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L I F E  S C I E N C E S

DIRECT-NET: An efficient method to discover  
cis-regulatory elements and construct regulatory 
networks from single-cell multiomics data
Lihua Zhang1,2,3, Jing Zhang4*, Qing Nie2,3,5*

The emergence of single-cell multiomics data provides unprecedented opportunities to scrutinize the transcriptional 
regulatory mechanisms controlling cell identity. However, how to use those datasets to dissect the cis-regulatory 
element (CRE)–to–gene relationships at a single-cell level remains a major challenge. Here, we present DIRECT-NET, 
a machine-learning method based on gradient boosting, to identify genome-wide CREs and their relationship to 
target genes, either from parallel single-cell gene expression and chromatin accessibility data or from single- 
cell chromatin accessibility data alone. By extensively evaluating and characterizing DIRECT-NET’s predicted CREs 
using independent functional genomics data, we find that DIRECT-NET substantially improves the accuracy of 
inferring CRE-to-gene relationships in comparison to existing methods. DIRECT-NET is also capable of revealing 
cell subpopulation–specific and dynamic regulatory linkages. Overall, DIRECT-NET provides an efficient tool for 
predicting transcriptional regulation codes from single-cell multiomics data.

INTRODUCTION
In eukaryotes, transcriptional regulation is essential to maintaining 
proper cell identity during differentiation, determining the appro-
priate responses to intra- and extracellular signals, and coordinat-
ing the myriad of cellular activities at all times (1). It undergoes a 
precise spatial and temporal control within the cell via complex in-
teractions of various cis-regulatory elements (CREs; e.g., enhancers 
and promoters), transcription factors (TFs), and chromatin remod-
elers (2–4). The task to uncover the transcriptional regulation code 
orchestrating gene activities within a cell includes identification 
of functional CREs, characterizing their molecular functions, link-
ing them to genes, and finding TF–to–CRE–to–gene regulatory 
interactions.

Until recently, high-throughput sequencing data at the bulk tissue 
level have been the main resource for identification of CREs and 
constructing TF regulatory networks (TRNs). For example, several 
methods, with unsupervised/supervised approaches, used the com-
binatory patterns of various epigenetic features within a genomic 
region [e.g., 200–base pair (bp) bins] to infer the existence of en-
hancers (5–7). Other machine learning models also used different 
(or combinatory) functional genomics data, such as chromatin 
immunoprecipitation sequencing (ChIP-seq), high-throughput chro-
mosome conformation capture (HiC), RNA sequencing (RNA-seq), 
and HiChIP to infer the CRE (especially enhancers) to gene linkages. 
TF binding profiles (8) or coexpression patterns of genes (9) were 
also used to construct TRNs. At the tissue scale, those methods are 
effective in annotating the noncoding genome, uncovering transcrip-
tional regulation, and interpreting variant impacts (10, 11). However, 
biological tissues often consist of multiple cell types or states with 
intimate connections among them, different types of cells, or cells at 

different spatial and temporal states, with potentially different transcrip-
tional regulation codes. Methods based on averaged genomics signals 
arising from thousands to millions of cells in a tissue invariably limit 
their ability to identify complex transcriptional regulations that may 
vary among different cell types or states [hereafter, we will use “cell 
state” to describe a group of defined subpopulation of cells without 
distinguishing the differences between “cell type” and cell state (12, 13)].

Recent advances in single-cell assay for transposase-accessible 
chromatin using sequencing (scATAC-seq) have enabled chromatin 
accessibility landscape profiling across tens of thousands of single 
cells (14, 15), providing new opportunities for determining regulation 
codes in individual cells or different cell states. However, very few 
methods are available for addressing this critical yet challenging task 
(16–18). One promising approach, Cicero, was recently developed to 
infer the links between distal CREs and target genes from scATAC-seq 
data (16). Using a linear graphical lasso model, Cicero quantifies 
how changes in chromatin accessibility relate to changes in the 
expression of nearby genes. In ArchR, co-accessibility only uses 
ATAC-seq data to look for correlations in accessibility between 
two peaks, while peak-to-gene linkage leverages integrated single-cell 
RNA-seq (scRNA-seq) data to look for correlations between peak 
accessibility and gene expression (17). SnapATAC predicts gene- 
enhancer pairs by estimating the significance of the association be-
tween binarized chromatin accessibility and gene expression using 
a logistic regression (18).

More recently, several single-cell multiomics technologies such 
as sci-CAR-seq (19), scCAT-seq (20), Paired-seq (21), SHARE-seq 
(22), and 10X Genomics Multiome (ATAC + RNA) have emerged, 
enabling simultaneous measurement of gene expression and chro-
matin accessibility in the same individual cells. The sparse nature of 
single-cell multiomics data, in particular the chromatin accessibility 
data, introduces a major challenge for computational analysis of those 
datasets. Computational tools such as Seurat (23), LIGER (24), 
MAESTRO (25), MATCHER (26), coupled NMF (27), scAI (28), and 
BABEL (29) were designed to integrate single-cell transcriptomic 
and epigenomic data. However, these methods are unable to reveal 
functional CREs and their target genes.
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Here, we present a computational method, named DIRECT-NET 
(Discover cis-Regulatory Elements and Construct TF regulatory 
NETwork), using eXtreme Gradient Boosting (XGBoost) machine 
learning (30). Specifically, DIRECT-NET can accommodate either 
scATAC-seq or sc-multiomics data with gene expression and chro-
matin accessibility profiles measured in the same cell to answer two 
key questions on transcriptional regulation. First, it identifies func-
tional CREs among all accessible chromatin regions based on the 
expectation that the on-and-off status of truly functional CREs 
should markedly alter the expression patterns of their target genes. 
Their relationship is described by a nonlinear predictive model be-
tween chromatin accessibility scores and gene expression values (or 
promoter accessibility scores) using XGBoost, and thus, we turn the 
CRE identification problem into a model selection problem. Second, 
DIRECT-NET infers the TF binding footprints using known motif 
patterns from public databases and constructs the TF–to–CRE–to–
gene regulatory networks. Four public single-cell datasets, including 
two scATAC-seq datasets and two parallel scRNA-seq and scATAC-seq 
datasets generated by two different protocols, are used to evaluate 
DIRECT-NET. Extensive benchmark analyses using independent 
functional genomics data such as ChIA-PET, HiC, HiChIP, and 
ChIP-seq as well as disease-associated genetic variants from genome- 
wide association studies (GWAS) show that DIRECT-NET is able 
to characterize the transcriptional regulation code and reveal cell 
state–specific regulatory mechanisms.

