
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Static timing analysis in VLSI design

Permalink
https://escholarship.org/uc/item/1ww8c4b4

Author
Zhou, Shuo

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1ww8c4b4
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Static Timing Analysis in VLSI Design

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Shuo Zhou

Committee in charge:

Professor Chung-Kuan Cheng, Chair
Professor Paul M. Chau
Professor Fan Chung Graham
Professor Ronald Graham
Professor Tajana Rosing

2006

.

Copyright

Shuo Zhou, 2006

All rights reserved.

The dissertation of Shuo Zhou is approved, and it is ac-

ceptable in quality and form for publication on microfilm:

Chair

University of California, San Diego

2006

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita, Publications, and Fields of Study xii

Abstract . xiii

I Introduction . 1
I.A Introduction . 1
I.B Spectrum of Chip Analysis . 2
I.C Static Timing Analysis in Design Flow 3
I.D Problem Formulation . 4

I.D.1 The Problem of False Paths 5
I.D.2 The Problem of Multi-cycle Paths 6
I.D.3 The Problem of Hierarchical Timing Analysis 7

I.E Dissertation Organization . 8

II Background and Previous Works . 10
II.A Introduction . 10
II.B Static Timing Analysis Overview 10

II.B.1 Timing Graph . 11
II.B.2 Delay Models . 13
II.B.3 Timing Constraints . 14
II.B.4 Static Timing Analysis Algorithms 15

II.C Previous Works on Timing Analysis Dealing with False Paths and
Multi-cycle Paths . 19

II.C.1 General Rule and Exceptional Rules 19
II.C.2 Timing Analysis with Tags 22
II.C.3 Node Splitting Approach . 24
II.C.4 Multi-clock Domain Analysis with Edge-Masks 27

II.D Abstract Timing Model Reduction 27
II.D.1 Terminology . 27
II.D.2 Timing Model Reduction . 30

iv

III Timing Analysis with False Paths . 32
III.A Introduction . 32
III.B Motivation . 33
III.C Rule Collection Minimization . 34

III.C.1 Main Flow of Rule Collection Minimization 36
III.C.2 Intersection of Prefix Rule Collections with Suffix Rule Sets 37
III.C.3 Bipartite Graph and Biclique Covering 38
III.C.4 Rule Collection Propagation 41
III.C.5 Theoretical Improvement Ratio 43
III.C.6 Correctness . 45

III.D Experimental Results . 47
III.E Acknowledgement . 49

IV Unified Framework Dealing with False Paths and Multi-Cycle Paths . . 50
IV.A Introduction . 50
IV.B Unified Framework Processing False Paths and Multi-cycle Paths . 51

IV.B.1 Subgraph Expansion . 52
IV.B.2 Rule Sets Based Unified Framework 54

IV.C Rule Collection Minimization . 59
IV.C.1 Time Shifting Example . 59
IV.C.2 Main Flow of Rule Collection Minimization 60
IV.C.3 Intersection of Rule Collection with Suffix Rule Set and Bi-

partite Graph . 61
IV.C.4 Time Shifting and Biclique Covering 63
IV.C.5 Rule Collection Propagation 67
IV.C.6 Timing Analysis with Rule Collections 70
IV.C.7 Special Cases of False Subgraph Rules 71

IV.D Experimental Results . 72
IV.E Acknowledgement . 75

V Timing Model Reduction for Hierarchical Timing Analysis 76
V.A Introduction . 76
V.B Biclique-Star Replacement . 78

V.B.1 Replacement Covering All Edge Delays 78
V.B.2 Replacement Allowing Don’t Care Edges 83

V.C Timing Model Reduction Based on Biclique-Star Replacements . . 87
V.C.1 Main Flow of Bipartite Timing Model Reduction 87
V.C.2 Biclique Search in Bipartite Timing Model 89
V.C.3 Edge Reduction Evaluation 93
V.C.4 Iterative Timing Model Reduction 98

V.D Timing Model Reduction with False Paths and Multi-cycle Paths 102
V.E Experimental Results . 103

v

VI Conclusion . 106
VI.A Dissertation Contribution . 106
VI.B Future Works . 107

Bibliography . 109

vi

LIST OF FIGURES

I.1 Spectrum of Chip Analysis . 3
I.2 Static Timing Analysis in the Design Flow 4
I.3 False Path . 5
I.4 Multi-cycle Path . 6
I.5 Hierarchical Timing Analysis . 8

II.1 Timing Graph . 12
II.2 Two-dimensional Table-lookup Device Model 14
II.3 Setup and Hold Time Constraints on Path Delays 15
II.4 Static Timing Analysis Algorithm Computing Arrival Times, Re-

quired Times and Slacks . 20
II.5 False and Multi-cycle Subgraph Rules: False subgraph rule 0 and

multi-cycle subgraph rule 1 . 22
II.6 Prefix Rule Sets . 23
II.7 Rule Set Computation . 25
II.8 Node Splitting . 26
II.9 Bipartite Timing Model and Delay Matrix 29
II.10 Biclique and the Delay Matrix . 30
II.11 Star . 30
II.12 Timing Model Reduction Based on Original Timing Graph 31

III.1 Merging Rule Sets . 35
III.2 Bipartite Graph and Rule Collections at Vertex v 39
III.3 Bipartite Graph and Rule Collections at Vertex u 42
III.4 Rule Collections and New Vertices after Minimization 43
III.5 Theoretical Analysis of Rule Collection Minimization 44

IV.1 Subgraph Expansion: False subgraph of rule 0 is expanded. 53
IV.2 Unified Rule Set Computation . 56
IV.3 Collect Rule Sets Using Time Shifting 60
IV.4 Timing Graph with Two False Subgraph Rules 1 and 2, and a 2-

cycle Subgraph Rule 3 . 62
IV.5 Bipartite Graph at Vertex 4: Each edge represents a non-false path

with hold and setup time attached. 63
IV.6 Bipartite Covering at Vertex 4: Produce a rule collection based on

each biclique. 66
IV.7 Bipartite Covering at Vertex 5 . 68
IV.8 Rule Collections and New Vertices after Minimization: ∅+1s at ver-

tices 6 and 8 are propagated from {1}+1 and {2}+1 at vertex 5,
respectively; ∅+1 at vertex 7 is propagated from {1}+1 and {2}+1

at vertex 5. 69

vii

V.1 Biclique-Star Replacement . 80
V.2 Biclique-Star Replacement Based on Delay Pattern 84
V.3 Biclique-Star Replacement Allowing Don’t Care Edges 88
V.4 Bipartite Timing Model and the Delay Matrix Example 93
V.5 Biclique Expansion Starting from Edge (1,6) in Bipartite Timing

Model (Fig.V.4): Steps 1 to 3. 94
V.6 Biclique Expansion Starting from Edge (1,6) in Bipartite Timing

Model (Fig.V.4) : Steps 4 and 5. 95
V.7 All Bicliques in Bipartite Timing Model (Fig.V.4) 96
V.8 Bipartite Timing Model (Fig.V.4) Reduction : The number of edges

is Reduced from 22 to 16. 97
V.9 Bicliques Crossing Multiple Bipartite Partitions 98
V.10 Vertex Splitting and Star Recover 100
V.11 Hierarchical Blocks Containing False Paths 102
V.12 Reduction Ratios of Replaced Bicliques 105

viii

LIST OF TABLES

III.1 Intersections of Rule Collections and Suffix Rule Sets at Vertex v . 38
III.2 Tag Minimization on 100×100 Mesh 48
III.3 Tag Minimization on Industry Test Cases 49
III.4 Tag Minimization Run Time . 49

IV.1 Intersections of Rule Collections and Suffix Rule Sets at Vertex 4 . 62
IV.2 Intersections of Rule Collections and Suffix Rule Sets at Vertex 5 . 67
IV.3 Tag Minimization on 100×100 Mesh 73
IV.4 Tag Minimization on Industry Test Cases 74
IV.5 Run Time of Static Timing Analysis Using Rule Collection Tags . . 74

V.1 Edge Reduction with Error Bounds 105

ix

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Professor Chung-Kuan

Cheng for his encourage, support, and insightful guidance. I learned from him

not only the knowledge of the field but also the wisdoms of life. I wish to thank

my dissertation committee members, Professor Ronald Graham, Professor Tajana

Simunic Rosing, Professor Fan Chung Graham and Professor Paul Chau for their

time and efforts. I would like to express my appreciation to Mike Hutton at Altera

for technical discussions and his advices and reviews of my papers.

I am grateful to all the graduate students in the UCSD VLSI CAD group

for making the group a fun place to work. Special thanks to Zhengyong Zhu, Bo

Yao, Hongyu Chen, Jianhua Liu, Rui Shi, He Peng, Haikun Zhu, Yuanfang Hu, Yi

Zhu, Ling Zhang, Renshen Wang, and Wanping Zhang. In particular, I would like

to thank Hongyu Chen, Yi Zhu and Yuanfang Hu for technical discussions.

I am deeply thankful to Michael Jackson and Alan Lam at Synopsys, and

Rick Pier at Mentor Graphics. They provided me valuable intern opportunities

and exposed me to a different field that complements my research work in school.

I would like to thank my parents and brother for their support and care.

In particular, I own a lot of thanks to my father for his guidance on my career and

constant encourage ever since my childhood. My final thanks go to my husband,

Shengrong Lin, for his love, care and patience. My Ph.D. study could not have

been completed without him.

The research presented in this dissertation was supported by grants from

the California MICRO program and Altera Corporation. Their support is greatly

acknowledged.

The text of chapter III, in full, is a reprint of the material as it appears in

Proc. Intl. Conf. on Computer-Aided Design 2005, Shuo Zhou, Bo Yao, Hongyu

Chen, Yi Zhu, Chung-Kuan Cheng, Mike Hutton, Truman Collins, Sridhar Srini-

vasan, Nanchi Chou, and Peter Suaris, ”Improving the Efficiency of Static Timing

x

Analysis with False Paths”, ICCAD 2005. The text of chapter IV, in full, is a

reprint of the material as it appears in Proc. Asia and South Pacific Design Au-

tomation Conf. 2006, Shuo Zhou, Bo Yao, Hongyu Chen, Yi Zhu, Chung-Kuan

Cheng, and Mike Hutton, ”Efficient Static Timing Analysis Using a Unified Frame-

work for False Paths and Multi-Cycle Paths”, ASP-DAC 2006. The dissertation

author was the primary researcher and author and the co-authors listed in these

publications directed and supervised the research which forms the basis for this

chapter.

xi

VITA

1976 Born, Beijing, China

1999 B.S. in Computer Science and Technology
Tsinghua University, Beijing, China

2001 M.S. in Computer Science and Technology
Tsinghua University, Beijing, China

2006 Ph.D. in Computer Science
University of California, San Diego

PUBLICATIONS

S. Zhou and B. Yao and H. Chen and Y. Zhu and C.-K. Cheng and M. Hutton,
Efficient Static Timing Analysis Using a Unified Framework for False Paths and
Multi-Cycle Paths, ASP-DAC 2006, pp. 73-78

S. Zhou and B. Yao and H. Chen and Y. Zhu and C.-K. Cheng and M. Hutton
and et al., Improving the efficiency of Static Timing Analysis with False Paths,
ICCAD 2005, pp. 527-531

S. Zhou, B, Yao, J. Liu, C.-K. Cheng, Integrated Algorithmic Logical and Physical
Design of Integer Multiplier, ASP-DAC 2005, pp. 1014- 1017

J. Liu, S. Zhou, H. Zhu, C.-K Cheng,An Algorithmic Approach for Generic Parallel
Adders, ICCAD 2003, pp. 734-740

FIELDS OF STUDY

Major Field: Computer Science
Studies in VLSI CAD.
Professor Chung-Kuan Cheng

xii

ABSTRACT OF THE DISSERTATION

Static Timing Analysis in VLSI Design

by

Shuo Zhou

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Professor Chung-Kuan Cheng, Chair

The increasing complexity of digital designs and the requirement of timing

measurements in various design stages make static timing analysis critical. Each

design stage utilizes static timing analysis to evaluate the system performance, and

then optimizes the design accordingly. An accurate and efficient timing analysis

package is crucial for the success of the whole design process. We studied three

important problems in static timing analysis: false paths, multi-cycle paths, and

hierarchical timing analysis.

Static timing analysis should deal with false paths and multi-cycle paths

to produce accurate timings. Previous published works focused on dealing with

false paths in static timing analysis. There are several approaches, such as labeling

algorithm and node-splitting approach, using tags to label and eliminate false path

timings. A large number of tags need to be created and propagated. Thus, the

efficiency is deteriorated. For hierarchical timing analysis, timing analysis itera-

tively performed on flatten circuits suffers from low efficiency because of increasing

design complexity.

Inspired by the gap between challenges and current sub-optimal solutions,

we proposed three new techniques:

xiii

1. A two-direction propagation is proposed which minimizes the number of

tagged false path timings using a biclique covering approach. We proved

that all the non-false paths are covered and all the false paths are removed.

A polynomial heuristic to perform the biclique covering minimization in min-

imal degree order is also introduced.

2. A framework unified processing false paths and multi-cycle paths is proposed

which expands the tag-based approach for false paths to cover multi-cycle

paths. Following the biclique covering approach for false paths, we devise

time shifting for multi-cycle paths to improve the efficiency. We prove that

the unified framework produces accurate timings.

3. An abstract timing model reduction technique is proposed for hierarchical

timing analysis. We introduce an iterative biclique-star replacement tech-

nique to minimize the abstract timing model, thus improving the efficiency.

Combined the techniques proposed above, we provide an accurate and

efficient static timing analysis package, which can be used in hierarchical design

methodology.

xiv

I Introduction

I.A Introduction

Efficient chip analysis becomes essential in nowadays circuit design due

to the increasing design complexity and rapid technology change. Moore’s law

predicts that the number of transistors integrated on a die would be doubled every

18 to 14 months. With exponential growth in the number of transistor per chip,

the design complexity keeps increasing. Meanwhile, the rapid technology change

shortens product life cycles and makes time-to-market a critical issue. As a result,

efficient chip analysis in early design stage is essential for reducing the number of

design iterations in spite of increasing complexity.

Timing analysis is crucial for high performance digital circuit design as

a part of chip analysis. Traditionally, high-performance integrated circuits are

characterized by the clock frequency at which they operate. The timing analysis

algorithm gauges the ability of a circuit operating at the specified speed. Two

methods are used for timing analysis: dynamic simulation and static timing anal-

ysis. Dynamic simulation methods perform circuit level simulation, which suffers

from high complexity when the circuit is large. Compared with dynamic simula-

tion, static timing analysis is input vector independent. By performing worst case

analysis, the analysis complexity is linear. Therefore, in early design stages static

timing analysis is the widely used mechanism for timing measurement.

Motivated by the gap between challenges of increasing design complexity

and limited accuracy and efficiency, our dissertation focused on three problems

1

2

in static timing analysis: false paths, multi-cycle paths and hierarchical timing

analysis.

The remainder of the chapter is organized as follows. Section I.B intro-

duces the spectrum of chip analysis. Section I.C introduces static timing analysis

in VLSI design flow. Section I.D formulates the problems of false paths, multi-cycle

paths, and hierarchical timing analysis. Section I.E is the dissertation organization.

I.B Spectrum of Chip Analysis

Chip analysis is performed on various levels to verifies circuit function

and measures circuit timing. Fig.I.1 illustrates the analysis spectrum. Ordered

from high-level to low-level, the simulations become more accurate, but they also

become progressively more complex and time consuming.

Function Analysis Function level analysis includes behavior simulation and RTL

simulation. The behavior of circuit module is modeled and tested. Gate

delays and interconnect delays are ignored.

Logic Analysis Logic level analysis is used to verify both circuit functions and

circuit timings. The circuit is extracted into models on various levels. Based

on the models, analysis are performed on various levels including static tim-

ing analysis, gate-level simulation and switch-level simulation. Static timing

analysis algorithms compute circuit timing without considering circuit func-

tions. Gate-level simulator treats Boolean gates as black box which models

both function and delay information. Switch-level simulator models transis-

tors as switches. It is more accurate than gate-level simulation.

Circuit Analysis Circuit level analysis is used to simulate the electrical behav-

ior of circuit based on circuit theories. The simulator requires models of

transistors, describing their nonlinear voltage and current characteristics.

Fabrication Process Simulation Process simulation is used to simulate major

3

process steps in modern semiconductor fabrication technology based on phys-

ical models for diffusion, implantation, oxidation, silicidation and epitaxy.

Figure I.1 Spectrum of Chip Analysis

I.C Static Timing Analysis in Design Flow

Static timing analysis algorithms evaluate circuit timing with linear com-

plexity. Compared with dynamic simulation, static timing analysis is input vector

independent. The circuit is formulated into a directed acyclic graph. On the graph,

the worst case circuit timings, that is, the longest and shortest timing propagation

paths in the circuit, are computed and verified with specified clock cycle. As a

result, the analysis complexity is linear with respect to the number of edges in the

timing graph.

Static timing analysis plays a vital role in nowadays design flow. Besides

longest and shortest timing propagation paths, static timing analysis can be used to

compute arrival times, required arrival times and slacks at all points in the circuit,

which are useful inputs for circuit optimizations. Therefore, each design stage,

from floorplaning, logic synthesis, to placement and routing, utilizes static timing

analysis to evaluate system performance, and then optimizes the design accordingly

(Fig.I.2). For example, in performance-driven placement, the static timer reports

critical paths, i.e., the paths violating the expected timing constraints, and slacks

of non-critical paths to the placement step. Based on the timing reports, the

placement optimization would optimize critical paths while sacrificing non-critical

paths. Most of contemporary EDA companies develop static timing engines, such

4

as Prime Time [2] of Synopsys and incremental common timing engine (CTE) [1]

of Cadence. These timing engines are used across the entire synthesis/place-and-

route flow.

Figure I.2 Static Timing Analysis in the Design Flow

In this scenario, a successful design process relies on the accuracy and

efficiency of static timing analysis. Traditional static timing analysis has limited

accuracy due to the use of simplified delay models. Because the function of the

circuit is not considered, static timing analysis may include false paths, which

are paths not logically existing in the circuit. As a result, the optimization may

wrongly focus on false paths and miss the real critical path. In general, conservative

timing analysis leads to over-design, which increases the product cost. Meanwhile,

as part of the inner loop of the optimization, the efficiency of static timing anal-

ysis becomes crucial. The improvement on accuracy should not deteriorate the

efficiency.

I.D Problem Formulation

This section introduces the problems in static timing analysis we studied.

5

I.D.1 The Problem of False Paths

Static timing analysis should process false paths to produce accurate tim-

ings. A path which never be activated by any input vector is called false path. A

false path example is shown in Fig.I.3. The path B− > 1− > 2− > 3− > X2

is a false path. In order to allow the signal go through the path from input B to

output X2, the side inputs of the gates along the path should have non-dominant

values, i.e., 0 for OR gates and 1 for AND gates. As a result, for OR gate 1

the logic value of input C should be 0, and for AND gate 3, the logic value of

input C to be 1. Since there is a conflict, the signal can not go through path

B− > 1− > 2− > 3− > X2 to reach the output X2 under any input vector. As a

result, the path will never be activated.

Figure I.3 False Path

False path problem has been studied extensively and a number of algo-

rithms have been proposed to detect and eliminate false paths. The false problem

was first addressed in [4], and the NP-completeness of the problem was proved

in [32]. The criterions of false paths were presented in [7, 8, 11–13, 31]. A number

of algorithms have been proposed to detect and eliminate false paths from timing

analysis. The satisfiability based heuristic algorithms were proposed in [7, 8, 22].

Based on the idea of data/control separation on primary inputs proposed in [45],

an approximation scheme was proposed in [29], which controls the size of SAT

problems.

We focused on the problem of timing analysis with specified false paths,

which was first formulated and analyzed in [3].

Timing Analysis with Specified False Paths Problem Given the timing graph

6

of a circuit and a set of false paths, compute signal arrival times, required

times and slacks at every vertex in the timing graph while disregarding false

paths timings.

This problem is useful for several reasons. In many cases, users may know

certain paths in circuits are false. Therefore, we should allow user to specify false

paths and remove false path timing during analysis. Furthermore, based on a loose

criterion defined in [du93], one can prove that delays in circuits will not be un-

derestimate if false paths detected before analysis are removed from consideration

during a series of physical optimization steps. Therefore, for repeatedly invoked

timing analysis, there is no need to re-determine false paths during optimization.

I.D.2 The Problem of Multi-cycle Paths

A multi-cycle path is a path that signals propagate longer than one clock

cycle. Fig.I.4 illustrates a multi-cycle path. The paths from flip flop FF4 to flip

flop FF5 are designed to be two-cycle paths, thus allowing the signals propagate

through the slow logic.

Figure I.4 Multi-cycle Path

There are several published works dealing with multi-cycle paths. In [30],

multi-cycle paths are considered as false paths in sequential circuits and ignored

in minimum cycle computation. Various techniques were presented to detect and

7

eliminate multi-cycle false paths using sequential path tracing [17], state encoding

[19], and non-false multi-cycle paths traversal [35]. Furthermore, multi-cycle false

path elimination is exploited in performance optimization [37,40].

