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Abstract 
Intellectual Property and Academic Science 

by 
Neil Charles Thompson 

Doctor of Philosophy in Business Administration 
University of California, Berkeley 
Professor David C. Mowery, Chair 

 
Academia’s usage of intellectual property (IP) has occasioned passionate debates on both 
sides.  Supporters argue that it speeds the transfer of scientific discoveries to the private 
sector, and have advocated policies such as the Bayh-Dole Act to promote it.  Detractors 
worry about the collision between the norms of science and the norms of commerce.  
They fear that the exclusionary rights of patents and licenses may fence off areas of 
research, making the costs to science outweigh the benefits from increased technology 
transfer.  This dissertation addresses this empirically by testing whether the issuance of a 
license increases or decreases the flow of knowledge on that discovery, using citations to 
the focal publication(s) as a measure of knowledge flows.    

In order to address this question, this dissertation first develops two intermediate results.  
The first is a primer on material transfer agreements which shows that they can be used 
as a proxy for research tools – an area where the conflict between scientific and 
commercial norms may be more significant.  The second is to show that inventor-based 
matching, a new, automated methodology for matching intellectual property to its 
underlying scientific publication(s), can be used to construct a large dataset for this 
analysis. 

Using these intermediate results and a non-parametric method for building a convincing 
control group, this dissertation finds two important results.  First, it finds that, for most 
discoveries, licensing increases the flow of knowledge on that discovery.  This is 
consistent with the license providing a positive signal about the discovery that benefits 
the underlying science.  In contrast, this paper also finds that for research tools, licensing 
decreases the flow of knowledge on that discovery.  This may indicate that licensed 
materials are being shared less widely amongst scientists, raising concerns about science 
progressing more slowly in these areas.  



i 
 

Acknowledgements 

This dissertation is an expansion of the work contained in Thompson, Mowery, Ziedonis (working 
paper).  It contains excerpts from that work throughout the document.  These are not called out 
individually, but just noted here. 

I am grateful to the employees of the UC Office of the President, and the U.C. Berkeley and U.C. 
Davis Offices of Technology Transfer for their invaluable assistance in gaining access to the 
intellectual property data employed in this paper, and to Thomson Reuters for their cooperation in 
obtaining the data on scientific publications.  Thanks also to Professors Fiona Murray and Scott 
Stern of the Sloan School at MIT for sharing their data with us.  Earlier versions of this work 
benefited from the comments of participants in seminars at the Haas School of Business, U.C. 
Berkeley.  This work benefited from the financial support of the Institute for Business Innovation at 
the Haas School of Business, the Industrial Partnerships Office at Lawrence Livermore National 
Laboratory, and NSF Grant SMA-1064194. 

I am indebted to my advisor, David Mowery, for excellent guidance and mentorship.  He has steered 
me towards promising paths, and pulled me back from thorny ones.  I greatly appreciate all he has 
done for me.  I am also grateful to Lee Fleming, Brian Wright and Bronwyn Hall for excellent advice 
and encouragement.  I also want to acknowledge the students of the BPP program, who have seen 
me present this work innumerable times.  Their patience and feedback have helped this paper 
greatly. 

On a more personal note, I want to thank my family and particularly my parents.  They have made 
me the man I am, and without their support, I wouldn’t be here. 

Finally, thanks to my wife, Kate, for all of her love and support.  She is my ever-faithful flossing 
buddy and we are Better Together. 

 

  



ii 
 

Table of Contents 

1 Introduction .................................................................................................................................... 1 

2 Intellectual Property at the University of California ..................................................................... 2 

2.1 Disclosures, Patents, and Licenses .......................................................................................... 3 

2.2 University of California Data .................................................................................................. 4 

2.3 Material Transfer Agreements (MTAs) .................................................................................. 6 

2.3.1 Negotiating MTAs ........................................................................................................... 6 

2.3.2 Growth of MTAs ........................................................................................................... 12 

2.3.3 Composition of MTAs and the connection to Research Tools...................................... 13 

2.4 Summary ............................................................................................................................... 16 

3 Patent-Publication Matching ....................................................................................................... 17 

3.1 Data ...................................................................................................................................... 17 

3.2 Inventor-based matching ....................................................................................................... 17 

3.2.1 Limits of Maximum Likelihood Estimators .................................................................. 20 

3.2.2 Testing the quality of the patent-publication matching ............................................... 23 

3.3 Patented Publications ........................................................................................................... 24 

3.4 Summary ............................................................................................................................... 25 

4 The Effect of Licensing on the use by Researchers of UC Patented Publications ....................... 26 

4.1 Methodology ......................................................................................................................... 28 

4.1.1 Sample Construction ..................................................................................................... 28 

4.1.2 Identifying research tools .............................................................................................. 29 

4.2 Building the right treatment and control groups ................................................................. 29 

4.2.1 Specification challenges ................................................................................................. 29 

4.2.2 Nearest-neighbor matching ........................................................................................... 30 

4.2.3 Criteria for Matching .................................................................................................... 31 

4.2.4 Difference-in-differences Estimator ............................................................................... 32 

4.2.5 Regression adjustment .................................................................................................. 32 

4.3 Results................................................................................................................................... 33 

4.3.1 License Effect ................................................................................................................ 33 

4.3.2 License Effect on Research Tools .................................................................................. 35 

4.3.3 Comparison to the Murray and Stern definition of Research Tools ............................. 38 



iii 
 

4.4 Discussion.............................................................................................................................. 39 

4.5 Summary ............................................................................................................................... 39 

5 Conclusion .................................................................................................................................... 40 

6 References ..................................................................................................................................... 41 

 

  



1 
 

1 Introduction 

The use of patents and other forms of intellectual property to ‘protect’ academic science has 
occasioned passionate debate.  Supporters argue that it speeds the transfer of scientific discoveries to 
the private sector, and have advocated policies such as the Bayh-Dole Act to promote it.  Detractors 
worry about the collision between the norms of science and the norms of commerce.  They fear that 
the exclusionary rights of patents and licenses may annex off areas of research, making the costs to 
science outweigh the benefits of increased technology transfer. 

Despite the importance of evaluating this question empirically, relatively little work exists that 
evaluates how the assertion of a university’s intellectual property rights impact academic science.  Of 
the work that does exist, much of it is survey work, eliciting scientists’ opinions of, and experiences 
with, intellectual property.  This predominance of descriptive work in this area is likely driven by 
several data challenges.  While patent information is publically available, the data on other forms of 
intellectual property, such as licenses, are usually proprietary, hindering access.  Another challenge is 
connecting intellectual property to the science upon which it is based.  This connection is often 
unclear and time-consuming to evaluate. 

This dissertation attempts to address these issues.  Chapter 2 introduces a collection of data, which 
provides a rich background on the usage of intellectual property by the University of California 
system, including a particularly detailed view of material transfer agreements.  It also highlights how 
this data can be used to identify research tools, where theory suggests we might expect the most 
conflict between the norms of science and those of commercialization.  Chapter 3 presents inventor-
based matching, a novel way of matching intellectual property to scientific publications, automating 
and scaling up this process to allow the evaluation of a large dataset.  It then implements this to 
create a set of patented publications, that is, publications whose discoveries have also been patented.  
Chapter 4 uses this set of patented publications to evaluate the impact of licensing on the flow of 
scientific knowledge, as measured by changes in the citations to the scientific paper.  This is 
examined both for the general case and for research tools specifically.  Finally, the chapter concludes 
with a discussion of the importance of these results and their welfare implications. 
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2 Intellectual Property at the University of California 

Universities have long been important producers of research, particularly basic research.  This role 
has grown in recent years, as data from the National Science Foundation’s Science and Engineering 
Indicators shows (see Figure 1).  Contemporaneous with this increased role in research has been a 
marked increase in university usage of intellectual property, particularly in biotechnology.  Figure 2 
shows the growth in academia’s share of U.S. patents since 1969. 

 
Figure 11 

 
Figure 22 

 
 

The University of California (UC) system, with ten campuses and nearly 19,000 faculty members, is 
a major source of research and intellectual property in the United States.3  In 2009-2010, the system 
received $4.3 billion in research funding, held nearly four thousand active patents, and received 
~1,500 new disclosures of potentially patentable discoveries.4  The size of UC’s impact on research 
can be understood contextually, for example through the UC biomedical research and education 
system, which comprises 18 health professional schools and programs, including 5 medical schools, 
making it “the largest system of health sciences research and training in the nation.”5,6  This 

                                         
1 National Science Foundation (2011).  National Science Foundation (2012), table 4-4.  All research values on a dollar-input 
basis.  Value for 2008 interpolated from 2007 and 2009 data. 

2 USPTO (2012). 

3 Hunter-Davis (2012). 

4 University of California (2012). 

5 University of California (2012b). 
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dissertation contends that, as a result of its sizable research and intellectual property activities, the 
UC system is an important case in itself, as well as a reasonable sample for inferring about trends 
for a larger set of U.S. research universities. 

This chapter provides a descriptive account of intellectual property usage at the Universities of 
California.  It provides information on patenting, licensing, and on material transfer agreements 
(MTAs) – contracts governing the transfer of materials between researchers.  Because more is 
already known about patents and licenses, these are only touched on briefly to provide context.  The 
focus is instead on MTAs, about which less has been written.  MTAs are also discussed at length 
because in Chapter 4 they are used to identify research tools, an area of particular public policy 
interest. This chapter shows empirically why that usage is reasonable. 