RESULTS
Overview of DIRECT-NET
DIRECT-NET is a tool that detects functional CREs, links CREs 
to their target genes, and constructs TF–to–CRE–to–gene regula-
tory networks (Fig. 1). For each gene (the yellow rectangle), any 
peak within the 500 bp upstream of its transcription start site (TSS) 
is defined as the promoter (i.e., the green rectangular), while other 
open chromatin regions outside of the promoter region but within 
a user-specified neighborhood (default at 250 kb both sides) are 
defined as distal candidate functional regions. DIRECT-NET takes 
either parallel scRNA-seq and scATAC-seq data or scATAC-seq 
data as input. To account for the sparse nature of single-cell se-
quencing data, especially for the nearly binary scATAC-seq data, 
aggregation is often used as an efficient countermeasure (28). 
Therefore, DIRECT-NET first aggregates the binary epigenomic 
signals or both transcriptomic and epigenomic profiles across 
similar cells, which are inferred on the basis of nearest neighbors in 
a learned low-dimensional representation of the input data (see 
details in the “Aggregation of sparse single-cell data” section in 
Materials and Methods). Second, DIRECT-NET identifies CREs 
by regressing either the expression level of a particular gene 
(parallel scRNA-seq and scATAC-seq) or the accessibility score 
of a promoter (scATAC-seq), using the accessibility scores of all 
possible peaks in its neighborhood via the efficient ensemble 
gradient boosting machine-based model XGBoost. Third, our 
DIRECT-NET model then selects functional CREs via the im-
portance scores learned from the XGBoost model (see the “Identi-
fication of functional CREs” section in Materials and Methods). 
Last, we build a TF–gene regulatory network by integrating CRE-
TF with CRE-gene relationships, where TFs bind to the predicted 
functional CREs inferred using known motif patterns from public 
databases.

DIRECT-NET uncovers cell state–specific regulatory elements 
from parallel scRNA-seq and scATAC-seq data
Identification of cell state–specific CREs is crucial to dissecting cell 
fate decisions. To evaluate the ability of DIRECT-NET to detect cell 
state–specific CREs, we first used the 11,909 human peripheral 
blood mononuclear cells (PBMCs) of 19 cell clusters, with measure-
ments of transcriptomic and chromatin accessibility profiles in the 
same cells (see “Data and materials availability”) (23).

By classifying the regulatory links into five groups based on their 
inferred weights from high to low, we observed that regulatory links 
with higher importance scores exhibited higher concordance with 
the promoter capture HiC (PCHiC) (31) connections (fig. S1; see the 
“Validation of inferred connections by PCHiC, ChIA-PET, HiC, 
and HiChIP data” section in Materials and Methods). Peaks with 
importance scores equaling zero had nearly no connections in 
PCHiC data. On the other hand, we found that PCHiC connections 
were most recalled by regulatory links with higher importance 
scores (fig. S1, A and B), suggesting the ability of DIRECT-NET 
in differentiating nonfunctional open chromatin regions from func-
tional CREs.

To investigate the ability of DIRECT-NET to uncover cell state–
specific regulatory elements, we first divided peaks into high-confidence 
(HC) CREs, medium-confidence (MC) regions, and low-confidence 
(LC) regions. In this study, we treated HC CREs as functional 
CREs (see the “Identification of functional CREs” section in Mate-
rials and Methods). We found that HC CREs are able to differentiate 
each cell state, while MC regions show some mixed cell states such 
as Treg (regulatory T cells), CD4 TCM (central memory T cells), and 
CD4 TEM (effector memory T cells), and cells are completely mixed 
with LC regions on the UMAP (Uniform Manifold Approximation 
and Projection) space (Fig. 2A). We next compared the performance 
quantitatively based on the Local Inverse Simpson's Index (LISI) 
and Silhouette metrics. HC CREs show higher LISI and Silhouette 
values than MC and LC regions with all P values less than 1 × 1010 
by one-sided Wilcoxon rank test (Fig. 2B). To examine whether HC 
CREs are enriched in the most accessible peaks, we identified the 
most accessible peaks using the logistic regression test in Seurat 
(32). Among the identified 26,139 most accessible peaks, 80,740 HC 
CREs, and 29,162 pure HC CREs (removing the overlapped peaks 
with MC or LC regions from all HC CREs), we found that 85% most 
accessible peaks are HC CREs and 38% most accessible peaks are 
pure HC CREs. Moreover, pure HC CREs are significantly enriched in 
the most accessible peaks by using Fisher exact test (P < 2.2 × 10−16). 
Then, we applied the available PCHiC data of native CD4 T cells, 
native CD8 T cells, and native B cells from a previous study to vali-
date predicted cell state–specific CREs (31). Here, the links between 
HC CREs and promoters are called HC functional links, while the 
links between LC regions and promoters are called LC links. For 
each of these three cell states, the identified HC functional links 
were highly validated by the corresponding PCHiC data compared to 
LC links (native CD4 T: HC versus LC, 0.24 versus 0.11, P = 6.9 ×10−4; 
native CD8 T: HC versus LC, 0.2 versus 0.07, P = 6.5 ×10−9; native B: 
HC versus LC, 0.18 versus 0.05, P = 4.8 ×10−10 via one-sided 
Student’s t test; Fig. 2C and fig. S2A). On the other hand, the con-
nections in cell state–specific PCHiC data were highly recalled in 
the HC functional links compared to both LC links and MC links 
(native CD4 T: HC versus MC, 0.66 versus 0.46, P = 0.02, HC versus 
LC, 0.66 versus 0.13, P = 3.4 ×10−11; native CD8 T: HC versus MC, 
0.72 versus 0.42, P = 3.9 × 10−6, HC versus LC, 0.72 versus 0.08, 



Zhang et al., Sci. Adv. 8, eabl7393 (2022)     1 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 15

P = 6.8 × 10−31; native B: HC versus MC, 0.78 versus 0.39, P = 6.3 × 
10−11, HC versus LC, 0.78 versus 0.04, P = 1.3 × 10−45 via one-sided 
Student’s t test; Fig. 2C and fig. S2B). We merged the significant 
interaction of these three PCHiC. Then, we computed ratios of the 
links validated by PCHiC connections and ratios of recalled PCHiC 
connections by the links of markers for these three different cell 
states based on merged PCHiC data and naïve B cell–, CD4 naïve 
T cell–, and CD8 naïve T cell–specific PCHiC data individually. We 
found that ratios of the links validated by merged PCHiC data were 
significantly increased than cell state–specific PCHiC data of the 
corresponding cell state–specific markers. However, ratios of recalled 

merged PCHiC connections and ratios of recalled cell state–specific 
PCHiC connections were comparable (fig. S2, C and D).

We next compared DIRECT-NET with two baseline methods 
(CloseGene and Distance), four bulk methods [Spearman correla-
tion coefficients (SCCs), Lasso, Ridge, and ElasticNet], and three 
single-cell methods [Cicero (16), ArchR (17), and SnapATAC (18)] 
(Materials and Methods). To reduce the influence of different 
thresholds on performance of different methods, we computed 
the area under the ROC curve (AUC) for each marker gene and 
compared these AUCs across methods using a paired, right-tailed 
Student’s t test. By using PCHiC links of naïve B, CD4 naïve T, and 
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CD8 naïve T cells as ground-truth, we found that DIRECT-NET 
consistently exhibited significantly higher AUC values than other 
methods (Fig. 2D and fig. S2E). Compared to Cicero, ArchR, and 
SnapATAC, more regulatory links are recalled by DIRECT-NET 
according to PCHiC data of naïve B, CD4 naïve T, and CD8 naïve 
T cells (fig. S3, A to C). Cicero shows higher overlap ratios with 
DIRECT-NET than do other methods. Around 60% of links are over-
lapped between links with high importance and high co-accessibility 
(fig. S3D).

