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X-2 D. W. VASCO: ZEROTH-ORDER HEAD INVERSION

Abstract. A high frequency, asymptotic solution for transient head, ap-
propriate for a medium containing smoothly-varying heterogeneity, provides
a basis for efficient inverse modeling. The semi-analytic solution is trajectory-
based, akin to ray methods used in modeling wave propagation, and may be
constructed by post-processing the output of a numerical simulator. For high
frequencies, the amplitude sensitivities, the relationship between changes in
flow properties and changes in head amplitude, are dominated by the phase
term which may be computed directly from the output of the simulator. Thus,
transient head waveforms may be inverted with little more computation than
is required to invert arrival times. An application to synthetic head values
indicates that the technique can be used to improve the fit to waveforms. An
application to transient head data from the Migration experiment in Switzer-
land reveals a narrow, high conductivity pathway within a 0.5 m thick zone

of fracturing.
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1. Introduction

In this paper I demonstrate how an iterative model updating scheme, can benefit from
trajectory-based modeling. First, trajectory-based techniques provide efficient, semi-
analytic expressions for solving the forward problem, for computing the residuals, and for
computing the partial derivatives, the model parameter sensitivities. Secondly, trajectory-
based methods provide additional flexibility in formulating the inverse problem. Specit-
ically, in the trajectory-based approach the modeling is broken into two distinct steps:
(1) the computation of a travel time, (2) the computation of the time-varying amplitude
function. Thus, one can use travel times as a datum for characterization, an alternative
to fitting the head observations directly. There is some advantage associated with the
use of travel times. First, the inverse problem associated with travel times is quasi-linear
and thus convergence is less of an issue [Cheng et al., 2005]. Furthermore, the inversion
of travel times involves much less computation than does amplitude inversion. Thus, a
useful strategy invokes an initial travel time inversion followed by an amplitude inversion.
Trajectory-based modeling also provides, in the form of the trajectories, an easy way to
visualize the relationship between observations and the region of the subsurface which
influences the observations.

This paper compliments earlier work on trajectory-based modeling and inversion of tran-
sient head data [Vasco et al., 2000; Kulkarni et al., 2001; Brauchler et al., 2003; Vasco
and Finsterle, 2004; He et al., 2006]. Here I provide efficient, approximate expressions for
amplitude sensitivities which are alternatives to the more exact Born sensitivities given

in Vasco et al. [2000]. The sensitivities, which are derived using a technique from high-
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frequency seismic waveform inversion [Vasco et al., 2003], are provided for all points on
the transient head curve. The trajectory-based sensitivities require essentially the same
level of computation as travel time sensitivities. However, the amplitude sensitivities al-
low one to invert transient head waveforms directly, avoiding the necessity of estimating
arrival times. Using waveform data can be advantageous when interference effects, as due
to multiple sources, make it difficult or impossible to identify a specific arrival from a par-
ticular source. Furthermore, inadequate time sampling may prevent one from estimating
arrival times. In such a case one can still use the waveform observations to estimate flow

properties, as shown in this paper.

2. Methodology

2.1. The Equation Governing Drawdown

In an inhomogeneous medium the equation describing the space x and time ¢ evolution
of head h(x,1) is
Jh(x,t
K(x)V2h(x,1) + VK(x) - Vh(x,1) = S(x)% "

where K (x) denotes the hydraulic conductivity and S(x) denotes the specific storage
[Bear, 1972; de Marsily, 1986]. We consider the equation in the frequency domain, by

applying the Fourier transform [Bracewell, 1978]
Hixw) = o [ b t)ed )
X,w) =5 [ h(x,t)e™ dw
to equation (1). In the frequency domain equation (1) becomes

V?H(x,w) + A(x) - VH(x,w) — iwk(x)H(x,w) = 0 (3)
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where I have divided through by K(x) and defined
A(x) =VInK(x) (4)
and

_ S(x)
K(X) - [I(X)' (5)

From equation (3) it is clear that for large w, at high frequencies, the head is sensitive to
k(x), the ratio of storage to conductivity. Conversely, low-frequency variations in head,

such as a static change, are primarily sensitive to the spatial variation of In K (x).