2.1 Disclosures, Patents, and Licenses 

Since 1963 the patent policy of the University of California has required “that employees and certain 
others agree to assign inventions and patents to the University or other parties as appropriate, [and] 
to promptly report and fully disclose potentially patentable inventions.”7  Figure 3 shows that these 
disclosures by UC employees are rising over time.  A simple OLS regression estimates this growth at 
7.2% from 1998-2007.8 

 
Figure 3: Disclosures at UC Campuses9 

 

 
Figure 4: Patents at UC Campuses10 

 

                                                                                                                                   
6 University of California (2012). 

7 University of California (2012).  Current wording quoted. 

8 Regression specification:  log(𝑑𝑖𝑠𝑚𝑙𝑜𝑠𝑎𝑟𝑖𝑠) = 𝛼 + 𝛽 ∗ 𝑦𝑖𝑚𝑟 

9 University of California Office of the President (2012b). 

10 University of California Office of the President (2012b). 



4 
 

There may be many reasons for this increase in disclosures.  Plausible ones include increased 
numbers of personnel or research funding at UC, increased interest by faculty in commercializing 
their existing work, or increased interest in areas of research that are more commercial.   

This increase in disclosures has only partially translated into increased patenting, which a similar 
regression analysis shows has grown only 1.2% per year over this period (see Figure 4).  Discussions 
with OTT officials suggest that this reduction in the percentage of disclosures that are patented is a 
cost saving measure, with universities seeking licensees for research disclosures (and seeking to have 
the licensee underwrite all or a portion of the patent prosecution expenses) prior to filing a patent 
application.  This explanation is supported by the trend in UC licensing, which has grown, albeit 
volatilely, at 6.1% per year over this period.  Figure 5 shows this trend. 

 

Figure 5: Utility and plant licenses at UC campuses11 

2.2 University of California Data 

This remainder of this chapter uses a collection of data, both quantitative and qualitative, from the 
University of California system.  The qualitative data includes interviews with staff members at the 
offices of technology transfer (OTT) at UC Davis, UC Berkeley, and the UC Office of the President 
(UCOP).  Interviews were also conducted with scientists at UC Berkeley and UC Davis, of which 
the UC Davis ones were focused on heavy users of material transfer agreements.   

Several quantitative sources of data were also used for this analysis.  The first, ‘IP data’, is an 
extract from the technology disclosure database maintained by the Technology Transfer Office 
within UCOP.  This office tracks invention disclosures for all campuses of the University of 
California.  In the period covered by this data, this includes nine of the ten current campuses (not 
UC Merced), and five medical schools.  UCOP also tracks other agreements and intellectual property 

                                         
11 University of California Office of the President (2012b).  Includes both plant and utility patents. 
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that relate to these disclosures, examples of which include patents, licenses, and material transfer 
agreements (MTAs – contracts that accompany material transfers between scientists, explained in 
more detail below).  The database extract used for this analysis spans all invention disclosures from 
1997 to 2007.  Figure 6 presents a summary of the contents of the database extract. 

 
Figure 6: UCOP IP Data 

While most, if not all, of the UC patents and licenses from this time are recorded in this database,12 
the same cannot be said of MTAs.  Interviews with OTT officials suggest that most MTAs occur 
without the university’s knowledge.  Of those that are known, those that relate to invention 
disclosures are tracked by UCOP.  And while it is understood that a greater share of MTAs on 
disclosures are reported, many are still likely to be missed. 

An exception to the rule of most MTAs going untracked is UC Davis, which actively monitors MTAs 
not related to disclosures.13  They have generously provided the second quantitative data set for this 
analysis.  Their data covers spans 1999-2008 and includes 3,302 MTAs not linked to invention 
disclosures.  Of these ~40% come from a single organization, the Mutant Mouse Regional Resource 
Center (MMRRC), which is a biological resource center of the kind discussed in Furman and Stern 
(2011).  Importantly, this database tracks both incoming MTAs (where UC Davis is a recipient of 
materials) and outgoing MTAs (where UC Davis is sending the materials), whereas the UCOP IP 
Data contains only outgoing MTAs. 

A third source of quantitative data provided for this analysis comes from the UC Berkeley OTT.  It 
includes a record of each incoming MTA, i.e. where a UC Berkeley researcher received materials 
from another researcher.  It includes 671 MTAs from 2004-2008, and includes a record of both the 

                                         
12 A probable exception to this would be software that is released with an open source license. 

13 Despite this active monitoring, some MTAs almost assuredly remain untracked by the university.  It is difficult to 
estimate the size of this untracked portion. 
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material being transferred and its intended usage.  Because UC Berkeley’s default is not to require 
an MTA when receiving materials, these observations occur when the other party wishes an MTA. 

Since most of these data sources are proprietary, care has been taken to present them only in 
aggregate form. 

2.3 Material Transfer Agreements (MTAs) 

The aim of this section is to provide a description of MTAs.  It does this by discussing the 
negotiation process of MTAs, the growth of MTAs related to disclosures materials, and the 
composition of materials being transferred with MTAs.  As part of this last analysis, it specifically 
addresses whether the presence of an MTA is a reasonable indication that a discovery is a research 
tool, a fact which will be used in chapter 4. 

2.3.1 Negotiating M TAs 

MTAs are contracts that accompany the transfer of materials from one scientist to another.  They 
are important by virtue of the importance of the material transfers they accompany.  Inasmuch as 
they help or hinder these transfers, they impact the progress of that science, as discussed 
immediately below.  

Work by Walsh, Cho, and Cohen (2007) highlights the importance of material transfers.  Using a 
survey of genomics and proteomics researchers, they find that 75% of these scientists had requested 
research materials in the previous 2 years, and that, on average, the scientists had made 9 requests – 
2 from industry and 7 from academic sources.  They further report that in 2003-2004, academics 
rejected 18% of the material requests and industry rejected almost twice that percentage.  They 
then show that the denial of material requests often delays research by one or more months, or, more 
seriously, causes scientists to abandon projects.  The importance of these transfers is highlighted by 
the magnitude of these effects; the percentage of scientists forced to delay or abandon their work due 
to material requests denials is much higher than those forced to delay or abandon their work due to 
patenting by other researchers.  

Historically, materials exchanges were governed by little more than a letter from the source 
accompanying the materials, requesting acknowledgement and in some cases asking that the 
materials not be passed on to third parties (See McCain, 1990).  Today, however, there exists a 
formal process whereby both researchers and their institutions sign Material Transfer Agreements 
(MTAs) which accompany the materials.  Despite the existence of this process, many, perhaps the 
majority of material transfers do not use MTAs, with researchers instead preferring to share 
informally amongst their networks.  However, interviews, with campus licensing officials and with 
scientific researchers suggest that MTAs are much more common for discoveries that are disclosed to 
OTT officials, and perhaps even more so for those that are patented.  This may reflect OTTs’ 
interest in protecting the property rights for these patented disclosures, leading campus licensing 
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officers to undertake transfers related to these disclosures within the legal protections offered by 
MTAs.  

Typical terms for MTAs include indemnification of the sending party, prohibitions on using the 
material in human testing, restrictions on sharing the materials with other researchers, and a 
delineation of which party owns derivative or modified versions of the material.14  In the Walsh, Cho 
and Cohen (2007) sample, 29% of finalized MTAs included reach-through rights (i.e. some or all 
ownership of modifications revert to the original material provider), and 16% of finalized MTAs had 
royalty demands.  Interviews with UC researchers highlight the tension and conflict that is created 
by these types of terms.  One scientist noted that the rights requested by private companies in 
MTAs can prevent him from pursuing some research.  At the same time, however, he wonders 
whether he should request more rights on the materials that he sends (currently he asks for co-
authorship, but no reach-through rights). 

The negotiations of the terms of MTAs can be complex, as both the scientists exchanging materials 
and their institutions need to agree on the terms.  In the interviews conducted for this research, this 
led to examples where the scientist and their institution had different interpretations of what should 
be signed.  For example, one interviewee stated that he takes reach-through provisions “with a grain 
of salt,” since he believes that few are prosecuted and because he isn’t focused on 
commercialization.15  Not surprisingly, the university was less willing to take on such risks.    For UC 
officials this was not just about liability, but also about protecting academic scholarship.  An 
example of why this is at risk can be seen in the Walsh, Cho and Cohen (2007) sample, where 30% 
of MTAs had restrictions on the publication of results – which clearly could have career impacts on 
both the primary investigator and their lab.  To address these issues, UC has a series of principles 
that they use to evaluate whether to sign an MTA.  The following are a subset of that list that 
highlights some of these issues: 

                                         
14 See, for example, Association of University Technology Managers (2012). 

15 Anecdotally, this seems to be correct.  One OTT official asks this of their colleagues at every meeting, but has yet to find 
a single instance of a legal dispute centering on an MTA. 
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Berkeley’s principles for approving incoming MTAs16 
1. No one gets to approve results or restrict reporting to only positive results 
2. MTA can’t forbid students from being part of research, unless the project really is just the 

researcher 
3. It must be possible for the UC researcher to transfer modified materials, the default level of 

sharing being those in the NIH sharing rules.  This is true even if that researcher isn’t on 
an NIH grant. 

4. Research must be publishable 
5. Onerous or atypical reporting requirements to the material provider are talked through 

with researchers 
6. Companies do not get free licenses on the materials that result from the work, since both 

the state and federal governments also made significant contributions to make the research 
possible.  However, tiered licensing, where the company gets a research license and a first 
option on a commercial license, are possible. 

7. Researchers, not the company, choose which experiments will be done (although ex-ante 
discussions between them are fine) 

In some cases (in spite or because of these principles) the UC researcher is willing to accept harsher 
restrictions than the university, creating tension.  According to one interviewee “[MTAs] have 
impacted me very negatively…[and] usually our university is the barrier.”  For him this happens 
because companies want reach-through rights on his work, which he is fine with: “I don’t give a 
%&@# about those rights, I’m never going to set up a company.” 

Conflicts about MTAs also occur within companies deciding whether to execute a material transfer 
with the university.  According to a university OTT official, the typical pattern is that the industry 
scientists has spoken to a university researcher and wishes to complete a material transfer, but the 
company’s business side argues that it jeopardizes market potential, and their legal department 
argues that the MTA doesn’t provide sufficient protection.  As a result of these conflicts, MTAs with 
industry may be slow to complete or may fail altogether. 