Similarly as the problem of false paths, we can formulate timing analysis

with specified multi-cycle paths as follows.

Timing Analysis with Multi-cycle Paths Given the timing graph of a circuit

and a set of multi-cycle paths, compute signal arrival times, required times

and slacks at every vertex in the timing graph while constraining multi-cycle

paths using multi-cycle required time.

I.D.3 The Problem of Hierarchical Timing Analysis

Hierarchical timing analysis approach can substantially reduce the com-

putational complexity. A design is divided into multiple blocks Fig.I.5.(a) and each

block is characterized into a timing model Fig.I.5.(b). For linear delay model, the

timing calculation can be separated according to the boundary of the partitions.

Assume the timing relations inside each block are fixed. By using pre-calculated

timing models in timing analysis, we hide the details inside the blocks, thus reduc-

ing the analysis complexity.

Previous works on hierarchical timing analysis focused on characterizing

accurate timing model using functional information. Conditional delay matrix was

presented to characterize the timing model with timing propagation conditions [44].

Multiple modes of operation were considered in [46, 47]. The idea of data/control

separation on primary inputs was proposed in [45] to reduce the characterization

complexity. A tighter sensitization criterion was used for false paths elimination

[28].

Our research is mainly about abstract timing model reduction. After

characterizing a functional block into a abstract timing model, the analysis com-

plexity is linear to the number of edges in the abstract timing model for timing

propagation. Therefore, our objective is to minimize the number of edges in the

8

Figure I.5 Hierarchical Timing Analysis

timing model.

Abstract Timing Model Reduction Given a hierarchical block, characterize

an abstract timing model covering the longest and shortest path delays be-

tween any pair of input and output pins of the hierarchical block that mini-

mizes the number of edges in the timing model.

I.E Dissertation Organization

The remainder of the dissertation is organized as follows.

Chapter II reviews static timing analysis process, including the timing

graph, timing constraints, delay models, the arrival and required arrival time

propagation. The previous works on false paths and multi-cycle paths are also

introduced.

In chapter III, we introduce efficient timing analysis dealing with false

paths. We present a two-direction propagation technique which minimizes tagged

false path timings using a biclique covering approach. We prove that the proposed

approach can cover non-false path timings while eliminating false path timings.

Finally, the experimental results are presented.

9

Chapter IV presents a unified framework for false paths and multi-cycle

paths. The framework processes false paths and multi-cycle paths by a tag-based

approach. We follow the biclique covering approach for false paths to minimize the

number of tagged timings. The approach is efficient according to the computational

complexity analysis. In the end, the correctness is proved and the experimental

results are presented.

In chapter V, we talk about abstract timing model reduction. We intro-

duce a biclique-star replacement technique to minimize the number of edges for

timing propagation. Based on the biclique-star replacement technique, an iterative

timing model reduction algorithm is presented. We apply the unified framework

presented in chapter IV to cover false paths and multi-cycle paths in timing model.

Finally, the experimental results are given.

Chapter VI gives conclusions and discusses future works.

II Background and Previous

Works

II.A Introduction

In this chapter, we briefly review static timing analysis algorithms and

introduce previous works on the problems we studied. We first introduce the con-

cepts evolved in static timing analysis including the timing graph, the interconnect

and device model and the setup/hold time constraints. Based on these concepts,

we introduce static timing analysis algorithms of the arrival time, required time

and slack computation. In the end, we review several previous works on timing

analysis with specified false paths and multi-cycle paths, and timing model reduc-

tion for hierarchical timing analysis.

II.B Static Timing Analysis Overview

In static timing analysis, digital circuits are transformed into timing

graph, and then the delays of the paths are verified with the corresponding tim-

ing constraints. We first review the concepts evolved in timing analysis, and then

introduce the static timing analysis algorithm.

10

11

II.B.1 Timing Graph

The timing graph is a directed acyclic graph G = {V,E}, where V is a

set of vertices and E is a set of edges. Each edge (u, v) is an ordered pair from

vertex u to vertex v. The timing graph is acyclic because cyclic sequential paths

are broken into combinational circuit segments align flip flops, and all the segments

are folded into one clock cycle.

The input degree of vertex v, d−(v), is the number of edges ending at v.

The output degree of v, d+(v), is the number of edges starting at v. The primary

input set B = {v|v ∈ V, d−(v) = 0} is the set of primary input vertices. The

primary output set D = {v|v ∈ V, d+(v) = 0} is the set of primary output vertices.

The primary inputs of graph G correspond to (1) primary inputs of the

circuit, (2)outputs of flip flops, and (3) outputs of memories. The primary outputs

of graph G correspond to (1) primary outputs of the circuit, (2) inputs of flip flops,

and (3) inputs of memories. All other vertices correspond to inputs and outputs

of combinational gates in the circuit. For gates in the circuit, there are edges from

inputs to outputs. For nets in the circuit, there are edges from pins as drivers to

pins as fan-outs.

Fig.II.1 illustrates an example of the timing graph. A circuit is shown

in Fig.II.1.(a). In the circuit, there are two primary inputs, i.e., I0 and I1, three

primary outputs, i.e., Q0, Q1, and Q2, and three flip flops, i.e., FF0, FF1 and FF2.

The input and output pins of gates and flip flops are labeled. For example, the

inputs and output of XOR gate A are labeled as 1, 2 and 3. Fig.II.1.(b) illustrates

the timing graph G. Each vertex represents a pin in the circuit with the same

label. For example, vertex 1 represents pin 1. In the timing graph, the primary

input set contains five vertices I0, I1, 11, 13, and 15, i.e., B = {I0, I1, 11, 13, 15}.
The primary output set contains six vertices Q0, Q1, Q2, 10, 12 and 14, i.e.,

D = {Q0, Q1, Q2, 10, 12, 14}. For gates except flip flops, there are edges from

inputs to outputs. For example, there are edges from the inputs to the output of

XOR gate A, i.e., edge (1,3) and (2,3). For nets, there are edges from the vertex

12

as the driver to the vertices as the fanouts. For example, there are edges from the

output of XOR gate A to the input of XOR gate B, i.e., edge (3,8).

Figure II.1 Timing Graph

A path p in graph G is a sequence of vertices and edges. We can represent

the path p by only the edges in the path [21]. Each vertex v separates path p into

a head and a tail. Since G is directed acyclic, all the paths in G are simple. A

path starting from a vertex in the primary input set B is termed a prefix path p−.

A path ending at a vertex in the primary output set D is termed a suffix path p+.

13

A complete path is both a prefix and a suffix path, which starts from a vertex in

the primary input set B, and ends at a vertex in the primary output set D. The

prefix cone P−(v) of a vertex v contains all the prefix paths ending at v. The suffix

cone P+(v) of v contains all the suffix paths starting at v.

In Fig.II.1, the prefix cone of vertex 3, P−(3), contains two prefix paths,

{(I1, 2), (2, 3)} and {(I0, 1), (1, 3)}. The suffix cone of vertex 3, P+(3), contains

two suffix paths, {(3, 8), (8, 9), (9, 12)} and {(3, 14)}. Path {(I0, 1), (1, 3), (3,

8), (8, 9), (9, 12)} is a complete path from vertex I0 to vertex 12.

II.B.2 Delay Models

We use interconnect and device models to approximate the delay of gates

and nets. The delay of a wire segment, i.e., the delay from a driver pin to a fan-out

pin in a net, can be estimated using Elmore model. The delay from an input pin

to an output pin of a gate can be evaluated using various device models. In linear

delay model, the delay is described with explicit expression including two terms: a

fixed intrinsic delay and a propagation delay. The intrinsic delay is independent of

the output load. The propagation delay is the portion contributed by the load [9].

The nonlinear delay model uses two-dimension look-up-table to evaluate

the gate delay [9]. The index of the first dimension is the output load capacitance,

and the index of the second dimension is the input transition times, which is the

time period between the 10% and 90% of the waveform.

Given a pair of load CL and input transition time tin, we find the adjacent

pair of indexes with corresponding capacitances C1, C2, and transition times t1,

t2 that bound CL and tin from both sides, i.e., C1 ≤ CL ≤ C2 and t1 ≤ tin ≤
t2 (Fig.II.2). Let Di, (1 ≤ i ≤ 4) be the delays at the four points, i.e., D1 =

D(C1, t1), D2 = D(C2, t1), D3 = D(C1, t2), D4 = D(C2, t2). Based on Di, (1 ≤
i ≤ 4), we approximate delay D(CL, tin) using interpolation. The details of the

interpolation can be found in [9].

14

Figure II.2 Two-dimensional Table-lookup Device Model

II.B.3 Timing Constraints

We verify the path delays with setup time and hold time constraints [26].

The setup time Ts is the minimum time period before the clocking event during

which the signal must be stable to be validly captured. The hold time Th is the

minimum time period after the clocking event during which the input signal must

be stable to be validly captured (Fig.II.3.(a)). The path delay dp should satisfy

the expressions as follows.

dp < Tperiod − Ts (II.1)

dp > Th, (II.2)

where Tperiod is the clock cycle.

Fig.II.3.(b) illustrates the setup and hold time constraints on path delays.

The signal is launched at the output of flip flop FF1 by clock i and captured at

the input of flip flop FF2 by clock i + 1. The longest path should be shorter than

one clock cycle minus the setup time. The shortest path should be longer than

the hold time. Otherwise, the new value will appear at the input of flip flop FF2

before FF2 has chance to catch the previous value from FF1.

15

Figure II.3 Setup and Hold Time Constraints on Path Delays

II.B.4 Static Timing Analysis Algorithms

There are two categories of timing analysis techniques: path enumeration

techniques and block oriented analysis techniques. Path enumeration starts from

a primary output PO in timing graph G and traces back through G until reaching

a primary input PI. By doing so, the information of the path from PI to PO is

complete. We compute the delays of the gates and nets on the path. As a result,

the delay of the whole path equals the sum of all gate and net delays [25,38,41,43].

Since path enumeration techniques enumerate all the paths in the timing graph,

it suffers from long run time because the number of paths in the circuit grows

exponentially with the size of the circuit. However, by enumerating the paths, it’s

easier to ignore certain paths in circuits which are never activated.

Block oriented analysis performs longest and shortest path search on the

timing graph [20, 24]. It starts from primary inputs PI. At each PI, earliest and

latest signal available times are denoted as signal arrival time Arrmin and Arrmax,

16

respectively. Timing analysis propagates Arrmin and Arrmax to all the vertices in

the timing graph. The earliest and latest arrival times at vertex v are computed

as follows:

Arrmin(v) = min(Arrmin(u) + d(u, v)), (II.3)

Arrmax(v) = max(Arrmax(u) + d(u, v)), (II.4)

where d(u, v) is the delay of input edge (u, v) of v. Note various interconnect

and device models can be used to estimate d(u, v). The Arrival-Time-Propagation

algorithm is as follows.

Algorithm: Arrival-Time-Propagation

1. For each vertex v

If v is primary input add v into To− Compute vertex list;

2. Repeat

(a) Get v from To− Compute list

(b) If v is primary input Arrmin(v) = 0, Arrmax(v) = 0;

(c) else

For each input edge (u, v)

A. Arrmin(v) = min(Arrmin(v), Arrmin(u) + d(u, v));

B. Arrmax(v) = max(Arrmax(v), Arrmax(u) + d(u, v));

(d) For each output edge (v, w)

i. Ready = 1;

ii. For each input edge (x,w) of vertex w

If arrival times of vertex x not available Ready = 0;

iii. If Ready add vertex w into To− Compute list;

iv. Remove v from To− Compute list;

3. Until To− compute list is empty;

17

The algorithm calculates arrival times at all vertices in linear time. The

computation is performed in topological order, i.e., a vertex v is added into a

To − Compute vertex list only when the arrival times of vertices before v are

available. By doing so, the arrival times of each vertex is only updated once.

Thus, the complexity of timing analysis is linear to the number of edges in the

graph. Because the timing graph is acyclic, all the vertices are updated.

The second step involves propagating the required times from primary

outputs in a backward pass. At each primary output PO, based on the setup and

hold times, the latest required time Reqmax and earliest required time Reqmin are

as follows:

Reqmax = Tperiod − Ts, (II.5)

Reqmin = Th, (II.6)

where Ts is setup time, Th is hold time, and Tperiod is the clock cycle.

During backward propagation, Reqmax and Reqmin at vertex v are com-

puted as follows:

Reqmin(v) = max(Reqmin(u)− d(v, u)), (II.7)

Reqmax(v) = min(Reqmax(u)− d(v, u)), (II.8)

where d(v, u) is the delay of output edge (v, u) of v. The Required-Time-Propagation

algorithm is as follows.

Algorithm: Required-Time-Propagation

1. For each vertex v

If v is primary output add v into To− Compute vertex list;

2. Repeat

(a) Get v from To− Compute list

(b) If v is primary output Reqmax = Tperiod − Ts, Reqmin = Th;

18

(c) else

For each output edge (v, u)

A. Reqmin(v) = max(Reqmin(v), Reqmin(u)− d(v, u));

B. Reqmax(v) = min(Reqmax(v), Reqmax(u)− d(v, u)));

(d) For each input edge (w, v)

i. Ready = 1;

ii. For each output edge (w, x) of vertex w

If required times of vertex x not available Ready = 0;

iii. If Ready add vertex w into To− Compute list;

iv. Remove v from To− Compute list;

3. Until To− compute list is empty;

With arrival times and required times, the timing slacks at vertex v are

defined as follows:

slackmin(v) = Arrmin(v)−Reqmin(v) (II.9)

slackmax(v) = Reqmax(v)− Arrmax(v). (II.10)

If slackmax(v) is negative, the path violates the setup constraint II.1. If slackmin(v)

is negative, the path violates the hold constraint II.2.

In Fig.II.4, we use an example to show the timing analysis process.

Fig.II.4.(a) illustrates the timing graph with clock cycle Tperiod = 11, setup time

Ts = 1, and hold time Th = 5. The values attached on edges are delays. Fig.II.4.(b)

illustrates the earliest and latest arrival times Arrmin(v)/Arrmax(v) by every ver-

tex v. For example by vertex 5, Arrmin(5) = min(Arrmin(4)+3, Arrmin(2)+2) = 2

and Arrmax(v) = max(Arrmax(4) + 3, Arrmax(2) + 2) = 4.

Fig.II.4.(c) illustrates the earliest and latest arrival times Reqmin(v)/Reqmax(v)

by every vertex v. For primary output 12, the earliest required time Reqmin(12) =

Th = 5 and the latest required time Reqmax(12) = Tperiod − Ts = 10. For internal

19

vertex 7, the earliest required time Reqmin(7) = max(Reqmin(9)− 1, Reqmin(10)−
2) = 2, and the latest required time Reqmax(7) = min(Reqmax(9)−1, Reqmax(10)−
2) = 5.

Fig.II.4.(d) illustrates the slacks Slackmin(v)/Slackmax(v) by vertices.

For example, by vertex 7, Slackmin(7) = Arrmin(7)−Reqmin(7) = 1 and Slackmax(7)

= Reqmax(7) - Arrmax(7) = -1. Since Slackmax(7) is negative, we trace the negative

slack to get the path violating the setup time constraint, i.e., path {(2,6), (6,7),

(7,10), (10,11), (11,12)}. Similarly, we can trace the negative Slackmins to get the

path violating the hold time constraint, i.e., path {(1,4), (4,9), (9,11), (11,12)}.

II.C Previous Works on Timing Analysis Dealing with False

Paths and Multi-cycle Paths

In this section, we first introduce the exceptional rules on timing graph

for false paths and multi-cycle paths. Then, we reviews previous works dealing

with specified false paths and multi-cycle paths in static timing analysis, i.e., tag-

based approach [3, 16] and node-splitting approach [5, 6], and edge-mask based

approach [23].

II.C.1 General Rule and Exceptional Rules

The general rule on graph G is that the complete path p in G satisfies

the short-path and long-path delay constraints in equation II.2 and II.1, i.e., Th <

dp < Tperiod − Ts, where dp is the path delay, Tperiod is the clock cycle, Th and Ts

are hold and setup time constraints.

An exceptional rule r is represented by a subgraph Gr = {Vr, Er}, a pair

of hold and setup time (hr, sr), and a priority pr.

Hold and Setup Time The hold and setup time correspond to the short-path

and long-path delay constraints. For a k-cycle subgraph, (hr, sr) is the k-

20

Figure II.4 Static Timing Analysis Algorithm Computing Arrival Times, Required

Times and Slacks

21

cycle hold and setup time defined as follows.

hr = (k − 1)× Tperiod + Th (II.11)

sr = k × Tperiod − Ts. (II.12)

For the false subgraph, the hold time and setup time are unbounded, i.e.,

-∞ and +∞, respectively.

Subgraph Subgraph Gr describes a set of false paths or multi-cycle paths gov-

erned by rule r. The input set of rule r, denoted as Br, is a set of vertices

in Gr which have no input edges in Er. The output set of rule r, denoted

as Dr, is a set of vertices in Gr which have no output edges in Er. A path

in Gr starting from a vertex in Br is termed a prefix path in Gr. A path in

Gr ending at a vertex in Dr is termed a suffix path in Gr. If a path in Gr

is both a prefix path and a suffix path in Gr, the path is a complete path

in Gr. A path p is a false path or multi-cycle path governed by rule r if the

intersection of p and Er is a complete path in subgraph Gr. All the paths

governed by rule r are constrained by an inequality hr ≤ delay(p) ≤ sr.

Priority If a path is governed by a set of rules, rule r with the highest priority pr

supersedes others.

Fig.II.5 illustrates a timing graph and two rules represented by a false

subgraph G0 and multi-cycle subgraph G1. The input set of rule 0 contains vertex

3, i.e., B0 = {3}, and the output set of rule 0 contains vertices 6 and 9, i.e.,

D0 = {6, 9}. Path {(1, 3), (3, 5), (5, 6), (6, 8)} is a false path because it contains

a complete path {(3, 5), (5, 6)} in subgraph G0. Another path {(2, 4), (4, 5), (5,

7), (7, 9)} is a 2-cycle path because it belongs to the subgraph G1. Complete path

{(1, 3), (3, 5), (5, 7), (7, 9)} belongs to both G0 and G1. Because the priority of

rule 0, i.e., p0 = 2, is higher than the priority of rule 1, i.e., p1 = 1, the complete

path is a false path.

We formulate rule sets at every vertex and edge in graph G to extract

the rules:

22

Figure II.5 False and Multi-cycle Subgraph Rules: False subgraph rule 0 and multi-

cycle subgraph rule 1

• Starting Rule set F (v) = {r|v ∈ Br} contains the rules starting from vertex

v;

• Ending Rule set T (v) = {r|v ∈ Dr} contains the rules ending at vertex v;

• Edge Rule set I(u, v) = {r|(u, v) ∈ Er} contains the rules covering edge

(u, v).

In Fig.II.5, vertex 3 has starting rule set F (3) = {0}, ending rule set

T (3) = ∅. For vertex 9, starting rule set F (9) = ∅, and ending rule set T (9) =

{0, 1}. The edge rule set of edge (5, 7) contains rules 0 and 1, i.e., I(5, 7) = {0, 1}.

II.C.2 Timing Analysis with Tags

The overall procedure of the tag-based approach is the same as the

Arrival-Time-Propagation process except that tags are computed for false path

timing during the propagation. Each tag is a rule set of false subgraphs. Accord-

ing to the false path information in the tags, false path timings are distinguished

from non-false path timings, and removed after the timing propagation. Rule sets

for prefix paths or suffix paths are defined as follows.

Definition II.C.1 (Prefix and Suffix Rule Sets) Given a prefix path p−, the

23

prefix rule set of p− is R(p−) = {r|p− ∩Er is both a prefix path in Gr and the tail

of p−}. Given a suffix path p+, the suffix rule set of p+ is R(p+) = {r|p+ ∩ Er is

both a suffix path in Gr and the head of p+}.

Conceptually, the prefix or suffix rule set indicates whether the prefix

or suffix path belongs to the false path of a rule. In Fig.II.6, the rule set of

prefix path p−0 = {(2, 3), (3, 4), (4, 5)} contains rule 0 because p−0 is the prefix

of the false path {(2, 3), (3, 4), (4, 5), (5, 7), (7, 9)}. Another prefix path

p−1 = {(2, 3), (3, 4), (4, 5), (5, 6)} exits from the subgraph of rule 0 at vertex 5.

Since vertex 5 is not an ending vertex of rule 0, prefix path p−1 does not belong to

the false path of rule 0. Therefore, rule set R(p−1) does not contain rule 0.

Figure II.6 Prefix Rule Sets

The following algorithm computes the arrival times and the rule sets at

each vertex.