2.2. The Inverse Problem

Equation (3) comprises the forward problem in which one computes the observed head
variations at an observation point, given the spatial distribution of hydraulic conductivity
K (x) and specific storage S(x), a source function, and the boundary conditions. Solution
of the forward problem, which requires the solution of the linear differential equation (1)
or (3), is a stable procedure and results in unique values for H(x,w), given the appropriate
initial data.

In the inverse problem one is given observations of head at a finite set of observation
points and seeks estimates of both the head and the flow properties at all remaining
points. Most of the difficulties encountered are related to the fact that there many fewer
observations then there are model parameters. Thus, at most locations, the head and
the flow properties are both unknown, and hence equation (3) contains product terms in
pairs of unknowns, rendering it non-linear. Furthermore, because there are many fewer
data than unknowns, one can encounter severe non-uniqueness, in which many, perhaps

an infinite number, of models can explain the observations [Parker, 1994].
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There are several ways to deal with the non-linearity and the non-uniqueness and thus
provide solutions to the inverse problem. The most direct approaches range from simple
trial and error to more sophisticated stochastic techniques. Most efficient methods are
based in some fashion upon a local linearization about an initial or starting model which
I shall denote by the vector Ky. The idea is to derive a linear relationship between per-
turbations in the model, 6K, and perturbations in the data, 6H. For a finite dimensional
model and a finite number of observations, I can write the linear relationship as a matrix

equations
oH = MéK (6)

where M is the sensitivity matrix, the ¢-th, j-th entry is given by

oM,
=% (7)

I will give explicit examples of such linearizations below. The non-uniqueness is most
frequently treated by attaching additional constraints on the desired model, in the form

of penalty terms [Parker, 1994]. Penalty terms, such as the minimum norm and model

roughness penalty, will be discussed in more detail below.

2.3. Asymptotic Solutions for Flow

An asymptotic solution for flow follows if I take a solution of the form

H(X,u)) — e~ iwcr(x)zoo AW(X)

. (8)
0 (Viw)"

[Virieuz et al., 1994]. The motivation for using an expansion in inverse powers of w

is that the initial terms of the series represent rapidly varying (high-frequency, large

w) components of the solution and successive terms are associated with lower frequency

behavior [ Vasco and Datta-Gupta, 1999]. The quantity o, known as the 'phase’ or "pseudo-
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phase’, is analogous to the phase of a propagating wave [Virieuz et al., 1994]. In fact, as
noted by Vasco et al. [2000], for an impulsive source, o(x) can be related to the arrival
time of the peak of a head pulse. For a step function source o(x) is associated with the
time at which the derivative of the head curve experiences a maximum, the arrival time

of the peak slope at the point x. Thus,

(%) = /6T pear(x) (9)

where T,c.k(Xs) is the arrival time of the peak at the observation point x [Virieux et
al., 1994; Vasco et al., 2000]. The functions A,(x), in equation (8), provide successive
corrections to the head amplitude. The reason for using v/iw in the series, rather than
simply w, 1s that I would like the solution to reduce to the expression for head in a
homogeneous medium [ Virieuz et al., 1994, Vasco et al., 2000]. One could also argue
for a solution of the form (8) on physical grounds, based upon dimensional or similarity
analysis of the equation for drawdown.

An asymptotic solution is obtained by substituting the series (8) into the governing
equation (3). The resulting expression contains an infinite number of terms of increasing
order in 1/v/iw. I shall be interested in the rapidly varying component of transient
head , as is associated with the early increase in head due to the initiation of pumping.
For w large only the first few terms of the series (8) will be significant [Kline and Kay,
1965; Kravtsov and Orlov, 1990]. In particular, terms of order zero and one are typically
considered in the expansion [Virieuz et al., 1994; Vasco et al., 2000]. I should note that
the term ’"high-frequency’ is relative to the length scale-of the heterogeneity. That is, I am
assuming that the heterogeneity is smoothly varying when compared to the spatial scale

over which the head increases from its background value to a significantly different value.
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2.4. Computing Arrival Time Sensitivities
For terms of highest order in viw, those of order (v/iw)?, provide an equation for o