This is important because the private sector plays a significant role both in sending materials to, and 
receiving materials from, UC.  The UC Davis data show that 31% of incoming MTAs are with the 
private sector, as are 21% of outgoing MTAs (see Figure 7).   

                                         
16 Interview with UC Berkeley OTT staff 
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Figure 7: Commercial status of UC Davis counterparties17 

According to OTT officials, these private sector interactions are significantly more complex and 
time-consuming than those with academics or non-profit organizations.  Three types of cases are 
particularly difficult.  The first are small companies, where the response lag time can be high.  The 
second are international companies where language, cultural, and legal barriers can slow down 
interactions.  The third are companies that receive many requests.  To deal with this volume, those 
companies default to highly restrictive MTAs (which they would be prepared to accept as-is), but 
which are unacceptable to institutions like the University of California.  This necessitates a period of 
negotiations, which can significantly delay or abrogate the material transfer.  Several of these 
observations are corroborated by the data for UC Berkeley incoming MTAs, where the time to 
negotiate is tracked (see Figure 8). 

                                         
17 The classification for these organizations was inferred based on their names. 
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Figure 8: Days to negotiate UC Berkeley Incoming MTAs 

This shows that negotiations with US-based entities take 25% less time than non-US-based entities 
(t-test: 10% significance), and that negotiations with non-private sector entities (governments, non-
profits and academia) take 63% less time than those with the private sector (t-test: 1% significance).  
An analysis of the time taken for individual private-sector MTAs to complete negotiations shows 
that there is significant dispersion around the mean.  Many of these MTAs complete negotiations 
quite quickly, while almost 40% take 50 days or more to negotiate – a much higher percentage than 
for the other types of counterparties (see Figure 9). 

 

Figure 9: Disaggregation of days to negotiate UC Berkeley MTAs 

This differentially longer time to negotiate with the private sector is true for both incoming and 
outgoing MTAs, which can be seen by looking at the UC Davis MTAs not related to disclosures: 
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Figure 10: Days to negotiate UC Davis MTAs 

For the U.C. Davis data, this finding becomes even stronger if the MTAs from the Mutant Mouse 
Regional Resource Center (MMRRC) are included.  Those MTAs are non-negotiable for both 
incoming and outgoing materials, and thus can be downloaded and completed very quickly.  The 
bulk of these go to government, university and non-profit institutions, and thus the share of those 
institutions’ agreements that get completed in 0-9 days rises to 80-90% for outgoing MTAs and 35-
50% for incoming MTAs, while the negotiation times for private sector MTAs remain virtually 
unchanged.   

The streamlined MTA used by the MMRRC is an interesting institutional development.  It suggests 
that when such a non-negotiable agreement can be created, the cost of transacting with it can be 
very low – and indeed Furman and Stern (2011) have argued that this formalization has positive 
impacts on science because it clarifies and regularizes the process of accessing these materials. 

An initiative similar to the MMRRC MTA was advocated by the National Institutes of Health in 
1995.18  They promoted the Uniform Biological Materials Transfer Agreement (UBMTA), a “simple 
letter agreement for transferring nonproprietary biological materials among public and nonprofit 
organizations. For-profit organizations may also choose to adopt these agreements as well.”19  
Discussions with OTT officials suggest that this effort was partially successful; while 487 universities 
and other groups signed-on to using the UBMTA, few use it unchanged, but instead modify it to 
suit their own needs.20   

The contrast between the rapid completion time of MMRRC MTAs and the more protracted 
negotiations for other MTAs suggests a segmentation of the material transfers.  This is valuable 
since it lowers the transaction costs on agreements whose complexity can be handled by the simpler 
agreement.  A number of on-going initiatives extend this segmentation.  For example, the MMRRC 
has recently moved from requiring an MTA for outgoing material transfer to instead having a short 

                                         
18 Association of University Technology Managers (2012).   

19 National Institutes of Health (1995). 

20 Association of University Technology Managers (2012b). 
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Conditions of Use (COU) statement.  Another example is Stanford, who “encourages researchers to 
share materials with other research colleagues without an MTA when possible.”21  For those that do 
require MTAs, they have different templates for non-profit organizations and industry.22  Anecdotal 
evidence suggests that these policies may be paying off as one UC scientist said that they were 
collaborating with someone at Stanford because the difficulties of arranging the MTA with a 
collaborator at another research institution had been too onerous. 

2.3.2 Growth of M TAs 

There seem to be conflicting trends for MTAs.  As Section 2.3.1 argued, material transfers appear to 
have become more formalized since the late 1970s, with informal letters giving way to contractual 
agreements.  In contrast, institutions like Stanford are opting to exempt certain types of material 
transfers from requiring an MTA.  This makes it unclear whether the net growth in MTAs should be 
positive or negative.  Figure 11 addresses this question.  It shows the number of outgoing UC MTAs 
related to disclosures, aggregated by the year of the disclosure.  For data truncation reasons, only 
MTAs in the first 3 years after the disclosure are counted.23  Hence, the 2001 figure indicates that 
~200 MTAs were put in place between 2001 and 2003 on disclosures filed in 2001. 

 

Figure 11: Growth of outgoing MTAs, within 3 years of disclosure, on UC discoveries (all campuses)24  

This indicates that the may have been some growth in MTAs, but that it is small compared to the 
year-to-year fluctuations.  A simple regression (of the type used in Section 2.1) estimates the growth 
rate of these MTAs at 4.3% (not statistically significantly different from zero). 

                                         
21 Stanford University (2012). 

22 Stanford University (2012). 

23 This ensures even reporting across all years. 

24 In this data, and a single MTA that covers materials from multiple disclosures is counted once for each disclosure. 
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2.3.3 Composition of M TAs and the connection to Research Tools 

As noted by Mowery and Ziedonis (2007), MTAs are disproportionately concentrated in biomedical 
fields of research.  This can be seen both in the groups of scientists using MTAs and in the materials 
themselves.  Figure 12 shows this for UC Davis, with Medicine, Veterinary Medicine, Agriculture & 
Environmental Sciences and Biological Sciences making up ~85% of all MTAs not linked to 
disclosures.25 

 

Figure 12: UC Davis division sending / receiving MTAs 

A similar pattern can be seen in the list of departments receiving MTAs at UC Berkeley (note: QB3 
is the California Institute for Quantitative Biosciences): 

                                         
25 This is a slightly different sample than the other results.  It includes both initial MTAs and MTA revisions. 
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Figure 13: Distribution of counterparties for UC Berkeley incoming MTAs 

Having established that MTAs occur primarily in the biomedical disciplines, this section now turns 
to the question of whether these MTAs are for ‘research tools,’  which, according to the NIH 
Working Group Report on Research Tools, can be defined as “the full range of resources that 
scientists use in the laboratory…the term may thus include cell lines, monoclonal antibodies, 
reagents, animal models, growth factors, combinatorial chemistry libraries, drugs and drug targets, 
clones and cloning tools (such as PCR), methods, laboratory equipment and machines, databases 
and computer software.”26  Because this NIH Working Group definition is broad (“may…include”), a 
second definition is also useful.  Walsh, Cho, and Cohen (2007) define research tools, as indicating 
“knowledge and material inputs upon which [scientists’] research depends” (p1185).   

These definitions suggest that there are two reasonable ways of testing for whether an MTA is on a 
research tool.  The first way is to look whether the material type is listed in the NIH definition.  The 
second, perhaps more compelling, way is to observe whether the material is known to be an input to 
the research of another scientist.  These two ways of identifying research tools are tested for a 
random sample of 50 MTAs on materials received by UC Berkeley from 2004-2008.  Unusually, this 
data lists both the material being transferred and the usage for which it is intended, allowing both 
parts of this definition to be tested. 

In terms of the materials in sample, 22 (44%) are for DNA/RNA/Plasmids, 16 (32%) are for 
biological or chemical agents (e.g. cell lines), 8 (16%) are for model animals (e.g. genetically modified 
mice), 3 (6%) are for data, and 1 (2%) are for something else.  These suggests that, based on 
material composition, 98% ‘may’ be research tools 

                                         
26 National Institutes of Health (1998), p3. 
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Similarly, the described usages for the material also indicate that these materials are almost all 
research tools.  Of the 50 descriptions provided by scientists for their use of the material, 47 (94%) 
explicitly describe the material as an input for their research, using phrases such as:  

• “[Material] for use in cell culture experiments” 
• “The mouse strain will be crossed with mutants…and phenotypic effects explored” 
• “The cells will be used as a source of [material] to study the in vitro [cell function]” 

A further 2 descriptions (4%) implicitly suggest that they will be used as research inputs, as 
identified by phrases such as: 

• “Will be used to prepare…proteins as described in published literature” 

Of the 50 observations in the sample, only 1 (2%) suggested a usage that was not as a research 
input.    Figure 14 summarize these finding from the random sample of UC Berkeley incoming 
MTAs: 

 

Figure 14: Materials and Usage from a random sample of UC Berkeley MTAs (2004-2008) 

This analysis suggests that, according to either a usage definition or a materials definition, the 
incoming MTAs to UC Berkeley are predominantly for research tools.  There are, however, two 
important caveats to this observation.  The first is that the UC Berkeley incoming MTAs may not 
represent a random sample of MTAs.  In particular, since Berkeley does not require MTAs on 
incoming materials unless the other party wishes one, it is likely to represent a set of materials where 
these agreements are more important.  If UC’s policies on this are representative, then the Berkeley 
sample will over-represent materials that have been disclosed and/or have intellectual property.  For 
the inference in chapter 4 this is a positive thing, since it suggests it more closely represents the 
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sample being used.  However, it also means that these results may not be representative of 
undisclosed MTAs. 

