
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
The Capacity of Multihop Relay Wireless Networks

Permalink
https://escholarship.org/uc/item/1vr584qc

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2010-04-12
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1vr584qc
https://escholarship.org
http://www.cdlib.org/


THE CAPACITY OF MULTIHOP RELAY WIRELESS NETWORKS

Mingyue Ji†, Zheng Wang†, Hamid R. Sadjadpour†, and J.J. Garcia-Luna-Aceves‡

Department of Electrical Engineering† and Computer Engineering‡

University of California, Santa Cruz
1156 High Street, Santa Cruz, CA 95064, USA

‡ Palo Alto Research Center (PARC)
3333 Coyote Hill Road, Palo Alto, CA 94304, USA
email: {davidjmy, wzgold, hamid, jj}@soe.ucsc.edu

ABSTRACT

The scaling laws of wireless networks are studied when there
are s(n) source-destination pairs in the network and the rest
of n− s(n) nodes are relays. The transmission strategy is
based on multihop communications which is more practical
in wireless ad hoc networks. We call this network Multi-
hop Relay Wireless Network (MRWN). It is shown that as
the number of sources in the network increases (or equiv-
alently the number of relays decreases), the capacity of
such networks is either dominated by the number of source-
destination pairs or by the number of relays. Both upper and
lower bounds of throughput capacity are derived.

1. INTRODUCTION

The throughput capacity of wireless ad hoc networks is an
important topic that has been studied extensively in the litera-
ture. Most of these stuides [1–5] are based on the assumption
that all the nodes in the network are either source or destina-
tion. However, there is another important group of networks
where some nodes are neither source or destination. These
nodes are considered relays and their task is to facilitate the
transportation of information in the network. These networks
are called relay networks. The capacity of relay networks has
been studied in [6, 7]. The main assumption in these papers
is that there are constant number of source-destination pairs
which is not a function of the total number of nodes in the
network. A more realistic assumption is to assume the num-
ber of source-destination and relays in the network is a func-
tion of the total number of nodes in the network. Further, the
computation of throughput capacity in [6] is based on the as-
sumption of two hop communications where the information
is transmitted directly from sources to the relays and in the
second hop, this information is transmitted to destinations.
In a more realistic network, the information is transmitted
through multiple hops from sources to destinations.

In this paper, we consider relay networks where the num-
ber of source-destination pairs, s(n), is a function of the total
number of the nodes in the network, n. The transportation of
information from sources to destinations occurs through mul-
tiple hops depending on the distance between each source-
destination pairs. We define this network as Multihop Relay
Wireless Network (MRWN). Since most wireless ad hoc net-
works such as military networks utilize multihop communi-
cations, this study is valuable in understanding the through-
put capacity behaviour of these networks.

There are few works focusing on the network model sim-
ilar to this paper. In [8], the authors assume data gathering

traffic where multiple sources send their independent data to
a single destination while the rest of the nodes in the net-
work perform as relays. The throughput capacity is derived
by utilizing a multihop Manhattan routing protocol. In [9],
the clustered network is considered where the density of the
network is not uniform and varies. There are also other nodes
distributed outside the clusters inside the network. All the in-
formation is generated by the clustered nodes and nodes out-
side the clusters perform as relays. In this work, the authors
analyze the effects of the clustered nodes and the size of the
network on the throughput capacity. In our work, all sources,
destinations, and relays are distributed uniformly inside the
network.

The rest of the paper is organized as follows. Section 2
presents assumptions and definitions used for our analysis.
Section 3 provides the main result of this paper. We compute
the upper bound in Section 4. The achievable throughput
for MRWN is described in Section 5. Section 6 discusses the
implications of the results. The paper is concluded in Section
7.

2. NETWORK MODEL

We consider a network with nodes uniformly distributed in
a dense network, where the area of the network is a constant
unit square. The total number of nodes in the network is
n. There are s(n) unicast traffic in the network and the other
n−s(n) nodes perform as relays. The transmission technique
is point-to-point multihop routing scheme with no coopera-
tion among nodes [4]. The transmission range, r(n), is as-
sumed to be the same for all the nodes. A successful com-
munication between two nodes is modeled according to the
protocol model [1], which is defined below.

