source range, vs(t
′) = ṙ(t′) = vc + ˙̂r(t′), where the dot

notation signifies the first derivative with respect to time, the modal wavenumbers

are approximately

km ≈ km(ωs)

(
1 +

vc

um

+
˙̂r(t′)

um

)
. (5.11)

Because modal depth dependence is relatively insensitive to small fluctuations of

the modal wavenumbers, in the low source velocity limit the modal depth functions

can be taken as constant over the time aperture of interest. For the remainder of

the paper, the mode functions are approximated by their narrowband responses at

the source frequency, φm(z) ≡ φm(z, ωs).

Referring to Eq. (5.9) for a radially accelerating source, because the phases of the

modal components of the time domain pressure field are no longer linear with time,

there is no unique constant frequency for each mode throughout the duration of the

time aperture. As a result the modal components do not sum coherently over the

time aperture, and the frequency response of the pressure field no longer responds

as a superposition of well defined harmonic components such as is shown in Fig.



118

5.1. Rather, the frequency response appears ”smeared” or broadened. Figure 5.4(a)

shows a schematic of the magnitude of the pressure field frequency response for an

approaching source under constant acceleration. Because the source is approaching,

its velocity is negative over the time aperture and positive acceleration manifests

as a decrease in the magnitude of the radial speed. The initial frequencies of the 3

propagating modes at the beginning of the time aperture are indicated by f1, f2, and

f3. As the source velocity increases, the modal frequencies decrease, resulting in a

broadening of the frequency responses of the modal components. As a consequence,

the modal depth functions are not be identifiable as isolated regions such as in Fig.

5.2.

5.3.2 Detecting and compensating for time varying Doppler

effects

The modal frequency broadening arising from the time varying Doppler effects

associated with a radially accelerating source prevents direct application of the mode

extraction strategy outlined in Sec. 5.2.2. The mode m instantaneous frequency

response, $m(t), is defined as the time derivative of the mode m phase progression

from Eq. (5.9),

$m(t) ≡ d

dt
(ωst− km(t)r(t)) (5.12)

= ωs − ˙km(t)r(t)− km(t)ṙ(t).

The frequency broadening is quantifiable in terms of the right-most pair of terms in

the last equation. Expanding out these terms and substituting Eq. (5.11) yields

˙km(t)r(t) + km(t)ṙ(t) =

(
r(t)¨̂r(t) + v2

s(t)

um

+ vs(t)

)
kn(ωs). (5.13)

For a source moving at −3 m
s

at a range of 4 km at time t = 0 and constantly

accelerating to −1 m
s

at time t = 600 s, assuming a modal group speed of 1000 m
s
,∣∣∣∣∣

(
r(t)¨̂r(t) + v2

s(t)

um

)
/vs(t)

∣∣∣∣∣
max

< 0.01. (5.14)
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Here max refers to the maximum value over the time aperture. Thus, in the low

velocity limit the instantaneous modal frequencies respond in direct relation to the

radial source velocity to a high degree of accuracy. Within the error associated

with Eq. (5.14) the modal frequency responses share the same functional form with

respect to time,

$m(t) = ωs + kmvs(t) (5.15)

= ωs + kmvc + km
˙̂r(t).

Our aim is to use the functional form of the modal Doppler shifts to compensate

for the time varying Doppler effects. In order to make practical use of Eq. 5.15,

we introduce a frequency-tracking technique for measuring the time evolution of the

instantaneous frequency response of an experimental pressure field in a multipath

environment. The basic component of the technique is a time domain least mean

squares fit to short time duration intervals of the measured signal. To implement

the fit, the measured time domain pressure field is band-pass filtered to remove

any strong frequency components not related to modal propagation arising from

the source at frequency ωs. The filtered field on the ith VLA element, Pi(t), is

decomposed into time windows of duration δtwin at intervals of ∆tsamp. The jth

time window sampled at time t = j∆tsamp ≡ tj is denoted by Pi(tj; tj + δtwin). Each

window is assigned to the array Dij(t
′′) = Pi(tj; tj + δtwin). Here the t′′ = t − tj is

the local time relative to the start time of each time window. Indices i = 1, 2, . . . I

and j = 0, 1, . . . J denote the the particular VLA array element and time window,

respectively. Each time window is fit to a 2 parameter model, sin (ω̂t′′ + α), for each

element using a least mean squares method. For high SNR in the δtwin → 0 limit,

this procedure is equivalent to sampling the instantaneous time derivative of the

phase of the received signal at times tj. For the fit to be valid, δtwin must be small

enough that the frequency content is nearly monochromatic over the duration of the

window.

The appropriate window duration and sampling interval are determined by the



120

dynamics of the measured pressure field. As shown above, the time domain pres-

sure field is composed of several time varying monochromatic modal frequency com-

ponents whose instantaneous frequency distribution depends on the instantaneous

wavenumbers and instantaneous source velocity. Interference among these frequency

components results in beating of the time domain signal. In order for the monochro-

matic assumption to be valid, the window duration must be smaller than the char-

acteristic beating duration, ∆tb. The beating duration depends on the maximum

frequency interval between the highest and lowest modal frequency components,

∆tb ≈ 2π˛̨̨
( 1

cb
− 1

cw
)ωsvs

˛̨̨
max

, where cb and cw are sound speeds characterizing acoustic

propagation in the bottom and water respectively. The sampling interval must be

small enough that it adequately samples the macroscopic frequency behavior. How-

ever, oversampling causes no error, so ∆tsamp may be as small as computation power

allows.

The minimization function is defined as

χij(ω̂, α) =

∫ ∆twin

0

|Dij(t
′′)− Eij(t

′′) sin (ω̂t′′ + α)}|2 dt′′ (5.16)

where ω̂ and α are the fit parameters. Eij(t
′′) is defined as the envelope of Dij(t

′′).

Including the envelope accounts for modulations caused by the beating and thereby

improves ability of the 2 parameter model to fit the data. The value of the fre-

quency parameter, ω̂i(tj), that minimizes χij on element i for window j, is regarded

to be the instantaneous frequency response of the pressure field on the ith element

sampled at times tj. The phase parameter, α, is ignored. Signal minima arising

from destructive interference among the modal frequency components can lead to

unacceptable mismatch and poor values for the instantaneous frequency response

of a given element at various times. Sampling the signal over depth ensures that,

for any particular time,tj, some elements will not experience a destructive interfer-

ence minima. Such redundancy allows for a variety of schemes for determining the

instantaneous frequency response at each time sample, ranging from an averaging

of the individual element fits to acceptance of only the best fit. The multi-element

best fit frequency at time tj is denoted by $̂(tj).



121

Figure 5.4 shows the results of the frequency tracking procedure applied to sim-

ulation for a source moving toward the VLA at 4 m
s

along a nonendfire trajectory

at a constant depth of 5 m in the same Pekeris waveguide environment from Sec.

5.2.2. The VLA elements are also at the same depths. The source range and radial

velocity trajectories are plotted in Fig. 5.5(a) and 5.5(b). As the source is not

traveling along an endfire trajectory, the radial velocity varies with time. The fre-

quency tracking technique was applied using a time window duration of δtwin = 2 s

and a sampling interval of ∆tsamp = 1 s. The thick black line in Fig. 5.5(c) is the

frequency tracking result. It is plotted along with the theoretical time dependent

modal frequencies. There is one thin black curve for each of the 11 time varying

modal frequencies. The fluctuations in the frequency tracking result are physical and

arise from the complex dynamics of the interference among the modal frequencies.

Notice the fluctuations fall within the spread of the theoretical modal frequencies

and diminish as the spread diminishes.

Interpolating the frequency track result to the sampling rate of the pressure field

yields the desired functional form needed to perform the compensation. The inter-

polated measured frequency response is indicated by $̂(t′). Choosing a reference

frequency, ωc, such that $̂(t′) = ωc + δ̂ω(t′) the compensation function is defined

F±(γ, t′) = e±iγΘ̂(t′) (5.17)

where Θ̂(t′) represents the deviation in phase as a function of time from the linear

phase progression of monochromatic component at frequency ωc,

Θ̂(t′) =

∫ t′

0

δ̂ω(t′′)dt′′. (5.18)

The ± notation relates to the ambiguity in the measured frequency response arising

from a degeneracy with respect to the source velocity. Both an approaching source

(vs < 1) and a receding source (vs > 1) can generate the same measured response.