The second caveat to this finding is that while having an MTA strongly suggests that a material is a 
research tool, it is by no means an exhaustive definition.  There may also be many research tools 
which would not be transferred with MTAs.  Thus, this paper takes using MTAs to identify research 
tools as a definition that is sufficient to identify a predominantly research tool group, but at the 
same time one which is not necessary.  In other words, the use of an MTA to identify a research tool 
is relatively restrictive, almost certainly excluding a number of research advances that are research 
tools but for which no MTA was negotiated with the involvement of a campus OTT. 

2.4 Summary 

This section has presented a series of datasets from the University of California system.  It has 
attempted to paint a broad picture of intellectual property usage at UC, and a more-detailed one on 
material transfer agreements, and area about which less has been written.  It presents findings that 
private sector MTAs take longer to negotiate than ones with the government, non-profits or 
universities, and that international MTAs take longer to negotiate than domestic ones. 

Echoing previous research, it finds that biological and chemical materials make up the majority of 
materials transferred with MTAs.  Finally, and most importantly for this dissertation, it argues that 
the presence of an MTA is a strong indication that a material is a research tool.  This is shown using 
a sample of UC Berkeley incoming MTAs using the definition of the NIH Working Group on 
Research Tools.  This analysis shows that not only would the materials being transferred likely be 
considered research tools, but that the intended usage of 94-98% of this materials is either explicitly 
or implicitly for use as a research tool. 

  



17 
 

3 Patent-Publication Matching 

As already mentioned in chapter 1, U.S. universities’ have greatly increased their patenting in the 
past 30 years.  This has led some authors, for example Heller and Eisenberg (1998), to worry that 
there will be negative effects from university patenting on the production of science.  If true, this 
would argue against efforts to maintain or expand university patenting.  If not true, evidence 
demonstrating this might mitigate fears that are delaying further growth in these areas.  In either 
case, the result could have important public policy ramifications. 

To evaluate this question, it is important to be able to link the intellectual property being used to 
the scientific discovery which it is purportedly impacting.  In practice this has been a difficult 
problem.  In their paper, Murray and Stern (2007) matched patents to articles published in the 
journal in Nature Biotechnology by reading both patents and the academic articles and using the 
expert judgment of the reader to link them.  In addition to being time consuming, this approach also 
requires strong expertise on the part of the reader – a problem which escalates if patents from a 
broad range of disciplines are to be matched. 

This chapter presents an alternative, scalable method for matching publications and patents.  It 
then shows that this is a maximum likelihood estimator, and tests its effectiveness on the same 
sample used by Murray and Stern. 

3.1 Data 

The patent data used for this analysis is described in Chapter 1, on page 3. 

The second source of data, ‘Publications data’, comes from Web of Science, an internet-based service 
that tracks the bibliographic information and the citations to and from articles published in 10,000 
of the highest-impact journals across 256 disciplines.  This Web of Science extract includes the title, 
author names, journal, publication date, and as well as a number of well-accepted measures of 
journal quality.  The most prominent of these is the ‘impact factor’, which measures the average 
number of times an article in that journal is cited in its first two years.  This is the measure used in 
this analysis. 

Web of Science also tracks ‘forward citations’, citations from later works to that publication.  This 
data was extracted for all publications in the data through the end of 2009. 

3.2 Inventor-based matching 

An alternative to matching based on the content, as done by Murray and Stern (2007), is to match 
based on the inventors and the timing of their discoveries.  This is formalized here as inventor-based 
matching. 
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Inventor-based matching is based on two assumptions.  First, the technique assumes that the 
inventors listed on patent are likely to be the authors listed on related publications.  Since all 
inventors are legally required to be included on the patent, this assumption relies on the self-interest 
of those in science to want to be listed on publications, and the integrity of those writing articles to 
include all who contributed. 

The second assumption is that the patent application date is likely to occur near the publication 
date of the academic article.27  This assumption relies on both the patent and publication coming 
from a single ‘discovery’, and that there are commercial and scientific interests in instantiating these 
products shortly after that discovery.  Examples of these incentives might include obtaining an early 
patent priority date or the fear that a scientific discovery will be published first by another group. 

Derived from these principles, it is possible to construct a maximum-likelihood estimator for the 
publication(s) that best matches a particular patent.  This is a multi-stage process, implemented as 
follows: 

1. Start with the patent to be matched, and all of its inventors 
2. Search for the publications by each of these inventors in the 2 years before or after the 

patent was applied for28,29 
3. Look for overlap in the publication sets of the inventors 
4. Choose as a match those publication(s) that have the most inventors listed as authors, 

conditional on at least having some minimum number of the authors (in case of this analysis: 
3) 

Thus, if a patent has three inventors, three publication sets (one for each inventor) would be 
produced and the best match(es) would be those common to all three inventors.  Figure 15 
schematically outlines this process for the three-inventor case. 

                                         
27 In contrast to fields such as economics, the time between submission and publication in biomedical research is often no 
more than a few months (Murray and Stern (2007)) 

28 Because of inconsistencies in the way authors record their first names, testing has determined that the best match is 
achieved by searching for the combination of first initial and last name. 

29 This ±2 year period reflects the relative timing of publications and patents observed in the Murray and Stern matching 
and the replication of it here (described below). 



19 
 

 
Figure 15: Schematic of Inventor-based Matching 

This approach can select multiple publications as ‘best’ matches, in contrast to the Murray and 
Stern approach that matches one publication to one patent.  The value of this generalization can be 
seen in an example from the UCOP dataset: a patent on adhesives inspired by the design of gecko 
feet produces the following matches: 

• Adhesive force of a single gecko foot-hair (Nature) 
• Evidence for van der Waals adhesion in gecko setae (Proceedings of the National Academy of 

Sciences) 

Both of these are related to the patent, so comparing the impact of a license on the forward citations 
of both of them provides additional statistical power. 

Using this matching technique does not restrict the sample to only instances where all the inventors 
are listed as authors on the publication.  For example, in the case above, this would occur if a lab 
technician had also been included on the patent, but had not been listed on any of the academic 
publications.  Under such circumstances the inventor-based matching algorithm will choose the 
publication(s) with the maximum overlap possible – in this case a publication listing three of the 
four inventors since there are no four-out-of-four-inventor matches. 

This ‘best-available’ property is a general property of maximum-likelihood estimators, of which this 
is one.  That this is a maximum likelihood estimator can be seen by formalizing the assumptions 
that defined the matching algorithm.  First, assume that a publication and a patent are more likely 
to be a match if they share an author, i.e.:   
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𝑝 �𝑚𝑚𝑚𝑚ℎ𝑝𝑢𝑏𝑖 & 𝑝𝑎𝑡𝑒𝑛𝑡𝑗�𝑚𝑎𝑚ℎ𝑜𝑟𝑘 ∈ �𝑚𝑎𝑚ℎ𝑜𝑟𝑠𝑝𝑢𝑏𝑖 ∩ 𝑖𝑖𝑖𝑖𝑖𝑚𝑜𝑟𝑠𝑝𝑎𝑡𝑒𝑛𝑡𝑗�� ≥ 𝑝 �𝑚𝑚𝑚𝑚ℎ𝑝𝑢𝑏𝑖 & 𝑝𝑎𝑡𝑒𝑛𝑡𝑗� 

Here 𝑚𝑎𝑚ℎ𝑜𝑟𝑠𝑝𝑢𝑏𝑖 and 𝑖𝑖𝑖𝑖𝑖𝑚𝑜𝑟𝑠𝑝𝑎𝑡𝑒𝑛𝑡𝑗  are the sets of authors for publication 𝑖 and the inventors 
for patent 𝑗 respectively.  Combining this over all inventors yields that 𝑝𝑎𝑏𝑚is a ‘match’ for 𝑝𝑚𝑚𝑖𝑖𝑚𝑗 
if 

𝑚 ∈ argmax
𝑖

�𝑝�𝑚𝑚𝑚𝑚ℎ𝑝𝑢𝑏𝑖 & 𝑝𝑎𝑡𝑒𝑛𝑡𝑗�𝑚𝑎𝑚ℎ𝑜𝑟𝑘 ∈ �𝑚𝑎𝑚ℎ𝑜𝑟𝑠𝑝𝑢𝑏𝑖 ∩ 𝑖𝑖𝑖𝑖𝑖𝑚𝑜𝑟𝑠𝑝𝑎𝑡𝑒𝑛𝑡𝑗��
𝑖,𝑘

  

As highlighted above, an implication of this method is that a single patent can be associated with 
more than one publication.  This occurs precisely when multiple publications share the same level of 
overlap between the inventors, and when no publications have a greater overlap.  

3.2.1 Limits of M aximum Likelihood Estimators 

As with all maximum-likelihood estimators, just because an estimate is ‘best’ doesn’t mean it is 
precise.30  In this case, the precision will be low if there are many publications that are not a match, 
but which have a similar level of inventor overlap to the correct matches – as might happen if the 
inventor overlap on the correct publication is very low.  For example, the matching algorithm would 
produce many incorrect matches if, on a four-inventor patent, no related publications listed more 
than a single inventor among the authors.  In this case, the algorithm would theoretically identify as 
matches all publications by all of the inventors in the relevant five-year window.31  To avoid such 
errors, matches are restricted to only high-precision estimates.  This is accomplished by adding the 
proviso to Step 4 of the algorithm that includes only publications that list three or more of the 
inventors.  The logic behind this criterion is illustrated in Figure 16, which portrays the number of 
publications matched to each patent in the dataset.  The number shown in each bar is the number of 
inventors listed on both the publication and the published paper.32 

                                         
30 See, for example, Casella and Berger (2002) for a discussion of maximum likelihood estimators 

31 The five-year window includes the year of the patent application, the two years prior and the two years afterwards. 

32 The data in Figure 4 include only papers and patents linked by at least two inventor or author names. 
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Figure 16: Publications matched to each patent 

Figure 16 shows that 82% of the patents in the sample are linked by the ‘inventor-based matching’ 
algorithm with 1–5 publications, while the remaining 18% of the patents are associated with six or 
more publications.33  One likely cause for the large number of publications associated with each of 
the patents in this 18% is common scientist names (e.g., “Professor J. Smith”).  Figure 16 also 
demonstrates that the majority of these patents with more than 5 publication matches have only 
two names that are common to both the inventor list and the author list.  This suggests that these 
observations may be low precision ones that should excluded.  The statistical implications of 
dropping publications with an author overlap of ‘2’ is to restrict the sample to a higher expected 
probability of a match34, that is, to exclude publications whose expected probability of a match is 
‘too low’.  It is tempting to argue that ‘3’ author overlap papers should also be excluded based on 
this same rationale.  This is not pursued here because it would decrease the sample size considerably, 
but it would be an interesting extension for someone a larger dataset.  Nevertheless, the sample 
statistics that would result are presented to explain the logic used in restricting the dataset. 