To investigate whether DIRECT-NET’s detected HC CREs can 
recover cell state–specific signals, we restricted the HC CREs, MC 
regions, and LC regions associated with marker genes of CD4 TEM, 
CD14 Mono, and natural killer (NK) cells. The HC CREs of cell 
state–specific marker genes are found to exhibit the strongest H3K27ac 
signals to their corresponding cell states, while LC regions exhibited 
nearly no H3K27ac signals (Fig. 2E). In contrast, the H3K27ac 
signals of bulk PBMC samples on the DIRECT-NET’s detected cell 
state–specific CREs are lower than the cell state–specific H3K27ac 
signals (Fig. 2E), which is likely because the bulk PBMC samples are 
composed of different immune cell state and the measured H3K27ac 
signals are the average across different cell states. Moreover, HC 
CREs show strong cell state–specific ATAC-seq signals and strong 
aggregated scATAC-seq signals of each corresponding cell state 
(fig. S4, A and B), but the signals of aggregated cells from different 
immune cell states do not have cell state–specific characteristics on 
CREs of CD4 TEM and CD14 Mono (fig. S4C). These results indicate 
that DIRECT-NET succeeds in revealing cell state–specific functional 
CREs and that single-cell genomic data are invaluable in deciphering 
cell state–specific regulatory mechanisms.

Lines of previous studies have demonstrated that truly functional 
CREs are highly conserved across both populations and species when 
compared to random genomic regions, as reflected by their depleted 
patterns in common variants and higher conservation scores in 
comparative genomics analysis (33, 34). Therefore, we further com-
pared the DIRECT-NET’s predicted HC CREs with the MC and LC 
regions using both cross-population and cross-species conservation. 
Specifically, we first intersected PCAWG variants with HC CREs, 
MC regions, and LC regions and then calculated the fraction of rare 
variants, respectively. As expected, HC CREs show significantly 
higher rare variant fractions than do MC and LC regions (HC versus 
MC: 0.849 versus 0.839, P = 0; HC versus LC: 0.849 versus 0.834, 
P = 0 by one-sided binomial test; Fig. 2F). Adding on, HC CREs are 
significantly more conserved than the MC and LC regions using the 
PhastCons method (35) on placental mammals species (HC versus 
MC: P = 1 × 10−202; HC versus LC: P = 8 × 10−37 via one-sided 
Wilcoxon rank test) (Fig. 2G), demonstrating once again DIRECT- 
NET’s capacity in identifying functional CREs.

To study the cell state–specific gene regulatory mechanisms, we 
next built the gene regulatory network of TFs and target genes for 
CD4 TEM and CD4 TCM (see the “Reconstruction of gene regulatory 
networks” section in Materials and Methods; Fig. 1H, and fig. S5). 
Cell state–specific enhancer-gene links were extracted on the basis 
of active peaks and marker genes of the corresponding cell state 
(fig. S5A). On the basis of the cell state–specific enhancer-gene 
links, we built TRNs of CD4 TEM and CD4 TCM separately (fig. S5, 
B and C). To investigate different TFs and targets as well as their 
regulations between CD4 TEM and CD4 TCM, we combined the two 
cell state–specific networks into a single regulatory network (see the 
“Reconstruction of gene regulatory networks” section in Materials 

and Methods) and presented genes or TFs highly expressed in CD4 
TEM or CD4 TCM with fold change > 2. The gene regulatory network 
exhibits different regulatory links between CD4 TEM and CD4 TCM 
(fig. S5D). One interesting CD4 TEM–specific marker gene is 
GLB1, which is regulated by TFs such as TF T cell factor 3 (TCF3; 
Fig. 1H). TCF3 has been illustrated previously as a constitutive 
enhancer (36) and transcriptional activator (37). Next, we studied 
whether there are increased signals in CREs of GLB1. As expected, 
two sites underwent significantly increased accessibility in CD4 
TEM than in CD4 TCM around GLB1 (Fig. 2I). Together, DIRECT- 
NET shows strong capability in capturing cell state–specific regulatory 
connections.

Constructing dynamic gene regulatory networks from 
time-course parallel scRNA-seq and scATAC-seq data
We next evaluated the ability of DIRECT-NET to learn CREs and 
reconstruct gene regulatory networks across a dynamic process from 
parallel scRNA-seq and scATAC-seq data. We applied DIRECT-NET 
to 2641 lung adenocarcinoma–derived A549 cells after 0, 1, and 
3 hours of 100 nM dexamethasone (DEX) treatment, which includes 
both gene expression and chromatin accessibility profiles measured 
in the same cells (19). To detect regulatory changes during the DEX 
treatment process, we focused on CREs of differentially expressed 
genes across three time points (see the “Datasets and gene selection” 
section in Materials and Methods). Similar to the observation above 
in the PBMC dataset, regulatory links with high importance scores 
show high concordance with the HiC connections downloaded from 
ENCODE, while links with zero importance scores exhibit nearly 
no concordance with HiC data (fig. S6, A to C). The links between 
HC CREs and target genes were more highly validated than those of 
MC and LC regions by HiC data (mean values: HC versus MC: 0.09 
versus 0.05, P = 4 × 10−7; HC versus LC: 0.05 versus 0.03, P = 1 × 
10−11 by one-sided Student’s t test; Fig. 3A). Moreover, HiC connec-
tions were highly recalled by HC CREs than MC and LC regions 
(HC versus MC: 0.84 versus 0.32, P = 3 × 10−16; HC versus LC: 0.84 
versus 0.19, P = 4 × 10−31 by one-sided Student’s t test; fig. S6D), 
illustrating the ability of DIRECT-NET to differentiate functional and 
less functional regions near marker genes. Moreover, DIRECT-NET 
has significantly higher AUC values than Cicero, Spearman, Lasso, 
Ridge, ElasticNet, Distance, and CloseGene methods (fig. S6E). Com-
pared to Cicero, more regulatory links are recalled by DIRECT-NET 
(fig. S6F) according to the HiC data. More than 60% of links are over-
lapped between links with high importance and high co-accessibility 
(fig. S6G).