[Virieuz et al., 1994; Vasco et al., 2000],
Vo(x)-Vo(x) = k(x). (10)

Equation (10), known as the eikonal equation, governs many types of propagation pro-
cesses [Kline and Kay, 1965; Kravtsov and Orlov, 1990] and there are efficient direct
numerical methods for its solutions [Sethian, 1996]. However, the method of characteris-
tics may be used to convert the non-linear partial differential equation (10) into a system

of linear, ordinary differential equations [Courant and Hilbert, 1962], the ray equations,

dX

_ 11
=P (11)
dp

ap _ 12
s V& (12)

where p = Vo and X(s) is a curve or trajectory through the model along which the
solution is defined. The system of ordinary differential equations, along with a set of
boundary conditions, can be solved using numerical techniques for two-point boundary-
value problems [Keller, 1968]. Alternatively, as noted in Vasco and Finsterle [2004] one
can use a numerical simulator to calculate o and hence p and then solve (11) using a
variation of a Runge-Kutta method [Press et al., 1992] known as Heun’s method [Sethian,
1996; Vasco and Finsterle, 2004]. In essence, one used a numerical simulator to calculate
the arrive time of the head pulse peak at each point in the model, obtaining o(x)*/6.
One computes p from the gradient of o(x) and formulates the differential equation (11).
Numerically integrating (11) produces the trajectory X(s) along which the solution is

defined.
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The eikonal equation (10), written in ray coordinates, can be used to relate the pseudo-

phase o(x) to the flow properties, as contained in x(x)

o(x) = /E(X) Jr(s)ds (13)

where the integral is along the path ¥(x) from the source to the observation point. This
integral relates o(x) directly to flow properties, x(s), integrated along the trajectory X.
From equations (5) and (13) I may compute the sensitivity associated with the square

root of the arrival time to changes in specific storage

0o _ i) (14)
25(x)  S(x)
and hydraulic conductivity
00 _ _yr) (15)
oK (x)  K(x)

[Vasco et al., 2000]. Hence, a perturbation in arrival time is related to perturbations in

S(x) and K(x) by

balx) = [. . [ S’ZS)(SS(S)— VK?S)(SK@) ds (16)

where Y(x) is the trajectory between the pumping and observing boreholes. Note, the
sensitivity in a homogeneous medium is uniform between the pumping and observing well.
Unlike head amplitudes [Oliver, 1993], the arrival time sensitivities are not dominated by
structure in the vicinity of the boreholes. As in medical and geophysical imaging, one may
adopt a tomographic approach in order to invert the arrival times. Some initial reservoir
model is assumed and the trajectories are traced through the model. By back-projecting
the arrival time anomalies along the trajectories, | may estimate variations in storage and
conductivity between the boreholes. A more detailed account of this approach will be

given in the numerical illustration below.
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2.5. Computing Amplitude Sensitivities
I begin the discussion of amplitude matching with a slight generalization of the lowest-

order representation of the head variation, the zeroth-order term of equation (8),
H(x,w)=S(w)e” i‘”(x)Ao(X) (17)

where | have included a frequency-dependent quantity S(w) which accounts for a time-
varying source. This function is necessary in treating actual field data because the pump-
ing rate will vary due to experimental conditions. While it is perfectly feasible to use
the relationship between the quantities o(x) and Ag(x) and the flow properties [ Vasco et
al., 2000] to compute sensitivities for inverting amplitude data, I follow a different route.
I use a high-frequency approximation, which involves much less computation and gives
the lowest-order sensitivities [ Vasco et al., 2003]. Such an approach is appropriate for an
initial matching of the amplitude data, following an arrival time inversion.

To invert transient head variations I require the sensitivities, relating perturbations in
properties of the medium to perturbations in the observations. In what follows a quantity
in the unperturbed medium is denoted by a circumflex. Thus, o(x) and AO(X) signify the
phase and amplitude in the background medium. Given a perturbation of flow properties
from their value in the background medium, I wish to compute the associated changes in
the head variations.