Definition 2.1 Protocol Model: Node i at location Xi can
successfully transmit to node i(R) at location Xi(R) with rate
W bits/second if |Xi − Xi(R)| ≤ r(n) and for every node k
located at Xk, k �= i that transmits at the same time, |Xk −
Xi(R)| ≥ (1+ Δ)r(n). r(n) is the common transmission range
in the network and Δ is related to the guard zone around the
receiver.

This network model is shown in Fig 1.
The feasible throughput and the order of throughput ca-

pacity are defined as follows.

Definition 2.2 Feasible Throughput:
A throughput of λi(n) bits per second is said to be feasible
for the ith source-destination pair if there is a common trans-
mission range r(n), and a scheme to schedule transmissions
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Figure 1: S and D denote source and destination respectively
and other nodes are relays. The sources send packets to des-
tinations in a multihop fashion. r(n) is the common trans-
mission range.

and there are routes between sources and destinations, such
that source i can transmit to its destination at such rate suc-
cessfully.

Definition 2.3 Order of Throughput Capacity: The total
throughput capacity is said to be of order Θ( f (n)) bits per
second if there exists a constant c and c ′ such that

limn→∞ Pr(λ (n) =
n

∑
i=1

λi(n) = c f (n) is feasible) = 1; and

liminfn→∞ Pr(λ (n) =
n

∑
i=1

λi(n) = c′ f (n) is feasible) < 1.

(1)

3. MAIN RESULTS

This section summarizes the main contributions of this paper.
We first describe the upper bound capacity in MRWN.
• The Upper Bound:

The upper bound of the capacity in MRWN is given by
the following theorem.
Theorem 3.1 In a dense MRWN with uniform distribu-
tion of nodes and s(n) source-destination pairs, the per
source upper bound of the throughput capacity is given
by

Cupper = O

⎛
⎝min

⎧⎨
⎩
√

n
logn

s(n)
,1

⎫⎬
⎭
⎞
⎠ 1. (2)

If the number of source-destination pairs is larger than a

threshold, i.e., s(n) = Ω
(√

n
logn

)
, then the upper bound

capacity is dominated by this value. When s(n) increases
in the network while the number of relays decreases as
n− s(n), then the upper bound capacity decreases mono-
tonically with s(n). The main reason is the fact that there

1Given two functions f and g, we say that: 1) f (n) = O(g(n)) if there
exists a constant c and integer N such that f (n) ≤ cg(n) for n > N. 2)
f (n) = o(g(n)) if limn→∞

f (n)
g(n) = 0. 3) f (n) = Ω(g(n)) if g(n) = O( f (n)).

4) f (n) = ω (g(n)) if g(n) = o( f (n)). 5) f (n) = Θ(g(n)) if f (n) = O(g(n))
and g(n) = O( f (n)).

are not enough relays to facilitate the transportation of
this information between all source-destination pairs and
the lack of relays creates a bottleneck in the network.
On the other hand, when s(n) is smaller than a thresh-

old, i.e., s(n) = O

(√
n

logn

)
, then there are many relays

in the network to transport information for all source-
destination pairs. Under this condition, it is clear that
all source-destination pairs can transmit their informa-
tion in parallel and the upper bound is 1. This result also
indicates that when there is a large number of relays in
the network, simple point-to-point communication does
not utilize the full capability of the network. Under such
conditions, it may be useful to develop cooperative tech-
niques between nodes such that the network is able to
fully take advantage of the relays in the network. No-
tice that when s(n) = Θ(n), the upper bound becomes

Θ
(

1√
n logn

)
which is similar to the result given in [1].

Under this condition, there will be no relay in the net-
work and there are n simultaneous unicast sessions in the
network.

• The lower Bound:
The achievable lower bound of the capacity is given by
the following theorem.
Theorem 3.2 In a dense MRWN with uniform node dis-
tribution, we assume there are s(n) source-destination
pairs. There exits a routing scheme which can lead to the
following achievable throughput capacity for MRWN as

CLower =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ω(1) , s(n) = Θ(1)

Ω
(

loglogs(n)
logs(n)

)
, Ω(1) = s(n) = O(S1)

Ω

⎛
⎝
√

n
logn

s(n)

⎞
⎠ , s(n) = Ω(S1)

(3)

where S1 = Θ
(√

n
logn

logn
loglogn

)
2.

