
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Fraction Interpolation Walking a Farey Tree

Permalink
https://escholarship.org/uc/item/1w38m4z4

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2006

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1w38m4z4
https://escholarship.org
http://www.cdlib.org/

Fraction interpolation walking a Farey tree

Marc Mosko a,∗, J.J. Garcia-Luna-Aceves a,b

a Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
b Computer Engineering Dept., University of California Santa Cruz, CA 95014

Abstract

We present an algorithm to find a proper fraction in simplest reduced terms between
two reduced proper fractions. A proper fraction is a rational number m/n with
m < n and n > 1. A fraction m/n is simpler than p/q if m ≤ p and n ≤ q,
with at least one inequality strict. The algorithm operates by walking a Farey tree
in maximum steps down each branch. Through monte carlo simulation, we find
that the present algorithm finds a simpler interpolation of two fractions than using
the Euclidean-Convergent [1] walk of a Farey tree and terminating at the first
fraction satisfying the bound. Analysis shows that the new algorithms, with very
high probability, will find an interpolation that is simpler than at least one of the
bounds, and thus take less storage space than at least one of the bounds.

Key words: algorithms, graph algorithms, Farey

1 Introduction

In a system based on fractional representation of real numbers [1], it may
at times be necessary to interpolate two bounds. The Split Label Routing
Protocol (SLRP) [2], for instance, computes the mediant of two fractions to
find new node labels in a topological order. One could average the bounds or
compute a mediant [3, p. 14]. Both of these techniques would result in larger
magnitude numerators and denominators, which in an implementation of a
communications protocol could result in field overflow.

∗ Corresponding author.
Email addresses: marc.mosko@parc.com (Marc Mosko), jjgla@parc.com (J.J.

Garcia-Luna-Aceves).

Preprint submitted to Elsevier Science 3 November 2005

2 Fraction Interpolation

The algorithms presented here focus on a method derived from the continued
fraction representation of a rational number. From number theory [3, Theo-
rem 14], it is known that there exists an exact representation of any rational
number as a finite continued fraction. If two rational numbers in a fractional
math system are interpolated via average or mediant, one may reduce the
result by finding the continued fraction representation. The mediant of two
fractions m/n and r/s is (m + r)/(n + s). Based on this observation, we find
a new method with better performance (simpler results) that is not tied to
continued fractions.

The problem considered is to find a proper fraction p/q between two other
extended proper fractions, m/n and r/s, which may include 0/1 and 1/1. For
the purposes of a system with a fixed storage size, we would like to keep the
denominator magnitude small. A fraction m/n is simpler than p/q if n ≤ q and
m ≤ p, with at least one inequality strict [4, p. 166]. The methods described
could be used on an extended Farey tree [5] over all rational numbers.

A Farey series Fn is the set of all reduced proper fractions with a maximum
denominator of n [6, p. 118]. A Farey series may be constructed beginning with
0/1 and 1/1 and then recursively inserting the mediant of adjacent fractions
when the mediant denominator is of order n or less. A Farey tree [4, 5] is the
organization of proper fractions with 0/1 and 1/1 in an ancestry tree. Each
proper fraction has two parents, the simplest parent (dotted line in our figures)
and the closest parent (solid line in our figures) [4] (Lagarias and Tresser [5]
call them old and young parents, respectively). The parents combine via the
mediant to form a single child. The fraction 1/2, for instance, is the mediant of
0/1 and 1/1. The simplest (old) parent is 0/1 and the closest (young) parent
is 1/1. The fraction 3/7 has simplest parent 1/2 and closest parent 2/5.

A child is always adjacent to the closest parent. A reduced fraction m/n
is adjacent to p/q if and only if |mq − pn| = 1 [4, p.166]. Because of the
special structure of the Farey tree, one may walk up and down the tree [6, pp.
119f] [5] [4]. The walk is done using Farey triangles [4], where the vertices
are the parents and the child. A simple walk on the tree for fraction m/n
could have very high time complexity, on the order of O(n). There are ways to
thread the tree and take short cuts to improve the average case performance.
The worst case performance, however, remains O(n).

Matula and Kornstrup [1, p. 102] describe the Euclidean-Convergent (EC)
algorithm. For a given rational p/q, each step i of the EC algorithm finds the
ith convergent Ai and the rational approximation pi/qi for Ai. Algorithm 1
presents the EC algorithm, following [1]. Because p/q is a proper fraction, we

2

Algorithm 1:
EC(p/q)
(1) b−1 = q; p−1 = 1; q−1 = 0
(2) b0 = p; p0 = 0; q0 = 1
(3) i = 1
(4) repeat
(5) ai = bbi−2/bi−1c
(6) bi = bi−2 − ai bi−1

(7) pi = ai pi−1 + pi−2

(8) qi = ai qi−1 + qi−2

(9) i = i + 1
(10) until bi = 0
(11) return pi/qi

Table 1
EC algorithm reducing 24/34

i bi pi qi ai pi/qi

-1 34 1 0 – –

0 24 0 1 0 0

1 10 1 1 1 1

2 4 2 3 2 0.66667

3 2 5 7 2 0.71429

4 0 12 17 2 0.70588

skip the first iteration of the algorithm in [1], which computes a0. It is always
zero for a proper fraction.

