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Electromagnetic Imaging of the Crust and Upper Mantle across the
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Electromagnetic methods, particularly magnetotelluric (MT) sounding, are often used to
detect fluids in the crust and upper mantle. Recently, MT studies on land have focused
on the deep structure of the San Andreas fault (SAF) in central California. One of these
studies found a region of high conductivity, interpreted as a local abundance of pore fluid,
southwest of the fault at depths corresponding to the lower crust and upper mantle. The
study also identified a change in the connection of this deep conductor to the root of the SAF
as their measurements moved along the strike of the fault. It was proposed that a change
in access of fluids to the deep extension of the fault, as evidenced by the modeled resistivity
of the region, is responsible for the observed change in behavior of both earthquakes and
non-volcanic tremor along the central Californian segment of the SAF.

As an effort to extend knowledge of the resistivity structure into the offshore
environment of central California, as well as to better constrain the interpretations made
onshore, the Marine Electromagnetic Research Group at the Scripps Institution of Oceanog-
raphy collected marine MT and controlled-source electromagnetic (CSEM) data there. Our
single profile of data extends an existing profile of land data. In this dissertation I interpret
both profiles of MT data, land and marine, jointly. Inversions of the amphibious dataset
produce a resistivity model that is similar to previous results. However, upon closer inspec-
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tion it was found that the marine data and the land data solicit antithetical structures. I
suspected this to be caused by distortion from bathymetry that varies in three dimensions
(3D), which is a problem because our 2D models assume that the earth is uniform in the
horizontal dimension perpendicular to our profile. Few numerical methods exist to calculate
the effects of 3D bathymetry in the necessary detail, so I improved upon an established thin-
sheet technique to allow for higher resolution models. With this method I estimated how
the effects of 3D bathymetry along our profile deviate from those predicted by an analogous
2D model. The effects are significant relative to the data errors used in inversion. As a test,
I created synthetic data from both 2D and 3D bathymetric models, and invert them with
a 2D inversion algorithm. Surprisingly, the inversion of 2D data did not recover the simple
model used to create the synthetic data. Anomalous structures were introduced that weakly
resembled those found in the models derived from actual data. Inversion of the 3D data
made matters worse; the same artifacts found with 2D data became more extreme and their
resemblance to the features in the results from actual data was enhanced. I concluded that
the results from applying the established 2D inversion scheme on the actual data cannot be
trusted, as is likely the case for the work on the same data that was previously published
by others. The thin-sheet modeling suggests that future interpretations must at least take
into account the known 3D bathymetric variations that occur off our profile.
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Chapter 1

Introduction

The segment of the San Andreas fault (SAF) passing through central California
has generated renewed interest with the discovery of non-volcanic tremor near the town of
Cholame [Nadeau and Dolenc, 2005], the first observation of this phenomenon on a strike-
slip fault. Non-volcanic tremors are long duration seismic signals originating near prominent
faults that lack clear P - and S-wave arrivals, implying a different underlying mechanism
than the double-couple mechanism that explains conventional earthquakes. The physics of
tremor generation remain unclear and represent an emergent area of research. Clusters of
tremor episodes have been located in a zone adjacent to Cholame, the northern limit of
a locked section of the SAF [Nadeau and Guilhem, 2009]. These episodes were found to
originate at depths between 15 and 30 km, below the zone where most earthquakes occur
and within the ductile lower crust. Nadeau and Guilhem [2009] found that the tremor rate
in Cholame was insensitive to normal stress changes induced by nearby earthquakes, which
was interpreted as evidence for high pore fluid pressures in the zones generating tremor.
The abundance and distribution of pore fluids at depths associated with non-volcanic tremor
can be estimated with the deep electromagnetic imaging method of magnetotellurics (MT),
which is particularly sensitive to the enhancement in electrical conductivity that fluids bring
to rock.

There is a large body of MT work performed along the central Californian segment
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Figure 1.1: Map of the magnetotelluric survey of the central San Andreas fault from Becken
et al. [2011]. Black dots show magnetotelluric stations along the 7 profiles. The inset rose-
diagram depicts geoelectric strike estimates (similar to those found in Chapter 3), which
are consistent with the orientation of the SAF.



3

of the SAF [e.g., Unsworth et al., 1997, 1999, 2000, Bedrosian et al., 2004, Unsworth and
Bedrosian, 2004, Becken et al., 2008b, 2011]. In this dissertation, we focus on the most
recent and most extensive of these studies. The work presented in Becken et al. [2011]
began with the collection of 7 parallel profiles of MT data, each about 130 km in length and
oriented perpendicularly to the regional trend of the SAF (see Figure 1.1). The southern-
most profile crosses the SAF south of Cholame. The other profiles are separated by about
10 km along the strike of the SAF, in a northwestern progression. The northwestern-most
profile crosses the SAF 10 km from the drill hole of the San Andreas Fault Observatory at
Depth (SAFOD) [e.g. Hickman et al., 2004].

The published interpretation of these data derives from a suite of 2D inversion
models, one for each of the 7 profiles [Becken et al., 2011], although results from 3D inversion
are in preparation (personal communication with Kristina Tietze at the German Research
Center for Geosciences, Potsdam). The main result from the 2D inversions is the appearance
in each of the inversion models of a large anomalously-conductive body (1-10 Ωm), 30-
40 km southwest of the SAF, residing at a depths below 15 km (see Figue 1.2). The
character of this anomalous region changes from profile to profile. In the southeastern
profiles, near Cholame and crossing the locked portion of the SAF, the large conductive
body is electrically isolated from the deep root of the SAF by a highly-resistive bounding
region. The profiles that lie northwest of Parkfield, toward the creeping section of the fault,
develop a sub-vertical corridor of elevated conductivity, electrically connecting the deep
conducting zone to the root of the SAF. In the northwestern-most profile, the anomalous
body is about a factor of 10 less conductive than in the other profiles, though a connection
to the deep extent of the SAF remains. Becken et al. [2011] interpreted the large conductive
anomaly offset to the southwest from the SAF as evidence of saline aqueous fluids in the
pore space of the lower crust and upper mantle. The emergence of a low-resistivity linkage
between this body and the deep root of the SAF spatially correlates with lower tremor
amplitudes in the lower-crust, and what has been independently-inferred as a mechanically
weak upper-crust. Becken et al. [2011] propose that an increase in the supply of fluids,
sourced from the deep reservoir (the conductive body to the southwest), can explain both
phenomena. They suggest that the excess fluids, either through frictional weakening due to
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Figure 1.2: Figure 2 from Becken et al. [2011]. Two resistivity cross-sectional models from
2D inversions of two of the profiles of data: (a) profile 2, northwest near SAFOD, and
(b) profile 5, southwest near Cholame. White dots indicate locations of tremor episodes.
Thick purple line shows a 5 km/s seismic low-velocity contour and thin purple lines trace
high seismic reflectivity, both interpreted from Trehu and Wheeler [1987]. WCF, Waltham
canyon fault; GVS, Great Valley sequence.
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mineral hydration, or the reduction of fault-normal stress by high fluid pressures, weaken the
seismogenic upper crust northwest of Parkfield; hence, the SAF exhibits creeping behavior
there. Also, the pathway by which these fluids reach the upper crust is inferred to represent
mechanically weak material in the lower crust where tremors originate. A weak lower crust
is more accommodating to fluid flow, whereas a mechanically strong lower crust is likely to
allow fluid pressures to build to the point of brittle failure. They cite brittle failure due
to fluid over-pressurization in the otherwise ductile deformation regime of the lower crust
as the mechanism for tremor production. Thus, in the northwest where there is a low-
resistivity, i.e. weaker, lower-crust, over-pressurization is less likely, so tremor amplitudes
are subdued. In contrast, the southwestern profiles exhibit high-resistivity in the lower crust
separating the fluid reservoir (conductive body) from the deep root of the SAF, enabling
over-pressurization, brittle failure, and, consequently, larger tremor amplitudes.

It is highly plausible that the lower crust and upper mantle in central California
is a significant source of hydrous fluids. The western boundary of the North American
plate has witnessed subduction for at least the past 180 million years. The most recent
episode of subduction off the coast of California involved the Farallon plate. By 24 Ma,
the Farallon had fragmented into multiple smaller plates as offset segments of the Pacific-
Farallon spreading center obliquely intersected the trench. One of these microplates, known
as the Monterey plate, continued to subduct eastward beneath central California until
around 19 Ma. By that time, the Monterey plate had become surrounded by Pacific-North
American shear zones, to the point where it was compelled to take on the northwestern
motion of the Pacific plate. A residual portion of the Monterey plate that was captured by
the Pacific plate remains visible in the seafloor magnetic anomalies off the coast of central
California [Lonsdale, 1991]. Subducting plates transport large volumes of water into the
forearc crust and mantle in the form of free water in the pore spaces of sediments and
upper oceanic crust, as well as bound water in hydrous minerals in the lower crust and
uppermost mantle. During the shallow stage of subduction, increasing pressure reduces
porosity and expels the free water. As the subducting plate moves deeper and is heated
by the surrounding mantle, a succession of dehydration reactions occur as various hydrous
minerals are moved out of their stability fields. These reactions can continue to release
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water in the slab up to depths of around 200 km [Hyndman and Peacock, 2003]. Depending
on where this water is released, it either enters the overlying forearc crust, the overlying
forearc mantle, or the ocean by flow through faults in the accretionary prism.

The goal of this dissertation is to extend into the marine environment one of the
profiles (profile 5 in Figures 1.1 & 1.2) of terrestrial MT data collected in central California.
There are many reasons for doing this, but in this dissertation I will focus on two. First,
if the large conductive body is associated with a fluid reservoir, a question that naturally
arises is how it relates to the regional history of subduction. Land and marine active-
seismic studies have imaged the subducted Monterey plate beneath the continental shelf
of central California, and indicate that it extends beneath the continental crust as far east
as the San Andreas fault [e.g. Trehu and Wheeler, 1987, Miller et al., 1992, Howie et al.,
1993, Lafond and Levander, 1995, Bleibinhaus et al., 2007]. Yet no comparable model for
the electrical conductivity of this offshore region exists. Such a model would provide the
information necessary to link the large, lower-crustal conductor found onshore to fluids
or hydrated minerals associated with the underplated ocean crust that extends offshore.
Second, the large, deep conductive body southwest of the SAF discovered by Becken et al.
[2011] lies close to the coastal edge of their data profiles. The resistivity structure of the
adjacent continental margin is not constrained by terrestrial data and we investigate whether
this freedom might cause trade-offs in the inverse process that artificially introduce such
anomalous structures as were found. An expansion of data coverage into the ocean, to the
west of the large conductive body, should help discern whether that body is required to
exist. In the forthcoming chapters, I discuss the collection and processing of a profile of
marine magnetotelluric data from offshore central California, and jointly interpret it with
profile 5 of the terrestrial data from Becken et al. [2011].



Chapter 2

Data Collection offshore Estero
Bay

In the months between November 2008 and January 2009 we conducted a marine
magnetotelluric (MT) and controlled-source electromagnetic (CSEM) survey along a pro-
file line approximately perpendicular to the central Californian coast at Estero Bay (the
better known Morro Bay is a smaller bay within Estero Bay). The intent was to image
the conductivity structure of the continental margin from the surface, through the crust,
and down into the upper mantle, to a maximum depth approaching 100 km. The survey
location was chosen purposefully to extend a previously acquired terrestrial MT dataset in
central California [Becken et al., 2008b, 2011]. The terrestrial dataset is from a large MT
array consisting of seven profiles, each of which began at the coast and extended inland
to the western edge of the San Joaquin Valley (Figure 2.1). These profiles are oriented
perpendicularly to the San Andreas fault (SAF), which is remarkably straight in central
California and strikes at approximately N 43◦ W. The southernmost profile is centered
about 20 km southeast along the SAF from the town of Cholame. From there, the profiles
are arranged in an evenly-spaced progression northwestward along the strike of the SAF.
The northernmost profile is centered about 10 km northwest along the SAF from the San
Andreas Fault Observatory at Depth (SAFOD). Becken et al. [2011] detected a large lower

7
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crust/upper mantle zone of elevated conductivity approximately 50 km west of the SAF,
and approximately 20 km east of the coast in all profiles (see Chapter 1). Their data cover-
age ended at the coast, and hence so did their conductivity models. The terrestrial dataset
left open questions about the origin of the conductor west of the SAF and its relationship
to the geology of the continental margin to the west of it. We sought to answer some of
these questions, among others, by collecting and interpreting electromagnetic (EM) data
seaward of the coast, nearly collinear with one of these preexisting terrestrial profiles. The
interpretation in later chapters will involve an amphibious dataset, consisting of one profile
of the terrestrial data combined with the profile of marine data described here. Although
both marine MT and marine CSEM data were collected as a part of this experiment, and
both data types are described in this chapter, the remainder of the dissertation deals only
with the MT data.

2.1 Experimental Design

The plan for this experiment was to collect 38 marine sites of MT and CSEM
data by way of two separate trips on marine research vessels. The first trip was to deploy
the marine EM receivers and to transmit with the controlled-source along the profile line.
Then, the receivers were left on the seafloor to collect broadband MT data until the second
trip during which all the receivers were recovered from the seafloor.

2.1.1 Deployment

The deployment leg of the experiment took place on the R/V New Horizon between
November 15th and November 22nd, 2008. During this leg of the experiment we deployed
38 seafloor receivers over a 187 km line starting 23 km from the shore of Estero Bay and
extending 93 km past the base of the continental shelf (Figure 2.1). The receiver spacing was
3.5 km for the shallowest 29 sites, 7 km for the next 7 progressively deeper sites, and 15 km
for the deepest 2 sites. To make the most of the fixed number of available instruments, the
receiver spacing was made tight over the continental shelf and slope where we intended to
image near-surface structure with higher resolution, and looser out in the abyssal plain where
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San Andreas Fault

Rinconada Fault

M40

M01

M17 Port San Luis

Estero Bay

Figure 2.1: A map of the survey layout. Symbols depict instrument sites which were
deployed to collect MT and CSEM data during the marine experiment as well as the land
sites of MT data collected by Becken et al. [2011]. The white, dashed box encloses the
terrestrial sites of MT data which will be interpreted along with the marine sites of MT
data in the course of this dissertation. The 15 sites which failed to collect any data were
spread quite evenly along our marine survey line. The marine data buoy 46011 provided
spectral wave density data utilized in Chapter 3.
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less resolution was desired; the most seaward sites served predominantly for constraining
the coast effect (see Chapter 4). This survey collected a single profile of data with the
expectation that the overall geo-electric structure would be predominantly two-dimensional
(2D) (varying exclusively along the profile and with depth). The survey line is oriented
at N 47◦ E, the same orientation as that of the terrestrial data profiles. The goal with
this orientation was to make the survey lines perpendicular to the predominant 2D strike
in the area. The SAF trends approximately N 43◦ W in this area of central California,
perpendicular to our survey line. Most of the geologic structures in central California
are elongated parallel to the SAF. Thus, the most likely direction for the axis of uniform
conductivity in a 2D model is also N 43◦W. The coast and continental shelf, although not
entirely linear, trend roughly N 35◦ W so that our profile line is nearly perpendicular to
these large features as well.

The receivers were deployed starting with the near-shore sites and moving toward
the deep ocean sites. Between the deployment of each receiver, the ship followed a slight
zig-zagged path between sites to allow for acoustic ranging along two linearly-independent
horizontal directions. The independent sets of acoustic travel times from ship to receiver
enable a non-linear inversion for the full 3D location of the receiver on the seafloor.

For the CSEM data the Scripps Undersea Electromagnetic Source Instrument
(SUESI) was deployed and towed just above the seafloor near the profile of receivers. The
transmitter tow began with a 15 km run-in from the deep-ocean end of the line. The tow
line was parallel to the line of receivers but shifted a quarter mile to the south; the shift
was intended to resolve ambiguity in the transmitter location in the cross-profile dimension,
but came at a the cost of diminished electrical coupling with the seafloor near the receivers.
The run-out of the tow was only 5 km on the shallow end of the receiver line. During the
tow, we used SUESI’s interrogating acoustic unit and a transponder relay on its antenna’s
tail to acquire a range between SUESI, the antennae tail, and the receivers as they were
passed along the tow. Since the seafloor receiver locations are predetermined by interroga-
tions from the ship during deployment, this additional web of acoustic travel times provides
constraints on the transmitter position and orientation during the tow.
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Figure 2.2: Water depth profile of the CSEM tow. SUESI depth, and antenna tail depth
plotted along with pseudo-bathymetry calculated by the sum of SUESI’s depth, and altime-
ter readings.

2.1.2 Recovery

After deployment and the CSEM tow, the receivers were left on the seafloor for a
total of 6 weeks to maximize the opportunity to collect repetitions of long period MT signal.
The recovery leg of the experiment took place on the R/V Robert Gordon Sproul between
January 3rd and January 9th, 2009. We returned to the survey site in a smaller vessel to
locate and recover the receivers. Before releasing an instrument from the seafloor, we again
drove the ship in a zig-zag pattern over each site while gathering more acoustic range data,
thereby increasing the accuracy of the estimated seafloor location of each instrument.

2.2 Survey Parameters

The SUESI transmitter operated at 200 A current on a 162 m dipole for a source
dipole moment of 32.4 kAm. An attempt was made to carry out the CSEM tow at a flying
height of 100 m above the seafloor. Due to the large variations in bathymetry along the
towline, 100 m was chosen as a safer alternative to the usual 50 m height, despite the
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sacrifice in seafloor coupling (Figure 2.2). We were unable to hold the 100 m height for the
entire tow. On the deeper end of the our line, where water depths were greater than 4 km,
over 5,600 m of 0.680 wire was trailing behind the ship in order to reach a flying height
of 150 m. With so much payout, the winch controlling the wire was near its load limit
and the chief engineer of the R/V New Horizon required that no more wire be paid out.
Once the tow climbed up the continental shelf, the amount of wire-out fell below 1000 m
and the winch returned to its normal performance. From that point onward in the tow,
we were able to hold the tow package at 100m above the seafloor. In Figure 2.2, note the
antenna tail flew slightly higher than SUESI in the deep water, but then reversed to flying
below the SUESI in the shallow water; this is likely due to the fact that the tow cable was
being hauled-in throughout the shallow water section. Also, notice that there were very
few reliable altimeter readings in the deep ocean, a result of SUESI being towed more than
200 m above the seafloor, the maximum measurable height for the altimeter.

The waveform used for the SUESI transmissions was a compact, broadband, binary
waveform developed by Myer et al. [2011]. The single free parameter for this waveform is
the pattern’s duration, which determines the fundamental frequency of the output. A 4 s
duration was chosen for this experiment which set the lowest CSEM frequency to 0.25 Hz
(Figure 2.3). This binary waveform spreads more power into the harmonics than would a
simple square wave of the same fundamental frequency. The trade-off is a loss of power
at the fundamental frequency. However, the fundamental, being the lowest frequency, is
the least attenuated by the seawater. So one can usually afford the loss of power in the
fundamental frequency in favor of more power at higher frequencies.

The seafloor receivers were configured to measure the electric and magnetic fields
in two orthogonal directions in the horizontal plane relative to the instrument. If the
instrument settled on the seafloor with any tilt, the sensor would no longer be measuring
purely the horizontal fields. To alert us to this possibility, electronic compasses on the
receivers provide measurements of horizontal orientation as well as tilt and roll angles of
the instrument in its seafloor position. Although the SIO EM receivers can be configured
to measure the vertical electric field, no vertical field sensors were installed during this
experiment.



13

10 0 10 1

10 -2

10 -1

10 0
Relative Amplitude

 

 

Snapshot
Ideal

10
0

10
1

0

1

2

3

4

5

6

7

8

9
Percent Difference in Magnitude

Frequency (Hz)

%
 D

iff
er

en
ce

10 0 10 1

-150

-100

-50

0

50

100

150

A
ng

le 
(d

eg
re

es
)

Phase

10
0

10
1

-5

-4

-3

-2

-1

0

1

Degree Difference in Phase

Frequency (Hz)

D
iff

er
en

ce
 (d

eg
re

es
)

Waveform Ideal & Snapshot

0 0.5 1 1.5 2 2.5 3 3.5 4

-200

-100

0

100

200

Time (s)

O
ut

pu
t C

ur
re

nt
 (A

)

SUESI Output Snapshot recorded at 600 HzA

B
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2.3 Instrument Performance

Instrument performance for this cruise represents an anomalous amount of data
loss (approximately 40%) compared to the average rate over the preceding three cruises for
the Scripps Marine EM lab (approximately 1%). Of 38 deployed receivers, all were retrieved
from the seafloor, but only 23 had any usable data. The reason for this lies behind the
experiment’s extreme demands on receiver endurance. The six week deployment required
a reconfiguration of the data logger’s power supply, which enabled more than the usual
number of batteries to be strung together. The development and installation of the new
power supply was performed only a couple of weeks before this experiment; the instrument
fleet had only just been retrieved from an experiment in the Gulf of Mexico, which took place
during the late summer of 2008. With the reconfiguration, the battery capacity was nearly
doubled, and a new diode board was used to connect the extra batteries, in parallel, to the
data logger circuitry. The locus of failure was between two traces on the diode board that
were manufactured too close together, and shorted-circuited upon powering-up in nearly 2
out of 5 instruments. Pressed for time, we had only been able to test a few of these new
diode boards before sending them out to sea. Unfortunately, the few that had been tested
ahead of time in the lab turned out to be good, leaving the faulty boards undetected. This
loss of data, due to a minor change in equipment, underscores the experimental nature of
research. The continuous advancement of technology is invariably met with the occasional
setback. Luckily, the incidence of instrument failure was spread somewhat evenly along the
survey line; no one area is severely diminished in data density relative to the rest, and the
overall intended aperture of the profile was sustained (see Figure 2.1).

Of the instruments that did not have shorted batteries, the data recovery was
good. Four of these instruments had problem channels. One instrument, (instrument name
Croc, site M14) had a magnetic channel with amplitudes nearly an order of magnitude
less than those of its other magnetic channel and those of magnetic channels from adjacent
instruments. Further investigation of this instrument led to the discovery of a single in-
correct resistor on the amplifier board which depressed that particular amplifier’s voltages.
Another instrument, (Cuscus, site M15) had an electric channel which was dead for most
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of the deployment except, strangely, for a few days in the middle (November 30, 2008 -
December 3, 2008) suggesting a connector problem with the electrode. Two other instru-
ments (Occie, site M22, and Cocky, site M38) each had one bad E channel which had no
recoverable data. The aforementioned problems exclude these sites from the ensuing MT
analysis because uninterrupted data records for all four channels (Ex, Ey, Bx, & By) are
needed. However, problem sites that retain some working channels may contain some useful
CSEM information. In summary, of the deployed 38 sites of marine MT data, 19 sites are
used in the MT analysis throughout this dissertation.
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Figure 2.4: An example of 0.25 Hz CSEM data collected during this experiment. The
abscissa in both plots is time, but by taking into account the 1.5 kt average speed of the
tow, it is seen that coherent CSEM signal continues out to about 5 km in source-receiver
offset.
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In Chapter 3 we analyze the marine MT data quality at length; here, we provide
a brief description of the usable frequencies of marine MT data and usable source-receiver
offsets of CSEM data acquired during the survey. Figure 2.4 provides an example of pro-
cessed CSEM data. In a later section, Figure 3.8 provides an example of processed MT
data. The instruments were on the seafloor for a total of 6 weeks, recording on all four
channels, Bx, By, Ex, and Ey, at a sampling rate of 25 Hz. A continuous section of 31
days in the middle of the data record was used for MT impedance estimation, a process
described in Chapter 3. Figure 3.8 depicts the raw estimates of MT apparent resistivity
and phase for a shallow water site, M01, and a deep water site, M40. The longest period
for which MT apparent resistivity and phase estimates were made is just over 30,000 s;
this was made possible by the long data record. Since highly conductive seawater attenu-
ates the higher frequencies of MT signal preferentially, MT signal was greatly attenuated
through the thick water column above site M40. This resulted in incoherent MT apparent
resistivity and phase estimates at periods below 30 s. The shallow-water site, M01, having
less water above it to attenuate the MT signal, achieves much more coherent estimates of
MT apparent resistivity and phase at periods below 20 s. Nonetheless, the results at these
lower periods are still noisy due to competing energy from wave action. In Chapter 3, we
analyze wave spectra from data buoy station 46011 as well as tidal height as measured at
Port San Luis (see Figure 2.1), and their relation to the electromagnetic data. The data
buoy is maintained by the National Data Buoy Center, and its data are available over
the internet (http://www.ndbc.noaa.gov/). The tidal data is provided by the National
Oceanic and Atmospheric Administration (NOAA), and was available over the internet
(http://www.tidesandcurrents.noaa.gov/).

Figure 2.4 contains a plot of the amplitudes of electric and magnetic fields at the
transmitter fundamental frequency, 0.25 Hz, as measured by site M17 while the CSEM
transmitter was being towed past it. Using the average tow speed of 1.5 kt, it is seen that
the CSEM data show coherent signal out to transmitter-receiver offsets of about 5 km. This
dissertation will neither address the processing nor the interpretation of the CSEM data.

http://www.ndbc.noaa.gov/
http://www.tidesandcurrents.noaa.gov/


Chapter 3

MT Data Processing

The chapter begins with a presentation of the range of methodologies that have
been used for MT data processing over the past few decades; the description culminates
with the most modern approach, called robust multi-station processing, which is the method
used for the 19 sites of marine MT data addressed in this dissertation. Each method begins
with time series of voltages output from electric and magnetic field sensors and results
in transfer functions between each sensor, provided in the physical units of electric and
magnetic fields. The most commonly analyzed transfer function, the impedance tensor,
relates measurements from the horizontal electric and horizontal magnetic sensors at a
single site of observation.

The account of data processing will initiate with the theoretical underpinnings
of transfer function estimation taking place in the frequency domain. It will then return
to the actual method used to make the frequency domain estimates from the Estero MT
time series data, and make a qualitative assessment of those transformed data. Finally,
the impedance-tensor estimates for the 19 sites of MT measurements will be presented,
assessed, and conditioned for use in a 2D inversion process.

17
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3.1 The Basics of Impedance Tensor Estimation

Here we provide the theoretical motivation for multi-station transfer-function esti-
mation drawing from personal communication with R. L. Parker. The 2×2 magnetotelluric
impedance tensor, Z, is defined as,

E(ω) = 1
µ

Z(ω) ·B(ω), (3.1)

where the B is the 2-vector of a horizontal magnetic field, and E the 2-vector of a hori-
zontal electric field, both vectors collocated and contemporaneous; µ is the local magnetic
permeability (the free-space value is appropriate for the majority of the earth’s surface).
We will drop the frequency argument, ω, in the ensuing development, but it should be
kept in mind that transfer function estimation takes place in the frequency domain and the
estimation processes for each desired frequency are handled independently. Estimation of
transfer functions such as Z, given a set of noisy measurements of the electric and magnetic
fields is the primary goal of MT data processing.

The impedance tensor measured over an earth consisting purely of horizontally
stacked layers of homogeneous conductivity has zeros along the diagonal and its off-diagonal
elements differ only in sign. For illustration purposes, we first will focus on this simple
case. We then take E and B to be measurements of orthogonal components of the electric
and magnetic field, respectively, both complex, zero-mean, normally-distributed, random
variables. Note that if the time-domain measurements of E(t) and B(t) are determined
by zero-mean stochastic processes, their frequency-domain equivalents will also be zero
mean. However, this is not true if E(t) and B(t) contain deterministic signals that are
periodic in nature (e.g., controlled-source electromagnetics (CSEM) or power-line noise);
perfect sinusoidal signals are zero-mean in the time domain but have non-zero-mean Fourier
components. Signals like CSEM must be handled in a different way than what is presented
here.

If we allow there to be noise only in the measurement of E, we may assert the
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model,

E = ζB + η, (3.2)

where η is zero mean noise, uncorrelated with E. Note that E and B are single measure-
ments, or components, of electric and magnetic field, respectively, and not the full vector
fields, as are E and B. The quantity ζ is an element of the complex impedance tensor which
we wish to estimate, the objective of MT processing. With this model we can say that E
and B are jointly distributed normal variables with zero mean and the covariance matrix,

CEB =

 |ζ|2σ2
B + σ2

η ζσ2
B

ζ∗σ2
B σ2

B

 , (3.3)

where the asterisk denotes the complex conjugate. The covariance matrix (3.3) is assembled
by recalling that the covariance of two random variables, X and Y , defined in terms of the
expected value, E [.], is,

cov(X,Y ) = E [(X − E [X]) (Y − E [Y ])] , (3.4)

which, if X and Y are zero mean, simplifies to

cov(X,Y ) = E [XY ] ; (3.5)

also, we have defined σ2
X as the variance of variable X:

σ2
X = var(X) ≡ cov(X,X). (3.6)

The covariance matrix may be estimated from any set of observations of multiple random
variables (an estimate of a given quantity based on observed data is denoted by a ‘ˆ’ over the
quantity’s symbol, and often made by replacing the expectation operator by an average over
the measured data). Furthermore, the covariance matrix contains the entirety of information
that may be gleaned from a set of observations of zero-mean, normally-distributed, random
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variables.
The classic approach to MT processing is to solve for ζ by least-squares estimation.

The choice of least-squares estimation stems from the fact that it yields the maximum-
likelihood estimator for a model when η is the only source of error in our experiment, and
η is normally distributed. The least-squares estimation problem is posed as,

min
ζ
||Ei − ζBi||2, (3.7)

where i is the sample index for a collection of observations of E and B. This yields the
conventional estimator,

ζ̂ =
∑
iEiBi∑
iB

2
i

. (3.8)

Looking back at (3.3), we see, with little surprise, that (3.8) is simply,

ζ̂ = Ĉ12

Ĉ22
. (3.9)

In this case, all estimable quantities in the model can be found with algebraic rearrangements
of the covariance matrix. By noting that an n×n complex covariance matrix is Hermitian,
consisting of n2 real numbers, we see that CEB provides 4 constraints for 4 unknowns: Imζ,
Reζ, σ2

B, and σ2
η.

What happens when we allow for uncorrelated noise in the measurement of the
magnetic field? We then have a new model:

B = b+ β, (3.10)

E = ζb+ η, (3.11)

where b, β, and η are all zero mean, uncorrelated Gaussian random variables. Attempting
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to solve for ζ as we did before, we find,

C12
C22

= cov(E,B)
var(B) = ζ

1 + σ2
β/σ

2
b

. (3.12)

Thus, estimator (3.8) is biased downward by an unknown amount because we have no mea-
surements of b with which to estimate σ2

b . Another way to think about this unrecoverable
estimation bias, is that the covariance matrix, CEB, still provides 4 independent constraints,
yet the model now has 5 unknowns. The well-known solution to this problem of downward
bias is called the remote-reference method [Gamble et al., 1979]. It utilizes auxiliary mea-
surements of the magnetic field at a “remote” site. The remote site must be carefully chosen
to be distant enough so that its magnetic noise, ρ, is uncorrelated with that at the site of
impedance estimation, β, yet close enough so that the source field, b, is uniform between
sites. With these provisos, we again update our model, now with the remote magnetic field
measurement, R:

B = b+ β (3.13)

R = b+ ρ (3.14)

E = ζb+ η. (3.15)

The quantities b, β, ρ, and η are uncorrelated, normal, random variables, and samples are
taken of B, R, and E. We look now at the full covariance matrix for our system of three
jointly distributed random variables:

CEBR =


|ζ|2σ2

b + σ2
η ζσ2

b ζσ2
b

ζ∗σ2
b σ2

b + σ2
β σ2

b

ζ∗σ2
b σ2

b σ2
b + σ2

ρ

 . (3.16)

The augmented covariance matrix provides 9 real constraints for a model that now has 7
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real unknowns. As always, when faced with uncertainty, the introduction of an independent
measurement provides some relief; in this case, it has provided more than enough. We now
have two ways to recover the impedance tensor element, ζ = C12/C23 and ζ = C13/C23.

To make use of these excess constraints, one could add flexibility to the model.
The local and remote magnetic field measurements, by definition, are separated in space,
and therefore sense different earth structure, unless of course both source and earth are
perfectly 1D. Barring that, we have no reason to believe that they are sensing the same
magnetic field. To account for this we update our model for the remote magnetic field
measurement:

R = ξb+ ρ, (3.17)

with the other two fields unchanged. The resulting covariance matrix is found to be consis-
tent, with 9 constraints on 9 unknowns:

CEBR =


|ζ|2σ2

b + σ2
η ζσ2

b ξζσ2
b

ζ∗σ2
b σ2

b + σ2
β ξσ2

b

ξ∗ζ∗σ2
b ξ∗σ2

b |ξ|2σ2
b + σ2

ρ

 . (3.18)

A pattern emerges which prefigures multi-station analysis: adding additional uncorrelated
fields in the preceding models increases the number of available constraints faster that it
increases the number of unknowns. The generic model building upon the progression to
this point can be written as a set of random variables,

Xk = ζkb+ ηk, k = 1, 2 . . . , n. (3.19)

We have seen that this system affords an n × n Hermitian covariance matrix containing
n2 real numbers, while the real unknowns grow as 3n + 1: Reζk, Imζk, σηk , and σb. The
minimum number of fields needed to solve for the unknowns of such a system is 4.

Nevertheless, the generic model (3.19) is an optimistic notion for MT. It allows
for only one coherent energy source driving the other field variables, b, the presumed MT
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plane wave. It does not allow for coherent noise between measurements of E and B at a
single station, nor does it allow for noise to be coherent among multiple stations. It is easy
to imagine cases where such coherent noise could exist at a single station (e.g., motional
noise). Furthermore, the MT plane wave is hardly ever the sole source of EM driving fields
coherent across an array of instruments; mankind has filled its environment with EM energy
that may be far-reaching and does not originate from the ionosphere.

A solution to this problem of coherent noise, the ultimate method discussed in this
chapter, is called the multivariate errors-in-variables (MEV) model [see Gleser, 1981]. The
MEV model was introduced into the realm of MT processing by a series of papers [Egbert
and Booker, 1989, Egbert, 1997, 2002]; these papers describe the multi-station MT data
processing applied to the data used in this thesis. Two other elements of the data processing
to be discussed in subsequent sections of this chapter are: (1) robust estimation procedures
(Section 3.2); and (2) the transformation of the time series data into Fourier coefficients
(FCs), the form of data fed into transfer function estimation (Section 3.3).

First, we must discuss the prologue to the MEV model. Now is a convenient time to
leave the framework of a 1D earth and its associated impedance tensor with non-zero values
only in the off-diagonal elements. The full impedance tensor presents us with 4 complex
unknowns. To solve for these, we must have two independent realizations of a pair of electric
and magnetic field measurements, say vectors [Bx By Ex Ey]T and [B•x B•y E•x E•y ]T , where
the subscripts denote instrument coordinate axes, and the bulleted fields are from a source-
field of different geometry, such that B×B• 6= 0. Assuming for a moment, the field vectors
are free of noise, and recalling (3.1), the impedance tensor Z is found by,

Z = µ

 zxx zxy

zyx zyy

 = µ

 Ex E•x

Ey E•y

 Bx B•x

By B•y

−1

. (3.20)

Now with incoherent noise in both the electric and magnetic fields, the model for a single
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site of MT observation becomes,


Bx

By

Ex

Ey

 =


bx1 bx2

b1y b2y

zxxbx1 + zxyby1 zxxbx2 + zxyby2

zyxbx1 + zyyby1 zyxbx2 + zyyby2


 α1

α2

+


εBx

εBy

εEx

εEy

 . (3.21)

The complex vectors [bx1 by1]T and [bx2 by2]T are the magnetic fields that would be measured
at the given site for idealized, quasi-uniform, magnetic sources, linearly-polarized in two
directions, hence the subscripts 1 & 2; these two principal axes of the MT source field
are commonly assumed to be orthogonal, oriented N-S and E-W. The source indices are
kept separate from the observation indices, x and y, because the source directions don’t
necessarily align with the instrument coordinate system. The vector [α1 α2]T contains
real, uncorrelated, zero-mean, normal, random variables, which together define the linear
superpositions of the source fields in a given sample. The final vector on the right of (3.21),
containing the ε’s, represents the noise that is incoherent among the individual measurement
channels. Re-applying our previous analysis, we see that there are 22 real-number unknowns
in this system. If the assumption that each MT magnetic source vector is linearly polarized
holds true (i.e. the x− and y−coordinates oscillate in-phase with each other), we see that
we can represent the system with real magnetic field vectors, and a complex random vector,
α. In that case, the number of real unknowns is reduced to 18. Yet the covariance matrix,
cov([Bx By Ex Ey], [Bx By Ex Ey]), would provide only 16 real-number constraints; the
system is under-determined. Again, we find the utility in a remote reference. Gamble et al.
[1979] provide the equations for the elements of the impedance tensor, which make use of
elements of the covariance matrix cov([Bx By Ex Ey BR

x BR
y ], [Bx By Ex Ey BR

x BR
y ]),

where the superscript R denotes fields from the remote site. Alternatively, MT instruments
are often outfitted with a vertical magnetic field measurement, which we can add to the
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model: 

Bx

By

Bz

Ex

Ey


=



bx1 bx2

b1y b2y

vzxbx1 + vzyby1 vzxbx2 + vzyby2

zxxbx1 + zxyby1 zxxbx2 + zxyby2

zyxbx1 + zyyby1 zyxbx2 + zyyby2


 α1

α2

+



εBx

εBy

εBz

εEx

εEy


. (3.22)

With the vertical magnetic field, we’ve added only 4 more unknowns—the real and imagi-
nary parts of the vertical magnetic transfer function, V = [vzx vzy], while bringing the total
number of real constraints to 25. Assuming this idealized model, with only incoherent noise
between instrument channels and linearly polarized magnetic source vectors, we see that a
single 5-channel instrument should contain the requisite information to uniquely identify the
signal and noise parameters as well as the impedance tensor and vertical magnetic transfer
function. However, these unknowns are deeply buried within the algebra of the covariance
matrix, which is far more complicated here than it was with the simplified models we used
earlier. Thus, we abandon the search for a solution for the unknowns by algebraic manipu-
lation of covariance matrix elements. Instead, we will follow an iterative approach to solve
for the unknowns in (3.22), which we describe next.

Rewriting (3.22) as,

x = Uα+ ε, (3.23)

we can show, with a fair amount of algebra, that,

 V
Z/µ

 =


u31 u32

u41 u42

u51 u52


 u11 u12

u21 u22

−1

. (3.24)

But we have no measurement of U ; we must derive it somehow. We return to the ever-useful
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covariance matrix, which we find to be,

Cx = E
[
Uαα†U †

]
+ E

[
εε†

]
. (3.25)

Note that we can pass the expectation operator through the matrix U because it contains
non-random variables. Then, since the random variables within α and ε are all uncorrelated,
we have,

Cx = UΣαU † + Σε, (3.26)

where Σα and Σε are diagonal matrices with the variances of the elements of α and ε,
respectively, along the diagonal. Now, imagine that we knew a priori Σε. We could then
rescale our covariance matrix in the following way,

C ′x = Σ−
1
2

ε [Cx − Σε] Σ−
1
2

ε . (3.27)

Applying an eigenvalue decomposition to the Hermitian matrix C ′x would provide,

C ′x = WΛW †, (3.28)

where W is a unitary matrix, and Λ is a diagonal matrix with the eigenvalues of C ′x along
the diagonal, all of which are real. Then by (3.26), (3.27), and (3.28) we see that if Σε was
known perfectly a priori, Λ should contain only two non-zero eigenvalues, and the columns
of W that correspond to those non-zero eigenvalues provide scaled versions of unknown
linear combinations of the two columns of U . In fact,

W = Σ−1/2
ε UA, (3.29)

where the matrix A is an arbitrary, invertible, 2 × 2 matrix which represents the indeter-
minacy of our model; it is a result of the inability to uniquely determine external source
polarizations from observations of total (internal plus external) fields [Egbert and Booker,
1989, Egbert, 1997]. The existence of an unknown A in our estimation of W is no hinder-
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ance to our goal of estimating the transfer functions between our channels of data, i.e., we
are not actually interested in U but transfer functions between its rows, as (3.24) suggests.
We may re-scale the rows of the matrix W to find,

Σ1/2
ε W =


bA
vA
eA

 , (3.30)

where b is a 2 × 2 matrix of the magnetic sources, v is 2-vector of the resulting vertical
magnetic fields, such that v = Vb, and e is a 2 × 2 matrix of the resulting electric fields,
such that e = Zb. Then, the estimation of the impedance transfer function, for example,
proceeds as follows

Z = µeA(bA)−1 = µeAA−1b−1 = µeb−1, (3.31)

thus removing the effect of A.
We can say that in the scaled space of C ′x, only the principal components (columns

ofW ) corresponding to coherent parts of the data should have an eigenvalue greater than 1;
this essentially means that the only components with greater variance than the incoherent
noise must be coherent signal (the validity of this will depend on the strength of the a
priori estimate of Σε). Egbert [1997] expanded the model represented in (3.23) by allowing
there to be more than 2 columns in U , and allowing the source fields to be arbitrarily
polarized (i.e. no linear polarization assumption). The number of columns of U is left as a
free parameter, to be established during the estimation process. The extra columns embody
coherent signals in the data, but those which are independent of the ideal MT source field;
these may include non-planar natural sources, as well as man-made sources.

The iterative approach to solving the MEV model, described in Egbert [1997],
seeks to define all coherent source terms in a vector of random data. It starts with a crude
estimate of Σε, and a robust estimate of Cx; what we have called the covariance matrix,
Cx, is also known as the spectral density matrix because it is the covariance matrix of
Fourier coefficients. Then by (3.28), an estimate of W is made. All of the columns of Ŵ
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corresponding to eigenvalues greater than 1 are taken to be coherent signal; then, they are
re-scaled by their incoherent noise estimates and gathered into a sub-matrix which we call
Ũ . Due to the orthogonality of Ũ , an estimate of α is then made with,

α̂ = Ũ †x. (3.32)

Now, with α̂ and Ũ , the residuals, robust weights, and “cleaned” data vector, x̃, are cal-
culated. We will discuss how this is done in Section 3.2 regarding robust estimation. The
residuals provide an updated estimate of Σε. Then, with the updated incoherent noise esti-
mate, the next iteration repeats the foregoing steps after substituting x̃ for the data vector
x. This procedure is iterated until convergence. The resulting products are estimates of
U , α, and Σε, from which transfer-functions between all channels may be derived, using
manipulations like (3.24), along with errors in the estimates of those transfer functions.
Note that a choice must be made as to which columns of Ũ pertain to the MT sources.
The common assumption is that the MT signal is the strongest, so the columns of Ũ corre-
sponding to the two largest eigenvalues in Λ̂ are used (again, the values in Λ̂ are estimates of
signal-to-noise power ratios for each principle component in W ). The details of this entire
process are much more intricate than what has been presented here; for a more thorough
treatment consult Egbert [1997, 2002].

Even with the robust estimator for the MEV model, it is clear that the maximum
number of resolvable coherent source components in a given vector of data is equal to
the length of that vector. Thus, with the 5 measurements in (3.22), the 2 components of
the MT sources and 3 other coherent noise components may be resolved. This is where
the argument for multi-station processing is made. With the multi-station approach, the
linear systems for N channels from multiple stations, each described by (3.23), but with
the number of columns of U unknown, are vertically integrated, such that the amalgamated
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system becomes,


x1

x2
...
xN

 =


U1

U2
...
UN




α1

α2
...
αN

+


ε1

ε2
...
εN

 . (3.33)

With this large simultaneous system, N − 2 independent coherent noise sources may be
resolved by multi-station MT processing (i.e. the maximum possible number of columns of
Ũ is N). If the number of significant coherent noise sources is much less than N − 2, then
the system is better-constrained, and as a result, the unknowns U , α, and Σε are better
resolved. If the number of significant noise sources is larger than N − 2, the system is again
under-determined, and the estimates of U , α, and Σε will have aliased into them the hidden
degrees of freedom.