Next, we explored whether DIRECT-NET could capture the 
biological significance of CREs by the following three aspects. First, 
by performing dimensional reduction on the chromatin accessibility 
data of HC CREs using PHATE (38), we found that cells from the 
three time points are well separated in the low-dimensional space. 
In contrast, the cells from 0 and 1 hour are mixed, with the peak 
importance values equaling 0 (Fig. 3B), suggesting the ability of CREs 
to dissect cellular heterogeneity. Second, similar to previous results, 
we further compared cross-population and cross-species conserva-
tion of the discovered HC CREs and LC regions. As expected, HC 
CREs are significantly enriched in rare variants as compared to the 
MC and LC regions using PCAWG variants (HC versus MC: 0.851 
versus 0.845, P = 3 × 10−7; HC versus LC: 0.851 versus 0.847, P = 1 
× 10−15 by one-sided binomial test; Fig. 3C). Third, the HC CREs 
show significantly higher PhastCons scores than MC and LC regions 
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(HC versus MC: 1 × 10−25, HC versus LC, P = 4 × 10−43 by one-sided 
Wilcoxon rank test; Fig. 3D) (35). Together, these results suggest 
that DIRECT-NET can yield interpretable and biologically mean-
ingful CREs in the dynamic process from parallel scRNA-seq and 
scATAC-seq data.

To further demonstrate DIRECT-NET’s power to predict CREs 
associated with the dynamic process, we examined the ChIP-seq signals 
of the identified HC CREs associated with NR3C1, a well-known 

marker of early events after treatment (19). As expected, HC CREs 
have no NR3C1 signals at 0 hours but the highest NR3C1 signals at 
1 hour, consistent with the role of NR3C1 as an early activation marker 
after treatment (Fig. 3E) (39). Moreover, HC CREs show higher NR3C1 
signals than MC and LC regions at 1 and 3 hours (fig. S7A), and 
exhibit higher H3K27ac signals than MC and LC regions at all time 
points (fig. S7B). These results illustrate that DIRECT-NET successfully 
identified functional CREs associated with the dynamic process.
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Last, we built the gene regulatory network to explore the key factors 
of the glucocorticoid receptor (GR) activation process along the 
DEX treatment (Fig. 3F). Here, we focus on TFs bound to the differ-
entially accessible HC peaks of the differentially expressed marker 
genes (see the “Reconstruction of gene regulatory networks” sec-
tion in Materials and Methods). In this network, one notable TF is 
NR3C1, showing the highest expression level at 0 hours, although 
the motif of NR3C1 is mostly activated at 1 hour (Fig. 3E). This re-
sult is consistent with a previous study that the motif of NR3C1 is 
activated, while its expression is decreased during GR activation (19). 
Four genes (TMUB, OSMR, SNAP25, and PYGB) are regulated by 
NR3C1, and all these genes are highly expressed in 0 hours except 
for PYGB (glycogen phosphorylase B), which is highly expressed at 
both 1 and 3 hours (Fig. 3F). The peak intensity of ChIP-seq data of 
NR3C1 of two sites that overlapped with HC CREs at 1 and 3 hours 
is stronger than that overlapped at 0 hours, implying the potential 
regulation of NR3C1 on PYGB associated with the DEX treat-
ment process (Fig. 3G). In addition to these results on NR3C1, 
DIRECT-NET reveals other important TFs such as FOSL2, FOS, 
and JUNB (fig. S8), which are the AP-1 TF family members that 
commonly colocalize with GR (40). DIRECT-NET is highly effective 
in identifying CREs and TF-to-target links, which are important in 
regulating the dynamic process.

DIRECT-NET accurately predicts functionally distinct 
co-accessibility connections between CRE and promoter 
regions from scATAC-seq data
We applied DIRECT-NET to a widely used scATAC-seq data of 
889 human lymphoblastoid GM12878 cells and benchmarked its 
performance against Cicero in predicting CREs and their target genes 
(16). Regulatory links with higher importance scores exhibit higher 
concordance with polymerase II (Pol II) ChIA-PET connections 
(figs. S9 and S10). We found that HC CREs show the highest con-
cordance with the Pol II ChIA-PET connections than MC and LC 
regions (Fig. 4A). Moreover, HC CREs are significantly enriched with 
rare variants than LC regions (HC versus LC: 0.846 versus 0.838, 
P = 1 × 10−13 by one-sided binomial test; Fig. 4B). HC CREs show 
significantly stronger signals of H3K27ac than do the MC and LC 
regions (Fig. 4C). These results illustrated the ability of DIRECT-NET 
to uncover CREs.

We next compared DIRECT-NET with other competitive 
methods. DIRECT-NET and Distance produce regulatory links 
that are more likely to be found in ChIA-PET and HiC than 
other methods, as reflected by the significantly higher AUC values 
of DIRECT-NET and Distance on highly variable genes (Fig. 4D), 
suggesting the DIRECT-NET and Distance’s higher accuracy to 
predict functional CREs. When ChIA-PET links show the strongest 
proximal characteristics, the genomic distance baseline method 
Distance has the highest AUC values compared to the other 
methods (fig. S11). Consistently higher number of proximal 
ChIA-PET is found in DIRECT-NET’s predictions (Fig. 4E and 
fig. S11). Moreover, by comparing the predicted CREs with 
GM12878 ChIA-PET connections, we found that the ratios of 
HC CREs that are validated by ChIA-PET are larger than those 
of MC and LC regions (Materials and Methods and Fig. 4D). On 
the other hand, up to 80% ChIA-PET connections are detected 
by DIRECT-NET for these variable genes (Fig. 4E). Together, 
DIRECT-NET exhibits better performance in predicting biologically 
meaningful CREs.

Detecting cell state–specific neurological disease–associated 
regulatory elements from scATAC-seq data of adult brain
CRE identification is crucial to understanding disease mechanisms. 
To evaluate the ability of DIRECT-NET in detecting CREs associated 
with brain diseases, we used scATAC-seq data of 70,631 individual 
cells across seven brain regions of adult brain. Eighteen distinct 
clusters were identified on the basis of unbiased iterative clustering 
and Harmony-based batch correction method in the previous study 
(Materials and Methods) (41). Links with higher importance values 
tend to exhibit higher concordance with HiChIP connections (fig. S12).