The result indicates that for two regions of s(n) = Θ(1)
and s(n) = Ω(S1), the achievable lower bound is the
same as the upper bound. However, when Ω(1) = s(n) =
O(S1), there exits a gap between the lower and upper
bounds of the capacity. The reason behind this gap is in
the randomness of the node distribution and the random
selection of source-destination pairs.

The results of Theorems 3.1 and 3.2 are shown in Fig-
ure 2.

4. UPPER BOUND

In this section, we prove the upper bound of the capacity for
the MRWN. For the wireless networks, we use the concept of
sparsity cut, which is defined by Liu et al. [10], instead of
min-cut, to take into account the differences between wired
and wireless links.

2Note that this particular representation of S1 is intentional in order to
easier find the common regions between relay traffic and source-destination
traffic in each cell later on.
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Figure 2: The upper and lower bound of the capacity in
MRWN along with capacity of networks with no relays. The
bold line is the upper bound of the capacity and the thin line
is the lower bound of the capacity. In the regions of (1,Θ(1)]
and [Θ(S1),n), the upper and lower bounds are tight. In this

figure, S1 = Θ
(√

n logn
loglogn

)
, S2 = Θ

(√
n

logn

)
.

Definition 4.1 (Sparsity Cut:) A sparsity cut for a random
network is defined as a cut induced by the line segment with
the minimum length that separates the region into two equal
area subregions (see Fig 3). The cut capacity is defined as the
transmission bandwidth W multiplied by the maximum pos-
sible number of simultaneous transmissions across the cut.
This cut capacity is the information rate that the nodes from
one side of the cut can deliver to the nodes at the other side.
The cut length lΓ is defined as the length of the cut line seg-
ment in 2-D space. In another word, sparsity cut can be seen
for random geometric graph (RGG) similar to min-cut con-
cept in graph theory.

From [1], we know that the disks centered at each re-
ceiver are disjoint and have radius of Δr(n)

2 . By assuming the
length of the sparsity cut as lΓ, the following lemma provides
the sparsity cut capacity which was originally proved in [10].

Lemma 4.2 The capacity of the cut Γ for a 2D region has an

upper bound of K1lΓW
r(n) , where K1 = max

{
16

πΔ2 ,
√

3
Δ

}
, and W

is the link rate.

Since the network area is assumed to be 1, we have lΓ =
Θ(1). To guarantee the connectivity [1], r(n) is chosen as

K2

√
logn

n . Thus, the upper bound of the cut capacity is CΓ =

K1W

K2

√
logn

n

= Θ
(√

n
logn

)
.

We use Lemma 4.2 to prove Theorem 3.1 as described
below.

Proof of Theorem 3.1: Lemma 4.2 shows the up-
per bound of the aggregate capacity of the network is

Θ
(√

n
logn

)
. Since there are only s(n) source-destination

pairs in the network, it is clear that this throughput can be
divided between these s(n) source-destination pairs equally.

Therefore as long as s(n) is larger than Θ
(√

n
logn

)
, per

( )
2

r n
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Figure 3: Γ is the sparsity cut which separates the network
into A and B equal areas. The figure demonstrates four dis-
joint disks with radius Δr(n)

2 across the sparsity cut.

source throughput capacity is upper bounded as Θ

(√
n

logn

s(n)

)
.

However, when the number of source-destination pairs is less

than Θ
(√

n
logn

)
, then there are plenty of capacity in the net-

work such that each source can continuously transmit its data
to destination. Under this condition, the per source through-
put capacity is upper bounded as Θ(1).

Note that we consider point-to-point communications for
this analysis. This result implies that when there are many re-
lays in the network with few source-destination pairs, more
advance communication schemes such as cooperative com-
munications are appropriate to take advantage of relays in
the network.

5. LOWER BOUND

In this section, the proof for the achievable lower bound of
the throughput capacity is presented. We first describe the
access scheme in the MRWN, then we present the ”straight
line” routing scheme. At the end, the achievable lower bound
of Theorem 3.2 is proven.

5.1 Access Scheme

We first divide the network into cells whose length is sn =

K3

√
logn

n to guarantee the connectivity between cells in the
the network. The cells are divided into M groups and in each
time slot, only one group of cells are activated as shown in
Fig. 4. The cell separation is such that successful communi-
cation based on protocol model is guaranteed when the cells
in one group are activated simultaneously. The value of M
is derived in the following lemma which was originally pro-
posed in [11].