                                         
33 Note that publications listing only a single inventor are already excluded from this analysis 

34 This follows directly from the definition of the maximum-likelihood estimator above 
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Table 1: Sample Summary Statistics 

Table 1 examines the effect of restricting the sample to higher levels of inventor-overlap by 
comparing the sample statistics of 3-inventor overlap with 4-inventor overlap.  The average year of 
publication, age of publication when the citations are observed, and the proportion of the papers in 
the Life Sciences (principally Biology, Biochemistry, and Medicine) are relatively stable across the 
samples.  This suggests little or no introduction of bias along these dimensions. 

In contrast, two measures of publication quality: the number of citations per year and the average 
impact factor of the publication’s journal do rise in samples with less noise.  This is consistent with 
the observation that patented publications are of higher quality (i.e. receive more citations) than 
unpatented ones.  Since correct matches are patented publications, but incorrect matches are 
random additions from the general pool of publications, the effect of a removal of incorrect matches 
should be to increase average publication quality.  Thus, these results are consistent with the 
argument that higher-overlap specifications reduce noise in the sample, although it is not definitive.  
Summary statistics for a Life Sciences sub-sample (biology, biochemistry and medicine) show these 
same trends. 

After restricting the data to 3+ inventor overlap, 728 patents and their corresponding publications 
remain in the sample. 

Samples
Inventor Overlap 3 4
Sample Size
Publications (000) 1.7 0.6
Patents (000) 0.7 0.3
Publications with MTAs 261 79
Publications / Patent 2.4 1.8
Observations in Life Sciences 49% 44%
Sample Statistics#

Citations per year 11.4
(26.1)

16.2
(36.3)

Average Impact Factor 8.7
(8.4)

11.0
(9.8)

Publication year 2000.7
(2.6)

2000.4
(2.8)

Publication Age 3.2
(2.6)

3.3
(2.7)

Age at MTA issuance 2.4
(2.7)

2.6
(2.6)

Age at Patent issuance 3.5
(2.0)

3.5
(2.0)

# values in the parentheses is 1 standard deviation
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3.2.2 Testing the quality of the patent-publication matching 

Having established the methodology of inventor-based matching, it is important to assess its validity.  
As mentioned earlier, Murray and Stern’s patent-paper pair sample was developed through hand-
matching publications and patents based on the scientific content of each.  As such, their matches 
provide a useful benchmark against which to measure the performance of inventor-based matching.  
The gracious cooperation of Murray and Stern makes this comparison possible.35   As Figure 17 
shows, of the 170 patent-publication matches found by Murray and Stern, the new method identifies 
the identical ‘best’ publication match for 95% of their sample.  In an additional 4% of these 
instances, the Murray-Stern match was found, but another publication was deemed a better match.36  
In the remaining two cases the algorithm failed because of missing data on the inventor’s name or 
because an author sometimes used his first name and other times used his middle name on 
publications. 

 

Figure 17: Validating Inventor-based Matching 

This benchmarking exercise demonstrates the ability of inventor-based matching to identify the best 
publication matches for patents.  Having established its effectiveness, it is worth noting several other 
advantages of this method over that employed by Murray and Stern (2007): 

                                         
35 Thanks to Professors Fiona Murray and Scott Stern for sharing their dataset. 

36 The difference here is likely because of the direction of matching.  Murray and Stern began with a set of publications and 
found the most-similar patent, whereas this analysis begins with a patent and finds the most-similar publication.  This 
means that it is possible that the patent identified by Murray and Stern to have been the best patent match for that 
publication, but also that another publication existed which is an even better match.  A non-expert review of the ‘better’ 
matches suggests that they are well matched. 
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1. It does not impose a simple one-to-one relationship between patents and publications; 
2. It makes it possible to analyze many scientific fields without requiring a domain expert in 

each; 
3. It is a transparent and reproducible matching procedure that does not rely on the gifted 

intuition of a small group of researchers;  
4. It allows the matching process to be automated, making much larger sample sizes feasible. 

3.3 Patented Publications 

Having outlined how inventor-based matching works and validating its effectiveness on the Murray 
and Stern data, this section applies this method to construct a set of patented publications – that is, 
publications where the underlying discovery also resulted in a patent. 

As mentioned above, to get a more-precise estimate of correct patent-publication matches, a 
publication must have 3+ of the inventors listed as authors.  This imposes two restrictions on the 
sample.  First, a patent must have at least three inventors.  Second, the associated publication must 
list at least three of those inventors as authors.  Figure 18 summarizes the impact of these 
restrictions on the sample: 

 
Figure 18: Sample composition 

Thus the 3+ inventor restriction excludes 944 patents that have only one or two inventors listed.  An 
additional 363 patents are excluded because, even though they have 3+ inventors, fewer than 3 are 
listed as authors on any publication.  The fourth bar of Figure 18 shows the number of citations per 
patent, i.e., the number of journal citations for all publications that are matched (using the three-
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name overlap restriction) to that patent.  Notice that some have no publication citations.  While 
these are included in the sample, they will not exhibit any changes in their citation patterns due to 
intellectual property, and thus in the final bar they are designated as “Partially in Sample”. 

The example shows that, despite the strong restriction of having 3+ inventors listed as authors on 
the publication, more than one-third of patents can be matched using inventor-based matching.  
This highlights the value of doing this matching automatically, since this sample is more than four 
times as large as the Murray and Stern hand-matched sample, and covers not just one journal in one 
discipline, but the 10,000 journals of Web of Science across many different disciplines. 

3.4 Summary 

Despite the importance of looking at the impact of intellectual property on academic science, it has 
been difficult to analyze these effects since the matching of intellectual property to scientific 
publications has been a laborious process requiring field-specific expertise. 

This chapter introduces an alternative method of forming these patent-publication matches, called 
inventor-based matching.  This method is tested against the hand-matched sample of Murray and 
Stern, and shows a high level of success in reproducing their matches.  It also generalizes from their 
requirement of a one-to-one match. 

Finally, by automating this process, inventor-based matching allows the processing of larger datasets 
of patents without the intervention of domain experts.  Using this method on data from the UC 
system and Web of Science produces a set of over 700 patented publications that can be used to 
examine the effects of intellectual property on citations to academic publications. 
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4 The Effect of Licensing on the use by Researchers of UC 
Patented Publications37 

This chapter seeks to empirically address the question of whether licensing has a positive or negative 
effect on scientific communication of the underlying idea.  In keeping with the work of Murray and 
Stern (2007), this chapter operationalizes this ‘flow of scientific knowledge’ as the number of times a 
scientific publication is cited by subsequent articles in scientific journals. 

Previous research on academia’s use of intellectual property has included examinations of patenting, 
licensing and of material transfer agreements.38  Some work has examined the effects of patenting on 
biomedical researchers’ willingness to share information on their work (Blumenthal et al., 1997; 
Campbell et al., 2002).  More recent research has analyzed the effects of patenting biomedical 
discoveries that are also disclosed in scientific papers.  Some of this work finds that the issuance of a 
patent results in modest but significant declines in citations to the research papers related to the 
patent (Murray and Stern, 2007; Sampat, 2005).  Other research, however, finds that biomedical 
researchers report rarely, if ever, searching to determine whether a prospective research project or 
experiment will infringe on patents (Walsh, et al., 2005; Lei et al., 2009). 

Licenses on university-patented discoveries affect commercialization efforts by companies, and 
therefore may influence corporate R&D in related areas.  Unlike patents, licenses are not published 
or otherwise subject to mandatory disclosure, and in many cases the identity of licensees is treated 
by university technology transfer offices as confidential.  Why might licenses affect the behavior of 
academic researchers in formulating their research agenda? 

This issue has received little empirical attention from scholars.  A recent analysis of patent citations 
to University of California patents that were licensed (Drivas, et al., 2011) found that citations to 
these patents by non-licensees increased after exclusive licenses (either by geographic area or field of 
use) were issued on these patents.  Drivas et al., interpret the increase in citations as a reaction by 
other patent applicants to the demonstration of potential commercial value signaled by the 
negotiation of a license for the patent.  A similar signaling effect could increase citations to patented 
publications.  In this case, the issue of a license “demonstrates” that a particular area of research has 
potential scientific or commercial value, leading other investigators to pursue work in closely related 
fields.  Indeed, it is plausible (as various scholars have speculated, with limited evidence thus far) 
that in the wake of the Bayh-Dole Act, academic researchers may choose research areas based on 

                                         
37 Because of the strong contributions of co-authors to this introduction, parts of which are drawn directly from Thompson, 
Mowery, Ziedonis (working paper), the author would like to acknowledge them explicitly. 