To begin, we demonstrated the biological significance of the 
identified HC CREs by the following four criteria. First, most cell 
states such as microglia, isocortical inhibitory, and isocortical excit-
atory are differentiated by both HC and MC regions on the UMAP 
space. HC CREs have better performance than MC regions in 
differentiating hippocampal excitatory and OPCs (oligodendrocyte 
progenitor cells), while cells are completely mixed with LC regions 
(fig. S13B). Furthermore, HC CREs have higher LISI and Silhouette 
values than MC and LC regions, with all P values less than 1 × 10−10 
by one-sided Wilcoxon rank test (fig. S13C). Second, HC CREs show 
higher validation ratios based on HiChIP data than do MC and LC 
regions (fig. S13A). Moreover, more HiChIP links are recalled by HC 
CREs than by MC and LC regions (HC versus MC: 0.8 versus 0.66, 
P = 0.03, HC versus LC: 0.8 versus 0.14, P = 6 × 10−15, one-tailed 
Student’s t test; Fig. 5A). Third, rare variants are significantly en-
riched in HC CREs than in MC and LC regions (HC versus MC: 
0.852 versus 0.848, P = 2 × 10−15; HC versus LC: 0.852 versus 0.845, 
P = 0 by one-sided binomial test; Fig. 5B). Moreover, HC CREs were 
found to be more conserved than MC and LC regions (HC versus 
MC, P = 3 × 10−215; HC versus MC, P = 7 × 10−71 by one-sided 
Wilcoxon rank test; Fig. 5C). Fourth, HC CREs of the cell state–
specific marker genes exhibit the highest H3K27ac signals compared 
to MC and LC regions. For example, HC CREs of the nigral OPCs 
cluster’s marker genes show stronger H3K27ac signals of substantia 
nigra than MC and LC regions (Fig. 5D). HC CREs of nigral astro-
cytes and striatal astrocytes clusters had strong H3K27ac signals of 
astrocytes (fig. S13D). Next, we compared DIRECT-NET with other 
methods in identifying loops overlapped with HiChIP (Fig. 5E). 
Distance has the highest AUC value compared to the other methods, 
consistent with the fact that regulatory links tend to be proximal 
(fig. S13F). DIRECT-NET, Spearman, and ArchR have higher AUC 
values than ElasticNet, Circero, and CloseGene (Fig. 5E). Moreover, 
more proximal HiChIP connections are recalled by DIRECT-NET 
(Fig. 5F). DIRECT-NET has higher number of links validated by 
HiChIP than Cicero and ArchR (fig. S13G).

To explore whether HC CREs can uncover neurological disease 
variants, we computed linkage disequilibrium (LD) score regression 
of GWAS single-nucleotide polymorphism (SNPs) of psychiatric 
disease autism-associated conditions in these CREs (Materials and 
Methods). We found that HC CREs of the striatal inhibitory 1 and 
striatal inhibitory 2 clusters are significantly enriched in variants 
associated with autism (Fig. 5G). FEV (ETS family member) is 
required for both development and function of serotonergic neu-
rons, and it is a key transcriptional factor associated with autism 
(42). We noticed that FEV is highly expressed in striatal inhibitory 2 
and regulated some striatal inhibitory 2–specific markers (NAT14, 
RGS14, DEGS2, PCP4L1, and CCDC39) from the gene regulatory 
network (Fig. 5H and fig. S14). The previous study reveals that two 
brothers with autism carry homozygous stop-gain mutations in FEV 
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(42). Here, we focused on the regulatory links of FEV and found 
that the two autism SNPs rs78146971 and rs111227810 are located 
near one HC CRE. Moreover, the CRE has weak accessibility in striatal 
inhibitory 1 than striatal inhibitory 2 (log2Fold-change = 1.57; Fig. 5I). 
Therefore, DIRECT-NET holds the potential to reveal tiny cell sub-
population–specific CREs associated with brain diseases.

DISCUSSION
In this study, we presented a machine learning method, named 
DIRECT-NET, to identify HC functional CREs, link them with their 

target genes, and build multimodal TF–to–CRE–to–gene regulatory 
networks using single-cell transcriptomic and epigenomic data. 
DIRECT-NET is applicable to parallel scRNA-seq and scATAC-seq 
data as well as scATAC-seq data alone. We demonstrated the capa-
bility of DIRECT-NET using four public datasets from four different 
scenarios, including two parallel scRNA-seq and scATAC-seq data-
sets with one involved in discrete cell states from multiple immune 
cell states and the other one involved in continuous cell states from 
three time points, and two scATAC-seq datasets from a widely used 
cell line and a complex tissue. Using the available bulk ChIA-PET, 
promoter HiC data, and HiChIP data, DIRECT-NET was shown to 
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exhibit superior performance in discriminating HC functional CREs 
from MC and LC regions. Using PBMC parallel single-cell tran-
scriptomic and epigenomic data, we showed that DIRECT-NET is 
able to reveal cell state–specific regulatory elements and gene regu-
latory networks. Application of DIRECT-NET to the time-course 
single-cell multiomics data produces a dynamical gene regulatory 
network and identifies both known and novel TFs and their regulated 
target genes that are specific to the different stages during DEX 
treatment.

Promoter accessibility usually serves as a proxy of gene expression, 
which has been widely used in many approaches such as Seurat and 
LIGER when integrating scRNA-seq and scATAC-seq data. We 
adopted two strategies to evaluate whether promoter accessibility is 
a good proxy of gene expression. First, we computed the SCC be-
tween each gene’s expression level and its promoter accessibility on 
the paired scATAC-seq and scRNA-seq of PBMC and A549 data-
sets. To reduce the effect of sparsity of single-cell multiomics data, 
we aggregated the nearest 50, 100, and 500 neighbor cells within 
each cell state as well as all cells within each cell state on PBMC and 
A549 datasets, with cell state information extracted from previous 
studies (19, 23). SCC values increase with the decrease of sparsity, 
and the gene’s expression level is highly correlated with promoter 
accessibility after aggregating cells within each cell state (SCC > 0.8; 
fig. S15A). Second, we implemented DIRECT-NET on the paired 
scRNA-seq and scATAC-seq PBMC dataset using promoter acces-
sibility and gene expression as modeling targets, respectively. To test 
whether these two different modeling targets produce consistent 
HC CREs, we computed the Jaccard index using the top 10, 15, and 
20 inferred CREs and found that the medians of Jaccard indexes are 
0.89, 0.9, and 0.89 on PBMC dataset and 0.54, 0.62, and 0.68 on 
A549 dataset (fig. S15B), suggesting relative high consistence of 
inferred regulatory elements and interactions when using promoter 
accessibility and gene expression as the modeling targets. While these 
results indicate that the promoter accessibility can largely serve as 
a good proxy of gene expression, this proxy may not work well in 
certain complicated regulatory relationships.

To study potential differences using DIRECT-NET on the paired 
scRNA-seq and scATAC-seq data compared to scATAC-seq data 
only, we compared the precision and recall of inferred links validated 
by HiC data. The precision and recall are defined as the ratio of in-
ferred connections in HiC and the ratio of HiC in the inferred con-
nections for each gene, respectively. We found that precision and, 
to a lesser extent, recall are higher when using paired scRNA-seq 
and scATAC-seq compared to scATAC-seq only (fig. S16). In addi-
tion, integrating scRNA-seq and scATAC-seq data can improve the 
power of finding cellular heterogeneity compared to using only 
one of them, as shown in our previous study (8). Moreover, the 
paired scRNA-seq and scATAC-seq data allow inference of the 
context-based regulations, while using scATAC-seq alone may lead 
to inferred regulations without knowing the causal relationship. 
The paired data usually enable more accurate identification of cell 
states and context-based regulations when studying gene regulations 
in cell fate decisions.