Knowledge of the source frequency or travel direction breaks the degeneracy. The

parameterization γ is included to make the connection to Eq. (5.15),
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$m(t) ↔ $̂(t) (5.19)

⇓ ⇓

kmvc ↔ γ(ωc − ωs)

kmr̂(t) ↔ γΘ̂(t)

Though the choice for ωc is arbitrary, we define it so that the total phase change of

the compensation, Θ̂(t1)− Θ̂(0), is zero for γ = 1,

ωc =
1

t1

∫ t1

0

$̂(t′)dt′. (5.20)

Written this way, ωc is the average measured frequency on the time aperture. This

choice for ωc is based on the physics underlying the method. Returning to Eq. (5.15),

in this form, ωc can be thought of as the frequency response of the source at the

average velocity on the time aperture, vc. It is important to make the connection to

average velocity. In the low velocity limit, where the modal wavenumbers are nearly

constant over the time aperture, the total phase difference is determined by the range

aperture traversed by the source. Choosing ωc to be greater than the average on the

interval results in a greater total phase change in the compensation function than

is warranted by the physics; doing so effectively creates more range aperture than

was actually traversed and is therefore unphysical. Likewise, choosing ωc to be less

than the average has the effect of reducing the aperture and is counterproductive.

In analogy with Eqs. (5.8) and (5.9), the short time aperture Fourier response

of the compensated field is given by

ˆ̃
P (zr, zs, ω, γ) =

M∑
m=1

ˆ̃
Pm(zr, zs, ω, γ), (5.21)

where

ˆ̃
Pm(zr, zs, ω, γ) =

(
1√
2π

∫ t1

0

am(zr, zs, t
′)ei((ωs−kmvc−ω)t′−kmr̂(t′)±γΘ̂(t′))dt′

)
(5.22)

is the short time aperture Fourier transform of the mode m component. The factor

am is given by Eq. (5.10). As demonstrated by Eqs. (5.15) and (5.19), Θ̂(t′) ∝ r̂(t′).
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Therefore, there exists a value of the compensation parameter, γ = Γm, for which

kmr̂(t
′) ± γΘ̂(t′) ≈ 0 is true for all t′, rendering the frequency response of mode m

constant over the duration of time aperture. Of course, this value of γ does not

render the other modal frequency responses constant.

The effects of the compensation procedure are displayed schematically in Fig.

5.5. Recall, the short time aperture Fourier transform of the pressure field, P (t),

from a constant radial acceleration source in a 3 mode environment is shown in

Fig. 5.5(a). The frequency response is a superposition of broadened modes. Fig.

5.5(b)-(d) shows the short time aperture Fourier transforms of the compensated

pressure fields, P (t)F±(Γ1, t), P (t)F±(Γ2, t), and P (t)F±(Γ3, t), respectively. Each

compensation transforms the pressure field so as to render the chosen modal fre-

quency response constant. A Fourier analysis results in a coherent summation of

the depth dependence of the chosen mode over the time aperture.

5.3.3 Phase compensation and mode extraction from a sim-

ulated radially accelerating source

Having developed the formalism of the phase compensation, we apply the pro-

cedure to the simulated pressure field from a radially accelerating source. The sim-

ulation is identical to that of Sec. 5.3.2 to which the frequency tracking technique

was applied. The time aperture used for the following development corresponds

to the first 750 s of Fig. 5.4. The frequency tracking results (solid dark curve),

$̂(t′), over the time aperture are shown in Fig. 5.6(a). For convenience, all figures

are plotted in frequency and cycles rather than angular frequency and phase. The

dashed line indicates the average frequency over the time aperture, ωc. The result-

ing time dependent phase deviation, Θ̂(t′), is plotted in Fig. 5.6(b). Notice that

because the phase deviation is calculated with respect to the average frequency over

the time aperture, the total phase deviation is zero at the end of the aperture. Fig.

5.7 shows the frequency response resulting from a compensated pressure field (black
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curve) summed incoherently over depth,
∑

q

∣∣∣ ˆ̃P (zq, zs, ω, γ)
∣∣∣ (for receiver depths zq).

The compensation parameter is γ = 0.93. The uncompensated frequency response,∑
q

∣∣∣P̃ (zq, zs, ω)
∣∣∣, is plotted for comparison (gray curve). Because the acceleration is

mild, this value of the compensation parameter results in the unbroadening of fre-

quency responses of several of the modes. The mode 10 response is the best for the

purposes of mode extraction. Figure 5.8 demonstrates the behavior of the frequency

response as a function of compensation parameter. The compensated pressure field

frequency response is imaged as a function of the compensation parameter, γ. As

γ increases, the modal frequency responses are sequentially unbroadened, or made

constant over the time aperture. The dark regions correspond to optimal compen-

sations for the respective modal frequency responses. The corresponding modes

are indicated. By determining the value of the compensation parameter yielding

the optimal response for mode m, γ = Γm, the corresponding wavenumber can be

calculated in the low radial source velocity limit,

km = Γm
(ωc − ωs)

vc

. (5.23)

Assuming that the source frequency, ωs, and average velocity over the time aperture,

vc, are known, the wavenumber can be deduced from Fig. 5.8. Even without knowl-

edge of ωs and vc, information about the wavenumbers can be deduced. Namely,

the ratios between the wavenumbers are given by the the ratios between the optimal

compensation parameters,
km

kn

=
Γm

Γn

. (5.24)

However, even for the case of a simulation with high SNR, the task of determining

the optimal compensation parameter for each mode is difficult. As seen in Fig. 5.8,

determining the local maximum for each mode with respect to γ involves uncertainty

on the order of the spacing between the maxima. This translates to an uncertainty

in wavenumber on the order of the inter wavenumber intervals.

Though it would be beneficial to deduce the wavenumbers from the compen-

sation procedure, it is not necessary for extraction of the modal depth functions.
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All that is required for extraction is that the frequency response of a given mode

be highly peaked. Figure 5.9 demonstrates the relationship between modal depth

dependence and the frequency response for different values of the compensation

parameter. These images show the absolute value of the frequency response pro-

jected over the VLA. For each image, the normalized frequency response summed

incoherently over the VLA (black line) for the given compensation parameter is

superimposed. Figure 5.9(a) shows the optimal compensation for mode 10, though

the mode 9 and mode 11 modal frequencies and depth dependencies are also well

resolved. The mode 7 modal frequency and depth dependence is well resolved in

the compensation of Fig. 5.9(b). In Fig. 5.9(c), the compensation parameter is too

high to resolve any of the modes.

Returning to Fig. 5.9(a), the mode 10 depth dependence can be extracted by iso-

lating the frequency component corresponding to the maximum of its compensated

frequency response projected over the VLA. This procedure can be applied to all

modes that are well resolved and isolated from the neighboring modes for some value

of the compensation parameter. As mentioned in Sec. 5.2.2, the depth dependence

obtained in this manner will in general result in the a complex vector of the form

eiθφm(zq) for each element of the array. The top left panel of Figure 5.10 shows the

real and imaginary components of the complex mode vector resulting from the mode

extraction procedure. The top right panel shows the phase ”unwrapped” in units

of π. For a vertical array, the phase associated with the modal depth dependence of

a well resolved and isolated mode is expected to be constant. The staircase struc-

ture of the unwrapped phase indicates that the array is vertical and that the modal

depth dependence is free from interference from neighboring modes. The phase can

be easily compensated by multiplying the complex mode vector by e−iδθ where δθ

is the modulus of θ with respect to π for one or several of the vector components.

The bottom panels of Fig. 5.10 show the results of applying the transformation to

the complex vector of the top panels. Mode extraction results for modes 3 - 11 are

plotted in Fig. 5.11. The dark solid curves are the mode extraction results. The
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theoretical modes (dashed curves) are plotted for comparison. As mentioned in Sec.

5.2.2, the range aperture was insufficient to successfully resolve, isolate, and extract

modes 1 - 4.

5.4 Experimental mode extraction from a radially

accelerating source

In this section the compensation and mode extraction procedure are applied

to experimental data. The data were recorded during the SWellEx-96 experiment

conducted near San Diego, California in the spring of 1996. During this experiment,

an acoustic cw source was towed along an isobath of a mildly sloping environment.

The water depth was approximately 210 m. The data were recorded by a vertical

line array composed of 64 elements evenly distributed over the bottom half of the

water column, between 94 m to 210 m. This analysis considers only 21 of the

64 elements at depth intervals of approximately 5 m over the extent of the VLA.

