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Abstract

Essays in Behavioral Economics and Risk Management

by

Jeffrey Trevor Holman

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Robert M. Anderson, Chair

In the first chapter, I develop a model of prospective memory, defined as the
capacity to recall actions to be carried out in the future. An agent faces some
task with stochastic cost ct , benefit b, and T periods until some exogenously
imposed deadline. The agent can only execute the task at time t if the task is
recalled in that period. The memory process exhibits the rehearsal property
that the probability of recall is lower if the task was forgotten in the recent
past. The agent sets a threshold cost each period based on her expectations
of whether she will recall and carry out the task in future periods. If the task
is recalled at time t, and the draw from the cost distribution is below this
threshold, the task is executed. We then introduce memory overconfidence
into the model, which we define as either overestimating the base likelihood
of recall in future periods or underestimating the effect of temporary forgetting
on subsequent recall. Memory overconfidence leads not only to inefficiently
low rates of task completion, but also to the prediction that the probability
of task completion may vary inversely with the length of time allocated to
completing the task. We discuss the interaction of these effects with present-
biased preferences, and provide examples of economic scenarios where this
dynamic may be exploited by firms to the detriment of consumers.

In the second chapter, I introduce a new copula which simultaneously al-
lows fully-general correlation structures in the bulk of a multivariate distri-
bution and an arbitrarily high degree of dependence in the left tails. This is
ideally suited for modeling financial assets which may display moderate cor-
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relation in normal times, but which experience simultaneous left tail events,
such as during a financial crisis. The new copula is shown to be fully flexible
in the sense that the user can specify a desired structure for a sequence of
increasingly dire events in the left tail, while still retaining the same correla-
tion structure in the bulk. Finally, I illustrate the use of this copula with an
application to hedge fund returns.
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1 Prospective Memory

1.1 Introduction

Human memory is far from perfect. Beginning with Ebbinghaus’s ground-
breaking work on the “forgetting curve” in 1885 [21], the psychology litera-
ture contains extensive evidence supporting this claim. Yet, in economics, the
critical role that fallible memory plays in coloring individual decision-making
has been largely neglected until recently. This neglect may lead to the misat-
tribution of certain observed anomalies to other types of biases.

One such anomaly is the failure of individuals to carry out projects with
small, immediate costs and large, deferred benefits. Several empirical studies
have documented this finding and explained it by time-inconsistent prefer-
ences.1 For instance, DellaVigna and Malmendier [20] suggest that the low
cancelation rates observed with automatically renewed health club member-
ships may be an example of status quo bias generated by hyperbolic time-
discounting. Madrian and Shea [54] and Choi, Laibson, Madrian, and Metrick
[15] suggest that this same status quo bias keeps employees from updating
the often-suboptimal default enrollment options in 401(k) plans.

While we agree that time-inconsistency plays a role in generating this in-
efficient behavior, we believe that this explanation is incomplete, particularly
when considering projects with deadlines. While present-biased preferences
may lead to delay in executing beneficial tasks such as canceling an unused
health club membership or modifying a benefits plan, such preferences often
cannot explain the failure to carry out such tasks altogether. For example,
consider an individual who has 30 days to mail in a $50 consumer rebate. It
is calibrationally feasible to derive from present-biased preferences that, for
the first 29 days, she will defer completing and mailing out the rebate form,
preferring to do it “tomorrow” over “today.” However, on the 30th day, her
choice is between “today” and “never”, and justifying task omission in such
cases often requires assuming an extremely low β (i.e., extreme present-biased

1In the quasi-hyperbolic form, time-inconsistent agents have a discount rate of βδ between
the current period and the next period, and δ between all future periods. Thus, β captures
the special salience of the present.
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preferences).