38 Material Transfer agreements are bilateral contracts that accompany some transfers of research materials.  They are 
typically signed by the sender of the materials, the receiver of the materials, and both of their institutions.  An example 
would be a contract accompanying the transfer of a genetically modified mouse from its designer to another researcher, 
perhaps someone involved in clinical trials.  The terms of MTAs can be simple and straightforward (e.g. the UBMTA), or 
complicated and onerous (see, for example, those discussed in Walsh, Cho, and Cohen (2007). 



27 
 

their potential for private profitability.  Regardless of whether a license “signal” operates through its 
effects on perceptions among researchers of scientific or commercial potential, this argument predicts 
an increase in citations to patented publications following the negotiation of the license.   

Equally plausible arguments, however, can be developed to predict a chilling effect of licensing on 
scientific communication.  Reactions by university technology licensing offices and/or their licensees 
to any evidence of patent infringement (even for research purposes, inasmuch as the research 
exemption from such infringement suits remains unclear) may be swifter and stronger in the case of 
patents that are licensed.   

As a result of these competing effects, this chapter is agnostic on the likely sign of any effect of 
licenses on scientific communication associated with publications linked to licensed academic 
patents.  Indeed, both effects may be present for papers in various fields of research, and hopefully 
this work will shed light on the net magnitude of any offsetting effects. 

Despite plausible arguments for increases or decreases in citations following a license in general, 
there is an area where the negative effects might be more pronounced: research tools.  Research tools 
are discoveries where the output of one scientist is the input for another.  Fiona Murray (2006) 
provides an excellent description of what happens with one research tool, the Oncomouse, and why 
the licensing of research tools can be problematic: 

“In 1984, scientists at Harvard University carefully engineered a new mouse to have a 
predisposition to cancer, the Oncomouse…The Harvard researchers…patented their 
creation and subsequently licensed this patent to DuPont... 
 
[DuPont] set a high price per mouse…placed restrictions on breeding 
programs…demanded publication oversight… [and] insisted upon a share of any 
commercial breakthroughs made using the Oncomouse.” 

  
It is easy to imagine these types of restrictions could have a chilling effect on follow-on researchers 
wanting to use the Oncomouse.  This is made worse because licensees may have an explicit incentive 
to restrict access to these materials.  The NIH Working Group on Research Tools (1998) outlines the 
rationale behind this restriction: 
 

“If the sponsor or licensee plans to develop the research tool as a commercial product 
for sale to researchers, it may be unwilling to permit the university to undercut its 
position in this particular market by giving the tool away to potential paying 
customers.” 

 
Thus, for research tools, there is a stronger case that licensing may have a negative effect on citation 
rates.   
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4.1 Methodology 

This section describes how the sample is constructed, and how research tools are identified.  It then 
outlines the identification strategy used to test the effect of licenses on the flow of scientific 
knowledge. 

4.1.1 Sample Construction 

This analysis restricts attention to “patented publications”.  These are publications that have value 
to science, and thus get published in scientific journals, but where the underlying discovery also has 
commercial potential, and thus gets patented.  A patented publication, therefore, is a scientific 
publication based on an invention disclosure that produced a successful patent application.  Rather 
than repeating this at each instance, the shorter moniker of “patented publications” is used.39  
Within this group of patented publications are those that also received licenses, and those that 
didn’t. 

The advantage of restricting the comparison to within patented publications is that they are likely 
to be more similar in quality and other characteristics than would be true of a broader sample of 
publications.  In particular, because these discoveries are all patented, differences in 
commercializability are considerably lower than they would be in a general sample.  Despite this 
greater similarity, one might imagine that the existence of a license suggests other unobserved 
differences as compared to patented publications lacking them.  For example, patented publications 
with licenses might be of a higher research quality, which could lead to more citations.  Controlling 
for these differences is subtle and is discussed at length in the identification strategy section. 

While restricting the scope of this analysis to patented publications helps ensure a more-
homogeneous sample, it also means that the estimates measure the effect of a license issuance on the 
citations of patented publications, rather than on publications in general.  Future work is planned to 
investigate this difference between patented and unpatented publications. 

Building a sample of patented publications with and without licenses requires a number of steps.  
Firstly, the connections between patents, MTAs and licenses are needed.  Fortunately this is tracked 
directly by the University of California on system-wide “invention disclosures,” i.e., the declaration 
by the university researcher of a potentially patentable advance.  Secondly, patents needed to be 
connected to publications on the same discovery.  This is done via inventor-based matching, as 
described in Chapter 2.  Finally, the connection between a publication and those citing it is needed.  
This is extracted from Web of Science, which tracks it. 

                                         
39 Patented publications were inspired by the patent-paper pairs of Murray and Stern (2007), and are very similar.  
However, their term is not used because they focused on one-to-one relationships between patents and publications, while 
this work allows multiple matches - and thus the data are not ‘pairs.’ 
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4.1.2 Identifying research tools 

As previously discussed, there is some basis for believing that research tools may experience a 
negative impact from being licensed.  Testing this requires identifying which patented publications 
are research tools, and which are not.  This has proven to be a difficult question since, in theory, 
almost any research output could be the input to another scientist’s research.  For Murray and Stern 
(2007), their solution to this dilemma is to focus on the 3-digit patent classes for “Chemistry: 
Molecular Biology and Microbiology” (class 435) and “Multicellular living organisms and unmodified 
parts thereof and related processes” (class 800)40.  This definition is tested in Section 4.3.3.  This 
paper adopts an alternative definition for identifying research tools.  It argues that the presence of a 
material transfer agreement is a strong indication that the material is a research tool.  This is 
supported by the analysis in Chapter 2, which shows that the materials being transferred, and their 
intended usage, both correspond to the NIH Working Group on Research Tools’ definition.  Because, 
for example, a genetically-modified mouse is likely to be a research tool even before its first MTA is 
observed, an observation is deemed a research tool during all periods if an MTA is observed at any 
point. 

4.2 Building the right treatment and control groups 

4.2.1 Specification challenges 

Designing the right specification to analyze the impact of licensing on scientific communication is 
challenging, owing largely to the complicated shape of citation curves.  Publications all begin with 
zero citations and then begin to accumulate them, but this may be the only universal trait.  
Typically, citations will peak and then return to zero.  But for some publications, the number of 
citations it receives continues to grow throughout the period of the data.  For those that do peak 
and then fall, the timing and rate of the ascent and descent may vary.  As a result of these 
differences, constructing a suitably flexible parametric model is difficult, leading to the worry that a 
poorly-modeled group of observations could bias the results. 

The extent of this modeling challenge can be understood by considering just some of the factors that 
would be involved in a reasonable parametric model.  A starting place is the assumption that 
publications in more highly cited journals would accrue more citations, which would argue for 
including Journal Impact Factor as a control variable.  Similar arguments could easily be made that 
the academic discipline (hereafter Journal Subject) could also drive citation patterns, as could how 
much better cited a publication is prior to the license (Citations in t-1, Citations in t-2).  Of course, 
for each of these the effects could be non-linear, which would argue for the inclusion of higher-order 
terms (e.g. Citations in t-1 squared).  Interaction terms between these variables would also be 
important, since for example, effect of a journal impact factor rating is likely to be different on 
disciplines with more compressed citation patterns.  And, since the effect of any of these things will 
                                         
40 USPTO (2011). 
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impact a publication differently 3 years after publication than 10 years afterwards, each of these 
would need to be interacted with age fixed effects.  The combination of all of these factors would 
result in an enormous number of parameters for the model, far more than the data could reasonably 
estimate.  This argues against using a typical linear, or generalized linear, framework, in favor of a 
non-parametric approach.   This weakens the linearity assumptions needed for the model to be 
correct, and helps account for the many plausible interaction effects that could be present.   

4.2.2 Nearest-neighbor matching 

The specific non-parametric method used is nearest neighbor matching.  This method begins with a 
potential treatment observation, in this case a patented publication that gets licensed.  It then 
searches through those patented publications that never receive a license to find one that looks 
similar to it in terms of pre-treatment covariates.   If such a match is found, the licensed observation 
is added to the Treatment Group, and the match is added to the Control Group.  If multiple 
matches are found, the one most resembling the treatment observation (i.e. the ‘nearest neighbor’) is 
chosen.41  Finally, if no match is found, the potential treatment observation is discarded and not 
used in the analysis.42  Since this method explicitly builds the sample with treatment and control 
observations with similar observable characteristics, it should produce good covariate balance on 
these dimensions.  This is tested explicitly in the Results section. 

Because this matching process begins with the treatment observations, the coefficient should be 
interpreted as an average treatment effect on the treated (ATT), that is, it is the average effect on 
citations from having a license issue on patented publications that are like the ones that actually do 
receive licenses (in contrast, for example, to what would happen to an average publication or even 
an average patented publication).  By restricting the sample to control observations that ‘match’ the 
treatment observations, those control observations that are dissimilar are excluded, thus decreasing 
the sample size.43 

                                         
41 In early analyses an n-nearest neighbors approach was also tested, where the n best control observations that match the 
treated observation were chosen and assign each a weight of 1

n
.  This produced no notable change from the single nearest 

neighbor approach. 

42 While discarding potential observations might seem to be a bad thing, here it is being done precisely because there are no 
counterfactuals observed in the data which would allow for a reasonable comparison.  Statistically speaking, the 
observation lies outside the range of common support, and should thus be excluded.  Despite this sound statistical footing, 
it is important to note that a side-effect of doing this is that, when the pool of “control” observations becomes small, the 
possibility of finding a match becomes less likely.  This constrains how detailed this analysis can examine subsamples of 
this data.   