Although machine learning methods have been proposed on bulk 
level for identifying CREs and constructing TRNs (2, 5, 7, 8, 43), 
directly applying them to single-cell data might be challenging due 
to the extremely sparse and heterogeneous characteristics of single- 
cell data. DIRECT-NET first generates data of “pseudo-cells” to 
alleviate the sparse effects and then uses the fast ensemble machine 

model XGBoost, which has been successfully applied to many problems 
(44, 45). We treat the identification of functional CREs as a predic-
tion problem by assessing the contribution of each CRE’s chromatin 
accessibility to the promoter’s accessibility or target gene’s expres-
sion. In contrast to the pairwise linear correlation–based method 
Cicero, our nonlinear regression–based method shows superior per-
formance in detecting functional CREs in terms of AUC.

Covariability-based methods (e.g., Cicero) (16–18) and DIRECT- 
NET have one underlying assumption: The chromatin accessibility 
needs to vary across cells significantly. To evaluate whether a cell 
state has sufficient heterogeneity, computational methods such as an 
entropy-based metric ROGUE could be used (Supplementary Text 
and fig. S17) (46). The ROGUE values of individual cell states are 
much larger than those of PBMCs, indicating less heterogeneity in 
individual cell states than in all cells (fig. S17A). In the continuous 
A549 data from sci-CAR technique, cells in each time point still 
exhibit higher ROGUE values than all cells across the three time 
points (fig. S17B). However, when a subset of enhancers and pro-
moters has relative high heterogeneity among the cells of a cell state, 
the inference may become feasible. We implemented DIRECT-NET 
and Cicero on each cell state of the A549 data (0, 1, and 3 hours). 
Using HiC to validate the findings, we found that, even for individual 
cell state, some AUCs were still high, which likely correspond to the 
subset of enhancers and promoters with higher heterogeneity of ac-
tivity among the cells of the same cell state (fig. S17, C and D). For 
these covariability-based methods and DIRECT-NET, it is difficult 
to identify target genes for peaks consistently accessible across all 
cells. Applying these methods to CREs that have similar activity levels 
in different cells of the same cell state or even across different cell 
states could be failed. However, most of these consistently accessible 
peaks are often associated with highly expressed genes for all cell 
states, such as the housekeeping genes. In addition, those genes and 
peaks are most likely not cell state–specific and less critical in deter-
mining cell fates. As for those consistently accessible chromatin 
regions, one can add additional information (e.g., distance to 
TSS and HiC if available) to supplement the predictions made by 
DIRECT-NET, such as those used in Cicero.

Correlated CRE selection is a multicollinearity problem, a common 
challenge to many current methods such as Cicero, ArchR, and 
SnapATAC. DIRECT-NET uses the gradient boosting machine model 
that is relatively better immune to the multicollinearity problem 
compared to other methods such as Pearson correlation, Gaussian 
graphical model, and random forest (30). Different from random 
forest where each tree is independent from the others, the tree in 
gradient boosting machine focuses its learning on what has not been 
well modeled by its predecessor. Thus, DIRECT-NET usually does 
not assign lower importance scores for all correlated CREs, leading 
to identifying a subset of these correlated CREs that have important 
roles in the prediction. A post hoc analysis could help to rescue the 
highly correlated CREs based on the correlation analysis (Materials 
and Methods). Moreover, because phenotype is robust to loss-of-
function mutations in individual correlated enhancers or even re-
dundant enhancers (47, 48), the identified subset of correlated CREs 
will unlikely affect biological discovery.

In DIRECT-NET, peaks were called by MACS2 on merged cells. 
Some packages such as SnapATAC (3) and ArchR (2) call peaks by 
MACS2 on aggregated data of each cluster, which is identified on 
the basis of scATAC-seq or (scATAC-seq and scRNA-seq) at first. 
However, this may depend on the clustering performance and the 
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rare subpopulation may also be missed. It is more natural that peak 
calling on aggregated data of each cell state is used when the cell 
state information is available. Of course, high quality of peak calling 
will improve the overall performance of the method.

Understanding how different CREs and TFs control gene activa-
tion or increase levels of expression is critically important. Compared 
to the existing methods such as WGCAN (49), which takes correlation- 
based methods on gene expression data to construct gene regulatory 
network, DIRECT-NET uses a context-based method that allows 
explicit inclusion of regulatory elements. DIRECT-NET takes ad-
vantage of the scATAC-seq data to build cell state–specific regula-
tory networks. Specifically, for datasets with medium number of cells, 
one constant CRE-gene linkage across different cell states can be 
inferred to maximize statistical power (fig. S5A). However, TRNs 
are only constructed on cell state–specific active peaks, allowing the 
cell state specificity of TRNs. This is a common and reasonable 
assumption often used in many other methods, such as Cicero, 
ArchR, and SnapATAC (1–3). For datasets with enough number of 
cells for each cell state, one can run a separate DIRECT-NET model 
in each cell state, allowing construction of differential CRE-gene 
linkages even when these CREs are all in different cell states. Other 
genomic features, such as genetic variants, DNA methylation, and 
spatial location, can be included in this prediction model to account 
for more complex regulatory mechanisms.

In this study, we have aimed to extract validation data from indi-
vidual cell states, such as naïve B cells, naïve CD4 T cells, and naïve 
CD8 T cells, rather than analyzing only unsorted PBMC data. We 
observed that the specificity of DIRECT-NET in identifying these val-
idation links exceeded 0.8 in all of these datasets. With the rapid 
development of technologies for mapping single-cell 3D genome 
organization, such as single-cell HiC, more data will become avail-
able to benchmark and optimize methods. While there is still much 
room for improvement, DIRECT-NET already provides an effective 
way to detect functional CREs and build gene regulatory networks, 
addressing an urgent need for extracting information on cell hetero-
geneity and regulatory mechanisms from single-cell data.

MATERIALS AND METHODS
Framework of DIRECT-NET
The computational method for DIRECT-NET, a tool to predict 
HC functional CREs from parallel single-cell chromatin accessibility 
data and gene expression data or single-cell chromatin accessibility 
data only, consists of three main steps: (i) aggregation of sparse 
single-cell data, (ii) identification of HC functional CREs, and (iii) re-
construction of gene regulatory networks. Below, we describe each 
of these steps in detail.

Aggregation of sparse single-cell data
The sparse scATAC-seq data and scRNA-seq data are aggregated by 
averaging signals of similar cells, which are learned from a k-nearest 
neighbor (KNN) graph (default k = 50) constructed from a low- 
dimensional representation of the data. When only scATAC-seq 
data are available, the low-dimensional representation is learned 
by performing singular value decomposition on a transformed 
single-cell chromatin accessibility peak count matrix via the term 
frequency–inverse document frequency (TF-IDF) (50). Notably, 
the first singular component is removed because of its high correla-
tion with technical factors such as sequencing depths. The first 

40 components are used for constructing a KNN graph. When 
parallel scRNA-seq and scATAC-seq data are available, a single 
unified low-dimensional representation of single-cell multiomics 
data is learned by a weighted nearest neighbor (WNN) analysis, 
which has been implemented in Seurat V4 package (23). WNN 
analysis produces a single similarity metric between any two cells 
based on a weighted combination of chromatin accessibility and 
gene expression similarities. We use a similar aggregation approach 
as in Cicero after constructing the KNN or WNN graph by obtaining 
the KNNs of each cell. We then identify the maximum number of 
cells with their KNNs in which the overlap ratio of any two cells is 
less than over_rate (default 0.8). The overlap ratio is defined as the 
number of common neighbors divided by k. The detailed workflow 
for finding such a set of cells is shown in fig. S18. We obtain the 
aggregated data of each cell in this identified set by summarizing the 
epigenomic profiles of its KNNs. Last, the aggregated chromatin ac-
cessibility data and gene expression data are normalized using a set 
of scaling factors, which are estimated by the estimateSizeFactors 
function implemented in DESeq2 package (51).