In the perturbed medium the hydraulic conductivity is given by

A

K(x)=K(x)+ 6K(x) (18)

where 6 K (x) is the perturbation. Our transient head observations will likewise change

as a result of the perturbation in hydraulic conductivity. I represent this change as a
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perturbation 6 H to the head variation corresponding to the background medium H:

A

H(x,w) = H(x,w)+ §H(x,w). (19)

Given the particular form of the zeroth-order asymptotic solution, equation (17) , I con-

sider perturbations in both phase
o(x) = o(x) + bo(x) (20)

and amplitude

A

A(x) = Ao(x) + 640(x) (21)

resulting from a small change in the background hydraulic conductivity model. I may
write the perturbed transient head variation H(x,w) in terms of the expressions (20) and

(21)
H(x,w) = eV Vi §(0) (Ag + 6 Ag) (22)

where [ suppress the explicit x dependence until the final result. Expanding the exponen-

tial term in 60 in a Taylor series, retaining only terms of first order in the perturbations,
I find that

H(x,w) = e‘m&S(w)Ao — \/Ee_m&S(w)A(ﬁa
eV S(w)6 Ap. (23)

Hence, making use of the fact that the head in the background medium is given by

A

H(x,w) = S(w)e™Vwrtd 4(x) (24)

A

the perturbation 6 H(x,w) = H(x,w) — H(x,w), is given by

SH(x,w) = —Viwe ™™ S(w) Aobo + €7V 5(w)8 Ao (25)
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Note that the w dependence is contained in the source-time function S(w) and in the
exponential phase term. The second term on the right of (25) contains the quantity 6 Ag
which relates a perturbation in flow properties to changes in the amplitude, as calculated
from the transport equation [Vasco et al., 2000]. Computing this quantity requires fairly
involved ray-perturbation [Keller, 1962; Moore, 1991; Norton and Linzer, 1982; Farra and
Madariaga, 1987 ; Neele et al., 1993] or Born [Vasco et al., 2000] approaches. However,
for high-frequency (large w) head variations, the first term on the right-hand-side of (25)
will dominate. Thus, at high frequencies, I obtain a linearized relationship between the

waveform perturbation in the frequency domain and the phase perturbation

— A ~

OH (x,w) = —Viwe™ WU(X)S(@)AO(X)(SU. (26)

Note that, by discarding the second term on the right-hand-side of equation (25) I am
neglecting amplitude perturbations due to scattering. This is a reasonable approximation
when the scale-length of the heterogeneity is much larger than the wavelength of propa-
gating wave. From equation (26) I may deduce the high-frequency sensitivity coefficients

needed for inverting transient head amplitudes. Using equation (24), I may write equation

(26) as
SH(x,w) = —ViwH (x,w)é0. (27)

By inverse Fourier transforming the expression (27) I can derive a time-domain expression

for the sensitivities. First [ write viw as

w = (1w L le_“gn(‘”)f
Vi = (i) ﬁ@ (28)

and I note that [Chapman, 1985]
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where J(t) is the Heaviside or step function which signifies a jump from zero to one at
t = 0, [Bracewell, 1978]. And hence, taking into account the properties of the Fourier
transform, mainly that multiplication by 2w in the frequency domain is equivalent to

taking the time derivative, I arrive at the time-domain expression

Shx, 1) = _% w—% % iz(x,t)] §o. (30)

where * denotes a temporal convolution. If I define the function

F(x,t) = —% w—% % /}(x,t)] (31)

and make use of the expression for the phase perturbation do(x), equation (16), I can

write the amplitude sensitivity as

Sh(x, 1) = F(x, 1) /E(X) [ “8) s g(s) = ¥ 5(5)51((5)] ds. (32)

S(s) K(s)
Summarizing the steps for computing the amplitude sensitivity based upon equations (32)
and (31): First, compute the head variation in the background medium, perhaps with a
numerical simulator. Then compute the phase function for the background medium, &(x)
and the trajectories ¥(x), either by ray tracing or from the arrival time peak of the slope
of the head curve. Convolve the head variation with the function in equation (29) and

differentiate the result. The total sensitivity is then given by equation (32).