3.2 Robust Estimation

In Section 3.1, for the purposes of MT transfer-function estimation, we found a
linear system to be solved, given by (3.23), where U , α, and var(ε) are all unknowns. An
iterative process is used to converge upon estimates of U , α, and var(ε), which relies upon a
robust method for down-weighting outliers in the data vector, x. We introduce that process
here, following the example of Egbert and Booker [1986].

For a standard linear system of n data, xi, with random zero-mean noise, ei, we
have

xi =
p∑
j=1

aijbj + ei, (3.34)

or, in matrix notation,

x = Ab+ e, (3.35)
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where the [ai1 ai2 · · · aip], the columns of A, are known basis functions, and the bj constitute
p unknowns. If the data errors, ei, are uncorrelated and of unequal variances, var(ei) = σ2

i ,
then the best linear unbiased estimator (BLUE) of b is achieved through the minimization
of the weighted sum of squared residuals,

n∑
i=1

wi(xi −
p∑
j=1

aijbj)2, (3.36)

where the weights are determined by the variances of e, such that wi = 1/σ2
i . Minimization

of (3.36) with respect to b requires the solution of a linear system of equations,

n∑
i=1

2ajiwi(xi −
p∑
j=1

aijbj) = 0. (3.37)

This is a well-known process called weighted least squares (WLS) estimation, and the esti-
mator for b in matrix form is,

b̂ = (ATΣ−1
e A)−1ATΣ−1

e x. (3.38)

where, mirroring Section 3.1, Σe is a diagonal matrix with the variances of e along its
diagonal.

The WLS estimate can be shown to be best among linear estimates, and in the
case of normally-distributed ei, it is the best of all estimates; it is the maximum-likelihood
estimator for Gaussian-distributed random variables. However, if the actual error distribu-
tion deviates from Gaussian, the WLS process can produce unreliable results. In the case
of a small number of “bad” data points, which we call outliers, the WLS procedure can be
seriously biased; due to this property we say that the WLS estimator is not robust. Outliers
are a result of an error distribution that is longer-tailed (meaning larger errors are more
probable) than the assumed Gaussian distribution. When outliers exist in an LS estimation
process, they wield excessive influence on the resulting model. We must therefore make use
of an estimator that accounts for a broader distribution of data errors by down-weighting
outliers.
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We make use of a new maximum likelihood estimator for a contrived non-Gaussian
error distribution. Following Egbert and Booker [1986], we seek estimates of b which mini-
mize what is called a loss function, ρ(r), of the form,

n∑
i=1

ρ

(
xi −

∑p
j=1 aijbj

σi

)
, (3.39)

where we have chosen r to be the standard-error normalized residual between data and
model prediction. The standard LS (L2-minimization) process derives from the loss func-
tion,

ρ(r) = r2/2, (3.40)

and alternatively L1 minimization derives from ρ(r) = |r|. For our robust scheme, which will
minimize the influence of outliers, we use a hybrid of the two aforementioned loss functions,
together called Huber’s t-function,

ρ(r) =

 r2/2, |r| < r0

r0|r| − r2
0/2, |r| ≥ r0,

(3.41)

where r0 chosen to be 1.5 gives better than 95% efficiency if r turns out to be normally
distributed [Chave et al., 1987]. Note that due to the scaling of (3.39), the transition between
L2 and L1 minimization occurs at σir0, so that the scale parameter σi and r0 decide what
is considered to be an outlier. Thus, a robust estimation of the σi is an important part of
the current process.

The minimization of the loss function with respect to b requires the solution of
the linear system of equations,

n∑
i=1

∂ri
∂bj

ρ′(ri) = 0, (3.42)
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Given the loss function (3.41), (3.42) becomes

n∑
i=1

aji
ψ(ri)
σi

= 0, (3.43)

where,

ψ(r) =

 r, |r| < r0

r0r/|r|, |r| ≥ r0,
(3.44)

and ψ(r) is called the influence function. Now we define a new function

w(r) = ψ/r. (3.45)

Then with (3.45) and our definition of r we rewrite (3.43) as

n∑
i=1

aji
w(ri)
σ2
i

(xi −
p∑
j=1

aijbj) = 0, (3.46)

where, by (3.44), we see that (3.45) is simply,

w(r) =

 1, |r| < r0

r0/|r|, |r| ≥ r0.
(3.47)

Clearly (3.46) is just another WLS problem like (3.37), but with an iterative solution for b
given by,

b̂
(k+1) = (ATΣ−1

e W (k)A)−1ATΣ−1
e W (k)x, k = 0, 1, 2, . . . . (3.48)

With (3.48) we now have two diagonal weighting matrices: Σe, as before, contains the
variances of the error in each datum; whereas W (k) contains the weight applied to each
datum, determined by (3.47), given the standardized residuals between the data and the
kth model prediction. At first we do not know what these residuals are, as we have yet
to estimate a model. This is why our robust estimation must be an iterative process (a
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non-linear estimator). We must first make an estimate of the residuals to determine our
robust weights. We do this by simply setting all of the weights in W to 1 for the initial
(k = 0) iteration. We then calculate b̂(1), r(1)

i , and finally, w(1)
i .

Now we address the likely case where the σi are unknown. With such a case it is
necessary to assume that all data are affected by an equal error variance, σ, which we may
then estimate along the way. Note that with equal variances, Σe in (3.48) becomes a scalar
matrix and thus is immaterial. However, we still need a measure of σ to scale the residuals,
a crucial piece of the iterative weighting scheme. So, assuming equal variances in all data,
an estimate of σ is made at each iteration with,

σ̂(k) =

√√√√ 1
β(n− p)

n∑
i=1

(w(k−1)
i r

(k)
i )2, (3.49)

where the factor β corrects for the bias produced by using the weights to estimate σ (see
Appendix A of Egbert and Booker [1986]). With σ̂(k) a new weighting matrix, W (k), is
produced and a new iteration of (3.48) follows. Like so, the iterations proceed with updated
weights until some norm of the change in b̂ from iteration to iteration gets sufficiently close
to zero.

It can be shown that the choice of the loss function (3.41) ensures convergence
to a unique solution because it is convex, i.e. ψ is non-decreasing. However, while (3.41)
diminishes the effect of outliers, their influence is never entirely removed. On the other
hand, more stringent loss functions which effectively nullify outliers are not convex, and
therefore are not guaranteed to converge to a unique solution. In practice, it is best to
use a mix of these two types of loss functions. Begin with the convex loss function until
convergence is reached; it can then be assumed that the model estimate is close to the true
solution. Then, continue with a fixed number of iterations using a non-convex loss function;
it will do better at removing the influence of outliers, but cannot be trusted unless it starts
close to the true solution. Egbert and Booker [1986] use the influence function

ψ(r) = r exp {− exp [r0 (|r| − r0)]} , (3.50)
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with r0 = 2.8 for the final two iterations of their robust estimation scheme.
An alternative way to robustly estimate b in (3.35) is to introduce the device of a

“cleaned” data vector,

x̃(k) = Ab̂
(k) +W (k)r, k = 1, 2 . . . , (3.51)

where x̃(0) = x. Then the iterative estimation of b is given by

b̂
(k+1) = (ATA)−1AT x̃(k), k = 0, 1, 2 . . . . (3.52)

Note that by (3.47), the cleaned data vector is identical to the observed data vector for
small residuals (ri ≤ r0σ̂), whereas large residuals are pulled back toward more normal
values. The cleaned data vector, x̃ is used in the method described in Section 3.1 for robust
estimation of the covariance matrix, or the spectral density matrix.

3.3 Fourier Coefficients

The preceding sections describe methods for transfer function estimation, a central
component of MT data processing. The data vectors used in transfer function estimation
are Fourier coefficients (FCs) at a range of frequencies. The data are delivered from the
instrument in the form of time series of voltages from each measurement channel. Therefore,
to continue onto transfer function estimation, the raw data must first be transformed into
the Fourier domain and converted to physical units of electric and magnetic field.

Many noise sources in an MT record are intermittent and often come in the form
of spikes or discontinuities, which have a broad power spectrum; thus these brief episodes of
noise can pollute a broad frequency range of FC estimates. It is therefore optimal to break a
full time series into sections and derive multiple estimates of FCs at any given frequency from
multiple data sub-records. This approach then relies upon the robust estimation procedure
described in Section 3.2 to effectively cull the FCs which derive from sub-records that
contain intermittent, abnormal noise. The segmentation of the data record into smaller
windows comes at the cost of reducing the longest-period FC estimable from the data.
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Luckily, most MT data records are dozens of times longer than the longest period at which
the assumption of an MT plane wave source is realistic; so breaking up the full record does
not result in a loss of FC data that we would want to use. Note that there is no cost in
terms of variance incurred by breaking the longer time record into smaller segments. The
variance of an estimate of an FC at a given frequency is unchanged by the number of time
samples that went into the discrete Fourier transform (DFT) required to estimate it; as
the number of constraints fed into the DFT increases, so do the number of unknowns, and
at the same rate. Thus, the uncertainties in the unknowns (the FCs) are unchanged with
increasing length of time window.

The full data record is decomposed into smaller windows, the number of which
varies by frequency band with a technique called cascade decimation. The goal of cascade
decimation is to maximize the number of FCs possible for a given frequency band. The
higher frequencies do not need as long of records to make a decent estimate of their FC as
do the lower frequencies. So the data record is broken into many more segments of shorter
length for the higher frequencies and fewer, longer segments for the lower frequencies. When
using longer segments for the lower frequency estimates, if the full data sampling rate were
to be used, we would also receive estimates for the higher frequencies. However, these
estimates would be correlated to those already gained for the same time window, but broken
into smaller segments; they are redundant and amount to a waste of computational effort.
Thus, as we “cascade” into estimates for lower frequency bands, a decimation is performed
on the full data record to reduce the number of time samples used in the longer segments.
Before performing decimation by a simple down-sampling, a low-pass filter must be applied
to the data segment. If filtering were not performed before down-sampling, we would risk
aliasing high-frequency energy into the decimated record, which would then bias the low
frequency estimates.

Once the full data record is decomposed into multiple time windows, each window
is multiplied by a Hamming window function before applying the DFT; this is a single-taper
method. Multiplying a time series by a “tapered” window function, whose values smoothly
approach zero at the edges of the window, reduces bias in the FCs. A DFT of a raw time
series of finite length can be seen as the Fourier transform of the product of an infinitely long
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signal with a boxcar function. In the frequency domain this amounts to a convolution of
the infinite-length signal’s Fourier transform by a sinc function. The convolution performs
a weighted average over all frequency bins for each FC estimate, hence the bias. Applying a
Hamming window function, for example, as opposed to the boxcar, reduces bias because the
smoothing kernel has much smaller side-lobes, concentrating the weighted average around
the central frequency of each convolution.

The FCs up to this point are given in units of voltage (technically they are first
given in terms of digitization counts, for which a nominal digitization calibration converts
to voltage). In order to transform the FCs into physical units, we must account for each
instrument’s response function. When an instrument channel’s sensor (input) is exposed
to a time-varying environmental field X(t), a voltage V (t) is produced on the channel’s
output, which is related to the channel’s impulse response function, G(t), in the following
way,

V (t) = G(t) ∗X(t), (3.53)

where the symbol ∗ is the convolution operator. The Convolution Theorem allows us to
restate (3.53) in the frequency domain as,

V̂ (ω) = Ĝ(ω)X̂(ω). (3.54)

Then, to convert FCs of voltage into their respective field units, we have simply,

X̂(ω) = V̂ (ω)
Ĝ(ω)

. (3.55)

The instrument frequency response Ĝ(ω) can be derived in the lab by subjecting each
instrument channel to a known sinusoidally-varying field at a range of frequencies and
measuring the resulting voltages. Least-squares fitting of the known input field to the
output voltages produces a frequency response function sampled at the exact frequencies
produced in the lab. The fitting of a physical model for the instrument components can
then interpolate between the sampled frequencies in order to create a continuous frequency
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response function.
Once these steps are completed, we generate a time series of FCs in physical

units, a spectrogram, for each channel of data to be analyzed. Spectrograms for three
MT stations, M01, M17, and M40, each with 4 channels of data, Bx, By, Ex, Ey, are
plotted in Figures 3.1 through 3.6. The time-resolution of the FCs decreases with decreasing
frequency, because, as was stated before, longer time windows are needed to estimate the
lower frequencies. The two stations are at opposite ends of the survey line (see Figure 2.1);
M01 is closest to the coast (≈ 15 km), in the shallowest water depth of 320 m; M17 is a
moderate distance from the coast (≈ 75 km), in 880 m deep water; M40 is furthest from
the coast (≈ 200 km), in much deeper water depth of 3,870 m. The white horizontal lines
across all of the spectrograms indicate the levels of cascade decimation used to create the
FCs.

We now make a qualitative assessment of a few features in the spectrograms.
First, in the magnetic channels of M01 there is an obvious broadband source of energy
that seems to turn on and off again, twice a day; there are approximately 8 hour periods
of vertical bright streaks in the spectrogram followed by approximately 4 hour periods
of lower energy across the spectra. These periodic spectral-energy variations are likely
explained by tidal forces. The coastal tide height relative to the mean lower low water
(MLLW) as measured at the nearby site of Port San Luis, is plotted with a black line
in the upper plot of Figure 3.1. The largest tidal constituent in most locations around
the world is known as the principal lunar semi-diurnal (M2 in Darwin notation), which
has a period of approximately 12.5 hours. The time between peaks and troughs of this
tidal constituent can be expected to involve increased strength in ocean currents and wave
action at the coast, as water is displaced by a large gradient in the earth’s gravitational
potential; on the other hand, the gravitational potential close to the peaks and troughs
of the M2 is relatively stable, so tidal water movement is minimal. It is difficult without
more quantitative analysis to discern how these tidal movements in the ocean translate into
magnetic field signals. A few possible means should be considered: water currents may
actually rock the instrument, changing the vector magnetic field being measured; micro-
tremors induced by waves crashing on the beach may travel to the instrument through the
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Figure 3.7: Spectrogram of wave power density contemporaneous with the first 10 days of
MT data. The time axis is in Coordinated Universal Time (UTC) which is 8 hours ahead of
Pacific Time (PT). The wave energy data was collected by the National Data Buoy Station
46011.

seafloor, also rocking the instrument; increased surface wave amplitudes or turbulence in
the water column may induce electromagnetic fields through dynamo action [Larsen, 1968,
Chave et al., 1989]. There are a few more observations to be made about this semi-diurnal
tidal energy variation in the spectrograms: the tidal energy is observed to be much weaker
in the electric field records of M01, at least in the band above 10 s period; there is a relative
peak in the spectra of site M01 at about 2 s period when the tidal energy is high; the tidal
energy is not equally partitioned between the two orthogonal channels of measurement; the
tidal energy is less apparent in the spectrograms from site M17, and even less so from site
M40; the window of elevated energy aligns with periods of incoming tide (increasing water
height), and the integrated energy within the window increases with increasing trough-to-
peak differences in tide height. We don’t intend to deduce the physics of how the tidal
energy is transferred to the electromagnetic sensors at this time. We simply note that these
observations of tidal energy indicate there is a large portion of signal in the spectra of
measurements, at least at the shallow-water/near-shore sites, that is not sourced from the
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MT ionospheric plane wave.
Another example of non-MT energy can be seen in the spectrograms of M01, and

to a lesser degree, those of M17. There are two discrete disturbances that occur in the days
between November 29th and December 1st. They appear as slightly sub-horizontal bright
streaks of energy in the period band between 10 s - 50 s. They are the characteristic sign
of a meteorological storm occurring some distance away from the instrument location. The
storm produces elevated water wave action that in turn induces elevated electromagnetic
fields as charged ions move in the earth’s static magnetic field. As the water waves propagate
away from their source location, dispersion occurs. The longer period energy travels faster
than its higher frequency counterpart. Thus, the energy streaks in the spectrograms are
slightly inclined with respect to time; the prominent frequency components of the passing
wave-train increase with time as the higher-frequency energy is the slower to arrive. An
estimate of the slope of the progression in frequency content in time, along with knowledge
about the group velocity of waves in the ocean should provide an estimate of the distance
between the original storm and the point of measurement as well as the storm’s time of
onset [Munk et al., 1963]. Figure 3.7 provides an independent and more direct measurement
of the propagating storm energy; it plots the spectrogram of water wave power as measured
by a buoy near our seafloor instrument array. While there are many upward-tilting flares of
energy apparent in the buoy record, the two final ones between the days of November 29th
and December 1st exhibit slightly higher power and lower period content at onset. These
two properties may be why signatures of these two storms are the only two that show up in
the electromagnetic field record; another possibility is directional variation in storm origin.

Both of the preceding observations about the FC records represent energy sources
that do not obey our MT assumptions. They must therefore be removed from the data
to be interpreted. Prior to the process of transfer function estimation, the FC records
containing the obvious storm-driven energy may be manually removed from subsequent
data processing. The manual removal of the tidal signature, due to its pervasiveness in
time is much more difficult; visual inspection of data from site M01 would indicate that
there is little left unaffected by the tides. We must therefore rely upon robust multi-station
processing to deal with the tidal energy in an automated way.
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3.4 Apparent Resistivity and Phase Data

Although estimation of impedance tensors and other complex transfer functions,
such as vertical magnetic transfer functions, are the central product of MT data processing,
their unadulterated units have little intuitive meaning. That is why the data used in
MT interpretation quite often take the form of apparent resistivity and phase. Apparent
resistivity is derived from the impedance tensor and comes in units of Ωm, as the name
implies. Measured over a hypothetical halfspace of uniform resistivity, an MT datum in the
form of apparent resistivity would provide the exact resistivity of that halfspace; we supply
the proof of this in Section 5.9. The transformation from an element of the impedance
tensor, Zij , to the corresponding apparent resistivity, ρij , is as follows,

ρij = 1
µω
|Zij |2, i = {1, 2}, and j = {1, 2}. (3.56)

Phase, Φ, comes in units of degrees, and is derived from the same impedance tensor elements
as follows,

Φij = arg(Zij) = arctan
(
ImZij
ReZij

)
. (3.57)

We may analyze the relationship between the impedance tensor phase, and the complex-
valued electric and magnetic fields themselves for the simplified cases of 1D, or 2D conduc-
tivity structure with the field components oriented parallel and perpendicular to the axis
of 2D strike. For these two cases we may say

Zij = µ
Ei
Bj
, i = {1, 2}, j = {1, 2}, (3.58)

where the Zii = 0. Applying Euler’s formula for complex quantities, (3.58) becomes

Zij = |Zij |eiΦij = µ
|Ei|
|Bj |

exp
[
i(φEi − φBj )

]
, (3.59)



47

where we have introduced two new phase angles:

tan(φB) = ImB

ReB , (3.60)

and

tan(φE) = ImE

ReE . (3.61)

From (3.59) we see that for these two simplified cases, the impedance tensor phase is equal
to the phase difference between a pair of electric and magnetic field channels.

The plots of apparent resistivity and phase for the three example sites, M01, M17,
and M40 are shown in Figure 3.8. We expect some level of smoothness in these apparent
resistivity and phase curves. The scatter of the data and the large size of the error bars
suggest that below periods of approximately 30 s, the data at site M40 are unreliable.
Equivalent statements can be made for the data below periods of approximately 10 s at
sites M17 and M01. We turn to a few more plots of to assess these issues of MT data
quality.

Figure 3.9 plots the eigenvalues of the spectral density matrices, the diagonal
elements of Λ from (3.28), used in the multi-station processing for sites M01, M17, and
M40. The two red curves in the plots of Figure 3.8 correspond to the two eigenvectors,
ui1 and ui2 (see equation (3.24)), that are used in impedance tensor estimation at each
frequency. We see that for site M40, the top two eigenvalues are not much larger than
the other coherent noise eigenvalues (plotted in blue) until about 30 s period. The poor
quality of data at periods below 30 s at site M40 are a result of the MT source vectors
(corresponding to the top two eigenvalues) being poorly resolved above the noise at those
periods. Therefore we must not interpret these data. The same conclusion is drawn by
analyzing the spread in eigenvalues for the data below 10 s period and above 10,000 s at
site M17. Again the same conclusion holds at site M01, except for two period bins between
1 and 2 s periods. At those two periods there are two eigenvalues (in the red curves) that
stand out above the others. Recall that the spectrograms of Figure 3.2 exhibited strong
peaks around 2 s concurrent with time periods of elevated tidal action. For further analysis
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we look into the corresponding eigenvectors.
Figure 3.10 is a map view plot of the top three eigenvectors, corresponding to the

three largest eigenvalues in Λ, at two separate frequencies, 2 s and 128 s, for the multi-
station array comprised of M01, M02, M03, and M12. The three eigenvectors have been
scaled by their corresponding incoherent noise estimates such that they comprise the first
three columns of Ŵ . The first three columns of Ŵ represent the top three orthogonal
coherent signals in the data, in terms of SNR; as stated before, the first two are assumed
to be MT signal. The elements of the first 3 columns of Ŵ are disassembled and regrouped
according to their respective stations. For each eigenvector, a station has its own set of
complex 2-vectors, νE and νB, one for the horizontal electric field and one for the horizontal
magnetic field, respectively. In map view, polarization ellipses represent these 2-vectors by
tracing the following parametric equations with respect to compass angle, θ,

px(θ) = c [Re(ν1) cos(θ)− Im(ν1) sin(θ)] + x0, (3.62)

and

py(θ) = c [Re(ν2) cos(θ)− Im(ν2) sin(θ)] + y0, (3.63)

where px and py are the longitude the latitude, respectively, of the ellipse line; c is some
arbitrary scaling held constant for all ellipses in a single plot; and x0 and y0 are the station
coordinates. The ellipse represents the path of the tip of the field vector as it progresses
with time through one full period of oscillation. When one of these ellipses collapses to
a line, we say that the corresponding field is “linearly-polarized”, which means that the
x-coordinate and the y-coordinate of the field, ν1 and ν2, vary in phase with each other,
i.e. Im(ν1)/Re(ν1) = Im(ν2)/Re(ν2). Another way to interpret the meaning of a linear-
polarized field is that the field vector does not change direction with time; it changes
only in magnitude and sign. The MT source field, as mentioned earlier, is assumed to be
linearly polarized, and uniform in the horizontal plane, hence the title plane wave. Such an
ideal MT plane wave driving a horizontally-layered (1D) earth would result in electric and
magnetic field polarization ellipses within a single eigenvector that are linear and uniform
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in polarization direction (i.e. the direction of the major axis of the ellipse) from site to site.
The linear ellipses of the electric and magnetic field would be orthogonal to each other as
well. For the ideal MT plane wave driving 2D earth structure, the ellipses would only be
linearly polarized if the source magnetic field was oriented either exactly perpendicular or
exactly parallel to the direction of 2D conductivity variation [Kaufman and Keller, 1981].
Polarization ellipses which are not linear are either a result from non-linearly polarized
source fields, or conductivity structure of dimensionality greater than 1D. Non-uniformities
in polarization direction from site to site can be a result of either 3D conductivity structure,
a non-uniform source field, or an inaccurate compass orientation of the instrument.

In Figure 3.10, the top two eigenvectors for 2 s period oscillation show very low
SNR in the magnetic fields, relative to the electric fields. Also, the orientation of the
major axes of the magnetic polarization ellipses vary dramatically from station to station.
We compare these to the polarization ellipses for the top two eigenvectors for 128 s period
oscillation. At the larger period, the magnetic field SNR is closer to that of the electric field,
also the nearly linear polarization ellipses do not vary in their polarization direction from
station to station as much as they did at 2 s period. Taking the top two eigenvectors of the
128 s period oscillation as exemplars of MT signal, we conclude that the top eigenvectors of
the 2 s period oscillation are manifestations of coherent noise, likely driven by tidal motion.
With repetition of the preceding analysis on all the data, a qualitative separation between
good MT impedance tensor estimates, and those polluted by incoherent and coherent noise,
may be made. Such analysis was applied as a means of data reduction for the Estero MT
dataset, with the exception of the land data, which was delivered to us by our collaborators
in a state ready for interpretation.

3.5 Impedance Tensor Rotation

In the Chapter 4, we present an inversion of the MT data with a 2D conductivity
model. This means the forward modeling code assumes that the conductivity structure
of the earth is uniform along one horizontal direction. Therefore, we must prepare the
impedance tensor data so that it conforms as much as possible to this assumption. The
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preparation requires a coordinate transformation such that the x- and y-directions of the
impedance tensor align perpendicular and parallel, respectively, to the horizontal direction
of assumed 2D conductivity variation in the earth. Once transformed, the Zxy component
of the impedance tensor will relate to a driving magnetic field aligned with the y-axis (the
horizontal direction of constant conductivity), and the Zyx component of the impedance
tensor will relate to a driving magnetic field aligned with the x-axis (the horizontal direction
of conductivity variation). In a 2D model, the component Zxy encapsulates the transverse-
magnetic (TM) mode of induction, so-called because it can be shown that the total magnetic
field is everywhere perpendicular (transverse) to the z-axis; it is also usually assumed that
the TM mode magnetic fields are perpendicular to the orientation of a survey line, when the
survey line is oriented in the direction of horizontal conductivity variation. Conversely, in a
2D model the component Zyx encapsulates the transverse-electric (TE) mode of induction.
Here the total electric field is everywhere perpendicular to the z-axis, and assumed to
be perpendicular to the orientation of the survey line. As stated earlier, if data were
acquired over a perfectly 2D earth, the components Zxx and Zyy would be zero everywhere
at all periods of oscillation, when the x- and y-axes are oriented to be either 2D strike
perpendicular or 2D strike parallel.

An estimate of the strike direction for the assumed 2D subsurface conductivity
variation can be made in a variety of ways [e.g. Groom and Bailey, 1989, McNeice and
Jones, 2001, Caldwell and Bibby, 2004, Becken and Burkhardt, 2004]. We elected to use
the method described in Becken and Burkhardt [2004] because it employs a physical param-
eterization of the impedance tensor that does no rely on any a priori model assumptions,
as do the methods of classical distortion analysis [see e.g. Groom and Bailey, 1989]. First
the impedance tensor is decomposed into its two columns, which are called the telluric vec-
tors. Again, these are complex vectors which can be represented by a polarization ellipse
in the horizontal plane. As was stated in Section 3.4, if the source magnetic field was lin-
early polarized and also aligned parallel or perpendicular to the strike of a 2D conductivity
distribution, the resulting electric field would also be linearly polarized. Now imagine the
telluric vectors to be the electric fields induced by hypothetical, mutually orthogonal, and
linearly polarized magnetic fields. Then, Becken and Burkhardt [2004] sought to find the
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most appropriate 2D strike from impedance data by minimizing a measure of telluric vec-
tor ellipticity (which they defined as the ratio of the minor to major axes of the ellipse)
as a function of coordinate system rotation angle. This can be done simultaneously over
multiple frequencies and multiple stations by choosing the sum of the squares of ellipticities
as the quantity to be minimized. The angle of impedance tensor rotation which minimizes
the ellipticity norm is chosen as the most likely 2D strike of the data. Of course, there is
a 90◦ ambiguity in the strike angle, but this is easily sorted out by external information
(i.e. geological information, vertical magnetic field induction vectors). Figure 3.11 presents
two polar histograms of the estimates of 2D strike, one for the marine stations, and one
for the land stations. A single estimate was made for each individual site over the range
of frequencies of usable data. These estimates were then grouped according to whether
came from a marine or land site. The two groups of estimates served as populations for
the histograms in Figure 3.11. The polar histograms exhibit the expected 90◦ ambiguity,
but it is known that the majority of geologic variation occurs along the axis perpendicular
to the San Andreas fault, as highlighted by the surface geology map in the background of
Figure 3.11. The median rotation angle was chosen for each of the two groups of stations,
marine and land, and subsequently the impedance tensor at each site was rotated into the
optimally-2D reference frame of its respective group. In geographic coordinates, the ma-
rine sites were rotated so that their x-axis aligned with N 46.9◦E, and the land sites were
rotated so that their x-axis aligned with N 42.2◦E. Conversion from geomagnetic rotations
to geographic rotations must take into account the average magnetic declination in cen-
tral California along the marine profile, N 13.6◦E. The rotation of the impedance tensor
amounts to a change of reference frame for both the electric and magnetic field vectors. For
a clockwise rotation of a vector v by an angle θ in a right-handed coordinate system, we
have

vθ = Rv, (3.64)



55

where the rotation matrix, R is given by,

R =

 cos θ sin θ
− sin θ cos θ

 . (3.65)

Applying rotations to the vectors related by the impedance tensor we have

R−1Eθ = 1
µ

ZR−1Bθ, (3.66)

from which we can show

Zθ = RZR−1. (3.67)

Figure 3.12 presents plots of impedance polar diagrams for all of the acquired
marine MT data and the provided land MT data. Impedance polar diagrams offer a di-
mensionality diagnostic that derives from tensor rotation. A single polar diagram consists
of two closed curves, one relating to an on-diagonal element, zθxx, and one relating to an
off-diagonal element, zθxy, of the impedance tensor as it is rotated incrementally through
360◦. At each increment of rotation, the absolute value of each of these elements is used as
the radius in a polar plot. The two curves in our plots have been normalized by a common
quantity as it is only the relative size between the two curves that is of interest. More
specifically, in Figure 3.12, the red lines plot the quantity,

Pxy(θ) = |zθxy|/a, (3.68)

while the blue lines plot the quantity,

Pxx(θ) = |zθxx|/a, (3.69)

as θ, the angle of tensor rotation, varies from [0◦,360◦). The normalization constant, a,
is defined as maxθ |zθxy|. We reiterate that the impedance tensor over a 1D earth has the
properties zxy = −zyx and zxx = zyy = 0, regardless of rotation. In this case, Pxy(θ) traces
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Figure 3.11: Polar histograms of the 2D strike estimates from marine MT sites and land
MT sites, respectively. The local magnetic declination is shown as N 13.6◦E. The map in
the background displays the surface geologic units of central California from Jennings et al.
[1977]. The bold red line plots the surface trace of the San Andreas fault, and thinner black
lines plot surface traces of other Quaternary faults. The black and white, bulls-eye markers
denote the locations of the MT stations used in the 2D strike estimation.
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a perfect circle, and Pxx(θ) consists of one point at the origin. The impedance over a 2D
earth has the properties zxy 6= zyx and zxx = zyy = 0 when rotated to be either 2D strike
parallel or perpendicular. For the 2D case, Kaufman and Keller [1981] show that the polar
diagrams take the form,

Pxy(θ) =
[
|zxy|2 cos4 θ + |zyx|2 sin4 θ − 2|zxy||zyx| sin2 θ cos2 θ · cos(Φxy − Φyx)

]1/2
, (3.70)

and,

Pxx(θ) = |zxy + zyx|
2 sin 2θ, (3.71)

where zxy, zyx, zxx, and zyy are the impedance tensor elements from a reference frame
either parallel or perpendicular to the 2D strike, one of which corresponds to the direction
of θ = 0. The shape of Pxy may take many forms, ranging from an oval to a peanut
shape. The maximum radius of Pxy occurs with 180◦ ambiguity in either the direction
parallel or perpendicular to the 2D strike, if there is one. Most notably, we see that for
2D earth structure, the shape of Pxx will always be the same. It will take the shape of
a four-leaf clover, all leaves of equal size and oriented to either ±45◦ or ±135◦ of the 2D
strike. Also, from (3.70) and (3.71), we see that maxθ Pxx(θ) ≤ maxθ Pxy(θ). When the
clover leaves of Pxx exhibit asymmetry or become much larger than the lobes of Pxy, 3D
conductivity structure must exist. The grayscale shading in the background of the plot
in Figure 3.12 indicates the value of Swift skew, a measure of 3D structure. The skew is
a specific quantity derived from a rank-2 tensor that has the favorable property of being
invariant under rotation the tensor. The "Swift skew", coined after Swift [1967], relates to
the impedance tensor, and is given by

s = |zxx + zyy|
|zxy − zyx|

. (3.72)

Over 1D and 2D conductivity distributions, zθxx and zθyy are either both zero, or of equal
magnitude but opposite sign so that s is always exactly zero, regardless of orientation of the
coordinate axes; thus, large skews can only arise from extreme 3D conductivity structures.
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It is traditional practice to accept all data with Swift skews less than 0.2 as reproducible
with a 2D model. However, as we show in Section 5.8, a zero value of the Swift skew does
not guarantee the absence of 3D conductivity structure.

As an illustration of both 2D and 3D polar diagrams, in Figure 3.13 we plot the
impedance polar diagrams for modeled data to compare with the diagrams of the Estero MT
data in Figure 3.12. The modeled data come from a calculation made for a simplified coast
model with a 90 Ωm seafloor depicted in Figure 4.2, which we will return to in Chapter 4.
The coast model is used here to loosely predict the shape of polar diagrams that we would
expect for the Estero MT data, if the earth conductivity distribution in central California
was perfectly 2D. Plot A in Figure 3.13 plots the diagrams derived from the perfectly 2D
coast model. Next, we want to explore how 3D-affected tensors might distort the polar
diagrams from their 2D forms. So without modeling 3D structures, we simply add non-zero
components to the diagonals of the 2D coast tensors to mimic 3D tensors. Three different
strategies for creating diagonal components were used, depicted in plots B, C, and D, with
the formulae for the sizes of zxx and zyy defined above each plot.

In Figure 3.12 the cross-hatched regions contain data that have been excluded from
later analysis based on evidence of noise contamination; a description of such evaluation
was given in Section 3.4. Most of these excluded data, especially in the higher frequency
range, exhibit high skew values and exotic polar diagrams that are inconsistent with a 2D
conductivity distribution. Outside of the cross-hatched regions, there is only one site, 630,
for which we can say with some confidence that there is no evidence of effects from 3D
conductivity structure. All other sites exhibit 3D effects in varying degrees. These effects
become stronger on, and at the base of the continental shelf (sites M25 and M27). They
also become stronger near the edge of the San Joaquin Valley (sites 639 and 640). The
symptoms of 3D structure are so pervasive that a strategy of rejecting outright all data
with skews larger that 0.2, or 3D-looking polar diagrams, would leave less than 40% of an
already decimated dataset left for the 2D inversion. Thus, in Section 3.6, we employ the
strategy of including the majority of the data, but systematically dampening the influence
of some data by assigning weights that are a function of the degree to which the data are
3D-affected.



59

Figure 3.12: Plot of MT impedance polar diagrams for all sites and all frequencies of data.
The blue lines plot the impedance tensor element |zθxy|, while the red lines plot the impedance
tensor element |zθxx| as a function of tensor rotation angle θ, which ranges from 0 to 2π.
The grayscale shading indicates the Swift skew values, which are capped at 0.6, though
many data exceed this value. Regions of cross-hatching denote data that were removed
from inversion due to noise contamination.
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Figure 3.13: (A), a plot of MT impedance polar diagrams for all sites and all frequencies of
the forward calculation for the 2D model in Figure 4.2. (B), (C), and (D), impedance polar
diagrams for three different models for synthetic 3D data, whose off diagonal data (zxy and
zyx) are equal to that of the 2D model used for A. The blue lines plot the impedance tensor
element |zθxy|, while the red lines plot the impedance tensor element |zθxx| as a function of
tensor rotation angle θ. The grayscale shading denotes the Swift Skew value, with 0.6 being
the approximate maximum value of all the plots of modeled data.



61

3.6 Data Weighting

In most inverse problems, linear and non-linear alike, weights are applied to data
which, as in the robust estimation process, affect the degree of influence any single data
point may wield in the solution process. From the perspective of the linear inversion process,
or the early stages of a non-linear inverse process, the value of a given weight matters only in
its size relative to the other weights; the process of minimizing the L2-norm of the differences
between the data and a model prediction (the residuals) is invariant with respect to left
multiplication of the residual vector by an arbitrary scalar matrix. However, the absolute
size of the weights does matter for a posterior assessment of an inverse solution, or, in the
non-linear case, the transition from seeking the best-fitting model to the smoothest-fitting
model. For these purposes, weights are often chosen on some statistical grounds so that an
inverse solution may be tied to probabilities; standard errors of data are a natural choice for
weights, such that the inverse problem is posed as a minimization of standardized residuals
between the data and a model prediction. This strategy works well when the standard
errors are well-estimated, the main source of error is stochastic Gaussian noise, and the
physics of the real system are completely captured by the model. The final two provisos
are not the case with the Estero MT dataset.

While the data redundancy (the number of FC estimates) for the Estero MT
dataset is such that the standard errors in the ultimate apparent resistivity and phase data
are extremely well resolved, there remain systematic biases in the data and an aspect of
the physics that is not captured by the model. The systematic biases may include errors
in a seafloor instrument’s location, orientation, tilt, and roll, and errors in the instrument
frequency response calibration. As was stated before, the conductivity model used in the
forward functional of our non-linear inverse solution is 2D. While the predominant geologic
variation is assumed to be 2D over the length-scale of our survey, the earth is obviously
3D. Our 2D model is unable to replicate the physics of conductivity variations in one of the
horizontal directions, producing another source of systematic error.

One relatively well-known source of conductivity variation in the earth is the
land/seawater interface described by bathymetry. This interface constitutes one of the



62

largest conductivity contrasts in nature, and thus has a significant effect on the impedance
data. Bathymetry, of course, varies in both directions of the horizontal plane. However, in
some locations around the earth, there is one dominant direction of bathymetric variation;
this is the argument we make for central California, the location of the Estero MT survey.
Even if the local bathymetry could be adequately represented by a 2D conductivity model,
there are errors in the bathymetry measurements as well, particularly away from the coasts
where satellite data is solely relied upon. Therefore, uncertainty in bathymetry estimates
contributes another source of systematic error in the physics of our model.

We describe the data weights used on the Estero MT dataset in terms of errors even
though they are often not derived from the traditional standard error estimation procedure.
The data weights are inversely related to the errors; data with large errors are afforded
less influence on the inversion process than data with smaller errors. First, to account for
systematic biases in the data we set a relative-error floor for the TM mode data at 12.5%
of the apparent resistivity amplitude. We set the corresponding error floor in phase of
3.6◦. These error floors account for systematic errors in the data and usually supersede the
estimated standard error, except at the longer periods where much fewer data records are
used in the estimation procedure (see Figure 3.9). Next we sought to down-weight elements
of the data which could not be replicated by our 2D model. Multiple MT modeling studies
have shown that the TE mode, involving electric current flowing transverse to the vertical
plane containing a single profile of data, is more susceptible to distortion from off-axis
(3D) structure than the TM mode of those same data [Wannamaker et al., 1984, Becken
et al., 2008a]. This is because the 2D TE calculation does not account for the build-up
of boundary charges, since the current flow in that mode is always perpendicular to the
modeled variations in conductivity; however, the 2D TM mode calculation does account for
boundary charges. Becken et al. [2008a] noted that the greater deviation from a 2D response
existed in the TE mode apparent resistivity data when calculated over a 3D conductivity
distribution, and decided to weight the data intended for a 2D inversion accordingly. They
achieved more accurate results from 2D inversion of synthetically created 3D data by down-
weighting the TE apparent resistivity data relative to the TM apparent resistivity data.
We adopt the same approach and enforced a 25% error floor (twice the TM error floor) on
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the TE apparent resistivity data, while leaving the TE phase with an error floor of 3.6◦;
the TE phase error floor is left as low as that of the TM phase because galvanic boundary
charges have a small effect on phase.

Again, the relative size between errors of different data matters more than the
absolute size of all errors. The error floors could be made uniformly 10 times bigger or
smaller with no effect on the direction of the inversion search. The only effect would be
in the determination of convergence in the inversion process, a condition controlled by a
quantity we call the tolerance, which must be chosen by the user anyway. A uniform increase
in errors along with an appropriately chosen decrease in tolerance will cancel each other’s
effect on the inversion process. As will be described in Chapter 4, the inversion algorithm
we use searches for a model that produces a misfit equal to a chosen tolerance level. If
zero mean, Gaussian distributed, random variables were the only things contributing to
the misfit, the tolerance level could be rigorously derived on statistical grounds [Parker,
1994]. However, in our case where misfit is almost entirely a result of systematic error and
not random error, a tolerance rigorously based on the data’s estimated standard errors will
never be reached. Instead we took a different approach to setting our data errors. We
used our inversion algorithm to find a minimum misfit model by relaxing the smoothness
constraints and setting the tolerance to zero (see Section 4.1 for details about the inversion
algorithm). With these settings, the inversion algorithm continues to take steps to reduce
the misfit until successive iterations produce no detectable progress, at which point we’ve
reached a practical minimum in misfit. Then, we take the minimum misfit model and adjust
the data error estimates accordingly so that the model’s calculated misfit value is close to
our statistically defensible tolerance. In this way, we determine an absolute size for the
numbers provided in the preceding paragraph for estimates of the systematic errors.

A further effort was made to down-weight segments of the apparent resistivity
and phase data exhibiting distortions from 3D conductivity structure that could not be ac-
counted for by our 2D model. This entailed a change in the relative size of errors different
frequencies and different sites. We made use of data metrics known as the Swift skew and
phase tensor skew, derivatives of the impedance tensor which are invariant under rotations.
Similar to the Swift skew, Bibby and Caldwell [2005] show that for 1D or 2D conductiv-
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ity distributions, the phase tensor skew is exactly zero. In addition, Bibby and Caldwell
[2005] explain that the phase tensor skew is insensitive to galvanic shifts in electric field
measurements. These can be associated with very small-scale, 3D resistive anomalies close
to a single electrode, and often occur with land MT stations; such galvanic shifts in marine
MT data are rarely a result of a small localized resistive anomaly, since the near-surface
material is uniformly saturated in seawater. Nonetheless, galvanic shifts in marine TM
data are common and a well-known result of the regional coast effect (see Chapters 5 &
4), which may arise in a perfectly 2D conductivity distribution. The same 2D coast effect
in the marine environment produces TE phases that are outside of the 0◦ to 90◦ range,
a phenomenon considered very rare in land MT responses [e.g. Key and Constable, 2010].
The phase tensor skew at these “anomalous” phases in our marine data was found to vary
wildly among adjacent periods, whereas the Swift skew varied more smoothly (see Figure
3.14); both the Swift skew and phase tensor skew varied smoothly with respect to period
for the land data. Therefore, we use the Swift skew to identify 3D distortion in the marine
data and the phase tensor skew to identify non-galvanic 3D distortion in the land data. A
skew threshold, s0, of 0.15 was chosen and the existing errors, σi, were rescaled accordingly,

σ?i = si
s0
σ, for si > s0, (3.73)

where the star denotes the rescaled error, and si is either the Swift skew or the phase
tensor skew depending upon whether the data were derived from a marine or land station,
respectively.