Algorithm Rule-Set-Computation(v)

1. If vertex v is a primary input produce a rule set R = ∅ at vertex v;

2. else

For each edge (u, v)

For each rule set R at vertex u

(a) R′ = (R ∪ F (u)) ∩ I(u, v);

(b) if(R′ ∩ T (v) = ∅)

i. Arrmax(v, R′) = max(Arrmax(v, R′), Arrmax(u,R) + d(u, v));

ii. Arrmin(v,R′) = min(Arrmin(v, R′), Arrmin(u,R) + d(u, v));

24

Fig.II.7.(a) illustrates timing graph G with two false subgraph rules 0 and

1. In Fig.II.7.(b), we compute the rule sets in a forward propagation. For example,

the rule sets at several vertices are as follows:

• At the primary input vertices 1 and 2, the rule sets are ∅.

• At vertex 4, we propagate the rule set ∅ of vertex 2 through the edge (2,

4) using the equation R′ = (∅ ∪ F (2)) ∩ I(2, 4), where starting rule set

F (2) = {1}, and edge rule set I(2, 4) = {1}. We intersect the produced

rule set R′ = {1} with ending rule set T (4), where T (4) = ∅. Because the

intersection is ∅, we compute the arrival time Arrt(4, R
′), where R′ = {1}.

• At vertex 9, we first produce three rule sets {0}, {1}, and ∅ by propagating

the rule sets at vertex 8. Because ending rule set T (9) = {0, 1}, intersection

{0} ∩ T (9) is {0}, which means vertex 9 is the ending vertex of the false

path in rule 0. Therefore, we remove the rule set {0} and the false path

arrival time Arrt(9, {0}). Similarly rule set {1} and the false path arrival

time Arrt(9, {1}) is also removed. Finally only the non-false path arrival

time Arrt(9,∅) is produced at vertex 9.

The correctness of the algorithm is ensured by theorem II.C.1.

Theorem II.C.1 After a forward Rule-Set-Computation, at each vertex v, the

arrival times labelled by prefix rule sets cover the arrival times of prefix paths

in prefix cone P−(v). After a backward Rule-Set-Computation, the arrival times

labelled by suffix rule sets cover the arrival times of suffix paths in suffix cone

P+(v).

II.C.3 Node Splitting Approach

The node-splitting approach follows previous works [27, 39] to remove

false paths from the timing graph using node splitting and edge removal [5,6]. On

the false path, it splits the vertices with multiple input edges in topological order

25

Figure II.7 Rule Set Computation

until arriving at the last vertex with multiple output edges. Then the edges only

belonging to false paths are removed.

In Fig.II.8.(a), there is a timing graph including two false paths p1 and

p2. Fig.II.8.(b), illustrates the node splitting in topological order from the primary

inputs to the primary outputs.

• Vertex 5 is the first vertex with multiple input edges, which is split into two

vertices 5 and 5′.

• Vertex 7 has three input edges, (5, 7), (5′,7), and (6, 7), after vertex 5 is

split. Therefore, vertex 7 is split into three new vertices 7, 7′, and 7′′.

• Finally vertex 8 is split into three new vertices. The edges (8, 9) and (8′, 9)

are removed, because they only belong to false paths.

Node splitting can also be performed in backward direction, which splits

26

Figure II.8 Node Splitting

the vertices with multiple output edges. Fig.II.8 illustrates node splitting proceed-

ing from primary outputs to primary inputs.

Conceptually, each newly created vertex corresponds to a rule set. For

example, on the timing graph in Fig.II.8.(a), we consider false path p1 as rule 0,

false path p2 as rule 1, and compute the rule sets. At vertex 5, rule sets are {0}
and {1} which corresponds to new vertices 5 and 5′ in Fig II.8.(b), respectively.

The node splitting approach identifies the optimal set of vertices for split-

ting. For example in Fig.II.8.(c), vertex 5 is not split because the false paths in

rule 0 and rule 1 share the common suffix path {(5, 7), (7, 8), (8, 9)} starting at

27

vertex 5. As a result, removing the edge (5, 7) can remove both two false paths.

II.C.4 Multi-clock Domain Analysis with Edge-Masks

An edge-mask data structure is proposed to deal with specified false paths

and multi-cycle paths in timing analysis [23]. The false paths and multi-cycle

paths are seen to function as multi-clock domain cases. Each edge in the netlist

is attached an edge-mask, which represents the reachability between multi-clock

domains in the graph. By using edge-masks to filter standard analysis traversals

in each abstract clock domain, unnecessary computation time is reduced.

II.D Abstract Timing Model Reduction

In this section, we first introduce the terminologies including the abstract

timing model of a hierarchical block, the bipartite timing model and the delay

matrix of a bipartite timing model. Then, we introduce previous works on timing

model reduction.

II.D.1 Terminology

The timing graph of a hierarchical block H is a weighted graph, denoted as

GH . The weight of each edge (i, j), denoted as edge delay di,j, is the corresponding

gate or interconnect delay estimated based on the linear delay model. The delay of

a path from input i to output j, denoted as dpi,j
, is the total delay of edges on the

path. The shortest path delay from input i to output j in GH , denoted as dmin
Hi,j

, is

the minimum of all path delays dpi,j
in GH . The longest path delay from input i

to output j, denoted as dmax
Hi,j

, is the maximum of all path delays dpi,j
in GH .

The timing model of a hierarchical block H is a weighted graph GM ,

which has the same input set B and output set D as timing graph GH . The

shortest and longest path delays from input i to output j in GM are equal to dmin
Hi,j

and dmax
Hi,j

in GH . Note the internal vertices and edges in timing model GM may or

28

may not be the same as those in timing graph GH . A bipartite maximum delay

model, denoted as Gmax
M , is a timing model, in which any vertex is either an input

or an output. On each edge (i, j) in Gmax
M the attached edge delay di,j is equal to

the longest path delay dmax
Hi,j

. A bipartite minimum delay model, denoted as Gmin
M ,

is a timing model, in which any vertex is either an input or an output. On each

edge (i, j) in Gmin
M the attached edge delay di,j is equal to the shortest path delay

dmin
Hi,j

.

Fig.II.9.(a) illustrates a timing graph GH of a hierarchical block and the

corresponding bipartite maximum delay model Gmax
M . The input set contains three

inputs, i.e., B = {1, 2, 3}. The output set contains three outputs, i.e., D =

{9, 10, 11}. On edges between connected inputs and outputs the longest path

delays are attached. For example, the longest path from input 1 to output 10 is

{(1, 4), (4, 5), (5, 7), (7, 8), (8, 10)} which has delay 7. Thus, the delay attached on

edge (1,10) is 7.

We formulate a delay matrix M(Gmax
M) based on the edge delays in bi-

partite maximum delay model Gmax
M . The number of rows, denoted as r, is the

number of inputs, i.e., r = |B|. The number of columns, denoted as c, is the

number of outputs, c = |D|. The element on the ith row the jth column, denoted

as mi,j, is (1) edge delay di,j if edge (i, j) ∈ E, or (2) ∞ if input i disconnects

with output j. The input delay vector of input i, denoted as Ii, is a set of ele-

ments on the ith row in matrix M , i.e., Ii = {mi,j|j ∈ [1..c]}. The output delay

vector of output j, denoted as Oj, is a set of elements on the jth column in matrix

M ,i.e., Oj = {mi,j|i ∈ [1..r]}. Similarly, we can formulate the delay matrix for the

bipartite minimum delay model.

The delay matrix of the bipartite maximum delay model in Fig.II.9.(a) is

shown in Fig.II.9.(b). Each row in the matrix contains the edge delays from one

input to all the connected outputs. For example, the first row contains edge delays

from input 1 to outputs 9, 10, and 11, i.e., d1,9 = 3, d1,10 = 7 and d1,11 = 8. If the

input is disconnected with an output, the delay is set to ∞. For example, input 2

29

is disconnected with output 9, thus, the element on the 2nd row the 1st column is

set to ∞.

Figure II.9 Bipartite Timing Model and Delay Matrix

A biclique is a complete bipartite graph Gc = {Bc, Dc, Ec}, i.e., ∀ input i

in input set Bc is connected with ∀ output j in output set Dc, i.e., Ec = {(i, j)|i ∈
Bc, j ∈ Dc}. Fig.II.10 illustrates a biclique and the corresponding delay matrix.

Each pair of input and output is connected. In the delay matrix, there is no

disconnected symbol ∞.

A star with a center vertex s is a weighted graph Gs = {Bs, Ds, s, Es},
where Bs is the input set, Ds is the output set, s is the vertex at the center, and Es

is a set of edges from inputs to s and from s to outputs. Each edge has a weight.

The weights of edges (i, s) and (s, j) are denoted as di,s and ds,j, respectively.

Fig.II.11 illustrates a star. The vertex s at the center connects with all

inputs and outputs. On each edge, a weight is attached, i.e., edge delay di,s or ds,j.

For example, edge delay d1,s of edge (1, s) is 1.

30

Figure II.10 Biclique and the Delay Matrix

Figure II.11 Star

II.D.2 Timing Model Reduction

The previous published works on timing model reduction can be catego-

rized into two groups: (1) reducing edges in timing graph GH , and (2) constructing

minimized model based on bipartite timing model GM .

The reduction based on GH starts from the original timing graph GH of

the block, and iteratively reduces the number of edges in the graph using graph

transformations ([33,42]):

1. Simplify a path into one edge and attach the path delay on the edge (Fig.II.12.(a));

2. Merge edges sharing common input and output into one edge and attach the

dominant delay on the edge (Fig.II.12.(b)).

The transformation is a greedy heuristic, which may not always produce the opti-

mal solution. For example in Fig.II.12.(c), the heuristic fails to get the optimal.

31

Another category of methods tried to represent delay metrics into an ab-

stract timing model and minimized the number edges in the abstract timing model.

An optimal realization of a distance matrix problem is formulated as constructing

a graph that preserves shortest-path distances while minimizing the total sum of

edge weights [10,18]. In [14], the problem is studied on the case in which a collec-

tion of weighted graphs for compression are given. For the graph with unit edge

weights, it’s shown that the best compression can be achieved by replacing cliques

by stars (Fig.II.12.(c)). The un-weighted bipartite graph compression is studied

in [15]. The hardness of the graph compression problem is studied for the unit

edge weights case [14].

Figure II.12 Timing Model Reduction Based on Original Timing Graph

III Timing Analysis with False

Paths

III.A Introduction

In this chapter, we introduce a two-direction propagation approach to

improve the efficiency of timing analysis with false paths. The tagged timings for

false paths are collected when timing information can be shared. By doing so,

we reduce the number tagged timings for timing propagation, thus improving the

efficiency.

When false paths are dealt with in timing analysis, a large number of

tags or vertices need to be created and propagated, thus, the analysis efficiency is

deteriorated. Although there are techniques which reduce the number of timings

with tags, the reduction depends on the timing values [16]. Because the timing

values may change during the circuit optimization, the reduction is performed

together with timing analysis, which induces a large run time penalty in the whole

optimization process. The node splitting approach has the ability to identify the

optimal set of nodes for splitting. However, it’s not clear how to minimize the

number of newly created tags when one vertex is split.

We propose a two-direction propagation technique which minimizes tags

created at each vertex through a biclique covering approach. We follow the algo-

rithm in [3] to compute prefix and suffix rule sets in two directions. By matching

the prefix and suffix rule sets, we can achieve all non-false paths through the ver-

32

33

tex. We cover the non-false paths using a biclique covering approach, and collect

the prefix rule sets into rule collections. By doing so, the number of tagged false

path timings is reduced. A formal proof ensures that we can propagate and keep

merging the rule collections at every vertex in topological order, such that all the

non-false paths are covered and all the false paths are removed.

Since computing the minimum biclique is NP complete [34, 36], we use

a polynomial heuristic to perform the biclique covering minimization in minimal

degree order. Because the minimization does not depend on the values of the

timings, but depends on the false path specifications, the minimization is only

incurred once as a preprocessing step. However, the benefit occurs repeatedly

when timing analysis is called during the optimization.

We follow the experiments in [3] to test the proposed approach on the

timing graph of a mesh. We also perform experiments on a set of industry test

cases. For the industry test cases, comparing with the number of prefix rule sets,

the number of the tags is reduced by 99%. Comparing with the node splitting

approach, the improvement ratio is up to 48%. The run time of the minimization

is only 380 seconds for the case with 533,224 nets.

The remainder of this paper is organized as follows. In section III.B, we

use an example to explain the motivation of minimizing the number of tags. Sec-

tion III.C introduces the two-direction propagation flow and the biclique covering

approach. We prove that the algorithm can remove the false paths with minimized

number of tags. The experimental results are presented in Section III.D.

III.B Motivation

We observe the tag-based algorithms and find out that the number of

tags can be reduced when the timing information can be shared. For example in

Fig.III.1.(a), there are three rules: (1) rule 0 containing false paths from vertex 1,

through vertices v and u, to vertices 5 and 6, (2) rule 1 containing a false path

34

from vertex 2, through vertices v and u, to vertex 6, and (3) rule 2 containing false

paths from vertex 3, through vertices v and u, to vertices 6 and 7.

Suppose we follow the tag-based approach in [3] to scan from inputs

toward outputs as shown in Fig.III.1.(b). We need four rule sets {0}, {1}, {2},
and ∅ at vertex v to represent 4 distinct arrival times from inputs. If we follow

the node splitting approach in [6], we need to split vertex v into four vertices v0,

v1, v2, and v3. Fig.III.1 (c) illustrates the non-false paths after node splitting

and edge removal. We can merge vertex v1 with vertices v0 and v2 as shown in

Fig.III.1.(d) and still cover the time information of non-false paths from vertex 2

because the timing information on the common tails can be shared, i.e., 1) the

non-false paths from vertex 2 to vertices 7 and 8 share common tails {(v,u),(u,5)}
and {(v,u),(u,8)} with the non-false path from vertex 1 to vertices 7 and 8, and

2) the non-false paths from vertices 2 to vertices 5 and 8 share common tails

{(v,u),(u,7)} and {(v,u),(u,8)} with the non-false paths from vertex 3 to vertices

5 and 8. Therefore, we reduce the number of split vertices from 4 to 3.

The example indicates some hints for the rule set minimization:

• The timing information labeled by rule sets can be shared when non-false

paths contain common prefix or suffix paths.

• The rule set minimization requires information of complete non-false paths,

while the forward sweeping or backward sweeping only provides information

of prefix or suffix paths.

III.C Rule Collection Minimization

We propose a two-direction propagation to minimize the number of tags.

We firstly use a backward propagation to produce rule sets for required arrival

times. Then, we perform another forward propagation to produce rule sets for

arrival times. When the timing information can be shared, we use a biclique

covering approach to collect prefix rule sets into rule collections. Each distinct

35

Figure III.1 Merging Rule Sets

36

arrival time needs a tag, which is a rule collection. Therefore, by minimizing the

rule collections, we can reduce the number of tags of distinct arrival times, thus

improving the efficiency of timing analysis.

In this section, we first define the rule collection and give the rule col-

lection minimization algorithm. Then, we prove that the algorithm can remove

the false paths without removing the non-false paths. The definition of the rule

collection is as follows.

Definition III.C.1 (Rule Collection) A rule collection at vertex v is a set of

rule sets of prefix paths which ends at v, i.e. <(v) ⊆ {R(p−)|p− ∈ P−(v)}, where

P−(v) is the prefix cone at v.

III.C.1 Main Flow of Rule Collection Minimization

The overall minimization flow is a two-direction propagation: a backward

sweeping to compute suffix rule sets and another forward sweeping to minimize

the rule collections. At each vertex, we compare the prefix and suffix rule sets to

construct the non-false paths. After the construction, we use a biclique covering

approach to cover non-false path timing with rule collections. Since each rule

collection is the tag of a distinct arrival time, the primary object is to minimize

the number of rule collections.

Main flow

1. Produce suffix rule sets by a backward sweeping;

2. For each vertex v in topological order

(a) If vertex v is a primary inputs then produce an initial rule collection

{∅ };

(b) else

i. for each edge (u, v)

for each <(u) Rule-Collection-Propagation (<(u), u, v);

37

ii. Rule-Collection-Minimization(v);

The Rule-Collection-Propagation (<(u), u, v) of step 2).b).i) computes

the rule collections at vertex v by propagating the rule collections of vertex u,

where edge (u, v) is an input of v. We will introduce the details of the routine in

section III.C.4.

The Rule-Collection-Minimization(v) of step 2).b).ii) minimizes the rule

collection in three steps: (1) performing intersections between rule collections and

suffix rule sets, (2) constructing bipartite graph based on intersection results, and

(3) covering edges in the bipartite graph with minimized number of bicliques.

These three steps are introduced in section III.C.2 and III.C.3.

Algorithm: Rule-Collection-Minimization(v)

1. For each rule collection <(v) and suffix rule set R(p+)

Produce Intersect(<(v), R(p+)) = {R(p−)i ∩R(p+)|R(p−)i ∈ <(v)};

2. Construct bipartite(v) based on the intersections;

3. Biclique-Covering(v);

III.C.2 Intersection of Prefix Rule Collections with Suffix Rule Sets

We match prefix and suffix rule sets to achieve non-false paths through

each vertex. Theorem II.C.1 ensures that the prefix and suffix rule sets at each

vertex cover all prefix and suffix paths in the prefix and suffix cone. As a result, by

matching false path information in the prefix and suffix rule sets, we can achieve

all non-false paths while removing false paths.

We use Rule-Set-Computation algorithm to compute the suffix rule sets

at every vertex v [3]. For the case in Fig.III.1, the rule collections and suffix rule

sets at vertex v are in the first column and first row of Table III.1. The suffix

rule sets, {0}, {0, 1, 2}, {2}, and ∅ correspond to the suffix paths, {(v, u), (u,5)},
{(v, u), (u,6)}, {(v, u), (u,7)}, and {(v, u), (u,8)}. The prefix rule sets, {0}, {1},

38

{2}, and ∅ correspond to the prefix paths, {(1,v)}, {(2,v)}, {(3,v)}, and {(4,v)}.
Without minimization, each prefix rule set produces a rule collection.

Table III.1 Intersections of Rule Collections and Suffix Rule Sets at Vertex v
R(p+)

{0} {0,1,2} {2} ∅
{{0}} {{0}} {{0}} {∅} {∅}

{R(p−)} {{1}} {∅} {{1}} {∅} {∅}
{{2}} {∅} {{2}} {{2}} {∅}
{∅} {∅} {∅} {∅} {∅}

We intersect the prefix and suffix rule sets to gather the non-false paths

through the vertex. Conceptually, the R(p−) ∩ R(p+) = ∅ means that the con-

catenation of the prefix path p− and the suffix path p+ is a non-false path.

Definition III.C.2 (Intersection of rule collection and rule set) The in-

tersection between a rule collection <(v) and a suffix rule set R(p+) intersects

each prefix rule set in <(v) with R(p+), i.e., Intersect(<(v), R(p+)) = {R(p−)i ∩
R(p+)|R(p−)i ∈ <(v)}.

Table III.1 shows the intersections at vertex v. For example, the second

row contains the intersections of the rule collection {R(p−)} = {{0}} with various

suffix rule sets. The intersection with R(p+) = {0, 1, 2} is {{0}}, which means the

concatenation is a false path governed by rule 0. The intersection with R(p+) = {2}
is {∅}, which means the concatenation is a non-false path.

III.C.3 Bipartite Graph and Biclique Covering

Based on the intersections, we construct a bipartite graph to cover the

non-false paths through the vertex, and produce minimum biclique covering on the

bipartite graph. By doing so, we can cover non-false paths with minimized number

of rule collection tags.

The bipartite graph is constructed in two steps as follows.

• Add the prefix and suffix rule sets into the bipartite graph.

39

• If Intersection(<(v), R(p+)) only contains ∅, add an edge from <(v) to

R(p+) to represent the non-false path.

Fig.III.2.(a) illustrates the bipartite graph at vertex v based on the inter-

sections in Table III.1. There is an edge from {R(p−)} = {{0}} to R(p+) = {2}
because the intersection {0} ∩ {2} is ∅. The edge represents the concatenation of

prefix path {(1, v)} and suffix path {(v, u), (u, 7)}, which is a non-false path.

Figure III.2 Bipartite Graph and Rule Collections at Vertex v

We cover the edges in the bipartite graph by a set of bicliques, and collect

the prefix rule sets in each biclique into one rule collection. By doing so, we

cover the complete paths through the vertex by rule collections, thus reducing the

number of the tags. The biclique covering algorithm is as follows.

40

Algorithm: Biclique-Covering(v)

1. Initialize the biclique set as B = ∅;

2. For each rule collection <(v) in minimum degree order

(a) Enlarge biclique b in the biclique set B to cover edges {(<(v), R(p+)i)}
from <(v), where R(p+)i ∈ b;

(b) If there are edges from <(v) not covered

i. Produce a new biclique containing <(v), the edges {(<(v), R(p+)i)}s
from <(v), and the suffix paths R(p+)is of the edges;

ii. Add the new biclique to the biclique set B;

3. For each biclique b ∈ B

New <(v) = ∪<(v)i, where <(v)i ∈ b;

Since computing the minimum biclique covering on a general bipartite

graph is NP complete, optimal solution cannot be obtained in polynomial time

unless P=NP. Therefore, we use a minimal degree approach to cover the edges

from every prefix rule set. For each prefix rule collection <(v), we try to add <(v)

and the edges from <(v) to a smaller biclique b. If b remains a biclique, the edges

can be covered by b. We try to cover all the edges from <(v) by a set of smaller

bicliques. If some edges can not be covered, a new biclique is produced to contain

<(v) and the edges from <(v). Finally, for each biclique b, the newly created rule

collection is the union of all the rule collections in b.