Identification of functional CREs
To identify functionally distinct CREs from single-cell chromatin 
accessibility data, DIRECT-NET builds a regression model based on 
the framework of XGBoost, which is an improved gradient boosting 
machine model with more accurate approximations for finding the 
optimal decision trees (30). When only scATAC-seq data are avail-
able, for each promoter (peak within 500 bp upstream of TSS), the 
XGBoost model is used to regress its accessibility using the accessi-
bility values of candidate distal CREs (peaks within 250 kbp upstream 
and downstream of TSS). Similarly, when parallel scRNA-seq and 
scATAC-seq data are available, the XGBoost model is used to re-
gress a gene’s expression using the accessibility values of candidate 
distal CREs. Specifically, let X represent scATAC-seq data matrix 
with q loci across n cells, and Y represent scRNA-seq data matrix 
with p genes across n cells. Both X and Y have been aggregated and 
normalized based on the above procedure described in the previous 
section. In more detail, yi represents gene expression levels of gene i 
or the accessibility values of the promoter of gene i if scRNA-seq is not 
available. If there are more than one peak defined as promoters, we 
use the average values across all promoters of gene i. Let   x i  

1 ,  x i  
2 , ⋯,  x i  

k   
represent k open chromatin regions within the 250 kilo–base pairs 
(kbp) upstream and downstream of the TSS of gene i. Then, 
DIRECT-NET learns the model     ̂  F    i    for gene i with

     ̂  F    i   =  argmin  
F
     ‖ y  i   − F( x i  

1 ,  x i  
2 , ⋯,  x i  

k )‖  2  .  

The XGBoost model, an efficient implementation of the Gradient 
Boost Trees algorithm (30), is used here. Specially, the objective 
function at the tth iteration is as follows

   L   (t)  =  ‖ y  i   − (   ̂  y   i  
(t−1)  +  F  t  ( x i  

1 ,  x i  
2 , ⋯,  x i  

k ))‖  2   +   1 ─ 2    ‖ w   t ‖   2 ,  

where wt represents the weights in the tth step linear regression 
model. The first term represents the difference between true gene 
expression or promoter accessibility and predicted value with peaks 
within 250 kbp upstream and downstream of TSS. The second term 
is the regularization term on peaks within 250 kbp upstream and 
downstream of TSS. The complexity of regression model in DIRECT- 
NET is higher than lasso regression. While the XGBoost model is likely 
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overfitting in terms of predicting promotor’s accessibility or gene ex-
pression, an early stopping strategy may reduce the overfitting 
phenomenon (Supplementary Text). DIRECT-NET still has good gen-
eralization performance in predicting links when applying to the data 
it never interacts with before (Supplementary Text and fig. S19).

The model produces a set of co-accessibility connections from 
distal CREs to a gene or a promoter region, which are weighted by 
importance scores. The importance score of the jth variable is 

computed as     ̂  I   j  
2
 (T ) =   ∑ 

t=1
  

J−1
      ̂  i   t  

2
  1( v  t   = j) , where T is a J-terminal node tree 

of the XGBoost model, vt is the splitting variable associated with node 
t, and     ̂  i   t  

2
   is the corresponding improvement in squared error as a 

result of split (52). Then, the importance scores are normalized with 
the sum of importance scores of all variables equaling 1. It indicates 
how useful or valuable a distal CRE is in the construction of the 
boosted decision trees for predicting a gene’s expression or promoter’s 
accessibility (53). In DIRECT-NET, the functional CREs for each 
gene are detected independently based on the importance scores of 
that gene (fig. S20). In DIRECT-NET, HC CREs are defined as a set 
of peaks with the importance scores higher than the maximum of 
the median of importance scores and 0.001. LC regions are defined 
on the basis of their importance scores less than the maximum 
of the first quantile of importance scores and 0.001. HC CREs are 
functional CREs that are critical in inferring the expression level of 
target genes, implying that these HC CREs are likely the important 
regulators of their target genes. Conversely, LC regions have nearly 
no regulatory activities of their target genes. MC regions are the 
remaining regions that are accessible but usually have weak regula-
tory activities for their target genes. That is, these three categories 
are defined on the basis of the degree of their influence on the ex-
pression levels of their target genes.

DIRECT-NET uncovers CREs on all marker genes (described 
in the “Datasets and gene selection” section). Functional CREs are 
more likely to be varying across cell states; however, not every open 
chromatin region is a functional CRE, as demonstrated by lines of 
bulk tissue analysis where ATAC-seq peaks only partially overlap 
with active histone ChIP-seq data and functional validation assays 
(e.g., MPRA and STARR-seq). In this study, a varying accessible 
peak is not considered as a functional CRE unless it affects the 
expression/promoter activities of genes. DIRECT-NET does not 
assign lower importance scores to all highly correlated CREs, and it 
usually emphasizes on one of them. When there is a group of cor-
related CREs, we can use a post hoc strategy to rescue the additional 
highly correlated CREs. The post hoc strategy is based on the cor-
relation analysis where we treat regions whose absolute Pearson 
correlation coefficients with identified CREs are higher than 0.25 as 
rescued highly correlated CREs (Supplementary Text).

Fraction of rare variants
The rare variant fraction r is computed as r = Nr/(Nr + Nc), where 
Nr is the number of rare variants in functional CREs and Nc is the 
number of common variants in functional CREs. Thus, this number 
represents the proportion of rare variants over the union of common 
and rare variants.

LD score regression
The stratified LD score regression method is applied to sets of 
cluster-specific HC CREs, MC regions, and LC regions to identify 

disease-relevant clusters for Alzheimer’s disease and some neural 
degenerative diseases, downloaded from the PGC website (www.
med.unc.edu/pgc/results-and-downloads/). The LD method im-
plementation is based on the LD score regression tutorial (https://
github.com/bulik/ldsc/wiki).