The land stations acquired vertical magnetic field measurements which yielded
estimates of vertical magnetic transfer functions; for need of a shorter title, data of this
type are often called tippers (see Section 5.11). Recycling notation in (3.22), we define the
tipper vector, V = [vzx vzy], as,

Bz = VB. (3.74)

We set an error floor for the dimensionless tipper data at 0.02. In a 2D conductivity
distribution, it can be shown that the TE mode of induction, where the driving magnetic
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field is aligned in the x-direction, along the axis of horizontal conductivity variation, gives
rise only to Ey, Bx, and Bz field components. Conversely, the TM mode of induction,
where the driving magnetic field is aligned in the y-direction, perpendicular to the axis
of horizontal conductivity variation, gives rise only to By, Ex, and Ez field components.
Therefore, with a 2D model we see that the TM tipper, vzx, is always zero. We use this
property to detect where 3D distortion occurs in the tipper data; any period of estimation
that produces a sizeable TM tipper must be affected by 3D structure. We look at the ratio
of the two estimated tipper components, which we define as γ = vzx/vzy, and again choose
a threshold for that ratio, γ0 = 0.8. Then we use the γ ratio to rescale the errors of the
TE tipper component (the only component applicable to a 2D inversion model) in the same
way that we used β to rescale the errors in the apparent resistivity and phase data.

All of the data, after applying the aforementioned processes of data reduction and
data weighting are plotted in the Figures 3.15 through 3.18. These comprise the final set
of data with associated errors (inverse weights) used in the remainder of the thesis.
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Figure 3.15: Plots of apparent resistivity and phase for the western-most marine sites. The
marine sites are named according to their order from the coast, with M01 being the closest
and M40 being the farthest. The data error bars are ±1σ.
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Figure 3.16: Plots of apparent resistivity and phase for the marine sites of data, and appar-
ent resistivity, phase, and real and imaginary tippers for the land sites. Marine sites have
titles that begin with the letter M. Sites are plotted in order from west to east, with M06
being the western most site of this group, and 634 being the eastern most site of this group.
The data error bars are ±1σ.
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Figure 3.17: Plots of apparent resistivity, phase, and real and imaginary tippers for the
land sites. Sites are plotted in order from west to east, with 666 being the western most
site of this group, and 672 being the eastern most site of this group. The data error bars
are ±1σ.
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Figure 3.18: Plots of apparent resistivity, phase, and real and imaginary tippers for the
most inland sites. Sites are plotted in order from west to east, with 638 being the western
most site of this group, and 640 being the eastern most site of this group, as well as the
eastern most of the entire dataset. The data error bars are ±1σ.



Chapter 4

2D Inversion

In this chapter we describe the non-linear inversion process used to convert esti-
mates of apparent resistivity and phase from our profile of instruments into a 2D cross-
sectional model of earth resistivity. It will start with a brief introduction to the theory
of regularized non-linear inversion, particularly the algorithm known as Occam’s method.
Then, we will discuss an effort to optimize inversion performance based upon transforming
the data space. A range of models was produced using different subsets of data and incor-
porating various forms of external information. Finally, we will analyze the data sensitivity
that can be determined from these disparate models.

4.1 Regularized Non-linear Inversion

MT data are non-linearly related to the conductivity structure of all earth models
other than a uniform halfspace. Thus, in order to transform the collected MT data into an
estimate of conductivity throughout a 2D earth model, we must use a non-linear inversion
algorithm. The non-linear inversion algorithm we employ is known as Occam’s inversion,
first described with 1D model examples in Constable et al. [1987]. More specifically, our
2D inversions of MT data follow DeGroot Hedlin and Constable [1990], which makes use of
the 2D finite-element code of Wannamaker et al. [1987].

First, we should point out the two reasons why we employ a 2D inversion rather
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than a 3D inversion. The first is that MT modeling and inversion within domains where
conductivity is allowed to vary in all three dimensions continues to present a considerable
numerical challenge. Algorithms and computer codes which can handle simple 3D conduc-
tivity structures in the earth have existed for more than three decades [e.g. Hohmann, 1975,
Ting and Hohmann, 1981, Wannamaker and Hohmann, 1982]. Since then, both computing
power and modeling sophistication have advanced to the point where 3D inversion of real
MT data has become feasible [e.g. Mackie and Madden, 1993, Newman and Alumbaugh,
1997, Zhdanov et al., 2000, Sasaki, 2001, Siripunvaraporn et al., 2005, Commer and New-
man, 2009, Egbert and Kelbert, 2012]. Despite these developments, the 3D MT inverse
problem still presents a large computational burden, invariably necessitating the use of par-
allel computing. Furthermore, some aspects of full 3D MT modeling remain inaccessible,
even with the modern tools. The prime example of this, which certainly applies to the Estero
MT dataset, is the modeling of MT on the seafloor. Modeling in the marine environment
involves the incorporation 3D bathymetry in both the near- and far-field, requiring small
model cells over a very large area. Thus, the problem of adequately replicating the effect of
3D bathymetry becomes prohibitively costly in a computational sense. Instead, we focus on
the bathymetric variation directly along the line of the Estero MT survey, encapsulating it
into a high-resolution 2D model, and hope that the effects of 3D bathymetric variations off
the profile are negligible. The second reason is that the inversion of a single profile of data
(i.e., with only 2D coverage) using a model which is free to vary in all three dimensions
presents a mathematical problem much more ill-posed and underdetermined than that of
the 2D model, a predicament we would like to avoid by restricting the inversion to a 2D
model. There are geological reasons to believe that the subsurface varies much less along
the strike of the SAF than it does perpendicular to it. So, one might expect that a pa-
rameterization of conductivity only in the horizontal direction perpendicular to the SAF
is adequate. If that expectation does not hold, more profiles of marine data, parallel to
the one presented in this dissertation would need to be acquired. Even if full 3D software
and infinite computing resources were available, the need for more data acknowledges the
fact that though a 2D profile of data is affected by off-axis structure, it does very little to
constrain it.
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Here, we briefly describe Occam’s Inversion drawing from the seminal work of
Constable et al. [1987]. Our goal in an inverse process is to minimize our model prediction’s
misfit to the data. First, we choose to define a misfit, conforming with the least-squares
objective, as,

X2 =
M∑
i=1

(di − Fi[m])2/σ2
i ; (4.1)

di are the data; F is a forward functional dependent upon the model vector, m, which
is filled with conductivities for each model element; and σi are either standard errors or
inverse weights, as described in Section 3.6, of the M data. Note that Fi[m] is what we will
refer to as the model prediction for the ith datum. The class of models we utilize are highly
parameterized, such that N , the number of elements in m, is greater—and often much
greater—than the number of data, M . This gives our models great flexibility, and ensures
that we do not restrict our solution to a certain class of models, such as a four-layered earth,
etc. The inverse problem for models where N > M presents an under-determined system;
there are more free parameters than there are constraints. Under-determined systems have
no unique solution. To deal with nonuniqueness, i.e., an infinitude of models that fit the
data to an equal level of misfit, we add a philosophical form of model discrimination. To
this end, we follow Tikhonov who introduced the idea of penalizing complexity in the model,
which he coined “regularization” [Tikhonov and Arsenin, 1977]. The philosophical aim of
not accepting a complicated model when a simpler model will suffice, i.e., fit the data to an
equivalent level, harkens back to Occam’s razor, the algorithm’s namesake. Complexity of
a model may be assessed by defining a measure of roughness, which is usually given by the
integrated square of the first- or second-order spatial derivatives of the model domain. With
this measure, the updated problem is to minimize both misfit to the data as well as model
roughness. A minimization of a simple sum of these two quantities would be highly sensitive
to the relative sizes of misfit and roughness, which may be an arbitrary accident of the scale
of the problem. If roughness varies on a much larger scale than misfit, minimization in this
manner would simply select a featureless model (maximally smooth), and ignore the data
almost entirely; if misfit is the larger variant, an extremely rough model which fits the data
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exactly will be sought. Additionally, finding a model with the smallest misfit to real data
with errors would produce spurious features, a result of adhering to random fluctuations in
the data; these have no basis in the physics we intend to analyze, but instead are expressions
of noise. Thus, we must not seek the model that produces X2 = 0. Instead we choose
some finite tolerance, T 2, as a lower bound on misfit. The tolerance value can sometimes
be chosen on statistical grounds. The statistical theory for the linear inverse problem is
well established. For the standard least-squares problem, assuming independent, Gaussian-
distributed di, with means given by a linear functional Fi[m], and standard deviations σ2

i ,
X2 follows a χ2 distribution withM−N degrees of freedom, assumingM ≥ N ; the expected
value of X2 is then M −N , which makes a defensible choice for T 2. Note that for the linear
problem, ifM = N we have added enough free parameters to be able to fit the data exactly,
so our expected tolerance goes to zero. For non-linear Fi[m], there is no theory to provide
the expected value of X2. Moreover, non-linear problems are often solved with M < N ,
as we have chosen to do here. If the computational cost of the inverse process is not a
burden, an expected value for X2 may be estimated with a Monte Carlo simulation [Parker
and Song, 2005]. Currently, such an approach is not feasible for 2D MT inversion where a
single inversion may last multiple days. If the discrepancy between the data and our model
prediction is the result of random variation alone, we may at least put a bound on misfit,
X2 ≤M . This follows from the logic that the addition of free parameters should never push
the misfit value above the expected value for the sum of squares of standardized Gaussian
errors. If deficiency in our model, rather than random noise, is the major contributor to
misfit, as we argued for the Estero MT data in Section 3.6, the tolerance must be chosen
heuristically with the forfeit of statistical grounding.

Once an appropriate tolerance is chosen, we have a new problem statement: min-
imize the roughness while meeting the equality constraint that the misfit be equal to the
chosen tolerance. We solve this constrained minimization problem in the usual way, with
the introduction of a Lagrange parameter, λ, integrated into the following unconstrained
functional expressed in discrete form,

U(m, λ) = ||∂m||2 + λ−1
{
||Wd−WF [m]||2 − T 2

}
; (4.2)
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|| · || is the Euclidean norm; ∂, our measure of roughness, is the discrete first difference
operator, which for the example of a 1D model, may be represented by a bi-diagonal matrix;
W is a diagonal weighting matrix with 1/σi along its diagonal. The theory behind Lagrange
multipliers states that if ||∂m0||2 is a minimum in the roughness as a function of the model
vector, then there also exists a λ0 such that U(m0, λ0) is a stationary point, i.e., the first
derivatives with respect to parameters m and λ vanish at that point. The stationary point
furnishes two equality constraints which solve our problem. Differentiating U with respect
to λ, and setting the derivative to zero provides the first constraint,

T 2 = ||Wd−WF [m0]||2, (4.3)

which restates what we have already imposed. The other constraint comes from the deriva-
tive with repsect to m. Before we take the functional derivative ∂U/∂m, we see that, in
order to do so, we will need the first derivative of our non-linear functional, ∂F [m]/∂m.
For this we will assume that F is differentiable about some starting model m1, and since
(4.2) uses the Euclidean norm, we may make use of the first-order Taylor expansion,

F [m1 + ∆] = F [m1] + J1∆ + ε; (4.4)

∆ is some small vector perturbation, which we will define in terms of the nearby model,
m2, such that,

∆ = m2 −m1; (4.5)

J1 is the Jacobian matrix, evaluated at m1, and whose elements are given by,

j
kl

= ∂Fk[m1]
∂ml

; (4.6)

ε is the error vector of a local, linear approximation of F , and whose magnitude is O||∆||.
Since this is an algorithm designed for arbitrary non-linearity, it must be iterative. We
start with an initial guess of a model vector, which we call m1, about which, we compute
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J1; if the functional derivative cannot be derived analytically, the Jacobian matrix may be
computed either with numerical differencing or the adjoint method [e.g. McGillivray et al.,
1994]. Then, we seek to find the next “best” guess at a model, which we call m2, that
will satisfy the problem statement, embodied by the minimization of U . Inserting (4.4),
dropping the error vector from now on, and (4.5) into (4.2) we find an approximation of
the unconstrained functional,

U(m2, λ) = ||∂m2||2 + λ−1
{
||W (d− F [m1] + J1m1)−WJ1m2||2 − T 2

}
. (4.7)

Setting the derivative of (4.7) with repsect to m2 to zero, we arrive at the following linear
system to be solved for the unknown m2 in terms of knowns, λ, m1, F [m1], and J1:

m2 =
[
λ∂T∂ + (WJ1)T (WJ1)

]−1
(WJ1)TW (d− F [m1] + J1m1). (4.8)

There are two important matters left to address: one, we must choose λ; and two,
due to the non-linearity of the forward functional, we have no guarantee that F [m2] will
produce a misfit less than or equal to our chosen tolerance, either due to the limitations
of the local linear approximation (4.4), or because the original problem statement has no
solution at all. The two remaining matters are related, and the Occam algorithm provides
a heuristic way of tackling both. The initial stages of the Occam algorithm are aimed at
lowering the misfit of sequential model guesses until they reach the tolerance level. The
value of λ varies from one iteration to the next. At each iteration we choose the value
which produces the greatest reduction in misfit to the data. There is no analytical way
of predicting which value of λ will achieve this, so a numerical search is performed over a
range of λ’s. The equation (4.8) is solved for multiple λ, holding m1 and J1 constant, and
the misfits of the resulting F [m2]’s are analyzed with respect to λ. A larger λ directs (4.8)
toward smoother models, and a smaller λ toward rougher models. The smoothest model
is unlikely to have the required complexity to fit the data and thus will produce a large
misfit. One might assume the roughest model to have the smallest misfit. However, that
is not normally the case since the roughest model guesses usually require a large step in
model space, ∆, which reduces the accuracy of the linear approximation (4.4) upon which
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(4.8) is based; these inaccurately-projected models will usually have a larger misfit than
a more conservative step associated with a smoother model. This misfit behavior at the
extremes in λ-space means that, along the curve of misfit with respect to λ, there is typically
a definite minimum. We must search through enough values of λ to find that minimum
in misfit; there are many efficient algorithms for performing such a line search [e.g., Press
et al., 2007]. In the initial iterations, the minimum misfit is usually found to lie above
the chosen tolerance (see Figure 4.1). In that case a new iteration begins, starting from
the model corresponding to the λ which produced the minimum misfit. New F and J are
calculated for this model and the search over λ is repeated. This process continues until
λ’s are found that produce misfits which are below the tolerance; achieving a misfit below
the tolerance is not guaranteed to happen, and may never happen. The inability of an
inversion to reach the chosen tolerance level usually indicates that the magnitude of errors
in the data, whether systematic or random, are underestimated. One could increase the
error amplitudes or increase the tolerance level, two similar solutions to the same problem.
Once a model with a misfit less than or equal to the tolerance level is reached, the second
and final stage of the Occam algorithm begins. In subsequent iterations, it is likely that
multiple λ’s will produce misfits that are below the tolerance. The largest of these is chosen
as the correct λ because it produces the smoothest model that satisfies the tolerance in
misfit, our prescribed objective. The iterations of the second stage proceed by repeatedly
choosing the largest λ which meets the tolerance in misfit until convergence is reached, i.e.,
successive iterations produce negligibly different models. The second stage can be called
the smoothing stage because it methodically removes excess structure that is not required
to keep the misfit equal to the tolerance level. The final model can be said to be the
smoothest model, within the search path, that meets the data constraints to the chosen
level of tolerance. As has already been stated, infinitely many more models may fit the
constraints to the same level of tolerance as our smooth model. While the second stage of
the Occam algorithm is aimed at removing any excess model roughness that is not required
by the data, there is no proof which allows us to state that the final Occam model is the
smoothest of all models producing the tolerated amount of misfit. However, an apt starting
model may increase the chances of this being true. The logic for the choice of starting model
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procedes as follows: if one uses a starting model that is maximally smooth, i.e., all model
parameters are equal, from there the Occam process slowly adds only enough complexity
so as to meet the requirements of the data. One would expect the final model from such
a starting point to be the smoothest possible. As a check on this expectation, different
values for a uniform initial model vector may be tested. In practice it has been found that
different starting models of uniform resistivity result in the same final model, providing
some evidence that the final model may be uniquely the smoothest.

In Figure 4.1 we plot an example of the Occam inversion algorithm. The example
is of DC resistivity data produced over a layered earth; the layer resistivities are plotted
with a blue dashed line in plot B. The DC resistivity array is of Schlumberger type, with
current electrode spacing denoted as AB. The resulting apparent resistivity calculations had
10% noise added to create synthetic data, plotted as blue asterisks in plot C. In plot A, the
gray lines depict the line search over λ for the first two iterations of stage 1 of the Occam
process, which reduce the misfit toward the chosen tolerance level; the curves corresponding
to these two iterations are numbered chronologically. The Lagrange parameter search of
the third iteration reaches misfits below the tolerance level, thus beginning stage 2 of the
Occam process. The largest-λ intersection between the black curves in plot A and the
tolerance level is chosen in each of the iterations of stage 2. This finds increasingly smooth
models that fit the data to the same level of misfit. Finally, successive iterations yield little
difference in the chosen model, so the process is terminated with a final model. The final
model and its prediction are plotted with black in plots B and C, respectively; in those
plots, models and predictions from the intermediate iterations are plotted in gray.

4.2 The Effect of Data Forms in MT Inversion

With any inverse problem, a data vector, derived from the same set of observa-
tions, may take multiple forms. In the case of MT measurements, the common options are:
real and imaginary impedance; apparent resistivity and phase; or the logarithm of apparent
resistivity and phase. All these forms are related by simple analytic transformation formu-
lae, yet they have a discernible effect on the inversion process. In this section, we compare
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Figure 4.1: An example of an Occam inversion of synthetic 1D DC resistivity data. A.)
A plot of the Lagrange-parameter line search at each iteration. Iterations from stage 1 are
plotted in gray and numbered chronologically, while iterations from stage 2 are plotted in
black. The λ parameter chosen at each iteration is plotted with a small circle; the final
λ is plotted in red. B.) A plot of the model guesses, in terms of layer resistivities at
depth, corresponding to each iteration of the Occam process. The final model is plotted in
black, while the true model is plotted in blue. C.) The 1D DC synthetic data (apparent
resistivity as a function of half the current-electrode spacing of a Schlumberger array, AB/2)
is plotted with blue asterisks, along with each iteration’s model prediction in gray lines; the
final model’s prediction is plotted in black.
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the behaviors of MT inversion under these different data forms and judge which form is
optimal.

We will use synthetic measurements from an example model which is roughly akin
to a model for central California in that it produces a strong coast effect. The coast effect is
a phenomenon observed particularly in marine MT data, in the vicinity of the coastline of
a resistive continent [e.g. Constable et al., 2009, Key and Constable, 2010]. The following
are signatures of the 2D coast effect in MT data: negative TE-mode phases that wrap from
−180◦ to 180◦ at some characteristic period of field oscillation, where a concomitant cusp
in the TE-mode apparent resistivity is found; and a depression of the TM-mode apparent
resistivity relative to the value for a similar model without a nearby coast (see Figures 4.3
and 4.4). Key and Constable [2010] provided an explanation for these phenomena with 2D
modeling of the Poynting vector near a coastline. We provide a 3D exploration of the coast
effect in Section 6.1.

Figure 4.2 depicts the simple 2D coast model we use in this study of data forms.
It has a gradual continental slope which levels out to a 4 km deep ocean. The model has
a uniform sub-seafloor resistivity which we will vary over multiple forward calculations. At
each of the 20 seafloor sites we will calculate the MT quantities of impedance tensor (Z)
and vertical magnetic transfer function, or tipper (V).

Figures 4.3 and 4.4 contain plots of two separate calculations of our simple coast
model using two different seafloor resistivities, 90 Ωm and 115 Ωm. These figures also show
the 1D values which would correspond to models with the same seafloor resistivities but
with no coast. Without dwelling on the physics of the coast effect, the point we make here
is that coastlines create extreme effects in the apparent resistivity, phase, and tipper data
which vary in a complicated way with respect to the conductivity of the earth; this provides
a challenge for non-linear inversion which must make a linear approximation to predict how
a change in model parameter will effect a fit to the data. In contrast, the change in the
data over the same change in model parameter for the model without a coast is much more
banal; it would appear that a coast-free inversion presents far less of a challenge.

The Occam inversion algorithm, along with other gradient-based algorithms, finds
an optimal model by traversing the misfit space in a consistently downhill fashion (i.e.,
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Figure 4.2: Model with a simple coast and uniform seafloor used in synthetic misfit study.
The black diamonds indicate locations of hypothetical MT receivers.

in the direction of decreasing misfit). Due to this behavior, there are a few properties of
misfit spaces that ensure success with such non-linear inversion schemes. First, the Occam
inversion has the best chance of finding the “true” model if the misfit space, given by the
data and the forward functional, is convex (i.e., has a single minimum). This is because
the Occam inversion algorithm has no explicit mechanism for escaping local minima, as
would, for example, a stochastic inversion method by accepting models that constitute an
uphill step in misfit. Gradient-based non-linear inversion methods simply march downhill
in the misfit space until the only choice left is to move uphill (i.e., the conditions of a
local minimum), at which point it accepts the current position in model-space as the final
solution. The only possibility for an Occam inversion to escape a local minimum comes
during the Lagrange parameter search. The Lagrange parameter search will sample models
of varying roughness, some of which may lie outside the local minimum at a lower level of
misfit. However, the Lagrange parameter search does not sample models of varying absolute
size (unless a model norm is employed instead of a roughness norm), which may be what is
required to get out of a local minimum and back on the way toward the absolute minimum.
Second, the parameter values of the final model of an inversion are better constrained if the
misfit surface around the true model, has steep walls. This means that a small change in
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Figure 4.3: MT apparent resistivity and phase alculations for the model pictured in 4.2.
Two uniform seafloor resistivities were used: 90 Ωm (solid lines) and 115 Ωm (dashed lines).
The black lines plot the respective values for models with equivalent seafloor resistivities
but no coast (i.e., purely 1D), in which case TE and TM modes are equivalent, and the
phase is always 45◦.

model parameters away from the true value will create a greater increase in misfit, bestowing
greater statistical significance to the final model parameters. Finally, the misfit value of
the true model must meet the statistically expected value so that the user is aware when a
probable model is reached. We will now examine plots of the misfit spaces for our simple
coast model with data packaged in the different possible forms, and appraise the misfit
spaces of these different data forms in terms of the aforementioned properties that facilitate
success for the Occam algorithm.

The proposed misfit spaces are 1D, i.e., they vary with only one model parameter
(N = 1). Low-dimensionality, while not representative of regularized inversion, where N �
M , makes the misfit spaces amenable to plotting and analysis. We expect the differences
observed between data types to carry over to higher-dimension problems, as we will show
with some highly-parameterized synthetic studies at the end of this section.

The misfit spaces are computed in the following way. We choose one seafloor resis-
tivity to be the true model. A MT calculation is made for the true model and independent
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Figure 4.4: MT tipper calculations for the model pictured in Figure 4.2. Two uniform
seafloor resistivities were used: 90 Ωm (solid lines) and 115 Ωm (dashed lines). The black
lines plot the respective values for models with equivalent seafloor resistivities but no coast
(i.e., purely 1D), in which case all tipper ratios are exactly zero.

Gaussian errors are added to the real and imaginary components of the impedance tensor
and the tipper vector to create synthetic data. The standard deviation of the pseudo-
random, Gaussian errors are chosen to be a defined percentage of |Z| and |V|, for Z and
V, respectively; this ensures that the real and imaginary parts of each synthetic datum
are jointly distributed with a probability distribution that is circularly symmetric in the
complex plane, an assumed characteristic of actually measured data. Then, MT calcula-
tions are made over many models that span a range of seafloor resistivities. These serve
as the model predictions made by the forward functional. For each of these predictions, a
root-mean-square (RMS) misfit is computed relative to our synthetic data. Building from
(4.1), the RMS misfit is defined as,

XRMS =
√
X2/M. (4.9)
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Based on the previous discussion in Section 4.1, we predict,

E[XRMS] ≤ 1− 1
4M + 1

32M2 +O(M−3), (4.10)

making use of the formula for E[||X||], derived for the random vector X in Parker [1994].
For each of the data forms we compare the misfit spaces for inversions with and without
tipper information. The data vectors which include tippers have an M = 2040, whereas
with the tipper information excluded M = 1360. In either case, M is large enough that we
expect the RMS misfit to be very close to 1.0 at the true model.

Figures 4.5 through 4.7 depict the results of the misfit space calculations. The
initial observation, common to all plots, is that the solid and long-dashed green lines are
much more jagged with multiple local minima than the other curves. The green lines relate
to impedance data in the form of apparent resistivity and phase. Data in this form seem to
present the worst option for MT inversion near a coast. The blue solid and long-dashed lines,
which represent the misfit spaces for the real and imaginary components of the impedance
tensor and tipper vector, also have multiple local minima, but theirs are less pathological
than those of apparent resistivity and phase. For this simple model, we conclude that the
real and imaginary components of the impedance tensor and tipper vector are the second
worst choice for the form of coast-affected data. It is the apparent resistivity and not the
phase that causes the multiplicity of local minima. Once apparent resistivity is put into the
logarithmic form, the jaggedness of the misfit space is reduced despite the continued use of
phase. Likewise, once the tipper vector is put into the form of the logarithm of amplitude
and phase, the jaggedness of the misfit space is further reduced.

Next, we note that all of the dotted curves, deriving from the different data forms
over a 1D halfspace (HS), are perfectly smooth and convex. These represent data for
the same range of model parameters but without a coast. As expected, the coast-free
inverse problem is much simpler. In fact, the uni-parameter, coast-free inverse problem is
guaranteed to converge to within some expected uncertainty of the true solution, regardless
of the form that the data takes, and regardless of what the initial model guess is (i.e., where
along the misfit curve the inversion search begins); this is not guaranteed when a coast
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Figure 4.5: Misfit spaces around two different seafloor models (A & B). The solid lines plot
the misfit spaces for five different data forms derived from the same synthetic data vector.
The data symbols include: real and imaginary components of the impedance tensor, Z, the
real and imaginary components of the tipper vector, V, apparent resistivity, ρa, impedance
phase, ΦZ, and tipper phase, ΦV. The long-dashed lines plot the misfit spaces for the same
data collections but without any tipper data. The dotted lines plot the misfit spaces for
data collections calculated over a 1D halfspace, i.e., a coast-free model, and thus also do
not include tipper data.
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Figure 4.6: Misfit spaces around the same seafloor model, but with two different magnitudes
of Gaussian errors added (C & D). Lines and symbols follow the same conventions as in
Figure 4.5.
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Figure 4.7: A close-up of the portion of Plot B in Figure 4.5 delineated by the gray box.
Lines and symbols follow the same conventions as in Figure 4.5. We should note that
different realizations of a random vector were added to the 1D halfspace and coast-affected
data. This produces the slight mismatch in RMS misfit between these two groups of data
at the true model.

is added. However, we also note that the walls of the valleys in the misfit curves around
the true models are steeper for the coast-affected data than they are for the coast-free
data (see Figure 4.7). The coast-effect acts to better constrain the seafloor resistivity, a
consequence of the increase in wavenumber-richness in the electromagnetic fields that have
been distorted by the coast (see Section 5.9). For the more conductive model (Plots A &
B), the same misfit valleys are even steeper when including tipper data than without. The
only difference between plots C and D is the magnitude of the Gaussian errors introduced
into the synthetic data; C was made with errors 10 times greater than that of D. The valleys
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in the misfit surfaces around the true model for plot D are much steeper than that of plot
C. As we would expect, the lower the magnitude of data errors the better constrained the
final parameter value.

The curves for all of the linearly-scaled data forms flatten as the model prediction
moves toward more conductive seafloors; this does not happen with the log-scaled data
forms. To explain this flattening, we look first at the 1D HS curves where we can ignore
impedance phase, which is always 45◦ regardless seafloor resistivity, and the tippers which
are always zero. We note that for the linearly-scaled data forms over a 1D HS, Fi[m]→ 0
as ||m|| → 0, and analyze how this limit affects our different misfit measures. For the
linearly-scaled misfit we write,

lim
Fi→0

X2 = lim
Fi→0

M∑
i=1

(
di − Fi[m]

σi

)2
=

M∑
i=1

(
di
σi

)2
= const. . (4.11)

This explains the flattening in the misfit curves when the seafloor resistivity is much lower
than that of the true model. The same flattening is seen in the models with a coast because
the coast effect vanishes as the seafloor resistivity approaches that of seawater. Next, we
write the definitions of the log-scaled data, model predictions, and error estimates in terms
of their linearly-scaled counterparts. With the log-scaled values denoted by the .̆, we have,

d̆i = log10 di, (4.12)

F̆i[m] = log10 Fi[m], (4.13)

and

σ̆i = σi
di ln 10 , (4.14)

where (4.14) is found through linear propagation of error, which we derive in Appendix A.
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Then, the log-scaled misfit measure is,

X̆2 =
M∑
i=1

(
d̆i − F̆i[m]

σ̆i

)2

=
M∑
i=1

[(log10 di − log10 Fi[m])(di ln 10)
σi

]2

=
M∑
i=1

ln

 di
Fi[m]

(
di
σi

)


2

. (4.15)

Taking the limit again, we find,

lim
Fi→0

X̆2 =∞. (4.16)

With the log-scaled inverse problem, there is no flattening in the misfit curve on the conduc-
tive end of the parameter space. Conversely, we analyze the different misfit behaviors as the
seafloor becomes more resistive. By noting that for the 1D HS, Fi[m]→∞ as ||m|| → ∞,
we find,

lim
Fi→∞

X2 =∞, (4.17)

and

lim
Fi→∞

X̆2 =∞. (4.18)

In summary, the log-scaled misfit measure never leads to a flat curve in parameter space,
whereas the linearly-scaled measure leads to a flat curve on the low end of parameter space
(assuming the parameter is defined as resistivity). Flat misfit curves can lead to divergence
in the Occam inversion process as it is very difficult to detect, within the limits of numerical
precision, which direction in parameter space leads downhill in misfit. This behavior at the
limits of parameter space provides another argument for the superiority of the logarithm
of apparent resistivity and the logarithm of tipper magnitude as the form of data to be
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Figure 4.8: The true model and final models produced by synthetic inversion experiments
with different data types. The labels in each plot describe the setup for the that inversion.
The data types used are: logarithmic apparent resistivity (log1 0(ρa)), linear apparent re-
sistivity (ρa), impedance phase (ΦZ), and the real and imaginary components of the raw
impedance (Z). The standard deviation of synthetic Gaussian noise added to the data for
each inversion are in terms of percentage amplitude of the raw impedances, either 5% or
10%. Finally, the number of iteration that it took for each inversion to converge is reported,
except for the cases where the inversion did not converge (d.n.c.).

inverted. Looking back to (4.15), the only way the logarithmic form of data would lead to
a flat misfit curve is when none of the Fi[m] change with a change in m. In this case, the
inverse problem is inescapably ill-posed.

Finally, we note that all forms of data reach the expected value of RMS misfit,
1.0, only at the true model. Thus, assuming data errors are well estimated, one should
have little trouble identifying when the most probable model has been reached, regardless
of data form.

We close this section with a more practical illustration of how data forms affect
the inverse problem. We perform synthetic, regularized inversions on each different data
type generated from a highly-parameterized model, as opposed to the single parameter
model addressed before. The “true” model shown in the upper left corner of Figure 4.8
is parameterized with 799 blocks below the same simple seafloor used previously. The
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background resistivity is 100 Ωm, with an anomalously conductive block of 5 Ωm. The
other plots in Figure 4.8 show a synopsis of the final models resulting from some of the
inversions using different data forms, different quantities of synthetic noise, and different
uniform starting models. Reported in each of these plots is the number of iterations required
for the inversion to converge upon the smoothest model to fit the data to an RMS misfit of
1.00, or “d.n.c.” (did not converge) when an inescapable local minimum was encountered
at an RMS misfit greater than 1.00. Much of the behavior encountered in these highly-
parameterized synthetic models confirm what was inferred from the uni-dimensional model
space, but there are slight differences that are presumably enabled by the increase in degrees
of freedom. The logarithm of apparent resistivity with phase is still the top performer for
data distorted by 2D bathymetry, as was found with the uni-dimensional misfit space. It
consistently converges to the expected RMS misfit, recovering, in a smoothed form, a model
consistent with the true model, regardless of the amount of noise added and the starting
model used. Another important observation is that inversion of data in this form converges
with the fewest iterations, about a factor of two fewer than the next best form of data.
The next best form of data, contrary to what the uni-dimensional misfit spaces predicted,
is linear apparent resistivity and phase. However, with this data form, larger components
of random error led to divergence, when given a starting model more conductive than
the true background. When given a starting model on the more resistive side of the true
background, convergence is reached even with the greater component of random error added.
Nonetheless, the linear apparent-resistivity inversions that did converge, did so in twice as
many iterations as their logarithmic counterpart. Also, note that in Appendix A we show
that use of data in the linear apparent resistivity form introduces a minute bias when it is
assumed that errors are Gaussian in the real and imaginary components of an impedance
element; alternatively, there is no bias in the logarithmic form of apparent resistivity. Lastly,
the raw impedance (real and imaginary components) inversions diverged at every attempt:
all combinations of low noise, high noise, conductive starting model, and resistive starting
model.

The conclusions drawn from these synthetic studies have little immediate effect on
the practice of 2D inversion of marine data because the logarithm of apparent resistivity has



92

been the default data form for some time, albeit, prior to this study, the author has never
encountered an argument as to why. Also, as stated earlier, the smoothness of impedance
curves with respect to period from areas that do not suffer from the coast effect make it
unlikely that a 2D inversion of MT data collected far inland would be noticeably affected by
data form. Nonetheless, as 3D inversion becomes more widespread, where the use of all four
elements of the impedance tensor is required, the results presented here may be of use. The
diagonal elements of the impedance tensor do not inherit the intuitive interpretation that
the form of apparent resistivity provides for the off-diagonal elements. This has left room for
debate over which form these data should take. Consequently, the author has seen a return
to interpreting and inverting data in the form of real and imaginary impedance components
in the growing number of 3D MT studies. The preceding conclusions argue for the continued
use of all four 3D impedance elements in the form of logarithmic apparent resistivity and
phase, especially when the extreme effects of the coast are confronted. Conclusions similar
to those of this study have been confirmed with another electromagnetic method, CSEM.
It was found in the inversion of actual CSEM data that an inversion of the logarithm
of amplitude (and phase) was able to converge to an acceptable model when the linear
amplitude inversion did not (personal communication with Kerry Key).

4.3 Inversion of Estero MT Data

In this section we present a collection of models that result from Occam inversions
of the Estero MT dataset. The entire usable dataset, presented in Figures 3.15-3.18, results
in an M =4,896. As mentioned in Section 4.1, the Occam approach is to over-parameterize
the model and compensate with regularization. So, we use a model of a 2D earth with 16,810
rectangular blocks, each filled with a constant resistivity that is left as a free parameter in
the inversions (see Figure 4.9); thus, N =16,810. In spite of the vertical exaggeration in
Figure 4.9, one can see that, in the area of our model discretization that is plotted, there
are more vertical boundaries than horizontal boundaries over an equivalent distance. The
majority of MT inversion schemes (including that used in Becken et al. [2011]) use this
sort of model discretization in which the height of model blocks grow with depth, usually



93

exponentially. Such spacing is a means of meeting the computational limit on the number
of model parameters which may be inverted, by exploiting the fact that the resolution
of diffusive electromagnetic methods diminish with depth within the earth. Thus, more
model blocks are placed near the surface of the model and increasingly fewer toward the
base. The necessary growth in model block size is disproportionally accommodated in
the vertical dimension as it is difficult to do otherwise when using a rectangular model
discretization, as we do here. While the inversion software used here does allow model
blocks to grow in width with depth, the creation of a model grid with well-behaved aspect-
ratios is not automatic and cumbersome. The new trend toward the use of an automated,
unstructured, triangular discretization of a model more easily accommodates growth in
cell size evenly in the horizontal and vertical directions. We return to this aspect of our
rectangular discretization in Chapter 6. From this point on, all models are plotted with
zero vertical exaggeration, unless otherwise stated. Bathymetry along the line connecting
the instruments sites was acquired from the National Geophysical Data Center (http:

//www.ngdc.noaa.gov/). The bathymetry is used to delineate the region of the model
that is held fixed at the conductivity of seawater, 3.3 S/m (denoted by a gray fill color in
subsequent model plots).

An inner region of the final inversion model is plotted in Figure 4.10; we will refer
back it often as Model 1. The final level of tolerated misfit was chosen to be XRMS =
1.30. Initially, after adjusting the data errors as described in Section 3.6, an inversion
of the data was attempted with the tolerated misfit set at XRMS = 1.00. The inversion
algorithm reached a point where it could no longer find a reduction in misfit atXRMS = 1.28.
We viewed this to be the minimum achievable misfit given our data, data errors, model
parameterization, and model regularization. In order to allow for the smoothing iterations
(stage 2) of the Occam algorithm to relax to some level of convergence we chose our final
target misfit to be slightly higher than 1.28.

The overall RMS misfit value, while pivotal in the Occam algorithm, carries no
information about which individual model predictions do worse relative to others at meeting
the data constraints. One would need only to look at a plot of the model predictions
alongside the data to make this assessment, but we find these plots overwhelmingly busy

http://www.ngdc.noaa.gov/
http://www.ngdc.noaa.gov/
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Figure 4.9: Partial grid of model parameter blocks used in the inversions. The full grid
extends to ±4,500 km on either side of the coast, to a depth below sea-level of 3,200 km
and a height above sea-level of 4,500 km. There are a total of 16,810 free parameter blocks
in the full grid. The parameter blocks increase in height with increasing model depth.
They also increase in width with increasing horizontal distance from the region containing
the receivers, the region pictured. The rectangles with inscribed X’s and accompanying
site-name labels denote the location of the MT receivers within the model setup. The gray
region denotes the portion of the model with a fixed resistivity of 0.3 Ωm, that of seawater.
The vertical exaggeration (V.E.) in the image is 3.
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Figure 4.10: (Model 1) The final model result of a smooth 2D inversion of the Estero MT
dataset, as presented in Figures 3.15 - 3.18. Model block resistivity is plotted in color with
warmer colors indicating conductive features and cooler colors indicating resistive features.
The vertical black line plotted at 70 km from the coast is the approximate location and
depth extent of the San Andreas fault.

and difficult to digest. Instead, we have condensed the model prediction information into
local measures of RMS misfit. The word “local” conveys that it is a measure calculated
over a specific subset of the data and model predictions. We choose these subsets in three
different ways: by data period, by data type (e.g., apparent resistivity or phase), and by
instrument site. In this way, we may categorize where the model predictions are succeeding
or failing. Such a distillation of misfit by data subset is plotted for our final model in Figure
4.11. Immediately, we identify a few trends. As the data period increases, so does the final
model’s misfit to the data. The inversion process did the worst at fitting TE-mode data,
both apparent resistivity and phase, relative to the other data types. The inversion process
found it especially difficult to fit the sites of marine data in the deepest water (M40 and
M36).

We now appraise the Estero MT data’s sensitivity to the final model parameters
given in Figure 4.10. As a rough measure of any single parameter block’s relative importance
in terms of affecting misfit, we look to the weighted Jacobian matrix. The inversion process
uses as model parameters the logarithm of block resistivity, such that,

mi = log10 ρi, i = 1, 2, . . . N. (4.19)
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Figure 4.11: A breakdown of the misfit resulting from the model in Figure 4.10 by period
(A), data type (B), and site (C). The overall RMS misfit is 1.30.

This choice of model parameter has the advantageous effect of forcing the resistivity through-
out the model to be positive, thus confining all models within the realm of what is physically
possible. (Note that the log-domain, for all practical purposes, prohibits both infinite con-
ductivities and infinite resistivities. Models containing such extreme properties have been
shown to to achieve the minimum possible misfit for data derived from 1D models [Parker,
1980, 1981]. However, such models have no geological relevance, so we intentionally pro-
hibit them.) Also, the roughness measure is affected. Instead of penalizing absolute changes
in resistivity from block-to-block, we penalize relative changes in resistivity from block-to-
block. Applying the chain rule to the continuous representation of the roughness measure,
we find

∂m = ∂ log10 ρi = 1
ln(10)ρi

∂ρi. (4.20)
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In the actual discrete roughness measure, the change in resistivity from block-to-block is
implicitly normalized by the local resistivity value. This normalization carries over to our
Jacobian. Substituting d̃k for the kth model prediction, Fk[m], in (4.6), we have,

j
kl

= ∂d̃k
∂ log10 ρl

= ln(10)ρl
∂d̃k
∂ρl

. (4.21)

Thus, the weighted Jacobian matrix,

(WJ)kl = ln(10) ρl
σk

∂d̃k
∂ρl

, (4.22)

is dimensionless, given in units of standard deviations per proportional change in resistivity.
Similar to MacGregor et al. [2001], we use the Jacobian matrix to develop a measure of
sensitivity as the cumulative absolute change in model prediction per proportional change
in resistivity per unit area:

Sensitivity = ln(10)
N∑
k=1

ρl
Alσk

∣∣∣∣∣∂d̃k∂ρl

∣∣∣∣∣ , (4.23)

where Al is the area of the lth model block. A plot of the data’s sensitivity to a broad
portion of the model is presented in Figure 4.12. It should be kept in mind that the
Jacobian matrix is a linearization of a non-linear phenomenon. It is only useful for small
perturbations about the current model. A significant change in the model would likely
produce a significant change in the data’s sensitivity. Nonetheless, it provides a rough idea
of which model blocks are better constrained by the data, given the current model. We
choose to narrow down the interpretable area of Model 1 to the region within the gray line
of Figure 4.12 based on the sensitivity values. Within that sub-region the majority of the
parameter blocks have a data sensitivity that is within three orders of magnitude of the
greatest sensitivity found in our model.

As one would expect, the greatest data sensitivity is found closest to the instrument
sites. A broader comparison of Figures 4.10 and 4.12 evokes the traditional maxim that MT
is sensitive to conductors; the areas with high data sensitivity predominantly correspond
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Figure 4.12: A Plot of the data’s sensitivity to the model parameters of Model 1. The
sensitivity is given in units of standard deviations of data per proportional change in model
parameter value. Warm colors indicate that a small perturbation of a given model parameter
from its final value has a large effect on the modeled data, whereas cooler colors indicate
that the same perturbation has a small effect on the modeled data. The thick gray lines
circumscribe the region of Model 1 chosen for interpretation and plotted in Figure 4.10.
The majority of model blocks in the chosen region have a sensitivity within three orders of
magnitude of the highest sensitivity found in the entire model.

to areas of high conductivity. However, Figure 4.13 provides an example of where this
maxim does not hold. The region of the data sensitivity outlined with the dashed black line
corresponds to model blocks with relatively high resistivity (7,500 Ωm).

As a means of discerning which model predictions produce the high sensitivity in
the region of high resistivity, we create a test model and analyze how its model predictions
compare with those of our final model. The test model depicted in plot A of Figure 4.14 is
equivalent to Model 1 of Figure 4.10 except for a 30 Ωm connection between the near-surface
conductive region below site 631 and the deeper conductor below site 632; this test conductor
breaches the high-resistivity, high-sensitivity region which forms a cap on the southwestern
side of the comet-shaped deeper conductor. Solely as a matter of convenience, we will call
the lower crustal conductor below site 632 the Rinconada conductor, as it is centered almost
directly below the surface trace of the Rinconada fault. At its most conductive point, the
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Figure 4.13: A close-up comparison of the final model-parameter values (left) and their cor-
responding data sensitivity (right). The majority of parameter blocks with high sensitivity
correspond to low resistivity values, whereas, the dashed black line outlines a region of high
sensitivity that corresponds to very high resistivity values.