For example in Fig.III.2.(b), we first produce two bicliques to cover the

edges from prefix rule collections {{0}} and {{2}}. Then we cover the edges from

prefix rule collection {{1}} by enlarging the two smaller bicliques into bicliques 1

and 2. Finally, we use biclique 3 to cover the edges from the prefix rule collection

{∅}.
Each biclique covers the non-false paths represented by the edges. For

example, biclique 1 contains four edges, from {{0}} to {2}, from {{0}} to ∅, from

41

{{1}} to {2}, and from {{1}} to ∅. Therefore, rule collection <(v)1 covers four

non-false paths represented by the edges, i.e., {(1, v), (v, u), (u, 7)}, {(1, v), (v,

u), (u, 8)}, {(2, v), (v, u), (u, 7)} and {(2, v), (v, u), (u, 8)}.

Theorem III.C.1 The time complexity of the heuristic Biclique-Covering(v) al-

gorithm is O(k3), where k is the number edges in false path specifications.

Proof : According to [6], the number of prefix and suffix rule sets at vertex v is

O(k). For each prefix rule set R(v), we try to cover the edges from R(v) using ex-

isting bicliques. Because the number of existing bicliques is O(k), and the number

suffix rule set in each existing biclique is O(k), the run time of covering edges from

one rule set R(v) is O(k2). As a result, the time complexity to cover all the prefix

rule sets is O(k3).¤

III.C.4 Rule Collection Propagation

We propagate every rule collection <(v) to vertex u, where there is an

edge (v, u) from vertex v to u.

Algorithm: Rule-Collection-Propagation (<(v), v, u)

1. FalseEnd = 0; <(u) = ∅;

2. For each prefix rule set R ∈ <(v)

(a) R′ = (R ∪ F (v)) ∩ I(v, u);

(b) if (R′ ∩ T (u))= ∅ then <(u) = <(u) ∪ {R′};

(c) else FalseEnd = 1;

3. if not FalseEnd, and <(u) not empty then add <(u) into vertex u’s rule

collection list;

Each prefix rule set in the rule collection is propagated by the equation

similar as the equation in the Rule-Set-Computation algorithm. After propagation,

we perform biclique covering at vertex u as shown in Fig.III.3.

42

Figure III.3 Bipartite Graph and Rule Collections at Vertex u

43

In Fig.III.4, we summarize the tags and new vertices produced by our ap-

proach. Compared with the rule set computation and the node splitting approach

in Fig.III.1, our approach reduces the number of tags at vertices v and u from 4

to 3.

Figure III.4 Rule Collections and New Vertices after Minimization

III.C.5 Theoretical Improvement Ratio

In theory, the proposed method can reduce the number of tags [3] or

the number of split nodes [6] by another order of magnitude. For example in

Fig.III.5.(a), a circuit has n+2 inputs and m+2 outputs connected through ver-

tex v. There are n+m false paths: n paths from inputs I0, I1, . . . , In−1 through

vertex v to output Om and m paths from input In though vertex v to outputs

O0, O1, . . . , Om−1. Suppose we follow the algorithm of [3] to scan from inputs to-

ward outputs. We need n+2 tags at vertex v to represent n+2 distinct arrival

times from inputs. For biclique covering approach, we collect at vertex v all dis-

tinct arrival times from inputs as labels Tv0, Tv1, . . . , Tvn+1 and all distinct required

arrival times from output as labels TO0, TO1, . . . , Tom+1. As shown in Fig.III.5.(b),

we construct an edge between Tvi and TOj to match the arrival time and required

arrival time for a non-false path. After the construction, we have two bicliques as

illustrated by two rectangles in Fig.III.5.(b). Since the timing information in each

clique can be shared, we use two tags to represent the two cliques. Therefore, at

vertex v the number of tags is reduced from n+2 to 2.

44

Figure III.5 Theoretical Analysis of Rule Collection Minimization

45

III.C.6 Correctness

We prove that the rule collections produced by our minimization cover

all the non-false paths in timing graph G.

Theorem III.C.2 At each vertex v, the rule collections produced by the biclique

covering approach cover all the non-false paths through vertex v.

Proof :We prove the theorem by induction on vertices in topological order. If

vertex v is a primary input vertex, lemma 4.1 guarantees that all the prefix and

suffix paths are covered by the prefix and suffix rule sets. Therefore, all the paths

through vertex v, which are the concatenations of prefix and suffix paths, are

covered by the Intersect(<(v), R(p+))s. By containing edges corresponding to

Intersect(<(v), R(p+)) = {∅}, the bipartite graph covers all the non-false paths.

Because every edge in the bipartite graph is covered by at least one biclique,

the rule collections produced based on the bicliques cover the non-false paths. If

vertex v is not a primary input vertex, assume the statement is true for all the

input vertices of vertex v. We show that the statement is true at vertex v.

The proof goes as follows. We show that the bipartite graph at v contains

edges for true paths through v. Since the bicliques produced by the Biclique-

Covering (v) algorithm cover all the edges in the bipartite graph, we can conclude

that the produced rule collections cover all the true paths through v.

Let us denote a true path through vertex v as p. p also passes through

one of vertex v’s input vertex, say vertex u. Therefore, p contains three parts,

i.e., prefix path p−u ending at u, edge (u, v), and suffix path p+
v starting from v.

By our induction assumption, true path p through vertex u are covered by a rule

collection at u, say <(u). After Rule-Collection-Propagation(<(u), u, v), <(u) is

propagated into <(v). We show that: (i) Intersect(<(v), T (v)) = {∅}, and (ii)

Intersect(<(v), R(p+
v)) = ∅. From (i) we can conclude that the bipartite graph

at v contains <(v), and from (ii) we conclude that there is an edge from <(v) to

R(p+
v) for path p.

46

(i)According to the assumption at vertex u, p is covered by an edge in

the bipartite graph at u from <(u) to R(p+
u), the suffix rule set R(p+

u) satisfies:

R(p+
u) ∩ F (u) = ∅. (III.1)

Equation (1) is valid because if R(p+
u)∩F (u) is not ∅ the bipartite graph

at vertex u will not contains R(p+
u).

The intersection Intersect(<(u), R(p+
u)) satisfies:

Intersect(<(u), R(p+
u)) = {∅}, (III.2)

where p+
u is the suffix path starting at vertex u.

We compute the suffix rule set R(p+
u) by the expression as follows:

R(p+
u) = (R(p+

v) ∪ T (v)) ∩ I(u, v). (III.3)

From equation (1) and (3), we produce expressions as follows:

R(p+
v) ∩ I(u, v) ∩ F (u) = ∅ (III.4)

T (v) ∩ I(u, v) ∩ F (u) = ∅. (III.5)

Based on equation (3) we compute Intersect(<(u), R(p+
u)) in equation

(2) as follows.

Intersect(<(u), R(p+
u))

= {R ∩ (R(p+
v) ∪ T (v)) ∩ I(u, v)|R ∈ <(u)}. (III.6)

According to equation (2), equation (6) is {∅} and implies:

R ∩R(p+
v) ∩ I(u, v) = ∅ (III.7)

R ∩ T (v) ∩ I(u, v) = ∅, (III.8)

where R ∈ <(u).

To compute Intersect(<(v), T (v)), we first compute <(v) by the expres-

sion as follows.

<(v) = {(R ∪ F (u)) ∩ I(u, v)|R ∈ <(u)}. (III.9)

47

Based on equation (9),

Intersect(<(v), T (v)) = {(R ∪ F (u)) ∩ I(u, v) ∩ T (v)|R ∈ <(u)}. (III.10)

Because of equations (8) and (5), equation (10) is {∅}.
(ii)We compute the intersection of <(v) and R(p+

v) as follows.

Intersect(<(v), R(p+
v))

= {(R ∪ F (u)) ∩ I(u, v) ∩R(p+
v)|R ∈ <(u)}

= {(R ∩ I(u, v) ∩R(p+
v)) ∪

(F (u) ∩ I(u, v) ∩R(p+
v))|R ∈ <(u)} (III.11)

Because of equations (7) and (4), equation (11) is {∅}, which produces an edge

from <(v) to R(p+
v).

From (i) and (ii), the bipartite graph of vertex v contains an edge covering

the true path p. Therefore, the statement is true for the non-primary vertices. This

concludes the proof.¤

III.D Experimental Results

We test the proposed approach on both artificial test cases and industry

test cases. The algorithm is implemented in C and run on a Pentium 4 Linux

machine.

We first follow the experiments in [3], which randomly create false sub-

graphs on a 100×100 mesh. We produce 14 test cases with each case including

various number of false subgraphs. The largest test case includes 140 false sub-

graphs. The average number of edges in each false subgraph is 6000.

We compare the number of rule collections produced by biclique covering

approach with the number of prefix rule sets produced by the Rule Set Computa-

tion algorithm [3]. Table III.2 shows the experimental results. The first column is

the number of the rules in the test case. The second column and the third column

48

Table III.2 Tag Minimization on 100×100 Mesh
#rules #R(v) #<(v) %r runtime(sec)

10 8655 4247 50.93 3
20 21575 6735 68.78 5
30 45048 8899 80.25 12
40 63492 8332 86.88 15
50 105284 12721 87.92 28
60 88527 8114 90.83 23
70 87469 8276 90.54 24
80 129689 9139 92.95 40
90 125834 7442 94.09 38

100 151339 8919 94.11 52
110 127040 7918 93.77 47
120 173213 9496 94.52 66
130 189574 13641 92.80 74
140 179127 12032 93.28 80

–R(v):Prefix rule set
–<(v):Rule collection (proposed approach)
–Reduction r = (#R(v)−#<(v))/#R(v)

contain the numbers of the prefix rule sets and the rule collections. The reduction

ratio = (#prefix rule sets - #rule collections)/ (#prefix rule sets). The maximum

improvement ratio is 94.52% for the case including 66 rules. The run-time of the

minimization increases when the number of rules in the case increases. For the

largest case including 140 rules, the CPU time is only needs 80 seconds.

We also test our algorithm on a set of industry test cases. The experiment

results are in Table III.3. The second column and the third column contain the

numbers of the nets and the rules in the test case. The smallest circuit contains

27,555 nets with 28 rules. The largest circuit contains 533,224 nets with 2264 rules.

The number of prefix rule sets and the number of the new vertices produced by the

node slitting approach [6] are in the fourth and fifth columns. The node splitting

approach creates fewer vertices because it optimizes the number of vertices need to

be split. The sixth column shows the number of rule collections. Comparing with

the prefix rule sets, the largest improvement ratio is 99.01% for the case atmlcore.

Comparing with the node splitting approach, our approach reduces the number of

49

Table III.3 Tag Minimization on Industry Test Cases
cases #nets/#rules #R(v) #V #<(v) %r1 %r2

tdl 27,555/28 131 7 7 94.66 0
cq mod 38,535/5681 47,836 24,484 12,628 73.60 48.42
pm25c 325,582/1995 1,524,260 308,755 218,602 85.66 29.20

atmlcore 533,224/2247 1,953,034 22,860 19,278 99.01 15.67
–R(v):Prefix rule set
–V :Vertices created by node splitting
–<(v):Rule collection (proposed approach)
–Reduction r1 = (#R(v)−#<(v))/#R(v)
–Reduction r2 = (#V −#<(v))/#V

Table III.4 Tag Minimization Run Time
cases runtime (sec)

rule set node splitting rule collection
tdl 1 1 1

cq mod 12 17 17
pm25c 40 44 45

atmlcore 120 155 170

the tags of case cq mod by 48.42%.

We also compare the run time of rule collection minimization algorithm

with the rule times of rule set computation algorithm [3] and node splitting ap-

proach [6]. The run times in the Table III.4 do not include the CPU time for

loading the test cases. For the largest case containing 533,224 nets, the proposed

minimization algorithm needs 170 seconds, which is more than 120 and 155 sec-

onds required by the other two approaches. However, as a preprocessing step only

incurring once, the run time is affordable.

III.E Acknowledgement

This chapter, in full, is a reprint of the material as it appears in Proc. Intl.

Conf. on Computer-Aided Design 2005, Shuo Zhou, Bo Yao, Hongyu Chen, Yi Zhu,

Chung-Kuan Cheng, Mike Hutton, Truman Collins, Sridhar Srinivasan, Nanchi

Chou, and Peter Suaris, ”Improving the Efficiency of Static Timing Analysis with

50

False Paths”, ICCAD 2005. The dissertation author was the primary researcher

and author and the co-authors listed in these publications directed and supervised

the research which forms the basis for this chapter.

IV Unified Framework Dealing

with False Paths and Multi-Cycle

Paths

IV.A Introduction

In this chapter, we present a framework to unify the process of false paths

and multi-cycle paths as exceptional rules, and then minimize the number of rule

sets to improve the efficiency.

There are several published works dealing with multi-cycle paths in tim-

ing analysis. Some previous works considered multi-cycle paths as false paths in

sequential circuits, then ignored multi-cycle paths in minimum cycle times com-

putation [17, 19, 30, 35]. An edge-mask data structure was proposed to deal with

both false paths and multi-cycle paths in timing analysis [23]. The false paths

and multi-cycle paths are seen to function as multi-clock domain cases. Each

edge in the netlist is attached an edge-mask, which represents the reachability be-

tween multi-clock domains in the graph. By using edge-masks to filter standard

analysis traversals in each abstract clock domain, unnecessary computation time

is reduced. However, it’s not clear how to reduce the number of abstract clock

domains to improve the efficiency.

The contributions of this chapter are as follows.

• We expand rule sets in tag-based approach to cover both false paths and

51

52

multi-cycle paths. We allow priority for the rules. When there is a conflict

among the rules in a rule set, the rule with the highest priority dominates.

• We devise time shifting to align the short-path and long-path delay con-

straints for multi-cycle paths. By doing so, we can merge the distinguished

timings, and collect different rule sets into one rule collection. For exam-

ple, when a 2-cycle path and a 3-cycle path converge at a vertex, we can

shift the arrival time of the 2-cycle path by one cycle, and merge the timing

information.

• We adopt the biclique covering approach in [48] to minimize the number

of rule collections at every vertex. We use theorems to show that timing

analysis algorithms can produce correct slacks using rule collection tags.

• The cost of the rule collection minimization is only incurred at the initializing

stage, thus not contributing to the CPU time of the optimization program.

The remainder of this chapter is organized as follows. Sections IV.B

presents the unified framework. In section IV.C, we introduce the minimization

algorithm. The experimental results are presented in Section IV.D.

IV.B Unified Framework Processing False Paths and Multi-

cycle Paths

We expand the tag-based approach to unify the process of false paths

and multi-cycle paths. We follow the previous work in [3] to compute rule set tags

for distinct timings. However, we expand the subgraphs of exceptional rules, such

that after the expansion, for each rule r, Dr ⊆ D and Br ⊆ B, where Dr and Br

are the input and output sets of rule r, D and B are the input and output sets of

timing graph G. As a result, all exceptional rules are covered in the rule set tags

at each vertex from the input to the output, thus, the process of the false path and

multi-cycle paths rules are unified. The special case in which the false paths are

53

covered by the multi-cycle paths is discussed in section IV.C.7. In this section, we

first introduce the subgraph expansion. Then, we present the unified framework

and show the correctness.

IV.B.1 Subgraph Expansion

We expand subgraphs to primary inputs and outputs. As a result, both

false path rules and multi-cycle path rules start from primary inputs and end at

primary outputs, thus being unified. The subgraph Gr of rule r is expand if it

satisfies one of the following two conditions.

Expand-Condition:

1. ∃ vertex u ∈ Dr and u /∈ D, where D is the output set of graph G and Dr is

the output set of rule r.

2. ∃ vertex u ∈ Br and u /∈ B, where B is the input set of graph G and Br is

the input set of rule r.

Algorithm: Subgraph-Expansion(r)

Repeat

For each non-primary vertex v in input set Br

i. Starting rule set F (v) = F (v)− {r}, Br = Br − {v};
ii. For each edge (u,v)

I(u, v) = I(u, v) ∪ {r}, F (u) = F (u) ∪ {r}, Br = Br ∪ {u};

Until input set Br no change

Repeat

For each non-primary vertex v in output set Dr

i. Ending rule set T (v) = T (v)− {r}, Dr = Dr − {v};
ii. For each edge (v,u)

54

I(v, u) = I(v, u) ∪ {r},T (u) = T (u) ∪ {r},Dr = Dr ∪ {u};

Until output set Dr no change

If rule r ends at non-primary vertices, i.e., ∃ vertex u ∈ Dr and u /∈ D,

where D is the output set of graph G and Dr is the output set of r, we distribute r

to edge rule sets I(u, v) and ending rule sets T (o), where (u, v) and o are the edge

and primary output in suffix cone P+(u) of u. We perform similar distribution in

the prefix cone P+(u) if the rule starts from non-primary vertices u.

An example is shown in Fig.IV.1. There are two rules in graph G, multi-

cycle subgraph rule 0 and false subgraph rule 1. We expand false subgraph G1 by

including vertices 1, 2, 7, 8, and edges (1,3), (2,3), (5,7), (5,8). After the expansion,

all the false paths and multi-cycle paths are complete paths in graph G. Thus, the

process of false paths and multi-cycle paths can be unified at primary outputs.

Figure IV.1 Subgraph Expansion: False subgraph of rule 0 is expanded.

After Subgraph-Expansion(r), starting rule set F (v) and ending rule set

T (v) have several properties as follows.

Property:

1. If vertex v /∈ B, F (v) = ∅, where B is input set of graph G.

2. If vertex v /∈ D, T (v) = ∅, where D is output set of graph G.

3. For ∀ vertex v, F (v) ∩ T (v) = ∅.

55

We use Lemma IV.B.1 to show that the expansion does not change

whether a path is governed by rule r.

Lemma IV.B.1 A path p is governed by rule r after Subgraph-Expansion(r) if

and only if p is governed by r before the expansion.

Proof : Denote the original subgraph of rule r as Gr, and the subgraph after the

expansion as Gr′ .

After the expansion, a path p governed by rule r is a path in Gr′ . Because

paths in Gr′ contain complete paths in Gr, p is governed by rule r before the

expansion.

If p is governed by rule r before the expansion, p contains 1) prefix path

p−(v) ending at vertex v, where v belongs to input set Br, 2) complete path p
′
in

Gr, and 3) suffix path p+(u) starting from vertex u, where u belongs to output set

Dr. After Subgraph-Expansion(r), p−(v) plus p
′
plus p+(u) belongs to subgraph

Gr′ . Thus, p is governed by rule r after the expansion. ¤

IV.B.2 Rule Sets Based Unified Framework

We modify the rule set computation to deal with both false and multi-

cycle paths. The subgraph expansion will be a preprocessing step to unify the

exceptional rules. After the expansion, at non-primary vertices only rule set prop-

agation is needed. The false path timing removal and the multi-cycle path slack

computation are performed at primary outputs according to the rule in the rule

set with highest priority.

Algorithm: Unified-Rule-Set-Computation(v)

If vertex v is a primary input

Rule set R = F (v);

else For each edge (u, v)

For each rule set R at vertex u

56

i. R′ = R ∩ I(u, v);

ii. if v is primary output

if R′ ∩ T (v) is not dominated by false subgraph rule

A. Arrmin(v,R′) = min(Arrmin(v, R′), Arrmin(u,R) + d(u, v));

B. Arrmax(v, R′) = max(Arrmax(v, R′), Arrmax(u,R) + d(u, v));

iii. else

A. Arrmin(v,R′) = min(Arrmin(v,R′), Arrmin(u,R) + d(u, v));

B. Arrmax(v, R′) = max(Arrmax(v,R′), Arrmax(u,R) + d(u, v));

The rule set at primary input v is F (v). If v is non-primary input, in step

i, the intersection R ∩ I(u, v) means that only rules containing edge (u, v) remain

in the rule set. In step ii at primary output v, if the intersection R′ ∩ T (v) is

dominated by false path rules, we eliminate false path arrival times by producing

no rule set. If v is not primary output, we propagate the arrival time with rule set

R′ to v.

Fig.IV.2.(a) illustrates a graph with a false subgraph rule 0 and a multi-

cycle subgraph rule 1. In Fig.IV.2.(b), we expand false subgraph of rule 0. After

the expansion, the input set contains vertex 1, and the output set contains vertices

9 and 10. In Fig.IV.2.(c), we compute rule sets in a forward propagation. For

example, the rule sets at several vertices are as follows:

• At primary input vertex 1, the rule set is {0, 1}. At primary input 3, the

rule set is {1}

• At vertex 2, we propagate the rule set {0, 1} of vertex 1 through the edge

(1, 2) using the equation R = {0, 1} ∩ I(1, 2).

• At vertex 4, we produce two rule sets. Rule set {0,1} is propagated from

vertex 1, and rule set {1} is propagated from vertex 3.