Assuming stochastic costs and naivete with respect to present-biased pref-
erences, as in O’Donoghue and Rabin [62], can lead to inefficiently low task
execution rates, even for feasible values of β . However, these assumptions
are inconsistent with the empirical finding that task execution rates may vary
inversely with the length of deadline. Shafir and Tversky [75] offered stu-
dents $5 to return a long questionnaire by a given date. The students were
randomly assigned to one of three deadline groups – the first group was given
5 days, the second group 3 weeks, and the third group no definite deadline.
The respective rates of return for the three groups were 60%, 42%, and 25%.
Procrastination can explain the drop in the return rate between the groups
with a deadline and the group with no deadline – when no deadline is given,
students never reach the “now” or “never” decision, and naive hyperbolics will
defer completing the survey each period, always planning on doing it next pe-
riod. However, with a finite deadline, a model with stochastic costs and naive
hyperbolic time-discounting would predict a positive relationship between the
likelihood of task execution and the length of deadline. Having more time
gives agents more chances to draw a low-cost realization, and thus the likeli-
hood of executing the task would increase.

Perhaps most importantly, the time-inconsistency explanation simply feels
incomplete when we relate it to our personal experiences in failing to execute
basic, time-sensitive tasks. Consider the last time you failed to mail in a rebate,
cancel a free trial offer, or return a borrowed movie or book on time. What
happened? A common response is simply, “I forgot.” In this paper, we explore
this type of fallible memory as an alternative (or more accurately, comple-
ment) to time-inconsistent preferences in explaining inefficient behavior with
respect to completing tasks with deadlines.

We build on the work of Mullainathan [60], which developed a retrospec-
tive memory-based model of bounded rationality, by extending the analysis to
prospective memory. The distinction, as explained by psychologist P.E. Morris
(1992), is that “prospective memory is memory for intentions, for actions that
we wish to carry out in the future, while retrospective memory is recall of in-
formation from the past.” There is continued debate among psychologists on
whether a distinction should be made between these two “types” of memory,
given that the underlying mechanisms that determine the success or failure of
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remembering a past memory or a future task may be the same. Nonetheless,
from the perspective of economics, we view these as distinct types of memory
recall, with different implications for individual decision-making behavior.

Section 1.2 surveys the existing psychology literature on fallible memory,
and prospective recall in particular. The experimental evidence on prospective
memory is quite limited. The most common studies – “postcard studies” – in-
struct subjects to mail in postcards at (or before) some specified future date,
and monitor how return rates vary with time frame, cues, and monetary in-
centives. Unfortunately, many of these studies have limited sample sizes and
other methodological concerns, and are uninformative on how prospective
memory beliefs correlate with actual recall performance. More recent work
in the economics and marketing literature ([77] and [27]) addressed some of
these concerns.

In Section 1.3, we develop a baseline model of prospective memory (PM),
and apply it to a choice problem where the agent faces some task with stochas-
tic cost ct , fixed benefit b, and T periods until some exogenously imposed
deadline. The agent can only execute the task at time t if the task is recalled
in that period. We adopt a memory function with the rehearsal property de-
scribed in Mullainathan [60] – that is, the probability of recall is lower if the
event (or in this case, the task) was forgotten in the recent past. The agent
sets a threshold cost each period based on her expectations of whether she will
recall and carry out the task in future periods. If the task is recalled at time
t, and the draw from the cost distribution is below this threshold, the task is
executed. We discuss the time pattern of hazard rates for agents with perfect
and imperfect memories, and demonstrate an empirically testable prediction
for fallible memory – hazard rates must be increasing for agents with perfect
memory, but may be decreasing for agents with imperfect memory.