Lemma 5.1 There exits a positive integer M = K4(1 + Δ)2

such that if we divide the network into M non interfering
groups, then all the cells in a group can communicate every
M time slots.



T

nM s

ns

Figure 4: The shaded area cells have concurrent transmis-

sions. sn = K3

√
logn

n is the length of each cell and M is the
number of the non interference groups.

5.2 Routing Scheme

The routing scheme is ”straight line” routing that was de-
scribed originally in [11]. In this routing scheme, for each
source, we randomly and uniformly pick a location in the
network and choose the closest node to this location as the
destination for the source. The routing trajectory is a straight
line Li from the source node to this destination. Then the
packets traverse from each source to the destination in a mul-
tihop fashion passing through all the cells that cross Li.

5.3 Traffic In Each Cell

5.3.1 preliminaries

The achievable lower bound capacity is directly related to
the number of lines passing through each cell. This achiev-
able rate is proportional to the inverse of the number of lines
passing through each cell.

There are two types of traffics in a cell. One type of traffic
is caused by relays in the cell and the other one is caused
by the sources and destinations in the cell. Unlike the cases
in [1, 12] where the traffic is dominated by the latter traffic,
in MRWN this assumption is not correct. In order to compute
these two traffic types in MRWN, we first present the bin-
ball problem lemma [8] and the Markov’s and Chebyshev’s
inequalities [13] without any proof.

Lemma 5.2 Bin-Ball problem:
Let N(m,n) be the random variable that counts the maxi-

mum number of balls in any bin when we throw m balls inde-
pendently and uniformly at random into n bins. Then

N(m,n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ
(

logn
log n

m

)
, if m <

n
logn

,

Θ

(
logn

log n logn
m

)
, if

n
poly logn

≤ m � n logn,

Θ(logn) , if m = c ·n logn
for some constant c,

Θ
(m

n

)
, if m 	 n logn.

(4)

Lemma 5.3 Markov Inequality:
If X is any random variable and a > 0, then

Pr(|X | ≥ a) ≤ E(|X |)
a

(5)

Lemma 5.4 Chebychev Inequality:
Let X be a random variable with mean and standard devia-

tion of μx and σx respectively. Then

Pr(|X − μx| ≥ αx) ≤ σ2
x

α2
x

(6)

for any any αx > 0.

5.3.2 The Traffic Caused by Sources and Destinations

The traffic generated by the sources and the destinations in a
cell is given by the following theorem.

Theorem 5.5 In MRWN, the maximum number of traffic TSD
caused by the sources and destinations in a cell is

TSD =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ

⎛
⎜⎜⎝ log

(
n

logn

)
log

(
n

logn
s(n)

) logs(n)
loglogs(n)

⎞
⎟⎟⎠ , s(n) = O

(
n

log2 n

)

Θ

⎛
⎜⎜⎜⎜⎝

log
(

n
logn

)

log

(
n

logn log
(

n
logn

)
s(n)

) logs(n)
loglogs(n)

⎞
⎟⎟⎟⎟⎠ , Ω

(
n

log2 n

)

= s(n) = o(n)

Θ
(

log

(
n

logn

)
logs(n)

loglogs(n)

)
, s(n) = Θ(n)

(7)

.

Proof : Let’s denote the number of traffic caused by sources
in each cell as TS and the number of traffic caused by desti-
nations in each cell as TD. Clearly,

TSD ≤ max{TS +TD} ≤ max{TS}+ max{TD} (8)

Therefore, we need to compute both max{TS} and max{TD}.

• Maximum Traffic Caused by Sources in Each Cell:
In each cell, since one source can only contribute to one
flow, the maximum traffic caused by the sources in one
cell is equal to the maximum number of sources in that

cell. Since the side length of each cell is K3

√
logn

n , the to-
tal number of cells in the network is n

K2
3 logn

. We can apply

the classical bin-ball problem by considering sources as
balls and the cells as bins. By using Lemma 5.2, w.h.p.,



the maximum number of sources in each cell is

max{TS} =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ

⎛
⎜⎜⎝ log

(
n

logn

)
log

(
n

logn
s(n)

)
⎞
⎟⎟⎠ , s(n) = O

(
n

log2 n

)

Θ

⎛
⎜⎜⎜⎜⎝

log
(

n
logn

)

log

(
n

logn log
(

n
logn

)
s(n)

)
⎞
⎟⎟⎟⎟⎠ , Ω

(
n

log2 n

)
= s(n) = o(n)

Θ
(

log

(
n

logn

))
, s(n) = Θ(n)

(9)

In this derivation, the range of s(n) is computed by as-
suming log n

logn
∼= logn.