Matched field processing (MFP) was successfully employed [9] using a set of normal

modes calculated from the knowledge of the measured environmental parameters

[11]. These modes, then, are used as a benchmark for our mode extraction technique

results.

The source tow track and the surrounding bathymetry are displayed in Fig.

5.12(a). The source tow, indicated by the dark thick solid line, began about 8 km

from the VLA. The VLA is indicated by one of the stars. Other measurement devices

not related to this analysis are also indicated with stars. The source followed a

nonendfire approximately straight trajectory at a velocity of about 2 m
s
. The velocity

varied over the track. The closed circles along the source trajectory indicate 5 minute

intervals. The source depth was approximately 9 m. The source range is shown as

a function of time in Fig. 5.12(b). The gray line is the entire source track while

the thick black line indicates the part of the track used for mode extraction in the

following analysis. Again, the closed circles indicate 5 minute intervals. The time
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aperture used for the mode extraction is 25 minutes. During this time the source

traversed about 3.5 km. The set of benchmark wavenumbers generated from the

normal mode method were used to estimate the minimum amount of range aperture

needed to resolve and extract the propagating modes. Referring to Fig. 5.12(c), the

range aperture is sufficient to extract modes 7-12 under the assumption that at least

2 modal interference wavelengths of aperture are required for resolution of adjacent

modes.

The result of the frequency tracking technique applied to the time aperture of

the experimental data is plotted in the top panel of Fig. 5.13. The gray curve is

the frequency tracking result, $̂(t′). The dashed line marks the average frequency,

ωc, over the time aperture. The fluctuations are too large to be explained merely

by beating of the modal frequencies. However, because the frequency tracking al-

gorithm yielded the same results for several combinations of δtwin and ∆tsamp, we

must conclude that the fluctuations do not result from random errors associated

with the fit. In other words, the fluctuations must be physical. Interestingly, the

magnitude of the fluctuations corresponds to source velocity fluctuations of about

±20 cm
s

and the dominant periodicity of the fluctuations is about 8 s. This suggests

that the fluctuations could be the result of wave action on the motion of the source.

The bottom panel shows the resulting time dependent phase deviation, Θ̂(t′). The

source frequency was ωs = 109.00 Hz. The frequency response (black curve) for

a selected value of the compensation parameter summed incoherently over depth,∑
q

∣∣∣ ˆ̃P (zq, zs, ω, γ)
∣∣∣ is plotted in Fig. 5.14 along with the uncompensated result

(gray curve). Because the radial acceleration is very mild over the time aperture,

the frequency response improvement is not as drastic as in the simulation of the last

section. However, the displayed compensation still results in a substantial gain in

SNR for a few of the modal components. The absolute value of the frequency re-

sponse for the same value of the compensation parameter projected over the VLA is

shown in Fig. 5.15. Again, the normalized frequency response summed incoherently

over the VLA (black line) for the given compensation parameter is superimposed.
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The depth dependence of mode 9 is well resolved. Modes 8 and 10 on either side

are also resolved. Figure 5.16 shows the mode extraction results. The data derived

modes projected over the VLA are indicated by black curves. They are plotted

against the calculated benchmark normal modes (dashed lines) for comparison. A

few data derived mode results are plotted in each panel. Each data derived mode

was extracted for a different value of the compensation parameter. As expected,

the range aperture was insufficient to extract the low order modes. In addition to

the limitations posed by the short aperture, the low order modes were not highly

excited by the shallow source. Because the extracted mode functions are known

only over the VLA, they have been normalized to unity over the VLA. This limita-

tion is unavoidable in partial spanning applications and can lead to normalization

mismatch between the low order and high order modes.

5.5 Summary and discussion

A method for self-adaptively extracting the modal depth functions projected

over a partial spanning vertical line array (VLA) of acoustic sensors from a radially

accelerating acoustic cw point source has been presented. Doppler effects arising

from the source motion break the degeneracy of the modal frequency response so

that each mode propagates at a distinct frequency from the other modes. For a

constant velocity source, the modal frequencies remain constant in time. As a result,

coherent processing methods such as the Fourier transform lead to high SNR gains

for the modal depth functions. Modes for which the range aperture is long enough

can be resolved in the frequency domain and isolated and extracted individually.

However, radial source accelerations add a time variation to the modal frequencies

reducing the SNR and resolution. Radial accelerations become an issue in at sea

applications where the required range aperture can be on the order of kilometers.

In order to make this technique practical, a method for compensating for the time

varying Doppler effects was developed in conjunction with the mode extraction
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technique. The acceleration induced Doppler dynamics are measured with a time

domain least mean squares fit to short duration harmonic tones. This information

makes it possible to transform the measured time domain pressure field so that one

or more of the modal frequencies remain constant in time.

The technique was successfully applied to both simulation and experimental

data. The depth dependent mode functions projected over a partial water column

spanning VLA were successfully extracted in both instances, limited only by the res-

olution restrictions related to the range aperture traversed by the source. In both

cases, the range aperture was insufficient for extraction of the low order modes.

Though this technique may only yield a fraction of the modal depth functions over

a portion of the water column, there is still a potential for application to coherent

matched field processing [10] and matched mode processing [12] techniques. For

example, this technique in conjunction with the optimization scheme presented in

Ref. [10] (which assumes a-priori knowledge of the sound speed profile of the wa-

ter column) could be used to determine the full set of full-spanning modal depth

functions and their corresponding wavenumbers. In a similar fashion, an accurate

knowledge of the modal depth functions can serve as the basis for bottom property

inversion techniques. Though the frequency response analysis in this work has been

developed in the context of Fourier decompositions, other methods for determining

the frequency response can be used. For instance, because the compensation proce-

dure renders one or more of the modal frequency responses constant over the time

aperture, a high resolution nonlinear frequency-comb method such as that proposed

in Ref. [13] may allow for the relaxation of the range aperture requirements.
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Figure 5.1: Schematic of the discrete modal frequency spectrum from a constant

radial velocity cw source. This environment supports 3 propagating modes. The

thin black line, the thin, dashed black line, and the thin gray line represent the

Fourier transforms of the individual modal components. The thick black line is

the Fourier transform resulting from a modal superposition. For a constant radial

velocity source, the modal frequencies, indicated by f1, f2, and f3 (for modes 1,

2, and 3 respectively), are unambiguously discrete. The modes experience Doppler

shifts of fn = fs − knβ
2π

. Here kn is the mode n wavenumber, fn is the frequency

of mode n, β is the ratio of the radial source velocity to the mode n group velocity,

β ≡ vs

vng
, and fs is the source frequency. In this case the source is moving toward

the sensor, vs < 0.
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Figure 5.2: Fourier transform frequency response of a simulated VLA pressure field

from the constant radial velocity cw source. The absolute value of the frequency

domain pressure field as a function of depth is imaged in dB. The solid black line

represents the frequency domain pressure field summed incoherently over depth in

dB (right axis). The source (fs = 100.17 Hz) is traveling toward the VLA at a

constant velocity along an endfire trajectory.
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Figure 5.3: Minimum range aperture required to resolve adjacent modal frequencies.

This figure corresponds to the simulation shown in Fig. 5.1.
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Figure 5.4: Schematic of the modal frequency spectrum from a radially accelerating

cw source. The thin black line, the thin, dashed black line, and the thin gray line

represent the Fourier transforms of modes 1, 2, and 3 respectively (each considered

individually). The thick black line is the Fourier transform a superposition of the

modes. (a) At the beginning of the source track, when the radial velocity of the

source is the least, the modal frequencies, f1, f2, and f3, are the greatest. As the

radial velocity of the source increases, the modal frequencies decrease, approach-

ing the source frequency, fs, causing a ”smearing” of the Fourier transform of the

received source signal. By applying a transform to the received signal that compen-

sates for the radial acceleration, it is possible to ”unsmear” the Fourier frequency

spectrum. In cases of extreme acceleration, this can only be done for one mode at a

time. Panels (b), (c), and (d) show the effects of the compensation procedure. By

properly scaling the compensation function it is possible to return each mode to the

desired compensation frequency, fc.
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Figure 5.5: Time dependent range (a) and velocity (b) of nonendfire cw source

used in simulation 2. The source is radially accelerating. (c) Frequency tracking

algorithm results from radially accelerating cw source of simulation 2. The thick

black line represents the output of the algorithm. The fine black lines indicate

the expected frequencies of each propagating mode over the source trajectory. The

dashed line marks the time of closest approach, and the solid medium black line

marks the source frequency.
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Figure 5.6: (a) Frequency tracking result for a simulated radially accelerating cw

source. The solid curve is the frequency track result. The dashed line indicates

the average frequency over the time aperture. (b) Time dependent phase deviation

derived from the frequency tracking result shown in (a).