43 The effect that this has on the precision of the estimates is ambiguous.  Smaller samples will tend to reduce precision 
(making the standard errors larger), but there may also be a countervailing impact because the smaller sample will likely be 
more homogenous, which could increase precision. 
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The actual matches are found using the R statistical library “Matching” by Jasjeet Sekhon (Sekhon, 
2011), using the functionality that searches for the best matches using a genetic algorithm.44 

4.2.3 Criteria for M atching 

For the nearest neighbor matching two sets of variables are used, one set where the control 
observation’s characteristics must have an exact match with the treatment observation’s, and 
another where a nearby match is sufficient.  The set requiring an exact match are: 

• Publication Age: number of years since the paper was published 
• Journal Subject: academic discipline of the journal  
• Patent Granted (Yes/No): whether the related patent has been granted 
• MTA Issued (Yes/No): whether the paper has an associated MTA at the time of the 

license 

Even these restrictions imply a great deal of similarity between the treatment and control 
observations.  For example, a treatment observation in the life sciences with an issued patent and no 
MTA would be compared with a control group observation in the life sciences with an issued patent 
and no MTA, and the comparison would be during the exact year that the treatment observation 
had received the license (e.g. 3rd year after publication). 

For those treatment observations that match on the ‘exact’ characteristics, the match is chosen by 
picking the nearest neighbor based on their relative proximity in the following five characteristics: 

• Journal Impact Factor 
• Publication Year 
• Citations in 𝑚 − 2: citations 2 years before the treatment 
• Citations in 𝑚 − 1: citations 1 year before the treatment 
• Slope of Citation curve between 𝑚 − 2 and 𝑚 − 1 

In each of these dimensions the furthest a ‘nearest’ neighbor is allowed to be is one standard 
deviation.45  Beyond that, the observation is judged to be ineligible.  Of course, virtually all matches 
will be closer than one standard deviation, since the nearest one is being chosen. 

Collectively, these restrictions mean that for each observation in the treatment group, there is one in 
the control group that matches it, either exactly or within one standard deviation, on each of these 
nine important characteristics.   

                                         
44 According to Sekhon (2011), “GenMatch dominates the other matching methods in terms of MSE [Mean Squared Error] 
when assumptions required for EPBR [Equal Percent Bias Reduction] hold and, even more so, when they do not”.   

45 The distance limit of an acceptable match thus is the “caliper” of the Matching.  Using a caliper helps exclude both 
observations whose observable covariates would make them outliers and those which would make them inliers, that is 
observations that are in the ‘middle’ of the data, but nevertheless lack a comparable control observation (Sekhon, 2011). 
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4.2.4 Difference-in-differences Estimator 

The effect of a license on the citation pattern of the treatment group is estimated using a difference-
in-differences estimator.  This compares how the citations to one patented publication increase (or 
decrease) following the issuance of a license with the changes in citations for a comparable 
publication that lacks a license.  In this case, it is defined as: 

𝑇𝑟𝑖𝑚𝑚𝑚𝑖𝑖𝑚 𝐸𝑓𝑓𝑖𝑚𝑚
= (𝐶𝑖𝑚𝑚𝑚𝑖𝑜𝑖𝑠𝑡+1 − 𝐶𝑖𝑚𝑚𝑚𝑖𝑜𝑖𝑠𝑡−1)𝑝𝑢𝑏 𝑤/ 𝐿𝑖𝑐𝑒𝑛𝑠𝑒 − (𝐶𝑖𝑚𝑚𝑚𝑖𝑜𝑖𝑠𝑡+1 − 𝐶𝑖𝑚𝑚𝑚𝑖𝑜𝑖𝑠𝑡−1)𝑝𝑢𝑏 𝑤/𝑜 𝐿𝑖𝑐𝑒𝑛𝑠𝑒46 

The definitions for the treatment effect in period 𝑚 + 2 and 𝑚 + 3 are calculated similarly, by 
replacing 𝐶𝑖𝑚𝑚𝑚𝑖𝑜𝑖𝑠𝑡+1 with citations in the new ‘after’ period.  In all cases, the ‘before’ period 
remains 𝑚 − 1. 

Using a differences-in-differences estimator for this analysis rules out bias from changes that impact 
the before and after periods similarly.  For example, if a particular scientist is well reputed and thus 
gets 5 more citations per year, every year, than this will be added to both 𝐶𝑖𝑚𝑚𝑚𝑖𝑜𝑖𝑠𝑡−1 and 
𝐶𝑖𝑚𝑚𝑚𝑖𝑜𝑖𝑠𝑡+1 and the impact on the estimate will be zero.  In this way, the estimator accomplishes 
the same effect as author or publications fixed effects.  This also means that the estimate is robust 
to these types of unobservable differences in addition to the observable differences controlled for 
using matching. 

Because the distribution of citations is skewed (see Figure 18), there is a risk that outliers that will 
drive the estimation results.  Accordingly, the 2.5% highest and lowest observations are excluded 
from the analysis.  Diagnostic tests are also run after the analysis to check for the results being 
driven by outliers.  

4.2.5 Regression adjustment 

Even after matching, it is still possible for the characteristics of the treatment group and the control 
group to differ slightly in the dimensions where only nearest neighbors were found.  For example, if 
the matched control observations were all in slightly lower impact factor journals than the treatment 
observation.  When such differences remain, covariate bias adjustment is used to control for the 
differences between the groups.  This applies a multivariate linear regression (hereafter “regression 
adjustment”) on the post-matching sample (treatment observations plus their matched controls). 

To summarize, covariate balance is obtained using two techniques.  First, matching produces nearest 
neighbor control observations for the treatment observations.  This non-parametric technique means 
that fewer assumptions are needed about the parametric form of the effect than would be required if 
a linear, or generalized linear (e.g. negative binomial) formulation was used.   

                                         
46 This only conditions on not having had a license prior to that time-point.  This is because future licensing may be an 
outcome of either having or not having a license in this period.  As such, conditioning on post-treatment licensing could 
induce bias.  
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Secondly, a multivariate linear regression (using the same covariates used in matching47) is done to 
adjust for any remaining differences between the groups.  Because this is done on the matched 
sample, the differences between the treatment and control groups are likely smaller, making the 
linearity assumption embedded in least-squares more plausible, although clearly still subject to the 
same criticisms leveled above.  Rubin (1979) discusses the value of using these (slightly modified) 
techniques and concludes that “pair-matching coupled with regression adjustment on the matched 
pairs is a quite effective general plan for controlling the bias due to matching variables, and this 
combination is clearly superior to regression adjustment” (p.318).  

4.3 Results 

The results are divided into three sections.  The License Effect covers the effect of a license on the 
full set of matched patented publications in the data.  The License Effect on Research Tools covers 
the effect of a license on a subsample of matched patented publications where all the observations, 
both treatment and control, are research tools (as identified by their receiving an MTA at some 
point).  A third set of results then shows the effect of using the Murray-Stern research tools 
definition, rather than the one based on the presence of an MTA. 

4.3.1 License Effect 

Since the identification strategy depends on a balance on observables, the covariate balance between 
the treatment and control groups needs to be explicitly tested.  If matching has done a good job, the 
summary statistics for both groups should be similar.  Two types of tests are used to confirm this: t-
tests to compare the means of each group and Kolmogorov-Smirnoff tests (KS tests), to compare the 
entire distributions.  The null hypothesis that they are the same for the treatment and control 
groups, and the alternative hypothesis is that they are different.  Table 2 shows the mean of each 
group for these control variables, and the statistical significance of the test (***, **, *, and ‘-’ 
implying 1%, 5%, 10%, >10% significance levels, respectively). 

                                         
47 License effect: Δ𝐶𝑖𝑚𝑚𝑚𝑖𝑜𝑖𝑠 = 𝛽0 + 𝛽1 𝐴𝑔𝑖 + 𝛽2 𝐽𝑜𝑎𝑟𝑖𝑚𝑙 𝑆𝑎𝑏𝑗𝑖𝑚𝑚 + 𝛽3 𝑃𝑚𝑚𝑖𝑖𝑚 𝐺𝑟𝑚𝑖𝑚𝑖𝑑 + 𝛽4 𝑀𝑇𝐴 𝐼𝑠𝑠𝑎𝑖𝑑𝑌𝑁 +
 𝛽5𝐽𝑜𝑎𝑟𝑖𝑚𝑙 𝐼𝑚𝑝𝑚𝑚𝑚 𝐹𝑚𝑚𝑚𝑜𝑟 + 𝛽6 𝑃𝑎𝑏𝑙𝑖𝑚𝑚𝑚𝑖𝑜𝑖 𝑌𝑖𝑚𝑟 + 𝛽7 𝐶𝑖𝑚𝑚𝑚𝑖𝑜𝑖𝑠𝑡−2 + 𝛽8 𝐶𝑖𝑚𝑚𝑚𝑖𝑜𝑖𝑠𝑡−1 + 𝛽9 𝐶𝑖𝑚𝑚𝑚𝑖𝑜𝑖𝑠𝑆𝑙𝑜𝑝𝑖𝑡−2 𝑡𝑜 𝑡−1 +
𝜓 𝐿𝑖𝑚𝑖𝑖𝑠𝑖.  The coefficient of interest is 𝜓, which is what is presented in the results.  
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  License Sample 

Covariates Mean 
Treated 

Mean 
Control T-Test KS-Test 

Publication Age 2.0 2.0 - - 
Journal Subject48 4.3 4.3 - - 

Patent Issued 0.56 0.56 - - 
MTA Issued 0.04 0.04 - - 

Journal Impact Factor 7.3 7.1 *** *** 
Publication Year 2000.7 2000.5 * - 
Citations in t-1 6.6 6.1 - *** 
Citations in t-2 4.3 4.2 - - 

Citation Slope from t-2 to t-1 2.3 1.9 *** *** 
Table 2: Covariate balance for the full licensing sample 

Because the first four variables are matched exactly, it is not surprising that the means are the same 
and that neither the t-test, nor the KS-test show any difference, since these are true by construction.  
For the remaining variables, the means for the control and treatment groups are very similar.  
Despite this, some of these differences are statistically significant, suggesting that it will still be 
important to check the results from the regression-adjusted analysis. 