• Maximum Traffic Caused by Destinations in Each Cell:
Due to the randomness of the source-destination selec-
tion, there may exist several sources which have the same
destination. Now, lets fit this problem into the bin-ball
problem again. The balls and bins represent the sources
and the destinations respectively. From Lemma 5.2, it is

clear that there are at most Θ
(

logs(n)
loglogs(n)

)
sources w.h.p.

for each destination3. Note that the maximum number
of destinations in each cell is the same as that of sources
or equivalently max{TS} given by (9). Thus max{TD} is
given by

max{TD} = max{TS} ·Θ
(

logs(n)
loglogs(n)

)
. (10)

Therefore, we arrive at

TSD ≤ max{TS}+ max{TD} ,

= max{TS}+ max{TS}Θ
(

logs(n)
log logs(n)

)
,

= (max{TS}+ 1)Θ
(

logs(n)
loglogs(n)

)
. (11)

By combining (9) and (11), the theorem follows.

5.3.3 Traffic Caused by Relays

In this section, we compute the traffic caused by relays. First,
we introduce a lemma from [11].

Lemma 5.6 In a network with uniform distribution of nodes,
there exists a positive constant K5 such that for every line Li
and cell Cj,

Pr(Line Li intersects Cj) ≤ K5

√
logn

n
(12)

The maximum traffic caused by relays is given by the
following theorem.

3Note that we used the second line in the equation of Lemma 5.2 because
the number of sources and destination is equal to s(n).

Theorem 5.7 In MRWN, the maximum relay traffic TR in a
cell is given by

max{TR} =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(1) , Ω(1) = s(n) = o

(√
n

logn

)

Θ( f (n)) , s(n) = Θ
(√

n
logn

)

Θ

(
s(n)

√
logn

n

)
, s(n) = ω

(√
n

logn

) (13)

where f (n) can be any function of n that fulfills the condition
limn→∞ f (n) = ∞.

proof : In this proof, we divide s(n) into three regions

which are s(n) = Θ(1), ω(1) = s(n) = O

(√
n

logn

)
and

s(n) = ω
(√

n
logn

)
.

• Case of s(n) = Θ(1):
In this region, s(n) is a positive constant. Clearly, the
traffic caused by relays is at most equal to s(n). Thus,
max{TR} = Θ(1).

• Case of ω(1) = s(n) = O

(√
n

logn

)
:

In this region, we will prove that when ω(1) = s(n) =

o

(√
n

logn

)
, then max{TR} = Θ(1). When s(n) =

Θ
(√

n
logn

)
, then max{TR} = Θ( f (n)), where f (n) is

defined above.
We first introduce the following lemma.
Lemma 5.8 In MRWN, when the ”straight line” routing
scheme is used and k is a positive constant, we have

Pr(k lines intersecting any cell C j)

≤
(

s(n)
k

)(
K5

√
logn

n

)k(
1−K5

√
logn

n

)s(n)−k

(14)

This lemma is proved in the Appendix 7.
For s(n) = ω(1) in conjunction with Lemma 5.8 and large
n, we arrive at

Pr(k lines intersecting any cell C j)

≤ lim
s(n)→∞

(
s(n)

k

)(
K5

√
logn

n

)k(
1−K5

√
logn

n

)s(n)−k

,

= lim
s(n)→∞

(
s(n)

k

)⎛⎝K5s(n)
√

logn
n

s(n)

⎞
⎠

k⎛
⎝1−

K5s(n)
√

logn
n

s(n)

⎞
⎠

s(n)−k

,

≤

(
K5s(n)

√
logn

n

)k

k!
exp

(
−K5s(n)

√
logn

n

)
. (15)



The last line of equation is derived by considering the fact
that it is Poisson distribution. Let’s define K6 as the maxi-
mum number of lines passing through each cell, then one
can obtain

Pr(k ≤ K6)

=
K6

∑
k=0

(
K5s(n)

√
logn

n

)k

k!
exp

(
−K5s(n)

√
logn

n

)

(a)
=

∑K6
k=0

(
K5s(n)

√
logn

n

)k

k!