Figure 5.7: Compensated versus uncompensated simulated frequency spectrum from

a simulated radially accelerating source. The gray line is the Fourier transform

frequency response of the simulated pressure field summed incoherently over the

elements of the VLA. The black line is the frequency response that results from

applying a compensation to the time domain pressure field prior to applying the

Fourier transformation. The compensation has transformed the field so that it

resembles the field from a constant radial velocity source.
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Figure 5.8: Fourier transform frequency response of the compensated VLA pressure

field from the radially accelerating cw source of simulation 2 versus the compensation

parameter, γ. The frequency response has been summed incoherently over depth.

The dark regions indicate where a given mode is expected to be well resolved.



139

Figure 5.9: Fourier transform frequency response as a function of depth of the

compensated VLA pressure field from the radially accelerating cw source. The

results for 3 values of the compensation coefficient, γ, are shown. The solid black

line represents the frequency response of the respective compensated pressure fields

summed incoherently over depth in dB (right axis). As the compensation coefficient

is increased, different modal frequencies are resolved. Mode 10 (triangle) is best

resolved at γ = 0.93, while γ = 1.03 results in the best resolution for mode 7

(triangle). At γ = 1.1 no modes are well resolved.
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Figure 5.10: Extracted mode 8 from simulation 2 and its complex phase. The depth

projection of the compensated pressure field at a given modal frequency is a product

of the depth dependence of the mode and a complex phase. For a vertical, untilted

array of sensors the complex phase should be constant over depth. The top-left

panel shows the modal depth dependence at the mode 8 modal frequency. The top-

right panel shows the complex phase at each array element in units of π. The phase

has been ”unwrapped” so that it can assume values outside the range [−π, π]. The

staircase structure of steps of π indicates that the phase is constant at all depths.

The bottom panels show a phase translation that results in the depth dependence

being purely real.
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Figure 5.11: Mode extraction results from the compensated VLA pressure field from

the radially accelerating cw source of simulation 2. The extracted modes (solid

black lines) are compared to the theorectical modes (gray dashed lines). A different

compensation factor was used for each modal extraction. The range aperture covered

by the source was insufficient for extracting modes 1 through 4.
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Figure 5.12: (a) Source track and bathymetry for the SWellEx 1996 experiment.

The source moved along the trajectory indicated by the thick dotted line. The dots

represent 5 minute intervals. The signal was recorded by the VLA. Each unbroken

black line indicates an isobath. The source followed a 200 meter isobath. (b) Source

range as a function of time. The approximate range covered by the source during

time domain VLA pressure field used for mode extraction is indicated by the thick

black line. Each dot represents 5 minutes. (c) Minimum range aperture required to

resolve adjacent modal frequencies.
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Figure 5.13: Frequency tracking algorithm result (top) and the resulting phase com-

pensation function (bottom) for the SWellEx source. The thin gray line indicates

the frequency tracking result. The thick black line is the phase compensation func-

tion. The dashed line marks the average frequency over the interval used by the

compensation algorithm.

Figure 5.14: Compensated versus uncompensated experimental frequency spectrum

from the SWellEx source data. The gray line is the Fourier transform frequency

response of the measured pressure field summed incoherently over the elements

of the VLA. The black line is the frequency response that results from applying

a compensation to the time domain pressure field prior to applying the Fourier

transformation.
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Figure 5.15: Fourier transform frequency response as a function of depth of the

compensated VLA pressure field from the SWellEx source data. The results for a

single value of the compensation coefficient is shown. The solid black line represents

the frequency domain pressure field summed incoherently over depth in dB (right

axis).

Figure 5.16: Mode extraction results from the compensated SWellEx source track

VLA pressure field. The extracted modes (solid black lines) are compared to the

modes modeled from knowledge of the environmental parameters (gray dashed lines).

A different compensation factor was used for each modal extraction. The range

aperture covered by the source was insufficient for extracting modes 1 through 6.



Chapter 6

An analysis of self-adaptive mode

extraction from scattered fields

abstract

Previous chapters discuss methods for using the unscattered pressure field from a

down range source sampled over a vertical line array (VLA) to extract the modal

depth functions characterizing acoustic propagation in the shallow ocean. The VLA

samples the field over depth while the down range source provides a means for

sampling the field over range. Under the right conditions, reverberation from bottom

scattering features can also be used to sample the field in range. This chapter

assesses the potential for using the VLA as both a source and receiver to self-

adaptively extract the modal depth functions from the reverberant field with no a-

priori knowledge about the propagation medium. As a broadband signal propagates

away from the VLA, inhomogeneities along the water/bottom interface scatter some

of the field back toward the VLA, mimicking a moving source, providing a method

for sampling a large range aperture. In constrast to the unscattered field, modal

theory predicts a coupling between the outbound and inbound modal components

of the reverberant field. Additionally, modal dispersion leads to ambiguities in time-

to-range mapping of the received time domain field. These complications undermine

the mode extraction process. A method for suppressing reverberant mode coupling

145
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is introduced. Theory, simulation, and laboratory measurements are presented.

6.1 Introduction

The mode extraction methods discussed so far require active acoustic sources

down range from the vertical line array (VLA). For example, experimental applica-

tions often deploy a dedicated source, while passive sonar applications might rely

on passing sources of opportunity. One way to eliminate the need for down range

sources would be to use bottom reverberation. The idea is similar to that proposed

by in Ref. [1], where the authors develop a method for extracting the mode am-

plitudes from ambient noise generated by a sheet of uncorrelated sources (surface

bubbles) extending over a large range aperture. In the reverberation case, randomly

distributed inhomogeneities along the water/sediment boundary, serve as a sheet of

uncorrelated scatterers extending over a large range aperture. In order to improve

the signal-to-noise-ratio (SNR), the scattering features can be ensonified using the

same VLA that samples the field. The concept is illustrated schematically in Fig.

6.1.

Whereas the acoustic field from active sources or ambient noise comprises only

inward propagating components (from the perspective of the VLA), the reverber-

ant field comprises both inward and outward propagating components, resulting in

coupling between the inbound and outbound modal components. To illustrate the

point, consider the case of a narrowband (monochromatic) field, where each modal

component has a definite propagation angle. As demonstrated in Fig. 6.2, a given

modal component is scattered in all directions, including the propagation angles of

the other modes. In the broadband case, where each modal component travels as

a group at a constant group velocity, the modal components disperse in both the

outbound and inbound directions. The broadband case is illustrated schematically

in Fig. 6.3. Panel (a) shows 3 outward propagating broadband modal components.

As the components propagate out, they disperse so that each reaches a given scat-
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tering feature at a different time. Panel (b) depicts the situation a short time after

the slowest propagating mode has interacted with the scatterer. Each outbound

component has been scattered into the complete spectrum of modal components

which continue to disperse as they propagate back toward the VLA. One interesting

consequence is that a mode m outbound component scattered into a mode n compo-

nent arrives back on the array simultaneously with a mode n outbound component

that scatters into a mode m component.

In the case of many scattering features distributed in range, the extended ge-

ometry of the scattering medium leads to increased duration of the measurable

reverberated return. A half second duration pulse source signal, for example, may

generate several seconds of measurable reverberation. In the absence of dispersion,

assigning a range to a specific time of the measured return is straightforward,

r =
cwth
2

where cw is the sound speed of the water and th is the time at which the return from

a scatterer at range r arrives on the VLA. In the shallow ocean waveguide, however,

mapping sampled signal time to range is more complicated. Due to dispersion,

contributions from scatterers at different ranges arrive simultaneously on the VLA,

resulting in an ambiguity in time-to-range mapping. Because the modal groups are

dispersing over time, the ambiguity increases with sampled signal time.

Both the coupling of the inbound and outbound modal components and the

ranging ambiguity complicate self-adaptive mode extraction applications. Section

3.2 discusses two strategies for using the singular value decomposition (SVD) to

extract the modal amplitudes from the data generated cross spectral density ma-

trix (CSDM). In one strategy, the CSDM is conditioned through averaging [1, 2],

in the other, the modal components are isolated in the CSDM according to their

frequency-wavenumber (f-k) response [3]. The remainder of this chapter is dedicated

to demonstrating and analyzing the complications introduced to both mode extrac-

tion strategies. It turns out that by employing the entire array as an ensemble of

simultaneous sources, it is possible to overcome the mode coupling complication.
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Section 6.2 develops a theoretical foundation for understanding the complica-

tions associated with the reverberant pressure field in the context of modal theory.