• At vertex 6, because edge rule set I(4, 6) = ∅, the rule sets of vertex 4

becomes ∅ after intersection with I(4, 6).

57

• At primary output vertex 9, we produce two rule sets {0} and {∅}. Because

ending rule set T (9) = {0}, intersection {0, 1} ∩ T (9) is dominated by false

path rule 0. Therefore, we remove the rule set {0} and the false path arrival

time Arr(8, {0}). Similarly at vertex 10, rule set {0, 1} and the false path

arrival time Arr(10, {0, 1}) are also removed. The arrival times Arr(10, {1})
and Arr(10,∅) are 2-cycle path and 1-cycle path timings, respectively.

Figure IV.2 Unified Rule Set Computation

The required time and slack computation is similar to that in II.B except

that the backward sweeping backtracks the forward rule set propagations, and

computes the required time for each rule set using multi-cycle hold and setup

58

times. As a result, the multi-cycle path slacks are covered.

The process computes latest and earliest required times Reqmax and

Reqmin at vertex v. The hold and setup times (hr, sr) of rule r are short-path

and long-path delay constraints.

Algorithm: Unified-Required-Time-Propagation(v)

1. If vertex v is a primary output

For each rule set R at v

Reqmax(v, R) = sr, Reqmin = hr, where r is the rule in R with the

highest priority.

2. else

For each rule set R at vertex v

For each edge (v, u)

(a) if R is forward propagated to R′ at u

Reqmin(v, R) = max(Reqmin(v, R), Reqmin(u,R′)− d(v, u));

Reqmax(v, R) = min(Reqmax(v,R), Reqmax(u,R′)− d(v, u));

We use the graph and rules in Fig.IV.2 as an example to show the process

of required time and slack computation.

• At primary outputs, for each rule set R, the required time is the hold and

setup time of rule r ∈ R with highest priority. For example in Fig.IV.2.(c),

at vertex 10, the required time tagged by rule set {1} is 2-cycle.

• For non-primary vertices, if the arrival time with tag R(v) is forward propa-

gated to rule set R(u), the required time with tag R(u) is backward propa-

gated to R(v), i.e., Reqmax(v, R(v)) = min(Reqmax(u,R(u))−d(v, u), Reqmax(v, R(v))).

For example in Fig.IV.2.(c), at vertex 4, the required time of rule set {1},
Reqmax(4, {1}), is backward propagated from required times Reqmax(7, {1})
at vertex 7 and Reqmax(6,∅) at vertex 6, i.e., Reqmax(4, {1}) = min(Reqmax(7, {1})−
d(4, 7), Reqmax(6,∅)− d(4, 6)).

59

• The slack with each rule set tag is the required time minus the arrival time,

i.e., Slackmax(v,R(v)) = Reqmax(v, R(v))−Arrmax(v, R(v)). The slack of the

vertex is the minimum of all the slacks with rule set tags, i.e., Slackmax(v) =

min(Slackmax(v, R(v))).

Now, we show the correctness of the proposed framework. Theorem II.C.1

in Section II.C shows that Rule-Set-Computation in [3] ensures all the false path

arrival times removed. When we include multi-cycle paths and allow priority for

various rules, we need to show that both false and multi-cycle path information

are covered by prefix and suffix rule sets as follows.

Theorem IV.B.1 The false path and multi-cycle path rules are covered by prefix

rule set R(p−(v)) if the subgraphs of the rules contain prefix path p−(v). The

false path and multi-cycle path rules are covered by suffix rule set R(p+(v)) if the

subgraphs of the rules contain suffix path p+(v) .

Proof :

We prove by induction on vertices in topological order. If vertex v is a

primary input, R(p−(v)) = F (v). If vertex v belongs to subgraph Gr, r ∈ F (v),

thus r ∈ R(p−(v)). Therefore, the statement is true. If vertex v is not a primary

input, assume the statement is true for all the input vertices of v. We show the

statement is true at vertex v.

Suppose prefix path p−(v) is a prefix path p−(u) at vertex u plus an edge

(u, v). According to the Unified-Rule-Set-Computation algorithm, we propagate

R(p−(u)) into rule set R(p−(v)) = R(p−(u)) ∩ I(u, v) at vertex v, where I(u, v) is

the rule set of edge (u, v). If subgraph Gr of rule r contains prefix path p−(v), Gr

contains prefix path p−(u) and edge (u, v) because p−(v) is p−(u) plus (u, v). By

our induction assumption, rule r is covered by R(p−(u)). According the edge rule

set definition, r ∈ I(u, v). Thus, r ∈ R(p−(v)) = R(p−(u)) ∩R(p−(v)). Therefore,

the statement is true for non-primary input vertex. Similarly, we can prove that

the false path and multi-cycle path rules are covered by suffix rule sets. This

60

concludes the proof. ¤
An example illustrating theorem IV.B.1 is that at vertex 7 in Fig.IV.2,

the arrival times of prefix paths {(1, 2), (2, 4), (4, 7)}, {(3, 4), (4, 7)} and {(5,

7)} are covered by the arrival times with tags {0, 1}, {1}, and ∅, respectively.

IV.C Rule Collection Minimization

We follow the two-direction propagation in [48] to minimize the number

of tagged timings with a biclique covering approach. In order to cover multi-cycle

paths in the minimization, we devise time shifting to align different hold and setup

times, and collect rule sets into rule collections. The definition of the rule collection

follows Definition III.C.1.

In this section, we first use an example to show the basic idea of the

time shifting. Then, we propose the minimization algorithm and show that the

produced slacks are correct.

IV.C.1 Time Shifting Example

Although the rule sets in a rule collection may contain rules with different

hold and setup times, we can use time shifting to align.

Fig.IV.3.(a) illustrates a timing graph including a 2-cycle path {(1, 3),

(3, 4)} and a 3-cycle path {(2, 3), (3, 4)}. At vertex 3, there are two distinct

arrival times with rule sets {0} and {1}. However, if we shift the arrival time of

prefix path {(1, 3)} forward by 1 cycle, we can merge two arrival times and use

the same hold and setup time (2, 3) for both paths. As a result, we can collect

two rule sets into one rule collection.

The example indicates that we can align the hold and setup times of

various multi-cycle paths by time shifting, and then merge the timings.

61

Figure IV.3 Collect Rule Sets Using Time Shifting

IV.C.2 Main Flow of Rule Collection Minimization

The main flow follows the two-direction propagation in Section III.C [48].

However, to include multi-cycle paths, we use the Unified-Rule-Set-Computation

algorithm to compute the rule sets. In the Unified-Rule-Collection algorithm, we

construct the non-false paths attached with hold and setup times, and then perform

biclique covering with time shifting.

Main flow

1. Produce suffix rule sets using Unified-Rule-Set-Computation backward;

2. For each vertex v in topological order

(a) If vertex v is a primary inputs

Initial rule collection <(v) = {F (v)};

(b) else

i. for each edge (u, v)

for each <(u) Unified-Rule-Collection-Propagation(<(u), u, v);

ii. Unified-Rule-Collection-Minimization(v);

62

The Unified-Rule-Collection-Propagation (<(u), u, v) of step 2).b).i) com-

putes the rule collections at vertex v by propagating the rule collections of vertex

u, where edge (u, v) is an input of v. We will introduce the details of the routine

in section IV.C.5. The Unified-Rule-Collection-Minimization(v) of step 2).b).ii)

minimizes the rule collection as follows.

Algorithm: Unified-Rule-Collection-Minimization(v)

1. For each rule collection <(v) and suffix rule set R(p+)

Produce Intersect(<(v), R(p+)) = {R(p−)i ∩R(p+)|R(p−)i ∈ <(v)};

2. Bipartite-Graph-Construction based on the intersections;

3. Unified-Biclique-Covering(v);

IV.C.3 Intersection of Rule Collection with Suffix Rule Set and Bipar-

tite Graph

At each vertex v, we perform intersections of prefix rule collections with

suffix rule sets to gather the non-false paths through v, and then construct a

bipartite graph to cover all the non-false paths.

We follow the Definition III.C.2 to intersect a rule collection with a suffix

rule set, i.e. Intersect(<(v), R(p+)) = {R(p−)i ∩ R(p+)|R(p−)i ∈ <(v)}. If rule r

belongs to intersection R(p−) ∩R(p+), the path of prefix path p− plus suffix path

p+ is governed by rule r. When there are various rules in the intersection, the rule

with the highest priority is dominant. If the intersection is not dominated by a

false subgraph rule, the prefix path plus the suffix path produces a non-false path.

For various R(p−)i ∩ R(p+) ∈ Intersect(<(v), R(p+)), if ∀R(p−)i ∩ R(p+) is not

dominated by false subgraph rules, the set of prefix paths p−i s plus the suffix path

p+ are non-false paths.

Fig.IV.4 illustrates a timing graph including two false subgraph rules 1

and 2, and one 2-cycle rule 3. In Table IV.1, we show the rule collections, suffix

rule sets and the intersections at vertex 4. The suffix rule sets are shown in the

63

first row, i.e., {3}, {1, 3}, and {2, 3}, which correspond to the suffix paths, {(4,

5), (5, 7)}, {(4, 5), (5, 8)}, and {(4, 5), (5, 6)}. The prefix rule sets are shown in

the first column, i.e., {1}, {2}, and {3}, which correspond to the prefix paths, {(1,

4)}, {(3, 4)}, and {(2, 4)}. Without minimization, each prefix rule set produces

a rule collection. There are 9 intersections of 3 rule collections and 3 suffix rule

sets in Table IV.1. Each intersection corresponds to a path, which is a prefix path

plus a suffix path. The rule in the intersection governs the path. For example, the

intersection of rule collection {{3}} and rule set {1, 3} is Intersect({{3}}, {1, 3}) =

{{3}}. This intersection corresponds to the path {(2, 4),(4, 5),(5, 8)}, which is the

prefix path {(2, 4)} plus the suffix path {(4, 5),(5, 8)}. Because the intersection

contains rule 3, the path is a 2-cycle path governed by rule 3.

Figure IV.4 Timing Graph with Two False Subgraph Rules 1 and 2, and a 2-cycle

Subgraph Rule 3

Table IV.1 Intersections of Rule Collections and Suffix Rule Sets at Vertex 4
R(p+)

{3} {1,3} {2,3}
{{1}} {∅} {{1}} {∅}

{<(p−)} {{2}} {∅} {∅} {{2}}
{{3}} {{3}} {{3}} {{3}}

Based on the intersections, we construct a bipartite graph to cover non-

false paths through the vertex.

Algorithm: Bipartite-Graph-Construction(v))

1. Add all suffix rule sets R(p+) to bipartite graph B(v);

2. For each rule collection <(v)

64

(a) Add Re(v) to B(v)

(b) For each suffix rule set R(p+)

i. If ∀R(p−) ∩ R(p+) ∈ Intersection(<(v), R(p+)) is not dominated

by non-false subgraph rule r

Add edge from <(v) to R(p+);

ii. Attach the hold and setup time of rule r on the edge, where r ∈ R

with highest priority and R ∈ Intersection(<(v), R(p+)).

Fig.IV.5.(a) illustrates the bipartite graph at vertex 4 based on the in-

tersections in Table IV.1. We produce an edge from rule collection {{3}} to rule

set {2,3} because the intersection Intersection({{3}}, {2, 3}) = {{3}} only con-

tains 2-cycle subgraph rule 3. The edge represents the 2-cycle path {(2, 4),(4,

5), (5, 6)}. The hold and setup time of rule 3, i.e., (1,2), is attached on the

edge. We produce no edge from rule collection {{2}} to rule set {2,3} because

Intersection({{2}}, {2, 3}) = {{2}} and rule set {2} in Intersection({{2}}, {2, 3})
is dominated by false subgraph rule 2. The intersection represents false path {(3,

4),(4, 5),(5, 6)}.

Figure IV.5 Bipartite Graph at Vertex 4: Each edge represents a non-false path

with hold and setup time attached.

IV.C.4 Time Shifting and Biclique Covering

We devise time shifting to cover multi-cycle paths in the biclique covering

approach [48]. We cover the edges in the bipartite graph by a set of bicliques, and

collect the prefix rule sets in each biclique into one rule collection. Since all the

complete paths covered by one biclique should have aligned hold and setup times

65

for slack computation, we devise time shifting to align different hold and setup

times.

Definition IV.C.1 (Time Shifting): On rule collection <(v), time shifting plus

∆T cycles on (i) arrival time with tag <(v), and (ii) the hold and setup time of

every rule r ∈ R,R ∈ <(v). The rule collection after time shifting is denoted as

<(v)+∆T .

Note that the hold time and setup time of a false path remains the same.

We use time shifting to align hold and setup time in a biclique, and the

union of rule collections in the biclique is the new rule collection based on the

biclique. A biclique b is aligned if for ∀ suffix rule set R(p+) ∈ b, all the edges

to R(p+) are attached with the same hold and setup time. A biclique b can be

aligned by time shifting if there are a set of ∆T s such that after time shifting on

each rule collection <(v)i ∈ b by ∆Ti, and updating the hold and setup times of

the edges, biclique b becomes aligned.

Definition IV.C.2 (Rule Collection on Biclique): For aligned biclique b,

rule collection <(v) = ∪<(v)∆Ti
i , where <(v)i ∈ b, and the hold and setup time of

r ∈ R, R ∈ <(v) is shifted by ∆Ti.

The biclique covering on the bipartite graph covers the edges by a set of

bicliques, i.e., the complete bipartite subgraphs, and aligns each biclique by time

shifting.

Algorithm: Unified-Biclique-Covering(v)

1. Initialize the biclique set as B = ∅;

2. For each rule collection <(v) in minimum degree order

(a) For each biclique b ∈ B

i. If for ∀R(p+)i ∈ b, ∃ edge (<(v), R(p+)i)

Enlarge b to include all the edges {(<(v), R(p+)i)|R(p+)i ∈ b};

66

ii. If b can not be aligned by time shifting;

Recover b by removing edges from <(v);

(b) If there are edges from <(v) not covered by bicliques in B

i. Recover bicliques b including edges from <(v);

ii. Produce a new biclique containing <(v), the edges from <(v), and

the suffix rule sets R(p+)i of the edges;

iii. Add the new biclique to the biclique set B;

3. For each biclique b ∈ B

New <(v) = ∪<(v)∆Ti
i , where <(v)i ∈ b, the hold and setup time of

r ∈ R,R ∈ <(v) is shifted by ∆Ti;

Since computing the minimum biclique covering on a general bipartite

graph is NP complete, optimal solution cannot be obtained in polynomial time

unless P=NP [34, 36]. Therefore, we use a minimal degree approach to cover the

edges from every prefix rule set. For each prefix rule collection <(v), we try to add

<(v) and the edges from <(v) to a smaller biclique b. We use time shifting to align

the hold and setup time in b. If b can be aligned, the edges can be covered by b. We

try to cover all the edges from <(v) by a set of smaller bicliques. If some edges can

not be covered, we produce a new biclique including <(v) and the edges from <(v).

Finally, for each biclique b, the newly created rule collection is the union of all the

rule collections in b with the time shifting ∆T , i.e., <(v)′ = ∪<(v)∆Ti
i ,<(v)i ∈ b.

For example in Fig.IV.6, we first produce two bicliques to cover the edges

from prefix rule collections {{1}} and {{2}}. Then we cover the edges from prefix

rule collection {{3}} by enlarging the two smaller bicliques into bicliques 1 and

2. For biclique 1, we shift the hold and setup time of edges from rule collection

{{1}} by 1 cycle, i.e. (0, 1)+1 = (1, 2). As a result, the hold and setup times of

biclique 1 are aligned. Similarly, we align the hold and setup times of biclique 2.

As a result, we cover the bipartite graph by two bicliques, and produce two rule

collections, i.e., <′1 = {{1}+1, {3}} and <′2 = {{2}+1, {3}}.

67

We can go back to Fig.IV.5 to check the path coverage. Since biclique 1

covers four edges from rule collections {{1}} and {{3}} to suffix rule sets {2, 3}
and {3}, rule collection <′1 covers four paths represented by the edges, i.e., {(1, 4),

(4, 5), (5, 6)}, {(1, 4), (4, 5), (5, 7)}, {(2, 4), (4, 5), (5, 6)} and {(2, 4), (4, 5), (5,

7)}.

Figure IV.6 Bipartite Covering at Vertex 4: Produce a rule collection based on

each biclique.

Theorem IV.C.1 The time complexity of the heuristic Biclique-Covering(v) al-

gorithm is O(k3), where k is the number edges in false path specifications.

Proof : According to [6], the number of prefix and suffix rule sets at

vertex v is O(k). For each prefix rule set <(v), we try to cover the edges from <(v)

using existing bicliques. Because the number of existing bicliques is O(k), and the

number suffix rule set in each existing biclique is O(k), the run time of covering

edges from one rule collection <(v) is O(k2).

The time shifting on a biclique b aligns the hold and setup time of edges

to each suffix rule set R(p+) ∈ b. Because b is aligned before adding the edge from

<(v), for each R(p+) ∈ b, the run time of time shifting is O(1). As a result, the

time shifting on all suffix rule sets in b requires O(k) time.

Therefore, the time complexity to cover edges from all the rule collections

is O(k3).¤

68

IV.C.5 Rule Collection Propagation

We propagate rule collection <(v) to vertex u through edge (v, u). Each

prefix rule set in the rule collection is propagated by the equation similar as the

equation in the Unified-Rule-Set-Computation algorithm.

Algorithm: Unified-Rule-Collection-Propagation(<(v), v, u)

1. FalseEnd = 0; <(u) = ∅;

2. For each prefix rule set R ∈ <(v)

(a) R′ = R ∩ I(v, u);

(b) if u is primary output

i. if R′ ∩ T (u) is dominated by non-false subgraph rule

<(u) = <(u) ∪ {R′};
ii. else FalseEnd = 1;

(c) else <(u) = <(u) ∪ {R′};

3. If not FalseEnd add <(u) into vertex u’s rule collection list;

After rule collection propagation, we perform intersections of rule collec-

tions with suffix rule sets and construct bipartite graph at vertex 5. Table IV.2

shows the intersections and Fig.IV.7 illustrates the bipartite graph.

Table IV.2 Intersections of Rule Collections and Suffix Rule Sets at Vertex 5
R(p+)

{3} {1,3} {2,3}
{{1}+1, {3}} {∅+1,{3}} {{1}+1,{3}} {∅+1,{3}}

{<(p−)} {{2}+1,{3}} {∅+1,{3}} {∅+1,{3}} {{2}+1,{3}}

For each Intersect(<(v), R(p+)), if ∃R(p−i)∩R(p+) ∈ Intersect(<(v), R(p+))

is dominated by a false subgraph rule, we produce no edge from <(v) to R(p+)

because the prefix path p−i plus the suffix path p+ is a false path. For example, ac-

cording to Table IV.2, we produce no edge from rule collection <1 = {{1}+1, {3}}
to suffix rule set {1, 3} because the Intersect({{1}+1, {3}}, {1, 3}) = {{1}+1, {3}},

69

Figure IV.7 Bipartite Covering at Vertex 5

where {1}+1 is dominated by false subgraph rule 1. This intersection corresponds

to false path {(1, 4), (4, 5), (5, 8)}.
Lemma IV.C.1 ensures that we can get aligned hold and setup time for

each edge.

Lemma IV.C.1 If ∀R(p−i)∩R(p+) ∈ Intersect(<(v), R(p+)) is not dominated by

a false subgraph rule, the non-false path rules dominating various R(p−i) ∩R(p+)s

have aligned hold and setup times.

Proof :We prove by induction on vertices in topological order. Denote

the bipartite graph at vertex v as B(v), the edge in B(v) from rule collection <(v)

to R(p+) as (<(v), R(p+)). If v is a primary input, <(v) = {F (v)}. Therefore, the

Intersection(<(v), R(p+)) = {F (v) ∩ R(p+)}. The statement is true because the

Intersection(<(v), R(p+)) only contains one set. If v is not primary input, assume

the statement is true for all the input vertices of v. We show that the statement

is true at v.

Suppose ∀R(p−i) ∩ R(p+) ∈ Intersect(<(v), R(p+)) is not dominated by

a false subgraph rule, that is, ∀R(p−v) ∩ R(p+
v) ∈ Intersect(<(v), R(p+

v)) is not

dominated by false path rules. We want to prove the rules dominating various

R(p−v) ∩R(p+
v) have aligned hold and setup time.

Suppose the rule collection after tag minimization is the union <(v) =

∪<(v)∆Ti
i , and <(v)∆Ti

i is propagated from rule collection <(u) at v’s input vertex

70

u. Thus,

<(v)∆Ti
i = {(R(p−u) ∩ I(u, v))∆Ti|R(p−u) ∈ <(u)}

Intersect(<(v)∆Ti
i , R(p+

v)) = {(R(p−u) ∩ I(u, v) ∩R(p+
v))∆Ti|R(p−u) ∈ <(u)}

= {(R(p−u) ∩R(p+
u))∆Ti|R(p−u) ∈ <(u)}

= Intersect(<(u)∆Ti , R(p+
u)). (IV.1)

Equation IV.1 is valid because R(p+
v) is backward propagated into suffix rule set

at u, i.e., R(p+
u) = R(p+

v) ∩ I(u, v).