Rinconada conductor has a resistivity of 0.5 Ωm, nearly as conductive as seawater. The
overall misfit for the test model is 1.79, a significant increase over our final model. Plots B
and C in Figure 4.14 display the difference in local RMS misfit between the test model and
the final model. Positive values of local RMS indicate that the test model produces a worse
match to the given subset of data than does the final model, while negative values indicate
that the test model produces a better match. The relatively small change in resistivity
structure presented by the test model produces significant and adverse changes in the local
misfits. While one would expect the nearby sites 630, 631, and 632 to experience large
increases in misfit under the test model, one would not expect site M40 to experience an
appreciable change in misfit; yet, it does. Site M40 is over 200 km away from the test model’s
change in resistivity structure. In contrast, site 634 is less than 30 km away from the change
in resistivity structure, but experiences no change in misfit. In fact, outside of the direct
vicinity of the test conductor, the land sites show negligible changes in misfit while all of the
marine sites show an increase in misfit. Therefore, we can say that, given the final model,
the high-resistivity region below sites 631 and 632 is heavily required by the marine data;
on the contrary, the land data are mostly indifferent toward its existence. Furthermore,
the high-resistivity cap is heavily required by the TM-mode apparent resistivity, and to a
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lesser extent TM-mode phase data. The test model has almost no effect on the misfit to
all TE-mode data or tipper data. The levels of relative misfit between the test model and
Model 1 show an increase with increasing period of oscillation.

Figures 4.15 and 4.16 illustrate the physics behind the marine data’s strict re-
quirement for the resistive barrier between the surface conductors near the coast and the
Rinconada conductor. It is a manifestation of what is known as the TM-mode coast effect
[e.g. Cox, 1980, Heinson and Constable, 1992], to which we alluded in Section 4.2. The
TM-mode coast effect is recognized as a depression of the apparent resistivity curve rela-
tive to the 1D response of a similar earth with no coast. At longer periods, it is nearly
independent of the period of energy; accordingly, it is described as a galvanic effect rather
than an inductive effect. The traditional explanation for the TM-mode coast effect is that
charge accumulates at the coastline where horizontal electric current, induced in the con-
ductive seawater of the deep ocean, has its landward progress thwarted by the relatively
resistive continent. The charge accumulation produces an electric field which counteracts
the primary electric field on the marine side of the coast. The net effect is a reduction in
the amplitude of the total electric field on the marine side of the coast. On the land side
of the coast, the effect is the opposite; the charge accumulation bolsters the total field. In
terms of apparent resistivity, the TM-mode coast effect translates into a downward shift on
the marine side and an upward shift on the land side, relative to a similar 1D response. In
Figure 4.15, we see that the addition of the test conductor that connects the Rinconada
conductor to the surface conductors near the coast opens a conduit for currents induced in
the ocean to escape into the upper mantle, reducing the charge accumulation at the coast.
This short-circuit through the resistive continental crust dramatically changes the current
distribution in the ocean and seafloor, a consequence detectable by all of the Estero MT
seafloor receivers. Figure 4.16 provides plots of the change in electric and magnetic field
amplitude and phase due to the addition of the test conductor. The test conductor partially
neutralizes the TM-mode coast effect. The lack of charge accumulation increases the total
electric field in the ocean and decreases it on land. Also, by producing a near-vertical sheet
current from the ocean into the mantle, the test conductor produces a dipolar change in
the total magnetic field. The broader observation is that the changes to both the amplitude



101

M
40

M
36

M
35

M
34

M
33

M
31

M
27

M
25

M
23

M
19

M
18

M
17

M
12

M
11

M
10

M
06

M
03

M
02

M
01

63
0

63
0

63
1

63
1

63
2

63
2

63
3

63
3

66
5

66
5

63
4

63
4

66
6

66
6

66
7

66
7

63
5

66
8

66
9

63
6

67
0

67
1

63
7

67
2

63
8

63
9

64
0

−0
.50

0.
51

1.
52

Local RMS Difference

R
ela

tiv
e M

isfi
t b

y 
Si

te

 

 

TE log10(app. res.)
TE phase

Re(Tipper)

Im(Tipper)

TM phase

−0
.20

0.
2

0.
4

0.
6

0.
811.21.41.
6

1.
8

Local RMS Difference

Local RMS Difference

D
at

a T
yp

e

R
ela

tiv
e M

isfi
t b

y 
D

at
a T

yp
e

 

TM log10(app. res.)

D
ist

an
ce

 fr
om

 co
as

t (
km

)

Depth (km)

 
0

10
20

30
40

50
60

0 5 10 15 20 25 30 35 40 45 50 55

log10 Resistivity (Ωm) 

−1−0
.5

00.
5

11.
5

22.
5

33.
5

44.
5

Te
st 

M
od

el

A
B

C

D

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

R
ela

tiv
e M

isfi
t b

y 
Pe

rio
d

Pe
rio

d 
(s)

 

 

Fi
gu

re
4.
14

:
M
isfi

t
re
su
lts

fo
r
th
e
te
st

m
od

el
pi
ct
ur
ed

in
A
.T

he
te
st

m
od

el
is

ex
ac
tly

th
e
sa
m
e
as

M
od

el
1
pi
ct
ur
ed

in
Fi
gu

re
4.
10

ev
er
yw

he
re

ex
ce
pt

in
th
e
re
gi
on

of
30

Ω
m

m
at
er
ia
lo

ut
lin

ed
in

bl
ac
k
in

A
.T

he
te
st

m
od

el
ex
pl
or
es

th
e

da
ta
’s

se
ns
iti
vi
ty

to
a
po

ss
ib
le

co
nn

ec
tio

n
be

tw
ee
n
th
e
de

ep
er

co
nd

uc
to
r
be

lo
w

sit
e
63

2
an

d
th
e
sh
al
lo
w

co
nd

uc
to
rs

be
lo
w

sit
es

63
0
an

d
63

1.
T
he

ch
an

ge
in

m
isfi

t
du

e
to

th
e
ou

tli
ne

d
re
gi
on

in
th
e
te
st

m
od

el
re
la
tiv

e
to

th
e
m
isfi

t
of

M
od

el
1
is
pl
ot
te
d
in

B
,b

in
ne

d
by

pe
rio

d,
C
,b

in
ne

d
by

da
ta

ty
pe

,a
nd

in
D
,b

in
ne

d
by

sit
e.

T
he

ov
er
al
lR

M
S
m
isfi

t
of

th
e
te
st

m
od

el
is

1.
79

.



102

Figure 4.15: A comparison of the electric current density in the test model (above) and
Model 1 (below) at an oscillation period of 128 s. The model-block resistivities are indicated
in color, as in Figure 4.10. The white lines are streamlines of electric current density.
Therefore, the closer the spacing of the white lines, the higher current density, and the lines
point in the direction of current flow.

and phase of the fields are farther-reaching on the marine side of the coast than on the land
side. This explains why the resistive boundary at the coast is mostly required by the marine
data. In essence, the TM-mode coast effect gives the seafloor data enhanced sensitivity to
the resistivity structure beneath the coast, even at sites over 200 km away. If the inversion
of the land data demands the Rinconada conductor, then it is the marine data that require
this conductor to be electrically isolated from the dense current distribution induced in the
ocean. Such electrical isolation is achieved with the high resistivity material above and
seaward of the Rinconada conductor.

Is electrical isolation required deeper below the continental margin? If the Rin-
conada conductor is to be a fluid reservoir, as suggested by Becken et al. [2011], one hy-
pothetical origin of such fluids is the subducted oceanic crust, believed to underplate the
continental margin and the continent west of the SAF [Trehu and Wheeler, 1987, Tréhu,
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1991, Meltzer and Levander, 1991, Miller et al., 1992, Howie et al., 1993, Henrys et al.,
1993]. We use results from seismic imaging studies to place a conductive test region at the
imaged boundary between the continental crust and the subducted oceanic plate, provid-
ing an electrical connection between the Rinconada conductor and the material below the
continental margin (see Figure 4.17). The test model is a relatively conservative deviation
from the final model, yet it has a significant effect on the misfits to all of the marine sites
of data as well as the data from the land sites closest to the coast. Again, the change in
misfit occurs almost entirely in the TM-mode data, reflecting that the mechanism for the
marine data’s sensitivity to this deeper electrical connection is very similar to that of the
shallower connection in Figure 4.14. There is a defined peak at about 100 s in the periods
affected by the test model, likely a function of the depth of burial and the thickness of the
test conductor.

Next, we check whether the inversion process would allow a conductive connection
below the coast, between the oceanic crust and the Rinconada conductor, if no regularization
was applied to the sub-horizontal boundary between the continental crust below the margin
and the oceanic crust just below it. One area where a sharp contrast in conductivity is
expected is the boundary between the continental crust and the underplated oceanic crust.
This boundary is characterized by a sharp increase in seismic velocity with depth as well
as a sharp increase in density with depth [Howie et al., 1993]. The hypothesis we test
here is that the smoothness constraint, when applied to a region where the conductivity
of the actual earth is far from smooth, causes the inversion to compensate with unnatural
structures like the Rinconada conductor and the highly resistive region above and to the
southwest of it. Therefore, we remove, or “cut”, the roughness penalty at the parameter
block boundaries that lie along the plate interface as imaged by Howie et al. [1993]; the
boundaries which have no roughness penalty are highlighted with white in Figure 4.18. The
inversion with the penalty cut changes the shape of the shallow conductive section beneath
the continental shelf; material of less than 100 Ωm fills the space between the seafloor and
the penalty cut until about 10 km inland where is comes to an abrupt stop. The oceanic
plate, below the penalty cut is very resistive (>5,000 Ωm) until about 20 km inland. A new
conductor appears just below the coast, sitting atop the penalty cut, but is kept electrically
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Figure 4.18: The final model result of a smooth 2D inversion where there is no roughness
penalty applied across the cell boundaries highlighted in white. These boundaries lie along
the top of the subducted oceanic plate as imaged by Howie et al. [1993]. The vertical black
line plotted at 70 km from the coast is the approximate location and depth extent of the
San Andreas fault.

isolated from the material to the northeast by the now familiar resistivity wall. A lower
crustal conductor remains below site 632, but has has been pushed below the penalty cut
into the proposed underplated crust, at a depth of about 22 km. The material just above
the lower crustal conductor is now very resistive, as is the material below the 12 km under
the SAF. The main conclusion derived from this test inversion is that, even with the added
flexibility, the penalty cut inversion must place a resistive wall between the conductive
material beneath the continental shelf and a landward conductor similar to the Rinconada
conductor; the data adamantly demand that no electric current induced in the ocean be
allowed to escape into the lower crust and mantle of the continent.

Now that we have made the case for electrical isolation between the continent and
the electric current induced in the ocean, a question which naturally follows is whether
the Rinconada conductor is required to be electrically connected to the shallow conductive
material on the inland side of it. Model 1 has high resistivities to the southwest (seaward)
of the Rinconada conductor, but to the northeast (inland), the connection between the
Rinconada conductor and the shallow section is about 20 times more conductive (300 Ωm).
We test the necessity for this lower resistivity and plot the results in Figure 4.19. The
test model places a 3,000 Ωm lid atop and to the northeast of the Rinconada conductor.
The effect of this test model on the misfit is much less dramatic than the previous test
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conductor on the southwestern side. The overall misfit is practically unchanged by the test
resistor, 1.301 relative to 1.30 for the final model. For some sites, frequencies, and data
types, the local misfit is actually improved. Where the misfit is adversely affected by the
test resistor, the magnitude of the local misfit difference is 50 times smaller than the same
local misfit difference for the previous test conductor to the southwest (see Figure 4.14).
Thus, we conclude that the somewhat conductive (100s of Ωm) connection between the
Rinconada conductor and the shallow conductive structure in Model 1 is not significantly
required by the data. Since the data lack significant sensitivity to this region, the inversion
process elected to fill it with more conductive material to appease the demand for rough-
ness minimization. The Rinconada conductor could possibly be electrically isolated from
the conductive shallow crust on the northeastern side of it, just as it seems to be on the
southwestern side.

Having established that the TM-mode coast effect in the marine data is the pre-
dominant constraint requiring high resistivity below the coast, we wish to know what inde-
pendent inversions of just the land data, and just the marine data would produce. Figure
4.20 displays the inversion solution to just the land data (A), the final solution to all the
data (B), and the inversion solution to just the marine data (C) for comparison. The in-
version of the land data was able to reach a much lower level of overall misfit (0.90 RMS)
than the inversion of all the data. This could be predicted with Figure 4.11, which shows
that that the majority of the misfit produced by Model 1 derives from the marine sites. To
compensate for this, we elected to have the inversion of the land data meet an RMS misfit
tolerance of 1.00 so that the local misfits of the land sites approximately matched the local
misfits of the lands sites from the inversion of all the data. The inversion of the marine
data was kept at the prior RMS misfit tolerance of 1.30.

Figure 4.21 displays the difference in misfits achieved between the land-only in-
version and the full data inversion. Even though the land-only inversion fits the land data
better than the inversion of the full dataset, the land-only inversion seems to poorly re-
solve the size of the more prominent conductors on the land side of the two models. In
the land-only model, the Rinconada conductor is much wider and its base extends deep
into the mantle. The resolution of the Rinconada conductor achieved by our land-only
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inversion qualitatively matches that presented in Becken et al. [2011], which uses the same
data. Similar to the Rinconada conductor, the base of the conductor coincident with, and
extending about 90 km to the northeast of the SAF is smeared downward into the deep
mantle. This reinforces the popular idea that MT data lack sensitivity to the base of strong
conductors. However, it is clear from the inversion of the full dataset, that the addition
of marine data provides more rigorous constraints on the borders of some these landward
conductors. Note that the inversion of solely land data allows for there to be extremely
conductive material throughout the continental margin, seaward of the land data’s aerial
coverage. A comparison with the inversion of all the data, reveals that the emplacement
of an overly conductive seafloor trades-off with the conductor on the NE end of the data
profile, below the Great Valley of California (GV).

On a site-by-site basis, the inversion of marine data alone does significantly better
at fitting the marine data, except for two sites close to the coast. In the marine-only
inversion, an extremely resistive, vertical structure appears below these coastal sites. Such a
resistor is needed to appease the more seaward marine sites whose TM-mode data, harkening
back to Figure 4.14, require electrical isolation between the ocean and the continent. Since
there are no constraints on land, the inversion has been able to place a near homogeneous
wash of more conductive material (60-130 Ωm) there. It has been found in practice that
2D MT inversions have a tendency to place conductors on the edges of the extent of data
coverage in a model; all of the models found in this dissertation are examples of that. We
conjecture that this is a 2D inversion’s way of fitting data that have distortions from 3D
structures, such as curvature in the coastline. So, while the 2D inversion is inclined toward
a conductive quarter-space on land, outside the aerial coverage of the marine data, the
majority of marine data counter by requiring an insulating resistive wall at the coast. The
data from two of the sites close to the coast object to the extreme structure built up below
them, but they are outnumbered by the more seaward sites. Below the continental slope,
at about 40 km depth in the model resulting from marine data alone, arises a spire-shaped
region of higher conductivity material. The inversion of the full dataset also results in a
conductor near the slope but it is much more diffuse and resides more toward the deep ocean.
Again, there seems to be a trade-off with this sub-slope conductor and the conductor on the
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Figure 4.20: (A) the final model result of an inversion of only the land sites in the Estero
MT dataset. (B) for comparison, Model 1, the result from inversion of both land and marine
data. (C) the final model result for an inversion of only the marine sites in the Estero MT
dataset

NE end of the data profile. In Section 6.2 we put forth the argument that these conductors
are both artifacts resulting from the inversion’s struggle to fit both the coast-effect and
other 3D distortions in the data.

To gain insight into which data require the anomalous conductors found in Model
1, we again employ misfit analyses with test models. Within each of the four test models
we replace one the four large anomalous conductors with the local background resistivity,
so as to erase the effect of that conductor from the model prediction. The misfit to the
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Figure 4.21: A breakdown of the differences in misfit resulting from the models in (A) and
(C) of Figure 4.20, from inversions using only land data, and only marine data, respectively,
relative to the misfit resulting from the model in (B) of Figure 4.20, from an inversion using
both land and marine data. The misfit has been binned in three different ways: by period
(D), data type (E), and site (F). The overall RMS misfit of the land-only inversion result
is 1.00.

data is calculated for the “cleansed” model prediction, which is then compared to the misfit
of Model 1. Figure 4.22 presents each of the four test models with the erased conductors
labeled A-B. Note that the plots of the test models show a larger region of the model
domain than what has been selected for interpretation (see Figure 4.10). With this wider
view, we see that two very large and very conductive regions appear at each end of the
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C
D

Figure 4.22: Four separate test models for testing data sensitivity to four highly conductive
regions in the final inversion of Figure 4.10. The letters A-D label each of the tested
regions, outlined with a black line. These letters correspond to the plots in Figure 4.25,
which present the change in misfit caused by each of the test regions.

line of sites. These extreme conductors are not expected geologically and occur suspiciously
at the edge of the resolvable portions of our model. We wish to know which data have
demanded these implausible structures.

First, we analyze the requirement for the Rinconada conductor, labeled A. Figure
4.25 shows that the removal of conductor A causes a great increase in misfit to the tipper
data, largely in the real and to a lesser extent in the imaginary component. The removal of
conductor A also causes an increase in misfit to the TE mode apparent resistivity and phase,
but this effect is at least 4 times smaller than the effect on the tippers. The TM mode data
is practically unaffected. In general, it is the misfit to the land sites that is most affected
by the removal of conductor A; all land sites, except the two furthest inland, experience
an increase in misfit. Strangely, site 632, closest to conductor A, is no more affected than
the sites further inland of it. This may be because it is missing its short period apparent
resistivity data, a complication we revisit later. The greatest increase in misfit occurs at the
two sites closest to the coast, 630 and 631. It is important to note that the misfit at many
of the marine sites is improved, most appreciably at sites M06, M10, M11, and M12, when
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conductor A is removed. Figures 4.23 & 4.24 show the model predictions for Model 1 and
the model with conductor A removed along with the data from sites 630 and M11. Site 630
is the land site with the greatest increase in misfit resulting from the removal of conductor
A, while site M11 is the marine site with the greatest decrease in misfit resulting from the
removal of conductor A. Figure 4.23 shows that the fluctuations in the TE-mode apparent
resistivity and phase of site 630 are actually poorly fit, even with conductor A, but this
goes largely unnoticed in the misfit measure because of the inflated error bars. There is a
bounded period range, between 10 and 6,000 s, over which the existence of conductor A is
discernible, with peak sensitivity to conductor A at 400 s. In the Sections 6.1 we address
the possibility that conductor A is caused by 3D land-side coast-effects, but the lowest
period within our 3D modeling capabilities is 745 s.

Next, we test the need for the large upper-mantle conductor beneath the north-
eastern edge of the line of sites, labeled B. In Figure 4.25, we see that the removal of this
conductor adversely affects the misfit to nearly every site of data, especially 630 which is
right at the coast, and M40 which is almost 350 km away. On average, this conductor is
required more by the land sites, but the marine sites factor in as well. Conductor B is
required by all data types to a noticeable degree, but the largest driver is again the tipper
data. As expected given its depth of burial and deep extent, conductor B is a long period
feature, affecting periods greater 100 s in an amount that increases with period. The fact
that it occurs on the northeastern edge of the profile indicates that it might be related to
the Great Valley (GV). The GV is filled with a thick layer of sediments, presumed to be
conductive; the upper 3 km of Model 1 below sites 639 and 640 support the existence of
3 Ωm material. It is nearly a 2D basin, relative to the strike of our line of sites, except that
it is truncated on its southwestern end by the Tehachapi mountains, only 140 km from site
640. This closure of the basin may produce 3D effects that occur predominantly at long
periods and in the tipper data; we explore this possibility with 3D modeling in the Section
6.1.

Though large in size, conductor C is not terribly conductive; the lowest resistivity
found in the region of C is 18 Ωm. It may then be expected that this subtler of the four
anomalies is the one most tenuously required by the data. Its removal produces negligible
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Figure 4.23: Plots of MT apparent resistivity and phase data along with the respective
model predictions for two models: solid lines are from Model 1 of Figure 4.10, and dashed
lines are from the model with conductor A removed (see Figure 4.22). Two sites of data are
plotted: M11, the site with the greatest decrease in misfit due to the removal of conductor
A and 630, the site with the greatest increase in misfit due to the removal of conductor A.
The TE-mode data are plotted in red and the TM-mode data are plotted in blue.

effects in misfit for all but a few of the marine sites; namely M36, M34, M12, M11, and
M10, in order of decreasing change in misfit. Site M40’s misfit is noticeably improved. The
increase in misfit peaks at a period of 745 s, and, somewhat non-intuitively, shows up only
in the TE phase and TM apparent resistivity data. Altogether, conductor C is not firmly
supported by the data, and may be a result of the inversion’s struggle to fit sites M36, M34
and M12, which, with respect to the final inversion model, are among the top 5 sites in
terms of misfit (see Figure 4.11).

Finally, we analyze the requirement for the southwestern-most conductor, labeled
D. It is the largest in our model, albeit it lies entirely outside the horizontal range of the
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Figure 4.24: Same as Figure 4.23 except that the real (red) and imaginary (blue) tipper
ratios are plotted.

measurement sites. Such qualities makes this conductor uninterpretable and highly suspect.
However, we must ensure that it is not affecting the fit to the data in a significant way, else
it might be compensating for other portions of the model which we do intend to interpret.
Figure 4.25 shows that the absence of conductor D produces a greater effect in the overall
misfit to the data than does the absence of conductor C. The removal of conductor D
adversely affects the misfit of all of the marine sites, but mainly those farthest from the
coast, particularly M40, M36, M35, and M34. Again, these are the sites of data that the
inversion struggled most to fit. The difference in misfit grows with distance seaward from
the coast. Also, the removal of conductor D has the greatest effect on TE phase, and, to
lesser degrees, TE apparent resistivity, and TM apparent resistivity.

Since the tippers supply the majority of the weight behind the existence of con-
ductors A and B, we test whether an inversion that does not use tipper information would
reproduce similar extreme conductors. The final model of a the tipper-free inversion is
presented in Figure 4.26. Note, that since tipper data only existed on land, their exclusion
implicitly shifts more weight toward fitting the marine data than do the previous inversions
of all data. Without the tipper data, the Rinconada conductor has vanished. The deeper
conductor below the GV has been moved off the northeastern edge of the data profile, barely
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Figure 4.26: (A) the final model result of a smooth 2D inversion where none of the tipper
data was used. (B) Model 1, the result of a smooth 2D inversion of all of the data. The
vertical black lines plotted at 70 km from the coast is the approximate location and depth
extent of the San Andreas fault.

visible in Figure 4.26. A new prominent conductor has appeared just to the northeast of
the SAF at a depth below 20 km. This conductor is only about 7 Ωm, more than an order
of magnitude more resistive than the Rinconada conductor. The tipper-free inversion, after
many iterations of no progress, reached a minimum in RMS misfit at 1.55. The RMS misfit
for Model 1, if excluding tipper data from the misfit calculation, would be 1.39, lower than
was achieved by the tipper-free inversion. Figure 4.27 shows that the tipper-free inversion
does worse at fitting the deep marine sites, with the degree of misfit growing with distance
from the coast. The land site that is fit worse by the tipper-free inversion is 632, the one
directly above the Rinconada conductor in our final model. Figure 4.28 presents the model
predictions for Model 1 and the model produced by excluding tipper data from inversion,
along with the data from sites 632 and 633. As an aside, we must point out that the data
in the gray region of site 632 in Figure 4.28 were not used in any of the inversions due
to the discontinuous shift at about 20 s period. The data were delivered with this glitch
from our colleagues who conducted the land MT data collection. The glitch splits only the
apparent resistivity data into two continuous sections, short-period and long-period. We
chose to use only the long-period section because they are comparable to the same data
at neighboring sites, whereas the short-period section is not. In Section 6.2 we restore the
omitted section of data in our synthetic studies to ensure that this gap in data coverage isn’t
the root cause for the Rinconada conductor. Nonetheless, that is not too great of a worry
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as we have shown that the Rinconada conductor improves the misfit at many other sites in
the Estero MT dataset. Furthermore, Becken et al. [2011] showed that a similar conductor
is required by the other profiles of land data which lie parallel to the one we analyze in
this dissertation. Continuing, there is little difference between the two model predictions in
the TM-modes of Figure 4.28. Yet, the TE-modes show large deviations between the two
models at periods above 30 s, with the no-tipper model making a poorer match to the data.
Note, however, ignoring the large error bars for a moment, that neither model does well at
fitting the long-period TE-mode data at either of the two sites. In contrast, site 630 and
a few of the marine sites on the continental shelf are better fit when tippers are not used.
Figures 4.29 & 4.30 present the same model predictions for data from sites 630, M11, M06,
and M18. The TE-mode data from sites M06, M11, and M18 benefit significantly from
the preference of the tipper-free inversion for resistive material below 15 km and within
±50 km horizontally of the coast. An assessment of the fits in Figures 4.23, 4.29, and 4.30,
implies that the data from the continental shelf sites are not consistent with the Rinconada
conductor. Note that the period range exhibiting the greatest misfit in TE-mode appar-
ent resistivity in Figures 4.29 & 4.30 corresponds to the period range of the relative misfit
increase due to the removal of conductor A in 4.25.

On average, the marine sites of data closest to the coastline are better fit by the
no-tipper inversion, while the marine sites furthest from the coast experience a degradation
in fit (see Figure 4.27). The story is the opposite on land; the sites of data closest to the
coast are fit worse by the no-tipper inversion, while the sites furthest inland fare better
without tippers. Such odd symmetry in misfit about the coastline suggests that there is
some form of data distortion related to the coast, which a smooth 2D model is unable to
fit. The distortion seems to be satisfied with opposing measures on either side of the coast
by the 2D inversion of all the data. On the land side the Rinconada conductor is produced,
whereas, on the marine side, great lengths are taken to neutralize the effect of the that
conductor. An obvious candidate for a distortion that has opposing effects on the land and
marine sides of the coast is 3D bathymetry and coastlines. Therefore, we investigate the
possible effects of 3D bathymetry in Chapter 6.

As a final illustration of the obstacle posed by coast effects in the Estero MT
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Figure 4.27: A breakdown of the differences in misfit resulting from the model achieved
without using tipper data (see Figure 4.26) relative to the misfit resulting from an inversion
using all data. The misfit has been binned in three different ways: by period (A), data
type (B), and site (C). The overall RMS misfit of the inversion which excludes tipper data
is 1.55.

dataset, we perform an inversion of only the TM-mode apparent resistivity and phase data.
There is a conventional belief that the TM-mode is less susceptible to the distortions caused
by 3D conductive structures [e.g. Berdichevsky et al., 1998]. The TE-mode suffers more
from 3D distortion because, unlike the TM-mode, a 2D TE-mode calculation has no means
of replicating the galvanic effects which only bleeds into the TE-mode with 3D anomalous
bodies. For this reason, when 3D resistivity structures are suspected, yet only a 2D inversion
process exists, or only a 2D model is desired, the TM-mode data are often preferred as the
more robust choice for inversion. While the TM-mode has little sensitivity to small conduc-
tive bodies, it is generally found through synthetic studies that a TM-mode-only inversion
recovers the average background resistivity (see Figure 4.31). It is well-acknowledged that
the TM-mode in a 2D sense is greatly affected by large horizontal discontinuities in re-
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Figure 4.28: Plots of MT apparent resistivity and phase data along with the respective
model predictions for two models: solid lines are from Model 1 of Figure 4.10, and dashed
lines are from the model resulting when no tipper data is used (see Figure 4.26). The TE-
mode data are plotted in red and the TM-mode data are plotted in blue. The gray region
encloses apparent resistivity data (circles) which were excluded from inversions due to the
discontinuous shift in the data.

sistivity, such as a linear coastline; we have provided ample illustrations of such behavior
in this section. Thus, the coast and seafloor boundaries must be well represented in the
fixed structure of a 2D inversion. However, it is assumed that the more subtle variations
from the 2D representation of a coast, such as slight curvature in it, have a small relative
effect on the TM-mode. The final model from a TM-mode-only inversion of the Estero MT
data implies that this is not the case (see Figure 4.32); either that, or the 2D inversion
algorithm is simply unable to reproduce an actual 2D structure within the earth, presum-
ably because it has become stuck in a local minimum. The TM-mode inversion creates
an oceanic lithosphere of less than 100 Ωm, over two orders of magnitude more conductive
than predicted by laboratory data and CSEM measurements [Heinson and Constable, 1992].
Despite the overly conductive oceanic lithosphere, notice the ever-persistent high-resistivity
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Figure 4.29: Plots of MT apparent resistivity and phase data along with the respective
model predictions for two models: solid lines are from Model 1 of Figure 4.10, and dashed
lines are from the model resulting when no tipper data is used (see Figure 4.26). The two
sites of data, M11 and 630, are plotted here for comparison with Figure 4.23. The TE-mode
data are plotted in red and the TM-mode data are plotted in blue.

deep structure beneath the coast. In addition, the TM-mode inversion places very resistive
(10,000 Ωm) shallow material below sites M03, M02, M01, contrary to the expectation of
conductive sediments just below the seafloor near the coast. The Rinconada conductor is
absent, as would be expected; we have already shown that removal of the Rinconada con-
ductor affects almost exclusively the fit to the TE-mode data (impedance and tipper). In
all, the TM-mode inversion creates a model that is highly unlikely given other geophysical
and geological knowledge. We conjecture that a TM-mode-only inversion cannot be relied
upon to deliver meaningful results when coast effects are prominent. Yet a synthetic study
shown in Figure 4.31 indicates that such an erroneous model would not result if the real
world were characterized by a relatively simple 2D model; either our real-world example
derives from a more complicated 2D model (i.e., rougher than the algorithm would prefer),
or it does not derive from a 2D model at all. In Sections 6.1 & 6.2 we perform synthetic
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Figure 4.30: Plots of MT apparent resistivity and phase data along with the respective
model predictions for two models: solid lines are from Model 1 of Figure 4.10, and dashed
lines are from the model resulting when no tipper data is used (see Figure 4.26). The two
sites of data from the continental shelf, M06 and M18, are plotted here. The TE-mode data
are plotted in red and the TM-mode data are plotted in blue.

studies that are more in line with what is known about the oceanic lithosphere to discern
whether the exotic structures in TM-mode model and in Model 1 are a result of our 2D
inversion algorithm, 3D bathymetry, or both.

In summary, we have found that the marine TM-mode data impose a strong de-
mand for electrical isolation between the shallow conductors on the continental shelf and
the deeper Rinconada conductor (conductor A). The oceanic plate beneath the continental
shelf appears to be highly resistive, but overlaid by more conductive material. If the deep
crust is truly conductive on the land side of the coast, our inversions establish that it must
be electrically isolated from the lower crust seaward from it. The Rinconada conductor is
required predominantly by the tipper data, and almost exclusively by the land sites. A sep-
arate inversion that excluded the tipper data did not reproduce the Rinconada conductor,
but instead placed a slightly less conductive plum-like structure below and to the northeast
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TE-mode only

TM-mode only

Both modes

Figure 4.31: Synthetic 2D inversion studies analyzing the use of the separate modes of MT
data (10% errors added to create synthetic data). The synthetic model is equivalent to that
in Figure 4.8, but has embedding within a 100 Ωm background a conductive block (outlined
in a thick black line) of resistivity 5 Ωm. The TE-mode only does well at recovering the
anomalous block’s resistivity, but worse at recovering the uniform background resistivity.
The TM-mode only does well at recovering the uniform background resistivity, but worse
at recovering the anomalous block resistivity (it makes the anomalous block 65 Ωm). The
use of both modes recovers the anomalous block resistivity the best, and does quite well
with the background resistivity, except that it smears the conductive block downward.
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Figure 4.32: The final model result from the inversion of only the TM-mode data from the
Estero MT dataset. The inversion reached an RMS misfit of 1.00.

of the SAF. A number of the marine sites on the continental shelf improve in misfit when
the Rinconada conductor is removed. An inversion of marine data only does not require a
localized conductor on the land side of the model. In Section 6.2, we analyze how sensitive
the marine data on their own are to a conductor like the the Rinconada conductor. The
deep conductor below the GV (conductor B) affects nearly all the sites, but more so the
land sites, as would be expected given its location. Conductor B is also heavily driven
by the tipper data, but by longer periods than the Rinconada conductor. The conductors
below the marine side of the model (conductors C & D) both affect only a few of the marine
sites to any significant degree, and affect mostly the sites furthest from the coast.



Chapter 5

Electromagnetic Modeling Using a
Thin Sheet

This chapter develops the theory for the incorporation of a thin sheet of variable
conductance in electromagnetic modeling. The thin-sheet construct is useful for modeling
earth conductivity structures which are predominantly one-dimensional (1D) along the ver-
tical direction, but have a single confined depth range within which three-dimensional (3D)
conductivity structures occur. If that confined depth range is deemed small based on relative
length-scale arguments, a representation of these 3D structures by an infinitesimally-thin
sheet at a single depth produces a close approximation to the electric and magnetic fields of
the true model. The zero-thickness sheet is placed at a single depth but has a conductance
equal to the vertically integrated conductivity of the depth range it represents, effectively
mapping 3D conductivities into a 2D conductance in a horizontal plane (see Figure 5.1).

The thin-sheet method applied to modeling geo-electromagnetic induction was de-
veloped in a series of papers written a few decades ago [Vasseur and Weidelt, 1977, Dawson
and Weaver, 1979, McKirdy et al., 1985]. More recently, a new method of solution for a thin
sheet model, which takes place in the Fourier domain, was introduced by Parker and Whee-
lock [2012]. The new method confers faster computations and better convergence properties
for the thin sheet problem than the previous treatments. The following theoretical develop-
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Figure 5.1: An illustration of the model with layers of uniform conductivity, σn, below a
thin sheet of 2D varying conductance, τ(x, y).

ments will borrow from these prior works, but also will expand the theory into new territory
which includes anisotropic conductivity, layers above the thin sheet, and non-planar sources
(e.g. electric and magnetic dipole currents). Finally, this chapter will introduce some in-
triguing, measurable quantities that precipitate from a spatial Fourier domain analysis of
the electric and magnetic fields, and discuss their implications and potential use.

A central goal of the theoretical development in the current chapter is to derive
equations for the horizontal magnetic fields above and below the thin sheet that depend only
on the horizontal electric field. The motivation behind this quest is the boundary condition
for the horizontal magnetic fields across a surface current. The current in a thin horizontal
surface is only dependent upon two things, the electric field within the thin sheet, and the
conductance of the thin sheet. By using the boundary condition for the horizontal magnetic
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fields and the sought-after equations relating the horizontal magnetic fields to the horizontal
electric fields, an integral equation dependent only on the electric field in the thin sheet can
be assembled. After solving this integral equation for the horizontal electric field in the thin
sheet, all other electric and magnetic field components above and below the thin sheet can
be found. The remainder of the chapter chapter will follow the logical progression of first
deriving the equation relating the horizontal magnetic field to the horizontal electric field
below the thin sheet, at the top of a stack of conducting layers, then do the same for the
space above the thin sheet, at the base of a stack of conducting layers, and finally modify
these derivations to add electric and magnetic source currents within the stack of layers.

5.1 A Thin Sheet atop a Stack of Anisotropic Layers

The model of the earth we will use starts with a stack of N layers underlain by
a halfspace. Each of these regions has a uniform, tri-axially anisotropic conductivity, with
one of the principal axes of the conductivity tensor aligned with the vertical direction. This
sort of conductivity tensor is given by,

σ =


σxx σxy 0
σxy σyy 0
0 0 σzz

 . (5.1)

The underline on Greek characters denotes a tensor quantity. Other tensor quantities will
be designated by upper-case, sans-serif English characters. Notice the conductivity tensor
is symmetric and therefore there also exist principal axes in the horizontal plane such that,
when rotated into the reference frame of the these principal axes, the conductivity tensor
is made diagonal. We define ϑ as the angle between the horizontal principal axes and the
horizontal coordinate axes, and the rotated conductivity tensor takes the form,

σϑ = R(ϑ)σR(ϑ)T = σ


1 0 0
0 λ 0
0 0 ν

 . (5.2)
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In the previous equation, we have introduced the horizontal rotation matrix, R, and the ϑ
superscript to denote a quantity rotated into the reference frame of the horizontal principal
axes. Later, we will use another definition, the sub-tensor of anisotropic conductivity in
only the horizontal directions, which we write as,

σ̌ =

 σxx σxy

σxy σyy

 . (5.3)

The stack of layers is overlain, at z0 = 0, by an infinitesimally thin sheet of
anisotropic conductance,

τ(r) =

 τxx(r) 0
0 τyy(r)

 . (5.4)

Note that τ is defined here as diagonal. The conductance tensor of an anisotropic thin sheet
is also symmetric, so we pose this entire problem pre-rotated into the reference frame of the
principal axes of the conductance tensor, τ . The parameters σ, λ, ν, and ϑ are constant
within their respective layers, but τxx and τyy may vary in the horizontal plane.

The derivation of the magnetotelluric (MT) response over this model starts with
dimensionless quasi-static Maxwell’s equations for the electric and magnetic field, E and
B, respectively, which can be found in (3.1) of McKirdy et al. [1985] (henceforth MWD).
These equations hold within the nth conductive layer. Also note that these equations have
been Fourier-transformed along the time axis, and thus already lie in the frequency domain.
To make these equations dimensionless we make the following adjustments: conductivity is
scaled by some characteristic conductivity σ∗, which is normally chosen to be the conductiv-
ity of the first layer below the thin sheet; length scales are normalized by the characteristic
skin depth, d∗, given by

√
2/µ0ωσ∗, where µ0 is the magnetic permeability of free space,

and ω is the angular frequency of the inciting energy, oscillating in time as eiωt; conductance
is scaled by σ∗d∗; B occurs in units of B∗, the magnitude of the driving magnetic field; and
E occurs in units of ωd∗B∗. We restate equations (3.1) of MWD here with the exception of
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(5.6) and (5.7), which have now been modified for the anisotropic conductivity model:

∇×E = −iB, (5.5)

∇×B = 2σn · E , (5.6)

∇·(σn · E) = 0, (5.7)

∇·B = 0. (5.8)

Note that (5.7) is found by taking the divergence of (5.6). There is an important consequence
of (5.7) that comes with an anisotropic conductivity model. We see that with a non-uniform
conductivity tensor, we can non longer state that the divergence of the electric field is zero.
This means that in an anisotropic earth, the electric field is not guaranteed to be solenoidal
and therefore precludes the use of the toroidal and poloidal scalar potentials that MWD
employed. This derivation will have to work with the vector fields themselves.

To decouple the electric and magnetic fields, we take the curl of (5.5), combine it
with (5.6), and use the vector identity,

∇×∇×A = ∇(∇·A)−∇2A, (5.9)

to get,

∇2E −∇(∇·E)− 2iσn · E = 0. (5.10)

To ease further derivation and align ourselves with Parker and Wheelock [2012]
(henceforth, PW), we immediately move the horizontal coordinates of (5.6), (5.7), and (5.10)
into the Fourier domain. As preparation, we define the 2-dimensional Fourier transform
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(FT) operation by

F [f ](k) =
∫

R2
f(r)e−2πir·kd2r = f̂(k), (5.11)

and keep the following property of the FT in the horizontal plane in mind as it will soon
become useful,

F [∇f ] (k, z) = 2πikf̂(k, z) + z̄ ∂
∂z
f̂(k, z), (5.12)

where z̄ denotes the vertical unit vector. Also, we should reiterate a few definitions of no-
tation found in PW. We define E(r, z) and B(r, z) as the horizontal, dimensionless electric
and magnetic fields, respectively, where r is the component of the position vector normal to
the vertical axis. The quantities E3(r, z) and B3(r, z) are defined as the vertical, dimension-
less electric and magnetic fields, respectively. The superscripts of ‘−’ and ‘+’ denote fields
above and below a layer interface, respectively. The prime notation denotes differentiation
with respect to z.

In the Fourier domain we find that (5.10), separated into horizontal and vertical
projections, becomes,

−4π2k2Ê + Ê′′ − 2πik(2πik · Ê + Ê′3)− 2iσ̌n · Ê = 0, (5.13)

and,

−4π2k2Ê3 − 2πik · Ê′ − 2iσnνnÊ3 = 0, (5.14)

where, in (5.14), all instances of Ê′′3 cancel. Equation (5.5), rearranged to match the left-
hand side of equation (3.24) from MWD, again separated into horizontal and vertical pro-
jections, becomes,

−iz̄× B̂ = 2πikÊ3 − Ê′, (5.15)



131

and

−iB̂3 = 2πiz̄ · (k× Ê) (5.16)

where z̄ denotes the unit vector in the z-direction.
Our goal is to find a form of (5.15) where the right-hand side is reduced to a

dot product between some field-independent kernel and the horizontal electric field, Ê.
Therefore we must find substitutions for Ê′ and Ê3. To do this for Ê′ we will have to
construct a recurrence relation for an admittance transfer function between Ê and Ê′; we
will get to that later. First, we deal with the vertical electric field, Ê3. From equation (5.7),
we find that,

Ê′3 = − 2πi
σnνn

k · (σ̌n · Ê), (5.17)

and by rearrangement of (5.14),

Ê3 = − 2πi
2iσnνn + 4π2k2 (k · Ê′). (5.18)

Rearranging (5.13) and inserting expression (5.17) for the derivative of the vertical electric
field, we get the following vector differential equation governing the horizontal electric field
within the nth layer,

Ê′′ −
[
4π2k2I + 2iσ̌n − 4π2kk ·

(
I− 1

σnνn
σ̌n

)]
· Ê = 0. (5.19)

In the preceding equation, we have introduced the dyadic notation, kk, and the 2×2 identity
tensor, I. It is convenient to rewrite (5.19) in the simpler form,

Ê′′ − Γn · Ê = 0, (5.20)
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where Γn is the 2× 2 tensor given by,

Γn = 4π2k2I + 2iσ̌n − 4π2kk ·
(

I− 1
σnνn

σ̌n

)
. (5.21)

Now we take advantage of the process of matrix diagonalization. For most matri-
ces, Γ ∈ CK×K , there exists a decomposition,

Γ = PΛP−1, (5.22)

such that Λ = diag(λ1, . . . , λK), where λi, for i = 1, . . . ,K, are the eigenvalues of Γ,
and P is a matrix of column vectors, P = (u1 · · · uK), where ui are the corresponding
eigenvectors.