Three cases are considered: the point-source/point-scatterer field, the broadside-

source/point-scatterer field, and the extended-scatterer field. The potential for mode

extraction from the shot-to-shot averaged CSDM is addressed in Sec. 6.3. Section

6.4 considers the possibility of extracting the modal depth functions from the f-k

dispersion response of the reverberant field, offering an experimental verification of

mode coupling. Section 6.5 summarizes and discuses the results.

6.2 The reverberant pressure field

As a basis for understanding the complications associated with applying self-

adaptive mode extraction methods to scattered fields, this section develops the re-

verberant pressure field in the context of modal theory.

6.2.1 The point-source/point-scatterer field

According to modal theory, the ω component of the reverberant pressure response

measured at element q of the VLA due to a single scattering feature on the bottom

at depth z = D (D being the depth of the water/sediment interface) and range r

from a source coincident with element q′ of the array is written [4, 5]

P̃ q′

q (r, ω) =
e−iπ/4

√
8πρ(zs)

N∑
m=1

φm(zq′ , ω)φm(D,ω)√
km(ω)r

e−ikm(ω)rWmn(ω)S̃(ω)

× e−iπ/4

√
8πρ(D)

N∑
n=1

φn(D,ω)φn(zq, ω)√
kn(ω)r

e−ikn(ω)r (6.1)

The notation for the pressure field adheres to the following index convention, P̃ q′
q (r, ω) ≡

P̃ (ω, zq, zq′ , r). The subscripted q indicates that the reverberant field is discretely

sampled at the element depths, z = zq, so that for a Q element VLA, P̃ q′
q (r, ω) is a Q

component vector. The superscripted q′ indicates that the response is unique to the

choice of source depth of the scattering feature. The scattering coefficient, Wmn(ω),
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relates how acoustic waves of a given frequency incident upon the scattering fea-

ture from one angle, θin, scatter into acoustic waves propagating at another angle,

θout. Thus, the scattering parameter is a function of the incident and scattered

angles as well as the frequency. This discrete form for the scattering coefficient,

Wmn(ω) ≡ W (θin, θout, ω), is particular to the case of far-field modal propagation

where θin and θout are restricted to the a discrete set of modal propagation angles.

In addition to the incidence and scattering angles, a more general scattering

model may include material and geometric parameters to account for scatterer

properties such as shape, density, sound speed, attenuation, etc. Presupposing a

knowledge of the scatterer properties, there are numerous methods for modeling the

scattering coefficient. Acoustic scattering-theory is treated extensively in the litera-

ture (see [6] for a review). From the stand point of self-adaptivity, where the aim is

to progress without any a-priori information about the environment, sophisticated

modeling of the scattering coefficient is impossible. Rather, the scattering feature

properties are lumped with the set of unknown environmental quantities, such as

the sound speed profile and the sediment properties, which are embedded in the

sampled fields. The highly simplified form of the scattering coefficient in Eq. (6.1)

emphasizes the essential physics of modal scattering in the context of self-adaptivity.

For the sake of readability, the explicit dependence on frequency, ω, is omitted

for the remainder of this chapter. It is useful to redefine the scattering constant to

include the modal excitations along the bottom as well as the source excitation, S̃,

Ŵmn ≡
(
−iφm(D)φn(D)

8πρ(D)
√
km

√
kn

S̃

)
Wmn. (6.2)

With an eye toward ocean applications deploying omnidirectional VLAs, scattering

from all azimuthal directions is here considered. In this case, the pressure response

is properly an integral over azimuth,

P̃ q′

q (r) →
∫ 2π

0

dφP q′

q (r)χ(r, φ), (6.3)

where the distribution of scattering features is described by χ(r, φ) . In this form,

P̃ q′
q (r) represents the pressure response on the VLA due scatterers distributed around
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a ring at range r. Substitution of Eqs. (6.2) and (6.1) into Eq. (??) yields

P̃ q′

q (r) =
1

ρ(zq′)

N,N∑
m,n=1

φm(zq′)φn(zq)Ŵmn
e−i(km+kn)r

r

∫ 2π

0

dφχ(r, φ). (6.4)

In this form, the mode coupling between the outgoing and incoming modal compo-

nents is clear. Not only are the mode amplitudes coupled, but more importantly, so

are the modal wavenumbers.

6.2.2 The broadside-source/point-scatterer field

In applications where it is necessary to transmit alot of acoustic power into the

medium, VLAs are sometimes used to generate broadside fields. The term broad-

side refers to the case where identical signals are emitted simultaneously by all the

elements of the VLA. Because they are unifrom over depth, broadside transmissions

strongly excite all the modes. Just as in the single element source case, the broad-

side reverberant field exhibits strong mode coupling between outbound and inbound

modal components. However, by modulating, or shading, the broadside signal over

the elements of the array, it is possible to suppress this coupling.

Consider first the reverberant broadside field modulated by an arbitrary shading

function, Ψ(zq′). Summing over the sources results in the depth shaded broadside

reverberant pressure response,

P̃q(r) ≡
Q∑

q′=1

Ψ(zq′)P̃
q′

q (r) (6.5)

=

N,N∑
m,n=1

Ψ̂mŴmnφn(zq)
e−i(km+kn)r

r

∫ 2π

0

dφχ(r, φ),

where Ψ̂m is the projection of the shading function over the modes,

Ψ̂m ≡

(
Q∑

q′=1

Ψ(zq′)φm(zq′)

ρ(zq′)

)
. (6.6)

Because the modes are approximately a complete set, any shading function can be



151

synthesized from the modal components (provided they are well sampled in depth),

Ψ(zq′) =
N∑

m′=1

am′φm′(zq′). (6.7)

In the case of a full spanning densely sampling VLA, Ψ̂m = am (see Eq. 3.3). Using

a crude sound speed profile, it should be possible to generate an approximation

to a given mode, Ψ(zq′) ≈ φα(zq′), such that |aα| ≈ 1 � |am| (m 6= α), thereby

suppressing modal coupling in the reverberant field,

P̃q(r) ≈
N∑

n=1

aαŴαnφn(zq)
e−i(km+kn)r

r

∫ 2π

0

dφχ(r, φ). (6.8)

Physically, because it is an invariant, a modal group excitation by the VLA propa-

gates coherently in range, suffering only from intra-modal dispersion. Therefore, it

ensonifies each scattering feature only once. Practically speaking, because mode 1

has no zeros, it is the best candidate for estimation.

Figure 6.4 offers a schematic demonstration. Panel (a) depicts a mode 1 excita-

tion propagating in range. The net effect is equivalent to down range point-sources

sounding off sequentially as the outbound field passes by. Because they are located

along the bottom, each scattering feature produces a point-source field that excites

all the modes which propagate back to the VLA (Panel (b)).

6.2.3 The extended-scatterer field

Generalizing Eq. (6.4) to the case of non-interacting scattering features dis-

tributed in range leads straightforwardly to the following expression for the sampled

VLA pressure response due to a single point-source on the VLA at z = zq′ ,

P̃ q′

q ≡
∫ ∞

0

P̃ q′

q (r)rdr (6.9)

=
1

ρ(zq′)

N,N∑
m,n=1

φm(zq′)φn(zq)Ŵmn

×
∫ ∞

0

dre−i(km+kn)r

∫ 2π

0

dφχ(r, φ).



152

The non-interaction assumption, equivalent to the Born approximation, is valid in

the limit that the spatial dimensions of the scattering features are small compared

to the dimensions of the waveguide. In the shallow ocean environments of interest,

this is generally the case. For example, prototypical bottom scattering features in

a D = 100 m depth waveguide might measure a half-meter in height by a meter

or two in radial length with tens of meters separating the them. In this limit, it is

valid to consider only single scattering.

Combining Eqs. (6.8) and (6.9), the mode α shaded broadside field for an

extended-scatterering medium is

P̃q ≈
N∑

n=1

aαŴαnφn(zq)

∫ ∞

0

dre−i(km+kn)r

∫ 2π

0

dφχ(r, φ). (6.10)

6.2.4 Medium fluctuations and scatterer decorrelation

In a completely static propagation medium, repeated measurements of the acous-

tic field will be identical. However, though the ocean can be considered static on

the small time scales of acoustic propagation over several kilometers, it is, never-

theless, a dynamic medium. In the case of coherent ocean acoustics applications

requiring many data acquisition (to enhance SNR for example) it is necessary to

account for ocean fluctuations. Though each acquisition, or shot, may require only

a few seconds, the full regime of acquisitions can take minutes to hours.