Therefore, ∀R(p−u) ∩ R(p+
u) ∈ Intersect(<(u), R(p+

u)) is not dominated

by false path rules. From the induction assumption, rules dominating (R(p−u) ∩
R(p+

u))∆Ti ∈ Intersect(<(u), R(p+
u)) have aligned hold and setup time (h, s).

Therefore, after time shifting ∆Ti, the rules dominating various R(p−v) ∩ R(p+
v)

in Intersect(<(v)∆Ti
i , R(p+

v)) have aligned hold and setup time

According to the Unified-Biclique-Covering algorithm, we keep the bi-

clique b aligned when adding rule collections into b. Therefore, after union <(v) =

∪<(v)∆Ti
i , the rules dominating ∀R(p−v) ∩ R(p+

v) ∈ Intersect(<(v), R(p+
v)) have

aligned hold and setup time. Therefore, for non-primary input v, the statement is

true. This concludes our proof. ¤

Figure IV.8 Rule Collections and New Vertices after Minimization: ∅+1s at vertices

6 and 8 are propagated from {1}+1 and {2}+1 at vertex 5, respectively; ∅+1 at

vertex 7 is propagated from {1}+1 and {2}+1 at vertex 5.

After we perform biclique covering on the bipartite graph at vertex 5, we

propagate the rule collections to vertices 6, 7 and 8. Fig.IV.8 summarizes the rule

collections at every vertex after rule collection minimization. At vertices 4 and 5,

71

the number of tags is reduced from 3 to 2.

IV.C.6 Timing Analysis with Rule Collections

We compute the arrival time, required time and slack for each rule col-

lection by forward and backward sweepings similar as the timing analysis process

based on rule sets. The only difference is that for rule collections with time shift-

ing, <(v)+∆T , we forward and backward shift the arrival times and required times

by ∆T . In Fig.IV.6, at vertex 4, for the rule collection <′1 = {{1}+1, {3}}, the

arrival time of prefix path {(1, 4)} is shifted by 1 cycle and merged with the arrival

time of prefix path {(2, 4)}. When the required time labeled by <′1 is backward

propagated to vertex 1, we shift back the required time by 1 cycle.

Now, we use Theorem IV.C.2 to show that exceptional rules governing

paths through each vertex are covered by the intersections after the tag minimiza-

tion at the vertex.

Theorem IV.C.2 Non-false exceptional rules governing paths through vertex v

are covered by the intersections of prefix rule collections and suffix rule sets after

rule collection minimization at v.

Proof : We prove the theorem by induction on vertices in topological or-

der. If v is a primary input, path p through v is v plus suffix path p+(v), rule collec-

tion <(v) at primary input v is {F (v)}, and intersection Intersect(<(v), R(p+)) =

{F (v)∩R(p+)}. If p is governed by non-false path rule r, Gr contains vertex v and

suffix path p+(v). According to the definition of rule set F (v), r ∈ F (v). Accord-

ing to Theorem IV.B.1, r ∈ R(p+). Therefore, rule r is covered by F (v)∩R(p+) ∈
Intersect(<(v), R(p+)). Because r is non-false path rules, Intersect(<(v), R(p+))

is not removed at v, thus, rule r is covered by Intersect(<(v), R(p+)) at v. If v is

not primary input, assume the statement is true for all the input vertices of v. We

show that the statement is true at v.

Suppose path p passes through v’s input u. Therefore, p contains three

parts, i.e., prefix path p−u ending at u, edge (u, v), and suffix path p+
v starting from

72

v. If p is governed by non-false path rule r, according to our induction assumption,

rule r is covered by intersection Intersect(<(u), R(p+
u)) at vertex u. Suppose rule

collection <(u) is propagated to rule collection <(v) vertex v, we show that rule r

is covered by intersection Intersect(<(v)′, R(p+
v)) at vertex v, where <(v) ⊆ <(v)′.

The proof goes as follows. <(v) is propagated from <(u), i.e., <(v) =

{R(p−u) ∩ I(u, v)|R(p−u) ∈ <(u)}. R(p+
u) is backward propagated from R(p+

v), i.e.,

R(p+
u) = R(p+

v) ∩ I(u, v). Therefore,

Intersect(<(v), R(p+
v)) = {R(p−u) ∩ I(u, v) ∩R(p+

v)|R(p−u) ∈ <(u)}
= {R(p−u) ∩R(p+

u)|R(p−u) ∈ <(u)}
= Intersect(<(u), R(p+

u)) (IV.2)

Since Intersect(<(v), R(p+
v)) = Intersect(<(u), R(p+

u)), r is covered by

Intersect(<(v), R(p+
v)). Rule sets in Intersect(<(u), R(p+

u)) are not dominated

by false path rules according to the biclique covering at vertex u. Therefore, rule

sets in Intersect(<(v), R(p+
v)) are not dominated by false path rules. According

to Lemma IV.C.1, we produce an edge in the bipartite graph at vertex v with

the aligned setup and hold time attached. According to the biclique covering

algorithm, after rule collection minimization, rule collection <(v) is a sub-set of

rule collection <(v)′. Therefore, r is covered by Intersect(<(v)′, R(p+
v)). The

statement is true for the non-primary inputs. This concludes the proof.¤

IV.C.7 Special Cases of False Subgraph Rules

We can further reduce the number of tagged timings if there are special

false path rules satisfying conditions as follows.

Not-Expand-Condition: For ∀ path p governed by rule r, if p is also

governed by multi-cycle rule r′, the priority of r is higher than the priority of r′,

i.e., pr > pr′ .

If false subgraph rule r satisfies the Not-Expand-Condition, we do not

expand r and modify the Unified-Rule-Set-Computation algorithm to remove false

73

path timing before reaching the primary outputs.

Unified-Rule-Set-ComputationModified(v)

If vertex v is a primary input

If F (v) ∩ T (v) = ∅ Rule set R = F (v);

else For each edge (u, v)

For each rule set R at vertex u

i. R′ = (R ∩ I(u, v)) ∪ F (v);

ii. if v is primary output

if R′ ∩ T (v) is not dominated by false subgraph rule

A. Arrmin(v,R′) = min(Arrmin(v, R′), Arrmin(u,R) + d(u, v));

B. Arrmax(v, R′) = max(Arrmax(v, R′), Arrmax(u,R) + d(u, v));

iii. else

if R′ ∩ T (v) = ∅

A. Arrmin(v,R′) = min(Arrmin(v, R′), Arrmin(u,R) + d(u, v));

B. Arrmax(v, R′) = max(Arrmax(v, R′), Arrmax(u,R) + d(u, v));

In step i, the union with rule set F (v) means false path rules starting from

vertex v are included in the rule set. For each vertex v before primary output,

intersection R∩T (v) 6= ∅ indicates a false subgraph rule r ending at v. According

to the Not-Expand-Condition, all the paths governed by r is dominated by false

path rules. Therefore, we remove the false path timing.

After modification, we reduce the number of tagged-timings by removing

false path timings before primary outputs. Since only false path timing is removed,

the slacks computation based on rule collections remains correct.

IV.D Experimental Results

We test the proposed approach on both artificial test cases and industry

test cases. The algorithm is implemented in C and run on a Pentium 4 Linux

74

machine.

We first follow the experiments in [3], which randomly create false sub-

graphs and multi-cycle subgraphs on a 100×100 mesh. The average number of

edges in each false subgraph is 6000. Each test case contains from 9 to 104 rules

including 30% false subgraph rules. The hold and setup times of multi-cycle paths

are in the range from 2-cycle to 4-cycle.

We compare the number of rule collections produced by biclique covering

approach with the number of prefix rule sets produced by the Unified-Rule-Set-

Computation algorithm in [3] when there are only false paths. Table IV.3 shows

the experimental results. The first column is the number of the rules in the test

case. The second column and the third column contain the numbers of the prefix

rule sets and the rule collections. The reduction ratio = (#prefix rule sets - #rule

collections)/ (#prefix rule sets). For the 5 test cases in Table IV.3, the average

improvement ratio is 31.22%. The run-time of the minimization increases when

the number of rules in the case increases. For the largest case including 104 rules,

the CPU time is only 87 seconds.

Table IV.3 Tag Minimization on 100×100 Mesh
#rules #R(v) #<(v) %r runtime(sec)

9 9129 8281 9.29 2
34 77102 49321 36.03 19
69 137581 89987 34.59 44
88 176384 97124 44.94 61

104 209718 145484 30.63 87
average 31.10

–R(v):Prefix rule set
–<(v):Rule collection
–Reduction r = (#R(v)−#<(v))/#R(v)

We also test our algorithm on a set of industry test cases. The experiment

results are in Table IV.4. The second column and the third column contain the

numbers of the nets and rules in the test case. The largest circuit contains 533,224

nets with 2 false subgraph rules and 2262 multi-cycle subgraph rules. We use the

75

Table IV.4 Tag Minimization on Industry Test Cases
cases #nets #rules #R(v) #<(v) %r runtime

False Multi-cycle (sec)
tdl 27,555 1 27 158 67 57.59 1

cq mod 38,535 2517 3181 217,456 14,972 93.11 22
pm25c 325,582 7 2574 1,781,400 101,238 94.32 106

atmlcore 533,224 2 2262 2,411,892 159,451 93.39 383
–R(v):Prefix rule set; <(v):Rule collection
–Reduction r = (#R(v)−#<(v))/#R(v)

Table IV.5 Run Time of Static Timing Analysis Using Rule Collection Tags
STA Runtime (sec)

Use R(v) Tag Use <(v) Tag % reduction
tdl 1.2 1.2 0

cq mod 4.2 2 52.38
pm25c 55.33 28.5 48.49

atmlcore 40.33 19.5 51.65
–Reduction of STA runtime = (STA Runtime with R(v) Tag
- STA Runtime with <(v) Tag)/STA Runtime with R(v) Tag

Unified-Rule-Set-Computation algorithm to produce prefix rule sets, and minimize

rule sets into rule collections. The average improvement ratio is 84.60%. For the

largest case atmlcore, the runtime of minimization is only 383 seconds, including

the CPU time for loading the test cases, mapping the rules on the graph, and

minimizing the rule collections.

Table IV.5 also shows runtimes of static timing analysis (STA). If STA

uses prefix rule sets to deal with false paths and multi-cycle paths, for the largest

circuit atmlcore, the runtime is 40.33 seconds. If rule collections are used in STA,

the runtime is reduced to 19.5 seconds. Though the reduction is only 20.83 seconds

for performing STA once, the reduction ratio is 51.65%. If timing analysis is

repeatedly called during performance driven optimization, for example 100 times,

the reduction on STA runtime would be 2083 seconds, which is larger than the

runtime cost 40.33 seconds for the preprocessing minimization.

76

IV.E Acknowledgement

This chapter, in full, is a reprint of the material as it appears in Proc. Asia

and South Pacific Design Automation Conf. 2006, Shuo Zhou, Bo Yao, Hongyu

Chen, Yi Zhu, Chung-Kuan Cheng, and Mike Hutton, ”Efficient Static Timing

Analysis Using a Unified Framework for False Paths and Multi-Cycle Paths”, ASP-

DAC 2006. The dissertation author was the primary researcher and author and

the co-authors listed in these publications directed and supervised the research

which forms the basis for this chapter.

V Timing Model Reduction for

Hierarchical Timing Analysis

V.A Introduction

In this chapter, we propose an abstract timing model reduction algorithm

for hierarchical timing analysis using a biclique-star Replacement technique. By

applying tag-based approach, we expand the timing model to cover false paths and

multi-cycle paths.

The complexity of hierarchical timing analysis is linear to the number of

edges in abstract timing models. In hierarchical timing analysis, a design is divided

into multiple blocks and each block is characterized into an abstract timing model.

For linear delay model, the timing calculation can be separated according to the

boundary of the partitions. Assume the timing relations inside each block are fixed.

By minimizing the number of edges for timing propagation in the pre-calculated

timing models, we can reduce the analysis complexity.

The previous published works on timing model reduction can be cate-

gorized into two groups. The reduction based on the timing graph of the block

iteratively reduces the number of edges using graph transformations [33,42]. How-

ever, the transformation is a greedy heuristic, which may not always produce the

optimal solution. Another category of methods tried to represent delay metrics in

the abstract timing model with fewest edges. An optimal realization of a distance

matrix problem is formulated as constructing a graph that preserves shortest-path

77

78

distances while minimizing the total sum of edge weights [10, 18]. A clique-star

replacement technique is proposed for the graph with unit edge delays [14,15]. The

clique is replaced by the star by 1) inserting a Steiner vertex at the center and 2)

assigning 12 delay to each edge. However, if the graph has general edge delays, the

clique may not be replaced by star due to infeasible edge delays. We are unaware

reports that can identify cliques with feasible edge delays for the star replacement

in the graph with general edge delays.

We proposed a biclique-star replacement technique to replace bicliques

with general edge delays by stars. Based on the proposed technique, we develop

a timing model reduction algorithm which minimizes the number of edges in the

abstract timing model. Our contributions are as follows.

• We replace a biclique by a star when edge delays from various inputs can be

matched to a common delay pattern. The star is constructe based on the

delay pattern. By doing so, we cover multiple edges from each input by one

edge with a delay offset attached, thus reducing the number of edges. We

allow don’t-care edges in the delay pattern, thus maximizing the number of

edges reduced.

• We present a timing model reduction algorithm which searches bicliques con-

taining delay patterns in the timing model, and replaces the bicliques by

stars. The timing model reduction is iteratively performed to maximize the

reduction.

• We expand timing models to cover false paths and multi-cycle paths. The

tag-based approach in chapter IV is utilized to construct timing models. By

attaching tags on vertices in the timing model, false paths and multi-cycle

paths are covered. The timing model reduction technique remains valid for

the timing model covering false paths and multi-cycle paths.

The remainder of this chapter is organized as follows. In section V.B, we

introduce the biclique-star replacement technique. Section V.C presents the timing

79

model reduction algorithm. Section V.D expands the timing model to cover false

paths and multi-cycle paths. The experimental results are presented in Section

V.E.

V.B Biclique-Star Replacement

In this section, we propose a biclique-star replacement technique which

replaces bicliques with general edge delays by stars. Intuitively, a biclique with

unit edge delays can be replaced by a star, such that the edge delays are covered

with fewer edges. However, if a biclique contains general edge delays, the delays

may not coincide to be covered by a star. We match edge delays from various

inputs to a common delay pattern and construct the star based on the pattern.

By doing so, we cover multiple edges from one input by one edge, thus reducing

the number of edges.

V.B.1 Replacement Covering All Edge Delays

In this section, we propose to replace a biclique by a star and cover all

the edge delays in the biclique by the star. We define the edge delay coverage

and the biclique-star replacement first. After that, based on the observation on

an example, we introduce the technique matching edge delays to a pattern and

replacing a biclique by a star.

Definition V.B.1 (Edge Delay Coverage) Edge (i, j) in biclique Gc is covered

in a star Gs if di,s + ds,j = di,j, where di,j, di,s and ds,j are edge delays in Gc and

Gs.

Definition V.B.2 (Biclique-star replacement) A biclique-star replacement

replaces biclique Gc by a star Gs such that

1. Bs = Bc, Ds = Dc, where Bs and Ds are input and output sets of Gs, Bc

and Dc are input and output sets of Gs;

80

2. all edges in biclique Gc are covered in Gs.

The reduction ratio is the number of edges in Gc over the number of edges in Gs,

i.e.,

r = (r × c)/(r + c), (V.1)

where r and c are the number of inputs and outputs in Gc.

One observation on biclique-star replacement is that the delays from vari-

ous input delay vectors are a pattern plus various offsets. For example, Fig.V.1.(a)

illustrates a biclique-star replacement. Each edge in the biclique is covered by a

two-edge path in the star. For example, the edge (1,4) in the biclique is covered by

the path {(1, s), (s, 4)} in the star because d1,4 = d1,s + ds,4 = 2. The delay matrix

is shown in Fig.V.1.(b). We find out that input delay vector 1 is 0+{2, 3, 4}, input

delay vector 2 is 1 + {2, 3, 4}, and input delay vector 3 is 2 + {2, 3, 4}. Thus, the

vector {2, 3, 4} is the common pattern shared by three input delay vectors.

The hint of the example is that we can replace a biclique by a star as far

as the input delay vectors share a common pattern. To identify the pattern in the

input delay vectors, we define a vector subtraction operation as follows.

Definition V.B.3 (Vector Subtraction) Given a delay matrix M of a biclique

Gc, a vector subtraction between two input delay vectors Ia and Ib, denoted as

Sub(Ia, Ib), performs subtractions

δIa,Ib
j = ma,j −mb,j, (V.2)

where ma,j ∈ Ia and mb,j ∈ Ib and returns a distance vector V Ia,Ib = {δIa,Ib
j |j ∈

[1..c]}, where c is the number of column in M .

Definition V.B.4 (Pattern of input delay vectors)

1 Two input delay vectors Ia and Ib in delay matrix of biclique Gc share a pattern

vector, denoted as Ia ‖ Ib, if in the distance vector V Ia,Ib after vector sub-

traction Sub(Ia, Ib), all δIa,Ib
j s in distance vector V Ia,Ib are equal. The value

is termed δIa,Ib.

81

Figure V.1 Biclique-Star Replacement

82

2 If ∀ two input delay vectors Ia and Ib in delay matrix M share a pattern vector,

i.e., Ia ‖ Ib, the biclique Gc contains an input pattern vector, denoted as

‖ Gc.

The pattern relation between two input delay vectors has properties as

follows.

Symmetric If Ia ‖ Ib, then Ib ‖ Ia, where Ia and Ib are input delay vectors.

Transitive If Ia ‖ Ib and Ib ‖ Ic, then Ia ‖ Ic,where Ia, Ib and Ic are input delay

vectors.

The biclique in Fig.V.1.(a) is an example of ‖ Gc. In the delay matrix in

Fig.V.1.(b), input delay vectors I1 = {2, 3, 4}, I2 = {3, 4, 5}, and I3 = {4, 5, 6}.

1. I2 ‖ I1 because after vector subtraction Sub(I2, I1), distance vector V I2,I1 =

{1, 1, 1}, in which all δs are equal to δI2,I1 = 1.

2. I3 ‖ I2 because after vector subtraction Sub(I3, I2), distance vector V I3,I2 =

{1, 1, 1}, in which all δs are equal to δI3,I2 = 1.

3. According to the transitive property, from 1 and 2, we have I3 ‖ I1.

4. According to the symmetric property, any two input delay vectors share a

vector patter. Thus, biclique Gc contains an input pattern vector, i.e., ‖ Gc

Lemma V.B.1 Given delay matrix M of biclique Gc, the complexity to evaluate

the pattern vector in Gc is O(r × c), where r and c are the numbers of rows and

columns in M .

Proof : We randomly choose one input delay vector Ia and evaluate

the pattern relations with all other input delay vectors. Each vector subtraction

Sub(Ia, Ii) with input delay vector Ii requires q subtractions. Thus, for r input

delay vectors, the complexity is O(r × c).

The evaluation returns two kind of results:

83

1. If an input delay vector Ii does not share the pattern with Ia, we conclude

that Gc contains no input pattern vector.

2. If we get Ii ‖ Ia for and input delay vector Ii, according to transitive property

of pattern relation, ∀ input delay vector Ib satisfying Ii ‖ Ib with input delay

vector Ii. Therefore, we conclude ‖ Gc.

Therefore, for both results, we need no further computation. The complexity of

the evaluation is O(r × c). ¤

Theorem V.B.1 Biclique Gc can be replaced by a star if Gc contains an input

pattern vector,i.e., ‖ Gc.

Proof : The proof goes as follows. We first construct a star Gs for biclique

Gc. Then, we prove that in the produced star Gs all edges in Gc covered.

Algorithm: Biclique-Star-Replacement(Gc)

1. Star Gs = {Bs, Ds, s, Es}, where input set Bs = Bc, output set Ds = Dc,

and edge set Es = {(i, s)|i ∈ Bs} ∪ {(s, j)|j ∈ Ds};

2. Pick input 0 ∈ Bs and assign d0,s = 0, ds,j = d0,j for edge (s, j) ∈ Es;

3. For each input i ∈ Bs

di,s = di,0 − d0,0, where di,0 and d0,0 are delay of edges (i, 0) and (0, 0)

in Gc;

We prove delays of all edges in Gc are covered in star Gs. For output edge

(0, j) of input 0, according to step 2 in the Star-of-Biclique algorithm, d0,s + ds,j =

0 + d0,j = d0,j. Therefore, delays of all output edges from input 0 are covered.

For output edge (i, j) from ∀i ∈ Bs,

di,s + ds,j = di,0 − d0,0 + d0,j (V.3)

= di,j − d0,j + d0,j (V.4)

= di,j.

84

Equation V.3 is valid because of step 3 in the Star-of-Biclique algorithm.

Because vector I0 share a pattern with vector Ii, δIi,I0
j = δIi,I0

0 for ∀j ∈ Dc. Thus,

equation V.4 is valid. Therefore, delays of all the output edges from i are covered.