2.6. Use of the Logarithm to Ensure Positivity

In an iterative updating scheme the specific storage and/or hydraulic conductivity can
take on negative values if the perturbations are large and negative. This violates the
constraint that the flow properties are always positive, resulting in a non-physical solution.
In this paper I ensure that the flow properties are always positive by formulating the

iterative algorithm in terms of perturbations of the logarithm of specific storage and
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hydraulic conductivity. Using the relationships

1

§log S = —68 (33)
5

§log K = 6K (34)
BN TR

[ can write equation (32) as

oh(x,t) = F(x,1) /E(X) \ K(8) [0log S(s) — dlog K(s)]ds (35)

where £(s) is the value in the background medium.

3. Applications
In this section I apply the iterative inversion technique to both synthetic and experi-
mental head values. One aim of the numerical illustration is to determine how well one

can match the transient head waveforms using the zeroth-order approach.

3.1. Numerical Illustration

A synthetic set of transient head values was generated using the numerical simulator
TOUGH?2 [Pruess et al, 1999]. The simulated transient test involves injection of water
into a borehole intersecting a fracture zone. The properties of the test are intended to
coincide with the general features of the Migration experiment, described below. The
spatial distribution of hydraulic conductivity within the fracture zone is shown in Figure
1. Only hydraulic conductivity is allowed to varying in this test problem. Fluid is injected
into well 9 in the figure and the head response is observed in the seven adjacent wells.
The flow rate is constant after pumping is initiated, modeled by a step function in time.
As noted in the Methodology section, I can calculate an arrival time from the output of a

numerical simulator. Specifically, using the transient head variation from the simulation,
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I can compute the time at which the head is changing most rapidly, the time at which
the slope of the curve is greatest. In Figure 2 I plot the square root of this arrival time on
the simulation grid. In addition, the trajectories, obtained by solving equation (11) using
a Runge-Kutta technique, are shown as curved extending from the injection well to the
observation wells.

An iterative updating scheme is used to invert the transient head values and to estimate
the hydraulic conductivity within the fracture zone model. I start with a uniform con-
ductivity distribution of 2.0 x 107 m? which is successively updated in order to better
match the head arrival times. The head variation corresponding to the reference model
(Figure 1) is indicated by the solid line (Obs) and unfilled squares in Figure 3. The
head variation calculated using the initial uniform conductivity model is denoted by the
dashed line in Figure 3. Initially, the amplitudes of the time-derivative of the transient
head are under-predicted by several orders of magnitude. The sensitivities for the arrival
time inversion are given in equation (15).

For a given step, the equation for the update is formulated as a least squares problem.
That is, for a set of N phase residuals, 60,0 = 1,2,..., N, where the phase is computed
from the arrival time of the peak slope via equation (9), I minimize the sum of the squares
of the residuals [Parker, 1994]. An explicit expression may be obtained by combining
equation (16) and equation (34) and discretizing the integral as a sum over the trajectory

segments (As;) in each grid block of the model
M
50'2' = —Zw//ii[ASil510g [X’l (36)
=1
If T denote the coefficients of equation (36) by

Gil =~V /filASil (37)
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then I can write equation (36) as

M
50'2' = ZG”(Slog [X’l (38)

=1
In this numerical illustration I discretized the two-dimensional fracture zone model into
a 40 by 40 grid of cells, for a total of 1600 grid blocks. In the least-squares approach one

finds the values of é log K; that minimize the sum of the squares of the residuals [Press et

al, 1992]
N M 2
R2 = Z 50'2' — Z G21510g [X’l . (39)
=1 =1

In this case, as in many inverse problems there are more unknown parameters (M =
1600) then there are data (N = 7). Thus, the inverse problem is under-determined and
the solution is non-unique. That is, many solutions will re-produce the set of transient
head residuals. One approach to treating the non-uniqueness introduces penalty terms
which quantify some aspect of the model which one seeks to minimize [Parker, 1994]. For
example, I can require that the model not deviate from a favored prior model, unless it

is necessary to fit the transient head values. Thus, I can also minimize the sum of the

squared deviations from a prior model K;°,7 = 1,2, ..., M, as measured by
M 2
B* =" |log K* — (log K" + § log K )] (40)
=1
where ;"™ is the current model of hydraulic conductivity. Another consideration is

that the observational data cannot resolve small scale features of the model. Thus, one
might only seek to determine the large scale variation in hydraulic conductivity. This
suggests that one penalize solutions with rapid spatial variations in properties, e.g. rough

models. A measure of model roughness is provided by the norm of the spatial gradient
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vector of the model. I write it in the form