Small fluctuations of the propagation medium result in small aberrations among

the shot-to-shot fields. In terms of the reverberant field from multiple simulta-

neous scattering features, a medium fluctuation coefficient, σ(r, φ), is introduced

to account for fluctuations of the medium. Incorporating the medium fluctuation

coefficient into Eq. (6.9) gives

P̃ q′

q ≈ 1

ρ(zq′)

N,N∑
m,n=1

φm(zq′)φn(zq)Ŵmn (6.11)

×
∫ ∞

0

dre−i(km+kn)r

∫ 2π

0

dφχ(r, φ)σ(r, φ).
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and similarly for the broadside field, P̃q. Physically, σ(r, φ) represents a distribution

of fluctuation induced deviations in the shot-to-shot acoustic trajectories between

the source, scattering features at (r, φ), and the VLA. For a stable medium (one

that is fluctuating about a mean state), it is often valid to assume that the different

scattering features decorrelate over many shots,

〈σ(r, φ)σ(r′, φ′)〉 ≡ 1

J

J∑
j=1

σ(r, φ)σ(r′, φ′) = δ(r − r′)δ(φ− φ′). (6.12)

This procedure is heuristically equivalent to considering an ensemble of random

scattering surfaces.

6.3 Mode extraction from the conditioned CSDM

This section discusses the prospect of self-adaptively extracting modal ampli-

tudes using a CSDM conditioning strategy analagous to that of Sec. 3.2.3. Similarly

to the CSDM conditioning method applied to ambient noise in Ref. [1], here the

CSDM formed from the reverberant field sampled over the VLA is averaged over

many acquisitions or snap shots. Experimentally, a snap shot consists of a time win-

dowed measurement associated with an acoustic source event, in this case the VLA

generated signal. As addressed in 6.2.4, fluctuations of the propagation medium over

the duration of the acquisitions can lead to decorrelation of the scatterers. Here it

is assumed that the scattering features are uncorrelated.

6.3.1 The point-source/extended-scatterer CSDM

In analogy to Sec. 3.2.3, the point-source/multiple-scatterer reverberant pressure

response of Eq. (6.9) is used to generate the reverberant CSDM,

Cj = [Cqq′′]j ≡
[
P̃ q′

q P̃
q′∗
q′′

]
j
, (6.13)

where the asterisk denotes complex conjugation. The subscripted j denotes that this

is for a single snap shot. Assuming a uniform distribution of scattering features,
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χ(r, φ) → χ, that decorrelate (see Eq. 6.12) over many acquisitions, the shot-to-shot

averaged CSDM is

Css ≡ 1

J

J∑
j=1

Cj =
1

J

J∑
j=1

[
P̃ q′

q P̃
q′∗
q′′

]
j

(6.14)

≈

[
χ2

ρ2(zq′)

N,N,N,N∑
m,n,m′,n′=1

φm(zq′)φn(zq)φm′(zq′)φn′(zq′′)ŴmnŴ
∗
m′n′

×
∫ ∞

0

dre−i(km+kn)r

∫ ∞

0

dr′ei(km′+kn′ )r
′
∫ 2π

0

dφ

∫ 2π

0

dφ′ 〈σ(r, φ)σ(r′, φ′)〉
]

≈

[
χ2

ρ2(zq′)

N,N,N,N∑
m,n,m′,n′=1

φm(zq′)φn(zq)φm′(zq′)φn′(zq′′)ŴmnŴ
∗
m′n′

×
∫ ∞

0

dre−i(km+kn−km′−kn′ )r

]
Referring to the discussion in Secs. 3.2.2 and 3.2.3, as a result of mode coupling

between the outbound and inbound modal components, it is not possible to establish

a relation between a SVD of Css and the modal components, even in the case of a

full-spanning VLA.

6.3.2 The broadside-source/extended-scatterer CSDM

Using Eq. (6.10) for a uniform distribution of scatterers that decorrelate over

many acquisitions, the shot-to-shot averaged CSDM for a mode α shaded broadside

source has the form

Css =
1

J

J∑
j=1

[
P̃qP̃

∗
q′′

]
j

≈

[
N,N∑

n,n′=1

a2
αŴαnŴ

∗
αn′φn(zq)φn′(zq′′) (6.15)

×
∫ ∞

0

dre−i(kn−kn′ )r

]
.

In connection with the discussion of Sec. 3.2.3, the term in parentheses above

approaches the delta function δ(kn − kn′). As a result a relation can be established
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between the SVD of Css and the modes (see Sec. 3.2.2),

Css
qq′′ ≈

N∑
n=1

|aαŴαn|2φn(zq)φn(zq′′). (6.16)

This result is analogous to the ambient noise case cited in the introduction, [1],

where the bottom scattering features serve as uncorrelated sources similarly to bub-

bles at the surface. However, because the scattering takes place along the bottom

where all the modes are strongly excited, the reverberated energy will be equally

distributed among the modes, resulting in singular value degeneracies. As shown

in Sec. 3.2.3, such degeneracies limit the effectiveness of the SVD in extracting the

modes. Furthermore, Eq. 6.16 neglects near-field contributions due to reverbera-

tion from scattering features close to the VLA. In the narrowband limit, there is no

way to remove these contributions. Including the near-field complicates the relation

between the SVD of Css and the modes.

6.4 The f-k reverberant pressure response

and mode extraction

As demonstrated in the last section, the prospects for extracting the modal

depth functions using the shot-to-shot averaged CSDM of the reverberant pressure

response are not promising. Though progress can be made using a broadside source,

singular value degeneracies lead to poor mode extraction results. Section 3.2.4 in-

troduces a method for extracting modes over a partial-spanning VLA that over-

comes the degeneracy limitations of the SVD. Fourier analysis yields the frequency-

wavenumber response of the pressure field, revealing its f-k dispersion structure.

Because the modal dispersion is discrete in the f-k domain, it is possible to iso-

late the modal components from one another and extract them separately, thereby

eliminating singular value degeneracies. The aim is to apply this method to the

reverberant field. However, the mode coupling issues and ranging ambiguities asso-

ciated with the reverberant field complicate matters.
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In order to generate the wavenumber structure, the VLA must sample an en-

semble of individual point-source fields with each source being at the same depth,

but at different ranges. By sampling each source field separately, it is possible to

unambiguously assign ranges to the field contributions of each source. In the re-

verberation case, it is not possible to directly sample the fields from the scatterers

individually because the scattering features are not removable. As mentioned in

the introduction, modal dispersion complicates the time-to-range mapping of the

received time domain reverberant field. Reverberant field time-to-range mapping is

an active area of current research beyond the scope of this disussion. The remainder

of this section is dedicated to addressing mode coupling in the reverberant field in

the context of the f-k dispersion spectrum. In order to simplify the analysis, indi-

vidual scatterers are used in order to remove the ranging ambiguity associated with

the more complex problem of simultaneous scatterers.

6.4.1 Modal dispersion of the reverberant field: simulation

and experiment

For this analysis, an ensemble of H point-source/point-scatterer reverberant

pressure fields are sampled by the VLA. The ensemble comprises isolated scatter-

ers distributed in range. To make a connection to the geometry of the experiment

discussed later in this section, the point-scatterers are evenly distributed along a

single azimuthal direction with (rh, φ0, D) being the location of the hth scatterer. In

analogy with Eq. (6.4), the reverberant point-source/point-scatterer pressure filed

on the VLA due to a single scatterer at rh is

P̃ q′

q (rh) =
1

ρ(zq′)

N,N∑
m,n=1

φm(zq′)φn(zq)

(
e−i(km+kn)rh

rh

)
Ŵmn. (6.17)

Sampling the scattered fields individually eliminates the range ambiguity associated

with sampling all the scatterers simultaneously. Consequently, it is possible to apply

a discrete Fourier transform over range to reveal the f-k response of the extended-
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scatterer field,

˜̃
P

q′

q (kh′) =

∫ 2π

0

dφδ(φ− φ0)
H∑

h=1

rhP̃
q′

q (rh)e
−ikh′rh (6.18)

=
1

ρ(zq′)

N,N∑
m,n=1

φm(zq′)φn(zq)Ŵmn

×

(
H∑

h=1

e−i(kh′+km+kn)rh

)
.