As a result, Gs covers Gc. ¤
Fig.V.2.(a) illustrates a biclique and the delay matrix. In Fig.V.2.(b),

we performs vector subtractions Sub(I2, I1) and Sub(I3, I1) and get the distance

vectors V I2,I1 = {1, 1, 1} and V I3,I1 = {2, 2, 2}. Since the δs in each distance

vector are equal, the biclique contains an input pattern vector. In Fig.V.2.(c), we

construct a star for the biclique. We first cover input delay vector I1 by setting

edge delays d1,s = 0, ds,4 = d1,4 = 2, ds,5 = d1,5 = 3, and ds,6 = d1,6 = 4. Then,

we cover input delay vectors I2 and I3 by setting edge delays d2,s = δI2,I1 = 1 and

d3,s = δI3,I1 = 2. As a result, all the edges in the bicliques are covered in the star

and the number of edge is reduced from 9 to 6.

V.B.2 Replacement Allowing Don’t Care Edges

We allow don’t-care edges thus generalizing biclique-star replacement to

all bicliques. After the replacement, the edge delays in the biclique may or may

not be covered in the star. However, as far as the number of edges covered is more

than the number of edges used in the star, the replacement is beneficial.

A biclique can be replaced by star as far as the delay from an input to an

output in the star does not dominate the corresponding edge delay in the biclique.

The biclique-star replacement allowing don’t-care edge is defined as follows.

Definition V.B.5 (Biclique-star Replacement Allowing Don’t Care Edges)

Given a maximum delay biclique Gc (II.D.1), a biclique-star replacement allowing

don’t care edges replaces Gc by a star Gs such that

1. Bs = Bc, Ds = Dc, where Bs and Ds are input and output sets of Gs, Bc

and Dc are input and output sets of Gc;

2. For edge (i, j) ∈ Ec, the delays di,s and ds,j of edges (i, s) and (s, j) in Es

85

Figure V.2 Biclique-Star Replacement Based on Delay Pattern

86

satisfy

di,s + ds,j ≤ di,j. (V.5)

Edge (i, j) is a don’t care edge. The reduction ratio is the number of edges covered

in Gs over the number of edges in Gs. Note an edge is covered in Gs only if

di,s + ds,j = di,j.

For a minimum delay biclique (II.D.1), the definition is similar except

that the inequality V.5 is changed to

di,s + ds,j ≥ di,j. (V.6)

By allowing don’t care edges, we can replace a biclique by a star when

some sub-vectors of input delay vectors share a delay pattern and all other edges

are don’t care edges. After replacement, the edge delays in the sub-vectors sharing

a pattern are covered. The sub-vectors sharing patterns and sub-vectors of don’t

care edges are defined as follows.

Definition V.B.6 (Pattern of Sub-Vectors)

Sub-vector Sharing Pattern Given input delay vectors Ia and Ib, the sub-vector

Iδ
b ⊆ Ib shares a pattern with corresponding sub-vector Iδ

a ⊆ Ia under δ,

termed Iδ
b ‖ Iδ

a, where Iδ
a = {da,j|db,j ∈ Iδ

b }, if for ∀db,j ∈ Iδ
b , db,j − da,j = δ,

i.e., ∀δIb,Ia

j ∈ V Ib,Ia equals δ, where V Ib,Ia is the distance vector.

Sub-vector of Don’t Care Delays Given input delay vectors Ia and Ib, a delay

db,j is a don’t care delay under δ if δIb,Ia

j > δ. All the don’t care delays

formulates the sub-vector, termed Iδ∗
b .

An example of sub-vectors sharing pattern and sub-vectors of don’t care

delays are in Fig.V.3. Fig.V.3.(a) illustrates a biclique and the corresponding delay

matrix. In Fig.V.3.(b), we perform vector subtraction Sub(I2, I1) and Sub(I3, I1).

The distance vector V I3,I1 = {0, 0, 1, 1}. Under δ = 0, the sub-vector I0
3 = {2, 3} ∈

87

I3 shares pattern with I0
1 = {2, 3} ∈ I1, and the sub-vector I0∗

3 = {5, 6} ∈ I3

contains don’t care delays. Under δ = 1, the sub-vector I1
3 = {5, 6} ∈ I3 shares

pattern with I1
1 = {4, 5} ∈ I1, and the sub-vector of don’t care delays is empty.

Theorem V.B.2 When allowing don’t care edges, ∀ biclique Gc can be replaced

by a star Gs.

Proof : The proof goes as follows. We first modify the Biclique-Star-

Replacement algorithm to construct a star allowing don’t cares. Then, we show

that we can replace the biclique by the star and the replacement satisfies inequality

V.5.

Algorithm: Biclique-Star-Replacement-Allowing-Don’t-Care(Gc,a)

1. Construct star Gs = {Bs, Ds, s, Es}, where input set Bs = Bc, output set

Ds = Dc, and edge set Es = {(i, s)|i ∈ Bs} ∪ {(s, j)|j ∈ Ds};

2. Randomly choose input a and assign da,s = 0, ds,j = da,j for each edge

(s, j) ∈ Es;

3. For each input i ∈ Bs

(a) Vector subtraction Sub(Ia, Ii);

(b) di,s = min{δIa,Ii

j |δIa,Ii

j ∈ V Ia,Ii};

Now, we prove that after replacing Gc by Gs, edge delays in Gs satisfy

inequality V.5. For output edge (a, j) of input a, according to step 2 in the

algorithm, da,s + ds,j = 0 + da,j = da,j. Therefore, the delays from input a to

outputs j remain the same.

For input i, since we assign the minimum δ in distance vector V Ia,Ii as

edge delay di,s, we have inequalities as follows,

di,s + ds,j <= δIa,Ii

j + da,j (V.7)

= di,j − da,j + da,j (V.8)

= di,j (V.9)

88

Therefore, the delays from input i to outputs j do not dominate the edge delay

di,j in Gc. This concludes the proof. ¤
We keep the direct edge (i, j) in the timing model to cover the edge delay

of each don’t care edge when replacing a biclique by a star. An example of the

replacement allowing don’t care edges is illustrated in Fig.V.3. Fig.V.3.(a) illus-

trates the biclique and the delay matrix. In Fig.V.3.(b), we get the distance vectors

V I2,I1 and V I3,I1 . The minimum δs in V I2,I1 and V I3,I1 are 1 and 0, respectively.

In Fig.V.3.(c), we construct the star by assigning delays in input delay vector I1,

i.e., {2, 3, 4, 5}, to edges (s, 4), (s, 5), (s, 6) and (s, 7). The minimum δI2,I1 = 1

and δI3,I1 = 1 are assigned to edges (2, s) and (3, s). We keep the don’t care edges

(3,6) and (3,7) after the replacement. From the biclique to the star, the number

of edge is reduced from 12 to 9.

V.C Timing Model Reduction Based on Biclique-Star Re-

placements

In this section, we search bicliques containing delay patterns in the ab-

stract timing model and minimize the number of edges by replacing bicliques by

stars. The problem is equivalent to the minimum biclique covering problem with-

out considering the edge delays, which is NP complete [15, 34, 36]. Therefore, we

develop a set of heuristics to solve the problem in polynomial time.

V.C.1 Main Flow of Bipartite Timing Model Reduction

The main flow contains three steps. Firstly, we achieve a set of bicliques

in the timing model as the replacement candidates. After that, we evaluate the

reduction ratio for each biclique. A high reduction ratio indicates that a large

number of edges can be reduced after the replacement. Finally, we choose the

biclique with the maximum reduction ratio to replace.

Bipartite Timing Model Reduction(G)

89

Figure V.3 Biclique-Star Replacement Allowing Don’t Care Edges

90

1. Biclique Pool = Biclique-Search(G);

2. Repeat

(a) Evaluate the reduction ratio for each biclique in Biclique Pool;

(b) if max reduction > 1

i. Replaces Gc with the max reduction by a star;

ii. Remove Gc from BicliquePool;

3. Until max reduction < 1

The Indentify-Bicliques procedure returns a set of bicliques as the can-

didates to be replaced. We evaluate all the bicliques in the Biclique Pool, and

replace the one with the maximum reduction ratio by a star using the Biclique-

Star-Replacement-Allowing-Don’t-Care algorithm. We repeat the evaluation and

replacement steps until all the reduction ratios are smaller larger than 1, which

means the number of edges can not be reduced further.

V.C.2 Biclique Search in Bipartite Timing Model

We search bicliques in the timing model as the replacement candidates

and try to maximize the edge reduction. Although any biclique can be replaced by

a star by allowing don’t care edges, the edge reduction produced by the replacement

is different. We devise two rules for biclique search according to reduction ratio

defined in equation V.1. The definition is not accurate for some cases, such as the

biclique including don’t care edges and some edges covered in various bicliques.

However, it indicates the reduction potential of the biclique, and thus can be used

in the biclique search.

Maximize Biclique Size Bicliques of larger size potentially have higher reduc-

tion ratio.

Maximize Edge Coverage We try to cover as many as possible edges with bi-

cliques. If an edge is not covered by any biclique, we need one direct edge

91

to cover the edge delay in the timing model after minimization. However, if

the edge is covered by a biclique with reduction ratio r, after the biclique is

replaced by a star, the edge delay is covered by 1/r edge. As far as r > 1,

there are benefits.

Following these two rules, the biclique search algorithm is as follows.

Algorithm: Biclique-Search(G)

1. Biclique Pool = ∅;

2. Repeat

(a) Randomly choose edge (p, q) ∈ E which is not covered by any biclique;

(b) Input set Bc = {p}, edge set Ec = {(p, j)|(p, j) ∈ E}, output set

Dc = {j|(p, j) ∈ E};

(c) For each input i connected with output q Biclique-Expansion(G,Gc, p, q, i);

(d) Add biclique Gc to Biclique Pool;

3. Until all edges covered;

In the algorithm, we iteratively construct bicliques starting from uncov-

ered edges thus maximizing the edge coverage. When we construct the biclique

for edge (p, q), all the edges (p, j) from input p are added to the biclique first.

Then, we expand the biclique to cover edges from other inputs. When performing

biclique expansion to input i, we try to cover as many as possible edges from input

i and remove as few as possible edges already in the biclique. By doing so, the size

of the biclique is maximized. The Biclique-Expansion algorithm is as follows.

Algorithm: Biclique-Expansion(G,Gc, p, q, i)

1. Vector subtraction Sub(Ii, Ip) between input delay vectors Ii and Ip;

2. max = 0;

3. For each δ ≤ δ
Ii,Ip
q

92

(a) Get sub-vector Iδ
i sharing a pattern with Iδ

p ∈ Ip under δ;

(b) Get sub-vector Iδ∗
i of don’t care delays under δ;

(c) current = Added-over-Removed(Gc, I
δ
i , I

δ∗
i , δ);

(d) If (current > max)

max = current, max vector = Iδ
i ;

4. If max > 0

(a) For each output j in Dc

i. If di,j ∈ Iδ
i Add edge (i, j) to Ec;

ii. else Remove output j and all input edges to j from Gc;

Function: Added-over-Removed(Gc, I
δ
i , I

δ∗
i , δ)

1. Added = |Iδ
i |, Removed = 0;

2. For each output j in Dc

(a) If di,j /∈ Iδ
i ∪ Iδ∗

i

(b) Removed = Removed + #Edges to output j with delays covered in Gc;

3. Return(Added - Removed);

We first perform vector subtraction between input delay vectors Ii and Ip.

Then, we use the Added-over-Removed function to evaluate the number of edges

covered for each δ ≤ δ
Ii,Ip
q as if we 1) find sub-vectors sharing pattern under δ, i.e.,

Iδ
i ‖ Iδ

p , and 2) perform the Biclique-Star-Replacement with di,s = δ. According

to the Biclique-Star-Replacement-Allowing-Don’t-Care algorithm, when assigning

di,s = δ, an edge (i, j) is covered if delay di,j ∈ Iδ
i , where Iδ

i ‖ Iδ
p . The edges (i, j)

with delays di,j /∈ Iδ
i ∪ Iδ∗

i can not be added. Therefore, we need to remove output

j to keep the biclique complete. As a result, the edges to j which are originally

covered in the biclique are counted as removed edges. After the evaluation, we

expand the biclique based on the δ which maximizes the edge coverage. The edge

93

(i, j) is added if di,j belongs to the union Iδ
i ∪ Iδ∗

i . Otherwise, the output j and the

edges to j are removed. By restricting δ
Ii,Ip

j ≤ δ
Ii,Ip
q , we ensure that di,q ∈ Iδ

i ∪ Iδ∗
i ,

thus keeping output q and edge (p, q) in the biclique.

Fig.V.5 and Fig.V.6 illustrate a biclique expansion example based on the

bipartite timing model in Fig.V.4. We want to construct the maximum biclique

covering edge (1,6). The expansion to each input is as follows.

Step 1 Edges from input 1 are included. Thus, edge (1,6) is covered.

Step 2 We expand the biclique to input 2. We first perform the vector subtrac-

tion between input delay vectors I1 and I2 and get distance delta V I2,I1 =

{1, 1, 1, 2,∞}. Then, under δI2,I1
6 = 1 we get sub-vector {4, 5, 6} in I2 which

shares a pattern with sub-vector {3, 4, 5} in I1. Therefore, the number of

edges covered is increased by 3. Edge (2,9) is a don’t care edge because

δI2,I1
9 > δI2,I1

6 . Thus, no edge is removed. Since δ should be smaller than

δI2,I1
6 = 1 to keep edge (1,6) in the biclique, we don’t need to try δI2,I1

9 = 2.

Thus, we expand biclique to input 2 by adding four edges (2,6),(2,7), (2,8),

and (2,9). Among these four edges, three edges, i.e., (2,6), (2,7), and (2,8)

are covered.

Step 3 We expand the biclique to input 3. The expansion process is similar as

that of input 2. Four edges (3,6), (3,7), (3,8) and (3,9) are added into the

biclique, and all these four edges are covered.

Step 4 We expand the biclique to input 4. The distance vector is V I4,I1 =

{3, 3, 3, 2}. Under δI4,I1
6 = 3, we get sub-vector {6, 7, 8} in I4 which shares a

pattern with sub-vector {3, 4, 5} in I1. Therefore, the number of edge covered

is increased by 3. Edge (4,9) is not a don’t care edge because δI4,I1
9 < δI4,I1

6 .

Since edge (4,9) can not be added into the biclique, we have to remove out-

put 9. Two edges to output 9, i.e., (1,9) and (3,9), originally covered in

the biclique are also removed. Therefore, the added-over-removed is 1 for

δI4,I1
6 = 3. Because δ = 2 is smaller than δI4,I1

6 = 3, we need to evaluate the

94

added-over-removed for δ = 2. The result is also 1. We randomly choose to

expand biclique based on δI4,I1
6 = 3. Three edges (4,6), (4,7) and (4,8) are

added. Output 9 and edges to output 9 are removed.

Step 5 We expand the biclique to input 5. After expansion. three edges (5,6),

(5,7), and (5,8) are added into the biclique, and two edges (5,6) and (5,7) in

these three are covered.

Figure V.4 Bipartite Timing Model and the Delay Matrix Example

We further achieve all the bicliques in the bipartite timing model in

Fig.V.4, and illustrate the bicliques in Fig.V.7. For each biclique, we show the

edge from which we start the expansion. For example, we expand biclique Gc1

starting from edge (1,6), and expand biclique Gc2 from edge (1,9). The solid lines

represent edges covered in the bicliques, and the dotted lines represent don’t care

edges. Each edge in the bipartite timing model is covered by at least one biclique.

V.C.3 Edge Reduction Evaluation

We use reduction ratios to evaluate benefits of replacing bicliques by stars.

However, the reduction ratio defined in equation V.1 is not accurate when there

are don’t care edges in the biclique or some edges are covered by multiple bicliques.

A more accurate and general definition of the reduction ratio is as follows.

95

Figure V.5 Biclique Expansion Starting from Edge (1,6) in Bipartite Timing Model

(Fig.V.4): Steps 1 to 3.

96

Figure V.6 Biclique Expansion Starting from Edge (1,6) in Bipartite Timing Model

(Fig.V.4) : Steps 4 and 5.

Definition V.C.1 (Reduction Ratio) Given a biclique Gc, if Gc can be replaced

by a star Gs, the reduction ratio r = c/(m + n), where c is the number of edge

delays covered and only covered by Gs, m + n is the number edges in Gs.

Therefore, when replacing a biclique by a star, we label the edges covered

by the star. After the replacement, we re-compute the reduction ratios for the

bicliques left in the Biclique Pool. All the edges with labels are not counted.

For example, for the bicliques in Fig.V.7, before any biclique replaced by

a star, the reduction ratios are r(Gc1) = 14/(3+5) = 1.75, r(Gc2) = 13/(4+5) =

97

Figure V.7 All Bicliques in Bipartite Timing Model (Fig.V.4)

13/9, r(Gc3) = 9/7, and r(Gc4) = 5/(5+1) = 5/6. Because biclique Gc1 has the

maximum reduction ratio, we will replace Gc1 by a star. After the replacement,

we re-evaluate the reduction ratios. r(Gc2) = 4/(4+5) = 4/9 because edges (1,6),

(1,7), (1,8), (2,6), (2,7), (2,8), (3,6), (3,7) and (3,8) covered by Gc1 are not counted.

After similar re-evaluation, r(Gc3) = 4/7 and r(Gc4) = 1/2. Therefore, after Gc1

replaced by the star, the reduction ratios of all biclique are no larger than 1. The

timing model after reduction is shown in Fig.V.8. The number of edges in the

bipartite timing model is reduced from 22 to 16.

Theorem V.C.1 The complexity of constructing maximum biclique for edge (p, q)

is Opq = O((d−(q) × d+(p)2)), where d+(p) and d−(q) are output and input

degree of input p and output q;

98

Figure V.8 Bipartite Timing Model (Fig.V.4) Reduction : The number of edges is

Reduced from 22 to 16.

The complexity of biclique evaluation Oe = O(|E| × k), where E is the edge set

of the timing model and k is the number of bicliques in Biclique Pool;

The complexity of timing model reduction is O(Σ(Opq) + k ×Oe).

Proof :

(1) For each edge (p, q), we expand biclique to input i if i connects with

output q which is d−(q) times expansion. For each expansion, we search sub-vectors

in input delay vector Ii using different δs. The number of δs is d+(p). For each

δ, to evaluate the number of edges added over removed, we need another δ times

comparison. As a result, the complexity to constructing maximum biclique from

edge (p, q) is d−(q)× (d+(p))2).

(2) To evaluate the reduction ratio of each biclique, we need to check

each edge in the biclique and count the number of covered edges. Each biclique in

Biclique Pool contains at most |E| number of edges. Thus, the complexity for k

bicliques would be O(|E| × k).

(3) Because we achieve a maximum biclique from each edge, for all edges

the complexity is O(Σ(Opq)). After replacing each biclique in Biclique Pool by a

star, we need to update the biclique reduction ratios. Thus, for k biclique, the

99

complexity is O(k×Oe). As a result, the complexity of timing model reduction is

O(Σ(Opq) + k ×Oe). ¤

V.C.4 Iterative Timing Model Reduction

We iteratively perform the bipartite timing model reduction to reduce

the number of edges further. A vertex splitting and a star recover technique are

proposed to maintain the timing model a bipartite graph. Based on the bipartite

timing model, we can repeat the bipartite timing model reduction process until no

improvement, thus maximizing the edge reduction.

After replacing a set of bicliques by stars, the timing model is not bipartite

graph any more. The inserted vertices, which are the centers of the stars, partition

a part of the timing model into two bipartite graphs. Intuitively, we can repeat

the timing model reduction on each bipartite partition and accumulate the results

into the whole timing model. However, we may lose the ability to discover larger

bicliques crossing multiple bipartite partitions, which makes the reduction low

efficient. For example in Fig.V.9, the timing model is partitioned by vertices

s1 and s2 into several bipartite graphs. The biclique circled in the figure which

includes inputs 1,2,3, vertices s1 and s2, and output 9, is hard to be discovered.

Figure V.9 Bicliques Crossing Multiple Bipartite Partitions

We propose a vertex splitting technique to transform the timing model

into a bipartite graph. By doing so, we can discover larger bicliques thus improving

100

the reduction ratio. We split vertex s of each star Gs into two vertices s and s′ as

follows.

Algorithm: Vertex-Splitting(G,Gs)

1. Split vertex s into vertices s and s′;

2. Input set B = B ∪ {s′}, output set D = D ∪ {s};

3. For each output j in output set Ds

E = E − {(s, j)} and E = E ∪ {(s′, j)}

We add the duplicated vertex s′ into the input set and push vertex s into

output set D. All the edges originally from s to j are moved to vertex s′.

As the reverse process of the vertex splitting, we recover a star by merging

the corresponding vertices s′ and s.