We define a new vector, F, defined by the following change of basis of Ê,

F = P−1Ê. (5.23)

Then using (5.22), we can rewrite (5.20) as,

F′′ = ΛF, (5.24)

which, due to the diagonal nature of Λ, decouples into two equations, one for each component
of F. Within the nth layer of homogenous conductivity, σn, the general solution to (5.24)
in component form is,

Fi(z) = αi exp
[√

λi(z − zn)
]

+ βi exp
[
−
√
λi(z − zn)

]
,

zn−1 ≤ z ≤ zn, and i = {1, 2}. (5.25)

In all instances of
√
λi, we choose the root with the positive real part. Let us analyze the

case where the values of Fi and F ′i are known at the bottom of the nth layer, where z = zn,
which we will write as F−i and F ′−i , respectively. Conversely, we will write the values of Fi
and F ′i at the the top of the nth layer, where z = zn−1, as F+

i and F ′+i . This superscript
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convention is analogous to the thin-sheet notation of PW where a ‘+’ denotes quantities
measured below a conductivity interface, and a ‘−’ denotes quantities measured above a
conductivity interface. We find the general coefficients of (5.25) to be,

αi = 1
2

(
F−i + F ′−i√

λi

)
, (5.26)

and

βi = 1
2

(
F−i −

F ′−i√
λi

)
. (5.27)

Plugging this into (5.25) we can relate F−i to F+
i and F ′−i to F ′+i in the nth layer as follows:

F+
i = F−i cosh

(√
λihn

)
− F ′−i√

λi
sinh

(√
λihn

)
, (5.28)

and

F ′+i =
√
λiF

−
i sinh

(√
λihn

)
− F ′−i cosh

(√
λihn

)
, (5.29)

where, hn, the thickness if the nth layer, is defined as hn = zn − zn−1.
Conditions are different at the base of our stack of layers. Within the halfspace

which we place at the bottom of the stack of layers, at z = zN , αi must be zero; otherwise,
this would imply energy originating from the center of the earth, which is not the subject
of the magnetotelluric problem at hand. From this imposition we deduce that within the
basal halfspace,

Fi(z) = − 1√
λi
F ′i (z), z > zN . (5.30)

Now, we must address the boundary conditions across the layer interfaces. In the
absence of free charges and free currents at the interface, and assuming a homogeneous
magnetic permeability throughout the domain, Maxwell’s equations dictate that both the
tangential electric and tangential magnetic fields are continuous across the interface. Also,
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the current density normal to an interface is conserved. In our notation, these boundary
conditions are written as:

Ê+
n+1 = Ê−n , (5.31)

B̂+
n+1 = B̂−n , (5.32)

and

νn+1σn+1Ê
+
3(n+1) = νnσnÊ

−
3(n). (5.33)

Note that continuity of the tangential magnetic field, (5.32), and of the normal electric
field, (5.33), does not hold across a thin sheet of finite conductance because it contains
free current; yet, (5.31) does hold across a thin sheet of finite conductance. We will need
to know how to propagate F and F′ across the interfaces. Inserting (5.23) into (5.31), we
readily find that

F−n = P−1
n Pn+1F+

n+1. (5.34)

The propagation of F′ at a boundary takes a little more work. We revisit (5.15), which by
(5.32) affords us,

2πikÊ+
3(n+1) − Ê′+n+1 = 2πikÊ−3(n) − Ê′−n . (5.35)

Next we subsitute (5.18) and (5.33) into (5.35), and after some rearrangement find,

Ê′−n =
[

4π2

2iσn+1νn+1 + 4π2k2

(
νn+1σn+1
νnσn

− 1
)

kk + I
]
· Ê′+n+1. (5.36)
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By employing (5.23) in (5.36) we have,

F′−n = P−1
n

[
4π2

2iσn+1νn+1 + 4π2k2

(
νn+1σn+1
νnσn

− 1
)

kk + I
]
Pn+1 · F′+n+1. (5.37)

Getting back to the substitution for Ê′ in (5.15), we introduce a transfer function
we call the admittance tensor, C1, which defined at the top of the first layer as,

Ê+
1 = −C1 · Ê′+1 . (5.38)

We now have all the tools necessary to find Ê+
1 and Ê′+1 at the top of our stack of layers,

given base conditions for Ê+
N+1. However, we are only interested in computing C1. The

2 × 2 tensor, C1 presents us with four unknowns. In order to solve for these we need four
independent constraints, which we find by using two, independent initial conditions for
Ê+
N+1 at the base of our stack. Since we are neither interested in the absolute magnitude

of Ê+
1 nor Ê′+1 , but the transfer function between them, C1, we can impose whatever value

for F̂+
N+1 we like. Thus, we arbitrarily choose to start with the two, independent initial

conditions

F+
N+1 ∈


 1

0

 ,
 0

1

 . (5.39)

Starting from (5.39) we use (5.30), (5.28), (5.29), (5.34), (5.37) and (5.23) to compute two
independent realizations of Ê+

1 and Ê′+1 , by which we solve for C1.
Finally, by combining (5.15) with (5.18) and (5.38), we can write the horizontal

magnetic field just below the thin sheet in terms of the horizontal electric field as,

iẑ× B̂+(k) =
[(

4π2

2iσ1ν1 + 4π2k2 kk− I
)
· C−1

1

]
· Ê+(k) = L̂l(k) · Ê+(k), (5.40)

where the subscript denotes a tensor quantity related to a layered halfspace. By analyzing
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(5.21) and (5.30) for the case of an isotropic halfspace of conductivity, σ0, we find

C1 = 1√
2iσ0 + 4π2k2 I. (5.41)

Plugging (5.41) into (5.40) we find the reassuring result that L̂l(k) matches the half-space
kernel in (3.26) of MWD after compensating for their different definition of the FT.

Equation (5.40) is the second ingredient needed for the right-hand side of (2.1) of
MWD, which relates the current density in the thin sheet to a discontinuity in the horizontal
magnetic field. For the first ingredient of (2.1) we look to (2.2) in MWD, which describes the
relationship between the electric and magnetic fields in the halfspace of perfectly insulating
air above the earth’s surface. The Fourier domain equivalent of (2.2) in MWD is,

−iẑ× B̂−(k) = iδ(k)x̄ + [M̂(k)− M̂(0)] · Ê−(k) (5.42)

where we have folded the 1/2π in (2.1) into M. By noting z̄ × ȳ = −x̄, the delta function
in (5.42) accounts for a ȳ-directed plane wave (k = 0) magnetic field of magnitude 1, the
driving field for induction. The tensor product in (5.42) accounts for the magnetic field
produced by scattering due to conductance of the thin sheet. Before taking the FT, the
tensor M from MWD is simplified to,

M(r) = 1
4πr3

 1− 3 cos 2θ −3 sin 2θ
−3 sin 2θ 1 + 3 cos 2θ

 , (5.43)

with r = x̄r cos θ+ȳr sin θ. To find M̂ we need only the three following transforms previously
used in PW:

F
[ 1
r3

]
= −4π2k, (5.44)

F
[cos 2θ

r3

]
= −4π2k cos 2φ

3 , (5.45)
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and

F
[sin 2θ

r3

]
= −4π2k sin 2φ

3 , (5.46)

given that k = x̄k cosφ+ ȳk sinφ. We then quickly find,

M̂(k) = −2πk

 sin2 φ − sinφ cosφ
− sinφ cosφ cos2 φ

 . (5.47)

Now we can return to reconstructing the Fourier domain version of (2.1) from MWD, which
we rewrite here,

2iτ(r)E(r) = iz̄×
[
B+(r)−B−(r)

]
. (5.48)

Equation (5.48) is the boundary condition of the horizontal magnetic field across an in-
finitesimally thin sheet of current, which constitutes the crux of thin sheet modeling. We
write (5.48) in the Fourier domain as,

F [2iτ(r) ·E(r)] = iz̄×
[
B̂+(k)− B̂−(k)

]
. (5.49)

Finally, we substitute (5.40) and (5.42) into (5.49) to get,

F [2iτ(r) ·E(r)] = iδ(k)x̄ +
[
M̂(k) + L̂l(k)

]
· Ê(k), (5.50)

noting that M̂(0) = 0. This is the vector equation which governs the horizontal electric fields
within the thin sheet in our model. Like its space-domain counterpart, (5.50) is another
Fredholm integral equation because of FT. This is a system analogous to (7) in PW, and we
will solve it with methods similar to those they described. We describe the solution method
in the Section 5.4.
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5.2 Adding Layers above the Thin Sheet

It would be useful to create a model in which the 2D-varying thin sheet is embedded
in the stack of layers. One could imagine the necessity for a model in which the thin sheet
is still placed at the earth’s surface, but in which there are layers of non-zero conductivity
in the atmosphere, say to represent the ionosphere. Alternatively, one might want to model
the case of a thin layer of 3D conductivity embedded within and otherwise 1D earth and
calculate the resulting fields at the earth’s surface. For these sorts of situations we extend
our mathematical treatment to include layers above a thin sheet.

In order to place layers above the thin sheet, we need to derive a new version of
(5.42) that does not assume a halfspace of air directly above the thin sheet. We will derive
this in much the same way as we did (5.40) with a slight twist. We will decompose the
fields above the thin sheet into plane wave components (k = 0) and scattered components,
precisely as is done in (5.42).

To remain consistent with our treatment below the thin sheet, we will again define
z0 as the depth of placement for the thin sheet. Thus, zn for n > 0 still refer to depths
below the thin sheet, while zn for n < 0 will refer to depths above the thin sheet, and n = 0
will be the index of the first layer above the thin sheet. We will place an initiating halfspace
at the top of our new stack, which will be given layer index M , with M < 0.

We draw another important distinction between our treatment of the fields above
the thin sheet and those below the thin sheet. Whereas in the layers below the thin sheet
we solved for the total fields, in the layers above, we will solve for the primary electric
and magnetic fields, Ep and Bp, and the scattered electric and magnetic fields, e and b,
separately. The total field is the sum of these two components:

E = Ep + e, (5.51)

and

B = Bp + b. (5.52)
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The primary field, we define as the fields existent in a 1D earth with no thin sheet due to
a linearly-polarized, horizontal, and planar source field; these are the standard MT source-
field assumptions. With this definition, Ep3 and Bp3 are everywhere zero, and Êp(k) and
B̂p(k) are non-zero only when k = 0. The scattered electric and magnetic fields are those
resulting only from currents diverted by the anomalous conductance of the thin sheet, thus
they both go to zero as z goes to positive or negative infinity.

Due to the linearity of the Maxwell equations with respect to the fields, we quickly
see that (5.20), (5.23), (5.24), and (5.15) again hold for the scattered electric and magnetic
fields in the layers above the thin sheet, with the substitutions of ê for Ê, b̂ for B̂, and f
for F. Now we must imagine the scenario where we know the values of f+

i and f ′+i at the
top of each layer. So, much as before, within the nth layer of homogenous conductivity, σn,
the general solution to (5.24) in component form is,

fi(z) = αi exp
[√

λi(z − zn−1)
]

+ βi exp
[
−
√
λi(z − zn−1)

]
,

zn−1 ≤ z ≤ zn, and i = {1, 2}. (5.53)

Note the change in indices of the layer depths. Solving for αi and βi as we did before, we
find,

f−i = f+
i cosh

(√
λihn

)
+ f ′+i√

λi
sinh

(√
λihn

)
, (5.54)

and

f ′−i =
√
λif

+
i sinh

(√
λihn

)
+ f ′+i cosh

(√
λihn

)
, (5.55)

where there is a sign difference from our previous formulation, a result of the arguments of
the exponents in (5.53) and hn, the thickness if the nth layer, still defined as hn = zn−zn−1.

We must define conditions for the initiating halfspace at the top of our stack of
layers. Within this halfspace, βi must be zero, since we are only dealing with the scattered
fields here. The coefficient βi represents energy that grows for decreasing z (increasing
altitude), which we have precluded by our definition of the scattered field. With βi=0, we
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find that in the initiating halfspace,

fi(z) = 1√
λi
f ′i(z), z < zM . (5.56)

By analogy with the previous case of layers below the thin sheet, the boundary conditions
for f and f ′ across the interfaces are,

f+
n = P−1

n Pn−1f−n−1 (5.57)

and

f ′+n = P−1
n

[
4π2

2iσn−1νn−1 + 4π2k2

(
νn−1σn−1
νnσn

− 1
)

kk + I
]
Pn−1 · f ′−n−1. (5.58)

To address the substitution for ê′ in (5.15), we introduce an admittance tensor,
C0, for the scattered electric field, which we compute at the bottom of the first layer above
the thin sheet, defined as,

ê−0 = −C0 · ê′−0 . (5.59)

We solve for C0 in a similar fashion as we did for C1. We calculate two independent
realizations of ê−0 and ê′−0 using (5.56), (5.54), (5.55), (5.57), and (5.58), after imposing two
independent initial conditions for f−M . Then we solve the 2× 2 system for C0.

Finally, the horizontal scattered fields above the thin sheet are related by,

−iz̄× b̂−(k) =
[(

I− 4π2

2iσ0ν0 + 4π2k2 kk
)
· C−1

0

]
· ê(k) = M̂l(k) · ê(k), (5.60)

where we have now defined a new tensor M̂l for the scenario of layers above the thin sheet.
A relationship for the total fields above the thin sheet is still needed. We set the primary
field just above the thin sheet to be,

B̂−p = δ(k)ȳ, (5.61)
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a plane-wave primary field with unity amplitude, as before. It is always true that Ê+
p = Ê−p ,

and since Êp is non-zero only when k = 0, by (5.36), Ê′+p = Ê′−p . Also, with no vertical
primary fields, (5.15) gives us,

Ê′−p = iz̄× B̂−p = −iδ(k)x̄. (5.62)

Then, because of the continuity of the primary horizontal electric field and its vertical
derivative at z = z0, we find the primary electric field above the thin sheet,

Ê−p = −C1Ê′−p = iδ(k)C1 · x̄. (5.63)

Next, we plug (5.51) and (5.52) into (5.60), and use (5.61) and (5.63) to get the following
relationship between the total fields above the thin sheet,

−iz̄× B̂−(k) = iδ(k)x̄− iδ(k)M̂l(k) · C1 · x̄ + M̂l(k) · Ê−(k)

= iδ(k)x̄− iδ(k)C−1
0 (0) · C1(0) · x̄ + M̂l(k) · Ê−(k). (5.64)

Finally, by inserting (5.64) into (5.49) we find,

F [2iτ(r) ·E(r)] = iδ(k)x̄− iδ(k)C−1
0 (0) · C1(0) · x̄ +

[
M̂l(k) + L̂l(k)

]
· Ê(k), (5.65)

the governing equation for the electric fields in a thin sheet embedded in a stack of layers
with anisotropic conductivities. As a check for consistency we return to the model with a
perfectly insulating halfspace above the thin sheet, within which σ0 = 0, and therefore,

C0 = − 1
2πk I. (5.66)

After plugging (5.66) into (5.60) we again find a reassuring result that the form of Ml within
a perfectly insulating halfspace matches (5.47).
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5.3 Adding a Dipole Source within the Layers above the Thin

Sheet

Now we leave the exclusive realm of driving fields of a single wavenumber, k = 0,
the traditional model for MT, and enter the realm of driving fields with energy at arbitrary
wavenumbers, which includes all types of controlled-source electromagnetic induction. The
first task is to derive a new set of primary fields, E0 and B0, that result from an electric or
magnetic dipole positioned above the thin sheet. These primary fields will be utilized in a
very similar way as they were used in Section 5.2. We will solve for the primary fields in the
plane containing the sources of arbitrary wavenumber content and propagate those fields
down to the depth containing the thin sheet of variable conductance. The propagated fields
are then used as the new source vector which drives the induction governed the Fredholm
integral equation for the electric field within the thin sheet.

To model the fields resulting from any combination of electric and magnetic dipoles,
we must introduce electric and magnetic source currents, J , andM, respectively. Strictly
speaking, the introduction ofM requires the existence of magnetic monopoles, a fictitious
device which produces an accurate approximation to reality in the macroscopic view we take
here. To align with our prior Maxwell’s equations, J andM will also be dimensionless, in
units of B∗/(d∗µ0) and ωB∗/µ0, respectively. Our choice for quantities by which we define
our dimensionless system is open, yet different source types make specific normalizations
more natural. For systems that contain a single electric source current of known dipole
moment, it will be more convenient to define dimensionless J in units of I∗ds/d3

∗, a measure
of average current density of the electric dipole, where I∗ is the dipole current and ds is
the dipole length. In this case, E is given in units of 2I∗ds/(d3

∗σ∗), and B is given in units
of µ0I∗ds/d2

∗. For an alternative system which contains a single known magnetic source
current,M may be given in units of I∗da/d3

∗, the magnetic dipole moment density, where
I∗ is the current in a loop whose enclosed area is da. In this case, E is then given in units of
µ0ωI∗da/d2

∗, and B is given in units of µ0I∗da/d3
∗. In addition, we will lift the quasi-static

assumption (no displacement currents) and restore the time-derivative of the electric field
on the right-hand side of Ampere’s Law to allow for the modeling of higher frequencies.
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With this augmentation, we will need to introduce a dimensionless electrical permittivity,
ε, which is measured in units of σ∗/ω, and a dimensionless admittivity tensor, given by the
following

ε = σ + iεI, (5.67)

where we will assume an isotropic electrical permittivity, and again use the ‘ˇ ’, to signify
the horizontal-component sub-tensor. The modified set of Maxwell’s equations we will now
use within the nth layer of admittivity, εn, are:

∇×E = −iB − iM, (5.68)

∇×B = 2εnE + J , (5.69)

2∇·(εnE) +∇·J = 0, (5.70)

and

∇·B +∇·M = 0. (5.71)

Versions of these Maxwell’s equations with electric and magnetic source currents in physical
units can be found in Ward and Hohmann [1988]. Using the same strategy and notation as
in Section 5.1, we combine (5.68) and (5.69), to get

−4π2k2Ê + Ê′′ + 4π2kk · Ê− 2πikÊ′3 − 2iε̌ · Ê− iĴ− z̄× (2πkM̂3 + iM̂′) = 0, (5.72)

for the horizontal projection, and

−4π2k2Ê3 − 2πik · Ê′ − 2i(σnνn + iεn)Ê3 − iĴ3 + 2πz̄ · (k× M̂) = 0, (5.73)
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for the vertical projection. Then, from the electric field, the components of the magnetic
field can be found with,

−iz̄× B̂ = 2πikÊ3 − Ê′ + iM̂, (5.74)

and

−iB̂3 = 2πiz̄ · (k× Ê) + iM̂3. (5.75)

From (5.70) we find,

Ê′3 = − 1
2(σnνn + iεn)

[
Ĵ ′3 + 2πik ·

(
2ε̌ · Ê + Ĵ

)]
(5.76)

and by rearrangement of (5.73),

Ê3 = − 1
2i(σnνn + iεn) + 4π2k2

[
iĴ3 − 2πz̄ · (k× M̂) + 2πik · Ê′

]
. (5.77)

Rearranging (5.72) and inserting (5.76) for the derivative of the vertical electric field, we
get the following vector differential equation governing the horizontal electric field within
the nth layer with some distribution of J andM,

Ê′′ −Πn · Ê = Ŝ, (5.78)

where,

Πn = 4π2k2I + 2iε̌n − 4π2kk ·
(

I− 1
(σnνn + iεn) ε̌n

)
(5.79)

and,

Ŝ = − πi

(σnνn + iεn)
[
kĴ ′3 + 2πikk · Ĵ

]
+ iĴ + z̄× (2πkM̂3 + iM̂′). (5.80)

While Πn is nearly identical to Γn, equation (5.78) is made much more complicated than
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(5.19) by the source vector, Ŝ; it is now an inhomogeneous ODE. However, this complication
only arises in layers where Ŝ is non-zero, which, in most real situations, is limited to a single
depth.

Rather than solve the inhomogeneous ODE, let us use the tools already developed
for a thin sheet of current, which will require us to solve only homogeneous versions of (5.78).
First we examine a simple system. Imagine the scenario where there are no magnetic source
currents and only one localized electric source current, with a dipole moment of I∗ds, at a
single depth above the thin sheet of variable conductance. Considering only the horizontal
components of the electric source current for now, we can represent the source as another
horizontal thin sheet of current and make use of a modified version of (5.49),

T̂(k) = z̄×
[
B̂+(k)− B̂−(k)

]
, (5.81)

where T̂(k) is the Fourier transform of a dimensionless surface current density, given in units
of I∗ds/d2

∗. An advantage here is that T̂ is usually known for controlled source problems,
and thus does not need to be solved-for along with the horizontal electric field. Instead,
we first solve for the primary fields due to the thin-sheet equivalent of the known source.
Recall that the primary fields are defined as those occurring in the layered earth without
the heterogeneous thin sheet; this time the primary fields will be driven by a dipole source
current as opposed by a plane wave. We incorporate the thin sheet of a known source
current into our model for the primary fields by adding a new layer interface at the depth
of the electric dipole source and using source-modified boundary conditions. For a purely
horizontal electric source current, the equation to be solved for the primary horizontal
electric field at the depth of the source is,

iT̂ =
[(

4π
g2
n+1

kk− I
)
· sC−1

1 −
(4π
g2
n

kk− I
)
· sC−1

0

]
· Êp

= [sLl + sMl] · Êp, (5.82)
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where,

g2
n = 2i(σnνn + iεn) + 4π2k2. (5.83)

The prescript s, as in sC0 and sC1, indicates the relation to the stacks of layers above and
below, respectively, the depth at which the known source resides. These new admittance
tensors are calculated in the same way as were the admittance tensors at the depth of the
heterogeneous thin sheet, albeit with different sets of layer stacks.

If there is a non-zero vertical component of the electric dipole source, Ĵ3 6= 0,
things change again. We will derive the fields due to a vertical electric source current
separately from those of the horizontal source current, and sum the two independent fields
when necessary. Assuming we may make the approximation that all electric source current
is vertically oriented and resides in a single horizontal plane, then (5.33) becomes,

(σn+1νn+1 + iεn+1)Ê+
3(n+1) − (σnνn + iεn)Ê−3(n) = 1

2 Ĵ3. (5.84)

The foregoing boundary condition is derived from the integral formulation of (5.70). In-
corporating (5.84) into the boundary condition for Ê′, we find that with a vertical current
component,

Ê′−n =
[

4π2un+1
g2
n+1

kk + I
]
· Ê′+n+1 −

2πi
σnνn + iεn

kĴ3 (5.85)

where,

un+1 =
(
σn+1νn+1 + iεn+1

σnνn + iεn
− 1

)
. (5.86)

If the depth of the source does not coincide with a change in admittivity, (5.85) simplifies
to,

Ê′−n = Ê′+n+1 −
2πi

σnνn + iεn
kĴ3. (5.87)
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We need an equation to solve for the horizontal electric field within the thin sheet containing
the vertical source. For this we insert the definitions for the admittance tensors, (5.38) and
(5.59) into (5.85), which yields,

sC−1
0 · Ê−n =

[
4π2un+1
g2
n+1

kk + I
]
· sC−1

1 · Ê
+
n+1 + 2πi

σnνn + iεn
kĴ3. (5.88)

Making use of the continuity of the horizontal electric fields across a thin sheet of electric
current, we finally have an equation to be solved for the primary horizontal electric field at
the depth of a vertical controlled source:

− 2πi
σnνn + iεn

kĴ3 =
[(

4π2un+1
g2
n+1

kk + I
)
· sC−1

1 −
sC−1

0

]
· Êp. (5.89)

The quantities on the left-hand sides of (5.82) & (5.89) form vectors of known source cur-
rents. For each source component, the solution for Êp requires the inverse of the tensorial
quantity in square brackets, which in the discrete world amounts to a block diagonal matrix
with 2 × 2 blocks along its diagonal (see Section 5.4). Solutions for the primary electric
fields from the horizontal electric source component, (5.82), and the vertical electric source
component, (5.89) may be calculated independently and then summed to produce the full
primary field of a dipping electric current source. Once Êp at the depth of the controlled
source has been found, we use the method presented in Section 5.7 to propagate the primary
electric and magnetic fields down to the depth of the thin sheet of variable conductance.

As a brief aside, we document a pair of important identities involving the tensors
used in this chapter. Through much algebra we find,

[
4π2

g2
n

kk− I
]−1

= −
[

4π2

2i(σnνn + iεn)kk + I
]
, (5.90)

which we use to find,

−C−1
0 ·M−1

l · Ll · C1 =
[

4π2

g2
n

kk− I
]−1 [ 4π2

g2
n+1

kk− I
]

= 4π2un+1
g2
n+1

kk + I. (5.91)
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Utilizing (5.91), we may then rewrite (5.89) as,

2πi
σnνn + iεn

kĴ3 =
[
sC−1

0 ·
(
sM−1

l ·
sLl + I

)]
· Êp. (5.92)

Notice that horizontal electric dipoles of finite length are easily handled within T̂.
An electric dipole of current I∗ and finite length ds = L oriented along the x-axis can be
represented in dimensionless form with the following,

T(x, y) = rect
(
x

L

)
δ(y)x̄, (5.93)

where we have introduced the rectangular function, rect(x). In the Fourier domain (5.93)
is,

T̂(k) = sin(πLk cosφ)
πk cosφ x̄. (5.94)

Aside from a more accurate rendering of reality, there is another advantage to modeling
an electric dipole of finite length with the thin-sheet method described in this chapter. In
(5.94), we see that as kx →∞, T̂→ 0, whereas, for a point dipole T̂ is constant for all k. It is
found in practice that the damping of large-k components of the electric field leads to faster
convergence of the iterative solution (see Secton 5.4). Of course, dipoles of finite length
dipping out of the horizontal plane must be treated with care. While we’ve shown that we
can model a source with some vertical polarization, if the projection of that source’s length
in the vertical dimension is large enough to violate our thin-sheet assumptions (ds · z̄� d∗),
the computed fields will not be accurately modeled with this thin-sheet treatment.

How are magnetic dipoles to be incorporated? In practice, magnetic dipoles are
created with a closed loop of electric current. A vertical magnetic dipole involves a loop
of current essentially confined in the horizontal plane. To account for this we repeat the
process used for a horizontal electric dipole where we represent the dipole by a surface
current density in a thin sheet; however, we now must change the shape of the current
density in the thin sheet, T. In our dimensionless system, the surface current density for a
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circular loop of wire with radius, r0, carrying clockwise current, I∗, is given by,

T(r) = −z̄× r̄δ(r − r0), (5.95)

where T is now given in units of I∗da/d3
∗. In component form,

T1(r) = δ(r − r0) sin θ, (5.96)

and

T2(r) = −δ(r − r0) cos θ. (5.97)

This is a vertical magnetic dipole centered at the origin, with the dipole moment pointing
downward along the z-axis. We then must find the FT of (5.96) and (5.97), which can
be inserted into (5.82). To find the FT of our cylindrically symmetric loop of current we
will use the Hankel transform. Consider the Fourier transform of multipole functions, g,
in the horizontal plane, such that g(r) = f(r)eimθ, where r = x̄r cos θ + ȳr sin θ. For such
functions we have,

F [g](k) = 2πimeimφ
∫ ∞

0
f(r) J̃m(2πkr) r dr, (5.98)

where k = x̄k cosφ+ ȳk sinφ, and J̃m is a Bessel function or order m. The integral in (5.98)
represents a generalized Hankel transform for multipole functions. Applied to our loop of
current and recalling the sifting property of the delta function, we have,

T̂1(k) = 2πi sinφ
∫ ∞

0
δ(r − r0)J̃1(2πkr)rdr (5.99)

= −2πiJ̃1(2πkr0)r0 sinφ, (5.100)

and,

T̂2(k) = −2πiJ̃1(2πkr0)r0 cosφ. (5.101)
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The surface current density is different for a rectangular loop of current in the
horizontal plane. This geometry is often used in land surveys, as it is much simpler lay out
a large rectangular loop than a circular one. Now our surface current density for a rectangle
of dimensions x0×y0, centered at the origin, with sides aligned with the horizoal coordinate
axes, is given in component form by,

T1(x, y) = [rect(2x/x0)δ(y + y0/2)− rect(2x/x0)δ(y − y0/2)] (5.102)

and

T2(x, y) = [rect(2y/y0)δ(x− x0/2)− rect(2y/y0)δ(x+ x0/2)] . (5.103)

The FTs of these equations are then,

T̂1(k) =
[sin(π(x0/2)k cosφ)

πk cosφ eπiy0k sinφ − sin(π(x0/2)k cosφ)
πk cosφ e−πiy0k sinφ

]
, (5.104)

= 2i sin(π(x0/2)k cosφ) sin(πy0k sinφ)
πk cosφ (5.105)

and analogously,

T̂2(k) = −2i sin(π(y0/2)k sinφ) sin(πx0k cosφ)
πk sinφ . (5.106)

Notice that for both the circular and the rectangular current loops, the limit of their equiv-
alent surface current as k → 0 is zero. No energy of wavenumber k = 0 is produced by a
finite magnetic dipole. On the other hand, k = 0 is the wavenumber of dominant energy
for an electric dipole of finite length.

If horizontal magnetic dipoles are to be considered, an electric surface current
density, T, will not suffice; the current loop of such a dipole is perpendicular to the horizontal
plane. Instead we make use of the artifice of a magnetic surface current density, m, given
in units of I∗da/d2

∗, and a different boundary condition for magnetic current. The integral
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form of (5.68) is

∮
P
E · dl = −i

∫∫
S

(B +M) · dS. (5.107)

To derive the boundary condition across a thin sheet of magnetic current, we construct a
rectangular Amperian loop which straddles the horizontal plane within which the horizontal
magnetic dipole is placed. In the limit as the vertical dimension of the Amperian loop
vanishes, the magnetic flux through the loop vanishes, but a surface magnetic current does
not. We are left with,

E+ · l−E− · l = −im · (z̄× l) = −i(m× z̄) · l. (5.108)

Hence, in the Fourier domain, we have a new boundary condition for the horizontal electric
field across a depth which contains a surface distribution of magnetic current,

Ê+ − Ê− = iz̄× m̂. (5.109)

In order to be able to use this boundary condition to incorporate horizontal magnetic
dipoles, the point-dipole approximation must hold; that is, the finite diameter of the loop
of current must be small enough to be sufficiently represented by a thin sheet of magnetic
current at the frequency of interest. Given that the approximation along the vertical di-
mension holds, a string of magnetic dipoles in the horizontal plane is easily represented by
a surface magnetic current. An example of this would be a cylinder wrapped with current-
carrying wire, aligned with the x-axis, having negligible diameter but non-negligible length,
L. In our dimensionless system, the surface current equivalent of the cylinder is

m(x, y) = rect
(
x

L

)
δ(y)x̄, (5.110)

which in the Fourier domain becomes,

m̂(k) = sin(πLk cosφ)
πk cosφ x̄. (5.111)
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We will solve for the horizontal electric fields due to the horizontal magnetic dipole
independently as we did for each of the electric source currents before. Combining (5.109)
with (5.40) & (5.60), and recalling that the horizontal magnetic field is continuous across a
thin sheet containing no electric current, we find the equation for the electric field below a
horizontal thin sheet containing magnetic source current,

iz̄× m̂ =
[
sM−1

l ·
sLl + I

]
· Ê+

p . (5.112)

Note that the solution of (5.112) strictly delivers the primary horizontal electric field below
the depth where a magnetic source current exists, unlike (5.82) or (5.89). Thus in the
presence of horizontal magnetic dipoles, (5.109) must be used to determine the horizontal
electric fields above the source depth.

Instead of (5.50), the equation to be solved at the depth of the heterogeneous thin
sheet for a model which has dipole sources driving it from above, rather than a plane wave,
is given by,

F [2iτ(r) ·E(r)] = −ŝ +
[
M̂l(k) + L̂l(k)

]
· Ê(k), (5.113)

where the MT primary fields have been removed and replaced by the driving field ŝ, due to
sources above the thin sheet. For sources above the heterogeneous thin sheet,

ŝ = iz̄× B̂−p + M̂l · Ê−p , (5.114)

where B̂−p and Ê−p are the primary fields propagated down to the depth of the thin sheet.
Note that when source currents reside at multiple depths (i.e., an electric dipole of finite
vertical dimension), B̂−p and Ê−p are simply given by a sum of the primary fields resultant
from a sheet of source current at each individual depth.

The theory developed here does not preclude placing the dipole sources below the
thin sheet of variable conductance or even within the thin sheet itself. It is easy to see that
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for sources placed below the thin sheet,

ŝ = −iz̄× B̂+
p + L̂l · Ê+

p , (5.115)

with B̂+
p and Ê+

p , the primary fields propagated upward from below the thin sheet. Models
with sources above and below the thin sheet are handled with a simple sum of the two inde-
pendent source vectors, that from above and that from below. As for putting a horizontal
electric dipole source or a vertical magnetic dipole within the thin sheet, we do not need to
solve for primary fields beforehand; we merely modify equation (5.113) with a source term
so that we have,

F [2iτ(r) ·E(r)] = −iT̂(k) +
[
M̂l(k) + L̂l(k)

]
· Ê(k). (5.116)

Placing a horizontal magnetic dipole in the thin sheet disrupts the condition of continuity
of the horizontal electric field across the thin sheet, upon which the method is hinged.
Horizontal magnetic dipoles placed in the thin sheet cannot be modeled in the manner
presented by this chapter.

As previously implied, there is no limit to the number of current sources that can
be modeled simultaneously. The only limiting factor is the size of the discrete T, and thus
the number of wavenumbers being modeled. As will be discussed in more detail in Section
5.5, inherent periodicity of the Fourier domain treatment demands that sources be placed
away from the edges of the spatially discretized grid. This means that if one were to model
multiple current sources simultaneously, the discretized grid would have to be large enough
to encompass all of them and still have a spatial buffer of a few skin depths between them
and the edge of the grid.

5.4 Method of Solution and Convergence

We turn now to the solution of equations of the type,

F [T(r) ·E(r)] = −v̂(k) + K̂(k) · Ê(k), (5.117)
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which includes (5.50), (5.65), (5.113), and (5.116). These represent inhomogeneous Fred-
holm equations of the second kind. With the Fourier-transform, the convolution integral
of the typical integral equation method conveniently collapses into a single multiplication;
the integral of the Fredholm equation now takes the form of a Fourier integral, whose nu-
merical realization is well-established. A solution to this type of equation and the proof of
its convergence were originally presented in PW; this section will elaborate slightly on the
original presentation.

First, we define the linear operator,

FS · Ê = F [S · F−1[Ê]], (5.118)

so that we can rewrite (5.117) as,

(
K̂− FT

)
· Ê = v̂. (5.119)

Equation (5.119) represents a linear system whose direct solution is impractically large due
to the form of Ft. Therefore we appeal to classical iterative methods for solving linear
systems. One of the simplest of these methods is known as the Jacobi iteration [Golub and
Van Loan, 1983]. For a square system of linear equations,

Ax = b, (5.120)

the Jacobi iteration uses A = D + R with D containing the diagonal portion of A, and R
the non-diagonal components. The advantage to this decomposition is that D has a simple
inverse. Then, in a situation where the inverse of A is inaccessible, one could attempt an
approximate solution for x, which we will call x(k), with the following Jacobi iteration,

x(k+1) = D−1
(
b−Rx(k)

)
, k = 0, 1, 2, 3 . . . , (5.121)

where x(0) is some initial guess at a solution. The repetition of (5.121) will only converge
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to the true x = A−1b given the following property is true,

ρ(D−1R) < 1, (5.122)

where ρ is the spectral radius. The spectral radius of a matrix B is defined as,

ρ(B) def= max
i

(|λi|), (5.123)

where {λi} is the set of eigenvalues of B. Note that ρ(B) = ρ(−B), which we make use of
later. The spectral radius is related to the convergence behavior of the power sequence of
a matrix. Furthermore, it can be shown that,

lim
k→∞

Bk = 0 if and only if ρ(B) < 1. (5.124)

Then, following Golub and Van Loan [1983] by choosing εk to be the error in the kth iterate,
such that,

εk = xk − x, (5.125)

and restating the Jacobi iteration as,

Dx(k+1) = b−Rx(k), (5.126)

we can show that,

ε(k+1) = −D−1Re(k) = (−D−1R)kε(0). (5.127)

If the condition (5.122) holds, equations (5.124) and (5.127) ensure that,

lim
k→∞

εk = 0, (5.128)

and thus the Jacobi iterative process is guaranteed to converge. Not only does the spectral
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radius provide a diagnostic of asymptotic behavior, it provides a bound on the rate of
convergence as well. If we let rewrite (5.127) as

ε(k+1) = Bkε(0), (5.129)

we find that we can also write,

ε(k+1) − ε(k) = x(k+1) − x(k) = (Bk −Bk−1)ε(0). (5.130)

We will soon employ the spectral radius as the matrix norm compatible with the Euclidean
vector norm, but first let us discuss another property of the spectral radius. We return the
canonical eigenvalue problem:

Ax = λx. (5.131)

It can be easily shown that,

Akx = λkx, (5.132)

and so for the spectral radius we have,

ρ(Ak) = max(|λk1|, |λk2|, . . .) = max(|λ1|, |λ2|, . . .)k = ρ(A)k. (5.133)

Now returning to (5.130), our equation for rate of convergence, we use the spectral norm
and the triangle inequality property of a norm to get,

||x(k+1) − x(k)||2 ≤ ρ(B)k
(

1− 1
ρ(B)

)
||ε(0)||2 = αρ(B)k. (5.134)

Thus, the 2-norm of the difference between solution vectors of successive iterations will be
bounded by some constant multiplied by the kth power of the spectral radius; the decline of
the log-normed difference between solutions with respect to iteration number, will have a
slope equal to or less than ρ(B) at later iterations. This allows one to make an approximate
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projection for the maximum number of iterations it should take to achieve some desired
level of convergence.

Next, we note that the construction of a Jacobi iteration does not require thatD be
a diagonal matrix and R be a non-diagonal matrix. It only requires that D−1 be efficiently
computable, and that A = D+R, which gives us license to create our own modified-Jacobi
iteration to solve (5.119). We nonetheless must ensure ρ(D−1R) < 1 in order to have an
iteration that will converge.

To continue along this path we break up the diagonal tensor, t into its constant
and anomalous parts so that,

T(r) = T0 + ∆(r). (5.135)

Then we can rewrite (5.117) as,

(
K̂− T0

)
· Ê = v̂ + F∆ · Ê, (5.136)

where we have extracted the linear operator with the computationally burdensome direct
inverse and moved it to the right-hand side. The Jacobi-like iteration in the language of
the discrete system, is then

ê(k+1) = B−1v̂ +B−1F∆ê
(k), k = 0, 1, 2, 3, · · · . (5.137)

We distinguish between the numerical vectors of the discrete system and the physical vectors
of the continuous equations by using italic font for the former and bold font for the latter.
The Fourier-domain electric field vector ê is organized so that its two horizontal components
are grouped in pairs for the jth wavenumber such that,

ê = [ê1
1ê

2
1 · · · ê1

j ê
2
j · · · ê1

n/2ê
2
n/2], (5.138)

where n is the number of grid cell in the discretized thin sheet. Then the matrix B is given
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by,

B = K̂ − IT0, (5.139)

and is block diagonal with 2× 2 matrices along the diagonal. The inverse of such a matrix
is trivial to compute. The inverse of B is also a block diagonal matrix composed of the
inverses of each 2× 2 block along its diagonal.

As stated before, in order for an iteration like (5.137) to converge, ρ(B−1F∆) must
be less than 1. For the anisotropic layered earth, this is difficult to prove analytically.
However, once the tensor K̂ is constructed from a given earth model, the eigenvalues of
(B−1F∆) can be found numerically to provide a check on the convergence potential of a
given model before the iterative procedure is begun.

The eigenvalues of K̂ for a simpler earth model of an isotropic but inhomogeneous
thin sheet sandwiched between two homogeneous, isotropic halfspaces of arbitrary conduc-
tivities are accessible analytically; with this, convergence can be assured for all isotropic
halfspace conductivities. We turn now to placing bounds on the discrete ρ(B−1F∆) in order
to prove that the iteration (5.137) will converge. We will make use of a few properties of
the spectral radius, which we state without proof:

ρ(AB) ≤ ρ(A)ρ(B), (5.140)

ρ(A− Ic) = max
i

(|λi − c|), (5.141)

and,

ρ(A−1) = max
i

1
|λi|

, (5.142)

where λi are the eigenvalues of A. The property of (5.140) allows us to analyze the eigenval-
ues of B−1 and F∆ separately. In its discrete form, the Fourier transform can be represented
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by a unitary matrix, G. We state the eigenvalue problem of F∆ with the following,

F∆x = G∆G−1x = λx, (5.143)

where ∆ is a diagonal matrix whose diagonal elements are the anomalous conductance
values of the gridded thin sheet. We can rearrange (5.143) to make the following,

∆G−1x = λG−1x. (5.144)

We then define a new eigenvector, u = G−1x, and a new eigenvalue equation for the same
eigenvalues is given by,

∆u = λu. (5.145)

Since ∆ is diagonal, it’s eigenvalues, λ are simply the elements along its diagonal. Therefore
we can write,

ρ(F∆) = 2 max
n
|τn − τ0|, (5.146)

remembering t(r) = 2iτ(r), and n is the number of cells by which the sheet is discretized.
Combining (5.141) and (5.142) we find that,

ρ(B−1) = max
j

1
|λj − t0|

, (5.147)

where λj are the eigenvalues of K̂. Drawing from (5.65), (5.40), (5.60), (5.30), and (5.56),
we can show that for a thin sheet sandwiched between two isotropic halfspaces,

K̂ =

 (G̃0 + G̃1) + (H̃0 + H̃1) cos 2φ (H̃0 + H̃1) sin 2φ
(H̃0 + H̃1) sin 2φ (G̃0 + G̃1)− (H̃0 + H̃1) cos 2φ

 , (5.148)
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where,

G̃n = − 2iσn + 2π2k2
√

2iσn + 4π2k2 , (5.149)

H̃n = 2π2k2
√

2iσn + 4π2k2 , (5.150)

σ0 is the conductivity of the halfspace above, and σ1 is the conductivity of the halfspace
below the thin sheet. To find the eigenvalues of K̂, we solve its characteristic equation given
by,

λ2 − (K̂11 + K̂22)λ+ K̂11K̂22 − K̂12K̂21 = 0. (5.151)

From (5.148), this becomes,

λ2 − 2(G̃0 + G̃1)λ+ (G̃0 + G̃1)2 − (H̃0 + H̃1)2 = 0, (5.152)

with solutions,

λ = (G̃0 + G̃1)± (H̃0 + H̃1). (5.153)

Inserting (5.149) and (5.150), these become,

λ+ = −2i
(

σ0√
2iσ0 + 4π2k2 + σ1√

2iσ1 + 4π2k2

)
, (5.154)

and,

λ− = −
√

2iσ0 + 4π2k2 −
√

2iσ1 + 4π2k2. (5.155)

We now use a Taylor expansion to analyze the large-k behavior of these eigenvalues:

λ+ = − i

πk
(σ0 + σ1)− 1

4π3k3 (σ2
0 + σ2

1)−O(k−5), (5.156)
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and,

λ− = −4πk − i

2πk (σ0 + σ1) +O(k−3). (5.157)

These expansions hold only when σ0/(2π2k2) ≤ 1 and σ1/(2π2k2) ≤ 1. To understand
the limits of this approximation, we restore physical units to the variables, which will be
denoted by brackets, for example [σ0] = σ0σ∗. We quickly find the following requirements,

[dx] ≤
√

2π[dn], n = 0, 1, (5.158)

that is, the sample spacing in the thin sheet, [dx], must be no more than about 4.44 times
larger than the skin depth in either halfspace. These requirements should be easily satisfied
by a decently sampled grid. It is clear from (5.147) that the smallest λ will set the spectral
radius of B̂−1; this is found on the λ+ branch as k becomes large. The largest k on the 2D
grid of τ occurs on the diagonal of a square where k =

√
2k0 = (

√
2dx)−1. Thus, employing

the large-k approximation for λ+, we find,

ρ(B−1) =
(

2τ0 + (σ0 + σ1)
πkmax

)−1
= 1

2τ0 + 23/2dx(σ0 + σ1)
. (5.159)

Combining (5.146) and (5.159) we arrive at bound on the spectral radius for the full itera-
tion:

ρ(B−1F∆) ≤ maxn |τn − τ0|
τ0 +

√
2dx(σ0 + σ1)

= ρb. (5.160)

This bound on the spectral radius is independent of frequency and weakly dependent on
dx since it is usually much smaller than τ . Remember that we are free to choose τ0 to be
that which guarantees the best convergence. The value of τ0 that makes ρb the smallest is
τ0 = 1

2(τmin + τmax), which gives the bound,

ρb = τmax − τmin
τmax + τmin +

√
2dx(σ0 + σ1)

. (5.161)
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Since dx is normally chosen to be small compared to τmax, ρb depends mostly on the ratio
of the smallest to greatest value of thin-sheet conductance. Most importantly, with our
chosen τ0, the iterative method of solution presented here is guaranteed to converge as long
as τmax > 0, and τmax = 0 is the case where one would not need a thin-sheet at all.