Here kh′ is the discretely sampled wavenumber conjugate to range, rh. The double

tilde notation,
˜̃
P , denotes that the pressure field has been transformed over both

time and range. In the infinite range aperture limit, ∆r ≡ rH − r1 →∞, the term

in parentheses approaches a delta function, δ(kh′ + km + kn), defining the dispersion

characteristics of the reverberant field in the infinite resolution limit. That is, the

coupled modal components manifest at frequency dependent wavenumbers in the

f-k domain defined by the curves kh′ = −(km + kn).

This result is verified experimentally. Figure 6.5(a) shows the f-k dispersion spec-

trum of the extended-scatterer VLA pressure field synthesized from an ensemble of

individual point-source/point-scatterer fields. The scattering features were evenly

distributed along the bottom at 2 mm intervals over a range aperture of 600 mm.

One of the array elements was used as the source. For the purposes of comparison,

the reverberant field result is accompanied in Fig. 6.5(b) by an experimental disper-

sion spectrum generated from an ensemble of unscattered point-source fields. The

sources were distributed along water/sediment interface in the same manner as the

scattering features of the reverberant case. Both experiments were conducted in a

controlled laboratory setting under similar conditions in nearly identical waveguides.

In the unscattered case (Fig. 6.5(b)) the modal components (enumerated dark

curved regions) are easily identifiable, with the f-k response exhibiting the charac-

teristic modal dispersion, k = −km. In both cases, a wavenumber transform has

been applied to the f-k response in order to facilitate identification of the disper-

sion structure and mode extraction. Because the modal components are so clearly
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defined and isolated from one another, it is possible to extract modes from the f-k

response.

Returning to Fig. 6.5(a), the f-k response of the reverberant field exhibits much

more complexity than that of the unscattered f-k response. Coupling of the inbound

and outbound modal components leads to inter-modal structure in the reverberant

field f-k dispersion, k = −(km + kn). The added structure undermines the mode ex-

traction process. As a result, it is not possible to extract modes from the reverberant

f-k response arising from a point-source.

A possible solution can be found in the broasside reverberant field. Discrete

Fourier transforming the individually sampled mode α shaded broadside/point-

source fields over range yields the f-k response of the broadside/extended-scatterer

field,

˜̃
P q(kh′) =

∫ 2π

0

dφδ(φ− φ0)
H∑

h=1

rhP̃
q′

q (rh)e
−ikh′rh (6.19)

≈
N∑

n=1

Ŵαnφn(zq)

(
H∑

h=1

e−i(kh′+kα+kn)rh

)

In the infinite range aperture limit, the dispersion structure of the shaded broadside

reverberant field is governed by the relation kh′ = −(km + kα) for the location of

the modal contributions. Because α is constant, the dispersion spectrum is merely

offset in wavenumber.

Figure 6.6 shows a comparison between point-source and shaded broadside-

source simulation results. Figure 6.6(a) shows the reverberant VLA field due to

a point source in a Pekeris waveguide. As expected, the point-source f-k response is

complicated by reverberant mode coupling. The broadside response in Fig. 6.6(b)

has been shaded using mode 1 from a pressure-release waveguide as an approxima-

tion to the true Pekeris mode 1. Even using an approximation to mode 1 leads to

strong suppression of the coupled mode inter-modal components. Small errors due

to the approximation start to become evident among the higher order modal com-

ponents. Importantly, modes can be extracted from the resulting broadside-source
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f-k response.

6.5 Summary and discussion

A study of the reverberant pressure field sampled over a vertical line array (VLA)

has been presented. Analytic expressions for the reverberant pressure field between

bottom scattering features and the VLA are derived from modal theory for several

source/scatterer geometries: point-source/point-scatterer, point-source/extended-

scatterer, and broadside-source/extended scatterer. The reverberant pressure field

is more complicated than the direct, unscattered field. Most notably, dispersion in

the reverberant field leads to coupling between the inbound and outbound modal

components, particularly in the case of a point-source field. Additionally, the in-

ability to isolate field contributions from individual scattering features leads to an

ambiguous time-to-range mapping of the sampled field.

The potential for extracting the modal depth functions from the reverberant field

using a VLA has been assessed. Two mode extraction strategies, based on applying

a singular value decomposition (SVD) to the cross spectral density matrix (CSDM)

of the sampled reverberant VLA field, are considered. The first involves shot-to-

shot averaging of the reverberant field over the VLA to decorrelate the scattering

features in the CSDM. The second requires knowledge of the ranges of the scattering

features to construct the frequency-wavenumber (f-k) dispersion spectrum. Because

the modal dispersion spectrum is characteristically discrete, the modal components

can be isolated in the CSDM. In both cases, coupling of the inbound and outbound

modal components undermines the mode extraction process.

It is shown that sending a broadside signal shaded by one of the modal depth

functions suppresses mode coupling. Applying shot-to-shot CSDM conditioning in

combination with a mode shaded broadside-source leads to an isomorphism between

the SVD of the CSDM and the modal depth functions. However, because the scat-

terers are distributed along the bottom, the acoustic power is evenly distributed
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among the modal components. This equipartition of energy among the modal com-

ponents leads to degeneracies to singular values that undermine the mode extraction

process.

A frequency-wavenumber (f-k) dispersion analysis has been used to experimen-

tally verify mode coupling in the reverberant field. In order to overcome the time-

to-range ambiguity of the reverberant field, the extended-scatterer f-k response was

synthesized from an ensemble of point-source/point-scatterer fields. The resulting

f-k response is consistent with the expected coupled mode dispersion. Modes cannot

be extracted from the coupled mode reverberant f-k response. However, simulation

results demonstrate that it is possible to suppress reverberant mode coupling by

using a broadside-source as opposed to a point-source, suggesting a possible strat-

egy to be incorporated into any future mode extraction methods. This strategy

may be extendable to weakly range-dependent environments where low order modal

components exhibit coherence over long ranges.

These results represent an important preliminary step in the direction of a solu-

tion to the problem of extracting mode depth functions from the reverberant field.

This work demonstrates an effective method for suppressing mode coupling. Future

work focused on overcoming the ranging ambiguities inherent in reverberant fields

is called for.
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Figure 6.1: Experimental set up. The acoustic field originating from one or more

elements (open circles) of a VLA (indicated as VRA on the figure) ensonifies scat-

tering features (closed cirlces) along the water/sediment interface. The resulting

reverberation is sampled by all the elements of the VLA.
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Figure 6.2: Narrowband scattering mode coupling schematic. Each outbound modal

component (dashed arrow) of the acoustic field incident upon a scattering feature is

scattered into the full spectrum of modal angles in the inbound field (enumerated

solid arrows).
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Figure 6.3: Broadband reverberant mode coupling schematic. (a) Each dispersive

modal group component (gray curves) of the outbound field is (b) scattered into

the spectrum of modal group components. Inbound components from scatterers at

different ranges can arrive simultaneously on the VLA (indicated as VRA).
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Figure 6.4: Broadband mode 1 shaded broadside-source schematic. (a) Mode 1 (gray

curve) generated by the full array propagates outward coherently, illuminating each

scatterer (solid circle) only once. (b) As a result, the inbound field does not suffer

from reverberant mode coupling. The VLA is represent as VRA.
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Figure 6.5: Comparison of experimental depth averaged modulus f-k responses. (a)

The f-k response of the point-source reverberant field from down range scatterers

exhibits inter-modal structure consistent with coupling between the outbound and

inbound fields. (b) For comparison, the f-k response synthesized from unscattered

pressure fields sampled from down range sources exhibits the desired uncoupled

modal dispersion. The dark curved regions are the modal components. The modal

components are enumerated for clarity. Both experiments were conducted in similar

propagation media.
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Figure 6.6: Comparison of simulated depth averaged modulus f-k responses. (a) The

f-k response of the reverberant field due to a point-source excitation at the VLA

exhibits reverberant mode coupling. (b) By comparison, the f-k response of the

reverberant field due to a shaded broadside-source excitation at the VLA exhibits

suppressed reverberant mode coupling. The broadside excitation was shaded with

an approximation to mode 1.



Appendix A

Laboratory experimental set up

A.1 Introduction

All laboratory experiments referenced in this thesis were conducted in the the Ul-

trasonic Waveguide Laboratory of the Marine Physical Laboratories at the Scripps

Institution of Oceanography in La Jolla, CA. This section describes the basic labora-

tory set up and implementation that are the foundation of the referenced laboratory

experiments.