2

M M
=1 7=1

where D;; is a matrix which contains the product of a discrete matrix approximation of
the spatial gradient operator. Note that the residual term R? and penalty terms B? and

D? are quadratic forms in the model parameters. Hence, minimizing the quantity
T? = R* + W, B*> + W, D?, (42)

will produce a linear system of equations for the perturbations élog K;,¢ = 1,2,.... M
which can be solved using any linear solver [Press et al., 1992]. Here, W, and W, are
coefficients controlling the relative importance of fitting the data and honoring the penalty
terms. The coefficients Wj, and W, were estimated by trial and error, by running a number
of test inversion and evaluating the fit to the data and the size and roughness of the
resulting model perturbations. Because the system of equations is large and sparse I use
the solver advocated by Paige and Saunders [1982].

Initially, an arrival time inversion is conducted, with 14 model updates to the homo-
geneous starting model. The reduction in the squared error is shown in Figure 4 as a
function of the number of iterations in the updating scheme. The misfit is reduced by
over an order of magnitude after 12 iterations and the misfit reduction seems to have lev-
eled off. The resulting arrival time inversion result is shown in Figure 5, as multipliers to
the logarithm of the hydraulic conductivity. The solution contains the high conductivity
feature extending from the west of well 9 to the northwest, towards wells 5 and 10 (Figure
1). Overall, the arrival times are matched, as indicted in Figure 6, though the waveform

amplitudes are still significantly under-predicted [Figure 7).
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Using the arrival time inversion result as a starting model, I next match the transient

head waveforms using

Shix, 1) = —F(x,1) /E(X) ()8 log K (s)ds, (43)

a form of equation (35) appropriate for variations solely in hydraulic conductivity. As in
the arrival time inversion, I include model norm and roughness penalty terms to mitigate
the non-uniqueness. Equation (43) is written in discrete form and the inverse problem
for 0log K;,7 =1,2,..., M is formulated as a penalized linear least squares problem. The
non-linear problem is solved through iteration, building up a solution via a sequence
of linearized inversions. The misfit reduction as a function of the number of iterations
is shown in Figure 8. The squared error is reduced by approximately two orders of
magnitude in a few iterations. The solution, plotted in Figure 9 as a gray scale plot, is
similar in pattern to Figure 5, the arrival time inversion result. However, the magnitude
of the heterogeneity is larger and there are differences in detail. For example, there is
an extension of high conductivity to the northwest, extending from well 9 to well 11.
The final waveform match is quite good, as shown in Figure 10. The poorest fit is in the
slowly varying component, found after the peak, as might be expected for a high-frequency

asymptotic solution.

3.2. The Migration Experiment at the Grimsel Rock Laboratory, Switzerland
The Migration experiment involved constant withdrawal of water from a fracture zone
[Solexperts, 1989]. The test was conducted at the Swiss National Cooperative for the

Storage of Radioactive Waste (NAGRA) Grimsel Rock Laboratory. The Grimsel facility

is a collection of tunnels and boreholes situated in the interior of a mountain in the Bernese
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Alps [Mauldon et al., 1993]. The geometry of the test is identical to the well pattern of
the synthetic illustration [Figure 1]. The eight wells intersected a zone of fractures, known
as an S zone [Vasco et al., 1997], which consists of a series of subparallel fractures striking
northeast. The feature represents a shear zone that parallels the foliation of the host
rock. Mylonite, cataclastite, and other gouge materials are found within the subfractures,
which form a braided zone about 0.5 m in thickness [ Vasco et al., 1997].

Water was withdrawn from well 9 [Figure 1] at a rate of 340 mL/min for more than
35 days. The hydraulic head was observed in seven surrounding wells which intersected
the fracture zone. Packers were used to isolate the response of the fracture zone and
tests indicated that the fracture zone was not influenced by nearby fractures [Mauldon et
al., 1993]. The response of six wells containing useful data are shown in Figure 11, the
numbering scheme corresponds to that in Figure 1. Because the data are several years
old I did not have exact flow rates and therefore assumed that the injection rate behaved
as a step function with a constant flow rate of 340 mL/min. Thus, there may be some
error due to transient effects in the forward and inverse modeling.