∑∞
i=0

(
K5s(n)

√
logn

n

)i

i!

=
∑∞

k=0

(
K5s(n)

√
logn

n

)k

k! −∑∞
k=K6+1

(
K5s(n)

√
logn

n

)k

k!

∑∞
i=0

(
K5s(n)

√
logn

n

)i

i!

= 1− ∑∞
k=K6+1

(
K5s(n)

√
logn

n

)k

k!

∑∞
i=0

(
K5s(n)

√
logn

n

)i

i!

(b)
≥ 1− ∑∞

k=K6+1

(
K5s(n)

√
logn

n

)k

K6+1

exp

(
K5s(n)

√
logn

n

)

= 1−
1

K6+1

(
K5s(n)

√
logn

n

)K6+1

1−K5s(n)
√

logn
n

exp

(
K5s(n)

√
logn

n

)
(16)

(a) and (b) are due to the Maclaurin series that exp(x) =
∑∞

n=0
xn

n! . Now there are two cases with respect to s(n).

– When s(n) = o

(√
n

logn

)
:

Since K6 is a constant value and as n tends to infinity,
from (16) it can be concluded that

Pr(k ≤ K6) = lim
n→∞

1−
1

K6+1

(
K5s(n)

√
logn

n

)K6+1

1−K5s(n)
√

logn
n

exp

(
K5s(n)

√
logn

n

)
= 1, (17)

which implies that max{TR} ≤ K6.

– When s(n) = Θ
(√

n
logn

)
:

In this case, (16) cannot be used any more. However,
Markov inequality in Lemma (5.3) implies that

Pr(TR ≥ K6) ≤ E(TR)
K6

,

=
E

(
K5s(n)

√
logn

n

)
K6

,

=
K7

K6
, (18)

where K7 is a positive constant. From (18), we can
see that if K6 = f (n) where f (n) is an arbitrary func-
tion of n satisfying limn→∞ f (n) = ∞, then as n goes
to infinity, we can have

Pr(TR ≥ K6) = 0. (19)

Thus max{TR} ≤ f (n).

• Case of s(n) = ω
(√

n
logn

)
:

In this region of s(n), we will show that max{TR} =

O

(
s(n)

√
logn

n

)
.

Let’s assume limn→∞
α

s(n)K5

√
logn

n

= ε where ε is a pos-

itive constant. By utilizing Chebychev inequality in
Lemma 5.4, it can be shown that

Pr

⎛
⎝|TR − s(n)K5

√
logn

n
| ≥
√

αs(n)

√
logn

n

⎞
⎠

≤
s(n)K5

√
logn

n

(
1−K5

√
logn

n

)

αs(n)K5

√
logn

n

=
1−K5

√
logn

n

α
(20)

which goes to zero as n tends to infinity and we used
the fact that the random variable has Poisson distribution.

Thus max{TR} ≤ s(n)K5

√
logn

n . Notice that from this

result we can find that when s(n) = n, TR = O
(√

n logn
)

which is the same as the result in [1]. Note that under this
condition, the traffic is dominated by relays and source or
destination traffic in each cell are simply negligible.

5.4 Achievable Throughput

The total traffic in any cell can be obtained by using the re-
sults shown in Sections 5.3.2 and 5.3.3 which is summarized
here.

Ttotal

≤ max{TSD}+ max{TR}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(1), s(n) = Θ(1)

O

⎛
⎜⎜⎝ log

(
n

logn

)
log

(
n

logn
s(n)

) logs(n)
loglogs(n)

⎞
⎟⎟⎠ , Ω(1) = s(n) = O(S1)

O

(
s(n)

√
logn

n

)
, s(n) = Ω(S1)

(21)



where S1 = Θ
(√

n
logn

logn
log logn

)
. From Lemma 5.1, we can

find that there exists a transmision scheme such that in ev-
ery M = K4 (1+ Δ)2 slots, each cell can get one slot to send
packets at a rate W bits/second. Thus, the rate for each cell
is W

K4(1+Δ)2 . From Eq.(21), each cell can send packets at a

rate equal to Ttotal with probability one as n goes to infinity.
Therefore, the maximum achievable throughput CLower for
each source should satisfy

CLowerTtotal =
W

K4 (1+ Δ)2 . (22)

Hence

CLower =
W

K4(1+Δ)2

Ttotal
≥

W
K4(1+Δ)2

max{TSD}+ max{TR} (23)

Theorem 3.2 follows immediately. Note that in derivation

of second line in Theorem 3.2, we ignore the term
log
(

n
logn

)
log

( n
logn
s(n)

)
because this term is asymptotically equal to Θ(1).