In our baseline model, we assume that agents, despite their fallible mem-
ory, have correct beliefs over their PM process. In Section 1.4, we introduce
the possibility that agents have systematically incorrect PM beliefs, as sug-
gested by experimental evidence in Silk [77] and Ericson [27] on subjects’
incentive-compatible memory beliefs and subsequent performance. In partic-
ular, agents may be overconfident in their prospective memory. We define
prospective memory overconfidence as overestimating the base likelihood of
recall in future periods, or underestimating the effect of forgetting the task in
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any period (or series of periods) on the subsequent probability of recall. We
view PM overconfidence as a form of projection bias [51]. That is, individuals
“project” their current memory state onto all future periods, and develop their
expectations for future recall and behavior accordingly. PM overconfidence
can also be viewed as analogous to other forms of “information projection”
such as hindsight bias and curse of knowledge.

In Section 1.5, we discuss the effects of PM overconfidence on agent be-
havior in our model. First, PM overconfidence reduces welfare. When an
agent is overconfident with respect to prospective memory, the perceived con-
tinuation value of deferring tasks is higher than the true continuation value
– the agent will inefficiently defer tasks, overoptimistically relying on future
recall and execution. Second, in our key result, PM overconfidence increases
the likelihood that extending the deadline will be to the detriment of the agent
– that is, that both the ex ante expected utility and probability of task execu-
tion decrease as T increases. While the optimal strategy requires agents to
decrease threshold costs when the deadline is extended, overconfident agents,
in overestimating the benefit of the extended deadline, reduce threshold costs
by more than they should. Under certain conditions (in particular, if agents
are sufficiently forgetful and overconfident), the cost of this over-selectivity in
early periods outweighs the benefit of having more periods to remember the
task, and agents are made worse off. Thus, our model provides an explanation
for the Shafir and Tversky student survey result.

In Section 1.6 we discuss two extensions of the model – memory aids and
time discounting. We incorporate memory aids by assuming that, for some
cost, agents can ensure recall in some subset of the periods before the dead-
line. Depending on the values of the memory parameters, agents will either
choose to backload reminders (to allow for lower threshold costs in early pe-
riods) or spread out reminders (to mitigate the adverse effect of successive
forgetting). We also show that, for an increasing benefit from task comple-
tion, the welfare loss from fallible memory for overconfident agents can be
made arbitrarily large, while for agents with correct PM beliefs, the welfare
loss is bounded by the cost of a complete memory aid.

We next incorporate time-discounting into the model, and demonstrate
that the Shafir and Tversky result cannot be explained by hyperbolic discount-
ing alone. At the same time, we show that time-inconsistency has positive
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interaction effects with PM overconfidence – procrastination further encour-
ages agents to defer tasks, making their overestimate of the continuation value
of deferral more costly. Indeed, we believe that individuals’ failure to execute
basic, time-sensitive tasks in the real world is not due solely to imperfect mem-
ory or present-biased preferences, but rather some combination of the two.

Rebates and free trial offers are two “real world” mechanisms by which
firms appear to be exploiting naive forgetting by consumers. In Section 1.7,
we provide an overview of these prospective memory failures in the market-
place. We present anecdotal evidence on the high degree of ex post consumer
regret and frustration over rebates and trial offers, and discuss how this ev-
idence runs counter to the rational-model explanations for these marketing
tactics. We believe these areas are ripe for potential field studies identifying
and calibrating the effects of prospective memory failures and overconfidence
(Section 1.8). We conclude with some thoughts on potential theoretical ex-
tensions of our model.

1.2 The Psychology Literature on Retrospective and Prospec-
tive Memory

1.2.1 Forgetting and The Retention Function

Much of the psychology literature on memory focused on retrospective recall.
Ebbinghaus [21] is widely recognized as the first experimental study to at-
tempt to measure the rate of forgetting, and is credited for providing the first
empirical evidence that memory retention is nonlinear in time.2

Since then, the memory retention function has been estimated in experi-
ments of various contexts. Studies have varied the time frame (from minutes
to years) and the content of information to be remembered (e.g., words, faces,
foreign languages, skills), and have generally found evidence consistent with

2Ebbinghaus taught himself a list of 13 nonsense syllables (“nonsense” to rule out recall by
association), and tested himself on the list at various time intervals. His metric for retention
was a “saving rate,” – that is, the ratio of the number of repetitions needed to relearn the
entire list and recite it twice from memory to the number of repetitions that were needed to
learn and recite the list initially.
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Ebbinghaus’s pioneering work. Levy and Loftus [48] remark:

“Many researchers, beginning with Ebbinghaus, have assumed forgetting
to be exponential over time, t, between learning and test, that is:

Pt = e−kt

Such a function would follow from the reasonable assumption that informa-
tion in memory, like the content of many other physical systems, is lost at a
rate that is proportional to the amount remaining in the system.”