This section has presented a proof of convergence of the modified Jacobi itera-
tive scheme for a model of a thin sheet sandwiched between two halfspaces of arbitrary
conductivities. PW proved convergence of the modified Jacobi scheme for one halfspace
of arbitrary conductivity below the thin sheet and a vacuum above. PW then extended
the proof of convergence to encompass models with layered structure below the thin sheet.
Since we have shown that adding a conducting halfspace above the thin sheet does no harm
to the convergence property of our solution method, we conjecture that adding conducting
layers above the thin sheet will also not harm convergence. A more rigorous proof of this
property could be made by extending the arguments made in Appendix D of PW to a model
with layers above and below the thin sheet.

5.5 Edge Effects and Multi-Grid Computation

The handling of the electric and magnetic fields in the spatial Fourier domain
carries the implicit property of periodicity. This would not pose a constraint were our cal-
culations done on a continuous and infinite area, i.e. over an infinite number of wavenumbers.
However, the calculations discussed here take place over a finitely-sampled confined area
of a rectangle. It then becomes necessary that we address the boundary conditions at the
edge of our region. All the FTs previously discussed involve an integral which extends over
the whole plane. The numerical FT (e.g. FFT) computes the exact integral over the whole
plane as well by interpolating our given sample points with a series continuous, periodic
functions—sines and cosines. A numerical FT assumes these periodic interpolating func-
tions continue indefinitely beyond the region of computation, duplicating the fields within
the region endlessly in all directions. Thus, the implicit boundary condition for the fields
on one side of our rectangular region is that it must match the fields on the opposing side
of the rectangle; this is the topology of a torus. A difference between the conductance of
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the thin sheet on one side of the rectangle and its opposing side introduces a discontinuity
in electric current which affects the fields over a broad range of wavenumbers, and therefore
results in effects that can pervade far into the grid when the characteristic skin depth is
comparable to the size of the modeled region.

A simple solution to this problem would be to use an ever larger grid, effectively
moving the edge effects further away, and then interpret only the inner region. However,
if fine-scale modeling is intended for the interpreted region, the size of the problem could
become numerically unfeasible since the sample spacing of the grid must remain constant
throughout. The numerical limit to using a grid much larger than the area of interest can
be surmounted by using multiple grids of cascading resolution. This solution proceeds by
dividing the system into long- and short-wavelength pieces. The conductance of the thin
sheet decomposed into T + S, consisting of the large-scale, more smoothly varying T , and
the residual high-wavenumber component S. The solution vector for the horizontal electric
field is also split in two: e+ ε. Then inserting these into (5.117), we get,

F [(T + S)(e+ ε)] = −v̂ + K̂(ê+ ε̂). (5.162)

Then we define the long wavelength problem as,

F [Te] = −v̂ + K̂ê. (5.163)

Subtracting (5.163) from (5.162),

F [(T + S)ε] = −F [Se] + K̂ε̂, (5.164)

the equation governing the short wavelength fields. In (5.164) we see that the source field
for the short wavelength problem is the long wavelength field, e, scattered by the short
wavelength conductance, S. No new approximations have been introduced, we’ve only
exploited the linearity of the FT. Since T by definition is smooth, we can solve (5.163)
on a large, but lower resolution grid (large dx), cutting down the computational cost of
moving the edges of our modeled region away from the area of interest. Then (5.164) can
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be solved in the smaller area of interest at a much higher resolution after interpolating the
long wavelength solution, e onto the finer grid. This example uses two grids (see Figure 5.2),
but one could repeat this process on any number of inset grids with cascading resolution;
this is a general multi-grid method.
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Figure 5.2: Example node spacing for the multi-grid method. Two overlapping 16 × 16
discretizations of the thin sheet are depicted. The blue dots signify nodes in the larger,
low-resolutions grid, and the red circles signify the nodes of the inner, high-resolution grid.

In equation (5.162), v̂ represents the MT source vector, which contains a single
component at k = 0, the longest wavelength. Thus, it does not require a decomposition
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into short- and long-wavelength components, as the multi-grid method requires of the con-
ductance and electric field. However, when the vector v̂ represents the primary fields from
a more geometrically complicated source, say an electric dipole, it too must be decomposed.
With the definition, v = V + ν, we may rewrite equations (5.163) & (5.164) as,

F [Te] = −V̂ + K̂ê, (5.165)

and,

F [(T + S)ε] = −F [Se]− ν̂ + K̂ε̂, (5.166)

respectively.
The key to making this multi-grid method work in practice is to ensure that ε, the

short wavelength field, goes to zero before the edges of the smaller, high resolution grid;
otherwise there again will be wrap-around effects in the smaller grid. Achieving vanishing
short wavelength fields at the edges essentially requires that S be zero near the edges of the
smaller grid. One way to achieve this is to create two buffer regions around the small grid
of total conductance: the outer region consists of just the long wavelength conductance, T ,
up-sampled onto the finer resolution of the small grid; and the inner region consists of a
smooth interpolation between T on its outer border, and T + S on its inner border. The
region inside of these two buffer zones is the new area of interest which is safe from edge
effects and houses the solution of the full resolution fields. An important point here is that
the edge-effects due to the shorter wavelength fields are far less pervasive than those of the
longer wavelength fields, so the higher resolution grid even with its buffer zones around
the edges is still smaller than the low-resolution grid for the long wavelength fields needs
to be. Done properly, the only edge effects will occur around the edges of the large, low-
resolution grid, which is not to be interpreted anyway; it serves merely as a means to meet
boundary conditions on the edges of the small grid. Taking advantage of the fact that it
will not be used for interpretation, smoothing across opposite edges of the large grid of
conductance T , can further reduce the pervasiveness of edges effects on the large grid by
easing discontinuities at the toroidal seams around the large grid.
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5.6 Thin Sheet Validity

The thin-sheet method presented in the current chapter is always an approxima-
tion. In nature there are no sheets of electric current with zero thickness. However, one can
make an argument that relative to the characteristic wavelength of the energy in a model,
the fields resulting from actual currents are, in fact, indistinguishable from those of a thin
sheet equivalent. This section introduces this scaling argument, and assesses the limits of a
thin sheet’s validity in reproducing MT responses for an archetypal model.

The source of error in a thin-sheet approximation arises from the condition of
continuity of the horizontal electric field across the thin sheet. Continuity across the thin
sheet forces the horizontal electric field to be continuous across the depth range in the
model which is to approximated by a thin sheet. An estimate of the error that results from
this restriction must be made for each particular model. The error is best expressed in
the quantities that are most often analyzed with MT data: apparent resistivity and phase.
Here we will only analyze the case of k = 0, which provides only a lower bound on error, a
consequence of the lowest wavenumber of energy being subject to the weakest attenuation
through the model, and therefore adheres best to the condition of continuity across the thin
sheet. Nonetheless, current MT interpretation would assume that the source field above
the thin sheet has only one wavenumber component, k = 0. Such a planar source field does
undergo dispersion as it filters through the thin sheet, but for most smooth geologic models,
the energy remains predominantly at low wavenumbers. One could make a more thorough
error estimate which depends upon k, say for non-plane wave sources or rougher geology,
but there would be no way of knowing, a priori, the wavenumber spectrum of that energy
after it has been filtered by the thin sheet. Such a complete estimate of the error could
only take place once a solution for horizontal electric field in a specific thin sheet model is
achieved.

It is common practice with MT data to set an error floor of about 10% of the
apparent resistivity amplitude, which sets a complementary error floor in phase of 2.86◦.
Taking these as the threshold of accuracy of common MT data, we wish to determine an up-
per bound on the frequencies for which the thin sheet model of ocean bathymetry produces
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apparent resistivity and phase results that are consistent with realistic data. Attenuation
of the electric field through the layers of our model will increase as the frequency of energy
increases; the more attenuation there is in the layer represented by a thin sheet, the less
valid the thin sheet approximation will be. Therefore, we will find a bound on the highest
frequency (or lowest period) at which the thin sheet approximation produces MT responses
over a 1D earth that are indistinguishable from MT data with realistic errors.

First, we wish to determine the effect errors in the modeled complex electric field
have on MT apparent resistivity and phase of a layered earth. We start with the modeled
electric and magnetic fields at the surface of a model. These are complex valued fields such
that,

E = a+ ib, H = c+ id. (5.167)

We define the MT impedance as the ratio of the complex fields,

Z = E

H
= x+ iy = 1

c2 + d2 [(ac+ bd) + i(bc− ad)] . (5.168)

Then the MT impedance phase is defined as

φ = argZ = arctan y
x
. (5.169)

We perform linear propagation of errors, which for the case of impedance phase error requires
the formula,

δφ =
(∣∣∣∣∂φ∂a

∣∣∣∣2 δa2 +
∣∣∣∣∂φ∂b

∣∣∣∣2 δb2 +
∣∣∣∣∂φ∂c

∣∣∣∣2 δc2 +
∣∣∣∣∂φ∂d

∣∣∣∣2 δd2
)1/2

. (5.170)

Defining y/x as R we break up the partial differentials in (5.170) using the chain rule,

∂φ

∂s
= ∂φ

∂R

∂R

∂s
, (5.171)

for s ∈ {a, b, c, d}. The first partial differential on the right hand side of (5.171) is well



168

known,

∂φ

∂R
= 1

1 +R2 = (ac+ bd)2

(ac+ bd)2 + (bc− ad)2 . (5.172)

For the real part of E, we find that,

∂R

∂a
= −d(ac+ bd)− c(bc− ad)

(ac+ bd)2 = −b(c
2 + d2)

(ac+ bd)2 , (5.173)

which when combined with (5.172) gives,

∂φ

∂a
= − b

|E|2
, (5.174)

by noticing that

(ac+ bd)2 + (bc− ad)2

c2 + d2 = |H|2|Z|2 = |E|2. (5.175)

For the imaginary part of E, we find that,

∂R

∂b
= c(ac+ bd)− d(bc− ad)

(ac+ bd)2 = a(c2 + d2)
(ac+ bd)2 , (5.176)

which we combine with (5.172) to get,

∂φ

∂b
= a

|E|2
. (5.177)

For the real part of H, we find that,

∂R

∂c
= d(a2 + b2)

(ac+ bd)2 , (5.178)

which when combined with (5.172), gives,

∂φ

∂c
= d

|H|2
, (5.179)
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by noticing that

(ac+ bd)2 + (bc− ad)2

a2 + b2
= |E|2/|Z|2 = |H|2. (5.180)

For the imaginary part of H, we find that,

∂R

∂d
= −c(a

2 + b2)
(ac+ bd)2 , (5.181)

which we combine with (5.172) to get,

∂φ

∂d
= − c

|H|2
. (5.182)

Plugging (5.174), (5.177), (5.179), and (5.182) into (5.170) we find

δφ =
[(

b

|E|

)2 ( δa
|E|

)2
+
(
a

|E|

)2 ( δb

|E|

)2
+
(
d

|H|

)2 ( δc

|H|

)2
+
(
c

|H|

)2 ( δd

|H|

)2]1/2

.

(5.183)

Next we shall examine the effect on apparent resistivity. Apparent resistivity is
defined as,

ρa = 1
µω

∣∣∣∣EH
∣∣∣∣2 = 1

µω

(
a2 + b2

c2 + d2

)
. (5.184)

Again we use linear propagation of errors. Looking for the fractional error in apparent
resistivity, we use,

δρa
ρa

= 1
ρa

(∣∣∣∣∂ρa∂a
∣∣∣∣2 δa2 +

∣∣∣∣∂ρa∂b
∣∣∣∣2 δb2 +

∣∣∣∣∂ρa∂c
∣∣∣∣2 δc2 +

∣∣∣∣∂ρa∂d
∣∣∣∣2 δd2

)1/2

. (5.185)

We quickly find the partial differentials with respect to the electric field components in
(5.185) to be,

∂ρa
∂s

= 2s
µω|H|2

= 2sρa
|E|2

, (5.186)
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for s ∈ {a, b}, and those with respect to the magnetic field components in (5.185) to be,

∂ρa
∂q

= −2qρa
|H|2

, (5.187)

for for q ∈ {c, d}. Plugging (5.184), (5.186), and (5.187) into (5.185) we find,

δρa
ρa

= 2
[(

a

|E|

)2 ( δa
|E|

)2
+
(
b

|E|

)2 ( δb

|E|

)2
+
(
c

|H|

)2 ( δc

|H|

)2
+
(
d

|H|

)2 ( δd

|H|

)2]1/2

.

(5.188)

In the case of the thin sheet modeling where H is not a variable in itself, but a quantity
linked to the electric field by an impedance relationship; we must modify the error formulae.
We simply note that

H = c+ id = Z−1E =
(
x

|Z|
− i y
|Z|

)
(a+ ib) = 1

|Z|
[(ax+ by) + i (bx− ay)] . (5.189)

Then we can show that,

(
δc

|H|

)2
= x2

(
δa

|E|

)2
+ y2

(
δb

|E|

)2
, (5.190)

(
δd

|H|

)2
= y2

(
δa

|E|

)2
+ x2

(
δb

|E|

)2
, (5.191)

(
c

|H|

)2
=
(
x
a

|E|
+ y

b

|E|

)2
, (5.192)

and

(
d

|H|

)2
=
(
x
b

|E|
− y a

|E|

)2
. (5.193)

Finally, (5.183) and (5.188) slightly rearranged and modified for magnetic fields fixed to a
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variable electric field are,

δφ2 =
(
b

|E|

)2 ( δa
|E|

)2
+
(
a

|E|

)2 ( δb

|E|

)2
+ . . .

· · ·+
(
x
b

|E|
− y a

|E|

)2(
x2
(
δa

|E|

)2
+ y2

(
δb

|E|

)2)
+ . . .

· · ·+
(
x
a

|E|
+ y

b

|E|

)2(
y2
(
δa

|E|

)2
+ x2

(
δb

|E|

)2)
, (5.194)

and

(
δρa
2ρa

)2
=
(
a

|E|

)2 ( δa
|E|

)2
+
(
b

|E|

)2 ( δb

|E|

)2
+ . . .

· · ·+
(
x
a

|E|
+ y

b

|E|

)2(
x2
(
δa

|E|

)2
+ y2

(
δb

|E|

)2)
+ . . .

· · ·+
(
x
b

|E|
− y a

|E|

)2(
y2
(
δa

|E|

)2
+ x2

(
δb

|E|

)2)
. (5.195)

With (5.194) and (5.195) we have formulae for estimating errors in MT data that
result from relative errors in an electric field calculation. Now, using these formulae we will
estimate a bound in frequency for validity of the thin sheet in representing some archetypal
models of an ocean. To do this we will compute the true electric field values for a range
of oceanic layered models: first, we will keep the lower crust and mantle structure fixed
to the Heinson and Constable [1992] model, but will vary the depth of the ocean, and the
conductivity of the uppermost 2 km of the crust; and second, we will place halfspaces of
varying conductivity below an ocean whose depth we will again vary. For each of these
1D models we will treat the vertical attenuation of the horizontal electric field through the
ocean layer as modeling errors, δa and δb, inherent to the thin sheet method. Using (5.194)
and (5.195), for each model we will search for the frequency at which the attenuation in
the real and imaginary parts of the electric field results in an error greater than 10% in
apparent resistivity or greater than 2.86◦ in phase. This frequency will be the upper bound
at which the thin sheet model is deemed consistent with realistic MT data.

Again, our layered model consists of a layer of seawater conductivity representing
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the ocean, underlain by of a set of layers of uniform conductivities representing the earth.
We wish to calculate the electric field at the top of the layered model, E0, as well as at the
base of the ocean layer, E1. As a measure of attenuation to be used in (5.194) and (5.195),
we will then calculate the relative difference between the real and imaginary parts of these
electric fields:

δa

|E|
= <(E0 − E1)

|E0|
. (5.196)

and

δb

|E|
= =(E0 − E1)

|E0|
. (5.197)

We start by determining the plane-wave impedance of an N -layered isotropic earth. We
will be working in full physical units, following a derivation found in Ward and Hohmann
[1988]. First, we define the impedance observed at the top of the n-th layer as

Zn = En−1
Hn−1

(5.198)

where En and Hn are the horizontal and mutually orthogonal electric and magnetic field
values, respectively, as measured at the base of the n-th layer. Zn is computed by applying
the following recursive formula starting at the base of the stack of layers:

Zn = ζn
Zn+1 + ζn tanh(iknhn)
ζn + Zn+1 tanh(iknhn) (5.199)

where

kn = −iµ0ωσn (5.200)

is the complex wavenumber in the material of the n-th layer, hn is the thickness of that
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layer, and

ζn = ωµ0
kn

(5.201)

is that layer’s intrinsic impedance. By setting hN = ∞ we see that ZN = ζN for the half
space at the base of the layered model. From (5.198) we see that the electric field at the
top of our layered model is given by

E0 = Z1
B0
µ0
. (5.202)

Again borrowing from Ward and Hohmann [1988], we have

En = En−1/

(
cosh(iknhn) + ζn

Zn+1
sinh(iknhn)

)
. (5.203)

Combining (5.202) and (5.203), the relative attenuation of the horizontal electric field
through the ocean layer is

E0 − E1
|E0|

= Z1
|Z1|

[
1− Z2

Z2 cosh(ik1h1) + ζ1 sinh(ik1h1)

]
. (5.204)

In Figures 5.3 and 5.4 we have plotted the lower bound in terms of period at
which the thin sheet approximation is valid, under the pre-described conditions, for a range
of layered models. It is apparent that the inaccuracy of the thin sheet approximation is
far more sensitive to the ocean depth than it is to the seafloor resistivity, except, of course
when the seafloor resistivity nears that of seawater. Also, the lower bounds in period for
the MT phase are higher than the lower bounds in period for MT apparent resistivity, a
consequence of the thin sheet model having greater difficulty reproducing the imaginary
component of the electric fields.

Figures 5.5 and 5.6 are similar to 5.3 and 5.4 with the exception that for each of
the models, the resistivity below the seafloor is uniform. With this modification, we see
that the dependence of the bound on thin sheet validity with seafloor resistivity arrises
at higher resistivity values, especially in the thicker-ocean models, compared to the same
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Figure 5.3: Lower bound in period for which a thin sheet calculation of a given model is
consistent with a 10% error in MT apparent resistivity. The bounds were calculated over
models that range in thickness of an ocean layer, and resistivity of the first 2 km below the
seafloor. Beyond 2 km below the seafloor, all models have the layered structure used in
Heinson and Constable [1992].
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Figure 5.4: Lower bound in period for which a thin sheet calculation of a given model is
consistent with a 2.86◦ error in MT phase. The bounds were calculated over models that
range in thickness of an ocean layer, and resistivity of the first 2 km below the seafloor.
Beyond 2 km below the seafloor, all models have the layered structure used in Heinson and
Constable [1992].
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Figure 5.5: Lower bound in period for which a thin sheet calculation of a given model is
consistent with a 10% error in MT apparent resistivity. The bounds were calculated over
models that range in thickness of an ocean layer, and resistivity of a halfspace below the
seafloor.
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Figure 5.6: Lower bound in period for which a thin sheet calculation of a given model is
consistent with a 2.86◦ error in MT phase. The bounds were calculated over models that
range in thickness of an ocean layer, and resistivity of a halfspace below the seafloor.
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bound for the Heinson and Constable [1992] layered models. These figures illustrate that
the bound on the thin sheet validity will vary both with ocean depth and the resistivity
structure below the seafloor in a nonlinear way. Therefore estimates of thin sheet validity
must be made for each specific model using the algorithm presented in this section.

5.7 Propagation of Fields

The solution of equations of the type (5.50) yields only the horizontal electric field
within the thin sheet. The quantities analyzed in practice are not the fields themselves
but transfer functions between them, such as the magnetotelluric impedance tensor. These
transfer functions require the knowledge of all the components of the electric and magnetic
fields. We now describe how the other components of the fields can be calculated throughout
the model domain once a solution for the horizontal electric field within the thin sheet has
been achieved.

We start with all the fields at the depth of the thin sheet, where a distinction must
be made between the fields above and below the thin sheet, as it constitutes a discontinuity
in the horizontal current density. The horizontal electric field, following (5.31), will be the
same above and below the thin sheet. Given the horizontal electric field, the horizontal
magnetic field below the thin sheet is found with equation (5.40). A rearrangement of
(5.48) yields the horizontal magnetic field above the thin sheet:

B̂− = B̂+ + 2z̄×F [τ(r) ·E(r)] . (5.205)

Using (5.5) and (5.6), the vertical fields, anywhere in the model, can then be derived from
their complementary horizontal fields:

B̂3 = −2πz̄ · (k× Ê), (5.206)

and

Ê3 = πi

νnσn
z̄ · (k× B̂). (5.207)
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However, (5.207) is undefined in regions of the model where the vertical conductivity goes
to zero, i.e., a halfspace of air above the thin sheet. We must turn to another method for
the derivation of the vertical electric field. Instead we use (5.18) and the definition of the
admittance tensor, (5.59), to get the electric field just above the thin sheet,

Ê−3 = 2πi
2iσnνn + 4π2k2 (k · C−1

0 · Ê), (5.208)

where C1 could replace C0 to get the electric field below the thin sheet. Inserting (5.66) into
(5.208), we have the formula for the vertical electric field above the thin sheet and within
a perfectly insulating halfspace:

Ê−3 = i

k
(k · Ê), when σ = 0 for z < z0. (5.209)

In order to propagate the values of the horizontal fields at the thin sheet into other
portions of the model domain, the vertical derivatives of the electric field above and below
the thin sheet are needed. Once all of the horizontal and vertical fields above and below
the thin sheet are known, equation (5.5) provides,

Ê′ = 2πikÊ3 + iz̄× B̂. (5.210)

Now, armed with the values of the horizontal fields and their vertical derivatives
above and below the thin sheet, we can use the machinery developed in Sections 5.1 &
5.2 for propagating the horizontal electric field and its vertical derivative away from the
thin sheet, either upward or downward through the layers. With the electric field and its
vertical derivative known at any depth, calculation of the magnetic field at any depth is
straightforward. A combination of (5.18) and (5.15) relates the horizontal magnetic field to
the vertical derivative of the horizontal electric field:

B̂ = iz̄×
[
I− 4π2

2iσnνn + 4π2k2 kk
]
· Ê′. (5.211)

It is important to note that this method for the propagation of fields applies only to source-
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free depths. The modification of this method to include depths where sources occur requires
the source-modified boundary conditions presented in Section 5.3.

5.8 MT Calculation around a Gaussian Seamount

This section provides an illustration of the thin sheet modeling capability using
the simple model of a Gaussian-shaped seamount (see Figure 5.7). The seamount will
have a maximum height of 3.5 km and resides in a water layer with a maximum thickness
of 4 km. The seamount shape is governed by a 2D symmetric Gaussian function whose
radius at half-maximum is 5.98 km. The conductivity of the water is 3.3 S m−1, while the
layered conductivity structure below the seafloor is made to match that given in Heinson
and Constable [1992], depicted in Figure 5.8, and also used in Section 5.6. The period to
be modeled is 5000 s. Were there no seamount, the apparent resistivity measured on the
seafloor over the given this 1D stack of layers and period, would be 244.99 Ωm and the
impedance phase would be 73.59◦. The seamount is integrated into conductance of a thin
sheet comprising a square grid of dimensions 120× 120 km discretized into 512× 512 cells.
This affords a sample spacing of 470 m. This thin-sheet calculation requires only a few
seconds on a modern computer.

Figures 5.9 & 5.10 plot the anomalous apparent resistivity, and phase, respectively,
of the xy component of the impedance tensor as measured at the base of the thin sheet
representation of the seamount. A single thin sheet method was used for this calculation.
Due to the radial symmetry of the seamount, plots of the yx component of the impedance
tensor are given simply by a 90◦ rotation of Figures 5.9 & 5.10. The anomaly is defined
relative to the 1D value at the seafloor were there no seamount. The black line outlines a
radius of 15 km, three standard deviations of the Gaussian seamount; there is essentially no
seamount topography outside of this circle. The error in the thin sheet approximation for
this model, propagated for k = 0 as described in Section 5.6, is 1.60% in apparent resistivity
and 2.55◦ in phase.

The xy component of the impedance tensor, in a 1D sense, involves current induced
along the x-direction by a driving magnetic field along the y-direction; these are the primary
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fields. In the 3D world the primary, x-directed currents induced in the water column are
impeded as they meet the higher resistivity of the seamount flanks. This causes a charge
buildup on the faces of the seamount that are normal to the direction of primary current
flow. The charge buildup has the effect of turning the seamount into an electric dipole
of sorts, whose orientation opposes the primary current flow. Thus, along the flanks of
the seamount that are normal to the primary current flow, the seamount dipole creates
an opposing electric field, a negative electric field anomaly, which results in a "conductive"
apparent resistivity anomaly; along the flanks of the seamount parallel to the predominant
current flow, the seamount dipole creates a supporting electric, a positive electric fields
anomaly, which results in a "resistive" apparent resistivity anomaly. This is the description
of a galvanic effect, as it involves a build up of charge at the conductivity contrast produced
by a seamount. The phase anomaly indicates that there is also an inductive effect, one
which requires a more complicated explanation that is beyond the scope of this section.

Figure 5.7: Illustation of the Gaussian seamount on the 120 × 120 km square in a 4 km
deep ocean.
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Figure 5.8: Layered resistivity model placed below the seafloor in the Gaussian seamount
illustration. Layered model taken from Heinson and Constable [1992].

In 1D- and 2D-conductivity environments, the diagonal components of the impedance
tensor, oriented strike perpendicular or parallel in the case of 2D, are zero everywhere;
they are not zero, in general, for 3D-conductivity structure like the example of a Gaussian
seamount. Figure 5.11 plots the apparent resistivity and phase of the xx component of the
impedance tensor. Again, a plot of the yy component can be reproduced by rotating the
plots in Fig. 5.11 by a positive 90◦. The phase of Zxx and Zyy is divided into four quadrants
centered around the peak of the seamount. Neighboring quadrants are are identical with
the exception that they are 180◦ out of phase from each other. This produces an important
consequence in this case of the radially symmetric seamount, that

Zxx + Zyy = 0 (5.212)

everywhere. The tensor invariant, s, known as the "Swift skew", is given by,

s = |Zxx + Zyy|
|Zxy − Zyx|

. (5.213)
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Figure 5.9: Percentage apparent resistivity anomaly in Zxy caused by the Gaussian
seamount relative to the 1D background plotted in Fig. 5.8, as would be measured on
the seafloor. The black line outlines the radius of three standard deviations of the Gaussian
seamount, the putative edge of the seamount. Blue colors represent a positive or "resistive"
anomaly, and the red colors represent a negative or "conductive" anomaly produced by the
existence of a seamount.
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Figure 5.10: Phase anomaly in Zxy caused by the Gaussian seamount relative to the 1D
background plotted in Fig. 5.8, as would be measured on the seafloor. The black line
outlines the radius of three standard deviations of the Gaussian seamount, the putative
edge of the seamount. Blue colors represent a positive anomaly, and the red colors represent
a negative anomaly produced by the existence of a seamount.
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It is named after C. M. Swift [Swift, 1967], who first suggested its use in identifying 3D
structures from impedance tensor data alone (see also Section 3.5). Swift propagated the
now widely used rule of thumb that impedances with Swift Skews equal to or greater than
0.2 cannot be interpreted with 2D modeling. It is important to note that this precept
does not state that all impedances with Swift Skews less than 0.2 can be interpreted with
2D modeling. In fact, by noting (5.212), we see that the Gaussian seamount is a perfect
example of an obviously 3D structure that produces a Swift Skew exactly equal to zero
everywhere. If one were intent upon 2D modeling and chose to blindly keep all data with
a Swift Skew of less than 0.2, they would have no reason to reject data on or around the
Gaussian seamount. Based on the anomalies in Figures 5.9 & 5.10, it is assured that the
true subsurface resistivities would be unrecoverable from a 2D inversion of such data.
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Figure 5.11: Apparent resistivity and phase of Zxx for the Gaussian seamount. The black
line again outlines the edge of the seamount.

A better diagnostic of 3D conductivity structure from the impedance tensor is the
analysis of polar diagrams. Polar diagrams provide a way of visualizing the relative sizes
of diagonal and off-diagonal (3D vs. non-3D) components of the impedance tensor as it
is rotated about one full rotation. In Figure 5.12, polar diagrams are plotted for many
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locations on the seafloor around the seamount. The red lines plot the radial length,

Pxy(ϑ) = |Zϑxy|, (5.214)

while the blue lines plot the radial length,

Pxx(ϑ) = |Zϑxx|, (5.215)

as ϑ, the angle of tensor rotation, varies from 0-360 degrees (see also Section 3.5). The
impedance over a 1D earth has Zxy = −Zyx and Zxx = Zyy = 0 regardless of rotation. In
this case, Pxy(ϑ) traces a perfect circle, and Pxx(ϑ) consists of one point at the origin. The
impedance in a 2D earth has Zxy 6= Zyx, but still has zeros along the diagonal. In this case
Pxx(ϑ) makes a four-leafed clover shape, whose symmetric leaves are oriented either ±45◦

or ±135◦ to the strike of the 2D conductivity structure. For 2D structure, Pxy(ϑ) can take a
variety of shapes, ranging from an oval to a peanut shape, with their major and minor axes
oriented either parallel or perpendicular to the 2D strike. For impedances measured around
3D earth structures, Pxx(ϑ) is no longer required to have symmetric leaves (see also Figure
3.13). Yet, there is no such visible evidence of 3D structures in the polar diagrams around
the seamount. Furthermore, in Figure 5.12, there is a location that exhibits a perfectly
1D polar diagram, directly below the peak of the seamount. It is reasonable to assume
that this property of the polar diagram would hold on top of the peak of the seamount as
well. It seems that impedances measured atop a radially symmetric seamount, would have
polar diagrams that predict purely 1D structure below. However, the contours of apparent
resistivity anomaly in Figure 5.12 make clear that the impedance measured directly below
the seamount does not reflect the 1D structure below; it is biased by more than 40%. We
find that polar diagrams measured near 3D structures with some level of symmetry are
misleading. They offer little evidence of 3D structure, but rather, in locations of symmetry,
imply perfectly 1D structure. Another one-sided rule of thumb, like that applied to Swift
Skews, then must apply to the polar diagrams: while 3D-looking polar diagrams always
indicate 3D conductivity structure, 1D- or 2D-looking polar diagrams do not guarantee 1D
or even 2D conductivity structure.
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Figure 5.12: Polar diagrams around the Gaussian seamount. The red lines represent the off-
diagonal components of the impedance tensor as the tensor moves through one full rotation.
The blue lines represent the diagonal components of the impedance tensor over the same
rotation. The thick gray line denotes the edge of the seamount. The black dashed lines are
the labelled contours of the percentage apparent resistivity anomaly due to the seamount.
These contours come from the same data that is portrayed in Figure 5.9.
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What happens when there is no longer radial symmetry? Figure 5.13 illustrates a
non-radially symmetric model composed of the average of two Gaussian seamounts identical
to the one used before, but with their peaks offset by 10

√
2 km. The long axis of the dual-

seamount is oriented 45◦ from the y-axis. Figure 5.14 plots the polar diagrams and contours
of the apparent resistivity anomaly for this non-radially symmetric model. The impedance
tensor was rotated by 45◦ before calculating the apparent resistivity of Zxy, to align with
the most 2D strike. The Swift Skew was less than 0.05 in the entire model domain. Note
that due to averaging, the volume of the dual-seamount is equal to the volume of the single
seamount in the previous example, but the max height of the dual-seamount is half that
of the single seamount. In Figure 5.14, the polar diagrams appear very 1D occur in a ring
between the peaks of the two Gaussian seamounts. These polar diagrams occur in the midst
of very 3D structure, but again, some level of symmetry, other than radial, produces polar
diagrams that are misleading.

Revisiting Figure 5.11, note the behavior in the corners of the plots. The values
of apparent resistivity from Zxx and Zyy are significantly diminished along the edges of
the model domain, especially in the corner. The phase plots show non-radially symmetric
behavior in the corners as well. These are symptoms of the edge effects plaguing the use
of a single model grid in the Fourier domain calculation. Similar edge effects exist in the
Zxy and Zyx plots, but are much less visible. The model of a single seamount is relatively
immune to edge effects because the conductance anomaly of the thin sheet is far from the
edge of the grid. Nonetheless edge effects are visible in Figure 5.11; the would be much
worse for a more realistic model with conductance anomalies throughout the grid.

To illustrate the effectiveness of the multi-grid method, we apply it to the original
model of a single seamount. We will use two conductance grids: one large grid with low
resolution, and one small grid with high resolution. The large conductance grid has dimen-
sions 480×480 km, and is discretized into 512×512 cells, while the small conductance grid,
which contains the area of interest has dimensions 120× 120 km, with 512× 512 cells. This
multi-grid example uses 8 times less memory than a single grid approach with the large
grid size at equivalent resolution. It was found, in practice, that the multi-grid calculations
took about 7 times less computation time than the single grid analog. Figure 5.15 displays
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Figure 5.13: Illustation of the dual-Gaussian seamount on the 120 × 120 km square in a
4 km deep ocean.
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Figure 5.14: Polar diagrams around the dual-Gaussian seamount. The red lines represent
the off-diagonal components of the impedance tensor as the tensor moves through one full
rotation. The blue lines represent the diagonal components of the impedance tensor over
the same rotation. The thick gray lines denotes the edge of the two Gaussian functions
whose sum comprises the seamount. The black dashed lines are the labelled contours of the
percentage apparent resistivity anomaly due to the seamount. These contours come from
the same data that is portrayed in Figure 5.9.
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the result of the multi-grid calculation. The edge effects seen in Figure 5.11 are no longer
apparent as they have been moved to the edges of the large grid.
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Figure 5.15: Apparent resistivity and phase of Zxx for the Gaussian seamount calculated on
an larger grid size of 480× 480 km. The black line again outlines the edge of the seamount.

5.9 The Wavenumber-Impedance Tensor

We now revisit (5.40), rearranged here as,

B̂(k) = iz̄× L̂l(k) · Ê(k) = Ŵ(k) · Ê(k). (5.216)

We have introduced a 2 × 2 tensor, Ŵ(k), which we will call the wavenumber impedance
tensor. The spatial-domain MT impedance tensor is traditionally denoted with the letter
Z and relates the electric and magnetic fields in the following way,

E(r) = 1
µ0

Z ·B(r), (5.217)

assuming, as we have throughout this work, there are no magnetic materials nearby. Since
they are defined in different domains and relate the electric and magnetic fields in different
ways, we make the distinction between the traditional impedance tensor and the wavenum-
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ber impedance tensor by using a different character, Ŵ, for the wavenumber impedance. As
should be apparent and will be expanded upon later in the current section, the wavenum-
ber impedance tensor is inversely proportional to the wavenumber admittance tensor, the
former in units of inverse length, and the latter in units of length. Such complementary
definitions of admittance and impedance bestow semantic harmony, as opposed to the tra-
ditional definitions in the spatial domain where the admittance and impedance are directly
related.

Examining (5.216), immediately we notice that the wavenumber impedance over
a layered halfspace has no dependence on the currents within the overlying heterogeneous
thin sheet. In fact, (5.216) implies that the wavenumber impedance is only ever sensitive to
the structure below the plane of observation so long as it is layered. This conclusion has far-
reaching repercussions. First, if one could make an estimate of the wavenumber impedance
from an array of coplanar observations at the bottom of the ocean underlain by purely 1D
structure, it would be unaffected by MT-induced electric currents in the ocean, even those
of non-zero wavenumber, i.e. those that have been distorted by non-1D bathymetry; there
would be no "coast-effect" apparent in data of this form. In addition, the plane wave assump-
tion of the inducing magnetic field sourced from the ionosphere would no longer be necessary.
All non-planar sources originating from above the plane of observation would be accounted
for in the non-zero wavenumbers of the wavenumber impedance. Thus, non-planar iono-
spheric sources and two- or three- dimensional bathymetric distortions would have the same
effect, that of providing the spectral diversity in the source fields needed to populate the
wavenumber impedance. Naturally, this idea extends to controlled-source electromagnetics
over a 1D earth. One major underlying goal of controlled-source surveying, albeit not always
explicitly acknowledged in this language, is to provide richness in the wavenumber domain
that is unavailable in the presumably planar MT source field; a more commonly advertised
goal of controlled-source surveying is to provide stronger high-frequency signal. So long
as the plane of observation lies below the depth of the controlled-source, the wavenumber
impedance is insensitive to any source’s size, shape, location, orientation, amplitude, and
phase. In addition, the wavenumber impedance is insensitive to the conductivity of the
material within which a source is embedded. In the wavenumber domain, the geometries
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of sources are irrelevant because their effects cancel out in the wavenumber impedance.
This means that uncontrolled sources, once considered noise, like overhead power-lines, are
removed in wavenumber impedance estimation. Another consequence of the wavenumber
impedance’s insensitivity to all layers above the plane of measurement is that there is no
"air-wave" in the wavenumber impedance measured on the seafloor, atop a stack of lay-
ers. The wavenumber impedance can be seen as the extension of the classical theory for
the 1D MT impedance into the realm of all source fields, including those with non-zero k
components.

By taking into account the components of L̂l, we see that the the wavenumber
impedance, as defined below the thin sheet by (5.216), is sensitive only to the layered
structure below where it is measured, and ignorant of anything related to the source field
or layered conductivity taking place above. Comparing (5.216) with (5.64) an apparent
paradox is confronted. By (5.64), an impedance estimated by the electric and magnetic
fields, as measured above the thin sheet, is instead only sensitive to the layered structure
above, and ignorant of sources and layered structure below, except for k = 0 where we
find that the primary fields carry sensitivity to the lower halspace. In other words, the
impedance estimated for non-zero wavenumbers at, for example, the ocean floor (below a
heterogeneous thin sheet) carries information about the layered structure below the seafloor,
while the impedance estimated on the land side of the coast (above a heterogeneous thin
sheet) is sensitive only to the layered structure of the atmosphere above. This at first
sounds preposterous, as it is known that the impedance from land measurements, even
near the coast and over an otherwise 1D earth, carries information about the subsurface.
Nonetheless, the preceding statements are true and self-consistent; the key is in the location
of the sources of energy at each wavenumber. For the wavenumber k = 0, we have our
standard theory, which is that the source field originates from high up in the atmosphere,
at the top of our model. Thus, impedances estimated below the k = 0 source fields are
sensitive to the layered structure beneath them, regardless of whether they are measured
above or below a thin sheet. On the other hand, the electric currents producing the non-
zero wavenumber "source"-fields occur exclusively in the thin sheet, for the model we’ve
described here. From this a consistent rule can be drawn: the wavenumber impedance of a
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layered earth carries only the information about the conductivity structure in the opposite
halfspace as that where the sources are contained, given a wholespace divided in two at the
plane of observation. In the case of a seafloor observation, all source wavenumbers reside
in the overriding halfspace and thus an impedance estimate there is sensitive only the the
layered structure below. For the case of the land observation, non-zero wavenumber sources
occur below, and therefore the non-zero wavenumber components of the impedance carry
only information about the layered structure in the atmosphere. However, on land, the
k = 0 wavenumber sources occur both above and below the plane of observation, at the
top of our model as well as in the thin sheet. Thus the wavenumber impedance for k = 0
is sensitive to both the layers above and below the plane of observation. Keep in mind,
this does not mean that the electric and magnetic fields themselves are not affected by the
layers above and below the plane of observation; indeed, they are. It is merely a property
specific to transfer functions such as the wavenumber impedance over a layered earth that
filters out effects from the halfspace containing sources. See Sections 5.10 & 5.11 for other
transfer functions that exhibit this property. Also, the MT model set forth in this chapter
assumes only planar sources originate from the ionosphere, as is the traditional view. Yet,
were it the case that the ionosphere produced non-zero wavenumber components in the
source field, as is likely the truth, the equation (5.216) would define the impedance at the
surface of a purely 1D earth (no 2D varying thin sheet).

How might we extend the traditional quantities of skin depth and apparent resis-
tivity into the wavenumber domain? Both quantities relate to fields produced at the surface
of an isotropic halfspace earth when induced by energy arriving from above. We enhance
the old theory by now allowing the inducing energy to have a non-zero wavenumber, k.
Harkening back to (5.25) we find that the electric field within the isotropic halfspace obeys,

Êi(z) = βi exp
[
−
√
λz
]
, (5.218)

where we have placed the top of the halfspace at z=0, and we see that the wavenumber-
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enhanced skin depth, kd is then defined by,

kd = 1
<(
√
λ)
. (5.219)

Returning equation (5.21) to physical units, it gives for an isotropic halfspace conductivity,
σ0,

kd0 =
√√√√ 2

4π2k2 +
√

8π4k2 + ω2µ2
0σ

2
0

. (5.220)

Reassuringly, when k = 0 we retrieve the traditional form for skin depth. Recall that the
traditional apparent resistivity can be expressed in terms of the admittance, c(ω), with the
following,

ρa(ω) = µ0ω|c(ω)|2, (5.221)

where the admittance is defined as,

c(ω) = − E(0)
E′(0) . (5.222)

From equations (5.38) and (5.41), again restored to physical units, we find that by allowing
non-zero k, we have a new admittance for the isotropic halfspace, which is the same for
both polarizations of the electric field,

c(ω, k) = 1√
4π2k2 + iωµ0σ0

, (5.223)

and thus we find that the traditional apparent resistivity is,

ρa(ω, k) = µ0ω√
8π4k4 + ω2µ02σ2

0

. (5.224)

When k = 0 we again find the property of ρa that bestowed it its name. However, when
k 6= 0 the traditional ρa is not equivalent to the halfspace resistivity. Instead we must
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introduce a new quantity, the wavenumber-enhanced apparent resistivity, kρa, which is
given by,

kρa(ω, k) = µ0ω√
|c|−4 − 8π4k4 = 1

σ0
, (5.225)

and provides a true measure of the halfspace resistivity for energy of all wavenumbers. This
new apparent resistivity is given in terms of the traditional definition of admittance, which
does not change in the wavenumber domain. The admittance is a convenient quantity to
work with in modeling and inversion when k = 0 because, for an isotropic earth, it is
continuous across layer interfaces, and can be represented by a scalar multiplied by the
identity matrix, i.e. the two orthogonal components of the admittance are independent and
identical (see equations (5.38), (5.31), (5.36) and (5.21)); these properties of the admittance
do not hold true with non-zero k. Furthermore, the admittance is difficult to estimate from
observations because it requires the measurement of the vertical gradient of the horizontal
electric field. Instead it is customary to make simultaneous measurements of the horizontal
electric and magnetic fields and then estimate an impedance tensor, like the one in (5.216).
This then broaches an important question: how does the admittance, and therefore our new
standard of apparent resistivity, relate to the wavenumber impedance, Ŵ?