6. DISCUSSION

6.1 Gains from Multihop Relays

From the definition of the network model, we know that the
relays in MRWN only utilize the decode-and-forward oper-
ation to help the source to transmit information without any
cooperation. Even with no cooperation, the network with re-
lays provide order throughput gain compared to the case of
no relays in the network. The capacity of this type of net-
work with no relay, s(n) source-destination pairs and by only
using plain multihop routing scheme is given in [1], which is

1√
s(n) logs(n)

4. Therefore, the gains G from the relays in the

network is given by

G =
CLower

1√
s(n) logs(n)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω
(√

s(n) logs(n)
)

, s(n) = Θ(1)

Ω

(
loglogs(n)

√
s(n)

logs(n)

)
, ω (1) = s(n) = O(S1)

Ω

(√
n

s(n)
logs(n)

logn

)
, s(n) = Ω(S1)

(24)

The first interesting observation from (24) is the fact that by
increasing s(n), the gain G in some regions increases while
in other regions decreases. More specifically, when s(n) =
Ω(S1) then the gain G decreases with the increase of s(n) and
when s(n) = O(S1), G increases with the increase in s(n).

When s(n) = Θ(S1), the gain G obtains the maximum
value which means in order to get the optimal gain from re-
lays, we need to make the traffic caused by the relays be com-
parable to the traffic caused by the sources and destinations

4Note that unlike [1] that considers n source-destination pairs, we assume
s(n) source-destination pairs in order to compare it with our technique

in a cell. The reason of this interesting result is that in the
case that s(n) = Ω(S1), as the increase of s(n), the number
of relays becomes smaller and smaller, so the gain caused
by relays decreases. While in the case that s(n) = O(S1),
s(n) is so small that not all of the relays can work in parallel,
so as the increase of s(n), more and more relays help in the
network for transportation of information, thus the gain ob-
tained from relays increases with the increase of s(n). When
all the relays helps sources in delivery of data and s(n) is not
too large, the gain G achieves its optimal value.

We know that in MRWN, the transmission scheme is plain
multihop routing without any cooperative scheme. One im-
portant question is ”why do we achieve such order gains in
throughput capacity by using simple routing and relays?”
This gain mainly comes from the increase in the number of
concurrent transmissions by increasing the number of relays.
When the total network area is constant and we we increase
the number of relays, the distance between nodes decreases
which can result in decrease in transmission range. By de-
creasing the transmission range, one can increase the number
of concurrent transmissions in the network which is much
larger than the increase in the number of hops due to reduc-
tion in transmission range. Next figure demonstrates the gain
from relays in the networks compared to the case of no relay
utilizing multihop point-to-point communications.

G

( )s n

loglog
log

n n
n

1

1 n1S

( )
log log ( )

log ( )
s n

s n
s n

log ( )
( ) log

n s n
s n n

Figure 5: The gain in MRWN compared to that of networks
with no relays. In both schemes, simple point-to-point com-
munication protocol is utilized.

6.2 Gap Between Lower and Upper Bounds

Another important observation is that, from Fig. 2, there is
a gap between the lower and upper bound of the capacity
for MRWN in the region of s(n) = [1,S1]. In the region of
s(n) = [S1,n], it is clear that the main restriction of the net-
work is from the traffic caused by relays, while in the region
of s(n) = [1,S1], the main bottleneck of the network comes
from the traffic caused by the sources and destinations in
each cell. From the bin-ball problem, we observe that this
gap comes from the combination of the maximum number of
destinations in each cell and the maximum number of sources
for each destination. The upper bound of the traffic in each
cell is caused by these two values. These maximum num-
bers are much larger than the mean number of destinations
in each cell or mean number of sources for each destination.
This large difference is caused by the randomness of the net-



work. However, if we let each cell have the same number of
sources and destinations, and the traffic becomes the permu-
tation traffic which means that each destination only has one
source, then this gap will disappear.