Our problem statement does not require exact reduction of the mediant of
m/n and r/s. Any fraction in the bound will do. For example, if we wish
to find 1/3 < p/q < 23/31, one option is the mediant 24/34, which we can
reduce to 12/17. Another acceptable answer is 2/3. This observation leads us
to the EC Simplest middle (EC-SM) algorithm. In Alg. 1, we can replace the
condition in line 10 to terminate on the first pi/qi that satisfies the bounds.

Our Short Cut (SC) algorithm, Alg. 2, does not find convergents, only rational
approximations pi/qi . It does this by finding the maximum Farey triangle
along a branch of the tree. We use it as the basis for the SC Simplest Middle
algorithm. The SC algorithm first computes the mediant p/q, then reduces it
to p′/q′ . SC begins with a guess of p′/q′ = 1/2. If p′/q′ < p/q, it descends right
down the Farey tree to the least fraction x/y ≥ p/q. In the case of equality,
SC returns x/y. SC then iterates with the guess p′/q′ = x/y, and descends to
the left. There is a similar procedure if the initial p′/q′ > p/q. Compared to
the behavior of EC, SC makes a better approximation of p/q at each iteration.
When used in the SC-SM algorithm, it returns simpler fractions than EC-SM.

Algorithm 2 interpolates m/n and p/q given m/n < r/s. A symmetric solution
exists if r/s < m/n. Fig. 2 illustrates variable labels for a descend-left scenario;
a descend-right situation has a symmetric development. To find the reduction
of p/q, which we take as the mediant of m/n and p/q, we begin with a guess
of x/y = 1/2. Node x/y in a Farey tree has simplest parent xs/ys and closest
parent xc/yc. Fig. 2(A) shows the closest parent as the upper-right parent
(URP) and Fig. 2(B) shows it as the upper-left parent (ULP). If x/y = p/q,
we are done. If x/y > p/q, then we must descend left from x/y, otherwise we
descend right.

3

2/3

5/7

7/10

1/2

1/10/1

3/4

12/17

3/4

12/17

2/3

1/10/1

1/2

7/10
5/7

A B13/19

Fig. 1. EC walk for 12/17

x/y

xs/ys xc/yc

t/u

tc/uc

p/q

x/y

xc/yc xs/ys

t/u

tc/uc

p/q

A B

k k

Fig. 2. SC variables for descend-left

In the descend-left case, there is some greatest node t/u ≤ p/q along the left
descent from x/y. If p/q lies on the left descent, then we have the equality
case. Otherwise, t/u will be strictly less than p/q. Once we find t/u, we make
that our next guess for x/y and iterate the search.

The core of the SC algorithm is to solve for k, in the descend-left case, the
simultaneous integer equations

t

u
=

x + k xulp

y + k yulp

≤ p

q
(1)

In the case of descend-left, we want to find the minimum k such that t/u ≤
p/q; for descend-right, we want to find the minimum k such that t/u ≥ p/q.
Rearranging terms to solve for k in terms of the inequality gives

qx + k qxulp ≤ py + k pyulp (2)

b(px− qy)/(pyulp − qxulp)c ≤ k. (3)

In Eq. 3, we only have equality when Eq. 1 exactly equals the reduction of
p/q. Otherwise, k is strictly greater than the left side of Eq. 3. In Alg. 2, we
use this fact to compute the closest parent tc/uc. If it happens to equal p/q, we
terminate with t/u = tc/uc. Otherwise, we compute t/u = (tc+xulp)/(uc+yulp).

To adapt SC to find the simplest proper fraction p/q between m/n < r/s,
we must change the termination computation for SC. The issue is that SC
descends as far down a branch as possible to find the juncture point of the
next turn. For example, in Fig. 1(A), the mediant of 1/2 and 12/17 is 13/19.
The SC algorithm would begin with x/y = 1/2 and step to x/y = 3/4. The
simplest proper fraction between 1/2 and 12/17 is 2/3, not 3/4.