From (5.216) and (5.40) converted back to physical units, we find that,

Ŵ = i

d1
z̄ × L̂l = 1

d1
R · S1 · C−1

1 , (5.226)

where: C1 is the admittance above a stack of layers as defined in (5.38), but converted back
to physical units by the factor 1/d1;

S1 =
(

4π2

4π2k2 + iωµ0σ1ν1
kk− I

)
; (5.227)

and we have introduced R as,

R =

 0 −i
i 0

 , (5.228)
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a transformation tensor which essentially rotates a vector a positive 90◦ in both the hori-
zontal plane and the complex plane. Notice that Ra = iz̄×a. Due to the form of S1 we see
that the transformation from Ŵ to C1 requires knowledge of the conductivity of the first
layer below the plane of observation, except of course when k = 0. This fact makes the
conversion of wavenumber impedance measurements into admittance impractical; we will
have to model the impedance data directly. Let us derive the impedance of a homogeneous
halfspace. From (5.223) and (5.226) we see that for a homogeneous halfspace conductivity
σ0, the impedance is given by,

Ŵ =

 −iH0 sin 2φ iH0 cos 2φ− iG0

iG0 + iH0 cos 2φ iH0 sin 2φ

 , (5.229)

whereG0 andH0 are versions of (5.149) and (5.150), respectively, which have been converted
back to physical units. By solving each component of (5.229) for 1/σ0, and making use of
the following identities,

∣∣∣∣a+ ib

c+ id

∣∣∣∣2 = a2 + b2

c2 + d2 , (5.230)

and,

|
√
a+ ib|2 =

√
a2 + b2, (5.231)

the apparent resistivity can then be extracted from the wavenumber impedance in the two
following ways,

kρa(ω, k) = 2µ0ω
(
4π8k8|Ŵii|−4 sin4 2φ− 2π4k4

)− 1
2 , for k 6= 0, i = {1, 2}, (5.232)

and,

kρa(ω) = µ0ω|Ŵij |−2 for k = 0, i = {1, 2}, j = {1, 2},& i 6= j. (5.233)

There is an expression for apparent resistivity at non-zero k that uses Ŵij , but it has a
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lengthy form and contains redundant information, so it is not presented here.
For an illustration of the wavenumber impedance, we turn to an example which

can be developed analytically, that of an electric dipole in a wholespace of conductivity, σ∗.
The formulae for both the electric and magnetic fields for such a model with the electric
dipole at the origin and aligned with the x-axis, are found in Ward and Hohmann [1988].
We will use the forms found in equations (2.39) and (2.41) of that work. First we convert
these equations into our dimensionless system of dipole-moment normalized units to find,

E = 1
8π

[(
−a2 + ∂2

∂x2

)
x̄ + ∂2

∂x∂y
ȳ + ∂2

∂x∂z
z̄
]

e−aR

R
, (5.234)

and

B = 1
4π

[
∂

∂z
ȳ− ∂

∂y
z̄
] e−aR

R
, (5.235)

where R2 = x2 +y2 +z2, and a2 = 2i. We then apply the 2D FT to all the field components.
Starting with the x-directed electric field, the Fourier integral is simplified to,

Ê1 = Fxy

[
1

8π

(
−a2 exp(−aR)

R
+ ∂2

∂x2
exp(−aR)

R

)]
(5.236)

= 1
8πFxy

[
−a2 exp(−aR)

R

]
+ Fy

[
Fx

[
∂2

∂x2
exp(−aR)

R

]]
(5.237)

= 1
8πFxy

[
−a2 exp(−aR)

R

]
+ Fy

[
(−4π2k2

x)Fx
[exp(−aR)

R

]]
(5.238)

= − 1
8π
(
a2 + 4π2k2 cos2 φ

)
Fxy

[exp(−aR)
R

]
. (5.239)

We find that we need the 2D FT of,

F (x, y) = e−a
√
x2+y2+z2

0√
x2 + y2 + z2

0

. (5.240)
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The function F is the solution vanishing at infinity of the PDE

∇2G− a2G = −4πδ(x)δ(y)δ(z + z0) (5.241)

on the plane z = 0; that is

F (x, y) = G(x, y, 0). (5.242)

We will first use the 3D FT of (5.241) to find Ĝ, and then use the result that,

Fxy [G(x, y, 0)] =
∫ ∞
−∞

dkzĜ(kx, ky, kz). (5.243)

The 3D FT of (5.241) is quickly found to be

−4π2κ2Ĝ− a2Ĝ = −4πe−2πikzz0 , (5.244)

where κ2 = k2
x + k2

y + k2
z . From (5.244) we have,

Ĝ(kx, ky, kz) = 4πe−2πikzz0

4πκ2 + a2 . (5.245)

Then, from (5.243) we get,

Fxy [F ] = 1
π

∫ ∞
−∞

dkz
e−2πikzz0

k2
z + (k2

x + k2
y + a2/4π2) (5.246)

= 2π e−g|z0|

g
, (5.247)

where g =
√

2i+ 4π2k2, and the integral in (5.246) is a well-known Fourier transform.
Applying (5.247) to (5.239) we get,

Ê1 = −1
4
(
2i+ 4π2k2 cos2 φ

) [e−g|z|

g

]
. (5.248)
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The other horizontal component is found in a similar fashion to be,

Ê2 = −π2k2
[

e−g|z|

g

]
sinφ cosφ. (5.249)

The vertical component presents a minor modification:

Ê3 = 1
8π (2πik cosφ)Fxy

[
∂

∂z

e−aR

R

]
. (5.250)

Yet we are able to couch the FT in (5.250) in a form that we already know by recognizing
that the partial differential and the FT operators commute. Then we have,

Ê3 = 1
8π (2πik cosφ) ∂

∂z

(
Fxy

[
e−aR

R

])
(5.251)

= −πiz2|z|e
−g|z|k cosφ. (5.252)

Due to the ratio z/|z| in (5.252), Ê3 is undetermined at z = 0. However, we know E3=0 at
z = 0 and therefore Ê3=0 at z = 0 as well. To acknowledge this fact, we replace z/|z| in
(5.252) with the signum function, so that,

Ê3 = −πi2 sgn(z)e−g|z|k cosφ. (5.253)

Following the same procedure as for the electric field, the FT of the magnetic field yields
the following:

B̂1 = 0, (5.254)

B̂2 = −1
2 sgn(z)e−g|z|, (5.255)
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and

B̂3 = −πik e−g|z|

g
sinφ. (5.256)

In order to solve for the wavenumber-impedance, Ŵ, which presents us with four
unknowns, we need another independent source polarization to provide us with two more
constraints. For this, we simply reorient the electric dipole along the y-axis, and by doing
so get a new set of fields, denoted by the star superscript:

Ê?1 = −π2k2
[

e−g|z|

g

]
sinφ cosφ, (5.257)

Ê?2 = −1
4
(
2i+ 4π2k2 sin2 φ

) [e−g|z|

g

]
, (5.258)

Ê?3 = −πi2 sgn(z)e−g|z|k sinφ, (5.259)

B̂?
1 = 1

2 sgn(z)e−g|z|, (5.260)

B̂?
2 = 0, (5.261)

and

B̂3 = πik
e−g|z|

g
cosφ. (5.262)

It is easily shown that the solution for Ŵ decouples into two sets of 2× 2 matrix
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systems:

 B̂?
1

B̂1

 = d∗

 Ê?1 Ê?2

Ê1 Ê2

 Ŵ11

Ŵ12

 , (5.263)

and,

 B̂?
2

B̂2

 = d∗

 Ê?1 Ê?2

Ê1 Ê2

 Ŵ21

Ŵ22

 , (5.264)

where the factor of d∗ returns Ŵ to its physical units of inverse length. The solutions of
the two systems (5.263) and (5.264) result in the four equations for the four elements of Ŵ:

Ŵ11 = (Ê2B̂
?
1 − Ê?2B̂1)/(∆d∗), (5.265)

Ŵ12 = (Ê?1B̂1 − Ê1B̂
?
1)/(∆d∗), (5.266)

Ŵ21 = (Ê2B̂
?
2 − Ê?2B̂2)/(∆d∗), (5.267)

Ŵ22 = (Ê?1B̂2 − Ê1B̂
?
2)/(∆d∗), (5.268)

where,

∆ = Ê?1Ê2 − Ê1Ê
?
2 . (5.269)

After some algebra we find,

∆ = − i8e−2g|z|. (5.270)
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Then by (5.265), (5.266), (5.267), and (5.268), for z ≥ 0, we have,

Ŵ11 = −i 2π2k2 sin 2φ√
iωµ0σ∗ + 4π2k2 = −iH∗ sin 2φ, (5.271)

Ŵ12 = i
iωµ0σ∗ + 2π2k2√
iωµ0σ∗ + 4π2k2 + i

2π2k2 cos 2φ√
iωµ0σ∗ + 4π2k2 = iH∗ cos 2φ− iG̃∗, (5.272)

Ŵ21 = −i iωµ0σ∗ + 2π2k2√
iωµ0σ∗ + 4π2k2 − i

2π2k2 cos 2φ√
iωµ0σ∗ + 4π2k2 = iG∗ − iH∗ cos 2φ, (5.273)

and

Ŵ22 = i
2π2k2 sin 2φ√
iωµ0σ∗ + 4π2k2 = iH̃∗ sin 2φ. (5.274)

With no modification to (5.229), it is easily verified that these are the elements of the
wavenumber-impedance in a homogeneous, isotropic wholespace, illuminated from above.
We have proven that the elements of the wavenumber impedance are insensitive to the
location and azimuthal orientation of the horizontal electric dipole within a homogeneous
halfspace. Furthermore, due to the linear relationship between the wavenumber impedance
and the transformed fields, we can say that the wavenumber impedance is insensitive to the
locations and orientation of an arbitrary distribution of horizontal electric dipoles.

Does this result hold for vertical electric dipoles? Let us conduct the same
wavenumber impedance estimation, but instead we make the second independent polar-
ization a vertical electric dipole. The dimensionless fields due to a vertical dipole are given
by,

E = 1
8π

[
∂2

∂z∂x
x̄ + ∂2

∂z∂y
ȳ +

(
−a2 + ∂2

∂z2

)
z̄
]

e−aR

R
, (5.275)
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and

B = 1
4π

[
∂

∂y
x̄− ∂

∂x
ȳ
] e−aR

R
. (5.276)

Again employing (5.247), we quickly find the starred-fields:

Ê?1 = −πik2 sgn(z)e−g|z| cosφ, (5.277)

Ê?2 = −πik2 sgn(z)e−g|z| sinφ, (5.278)

Ê?3 = π

4

(
−2i+ g − 2

|z|

)
e−g|z|, (5.279)

B̂?
1 = −πik

[
e−g|z|

g

]
sinφ, (5.280)

B̂?
2 = −πik

[
e−g|z|

g

]
cosφ, (5.281)

and

B̂?
3 = 0. (5.282)

For this new set of dipole polarizations,

∆ = 1
4πke−2g|z| sinφ, (5.283)

and after plugging the two sets of fields for z ≥ 0 into (5.265), (5.266), (5.267), and (5.268),
we again can recover all the components of the wavenumber impedance for a homogeneous,
isotropic wholespace, illuminated from above. Thus, in the existence of a vertical electric
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dipole, the wavenumber impedance has the same form as it does for horizontal electric
dipoles. Any electric dipole, arbitrarily dipping out of the horizontal plane can be repre-
sented by a weighted sum of a horizontal and a vertical electric dipole. Therefore, we can
say, so long as an estimate of the wavenumber impedance can be made from at least two
independent polarizations of source fields, it is insensitive to the dip of a transmitter as well
as its location and azimuth over a homogeneous halfspace.

Since actual magnetic dipoles are simply a distribution of electric current dipoles
that form a closed loop, we offer without proof that the pre-described properties of the
wavenumber impedance also hold in the presence of magnetic dipoles. This fact can easily
be proven by applying the same transforms found in this section to the equations for the
fields resulting from a point magnetic dipole, which are analogous to that of an electric
dipole due to the duality between electric and magnetic point dipoles.

Finally, we close this section with a thought exercise which makes use of the
following theorem put forth in this section:

Given a 1D earth that is split into two halfspaces by a plane of measurement,
the wavenumber impedance, estimated on that plane for a given wavenumber, is
sensitive to the halfspace opposite from that which contains the driving sources
for that wavenumber.

We then propose a hypothetical scenario. Imagine two independently-polarized asyn-
chronous electric or magnetic sources are buried deep in the earth, say in a well. An
dense array of electric and magnetic receivers is placed at the earth’s surface, centered
on the source-containing well so that the wavenumber impedance can be estimated over
a broad survey area. If the earth were purely 1D, the theorem states that the wavenum-
ber impedance depends only on the halfspace above the plane containing the receivers; for
this example we will assert that the overriding halfspace is a homogeneous halfspace of
air. The wavenumber impedance for a homogeneous halfspace of air is easy to compute.
Would there be any reason for the measured wavenumber impedance to deviate from that
calculated for a halfspace of air? The theorem requires the answer to be no if the earth
is 1D. What would happen if the earth below the plane of measurement were not 1D?
We could beak up any such conductivity into two parts, a background of 1D conductivity
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and a residual distribution of 2D/3D conductivity anomalies. We have already determined
that the 1D background will not contribute to any deviation of the wavenumber impedance
from that of a halfspace of air. In the spatial domain, the anomalous scatterers can be
represented by a distribution of electric source current proportional to the product of the
primary electric field and the residual conductivity. This non-1D current distribution joins
the controlled-source in the well in illuminating the upper halfspace, but the wavenumber
impedance remains unchanged; it still is equal to the wavenumber impedance of a halfspace
of air. Any distribution of current, controlled or induced, in an arbitrarily heterogenous
halfspace will produce electric and magnetic fields on a plane of measurement whose inter-
relationship are exclusively dependent upon the opposing halfspace, so long as the opposing
halfspace is layered and contains no additional driving sources. This is why we can ex-
press the wavenumber impedance below the heterogeneous thin sheet only in terms of the
conductivity of the layers below it. So for the thought exercise at hand, the wavenumber
impedance at the surface of the earth will always be equal to that of a halfspace of air,
regardless of the distribution of controlled sources and heterogeneous conductivity below
the surface.

There is one more intricacy. If the buried controlled source is wavenumber limited,
within an earth that is strictly layered, the wavenumber impedance should only be estimable
at the wavenumbers produced by that controlled source. However, if the earth is not strictly
layered, dispersion will occur, just as it did in the heterogeneous thin sheet driven by an MT
source field—only k = 0 wavenumbers drove the system, but the resulting fields were rich
in wavenumber content. For a heterogeneous earth there will be more wavenumbers with
energy to illuminate the overriding halfspace than there were originally in the controlled
source alone. Thus, only for a non-1D earth structure will one be able to estimate the
wavenumber impedance at wavenumbers of energy nonexistent in the controlled source.
Nonetheless, we always know values of the wavenumber impedance to expect, that of a
halfspace of air.

What happens when we place the controlled source above the earth, in the halfs-
pace of air? With a layered earth below the plane of measurement, the theorem tells us that
the wavenumber impedance is sensitive only to the layered structure of the earth. Now, if
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the earth is non-1D, the previous scattering analogy tells us that we have sources above and
below the plane of measurement. In this case, the wavenumber impedance depends upon
both the halfspace of air above and the halfspace of heterogeneous conductivity below in
an inextricable way.

5.10 Vertical Electric Transfer Functions over an Anisotropic

1D Earth

On the rare occasion that the vertical electric field is measured alongside the
horizontal electric field, an estimate of the transfer function between the horizontal and
vertical electric fields can be made; we call this the vertical electric transfer function, V. This
type of measurement most likely pertains to the marine environment where the immersion
in seawater facilitates electrical contact with the environment through vertically displaced
sensors. In the marine case, the vertical electric transfer function is measured below the
thin sheet of current which we use to represent the ocean; we will therefore write this case
as V+. Here we derive the theoretical value of V̂+, the vertical electric transfer function in
the wavenumber domain, over our earth model consisting of anisotropic layers. The short
derivation makes use of equations already introduced in the preceding sections. Plugging
(5.38) into (5.18), we quickly get what we seek,

Ê+
3 = 2πi

2iσnνn + 4π2k2 (k · C−1
1 ) · Ê+ = V̂+ · Ê+. (5.284)

Again we see that V̂+ is independent of the currents within the thin sheet, as was Ŵ. In
other words, V̂+ is independent of the conductivity structure of the overriding halfspace
from which source fields originate, and is sensitive only to the layered structure below the
plane of measurement.
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5.11 Vertical Magnetic Transfer Functions over an Isotropic

1D Earth

While vertical electric fields are not normally measured in practice (except in the
marine environment where the electric sensor is easily embedded in a good conductor, see
Section 5.10), vertical magnetic fields often are. A common quantity estimated from the
vertical magnetic field measurement is the vertical magnetic transfer function, T, a 2-vector.
This is the transfer function between the horizontal and vertical magnetic field, such that,

B3 = T ·B. (5.285)

The usefulness of T arises from the assumption of a horizontally polarized, planar mag-
netotelluric source. In that case, B3 is entirely a result of non-planar currents induced in
the earth, and thus T contains information about the earth’s conductivity. The vertical
magnetic transfer function is also commonly referred to as the tipper, as it describes how
the horizontal magnetic source field is "tipped" upward by the conductivity structure of the
earth. If earth’s conductivity is 1D and the source field is planar, all induced currents are
also planar, so B3 and T are both zero. However the situation is different if the source field
has non-zero wavenumber components; in that case, a non-zero T can be measured over
1D earth structure. We extend the definition of T into the wavenumber domain so that we
may be shorn of the assumption of a horizontally polarized planar source. Here we derive
the form T̂ takes over a layered earth. In order to do so, we must limit the conductivity
of the earth to be isotropic, for reasons which will soon become apparent. We return to
the dimensionless quasi-static Maxwell’s equations (5.5) and (5.6). By taking the curl of an
isotropic version of (5.6), inserting (5.5) and making use of (5.9) we can get,

∇2B −∇(∇·B)− 2iσnB = 0. (5.286)

An isotropic σn makes it possible to make the substitution of (5.5) required to get (5.286).
Moving (5.286) into the Fourier domain, just as was done before for the electric fields, we
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find two equations:

−4π2k2B̂ + B̂′′ − 2πik(2πik · B̂ + B̂′3)− 2iσn · B̂ = 0, (5.287)

and,

−4π2k2B̂3 − 2πik · B̂′ − 2iσnB̂3 = 0. (5.288)

Also, from (5.8) we have,

B̂′3 = −2πik · B̂. (5.289)

Plugging (5.289) into (5.287), and after some cancellation, we find two uncoupled ordinary
differential equations for the horizontal components of the magnetic field,

B̂′′ − g2
nB̂ = 0, (5.290)

where gn =
√

2iσn + 4π2k2. By rearranging (5.288) we get,

B̂3 = − 2πi
2iσn + 4π2k2 (k · B̂′). (5.291)

Equation (5.291) is close to the form of the vertical magnetic transfer function we seek,
we just need a substitution for B̂′ which depends upon B̂. For this we introduce another
transfer function, D, which we define as,

B̂+ = −DB̂′+. (5.292)

Inserting (5.292) into (5.291) we arrive at the form we are looking for,

B̂+
3 = 2πi

2iσn + 4π2k2 (k · D−1) · B̂+ = T̂ · B̂+. (5.293)
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Equation (5.293) pertains to a plane of measurement at the top of a layer of uniform
conductivity, like a measurement on the seafloor, below the thin sheet. The vertical magnetic
field (normal to the layer interface) is always continuous, while the horizontal magnetic field
(interface parallel) is only continuous if there is no free current at the interface. This is not
true in the case of a thin sheet of current. Thus, T̂ is continuous across most interfaces
except those occupied by thin sheets of current. A T̂ measured on the seafloor is independent
of any currents induced in an ocean which can be represented by a thin sheet, while a T̂
measured on land, above such a thin sheet, is not independent of the currents within of the
thin sheet.

We continue with the derivation of D for a layered isotropic earth. For this we
borrow heavily from Section 5.1. Similar to (5.25), the general solution for (5.290) is,

B̂i(z) = αi exp [gn(z − zn)] + βi exp [−gn(z − zn)] , (5.294)

zn−1 ≤ z ≤ zn, and i = {1, 2}. (5.295)

Given a value of the horizontal magnetic field and its vertical derivative at the base of a
layer, B̂−i and B̂′−i , respectively, the corresponding values at the top of that layer are given
by,

B̂+
i = B̂−i cosh (gnhn)− B̂′−i

gn
sinh (gnhn) , (5.296)

and

B̂′+i = gnB̂
−
i sinh (gnhn)− B̂′−i cosh (gnhn) , (5.297)

where hn, the thickness of the nth layer, is again defined as hn = zn − zn−1.
At the base of the stack of layers below the plane of observation, we again set αi

to zero, thereby rejecting a model with energy originating from the center of the earth. We
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therefore find,

B̂i(z) = − 1
gn
B̂′i(z), z > zN . (5.298)

In order to propagate B̂ and B̂′ from the base of our layered model up to the plane
of observation, we need boundary conditions for B̂ and B̂′ at layer interfaces. As was stated
before, at conductivity interfaces containing no free charge or current,

B̂+ = B̂−, (5.299)

and

B̂+
3 = B̂−3 . (5.300)

The boundary condition for B̂′, perhaps as expected, takes more work. We start with a
rearrangement of (5.6) in the Fourier domain. Extracting only the equation related to the
horizontal electric field, we have within the nth layer,

2z̄× Ê = 1
σn

(
2πikB̂3 − B̂′

)
. (5.301)

Noting boundary conditions (5.31), (5.299), and (5.300), the equation (5.301) affords us,

B̂′− =
[

4π2

2iσn+1 + 4π2k2

(
1− σn

σn+1

)
kk + σn

σn+1
I
]
· B̂′+, (5.302)

the boundary condition for B̂′ at the bottom of the nth layer, where z = zn.
In order to calculate D, a problem with 4 unknowns, we start with two independent

initial conditions of the horizontal magnetic field, which we can arbitrarily choose to be,

B+
N ∈


 1

0

 ,
 0

1

 . (5.303)

Then, starting with (5.303), we use (5.298), (5.296), (5.297), (5.299), and (5.302) to propa-
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gate the horiztonal magnetic field and its vertical derivative up to the plane of measurement,
where we then use them in (5.292) to solve for D. Finally, we are able so see that D is equiv-
alent to C, the admittance tensor, for the case of an isotropic layered earth.

5.12 Wavenumber Domain Survey Design and Data Inter-

pretation

Electromagnetic survey design along the time-axis is quite straightforward. A
common path is to select a range in frequency of energy needed to sense a target, and then
adjust the sampling rate and total measurement duration to best estimate those frequencies;
as a rule of thumb, the sampling rate determines the highest estimable frequency in the
data and the duration determines the lowest estimable frequency in the data. If there is
a controlled source involved, the transmitted waveform is engineered to direct the highest
power into a chosen set frequencies. The chosen set of frequencies can be determined by
forward modeling the hypothetical conductivity of the survey’s target and its environment.
Alternatively, the frequencies are often chosen based on simpler arguments of the skin depth
in a given background conductivity and how that relates to the hypothetical depth of burial
of the target.

This chapter has laid the foundation for extending these preliminary survey design
practices for both MT and controlled-source EM (CSEM) into the wavenumber domain.
Section 5.9 introduced a new measure of skin depth which incorporates all wavenumbers
of inducing energy. This skin depth can be used for survey design in the spatial plane
in the same way that the skin depth at k = 0 has been used for survey design along the
time axis. In addition, 1D forward modeling can determine which source wavenumbers
are most sensitive to hypothetical targets. Once a set of wavenumbers are chosen, the
spatial sampling “rate” as well as the survey aperture can be set to best estimate those
wavenumbers. Also, the orientation and distribution of transmitters can be engineered to
direct power into the wavenumbers of choice.

The estimation of the wavenumber impedance is in fact a type of array analysis
like that of Egbert and Booker [1989] and Egbert [1997] (and, described in Chapter 3), yet
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it has the advantage of taking into account a previously ignored piece of information, the
spatial distribution of the observations. This removes the requirement that all sources be
of k = 0. The inevitable corollary is a robust wavenumber impedance estimation procedure
that involves a robust least-squares fitting to individual Fourier coefficients, frequency and
wavenumber, of the electric and magnetic fields. This procedure could recycle much of the
statistical machinery of Egbert and Booker [1986], but instead of the fitting a single line to
the observations at a given frequency, it would fit a series of lines, one for each available
wavenumber.

Care must be taken with the spatial Fourier transform of the electric and magnetic
fields. It is highly unlikely that the observations will take place on a perfectly regularly-
spaced grid, which would be ideal for the fast-Fourier transform techniques. In addition,
edge effects will again be a problem. These issues have been dealt with before in the science
of earth gravity. In that field, spatial arrays of measurements of the earths gravity are
made and converted into the Fourier domain for modeling and interpretation. The only
difference is that with gravity, only a single frequency, f = 0, is available. The 2D Fourier
transformation of the electric and magnetic fields at each frequency can therefore borrow
from the techniques borrowed for gravity studies.
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Chapter 6

Modeling and Synthetic Inversion
of Bathymetric Effects

In Chapter 4 it was found that the conductive anomaly below site 632, coined
the Rinconada conductor, was required by the land data, predominantly the tipper portion
of it, and rejected by much of the marine impedance data. Suspicion was raised that the
conflict in sensitivity between the land and marine data was a result of some sort of coast
effect. In this chapter, we pursue this suspicion first by comparing calculations with 2D
and 3D bathymetry. Then we asses the effects of bathymetry on our inversion algorithm
through the inversion of synthetic data.

6.1 3D Modeling of Bathymetry in Central California

We now apply the thin-sheet modeling technique, discussed at length in Chapter
5, to the 3D bathymetry surrounding the Estero MT profile. For estimates of bathymetry
around the globe, we make use of both 1-minute and 2-minute resolution databases provided
online at http://topex.ucsd.edu [Smith and Sandwell, 1997]. A grid about twice the size
of the latitude/longitude extents of the Estero MT survey is selected from the 1-minute
bathymetry database. This high-resolution bathymetry grid constitutes the inner-most grid
in Figures 6.2 & 6.4, and will be the only grid from which the results of MT calculations
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will be interpreted in subsequent plots. Figures 6.2 & 6.4 show multiple larger grids of
progressively coarser bathymetry (originating from the 2-minute database) surrounding the
inner grid; these are used to move the boundaries of our calculation far from the edges
of our interpreted grid (see Section 5.5), as well as to incorporate the effects of distant,
yet large-scale bathymetric features. Since only the increasingly longer wavelength features
have an influence on the inner grid as their distance from it increases, the outer grids are
increasingly smoothed and decimated towards the edge of the model. Figure 6.3 shows how
the transition from the resolution of one grid to the next has been made smooth through
interpolation to ensure no edge effects are produced with our Fourier-domain method.

The maximum seafloor depth of the inner-most grid defines the thickness of the
thin sheet. The conductance of the thin sheet is calculated by integrating, over the thickness
of the thin sheet, the resistivity-depth section below each cell in the conductance grid.
Note that we include topography in the conductance integration, although its contribution
is orders of magnitude smaller than that from bathymetry. Apart from the water layer,
which varies in thickness over the horizontal plane, the earth’s resistivity is represented
with horizontal layers. The shallowest layers, comprising the crust, are assigned average
resistivities drawn from Model 1. The uppermost layer is contained within the depth range
represented by the thin sheet, so it is allowed to vary horizontally. Three values are used
for the upper-most layer: 10 Ωm for oceanic material, 30 Ωm for continental material,
and 3 Ωm for the sediments filling the GV basin (see Figure 6.1). Figure 6.5 displays the
anomalous conductance associated with our GV analogue, corresponding to a maximum
sediment thickness of 3 km with a resistivity of 3 Ωm; the bottom plot in Figure 6.22
illustrates how the GV conductance was produced by creating properly scaled pseudo-
bathymetry. Below the upper-most layer in the models, all layers are horizontally uniform.
While the crustal values for resistivities may vary from region to region (hence, we draw
from our local inversion result), the upper oceanic mantle is assumed to be more uniform.
Rather than select values for the upper mantle resistivity from our inversion model, where we
have reason to suspect distortion, we utilize independent mantle resistivity estimates from
Heinson and Constable [1992]. These estimates call for a more resistive oceanic lithosphere
(30,000 Ωm) than was recovered in the inversion models (1,000 Ωm). We show in Section
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Figure 6.1: Resistivity-with-depth profiles for the three different regions in the thin-sheet
model: the marine (e.g, below site M10), the continental (e.g., below site 632), and the GV
basin (e.g., below site 640). The values in the upper part of the model (shaded orange) are
derived from parameter averages from Model 1, while the values in the lower part of the
model (shaded blue) are derived from a model described by Heinson and Constable [1992].

6.2, that a regularized MT inversion, with our given data and data errors, is unable to
resolve such a high resistivity for the lithosphere.

To isolate the 3D effects of bathymetry from the 3D effects of the GV, we make
calculations on two models, one described above which includes conductive sediments in
the GV, and one without an anomalously conductive GV. For each model, 3D and 2D thin-
sheet calculations will be made, with the 2D model constructed from the bathymetry along
the Estero MT profile. As a benchmark for the accuracy of the thin-sheet calculations,
we make a 2D finite element calculation on an equivalent model (Figure 6.6) using the
Fortran code MARE2DEM [Key and Ovall, 2011]. The benchmark model does not include
a more conductive GV. Figure 6.7 shows a comparison of our two 2D models, thin-sheet
and MARE2DEM. The plot illustrates the extensiveness of the two models and the absence
of bathymetric information throughout most of the MARE2DEM model. Note how the
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Figure 6.2: Three nested conductance grids used for a thin-sheet calculation at 745 s period.
Black boxes demarcate the edges of the inset grids. Each inset grid is more finely sampled
than the grid surrounding it. All units are dimensionless: distance is scaled by the skin
depth in the upper-most layer, z0 = 43.43 km, while conductance is scaled by the product
of the upper-most conductivity, σ0 = 0.1 S/m, and the skin depth.
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Figure 6.3: Image of the Southeast corner of the inner-most conductance grid in Figure 6.2,
showing the smooth change in resolution between the coarse outer grid and finer inner grid.
Units are the same as in Figure 6.2.

conductances on the very edges of the thin sheet model are bent to meet the value on the
opposite side. This is done intentionally (to the conductance grids of 3D calculations as
well) to avoid edge effects that would result from the periodic boundary conductions implicit
in our Fourier treatment of the thin sheet.

The MT impedances and tipper vectors are calculated throughout each model
at the nine longest periods found in the Estero MT data, where a total of 34 periods of
data exist; subsequent plots will highlight only two of these periods, 745 s and 5460 s.
The 2D models result in TE- and TM-mode impedance estimates and a TE tipper scalar,
while the 3D models provide the full rank-2 impedance tensor and a 2-vector tipper. The
full tensors/vectors from the 3D models are rotated into the reference frame of the line of
instrument sites, and the appropriate elements are extracted so that they may be compared
with the values from the 2D models. Recall from Chapter 5 that the thin-sheet method
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Figure 6.4: Three nested conductance grids used for a thin-sheet calculation at 5460 s
period. Black boxes demarcate the edges of the inset grids. Each inset grid is more finely
sampled than the grid surrounding it. All units are dimensionless: distance is scaled by
the skin depth in the upper-most layer, z0 = 117.6 km, while conductance is scaled by the
product of the upper-most conductivity, σ0 = 0.1 S/m, and the skin depth.

produces different values for impedance above and below the thin sheet; while the horizontal
electric field is continuous across the sheet, the horizontal magnetic field is not. However,
there is no way of recovering the impedance values at intermediate depths in the ocean
from a thin-sheet model. We have only the values at the earth- or sea-surface, and at
full ocean depth (or whatever depth interval is represented by the thin sheet). So, when
comparing the thin-sheet results with the MARE2DEM results we use the values at the base
of the thin sheet for all submarine measurements, and the values above the thin sheet for
all subaerial measurements. Therefore an expected discrepancy between the two modeling
methods arises at intermediate ocean depths, as will be evident in the first 100 km seaward
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Figure 6.5: Image of the conductance grids of Figure 6.2 which incorporate a layer of 3 Ωm
sediments in the GV (the golden basin enclosed in blue) that is 3 km thick at the maximum
depth of the valley. Units are the same as in Figure 6.2.

of the coast in the upcoming plots, corresponding to the continental shelf and slope.
Figure 6.8 through 6.21 present the results from the 3D thin sheet calculations

at the two selected periods of oscillation. The impedance results are presented in terms
of the 3D anomaly relative to the expected 1D value in a given area of the plot. Since
all of the models are 1D except for the upper-most layer, represented by the thin sheet,
these plots may be interpreted as measure of distortion due to the coastline, bathymetry
(including, to a lesser extent, topography), and, where applicable, conductive GV sediments.
What these plots do not convey, however, is where a 2D model with the appropriate line
of bathymetry installed would be sufficient to reproduce such distortions. Nonetheless,
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Figure 6.6: A subset of the 2D model used in MARE2DEM. The GV in this model is not
made more conductive than the rest of the continent. The vertical exaggeration is 10 times.

wherever the anomalies are highly non-uniform in more than one horizontal direction, we
may suspect that a 2D model is insufficient; we examine the veracity of these suspicions in
upcoming plots. In Figures 6.12, 6.13, 6.18, and 6.19, we see that the Swift skew measure
rarely reaches a significant (> 0.2) value; it does so only with the roughest of bathymetry,
and more so with the shorter period calculation. Significant skews are found along the
portion of the Estero MT profile which traverses the continental slope, coincident with sites
M27-M19, whose data do exhibit elevated skew values (see Figure 6.22). The introduction
of a conductive GV in the thin sheet also produces higher skews around its edges, near the
eastern end of the Estero MT profile, where, again, higher skews are found in the data.
Overall, however, the skew values produced by the thin-sheet calculations are much smaller
than those encountered in the data. The data skews are also highly variable from site to
site. Of course, we don’t expect our thin-sheet model, which fills the whole continental
margin down to a depth of 5 km with 10 Ωm resistivity, to be an exact replica of the earth
as measured by our data, but the difference in magnitude and variance of the measured
skews relative to the modeled skews suggests that there is more at work in the distortion
of the data than simply 3D bathymetry. Two possible causes are broader 3D structures
in the subsurface, or small-scale, near-surface, galvanic scatterers, which have been shown
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Figure 6.7: Conductance profiles, inner (red) and outer (blue), used in the 2D thin sheet
calculations at 5460 s period (with a conductive GV). For reference, the conductance equiv-
alent of the top-layer of the MARE2DEM model (Figure 6.6), is shown with thick gray
lines, with thin vertical black lines denoting the edges of the MARE2DEM model.

to produce large skews even when the broader scale induction is 2D [Bahr, 1988]. The
reproduction of these effects is beyond the capabilities of the thin-sheet approach. Along
these same lines, the impedance polar diagrams, produced by the thin sheet model that
includes a conductive GV (Figures 6.20 & 6.20), only roughly agree with those of the actual
data (Figure 3.12).
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Figure 6.8: A map of TE-mode apparent resistivity anomaly from a thin sheet calculation
at 745 s period (see Figure 6.2). Anomalies are plotted relative to the 1D value for the
the layered structure below the thin sheet; for anomalies on land, the layered structure
includes the top layer incorporated into the thin sheet. Estero MT sites are plotted with
black diamonds. The direction of the driving magnetic field, B0, denoted in the upper left
corner.
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Figure 6.9: Same format as Figure 6.8, but for TM-mode apparent resistivity.
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Figure 6.10: Same format as Figure 6.8, but for TE-mode apparent resistivity at 5460 s
period (see Figure 6.4).
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Figure 6.11: Same format as Figure 6.10, but for TM-mode apparent resistivity.
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Figure 6.12: A map of the inner-grid Swift Skew from a thin sheet calculation at 745 s
period. Estero MT sites are plotted with black diamonds.
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Figure 6.13: A map of the inner-grid Swift Skew from a thin sheet calculation at 5460 s
period. Estero MT sites are plotted with black diamonds.
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Figure 6.14: A map of the inner-grid TE-mode apparent resistivity anomaly from a thin
sheet calculation that includes the GV sediments at 745 s period (see Figure 6.5). Anomalies
are plotted relative to the 1D value for the the layered structure below the thin sheet; for
anomalies on land, the layered structure includes the top layer incorporated into the thin
sheet, which assumes a constant layer thickness (3 km) for the GV sediments. Estero MT
sites are plotted with black diamonds. The direction of the driving magnetic field, B0,
denoted in the upper left corner.
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Figure 6.15: Same format as Figure 6.14, but for TM-mode apparent resistivity.
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Figure 6.16: Same format as Figure 6.14, but for TE-mode apparent resistivity at 5460 s
period (see Figure 6.4).
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Figure 6.17: Same format as Figure 6.16, but for TM-mode apparent resistivity.
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Figure 6.18: A map of the inner-grid Swift Skew from a thin sheet calculation at 745 s
period. Estero MT sites are plotted with black diamonds.
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Figure 6.19: A map of the inner-grid Swift Skew from a thin sheet calculation at 5460 s
period. Estero MT sites are plotted with black diamonds.
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Figure 6.20: A map showing a sampling of impedance polar diagrams from a thin sheet
calculation at 745 s period, plotted atop the bathymetry of the inner-grid. Blue lines are
from Pxy (off-diagonals), and red lines are from Pxx (on-diagonals). Note, the displayed
calculations included an anomalously conductive GV.



236

Figure 6.21: Same format as Figure 6.20, but for the thin sheet calculation at 5460 s period.
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Figure 6.22: Swift skew values along the line projected by the Estero MT sites, taken
from two thin-sheet model calculations: one without enhanced conductance in the GV, and
one with relatively high conductance GV sediments (3 km thick of 3 Ωm). (Top) Swift
skew values at 745 s period, and (middle) Swift skew values at 5460 s period. (Bottom)
The bathymetry along the profile line illustrating the seawater integrated into the thin-
sheet conductance, note the large vertical exaggeration. For the GV model, an analogous
≈ 300 m deep ocean was integrated to reproduce the conductance of the 3 km thick layer
of sediments.

As stated before, plots of the thin sheet results referenced to the expected quan-
tities for the 1D stack of layers below each model cell do not inform us as to whether a
2D inversion of bathymetry-affected data would suffice. To gain a better grasp on this
matter, we compare the 3D thin-sheet results with the 2D calculations, first with Figures
6.23 through 6.26. The 3D results in these figures have been extracted from the line that
best fits the formation of instrument sites in a Transverse Mercator projection, while the
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2D results were calculated for the bathymetry along that same line.
Despite the period of 745 s being well below our predetermined threshold for thin

sheet validity (see Section 5.6), the 2D thin-sheet results at that period match remarkably
well with those of the benchmark MARE2DEM model. At a period of 5460 s, the thin sheet
calculations agree with the benchmark very well. The greatest mismatch for all periods
occurs between -100 km and 0 km from the coast, where the thin sheet returns values at
≈ 5 km depth whereas the MARE2DEM model returns values at shallower seafloor depths.
With the TE-mode, in the areas distant from the coast, where the thin sheet and finite-
element methods deliver the fields at close to the same depth, the differences between the
two methods are well within the Estero data errors; examples of the data errors are shown
in the corner of each figure. Note that the thin-sheet models include small-scale bathymetry
throughout the model domain while the MARE2DEM calculation does not. Hence, there are
small-wavelength undulations in the thin-sheet results that are non-existent in those from
MARE2DEM. Also, notice that the TE-mode results meet the benchmark better than the
TM-mode results. There is an unexplained near-constant shift between the TM-mode of the
thin sheet calculations and its benchmark on the marine side of the model. We propose one
possible explanation: the TM-mode is the most sensitive to the side boundary conditions
in a 2D model. These boundary conditions differ significantly between the thin-sheet and
finite-element methods; the thin-sheet method enforces periodicity, while the finite-element
method enforces a match to the fields of a 1D background model, i.e., the fields resulting
from an infinite ocean on one side, and the fields resulting from an infinite continent on the
other. It is not immediately clear which condition is more applicable to the real earth. The
real earth has neither infinitely wide oceans and continents, nor infinitely repeating clones
of them. A serious discussion over which philosophy is superior must be limited, since both
assume that the earth is flat; the correct solution for such vast models, of course, would
be to proceed with modeling on a sphere. The observation however, is that such remote
boundaries (see Figure 6.7) seem to matter, at least when given a lithosphere as resistive as
has been proposed. The complication of the side boundary conditions may be the reason for
anomalous conductivities that persistently appear just off the edge of spatial data coverage
in inversion models.
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Figure 6.23: A comparison of the various model calculations for the TE-mode impedance
at 745 s period, extracted along, and rotated into the reference frame of the Estero MT line
of sites (see Figure 6.22 for bathymetry profile and site locations). 2D and 3D calculations
are made with thin-sheet models unless otherwise stated (i.e., with MARE2DEM). Just as
in Figures 6.8 through 6.21, submarine locations use the field values at the base of the thin
sheet, while subaerial locations use field values atop the thin sheet. Likewise, 1D values
pertain to the either the stack of layers below the thin sheet (submarine) or below the
earth’s surface (subaerial). In the upper-left of each of the two plots are sample data error
bars showing the corresponding ±1σ error floors used with inversion of the Estero MT data.
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Figure 6.24: Same format as Figure 6.23 but for the TM-mode impedance.
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Figure 6.25: Same format as Figure 6.23 but for 5460 s period.
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Figure 6.26: Same format as Figure 6.23 but for the TM-mode impedance at 5460 s period.
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Despite the puzzling long-wavelength disparity between the TM-mode of the thin
sheet and its benchmark, the short-wavelength results for both modes of the thin sheet
match those of the benchmark very well. Next, we examine the differences between the
short-wavelength behavior of the 3D thin-sheet results relative to those of the 2D thin
sheet. Often where there is a bump in the 2D result the same bump is smoother in 3D, or
in some cases, the 3D response takes the form of a depression instead. This is explained
as the difference between a bathymetric high being interpreted as an infinite ridge in the
2D world whereas in the 3D world it may only be a local mound. To account for this, it
may prove beneficial for 2D inversions to instead use as its fixed seafloor interface a local,
cross-strike average of bathymetry rather than the exact bathymetry below a line a sites.
Such a correction may remove the small conductive anomalies that appear localized below
each marine data site in most inversion models.

Leaving the benchmark issue aside for now, let us address the differences between
the middle- to long-wavelength behaviors of the 3D and 2D thin-sheet calculations. At these
longer wavelengths, the 3D behavior indicates a mixing of the canonical behaviors of the
two independent modes in 2D. The 2D TE-mode, some characteristic distance seaward of a
coast, exhibits a steep depression in apparent resistivity at the base of the continental slope
followed by its ascent with increasing distance from the coast, which eventually exceeds
the value expected in the absence of a coast (1D); the 2D-TE phase either ascends or
descends here, whichever direction brings it toward a 1D state. The 2D-TE phase may
even go negative at shorter periods. On the contrary, the 2D TM-mode exhibits significant
depressions in apparent resistivity and phase seaward of the coast which are nearly constant
with distance and never exceed the expected 1D value. The 2D TM-phase never goes
negative. In 3D, where the modes are inseparable, the TE-mode (we refrain from placing
the 3D modes in quotation marks, yet, depending upon the conductivity distribution, they
may lose much, if not all, of the connotation they carried in 2D) apparent resistivity is
depressed relative to the 2D TE-mode, and, relative to the 2D TE-mode phase, the TE-
mode phase in 3D is perturbed in the direction away from the 1D value. Conversely, the
3D TM-mode shows hints of the ascending curvature seen in the 2D TE-mode, and the 3D
TM-mode is perturbed toward the 1D value, in some cases exceeding it. As for the more
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conductive GV, the effect may be far-reaching in both 2D and 3D, and most noticeably in
the shorter period TM-mode.