Because the control and treatment groups are so similar pre-treatment, the main finding is 
observable just by looking at the evolving citation pattern for the treatment group (blue) and the 
control group (red), as shown in Figure 19. It shows that patented publications receive more 
citations starting two years after a license than do a control group that does not receive the license.   

                                         
48 Journal subject here is a categorical variable, with each subject mapped to a random integer.  Therefore the 4.3 listed has 
no literal meaning, but the equality between treatment and control is still meaningful. 
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Figure 19: License effect 

 

 
Figure 20: Regression results from the License Effect49 

 
This result is confirmed in Figure 20, which shows these results after doing the regression 
adjustment.  It shows a 2.4 citation increase in year 2 and a 2.1 citation increase in year 3, both of 
which are significant at the 1% level.  Notice that these are only slightly different than those implied 
by the citation trends because of the excellent covariate balance even prior to the regression 
adjustment.  The magnitude of these increases implies that the average publication receives a ~25% 
increase in citations for these two years as compared to the control group. 

It is interesting to note that the increase in citations does not occur immediately, but is delayed 2-3 
years after the license issues.  This is consistent with licenses being a positive signal to the field, 
since it takes time for scientists to adjust their research agendas to increase their focus on this area.  
The delay is also consistent with many licenses not being publicly announced, and thus one would 
expect it would take time for the news of the announcement to spread through the community. 

4.3.2 License Effect on Research Tools 

To limit the analysis to research tools, the sample is narrowed to look only at patented publications 
that are research tools (defined as disclosures associated with a material transfer agreement).50  
Thus, both the treatment and the control observation have MTAs,51 and the difference remains that 

                                         
49 Error bars are ±1 standard error 

50 In principle one might want to restrict this to instances where there is an MTA prior to the license, to guard against any 
reverse causality.  That approach is not adopted here for two reasons.  Firstly, it is reasonable that even before a material 
like an oncomouse has its first MTA, it represents a research tool.  Secondly, segmenting the sample into MTA before / 
after leads to results that are similar in direction, although with much smaller sample sizes and thus more noise. 

51 Because  exact matching is done on MTA Issued, the treatment observations with MTAs prior to license are matched to 
controls that also already have an MTA, while those that do not yet have one and matched to those that also don’t yet 
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one gets a license and the other does not.  The following table presents the covariate balance 
achieved on this sample: 

 

  Research Tools Sample 

Covariates Mean 
Treated 

Mean 
Control T-Test KS-Test 

Publication Age 1.9 1.9 - - 
Journal Subject 3.9 3.9 - - 
Patent Issued 0.5 0.5 - - 
MTA Issued 0.3 0.3 - - 

Journal Impact Factor 5.2 6.0 - * 
Publication Year 2001.4 2000.5 *** - 
Citations in t-1 5.4 5.0 - - 
Citations in t-2 1.2 1.3 - - 

Citation Slope from t-2 to t-1 4.3 3.8 - - 
Table 3: Covariate balance on the research tools sample 

Notice that even though the differences between the means of the treatment and control groups are 
larger in absolute magnitude than for the full sample, the statistical difference is less significant, 
reflecting more noise in this smaller sample. 

As before, both the unadjusted citation curve for the matched samples and the regression results are 
presented below. 

                                                                                                                                   
have one. 
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Figure 21: License effect on research tools 

 

 
Figure 22: Regression results from the License Effect on 

research tools52 
 

Here the effect is the opposite of that observed in the overall sample.  Instead of licensing being 
associated with an increase in citations, there is a drop.  The covariate adjusted values show a highly 
statistically significant drop of magnitude -3.6 in year t+1 and -3.2 in year t+3, but no statistically 
significant effect in year t+2.53  These are big effects, particularly in light of the positive effects 
observed for the other sample.  They represent decreases in citations of approximately 30% for the 
average publication, although the small sample size argues for caution in interpreting the exact size 
of the effect too precisely or too broadly. 

Both the direction and the onset speed of this effect are consistent with a more direct effect than 
that observed for licenses in general.  One mechanism which would suggest a more direct mechanism 
is the denial of material requests.  This would be consistent with the delays and project 
abandonment observed in the surveys by Walsh, Cho and Cohen (2007) and Lei et al. (2009), as well 
as with the interviews conducted for this study.   

Of course, if all material requests were denied, then no MTA would occur, and the observation 
would be excluded from the dataset.  However, material sharing behavior could well change over 
time or across different requesters.  For example, material requests might initially be fulfilled (thus 
an MTA could be observed), but then this might end once discussions with a licensee begin.  
Alternatively, material requests could be granted asymmetrically, with some being approved, while 
others to scientists / companies working on commercializable ideas are declined.  Indeed, an 

                                         
52 Error bars are ±1 standard error 

53 The authors do not believe that there is any economic meaning to the unusual result in t+2, as virtually all of the 
alternate specifications for this effect show statistical significance in all of years t+1, t+2, and t+3.  However, in favor of 
consistency and not cherry-picking results, the preferred specification is what is presented here. 
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interviewee for this study who was working with a start-up said explicitly “If another company asked 
to use our [materials] for [same purpose as our company uses them] we would say ‘no’”.  This 
comment suggests that rejection of a materials request could occur even if that lab had shared these 
materials earlier, prior to the creation of the start-up. 

Interestingly the timing of this effect seems to occur even in the year of the license itself, which, 
given the lags needed for research and publication, might suggest that perhaps researchers or 
universities limit sharing even during the negotiation of the license.54 

4.3.3 Comparison to the M urray and Stern definition of Research Tools 

In Section 4.1.2 it was pointed out that Murray and Stern (2007) used a different approach for 
identifying research tools.  Their approach focused on identifying research tools through patent 
classes.  Figure 23 and Figure 24 show the results of using this definition on the UCOP data sample. 

 
Figure 23: License effect on research tools (Murray 

and Stern definition) 
 

 
Figure 24: Regression results from the License Effect on 

research tools (Murray and Stern definition)55 
 

These also show a drop in citations arising from the license, but the results are smaller and less 
statistically significant.  This is what one would expect if their definition was an imperfect metric for 
identifying research tools, since that would imply more ‘noise’ and a bias towards zero.  These 
results are also less convincing since the pre-treatment citation patterns differ significantly, making 
the control group a less credible counterfactual to the treatment group.  

                                         
54 Note that the identification of any in-year effect is much weaker, since the exact timing of the license during the year is 
not accounted for in the analysis. 

55 Error bars are ±1 standard error 
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4.4 Discussion 

Ideally this analysis would conclude with strong statements about the overall welfare effects of 
licensing academic work.  However, such statements are beyond the scope of this paper because 
other important effects that impact the net benefit to society cannot be observed.  Examples of 
these include (i) the amount that firms invest in research and development on the discoveries they 
license, (ii) the impact on how quickly discoveries get to market, (iii) the utility that consumers get 
from those products. 

Despite these restrictions, this analysis does allow for more modest welfare claims.  It argues that, in 
general, the claims that scientists are being excluded from licensed work are either overblown, or 
that other positive effects outweigh these exclusions.  As such, it provides some reassurance that, in 
many cases, licensing activities may be complimentary to the flow of scientific knowledge. 

At the same time, the finding of the impact of licenses on research tools corroborates the concerns 
raised by scientists and the NIH on this issue.  Not only do citations drop, contrasting starkly with 
the positive effects seen for most licenses, but the rapid onset of these effects is consistent with a 
restriction of input materials.  And, while it is possible that the incentives created by licensing could 
lead to private sector research that compensates for these effects, it would be important to show this 
empirically to alleviate the concerns raised by the findings of this study.  

4.5 Summary 

This chapter has investigated the effects of licenses on patented publications.  It shows that, in 
general, licenses on scientific work increase the number of citations to related publications, but that 
the opposite effect is observed for research tools, where licenses decrease the number of citations. 

These results are consistent with other findings in the literature which suggest that licensing may 
have a positive signaling effect, but that licenses on research tools may lead to restrictions on input 
materials that are important for follow-on research.  
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5 Conclusion 

This dissertation is intended to contribute to the literature in four ways.  Firstly, it provides an 
overview of material transfer agreements, a seldom observed, but important intellectual property 
tool used by universities.  This analysis confirms previous findings that most MTAs are within the 
biological sciences.  It further shows that MTAs with the private sector are difficult and time-
consuming to negotiate, perhaps helping to explain high rejection rates on material transfers that 
have been seen in the literature.  Finally, it argues that MTAs are a good proxy for research tools, a 
category which has been difficult to define. 

The second contribution of this dissertation is to set out a method for finding patents and 
publications related to the same discovery.  It sets out a methodology for doing this that is 
straightforward, replicable and automated.  Moreover, it connects this to the type of estimator it 
represents, and then validates it on a large set of hand-matched patent-paper pairs, achieving 95%+ 
success. 

Thirdly, in the discussion of the effect of licensing, this paper outlines why a parametric approach to 
modeling citation curves may create dangers of model misspecification due to their complexity.  It 
then uses a nearest-neighbor approach to produce a set of treatment and control observations with 
excellent covariate balance. 

Finally, this dissertation contributes to the debate on the usage of intellectual property on academic 
science – an area that is becoming more important as academia’s role in both research and 
intellectual property grows.  It shows that on a large group of discoveries, the effect of licensing on 
scientific communication is positive, perhaps due to signaling effects.   In contrast, it also shows that 
concerns about research tools being negatively affected by licensing seem well founded, with the 
license producing a rapid and significant fall in the citations accruing to the publication.  This may 
suggest that materials are being shared less widely amongst scientists whose work is being licensed, 
which raises concerns about the science in these areas being impeded. 

In summation, this dissertation attempts to shed light on the important issue of the use of 
intellectual property on academic science, and develops both methodological techniques and 
empirical results to do so.  
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