Rubin and Wenzel [70], in a meta-study of 210 published data sets on
retrospective recall, find that the exponential form pt = be−mt is one of the
best 2-parameter fits of the retention function.3

1.2.2 Prospective Memory: Components and Types

Meacham and Singer [58] are credited with coining the term “prospective
memory.” Cohen [18] describes the components of prospective memory as
“remembering what the planned action is, remembering to perform it, and
remembering when and where to do it.” It has been noted that PM tasks
actually contain both a prospective and a retrospective component. Baddeley
[7] defines the distinction between these components as “when” something
should be remembered, versus “what.” For instance, if the task is to pass
along a message to someone, the retrospective component is remembering the
message, while the prospective component is remembering that we have a
message for that person when we see them.

While PM tasks contain a retrospective component, they have a number
of characteristics that distinguish them from pure retrospective recall. For
one, PM tasks generally have low information content – Harris [41] notes
that “the information to be recalled may be trivially easy, but remembering
to recall at all may be the difficulty.” Also, while retrospective recall is cued
or prompted by events in the present – e.g., being asked for someone’s phone
number from memory, or partaking in an activity that requires the recall of

3Rubin and Wenzel find three other functional forms that fit well: logarithmic (pt = b −
m log(t)), power (pt = bt−m), and hyperbolic (pt =

m
t+b

)
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some previously acquired skill – cues play much less of a role in prospective
recall. While PM tasks are occasionally cued (e.g., driving by the grocery store
and remembering that you have to buy groceries), these cues are generally
random and thus affect the pattern of recall in a less predictable manner.4

1.2.3 Experimental Studies of Prospective Memory

Prior to Silk [77] and Ericson [27], most prospective memory experimental
studies focused on the impact of exogenous factors on PM success rates (such
as deadline length, subject age, and reminders provided by the experimenter),
rather than testing for relevant PM belief and performance parameters in an
economic decision-making framework. The most common were postcard stud-
ies, where subjects are asked to return postcards on certain dates or within
some time interval (usually without incentives). Wilkins [88] asked 34 sub-
jects to return one card each, from 2 to 36 days later, and found no effect
of length of interval on performance. Meacham and Leiman [57], in a sim-
ilar study, found that later cards were less likely to be posted than earlier
cards, and that providing subjects with cues (such as colored tags on their
key rings) improved return rates. Orne [64] and Meacham and Singer [58]
found a similar effect of cues on return rates, and also found that monetary
incentives improved return rates.5 Since these early postcard studies, there
has been a growing psychology literature testing subjects’ prospective mem-
ory in “semi-naturalistic” (as opposed to laboratory) settings – see Table 7.2
in McDaniel and Einstein [56] for a summary of these experiments and the
measured prospective memory success rates.

Silk [77] advanced this body of evidence by running a series of experi-
ments that “examine consumers’ purchase and post-purchase behavior with a
real rebate offer.” Silk lists a number of findings from the experiments, includ-

4Cues may affect the likelihood of recall, if not the pattern. That is, all other things equal,
PM tasks with more frequent cues will be recalled more often. Additionally, one type of cue
that can affect the pattern of recall is the use of memory aids (e.g., planners, Post-It notes,
etc.), which we discuss in Section 1.6.