Using the head data I conduct an iterative inversion in order to infer the hydraulic
conductivity in the interwell region. The first step of the inversion procedure involves
estimating and utilizing the arrival time of the head variation at each of the six surrounding
boreholes. To do this I differenced the transient head variation in order to estimate its
slope as a function of time. The estimated values, shown in Figure 12, are somewhat noisy,
perhaps due to the fact that the sampling was not optimal for computing derivatives.

However, the arrival time estimates are adequate for estimating the large scale variations
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in hydraulic conductivity, given the significant variations in travel time to the various
observation wells.

I conducted a penalized, iterative, least-squares inversion by minimizing the quantity
(42), as described in the Numerical Illustration. The starting model consisted of uniform
field of hydraulic conductivity values (2.0x 107" m?). The numerical simulator TOUGH2
[Pruess et al., 1999] was used to compute the head variations and calculate the trajectories
required for the sensitivity computations. The total squared arrival time misfit as a
function of the number of iterative updates is shown in Figure 13. The squared error
decreases by approximately an order of magnitude in twenty iterations. The pattern
of hydraulic conductivity required to match the arrival times is shown in Figure 14. An
elongated, high conductivity feature is found between wells 5 and 9 and low conductivity is
placed between wells 7 and 11. Roughly five orders of magnitude of variation in hydraulic
conductivity is necessary in order to fit the observations. The initial and final fits to
the arrival time data is shown in Figure 15. Generally, the data are matched fairly well,
though the large travel time associated with well 11 still deviates from the observed value.

The next step in the inversion procedure involves matching the transient head wave-
forms. For this task, I start with the hydraulic conductivity model derived from the arrival
time inversion (Figure 14). A penalized, iterative, least squares updating algorithm is used
to find perturbations élog K;,j = 1,2,..., M which improve the fit to the transient head
waveforms. The total squared error as a function of the number of updates is shown
in Figure 16. The total squared error decreases from 3.38 to 2.08, roughly 38%, in ten
iterations before leveling off. There is still significant waveform misfit at the conclusion

of the updating, perhaps due to errors in specifying the flowrate time variation. The final
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conductivity estimates, shown in Figure 17, are similar to the values found by inverting
the arrival times (Figure 14). The waveforms change dramatically during the inversion, as
shown in Figures 18 and 19. Initially, the head derivative pulses are fairly similar in form,
as shown in Figure 18. After arrival time and waveform matching, the head derivatives
are significantly different in shape (Figure 19) and better match the observed variations

(Figure 12).

4. Conclusions

The asymptotic formulation presented in this paper provides an efficient approach to
transient head inversion. The inverse problem partitions into an arrival time matching
problem and an amplitude or waveform matching problem. The inversion of arrival times
was discussed previously by Vasco et al. [2000] and Vasco and Finsterle [2004]. This
work is an extension of the trajectory-based approach to the inversion of transient head
waveforms. The technique, which is similar to one applied in seismic waveform inversion
[Vasco et al., 2003], is a high frequency approximation requiring little more computation
than arrival time inversion. Thus, it is an alternative to the more accurate Born-based
technique described in Vasco et al. [2000] and to ray-perturbation techniques used in
geophysics [Norton and Linzer, 1982; Farra et al., 1987; Moore, 1991, Neele et al., 1993].
As shown above, the methodology can take advantage of an existing numerical simulator to
compute the trajectories and, ultimately, the sensitivities necessary for inverting transient
head data.