This observation gives us a hint that randomness can lead
to the loss of the capacity in the real network. In cells with
dominant traffic dictate the throughput capacity for that net-
work. In order to achieve higher capacity, we should do more
averaging and remove the randomness.

7. CONCLUSION

In this work, we introduce the Multihop Relay Wireless Net-
works. In this network model, there are only s(n) out of n
nodes generating information and other nodes act as relays.
Additionally, the transmission scheme in this network is mul-
tihop and plain routing rather than any cooperative scheme.
Under this network assumption, we compute upper and lower
bounds of the throughput capacity. From the results, we find
that for different values of source-destination pairs s(n), the
behaviour of the network is different. When s(n) is small, the
constraint of the network is s(n) or equivalently, it is caused
by the traffic from the sources and the destinations. While
s(n) is large, the constraint of the network comes from the
maximum sustainable capacity that relays can transport in
the network or equivalently, it is caused by the relay traffic
in the network. Interestingly, even though we only use the
relays in multihop fashion without any cooperative scheme,
we can still achieve some order gain from the relays, which
comes from the increase in the number of concurrent trans-
missions caused by increasing the number of relays. When
the amount of traffic caused by the relays is comparable to
the traffic load caused by the sources and destinations in a
cell, the gain from the relays can be maximized. Further-
more, from the derivation of the capacity, there exists a gap
between the upper and lower bound of the capacity, which
can be understood as the loss due to the randomness of the
network. By removing the randomness of the network, this
gap can be closed.
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[4] A. Ozgur, O. Lévêque, and D. N.C.Tse, “Hierarchical
cooperation achieves optimal capacity scaling in ad hoc
networks,” IEEE Transactions on Information Theory,
vol. 55, no. 10, pp. 3549–3572, October 2007.

[5] D. Tse and P. Viswanath, Fundamentals of Wireless
Communication. Cambridge University Press, 2004.

[6] M. Gastpar and M. Vetterli, “On the capacity of wire-
less networks: The relay case,” in INFOCOM, June
2002, pp. 1577–1586.

[7] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative
strategies and capacity theorems for relay networks,”
IT, vol. 51, no. 9, pp. 3037–3063, September 2005.

[8] B. Liu, D. Towsley, and A. Swami, “Data gathering ca-
pacity of large scale multihop wireless networks,” in
Mobihoc, 2008.

[9] E. Perevalov and D. S. Rick S.Blum, “Capacity of
clustered ad hoc networks: How large is large,” IEEE
Transactions on Communication, vol. 54, no. 9, pp.
1672–1681, September 2006.

[10] J. Liu, D. Goeckel, and D. Towsley, “The throughput
order of ad hoc networks employing network coding
and broadcasting,” in MILCOM, 2006.

[11] F. Xue and P. R. Kumar, Scaling Laws for Ad Hoc Wire-
less Networks: An Information Theoretic Approach.
NOW Publishers, 2006.

[12] S. R.Kulkarni and P. Viswanath, “A deterministic ap-
proach to throughput scaling in wireless networks,”
IEEE Transactions on Information Theory, vol. 50,
no. 6, pp. 1041–1049, June 2004.

[13] B. Motwani and P. Raghavan, Randomized Algorithms.
Cambridge University Press, 1995.

Appendix

The Proof of Lemma 5.8

We assume that Pr(Line Li intersects Cj) = p. Since the
events that different line Li intersects Cj are independent,
then

Pr(There are k lines intersecting any cell C j)

=
(

s(n)
k

)
(p)k (1− p)s(n)−k (25)

By doing the derivative of (25), one arrives at the maxi-
mum value of (25) given by p = k

s(n) = p∗. when p < p∗,
then this probability increases with increase in p. Let’s as-

sume K5

√
logn

n = p†. Since s(n) = O

(√
n

logn

)
, it is clear

that p∗ ≥ kK6

√
logn

n , where K6 is a positive constant. By

allowing k large enough, we obtain p† ≤ p∗. By using
Lemma 5.6, it is clear that p ≤ p†. Due to monotonic in-
crease of Pr(There are k lines intersecting any cell C j) with
the increase in p, the result follows.