Because each proper fraction occurs exactly once in the Farey tree, which is
built on closest parent paths, there is a unique path to each fraction. This
implies that there is a specific first descent where one or more fractions t/u

4

Algorithm 2:
SC(m/n, r/s)
(1) x/y = 1/2; xc/yc = 1/1;

xs/ys = 0/1
(2) t/u = 1/2;

p/q = (m + r)/(n + s)
(3) while tq − up 6= 0
(4) if xs/ys < xc/yc

(5) xulp/yulp = xs/ys;
xurp/yurp = xc/yc

(6) else
(7) xulp/yulp = xc/yc;

xurp/yurp = xs/ys

(8) if x/y > p/q
(9) descend-left case
(10) k = b(px− qy)/(pys − qxs)c
(11) t/u = (x + kxulp)/(y + kyulp)
(12) xc/yc = t/u
(13) x/y = (t + xulp)/(u + yulp)
(14) xs/ys = (x− xc)/(y − yc)
(15) else
(16) descend-right case
(17) Same as descend-left, but

use xurp/yurp.
(18) return t/u

Algorithm 3:
SC-SM(m/n, r/s)
(1) Initialize x/y, xc/yc, xs/yx, t/u,

p/q
(2) x′/y′ = x/y; type = none;
(3) while mu ≥ nt ∨ tq ≥ pu
(4) Save previous iteration’s

values.
(5) x′/y′ = x/y.
(6) Compute xulp/yulp as before.
(7) if x/y > p/q
(8) type =left
(9) x′par/y′par = xulp/yulp

(10) . . .
(11) else
(12) type = right
(13) x′par/y′par = xurp/yurp

(14) . . .
(15) Compute minimum t/u along

descent.
(16) k′ = 0
(17) if type = left
(18) k′ =⌊

(sx′ − ry′)/(ry′par − sx′par)
⌋

(19) else if type = right
(20) k′ =⌊

(my′ − nx′)/(nx′par −my′par)
⌋

(21) t′/u′ = (x′+k′x′par)/(y′+k′y′par)
(22) return t′/u′

along that descent satisfies m/n < t/u < r/s. The simplest such t/u along
that descent is the simplest rational interpolation.

The SC-SM algorithm proceeds as Alg. 2, except we change the condition of
line 3 to be ¬(m/n < t/u < p/q) and make an additional computation to
find the simplest t/u along the descent that terminated the while loop. Alg. 3
shows the changes to Alg. 2.

The final computation of SC-SM directly solves m/n < p/q < r/s. As in the
SC algorithm, consider a descent-left case as shown in Fig. 2. SC-SM finds the
greatest t/u along the left descent that satisfies m/n < t/u < r/s.

m

n
<

x + kxulp

y + kyulp

<
r

s
(4)

Re-arranging terms yields the pair of inequalities

5

m(y + kyulp) < n(x + kxulp) (5)

s(x + kxulp) < r(y + kyulp). (6)

For the descend-left case, we use the bound from Eq. 6 (Alg. 3, l. 18). For a
descend-right case, we use the bound from Eq. 5 with the URP (Alg. 3, l. 20).

An important question is the denominator magnitude for p/q found between
m/n and r/s. For our case of proper fractions, the numerator is always less
than the denominator. Formulations such as the mediant will always increase
the magnitude of the denominator because q = n + s. Methods such as EC
and SC, which find an exact reduction of the mediant p/q, may still grow the
denominator magnitude when p/q is irreducible. From number theory [7, The-
orem 18.6], we know that the probability that two integers are coprime is
6/π2 ≈ 61% in the limit for large numbers. Thus, it is common that interpola-
tion by reduction of the mediant results in larger magnitude fractions because
no such reduction is possible. For Simplest Middle methods (EC-SM and SC-
SM), one is no longer constrained by finding an exact reduction. The only
time the magnitude of p/q may increase from its bounds is when m/n and r/s
share no common ancestor.

Not sharing a common ancestor is a necessary condition to increase the de-
nominator magnitude in Simplest Middle methods. A sufficient condition is
that m/n and r/s are adjacent in the Farey tree. If m/n and r/s share a com-
mon ancestor, then the simplest p/q between m/n and r/s is that ancestor,
which is simpler than both m/n and p/q. If m/n and r/s do not have a com-
mon ancestor (i.e. one is an ancestor of the other), but they are non-adjacent,
then the simplest p/q between m/n and r/s will be one of those Farey tree
elements that lie between m/n and r/s. p/q will be simpler than one of m/n
or r/s, but not simpler than both of them. Only in the case when m/n and
r/s are adjacent will the simplest fraction p/q between them not be simpler
than either. In such a case p/q must be the mediant.

The probability that m/n and r/s are adjacent is much less than the prob-
ability that p and q are coprime. In a full binary tree of height k, there are
v = 2k+1 − 1 nodes and v − 1 edges (the root does not have an ancestor
edge). Each edge is equivalent to an adjacent pair of nodes. The total num-

ber of unique node pairings is
(

v
2

)
= (v)(v − 1)/2. The probability that a

uniform choosing of two distinct nodes results in a pair of adjacent nodes
is 2 · (v − 1)/ (v)(v − 1)) = 2/(2k+1 − 1). This approaches zero for large k.
The simplest middle method, therefore, with high probability will find a p/q
simpler than at least one of the bounds.