The long-wavelength mixing of modes is best illustrated with the map-view (e.g., Fig-
ure 6.16), where the distortions may be viewed relative to the local strike of the coastline.
The longer-wavelength fields, as opposed to shorter-wavelengths, are still affected by the
coast from a great distance away. When that distance becomes comparable to the radius
of curvature of the coast, the prevailing induced electric current in the ocean is no longer
exclusively parallel or exclusively perpendicular to the coast, as would be the case in a 2D
world. This current, which intersect the coast obliquely, may be decomposed into a sum of
coast-parallel and coast-perpendicular current, the independent currents induced by the 2D
TE- and TM-modes, respectively. Since the 3D current distribution is a superposition of
the two 2D modes of current, we naturally encounter mixing of these modes in the appar-
ent resistivity and phase curves. What is more interesting is that the mixing of modes, as
modeled here specifically for offshore central California, when viewed from the perspective
of an inversion constrained by a 2D model for the world, either diminishes or increases the
expected coast effect depending upon which type of data are to be analyzed, and where they
are collected. We define the 2D coast-effect as the perturbation of the 2D model results
away from their expected 1D value. If the 3D results trend closer to the 1D values than the
2D results, we consider the 2D coast effect to be diminished; likewise, the 2D coast effect
is increased when the 3D results trend further away from the 1D values. Through careful
analysis of the long-wavelength behavior of our collection of results at all nine periods, some
generalized rules emerge: the 3D coastline increases the 2D coast effect in the TE-mode
apparent resistivity and phase in the marine environment, and the only TE-mode phase on
land, while diminishing the 2D coast effect in the TE-mode apparent resistivity on land;
the 3D coastline increases the 2D coast effect in the marine TM-mode apparent resistivity,
yet diminishes the 2D coast effect in the TM-mode phase, marine and terrestrial, and in the
TM-mode apparent resistivity on land. There is an apparent symmetry in the 3D distortion,
which must pull a 2D inversion in opposite directions, each with equal weight.

Next, we look to the 3D and 2D tipper results (Figures 6.27 - 6.30), for which
the terrestrial and marine values are displayed separately. The marine results vary on a
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Figure 6.27: Same format as Figure 6.23 but for the TE-mode tipper.
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Figure 6.28: Same format as Figure 6.23 but for the TE-mode tipper. Note example data
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Figure 6.29: Same format as Figure 6.23 but for the TE-mode tipper at 5460 s period.
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Figure 6.30: Same format as Figure 6.23 but for the TE-mode tipper. Note example data
errors are not plotted because they would be too small to be visible.
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scale that is an order of magnitude larger than the land side, and recall that such data
do not exist in the Estero MT data set. The primary observation is that the differences
between 3D and 2D for the tipper can be multiple times greater than the data errors, often
greater than the relative differences in the impedance data. The difference between the
3D and 2D tipper in the marine environment is dramatic, hundreds of times greater than
the tipper error floor used on land, and anti-correlated at shorter periods. This implies
that collecting tipper data in the marine environment is especially futile unless accurate
3D modeling is available. The tipper disparity between 3D and 2D on land is large in the
imaginary component at short periods, and large in the real component at long periods
when compared with the data errors; the disparities in the real component at short periods,
and the imaginary component at long periods are small enough to be within the data
uncertainty. Furthermore, the difference between the 3D and 2D tipper are predominantly
driven by the coast and not the more conductive GV; the effects of a conductive GV hardly
differ between the 2D and 3D calculations. We conclude that within the area of Estero
MT data coverage, and given the scale of the data error floors, the tippers are the most
susceptible to 3D distortion from the coast. The same would have been resoundingly true
in the marine environment had tipper data been collected there.

To visualize the effect that the distortion from 3D bathymetry and 3D GV sedi-
ments would have on a 2D inversion, Figure 6.31 presents distortions at a range of frequen-
cies for positions along the line of Estero MT data in terms of the respective data error
floors. The marine tipper results are withheld from these plots since they do not pertain
to collected data, and are so far outside of the color-scale that they would be unintelligible
in this format. Observe that the 3D perturbations to the impedance data are greater in
amplitude on the marine side than on the land side. Keep in mind that in many areas the
perturbations saturate the color scale; the color scale was capped to allow for the subtler
effects on land to be visible. The perturbations to the tipper data on the land side are
greater than all other forms of data. The sign of the perturbation changes both in period
and space. The colormaps for the plots related to impedance data have been arranged
so that warm colors correlate to perturbations that would, in a simple 1D sense, produce
more conductive structure, while cooler colors correlate to perturbations that would pro-
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Figure 6.31: Scaled perturbations to hypothetical 2D MT data along the Estero line of sites
due to 3D bathymetric variations. The hypothetical 2D data is taken from the 2D thin
sheet calculation with a conductive GV, illustrated in the top plot. The perturbation is the
difference in data between the 3D and 2D thin sheet calculations. The perturbations are
provided in dimensionless units, having been normalized by the corresponding error-floor
(σ) used in inversion of the actual Estero MT data. Thus, areas that are white, or within
±1σ, indicate data that have negligible distortion from 3D bathymetry from the perspective
of 2D inversion. Note two irregularities: the color limits for the TE real tipper perturbations
are twice the size of the others so as not to saturate the entire plot; and the colormaps of the
two apparent-resistivity perturbation plots (App. Res.) are mirrored relative to the others.
In a 1D sense, a positive perturbation in apparent resistivity indicates higher resistivities
(cooler colors) at some depth, whereas a positive perturbation in phase indicates a decrease
in resistivity (warmer colors) with depth.
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duce more resistive structure; the behavior of the tipper does not furnish such a simplistic
interpretation since it is always zero in 1D. We see that the perturbations to the two modes
of apparent resistivity are generally in opposition except at a large distance seaward of the
coast. The perturbations to the two modes of phase, however, are generally in agreement,
except on the land side. The final observation is that the perturbations to the marine data
do not exhibit extensive attenuation with decreasing period; in many areas they increase
with period. We abstain from running our thin sheet calculations below a period of 745 s
to avoid a breakdown in the thin-sheet approximation. Nonetheless, the results of the 745 s
calculation agree surprisingly well with our benchmark. Since the perturbations in Figure
6.31 vary smoothly along the period axis, we expect an extrapolation to provide a reason-
able predictions for shorter period behavior. Such an extrapolation of the results presented
here would indicate that significant bathymetric distortions extend well into the shorter
period range of MT measurements. This has important implications, as the exclusion of
longer period data from inversion has been prescribed as a way to escape 3D bathymetric
effects. Our results, catered to the bathymetry and resistivity structure of central Cali-
fornia, predict that a short period inversion would still suffer from 3D distortion. Region
specific studies of the sort presented in this chapter would need to be conducted for each
survey before the results of a 2D inversion are to be trusted. Furthermore, high-resolution
thin-sheet calculations of 3D bathymetry, like those presented here, may serve as a bench-
mark for accurate characterization of site-specific bathymetric effects in full 3D inversions
of coastal and marine MT data in the future.

6.2 Synthetic Inversions of Coast-affected MT Data

Here we use the simplified model for the conductivity distribution below the Estero
MT sites, developed in Section 6.1, to produce synthetic data which we test within our
2D inversion algorithm. We perform multiple tests to address the questions brought up
on Chapter 4: How well do the marine data, the land data, and the full dataset resolve a
hypothetical Rinconada conductor? Can a TM-mode-only inversion recover some semblance
of the true resistivity model? Could the Rinconada conductor from Model 1 be an artifact
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resulting from the way in which our inversion algorithm grapples with 2D or 3D bathymetry?
Inversion of synthetically produced data (synthetic inversion) that are identical

in the data coverage, data weighting, model discretization, regularization settings, etc. to
those used in the inversion of a real dataset constitutes a sound, albeit qualitative way
to asses the resolution of an inverse process. For linear inverse problems, such resolution
studies are often performed with discontinuous or highly-concentrated probing functions
used for the distributions of model parameters (e.g., pseudo-delta functions or checker-
board grids). The inversion of synthetic data produced by these extremely rough models
will result in a smoothed version of them (assuming regularization is to be applied), called a
resolving function in Parker [1994]. The width of the resolving function relative to the width
of the probing function (which is made as close to zero as possible) provides a qualitative
estimate of the scale of interpretable detail in a specific area of any inversion result (the
specific area is determined by the probing function). What makes this process powerful for
a linear problem, is that the resolving function will be the same regardless of the absolute
size and distribution of all model parameters. In other words, the estimate of resolution
will not depend upon the solution reached by the inverse process. This convenience is lost
with non-linear problems. A checker-board probing function in a non-linear geophysical
inverse problem will only provide the resolution scale for the same checker-board earth;
the resolution scale for the real earth, which is unlikely to resemble a checker-board, may
be completely different. Thus, resolution studies through synthetic non-linear inversion
requires that the synthetic model be as close to the “truth” as possible. It is, of course,
difficult to know what the true model should be, a quandary most geophysicists experience.
The approach we are about to take is to derive an approximation from our inversion result
and other geophysical knowledge. Resolution studies for non-linear inverse problems must
be accepted with the caveat that they are, at best, a local measure (i.e., specific to the
tested model), and sometimes, for example, in the case of 1D MT inversion, misleading
[Parker, 1994].

We create 2D synthetic data, using the same 2D modeling code used by our in-
version algorithm, that matches the coverage in site location, period, and data type of the
Estero MT dataset. There is one important exception. We have restored the short period
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range of apparent resistivity data at site 632 that had been omitted from the inversions of
real data due to an irreparable glitch (see Figure 4.28). The intent here is to test structures
analogous to those found in Model 1 that would occur regardless of the data gap at site
632. The same error floor weighting will be used in synthetic inversions as was used with
the real data. Recall from Chapter 3 that the error floors used with the real data are much
larger than the estimated error resulting from random variation. The inflated error floors,
we explained, were to account for systematic errors in the data, an example of which was
3D distortion. To mimic this assertion, we add Gaussian noise to the synthetic data with a
standard deviation linked to 10% of the apparent resistivity in either mode, such that the
random variation has a smaller standard deviation than that conveyed by our error floors
(12% TM-mode apparent resistivity, 25% TE-mode apparent resistivity). To complete the
congruence, we set the tolerated level of misfit in the synthetic tests to match that used in
the inversions of the actual data, so that the degree of fit, and therefore the model resolution
from these tests should resemble those of inversions of real data.

First, we test the sensitivity of a 2D inversion to a hypothetical Rinconada con-
ductor, when provided the Estero MT data coverage. The top plot in Figure 6.32 displays
the upper portion of our synthetic model, which has a rectangular block of 1 Ωm resistivity
added where the bulk of the Rinconada conductor occurs. The second plot from the top,
is the final model achieved when the full Estero dataset is used in inversion. This inversion
produces a downward smearing of the base of the block conductor, reminiscent of the comet
tail of the Rinconada conductor in Model 1. This provides evidence that the base of the Rin-
conada conductor in Model 1 is very poorly resolved, as is assumed to be the case for most
deep conductors in MT inversions. Note also that resistivity of the upper 10 km is recov-
ered on average in these models. However, some spurious conductive basins appear at the
surface in between marine sites. This behavior in the synthetics casts doubt on the veracity
of the near-surface conductive anomalies found on the marine side in Model 1. Next, we
note that the extremely resistive lithosphere is not recovered by any of the inversions; they
place 1,000-5,000 Ωm where there should be 30,000 Ωm. The data contain little sensitivity
to highly resistive layers, and the true stark increase in resistivity apparently requires too
great of a roughness penalty to be allowed by this smooth inversion. For the same reason,
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Figure 6.32: A synthetic test of the ability to resolve a conductive block similar to the
Rinconada conductor in Model 1. From top to bottom: the model used to create the
synthetic data; the final model result of an inversion of all data; the final model result of an
inversion of just the marine data; the final model result of an inversion of just the marine
data created from a synthetic model without the conductive block. Vertical long-dashed
lines mark the horizontal boundaries (10 km-90 km from the coast) of the area used for the
average conductivity calculation used in Figure 6.34.
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Figure 6.33: The final model result of the inversion result of just the marine portion of the
Estero MT dataset. The boundary of the Rinconada conductor in Model 1 is shown with a
dotted black line. Vertical long-dashed lines mark the horizontal boundaries (10 km-90 km
from the coast) of the area used for the average conductivity calculation used in Figure
6.34.

the return to lower resistivities below lithosphere is not recovered. The inversion seems to
compensate for its inaccurate and smooth layered structure by placing vertical anomalously
conductive regions on either side of the models. In the bottom two plots of Figure 6.32 we
test the sensitivity of just the marine data to the Rinconada conductor. When the conduc-
tive block exists, a marine data inversion does place a region of elevated conductivity whose
vertical border coincides with the middle of the conductive block. However, the elevated
conductivties are very diffuse with a maximum value over ten times less conductive than it
should be (15 Ωm). When the conductive block does not exist, the inversion places the same
background of resistive material (>1,000 Ωm) where the conductive block would otherwise
be. Nonetheless, there remains a region of erroneously elevated conductivity (50 Ωm) in
a large portion of the model beyond 50 km inland. It would seem that the marine data,
on their own, do possess the ability to discern whether a highly conductive region exists as
close to the coast as the Rinconada conductor does. Yet, the NE edge of the Rinconada
conductor lies near the edge of the marine data’s recoverable portion of the model. Other
features such as the near-surface structure between marine sites, the resistive lithosphere
below all sites, and the resistivity columns below the deepest-water sites are not resolved
even when using the entire the dataset.

For comparison, we revisit the marine-data-only inversion of the actual Estero data
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Figure 6.34: A comparison of average conductivity calculations over the area within 10 km-
90 km from the coast and between 0 km and 100 km depths from a selection of the inversion
models of actual and synthetic data. The area chosen encloses a broad region surrounding
the Rinconada conductor of Model 1.

in Figure 6.33. While the foregoing findings from synthetic studies, such as the erroneously
conductive basins between marine elicit clear correlation with the inversion of real marine
data, the marine data’s necessity for the Rinconada conductor is more ambiguous. On one
hand, the marine data do not require quite as high of a conductivity in the location of
the Rinconada conductor as found in the synthetic inversion with the block conductor; on
the other hand, the inversion of real data does not place as highly resistive material as the
synthetic inversion did when the block conductor was removed. For more concrete analysis
of the necessity for the Rinconada conductor we look at a quantity that is more robustly
conserved among inversions of different data subsets, total conductance. As was shown in
Section 4.3, it is the TE-mode tipper and impedance data that almost exclusively require
the Rinconada conductor. These data are entirely sensitive to the current running in the
horizontal direction perpendicular to the line of sites, i.e., in and out of the page for the
printed cross-sectional models. The total current running in this direction is much better
constrained than the precise distribution of that current; as can be seen in the synthetic
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inversions, a small region of high conductivity can often trade-off with a more diffuse region
of lower conductivity, with a negligible affect on misfit. The quantity directly related to the
total current running in and out of the page is conductance. Think of the current running
perpendicular to the faces of each of our parameter blocks as the current contained in a linear
circuit of parallel resistors driven by a constant voltage. With voltage conserved between
different models, the total current is then a function of the sum of inverse resistances, or
simply the total conductance. In Figure 6.34 we display a calculation of total conductance
within a large region enclosing the Rinconada conductor for a selection of inversion models,
both from the actual data and the synthetic data. The total conductance is found by
taking the sum of the products of cross-sectional area and conductivity for each model block
within the selected region; note the length parameter in the conversion from conductivity to
conductance is immaterial in this calculation because it would be the same for every model
block. The total conductance is expressed as an average conductivity, purely a matter of
style as all conductance sums are normalized by the same total area, that of the selected
region. The first observation drawn from Figure 6.34 is that both with and without the
Rinconada-like block conductor, the synthetic inversions recover the total conductance in
the area quite well, regardless of data subset; this confirms our previous statement that
the total current is a well-constrained quantity. Also, note that the total conductance
in the region for the synthetic model with the block conductor closely matches the total
conductance found in Model 1 (see “all”, “actual data”, in Figure 6.34); this is by our design.
Next, we see that the inversion of actual data differ from both of the synthetic studies in
that the inversions the different data subsets all ask for wildly different conductances, when
compared to the analogous variation found in the synthetic studies. The actual marine
data predict a total conductance that is more in line with the synthetic study that does
not have a block conductor. While still not conclusive, analysis of the better constrained
total conductance implies that the marine data do not require a feature as extreme as the
Rinconada conductor. Quite the opposite, the actual land data, on their own, seem to insist
upon something far more extreme. Again we are faced a dichotomy between the demands
of the marine data and those of the land data, a condition we suspect is the result of 3D
bathymetric distortion, which, as we have shown, has opposing effects on the land and
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marine side of the coast.
Figure 6.35 presents the final models from inversion of the synthetic model that

does not contain a block conductor; the structure below the upper 5 Ωm of the synthetic
model is entirely 1D. When all of the data are inverted, a curious artifact appears that is
almost coincident with the Rinconada conductor. The artifact, with a minimum resistivity
of 10 Ωm, is not nearly as conductive as the Rinconada conductor, and when only the
TM-mode data are inverted, it vanishes. The TM-mode-only inversion drastically under-
estimates the resistivity of the crust and upper mantle below the deep-water sites, and is
remarkably similar to the result of taking the same approach to the actual Estero MT data
(see Figure 4.32). We conclude that a TM-mode-only inversion of severely coast-affected
data is futile in the marine environment, even when the coast is perfectly 2D. The TE-
mode is vital for diverting the inversion from satisfying the TM-mode depression due to the
coast-effect with a more convenient wash of falsely conductive material. Let us return to
the more disturbing column of higher conductivity below the coastal sites of 630-632, and
reminiscent of the Rinconada conductor. This erroneous conductive anomaly, along with
the one on the left side of the model below sites M40 and M36, seem to be coupled with the
inversion’s inability to recover the resistive lithosphere. The resistive lithosphere is critical
in producing the coast effects in the tipper and TE-mode data which are most pronounced
beyond the continental slope on the marine side and closest to the coast on the land side
(as shown in Section 6.1). The smoothness constraint of the inversion, by nature of the
model discretization, penalizes model roughness more in the vertical direction than it does
in horizontal direction. Recall in Figure 4.9, that over an equivalent distance there are more
model block boundaries in the horizontal directions than there are in the vertical direction.
Thus, a gradient in resistivity may be spread over many boundaries in small jumps along the
horizontal direction, whereas, along the vertical direction, the same gradient is spread over
fewer boundaries necessitating larger jumps. Since the roughness measure in (4.2) is based
on the 2-norm (a sum of squares) of model jumps at the boundaries, a few larger jumps are
less favored by our inversion than many smaller jumps when describing the same average
gradient. The use of a 1-norm (sum of absolute values) in the roughness measure would be
more equitable given our non-uniform spacing of model boundaries, but it is algebraically
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difficult to implement. Given the current setup, the anisotropic smoothing creates a pref-
erence for the placement of vertically-smooth conductors confined to the areas where the
coast effect is greatest, rather than place the proper jump in resistivity along the vertical
direction below the entire model. An alternative solution of using a uniform discretization of
the model domain would create an isotropic measure of roughness, presumably preventing
these artifacts, but with the given inversion software, such a discretization leads to models
too large to be computationally tractable.

The easiest solution for correcting the anisotropic smoothing that results from a
non-uniform model grid is to re-weight the roughness calculation. The matrix ∂ in (4.2)
is normally filled with 1’s and -1’s to represent the first difference between adjacent model
blocks (such was the implementation used for all of the inversion models in this disserta-
tion). In search of an unbiased alternative to this default implementation, we return to the
continuous formulation of the roughness measure, the first term on the right hand side of
(4.2); we write,

RΩ[m] =
∫

Ω
||∇m||2 d2s, (6.1)

where m(y, z) is the 2D function of the logarithm of resistivity, i.e. our model parameter-
ization, over the domain Ω. Now moving back to the discrete case, we retain the forward
first difference as an approximation of the model gradient, and evaluate the integral using
a middle Riemann sum. For example, we analyze the effect of this new measure on the ith

model block with value mi, width wi, and height hi. In the image of the model domain,
the block directly to the right of the ith we arrange to have the index i+ 1, and the block
directly below to have the index i+ 2. Then, the terms of the roughness measure centered
around the ith model block are:

||Rm||2 = . . .+ (mi+1 −mi)2 2hi
wi+1 + wi

+ (mi+2 −mi)2 2wi
hi+2 + hi

+ . . . . (6.2)

The new roughness matrix, R, in (6.2) is similar to ∂, except that every first difference is
weighted by the aspect ratio of each pair of connected blocks. In this way, the directional
bias from a non-uniform mesh is neutralized. This correction for anisotropy in the roughness
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Figure 6.35: A synthetic test of the ability to resolve the resistive lithosphere in our simple
model with 2D bathymetry. From top to bottom: the model used to create the synthetic
data; the final model result of an inversion of all data; the final model result of an inversion
of just the TM-mode data.

measure was discovered after the defense of the work in this dissertation, and thus is not used
in any of the models presented throughout it. The author wishes to document the correction
here for posterity’s sake. Preliminary inversion trials with the new regularization have
shown that, while the vertical bias in the regularization is removed, the other conclusions
of this dissertation are unaffected. The issue of bias in regularization reminds us that over-
parameterized, non-linear, gradient-based inversion is not an entirely objective exercise;
the user has freedom to choose the regularization that best matches their expectations.
Different choices made in that regard can often produce appreciably different models, each
meeting the requirements of the data equally, for which the only remaining distinguishing
factor is the prejudice of the appraiser.
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Figure 6.36: A synthetic test of the features introduced by 3D bathymetric distortion into
a 2D inversion model. From top to bottom: the model used to create the synthetic data,
which includes a conductive GV; the final model result of an inversion of 2D data; the final
model result of an inversion of the 2D data with the perturbations of 3D bathymetry added
to the nine longest periods of data (pseudo-3D).
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Next, we take the synthetic data from a 2D model and apply the perturbations due
to 3D bathymetry calculated in Section 6.1, and displayed in Figure 6.31. In this way we
produce a pseudo-3D dataset, where the 3D distortions are entirely a product of bathymetry.
We do not simply use the apparent resistivity and phase results from the 3D thin sheet model
because, as we showed in 2D, they do not agree with the analogous finite element models
at intermediate water depths. Nonetheless, we assume that the relative difference between
the 2D and 3D results from the base of the thin sheet are a good approximation for the
relative difference between 2D and 3D calculations at intermediate water depths. So, by
starting from a 2D finite-element calculation at the true water depth of each instrument
and adding the difference between the 2D and 3D thin sheet calculations, we arrive at a
synthetic 3D dataset. However, we do this only for the nine longest periods in the dataset
for which the thin sheet results were shown to be accurate. The shorter-period synthetic
data are left in their original 2D form. Note that for this synthetic test, all of the models
used include a conductive GV. We take the synthetic 3D data, which carry effects similar
to those caused by the 3D bathymetry in the Estero dataset, and apply them in the same
2D inversion scheme that was employed with the Estero MT data. The resulting model
should produce artifacts representative of the 3D bathymetric effects introduced into the
2D inversion of the Estero MT data, at least those affecting the nine longest periods. Figure
6.36 compares the synthetic model used to create the 2D data, the result of an inversion of
the 2D data, and the result of an inversion of the pseudo-3D data. Again, the inversion of
just the 2D data produces vertically smeared conductors below the two deepest-water sites,
below the first three sites inland of the coast, and, now that the conductive GV has been
added, below the two eastern-most sites. These vertical swaths of enhanced conductivities,
while not nearly as resistive as they should be given the synthetic model, are not nearly as
conductive as the anomalous conductors in Model 1; the conductors from the inversion of
the synthetic 2D data are still above 300 Ωm. The inversion of the pseudo-3D data results
in similar anomalous conductors, but their boundaries are sharper and their conductivities
greater; the conductors below the deep-marine and coastal portion of the model fall below
20 Ωm, while the deep conductor below the GV remains just above 100 Ωm. The pseudo-3D
model has become rougher overall, as the 2D inversion algorithm strains to meet aspects
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of the data caused by 3D structure. Just below the coast a highly resistive wall appears in
the model, similar to that found in Model 1. In summary, the inversion of the synthetic
2D data produces anomalous structures that hint at, but are much less extreme than those
found in Model 1, the Rinconada conductor, the GV conductor, etc. It seems that the 2D
algorithm, even with perfectly 2D data, is prone to the placement of vertically elongated
conductors where they should not exist. Then, the addition of 3D distortions to only the
nine longest periods sharpens each of these structures, bringing them even more in line
with Model 1. We conjecture that if it were possible to create and invert data with 3D
bathymetric distortions at all periods, these erroneous structures would become even more
extreme, perhaps as extreme as the Rinconada and GV conductors in Model 1. In Figure
6.37, we compare the result of the inversion of the pseudo-3D data to the perturbations due
to 3D bathymetry used to create those data. The comparison highlights the difficulty in
predicting, based on the plots of the perturbations, how distortions from 3D bathymetry
will affect the outcome of a 2D inversion. Synthetic inversions are vital to connecting input
to outcome.

Finally, we compare the result of the inversion of the pseudo-3D data to Model
1, the result of the inversion of the actual Estero MT data. Each of the major artifacts
introduced into the synthetic inversion model by bathymetry, both 2D and 3D, are labeled
A-E. The structures similar to these that are found in Model 1 are given the same label.
We do not expect the exact location, size, and resistivity of each of these structures to be
equal to that of its counterpart. The simplistic model we used to create the synthetic data
surely does not represent to the true complexity of the earth. However, the fact that very
similar structures can be produced by an underlying model that was purely 1D below 5 km
casts doubt on the interpretability of all the exciting features in Model 1. Clearly, some
combination of the inversion algorithm and deficiency in the dimensionality in the forward
model is capable of producing results that, while compelling, are mostly fictional. That is
not to say that the entirety of Model 1 is false, but we have shown that without a more
isotropic roughness penalty and 3D modeling, at least of bathymetry, we cannot discern
with confidence what is true. The Rinconada conductor may exist, but it is apparently not
required to.
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Figure 6.37: Same format as Figure 6.31, except that the top plot displays the result of
inverting the pseudo-3D data.
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Figure 6.38: A comparison of the inversion result of the complete Estero MT dataset (Model
1) with the inversion result of the pseudo-3D synthetic data. Anomalous features akin to
both models are labeled with letters A-E.



Chapter 7

Conclusions

In Chapter 4, I presented a 2D inversion model for the amphibious Estero MT
dataset, which I call Model 1. In Figure 7.1 (B & C), the land portion of Model 1 is plotted
alongside the inversion model for the same land data from Becken et al. [2011]. Both models
maintain the existence of a large, deep, and high-conductive body southwest of the SAF
(the Rinconada conductor). Nonetheless, the introduction of the marine data changes the
land side of the model because the continental margin is no longer allowed to be filled with
high conductivity material (see Figure 4.20). By adding the marine constraints, I find a
sharpening of the Rinconada conductor and the emergence of a large conductor beneath the
GV. In Chapter 4 I argued that the marine data do not call for the increase in conductance
brought by the Rinconada conductor, and showed that the marine and land data express
conflicting demands on the inverse model, which leads to very rough structure at the coast.
I also found that both the Rinconada conductor and the conductor below the GV are driven
predominantly by the TE-mode tipper data from land sites.

The best-fitting model predictions showed pervasive, systematic (not random) mis-
fit to the data, despite a highly-parameterized model; I suspected the cause to be distortion
from 3D bathymetry, which a 2D inversion cannot replicate. In Chapters 5 & 6 I developed
a thin-sheet method to estimate the degree of distortion in the Estero MT data that is
caused by the actual 3D bathymetry in the region in central California. From this, I found

266
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Figure 7.1: A comparison of the final models from: (A) inversion of the Estero MT dataset
without tipper data; (B) inversion of the full Estero MT dataset; (C) inversion of the land
data of the Estero MT dataset, as presented in Becken et al. [2011].



268

that the 3D bathymetric distortions are significant relative to the data errors used, and do
not always produce overt symptoms of 3D-ness (high skew, etc.). The TE-mode tipper data
were most affected by 3D-bathymetry. An inversion of the amphibious dataset with tipper
data removed yielded a starkly different model on land, as seen in (A) of Figure 7.1. This re-
sult illustrates the tenuous existence of the Rinconada conductor. In Chapter 6 I composed
a simplified model for the conductivity structure beneath the continental margin in central
California. The synthetic model used average crustal conductivities drawn from Model 1,
but, relative to Model 1, a much more resistive lithosphere, which is supported by multiple
observations, independent of those involved in this dissertation. Below 5 km, the synthetic
model is layered. Yet, synthetic inversions of data created from only 2D bathymetry in this
simple model produced vertically-elongated, slightly-conductive anomalies coincident with
the conductive anomalies of Model 1. When 3D distortions are added to a fraction of the
data in synthetic inversions, these same conductive anomalies became sharper and more
conductive, with greater resemblance to those of Model 1.

The fact that the synthetic studies with perfectly 2D bathymetry could not recover
a smoothed version of the horizontally-layered synthetic model led me to question the
inversion algorithm. The interplay between the model discretization and how roughness is
computed is the likely source of the problem, the solution to which is left for future work.
More disturbing is that the artifacts created in the 2D synthetic inversion model occur in
nearly the same location as the extreme conductors in Model 1, albeit with much milder
deviations from the background conductivity. The fact that the 2D inversion of 3D-distorted
data produced even more extreme conductivities where they should not exist, confirms that
3D bathymetry is another important problem to contend with. The Rinconada conductor
occurs at nearly the same distance from the coast in each of the 2D models in the Becken
et al. [2011] study, yet its size and resistivity changes. I speculate that the change in
character of the Rinconada conductor with distance along the coast may result from the 3D
distortions produced by the ruggedness of the coast. These combined reasons lead me to
conclude that the existence of the Rinconada conductor cannot be corroborated with the
current set of tools. Instead, I suspect that this conductor is fictitious, an artifact of the
inadequacy of the 2D inversions used both in my work and in the published work of Becken
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et al. [2011]. Therefore, I suspend further geologic interpretation along the lines forged by
Becken et al. [2011] until I have an inverse process that can be trusted. Full 3D modeling
that accurately portrays bathymetric effects, and a better form of regularization which can
reproduce the stark increase in resistivity that is expected at the crust/mantle boundary
are needed before durable geological conclusions from the MT data of this dissertation may
be drawn.

Since the tools for adequate 3D inversion of the amphibious Estero MT dataset are
currently unavailable, I can only make broad conjectures about the geology below the survey
line using the suite of 2D inversions presented in this dissertation. First, I note that none of
the inversion models created with the use of the marine data show a conductive connection
between the Rinconada conductor and the material below the continental margin. Thus,
support for the hypothesis that the Rinconada conductor relates to a release of fluids from
the subducted Monterrey plate was not found. Second, I was able to impugn the tipper
data as those most corrupted by 3D bathymetric effects, relative to the respective data
errors used, out of the land portion of the data set. So, perhaps the model (A) in Figure
7.1, which does not use tipper data, presents our best 2D model approximation of the
actual electrical resistivity structure around the central Californian segment of the SAF.
Entertaining this possibility, we see that the conductor below the SAF in (A) better aligns
with the source locations of the recently discovered non-volcanic tremor shown in (C).
Following the suggestion of Nadeau and Guilhem [2009] that tremor is associated with high
pore-fluid pressures, one might expect the location of tremor production to be marked by a
region of enhanced conductivity. This was not the case with the model from Becken et al.
[2011] in (C), which did use the tipper data. Perhaps the 3D bathymetric distortions cause
a real onshore conductor to be incorrectly mapped closer to the coast than it actually lies.
Then a conductor directly below the seismogenic depth extent of the SAF, rather than offset
to the southwest, would be the subject of geologic interpretation. The shallow section of
the SAF (upper 3 km) has long been associated with a conductive zone attributed to fluids
within a highly fractured damage zone [Ritter et al., 2005], but little has been discussed
about the deep structure of the fault. If the deep incidence of tremor is the manifestation
of slip on the sub-seismogenic extension of the fault [Shelly et al., 2009], then perhaps there
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too a fault zone conductor has meaning. Such connections might be the subject of future
work involving MT and the SAF.



Appendix A

Error Propagation in MT Data

In this appendix we derive the formulae for the linear (1st order) approximation
in error propagation from one random quantity to another. We will assume the basic
random measurement is a complex impedance tensor element or a complex tipper vector
element. Then we wish to calculate the mean and variance of functions of these random
variables. The real and imaginary parts of these measurements are each contaminated by
independent, identically-distributed, Gaussian noise of zero mean and known variance, σ2.
For our impedance tensor element, z = x+ iy, we write,

Z = (x+X) + i(y + Y ), (A.1)

where a capital letter signifies a randomly perturbed quantity, and a lower-case letter sig-
nifies the underlying true value. The probability density function (pdf) of the impedance
noise is

φ(X,Y ) = exp−(X2 + Y 2)/2σ2

2πσ2 (A.2)
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over the plane R2; remember the integral of this function over the whole plane is equal to
1. We will use the symbol δ to signify the standard error of a quantity, such that,

δX =
√

var(X) = σ. (A.3)

We will derive the mean and variance of multiple quantities by using their defini-
tions in terms of the expectation operator. The expectation of any function F of a random
variable is found by integrating that function over the domain of the random variable,
weighted by the pdf of the variable:

E[F (X)] =
∫
F (X)φ(X)dX, (A.4)

where the bold font represents a vector; in this way F may be a function of multiple random
variables. Then the mean of F , F̄ , is given by,

F̄ = E[F (X)]. (A.5)

Note that since X and Y are zero-mean, we have

E[Z] = z. (A.6)

The variance of F is given by,

var(F (X)) = E[(F (X)− E[F (X)])2] (A.7)

= E[F (X)2]− E[F (X)]2. (A.8)

Since X and Y are independent and zero mean,

E[XY ] = E[X]E[Y ] = 0. (A.9)
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Using (A.6) and (A.9) we then have,

δZ2 = δX2 + δY 2 = 2σ2. (A.10)

Now we move on to more complicated functions of Z. We wish to calculate the
mean and variance of the apparent resistivity, R, given by,

R = 1
µω

((x+X)2 + (y + Y )2), (A.11)

of the log of apparent resistivity, L = log10(R), and of the impedance phase, P , given by,

P = arctan((y + Y )/(x+X)), (A.12)

in units of radians. A standard method of calculating the variance of functions of a random
variable is called linear propagation of errors. It is founded upon approximating the function
with its Taylor series. As the word “linear” in the title implies, only the first order terms
in the Taylor series are uses. Thus returning to the arbitrary function, F , now a function
of our two random variables, X and Y , we have,

F (x+X, y + Y ) ≈ f(x, y) + ∂f

∂x
X + ∂f

∂y
Y +O(X2) +O(Y 2). (A.13)

We quickly see,

F̄ = E[F ] = f. (A.14)

Thus, to the first order of approximation, the mean of F is an unbiased estimator of f .
Then for the variance we need,

E[F 2] = E[f2 + 2f ∂f
∂x
X + 2f ∂f

∂y
Y +

(
∂f

∂x

)2
X2 +

(
∂f

∂y

)2
Y 2] (A.15)

= f2 +
(
∂f

∂x

)2
δX2 +

(
∂f

∂y

)2
δY 2. (A.16)
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Combining (A.14) and (A.16) in (A.8) we recover the formula for linear propagation of
errors:

δF 2 =
(
∂f

∂x

)2
δX2 +

(
∂f

∂y

)2
δY 2. (A.17)

Applied to R, L, and P , we have the usual formulae for propagated variances:

δR2 =
( 2x
µω

)2
σ2 +

( 2y
µω

)2
σ2 (A.18)

= 4r
µω

σ2, (A.19)

which is commonly used in the fractional standard error form,

δR

r
=
√

4σ2

rµω
= 2σ
|z|

=
√

2δZ
|z|
, (A.20)

then

δL = 1
ln(10)

(2σ
|z|

)
= 1

ln(10)

(
δR

r

)
, (A.21)

and

δP 2 =
( −y
x2 + y2

)2
σ2 +

(
x

x2 + y2

)2
σ2 (A.22)

= σ2

|z|2
, (A.23)

which in standard error form becomes,

δP = σ

|z|
= 1

2

(
δR

r

)
. (A.24)

Following the preceding steps, we find that the 1st order approximation of the covariance
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formula is given by,

cov(F,G) = ∂f

∂x

∂g

∂x
δX2 + ∂f

∂y

∂g

∂y
δY 2. (A.25)

Then, reusing the derivatives from before, we quickly find the reassuring fact that, at least
to first order, cov(R,P ) = cov(L,P ) = 0. Thus, when we convert the real and imaginary
parts of an impedance element to apparent resistivity and phase, the two resulting data
remain independent.

Now we would like to asses the inaccuracy of the 1st order error propagation
formulae. To do this exactly, we would need to calculate integrals of the form (A.4), for
example,

E[P 2] =
∫

R2
arctan2

(
y + Y

x+X

) 1
2πσ2 e−(X2+Y 2)/2σ2

dXdY. (A.26)

However, we are not interested in an exact method of error propagation, which would involve
the solution of some difficult integrals. Instead we would just like to know, to an order of
magnitude, the degree of failure of our linear approximation. To do so we may simply add
the 2nd order terms to (A.13). So we have,

F (x+X, y + Y ) ≈ f(x, y) + ∂f

∂x
X + ∂f

∂y
Y + 1

2
∂2f

∂x2X
2 + 1

2
∂2f

∂y2 Y
2 + ∂2f

∂x∂y
XY . . .

. . .+O(X3) +O(Y 3). (A.27)

For the new mean, we have,

E[F ] = f + 1
2
∂2f

∂x2 δX
2 + 1

2
∂2f

∂y2 δY
2. (A.28)

Now, preparing for the variance calculations, we note that F 2 involves third- and fourth-
order terms of X, and Y : X3, Y 3, XY 2, Y X2, XY 3, Y X3, X2Y 2, X4, and Y 4. Only
the terms involving all even powers of X and Y will have a non-zero expected value. First
we address the non-zero expected values that are equal to the fourth central moment of a



276

Gaussian distribution,

E[X4] = E[Y 4] = 3σ4. (A.29)

The other non-zero expected value is found by evaluating the integral,

E[X2Y 2] =
∫

R2
X2Y 2 1

2πσ2 e−(X2+Y 2)/2σ2
dXdY. (A.30)

We do so by converting to polar coordinates:

E[X2Y 2] = 1
2πσ2

∫ ∞
0

dρ ρ5e−ρ2/2σ2
∫ 2π

0
dθ sin2 θ cos2 θ (A.31)

= 1
2πσ2

(
8σ6

)(π
4

)
= σ4, (A.32)

where the solution to the two integrals can be found in Gradshteyn and Ryzhik [1965].
Using the foregoing findings, we have,

E[F 2] = f2 +
(
∂f

∂x

)2
σ2 +

(
∂f

∂y

)2
σ2 + 1

2f
∂2f

∂x2σ
2 + 1

2f
∂2f

∂y2 σ
2 + 1

2
∂2f

∂x2
∂2f

∂y2 σ
4 . . .

. . .+
(
∂2f

∂x∂y

)2

σ4 + 3
4

(
∂2f

∂x2

)2

σ4 + 3
4

(
∂2f

∂y2

)2

σ4. (A.33)

Finally, by inserting (A.28) and (A.33) into (A.8), we recover the second-order error prop-
agation formula, given our jointly distributed random variables,

δF 2 =
(
∂f

∂x

)2
σ2 +

(
∂f

∂y

)2
σ2 + 1

2

(
∂2f

∂x2

)2

σ4 + 1
2

(
∂2f

∂y2

)2

σ4 +
(
∂2f

∂x∂y

)2

σ4. (A.34)

We we return to our measured quantities. We will need all of the first- and second-order
derivatives of our functions with respect to the basic random variables. For completeness
we tabulate them all here:

∂r

∂x
= 2x
µω

, (A.35)
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∂r

∂y
= 2y
µω

, (A.36)

∂2r

∂x2 = 2
µω

, (A.37)

∂2r

∂y2 = 2
µω

, (A.38)

∂2r

∂x∂y
= 0, (A.39)

∂l

∂x
= 2x

ln(10)(x2 + y2) , (A.40)

∂l

∂y
= 2y

ln(10)(x2 + y2) , (A.41)

∂2l

∂x2 = 2(y2 − x2)
ln(10)(x2 + y2)2 , (A.42)

∂2l

∂y2 = 2(x2 − y2)
ln(10)(x2 + y2)2 , (A.43)

∂2l

∂x∂y
= −4xy

ln(10)(x2 + y2)2 , (A.44)

∂p

∂x
= −y
x2 + y2 , (A.45)
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∂p

∂y
= x

x2 + y2 , (A.46)

∂2p

∂x2 = 2xy
(x2 + y2)2 , (A.47)

∂2p

∂y2 = −2xy
(x2 + y2)2 , (A.48)

and,

∂2p

∂x∂y
= y2 − x2

(x2 + y2)2 . (A.49)

By applying (A.28), we see there is a small upward bias in the mean estimate of apparent
resistivity, given by,

E[R]− r = 2
µω

σ2. (A.50)

Note that the second order taylor series expansion of R is exact since ∂3r/∂x3 = ∂3r/∂y3 =
0. Amazingly, there are no biases in the means of L or P , at least in the second-order
approximation; one can verify that,

E[L] = l, (A.51)

and,

E[P ] = p. (A.52)

Now, we calculate the variances. Again, looking at the relative forms of standard error in
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apparent resistivity, we have,

δR

r
= 2σ
|z|

√
1 + σ2

|z|2
. (A.53)

The first term on the right side of (A.53) is the linear approximation, and the second
term represents the error in that approximation. The linearly approximated errors are
underestimated by a very small amount. With 5% noise added to the real and imaginary
components of z (σ = 0.05|z|), the linear propagation of errors would predict 10% noise in
the apparent resistivity, whereas the true level of noise in the apparent resistivity would be
10.012%. Similarly, the standard errors in the log of apparent resistivity and phase, under
the second order approximation, are,

δL = 2σ
ln(10)|z|

√
1 + (y4 − 2x2y2 + x4)σ2

|z|6
+ 4x2y2σ2

|z|6
(A.54)

= 2σ
ln(10)|z|

√
1 + σ2

|z|2
= δR

ln(10)r , (A.55)

and,

δP = σ

|z|

√
1 + 2x2y2σ2

|z|6
+ x4σ2

|z|6
+ y4σ2

|z|6
(A.56)

= σ

|z|

√
1 + 2 σ

2

|z|2
cos2 p sin2 p+ σ2

|z|2
cos4 p+ σ2

|z|2
sin4 p (A.57)

= σ

|z|

√
1 + σ2

|z|2
, (A.58)

respectively. In controlled-source electromagnetics, the amplitude of the transfer function
between the source and the receiver is often used as a datum, which we will define as,

A =
√

(x+X)2 + (y + Y )2. (A.59)

Applying the same analysis as we did for apparent resistivity, we find the second-order
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approximation formulae:

E[A]− a = σ2

2a, (A.60)

and

δA

a
= σ

a

√
1 + σ4

a4 . (A.61)

The estimated mean amplitude is upward biased and a linearly-propagated error in am-
plitude is underestimated. Again, the mean of the log of amplitude is unbiased under the
second-order approximation, and standard error in the log of amplitude differs from (A.55)
only by a factor of 2.

With only a slight modification to the preceding development, we may derive the
second order approximation to the covariance of two complex functions of random variables
as such:

cov(F,G) = ∂f

∂x

∂g

∂x
σ2 + ∂f

∂y

∂g

∂y
σ2 + 1

2
∂2f

∂x2
∂2g

∂x2σ
4 + 1

2
∂2f

∂y2
∂2g

∂y2σ
4 + ∂2f

∂x∂y

∂2g

∂x∂y
σ4. (A.62)

By (A.62) we find that, even after applying a higher-order approximation, the pleasing
properties, cov(R,P ) = cov(L,P ) = 0, still hold.
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