A.2 Experimental set up

In the laboratory set up, ultrasonic piezo-electric transducer devices are used

to generate and sample coherent acoustic fields in a tri-layer (air, water, sediment)

waveguide assembled in a plexi-glass water tank (Fig. A.1). The transducer de-

vices or elements are affixed to precision controlled motors capable of moving the

elements along 3 axes. The motors are supported by aluminum scaffolding. De-

pending on whether they are transmitting or receiveing, the transducer elements

are connected to either a function generator (for generating signals) or an oscil-

loscope (for sampling signals). The function generator, the oscilloscope, and the

motors are controlled remotely by a computer. The waveform, motor movement,

168
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and firing commands, generated in Matlab r©, are relayed to the the devices via a

general purpose instrument bus (GPIB) protocol interface allowing automation of

the experiments. Because the experiments typically involve intensive sampling of

the medium, the ability to automate is indispensable.

The experimental set up is designed to model shallow ocean acoustic propagation

at small scales under controlled conditions. The experimental dimensions are scaled

to maintain the ratios between relevant extensive properties of working range (R),

water depth (D), and the acoustic wavelength in the water (λw) that typify far-field

shallow ocean applications,(
D

λw

,
R

D

)
lab

≈
(
D

λw

,
R

D

)
ocean

, (A.1)

where the working range is generally much greater than the water depth which in

turn is much greater than the acoustic wavelength, R� D � λw. The shallow ocean

application regime of interest is characterized by acoustic propagation in hundreds

of meters of water over a working range of several kilometers at sub-kHz and kHz

frequencies, (
R

D

)
ocean

> 10,

(
D

λw

)
ocean

> 5. (A.2)

Due to the dimensions of the tank, the working range of the waveguide is limited

to R = 1 m, constraining the working water depth to a few centimeters or less and

the acoustic wavelength to a few millimeters or less.

A.2.1 The water tank

The water tank, constructed of 1/2 inch thick reinforced plexi-glass, is designed

to contain up to 1 m3 of fresh water. To facilitate manipulation of the instruments,

the tank is open at the top, exposing a large surface area of the water to the ambient

air. One drawback of this design is that it does not prevent evaporation, which can

be a problem over long duration experiments (12 − 24 hrs). Evaporative water

level changes of over 1 mm have been observed over a period of 24 hrs. Such high

evaporation rates are not negligible for experiments where the acoustic wavelength
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is a few millimeters or less and the water depth is a few centimeters. To overcome

evaporative losses, water is continually added to the tank at a rate exceeding the

evaporation rate. The the tank is equipped with an adjustable water outlet set at

the desired water level to remove the excess water. As a result, the water level

can be maintained at a stable depth for as long as necessary. The water is gently

circulated and filtered. The circulation provides a mechanism for mixing the water

well enough to dissipate thermal inhomogeneities which affect the sound speed profile

of the water.

A.2.2 Waveguide properties

After setting the water depth of the tank, the sediment is placed at the desired

working depth. The laboratory is equipped to use various types of sediments: hard-

ened steel, plexi-glass, sand, clay, glass beads, etc. The steel and plexi-glass are in

the form of rectangular rods, while the sand, clay, and beads are contained in an

elongated, open rectangular box. It is assumed that the rods and the box are thick

enough that any acoustic reflections from the bottom edge is negligible (the top

edge being the water/sediment interface). At the ultrasonic frequencies used in the

experiment, the rods are about 30 Sλb in thickness whereas the sediment containing

box is about 50 λb deep.

The sediment rests, at either end, atop a pair of finely-threaded adjustable

stands. For experiments requiring a range-independent waveguide medium, the

stands are adjusted so as to render the top surface of the sediment parallel to the

surface of the water. The apparatus is situated in the center of the water tank to

minimize the effect of reflections from the edges of the tank. Due to the dispersion

of the waveguide, it is possible for the edge reflection to arrive simultaneously with

the later arrivals at the extremities of range separation. The tank is wide enough

and long enough that this is not an issue.

Due to the large impedance mismatch at the air/water interface and the homo-

geneity of the water and sediment layers, the waveguide is well modeled as a Pekeris
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waveguide. A Pekeris waveguide is an idelized waveguide in which the bottom is

represented as an infinite fluid half-space of finite impedance and a pressure reslease

condition at the air/water interface. The Pekeris waveguide idealization is useful

because it leads to an analytic model for acoustic propagation. However, it must be

noted that the impedances of the various sediments are only approximately known,

so it is not possible to forward model the acoustic field in the tank. On the other

hand, applying the Pekeris waveguide assumption, it is possible to use the sampled

fields to invert for the impedances of the various sediments, an experiment that is

currently under way.

A.2.3 Source signal, transducers, and hydrophone

As mentioned, the small scales of the laboratory waveguide require an acoustic

wavelength of a few millimeters or less. For a water sound speed, cw = 1500 m/s, the

acoustic wavelength of a f = 1.5 MHz signal is λw ≡ cw/f = 1 mm. The laboratory

is equipped with various ultrasonic piezo-electric transducers each rated to perform

optimally over various frequency spectrum regions. The lab is equipped to perform

experiments at frequencies ranging from 200 kHz to 3.5MHz. The transducer

elements are embedded in an epoxy material and packaged in dual element devices.

Figure A.2 shows an example of such a device (left-most device).

Each element, being much longer in horizontal dimension than vertical dimen-

sion, is designed to transmit a broadband acoustic beam, thereby reducing the radial

loss due to cylindrical spreading. Due to their directionality, the transducer pack-

age must be oriented in a specific manner with respect to the waveguide. In Fig.

A.2 the elements are at opposite ends (top and bottom) of the white face of the

transducer package oriented parallel to the top and bottom edges of the device.

Although the transducers are capable of both emission and reception, due to their

directionality, they are generally not used for reception. Instead, the more sensitive

omni-directional hydrophone receiver, pictured on the right in Fig. A.2, is used. It

is a dedicated piezo-electric listening device. Because of its small size, it is also more
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maneuverable.

All laboratory experiments discussed in this thesis involve both range and depth

sampling of the waveguide. To accomplish this, the transducer and hydrophone are

affixed, via fiberglass rods, to remotely controlled motors. Supported by aluminum

scaffolding, two of the motors are oriented to move vertically and one horizontally.

Typically, the transducer package is fixed in range and moved vertically at one end

of the waveguide. The hydrophone is moved both vertically and horizontally along

the waveguide. The experimental geometry is displayed in Figs. A.1 and A.3. The

motors are designed to translate to within micrometer precision, easily meeting the

λw/2 sampling requirements discussed in 2.2.2. Both the oscilloscope and function

generator are capable of Gb/s sampling rates.

A.2.4 Experimental limitations

While the relative range positions of samples are known to micrometer accuracy,

due to the ambiguity involved with measuring the distance between the motor and

the transducer package, the absolute range is ambiguous to 1 − 2 mm. More

crucially, water meniscus effects complicate the determination of absolute depth of

the elements. Indeed, the meniscus at the air/water interface along surface of the

flat-edged transducer package can measure 3 mm. Additionally, the location of

the elements in the packages themselves are also not precisely known. As a result,

the absolute depths of the transducer elements is always considered unknown, with

only their relative spacings taken as known quantities. Whatsmore, the sound speed

profile of the water and the impedance of the sediment are also considered unknown.

This situation is not unlike that encountered in at sea applications. The fact that

such a high level of experimental progress can be made in the tank is a testament

to the utility and power of the self adaptive methods developed in this work.
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Figure A.1: Experimental set up. A tri-layer waveguide comprising air, water,

and a sediment material is contained in a plexi-glass tank. Acoustic transducers,

manipulated by remotely controlled motors, ensonify the waveguide and measure its

acoustic properties. The length and water depth of the waveguide are variable. The

acoustic signals are generated by a programmable electronic waveform generator

and recorded with an oscilloscope. The process is automated by computer.
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Figure A.2: Close up of experimental ultrasonic tranducer package and hydrophone.

On the left is a piezo-electric acoustic transducer package. The package contains a

pair of directional transducer elements. On the right is a dedicated omni-directional

piezo-electric hydrophone.
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Figure A.3: Close up of waveguide. The transducer package and hydrophone, sus-

pended by rods from motors, can be seen over a sand substrate. The sand is con-

tained in a rectangular box atop adjustable stands.