Reconstruction of gene regulatory networks
To reconstruct cell state–specific gene regulatory networks, we first 
identify differentially accessible HC CREs of the cell state–specific 
marker genes. The differentially accessible HC CREs are the over-
lapped peaks between HC CREs and differentially accessible peaks, 
identified by a logistic regression model as suggested by a previous 
study (54). Then, we identify the enriched TFs in the differentially 
accessible HC CREs using the motifmatchr function in ChromVAR 
package (55). For each cell state, we consider the linkages only if 
their target genes are the markers for the corresponding cell state. 
As shown in fig. S5A, G1 is a marker gene of cell state A, while G2 is 
a marker gene of cell state B. Because G1 is not active in cell state B, 
the linkage TF2→R2→G1 does not appear in cell state B. Our resul-
tant network will be TF1→R1→G1 and TF3→R3→G2. Last, TRN 
was built by integrating the relationships between CREs and their 
target genes with the relationships between CREs and TFs. The net-
work was visualized by Cytoscape software (56).

Gene selection
Nineteen cell states were detected in previous study on the PBMC 
dataset (23). We adopt presto package (57) to perform fast differential 
expressional expression analysis, which returns an AUC statistic 
value to represent the power of each gene as a marker of cell state. 
We selected markers of each cell state, with AUC values being higher 
than 0.5. In total, there are 13,016 marker genes across all 19 cell states.

Because the time point information of the A549 dataset is known, 
we focused on differentially expressed genes across time points. 
A total of 1185 differentially expressed genes were identified using 
Wilcoxon rank test with log2-transformed fold change higher than 
0.1 and the percent of expressed cells greater than 5%.

For the GM12878 dataset, we first converted the peaks from 
hg19 to hg38. We then adopted MAESTRO package (25) to convert 
scATAC-seq data to gene activity score data and further detected 
4911 highly variable genes.

For the Brain dataset, there are 70,631 individual cells and 24 dis-
tinct clusters, identified based on unbiased iterative clustering and 
Harmony-based batch correction method in the previous study (41). 
There are 66,982 cells left after removing cells in the unclassified 
clusters. Then, we aggregated scATAC-seq based on the remaining 
18 cell clusters and obtain 12,259 pseudo-bulk cells. A total of 5181 
marker genes across all clusters were detected on gene activity 
matrix transformed by MAESTRO package (25).

Validation of inferred connections by PCHiC, ChIA-PET, HiC, 
and HiChIP data
For the GM12878 dataset, we used public Pol II CHIA-PET data and 
promoter-capture HiC data (GSE72816) (58) to validate DIRECT- 
NET’s predicted connections. For Brain data, we downloaded loops 
of HiChIP data from the supplementary table of the previous study (41). 
For A549 dataset, we downloaded HiC data of A549 cell line from 
ENCODE and transformed the data from hg38 to hg19 using UCSC lift-
over tool. For PBMC dataset, we downloaded HiC data of naïve CD4 
T cells, naïve CD8 T cells, and native B cells from a previous study (31).

http://www.med.unc.edu/pgc/results-and-downloads/
http://www.med.unc.edu/pgc/results-and-downloads/
https://github.com/bulik/ldsc/wiki
https://github.com/bulik/ldsc/wiki
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To compare the predicted connections with HiC and CHIA-PET 
data, we identified the overlapped peaks with HiC and CHIA-PET 
separately. When the two peaks are within 1 kb of each other, we call 
them overlapped peaks. To focus on distal-proximal connections, 
we only retained the pairs of scATAC-seq peaks where at least one 
peak is a promoter and another peak is an enhancer represented in 
the HiC or CHIA-PET data. The overlapped anchors in CHIA-PET 
data were merged to create comparable CHIA-PET peaks using the 
loopsMake function in diffloops package (59), with parameter 
mergegap being zero. If one peak of a HiC link is within 500 bp 
upstream of the marker gene’s TSS and another peak is within 
251 kb both sides of the TSS, then this link is used for validation. 
The same criterion is applied to PCHiC and ChIA-PET data. The 
numbers of validated links of ChIA-PET, HiC, or PCHiC used on 
each data are listed in table S1. The procedures of Calculating the 
ratios of connections validated by PCHiC, HiC, ChIA-PET, or 
HiChIP and ratios of PCHiC, HiC, ChIA-PET, or HiChIP links 
recalled are in Supplementary Text (“Calculation of ratios of connec-
tions validated by PCHiC, HiC, ChIA-PET or HiChIP and ratios of 
PCHiC, HiC, ChIA-PET or HiChIP links recalled”).

ChIP-seq signals
For A549 data, we downloaded bigwig files of NR3C1 ChIP-seq 
data on 0, 1, and 3 hours of 100 nM DEX treatment from ENCODE 
and converted the available hg38 version to hg19 using CrossMap 
tool (60). We then detected the NR3C1 signals of HC CREs, 
MC regions, and LC regions across the three time points using 
bigWigAverageOverBed from UCSC Genome Browser.

Comparison with other methods
CloseGene treats the closest gene as the peak’s target gene. Distance 
treats genomic distance as a simple predictor of CRE-gene interac-
tion. Let di represent the distance between TSS of a gene and the ith 
peak within the neighborhood window (500 kb) of TSS, and d be the 
union of di. In the Distance method, we treated (max(d) − di) as the 
weight of the link between the ith peak and the corresponding gene. 
We implemented CloseGene and Distance methods on all peaks that 
are within the regions that are 250 kb upstream and downstream 
of marker genes’ TSS but not 500 bp upstream of marker genes’ 
TSS. We computed SCC between accessible signals of promoters and 
peaks within the regions that are 250 kb upstream and downstream 
of marker genes’ TSS but not 500 bp upstream of marker genes’ TSS 
on GM12878 and Brain datasets, and we used gene expression levels 
instead of accessible signals of promoters on PBMC and A549 datasets. 
We regressed the accessible signals of promoters (or gene expression) 
using accessible signals of peaks by Lasso, Ridge, and ElasticNet 
regression methods on the data after the aggregation for the inputs.

Cicero (16) was run on the basis of the tutorial (https://cole-
trapnell-lab.github.io/cicero-release/docs_m3/#constructing-cis- 
regulatory-networks). To ensure that the predicted CREs are more 
comparable, we retained connections predicted by Cicero between 
peaks (250 kb upstream and downstream of TSS) and promoters 
(500 bp upstream of TSS) of each gene.

ArchR was run based on the tutorial (www.archrproject.com/
bookdown/index.html).

To ensure that the predicted CREs are more comparable, we set 
the parameter maxDist equal 500000. The addPeak2GeneList function 
was used on PBMC and A549 datasets, while the AddCoAccessibility 
function was used on GM12878 and Brain datasets.

SnapATAC needs both gene expression and chromatin accessi-
bility data to predict gene-enhancer pairs. We applied it on A549 and 
PBMC datasets based on the tutorial (https://github.com/r3fang/
SnapATAC/blob/master/examples/10X_PBMC_15K/README.
md#gene_peak_pair). All the comparison codes are available from the 
GitHub link (https://github.com/zhanglhbioinfor/DIRECT-NET) 
and Zenodo link (DOI: 10.5281/zenodo.5821082).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl7393

View/request a protocol for this paper from Bio-protocol.
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