Table 2 summarizes the comparison of the algorithms via Monte Carlo simula-
tion of 100,000 pairs of unsigned 16-bit fractions and unsigned 31-bit fractions.
We use 31-bit integers because the algorithms require a signed operation. Ran-

6

Table 2
Interpolation algorithm performance

avg bits max bits ties wins avg steps max steps

input 14.8 16 – – – –

Mediant 17.33 18 0 0 1 1
EC 16.35 18 2 0 10.0 22
SC 16.35 18 2 0 8.8 10

EC-SM 2.17 12 63042 0 1.7 8
SC-SM 1.79 10 63042 36958 1.2 8

input 28.5 30 – – – –

Mediant 30.3 31 0 0 1 1
EC 29.5 31 0 0 18.7 32
SC 29.5 31 0 0 18.2 32

EC-SM 2.18 12 62770 0 2.74 12
SC-SM 1.79 12 62770 37230 1.74 11

dom generation of the input set only resulted in at most 30-bit numbers. The
input data set is the set of random fractions used for input to the algorithms.
The Mediant data set computes the mediant of each fraction pair without any
reductions. The EC, SC, EC-SM and SC-SM data sets represent each of the
four algorithms. The avgbits column shows the average number of bits required
to store the denominator of the algorithm output. The maxbits column is the
maximum number of storage bits over all denominators. The ties column is
the number of times the algorithm tied for best performance (simplest fraction
output). The wins column is the number of times that the algorithm output
the best (simplest) result. The column avg steps is the average number of
iterations of each algorithm. The column max steps is the maximum number
of iterations of each algorithm. The Mediant algorithm does not iterate, so we
denote it as exactly 1.

For 16-bit integer fractions, the SC-SM algorithm has the best average and
maximum bit performance. 63% of the time it outputs the same solution as
EC-SM, but the remaining 37% of the time it outputs a simpler solution.
EC-SM and SC-SM output the same results 63% of the time. The EC and
SC algorithms also tied for best twice, when the reduced fraction equals 1/2.
SC-SM output a simpler result the remaining 37% of the time. In terms of
the number of steps required by each algorithm, the Mediant, which does not
iterate, always finds a solution in one step. Of the iterative algorithms, SC-
SM requires the fewest iterations. SC-SM and EC-SM have very low average
iterations because for randomly chosen fractions, it is common for one to
be below 1/2 and one to be above 1/2, in which case SC-SM and EC-SM
terminate immediately with the answer 1/2 in one step. Analyzing the input
file, about 1/3 of the cases have both fractions below 1/2, about 1/3 of the

7

cases have both fractions above 1/2, and the remaining 1/3 of cases have
mixed above and below 1/2 (which only take 1 iteration to solve in simplest
middle schemes).

For the 30-bit input file, the results are largely the same. The average stor-
age size did not change. The distribution of above and below 1/2 fractions
remained at 1/3. The maximum storage size for SC-SM increased a few bits,
but its size is still under 40% the size of the mediant.

3 Conclusion

We present several algorithms to find an interpolation of two fractions. The
algorithm Short Cut - Simplest Middle (SC-SM) has the best performance, in
terms of keeping the denominator magnitude small. Monte Carlo simulation
shows that SC-SM requires less storage size and takes fewer steps (except for
the mediant) to interpolate fractions than other methods studied. Analysis
shows that methods that rely on an exact reduction of the mediant p/q increase
the storage size around 61% of the time when p and q are coprime. Methods
that use the Simplest Middle method will, with very high probability, reduce
the storage size compared to at least one of the bound m/n or r/s because
the only case when p/q is not simpler is when m/n and r/s are adjacent.

References

[1] D. W. Matula, P. Kornerup, Foundations of finite precision rational arithmetic,
Computing Supplementum 2 (1980) 85–111.

[2] M. Mosko, J. J. Garcia-Luna-Aceves, Loop-free routing using a dense label set
in wireless networks, in: Proc. ICDCS, 2004.

[3] A. Y. Khinchin, Continued Fractions, 3rd Edition, Dover Publications, Mineola,
NY, 1997.

[4] D. W. Matula, L. D. McFearin, A p × p bit fractional model of binary floating
point divison and extremal rouding cases, Theoretical Computer Science 291 (2)
(2003) 159–82.

[5] J. C. Lagarias, C. P. Tresser, A walk along the branches of the extended farey
tree, IBM Journal of Research and Development 39 (3) (1995) 281–368.

[6] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, 2nd Edition,
Addison-Wesley, Reading, MA, 1989.

[7] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, 5th
Edition, Oxford University Press, Oxford, England, 1979.

8