The high frequency, trajectory-based waveform sensitivities are essentially re-weighted
arrival time sensitivities. As such, the information provided by waveform sensitivities

overlaps with that provided by arrival time data. However, the sensitivities provide addi-
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tional flexibility in interpreting transient head observations because they do not require
the estimation of an arrival time. Thus, in situations in which it might be difficult to
compute arrival times, it is possible to work directly with the transient head data. For
example, when there is interference between two pumping wells, or possibly due to mul-
tiple propagation paths from a source well to an observation point, as noted by Vasco et
al. [2003]. The high frequency method is useful in deriving an initial model which can
serve as the starting point for a more accurate waveform inversion. As shown in Cheng
et al. [2005], such an initial model can be important due to the increased non-linearity
associated with waveform inversion. The method should prove useful in situations in
which there are large amounts of data, such as multilevel samplers and pressure trans-
ducers [Freyberg, 1986; Butler et al., 1999] and crosswell pressure testing [Hsieh et al.,
1985; Paillet, 1993; Cook, 1995; Masumoto et al., 1995; Karasaki et al., 2000; Yeh and
Liu, 2000; Vesselinov et al., 2001].

The technique is a high frequency method which is appropriate for the initial portion
of the transient head curve. As such, the approach is complementary to techniques which
utilize low frequency information, such as static head changes. By combining data from the
low and high frequency regimes one can estimate both hydraulic conductivity and specific
storage. Such joint inversions will be the subject of future work on the interpretation of

transient head observations.
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Figure 1. Hydraulic conductivity variation used for numerical trajectory computations. The
well locations are denoted by open circles and well numbers. Well 9 serves as the pumping well

for the calculations.
Figure 2. Contour plot of the square root of the arrival time of the peak in the head derivative.

The contour units are in 0.01 days. The computed trajectories, connecting each observation well

to the pumping well (9) are shown as solid lines.

Figure 3. Observed (solid line) and calculated (dashed line) time derivatives of the transient

head variation at each of the observation wells in Figure 1.

Figure 4. Squared misfit to the arrival times as a function of the number of updates in the

iterative inversion algorithm.

Figure 5. Hydraulic conductivity logarithm multipliers resulting from an inversion of the
arrival times. The multipliers are plotted as a gray-scale variation, the open circles denote the

observation wells, the open star indicates the pumping well.

Figure 6. Observed square root of the arrival time (horizontal axis) plotted against the
calculated square root of the arrival time (vertical axis). For a perfect match the points would

like upon the 45° line plotted in the figure.

Figure 7. Observed (solid line) and calculated (dashed line) time derivatives of the transient
head variation at each of the observation wells in Figure 1. The calculated head values are

computed using the result of the arrival time inversion.

Figure 8  Total squared waveform misfit as a function of the number of iterations of the

waveform matching algorithm.

Figure 9. Hydraulic conductivity logarithm multipliers resulting from an inversion of the
transient head waveforms. The multipliers are plotted as a gray-scale variation, the open circles

denote the observation wells, the open star indicates the pumping well.

Figure 10. Observed (solid line) and calculated (dashed line) time derivatives of the transient
head variation at each of the observation wells in Figure 1. The calculated head values are

computed using the result of the transient head waveform inversion.
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Figure 11. Pressure changes for the six observation wells as a function of the square root of

the time. The well numbers correspond to the locations shown in Figure 1.

Figure 12. The time derivative of the transient pressure observations from the Migration (MI)

experiment. The horizontal scale is the square root of time.

Figure 13. Total squared waveform misfit as a function of the number of iterations of the

Migration experiment arrival time inversion algorithm.

Figure 14. Hydraulic conductivity logarithm multipliers resulting from an inversion of the
migration experiment arrival times. The multipliers are plotted as a gray-scale variation, the

open circles denote the observation wells, the open star indicates the pumping well.

Figure 15. Observed square root of the arrival time (horizontal axis) plotted against the
calculated square root of the arrival time (vertical axis) for the Migration experiment. For a

perfect match the points would like upon the 45° line plotted in the figure.

Figure 16. Total squared waveform misfit as a function of the number of iterations of the

Migration experiment waveform inversion algorithm.

Figure 17. Hydraulic conductivity logarithm multipliers resulting from an inversion of the
migration experiment waveform data. The multipliers are plotted as a gray-scale variation, the

open circles denote the observation wells, the open star indicates the pumping well.

Figure 18. Transient head derivatives, calculated using a homogeneous initial model with a

constant hydraulic conductivity of 2x 107 m/s.

Figure 19. Transient head derivatives, calculated using the final waveform inversion conduc-

tivity model (Figure 17). The horizontal axis represents the square root of time.
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