Algorithm: Star-Recover(G′, s, s′)

1. B = B − {s′}, D = D − {s};

2. For each edge (s′, j)

Add edge (s, j);

Fig.V.10 illustrates an example of vertex splitting and star recover. From

left to right, we split vertices s1 and s2, add s′1 and s′2 into the input set, and push

s1 and s2 into the output set. After the vertex splitting, the timing model G is

transformed into a bipartite graph. The star recover is the reverse process, which

merges s1 with s′1, and s2 with s′2. The bipartite graph is recovered into the timing

model.

According to the vertex splitting and star recover algorithm, there is a

One-to-One mapping between edges before and after the vertex splitting.

Property: One-to-One Mapping: Suppose timing model G is trans-

formed into bipartite graph G′ by vertex splitting.

• Edge (s, j) ∈ E corresponds to edge (s′, j) ∈ E ′.

101

Figure V.10 Vertex Splitting and Star Recover

• Edge (i, j) ∈ E corresponds to edge (i, j) ∈ E ′.

• Edge (i, s) ∈ E corresponds to edge (i, s) ∈ E ′.

Note the map is unique and two-directional.

With vertex splitting and star recover, we can iteratively perform the

bipartite timing model reduction to minimize the number of edges in the timing

model.

Algorithm: Iterative-Reduction(G)

1. Repeat

(a) Bipartite-Timing-Model-Reduction(G);

(b) For all stars Gs Vertex-Splitting(G,Gs)

2. Until no edge reduction

3. For all vertices s and s′ Star-Recover(G, s, s′)

Theorem V.C.2 Edge delay di,j of any connected input i and output j in timing

model G is covered by the longest path delay d′i,j from input i to output j in timing

model G′ after the reduction.

102

Proof : We prove by induction on bipartite timing model reduction iter-

ations. Suppose the maximum delay model before reduction is G0. We label the

timing models after each step in the ith iteration as follows.

Gi: Models after Timing-Model-Reduction.

G′
i: Bipartite graph after Vertex-Splitting.

G′′
i : Timing model after Star-Recover.

We prove in G′′
i , the longest path delay for input-output pair (i, j) equals delay di,j

of edge (i, j) in model G0.

After the 1st iteration, we get G1, in which a set of bicliques are replaced

by star. According to the Bipartite-Timing-Model-Reduction algorithm, for ∀
input-output pair (i, j), max(di,s + ds,j) = di,j where {(i, s), (s, j)} is a two-edge

path in G1 and di,j is delay of edge (i, j) in G0. Since G′′
1 is the same as G1, the

statement holds. Assume the statement holds for all iterations before k. We show

the statement true for the kth iteration.

According to the reduction assumption, in G′′
k−1 the longest path delay

from input i to output j equals di,j, where di,j is delay of edge (i, j) in G0. According

to the One-to-One Mapping property of vertex splitting, each edge on the path

from i to j corresponds to an edge (sp−1, sp) in G′
k−1.

The model reduction of iteration k is performed on G′
k−1. According

to the Bipartite-Timing-Model-Reduction algorithm, after model reduction, the

longest two-edge path delay from input sp−1 to sp equals delay dsp−1,sp of edge

(sp−1, sp) in G′
k−1. Thus, after recovering the stars, in G′′

k the longest path delay

from input i to output j equals di,j, where di,j is delay of edge (i, j) in G0. The

statement holds for iteration k. This concludes our proof. ¤

103

V.D Timing Model Reduction with False Paths and Multi-

cycle Paths

We expand timing model to cover false paths and multi-cycle paths, and

keep the proposed model reduction technique valid for the expanded timing model.

We first analyze the cases of false paths and multi-cycle paths in hierarchical blocks.

Then, we propose to use the tag-based approach IV in the bipartite timing model

characterization. The false paths are removed and multi-cycle timings are covered

on edge delays. Since the abstract timing model remains in the same format, the

model reduction technique is still valid.

The hierarchical blocks may contain false paths and multi-cycle paths.

Fig.V.11 illustrates three possible cases.

1. The path is contained in the block, i.e., f1 in block 2.

2. The path starts in one block and ends in another, i.e., f2 from block 1 to

block 2.

3. The path goes through the block, i.e., f3 through block 2.

Figure V.11 Hierarchical Blocks Containing False Paths

We follow the tag-based approach to deal with false and multi-cycle paths

on the flat circuit, and then construct the abstract timing model based on the tags

inside hierarchical blocks. Tags are attached on the inputs and outputs in the tim-

ing model for slack computation. After we get the bipartite abstract timing model,

we can iteratively apply the model reduction algorithm to do the minimization.

The maximum delay model of hierarchical block H is constructed as follows.

104

Algorithm: Model-Construction(H)

1. G = {B, D, E}, input set B = ∅, output set D = ∅, edge set E = ∅;

2. For each tag R at input i of block H B = B ∪ {iR};

3. For each tag R at output j of block H D = D ∪ {jR};

4. For each tag R at input i of block B

(a) For each tag R′ at output j of block B Arrmax,R′(j) = −1;

(b) Forward propagates Arrmax(i, R) until outputs of B;

(c) For each tagged arrival time Arrmax(j, R
′) at output j

If Arrmax(j, R
′) 6= −1

i. E = E ∪ {(iR, jR′)};
ii. diR,jR′ = Arrmax(j, R

′);

For each tag R at input i, we add a tagged input iR into input set B. Sim-

ilarly, we add tagged outputs jR into output set D. We forward propagate tagged

timing Arrmax(i, R) at the input i to all outputs. The arrival time Arrmax(j, R
′)

at output j is the longest path delay from iR to jR′ . The time shifting is included

when forward propagating the arrival times. After timing propagation, an edge

(iR, jR′) with delay Arrmax(j, R
′) is added to edge set E.

V.E Experimental Results

We test the proposed approach on industry test cases. The algorithm

is implemented in C and run on a Pentium 4 Linux machine. We construct and

minimize the timing models for two circuit blocks. Circuit block 1 contains 8499

inputs, 16885 outputs, 138,360 edges in the timing graph of the block, and 262,491

edges in the bipartite timing model. Circuit block 2 contains 4260 inputs, 103,414

edges in the timing graph of the block, and 7728 edges in the bipartite timing

model.

105

We compare the number of edges in the timing model after reduction

with both the number of edges in the timing graph of the block and the number of

edges in the bipartite timing model. Two reduction ratios are defined as follows.

rG = (EG − Em)/EG (V.10)

rB = (EB − Em)/EB, (V.11)

where EG is the number of edges in the timing graph of the block, EB is the

number of edges in the bipartite timing model, and Em is the number of edges in

the timing model after the reduction.

Fig.V.12 illustrates the reduction ratios in the iterative reduction process

on block b1. Each data point represents a biclique-star replacement. The vertical

axis shows the reduction ratio rB. The horizontal axis represents the order of the

replacements. The reduction process contains three iterations. In each iteration,

bicliques are replace by stars in the order of reduction ratios. In the iterative

reduction process, the average reduction ratio of each iteration is decreasing. The

total reduction is rB = 5.1%. According to the curve, we conclude that our

heuristic approach can effectively obtain bicliques in the abstract timing model in

terms of the reduction ratios, and multiple iterations are necessary to maximize

the edge reduction.

We allow error bounds on edge delays. For any connected input i and

output j, the error bound is defined as follows.

di,j − d′i,j ≤ error bound, (V.12)

where di,j and d′i,j are the longest path delays in timing models before and after

the model reduction. In Table V.1, we show the number of edges in the timing

model after the reduction, i.e., Em, and the reduction ratios, i.e., rG and rB. For

block 1, if the error bound is 0, Em will be larger than EG and smaller than EB

because the number of edges is increased when we transform the timing graph into

the bipartite timing model. By allowing 0.1ns error bound, the number of edges

106

Figure V.12 Reduction Ratios of Replaced Bicliques

is reduced by 69.9% compared with the timing graph and 84.1% compared with

bipartite timing model. In block 1, the delay of minimum size buffer, Buffer× 1,

is 1.34ns, which is much larger than the error bound. Therefore, we consider the

timing model with 0.1ns error bound is acceptable. By further increasing the error

bounds, we can reduce more edges. However, the improvement is not substantial

and if the error bound is too large, the abstract timing model is not accurate.

Table V.1 Edge Reduction with Error Bounds
Block 1 EG = 138,360 EB = 262,491 Block 2 EG = 103,414 EB= 465,190
Error(ns) Ea rG rB Error(ns) Ea rG rB

0 249,032 -80.0% 5.1% 0 397,384 -284.3% 14.6%
0.1 41,696 69.9% 84.1% 0.01 49,613 52.0% 89.3%
0.5 39,099 71.7% 85.1% 0.05 35,901 65.3% 92.3%
1.0 36,980 73.3% 85.9% 0.10 29,477 71.5% 93.7%
5.0 36,108 73.9% 86.2% 0.50 22,214 78.5% 95.2%

10.0 35,981 74.0% 86.3% 1.0 21,192 79.5% 95.4%
50.0 36,169 73.9% 86.2% 5.0 20,459 80.2% 95.6%

100.0 36,169 73.9% 86.2% 10.0 20,262 80.4% 95.6%
Buffer × 1 delay = 1.34ns. Buffer × 1 delay = 0.74ns

VI Conclusion

VI.A Dissertation Contribution

Static timing analysis plays a vital role in nowadays design flow. The

success of the whole process relies on an accurate and efficient static timing analysis

package. In this dissertation, we studied the false path, multi-cycle path and

hierarchical timing analysis problems which closely relate to the timing analysis

accuracy and efficiency.

For false path problem, we present a two-direction propagation technique

which uses a biclique covering approach improving the efficiency of static timing

analysis. We follow the rule set concept in the previous works to consider the false

paths and propose to collect the rule sets into rule collections. By doing so, we

effectively reduce the number of the distinguished timings for timing propagations,

thus improving the efficiency. We compare the proposed approach with the pre-

vious optimization methods. The experimental results verify that the proposed

approach significantly reduces the number of the distinguished timings with excel-

lent run time performance. For the optimization process which iteratively invokes

timing analysis, the efficiency improvement is substantial.

For multi-cycle path problem, we propose a framework to unify the pro-

cess of false paths and multi-cycle paths in static timing analysis. Furthermore, we

apply the two-direction propagation and the biclique covering on the framework,

thus improving the efficiency. Finally, we present theorems to guarantee that our

approach produces correct timing information with false paths and multi-cycle

107

108

paths considered. The experimental results demonstrate that our minimization is

effective.

For hierarchical timing analysis, we focused on abstract timing model re-

duction, which minimizes the number of edges in the abstract timing model for tim-

ing propagations, thus improving the analysis efficiency. We propose a biclique-star

replacement technique and develop an iterative timing model reduction algorithm

based the biclique-star replacement. By allowing reasonable error bounds, the ex-

periments results show that the proposed algorithm effectively reduces the number

of edges in the timing model. Furthermore, by applying tag-based approach, the

proposed algorithm can be expanded to cover false paths and multi-cycle paths in

timing models.

VI.B Future Works

The future research including following directions.

• Model reconstruction. The unified framework for false paths and multi-cycle

paths should deal with false paths and multi-cycle paths dynamically altered

during the optimization. Similarly, the timing model reduction algorithm

assume the timing relations inside the hierarchical block are fixed, which will

not hold when the block is optimized. An intuitive approach which regen-

erates all the tags or reconstruct the abstract timing model would be low

efficient. However, the change on timing graph topology makes the incre-

mental regeneration non trivial.

• Extension to false crosstalk. When signals on two wires transit at the same

time, the timing of these two wires affects each other, which is crosstalk.

We could consider a timing path between the two wires which the crosstalk

goes through. Since crosstalk happens depending on the timing correlation

between signals, the timing path for crosstalk between wires maybe false.

As a result, we may need to detect and remove false crosstalk during timing

109

analysis, which leads to high complexity.

• Complexity of timing model reduction. The timing model reduction algo-

rithm suffers from high complexity when the abstract timing model contains

a large number of edges. The reason comes from too many bicliques as the

reduction candidates. An arbitrary bound on the number of candidates can

not ensure the quality. Since the problem is similar as the K-map covering

problem in synthesis, we may borrow some classic heuristics to reduce the

complexity.

• Non-linear Abstract Timing Model. The abstract timing model we con-

structed is based on linear delay model. However, in some cases, we may

need non-linear delay model to achieve higher accuracy. For example, we

may need to construct a two-dimension look-up table for each pair of input

and output of the timing model such that we can propagate signal slopes

through the hierarchical block. If we want to reduce the number of edges in

a non-linear abstract timing model, we need to combine the two-dimension

look-up tables attached on edges, which is non-trivial.

Bibliography

[1] Cadence incremental common timing engine, 2005.
http://www.cadence.com/products/digital ic/gps.aspx.

[2] Synopsys static timing analysis, 2006.
http://www.synopsys.com/products/analysis/ptsi ds.html.

[3] K. P Belkhale and A. J. Suess. Timing analysis with known false sub-graphs.
In Proc. of the Intl. Conf. on Computer-Aided Design, pages 736–740, 1995.

[4] J. Benkowski, E. Vanden Meersch, L. Claesen, and H. De Man. Efficient
algorithms for solving the false path problem in timing verification. In Proc.
of the Intl. Conf. on Computer-Aided Design, pages 44–47, 1987.

[5] D Blaauw and T Edwards. Generation of false path free timing graphs for
circuit optimization. In ACM Intl. Workshop on Timing Issues in the Speci-
fication and Synthesis of Digital Systems, pages 165–170, 1999.

[6] D. Blaauw, R. Panda, and A. Das. Removing user-specified false paths from
timing graphs. In Proc. of the Design Automation Conf., pages 270–273, 2000.

[7] H. C. Chen and D. H. C. Du. Path sensitization in critical path problem. In
Proc. of the Intl. Conf. on Computer-Aided Design, pages 208–211, 1991.

[8] H. C. Chen and D. H. C. Du. Path sensitization in critical path problem.
IEEE Trans. Computer-Aided Design, pages 196–207, 1993.

[9] C. K. Cheng, J. Lillis, S. Lin, and N. Chang. Interconnect Analysis and
Synthesis. John Wiley Sons, first edition, 1999.

[10] F. Chung, M. Garrett, R. Graham, and D. Shallcross. Dis-
tance realization problems with applications to internet tomography.
http://www.math.ucsd.edu/?fan.

[11] S. Devadas, K. Keutzer, and S. Malik. Computation of floating mode delay in
combinational circuits: Theory and algorithm. IEEE Trans. Computer-Aided
Design, 12:1913–1923, 1993.

110

111

[12] S. Devadas, K. Keutzer, S. Malik, and A.Wang. Computation of floating mode
delay in combinational circuits: Practice and implementation. IEEE Trans.
Computer-Aided Design, 12:1924–1936, 1993.

[13] D. H. C. Du, S. H. C. Yen, and S. Ghanta. On the general false path problem
in timing analysis. In Proc. of the Design Automation Conf., pages 555–560,
1989.

[14] T. Feder, A. Meyerson, R. Motwani, L. OCallaghan, and R. Panigrahy. Rep-
resenting graph metrics with fewest edges. In Proc. of Symp. on Theoretical
Aspects of Computer Science, pages 355–366, 2003.

[15] T. Feder and R. Motwani. Clique partitions, graph compression and speeding
up algorithms. In Proc. of the ACM Symposium on Theory of Computing,
pages 123–133, 1991.

[16] E. Goldberg and A. Saldanha. Timing analysis with implicitly specified false
path. In ACM Intl. Workshop on Timing Issues in the Specification and
Synthesis of Digital Systems, pages 157–164, 1999.

[17] A. Gupta and D. P. Siewiorek. Automated multi-cycle symbolic timing veri-
fication of microprocessor-based designs. In Proc. of the Design Automation
Conf., pages 113–119, 1994.

[18] S. L. Hakimi and S. S. Yau. Distance matrix of a graph and its realizability.
Quart. Appl. Math., 22:305–317, 1964.

[19] Z. Hasan and M. Ciesielski. Elimination of multi-cycle false paths by state
encoding. In Proc. of the European Design Automation Conf., pages 155–159,
1995.

[20] R. B. Hitchcock. Timing verification and timing analysis program. In Proc.
of the Design Automation Conf., pages 594–604, 1982.

[21] T.-C. Hu. Combinatorial Algorithms. Dover Publication, second edition, April
2002.

[22] S. T. Huang, T. M. Parng, and J. M. Shyu. A polynomial-time heuristic
approach to approximate a solution to the false path problem. In Proc. of the
Design Automation Conf., pages 118–122, 1993.

[23] M. Hutton, D. Karchmer, B. Archell, and J. Govig. Efficient static timing
analysis and applications using edge masks. In Proc. Int. Symp. on Field-
Programmable Gate Arrays, pages 174–183, 2005.

[24] N. P. Jouppi. Timing analysis for nmos vlsi. In Proc. of the Design Automation
Conf., pages 411–418, 1983.

112

[25] R. Kamikawai, M. Yamada, T. Chiba, K. Furumaya, and Y. Tsuchiya. A
critical path delay check system. In Proc. of the Design Automation Conf.,
pages 118–123, 1981.

[26] R. H. Katz and G. Borriello. Contemporary Logic Design. Pearson Prentice
Hall, second edition, 2005.

[27] K. Keutzer, S. Malik, and A. Saldhana. Is redundancy necessary to reduce
delay. IEEE Trans. Computer-Aided Design, 10:427–435, April 1991.

[28] Y. Kukimoto and R. K. Brayton. Hierarchical functional timing analysis. In
Proc. of the Design Automation Conf., pages 580–585, 1998.

[29] Y. Kukimoto, W. Gosti, R. K. Brayton, and A. Saldanha. Approximate
timing analysis of combinational circuits under xbd0 model. In Proc. of the
Intl. Conf. on Computer-Aided Design, pages 176–181, 1997.

[30] W. K. C. Lam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Exact min-
imum cycle time for finite state machines. In Proc. of the Design Automation
Conf., pages 100–105, 1994.

[31] P. C. McGeer and R. K. Brayton. Efficient algorithms for computing the
longest viable path in a combinational network. In Proc. of the Design Au-
tomation Conf., pages 561–567, 1989.

[32] P. C. McGeer and R. K. Brayton. Integrating Functional and Temporal Do-
mains in Logic Design. Kluwer Academic Publishers, May 1991.

[33] C.W. Moon, H. Kriplani, and K. P. Belkhale. Timing model extraction of
hierarchical blocks by graph reduction. In Proc. of the Design Automation
Conf., pages 152–157, 2002.

[34] H. Muller. On edge perfectness and classes of bipartite graphs. Discrete Math.,
149:159–187, 1996.

[35] M. Nourani and C. Papachristou. False path exclusion in delay analysis of
rtl-based datapath-controller designs. In Proc. of the European Design Au-
tomation Conf., pages 336–341, 1996.

[36] J. Orlin. Containment in graph theory: Covering graphs with cliques. Indag.
Math., 39:211–218, 1977.

[37] P.Ashar, S.Dey, , and S.Malik. Exploiting multi-cycle false paths in perfor-
mance optimization. In Proc. of the Intl. Conf. on Computer-Aided Design,
pages 510–517, 1992.

[38] D. J. Pilling and H. B. Sun. Computer aided prediction of delays in lsi logic
systems.

113

[39] A. Saldanha, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Circuit struc-
ture relations to redundancy and delay: the kms algorithm revisited. In Proc.
of the Design Automation Conf., pages 245–248, 1992.

[40] A. Saldanha, H. Harkness, P. C. McGeer, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Performance oprunization using exact sensitization. In Proc. of
the Design Automation Conf., pages 425–429, 1994.

[41] T. Sasaki, A. Yamada, T. Aoyama, K Hasegawa, S. Kato, and S. Sato. Hi-
erarchical design verification for large digital systems. In Proc. of the Design
Automation Conf., pages 105–112, 1981.

[42] C. Visweswariah and A. R. Conn. Formulation of static circuit optimization
with reduced size, degeneracy and redundancy by timing graph manipulation.
In Proc. of the Intl. Conf. on Computer-Aided Design, pages 244–251, 1999.

[43] M. A. Wold. Design verification and performance analysis. In Proc. of the
Design Automation Conf., pages 264–270, 1978.

[44] H. Yalcin and J. P. Hayes. Hierarchical timing analysis using conditional
delays. In Proc. of the Intl. Conf. on Computer-Aided Design, pages 371–377,
1995.

[45] H. Yalcin, J. P. Hayes, and K. A. Sakallah. An approximate timing analysis
method for datapath circuits. In Proc. of the Intl. Conf. on Computer-Aided
Design, pages 114–118, 1996.

[46] H. Yalcin, M. Mortazavi, R. Palermo, C. Bamji, and K. Sakallah. Functional
timing analysis for ip characterization. In Proc. of the Design Automation
Conf., pages 731–736, 1999.

[47] H. Yalcin, M. Mortazavi, R. Palermo, C. Bamji, and K. Sakallah. Fast and
accurate timing characterization using functional information. IEEE Trans.
Computer-Aided Design, 20:315–330, 2001.

[48] S. Zhou, B. Yao, H. Chen, Y. Zhu, C.-K. Cheng, M. Hutton, and et al.
Improving the efficiency of static timing analysis with false paths. In Proc. of
the Intl. Conf. on Computer-Aided Design, pages 527–531, 2005.