5Other studies (such as [76] and [34]) have focused on prospective memory with respect
to appointment-keeping. Levy and Claravall [47], in a study of medical patients needing
regular check-ups at varying intervals, found that reminders increased compliance most for
patients with the longest intervals between appointments.
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ing, 1) increasing the rebate reward increased takeup rates, but had “a weaker
effect” on redemption rates; 2) increasing the length of the redemption period
increased redemption confidence and takeup rates, but reduced redemption
rates; and 3) there is a surprisingly positive correlation between randomized
redemption effort levels and redemption rates (that is, redemption rates were
higher in conditions where the rebate form was made more cumbersome and
lengthy).

Another key area of research in the psychology literature has been the
relationship between retrospective and prospective memory. In one of the
best-known studies [89], medical subjects were tested on free recall of unre-
lated words, and then monitored in their pill-taking. Surprisingly, they find
that subjects who did worse in the retrospective memory test (word recall)
remembered to take their pills at a higher rate.6 Other studies [92] [17], have
found a positive correlation between performance in retrospective memory
tests and PM tasks.

1.3 Baseline Model

1.3.1 Definitions

We consider an individual facing some task with cost c and benefit b, and T
periods until an exogenously imposed deadline. In each period, there is some
uncertainty about whether the individual will recall the task. An individual
will execute the task in a period if 1) it is recalled; and 2) the expected utility
from carrying out the task in that period is greater than the perceived expected
utility from deferring the task and relying on future recall and execution.

The probability of recall is not fixed across periods – rather, it depends
on the history of previous recall. Our model incorporates a simple form of
the rehearsal property, where the probability of recall in some period t (pt)
depends on the number of successive recall failures in the preceding periods.7

6The authors suggest this result is driven by the greater use of memory aids by the poor
retrospective memory test performers, though they do not track the use of memory aids by
the subjects.

7While the rehearsal property is more commonly associated with retrospective recall, it has
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Define Nt as the number of successive, immediately preceding periods in which
the task was not recalled (i.e., if the task was recalled at t − 1, then Nt = 0; if
the task was forgotten at t − 1 but recalled at t − 2, then Nt = 1; and so on).
Then:

pt = θ
Nt p,

where p,θ ≤ 1. The term p captures the base rate of remembering – that is,
the likelihood of remembering the task in the first period, and in any period
preceded by a period of recall. The term θ captures the factor by which mem-
ory decays (i.e., the factor by which the likelihood of recall is reduced) with
each additional period of forgetting. Note that this form leads to exponential
decay in expectation of future recall, consistent with the empirical evidence on
retention discussed in Section 1.2. Our modeling of the rehearsal property is
a slightly more nuanced version of that adopted in Mullainathan [60], which
essentially assumes:

pt =

(
p if mt−1 = 1

θ p if mt−1 = 0,

where mt is a random variable equal to 1 if the task is recalled in period
t and 0 otherwise (i.e., pt = E(mt)). While Mullainathan assumes that that
the recall probability is only contingent on recall in the immediately preceding
period, we assume that each successive recall failure will lower the subsequent
probability of recall by a factor θ .

We use a search model structure, similar to O’Donoghue and Rabin [62],
and assume the cost of task completion is stochastically determined each pe-
riod. Let c be a random variable with CDF F(.), with support [c, c] and c > 0.
Let ct denote the draw from this distribution at time t – that is, the cost of task
execution at t. We assume the benefit is fixed at b, regardless of when the
task is completed. In this section, we do not incorporate time-discounting into
the agent’s preferences – whenever the agent completes the task, she receives
utility b− ct . An agent’s strategy is a sequence s = (s1, s2, · · · , sT ) where each
st denotes the cost threshold for task execution. The task is executed in t if

a clear application to PM tasks. Having a task “top-of-mind” increases the chances that it will
stay “top-of-mind” and be completed before the deadline. [24], in a study of a pulse PM task,
found that “preservation” – the remembering that one has to carry out an action hours or even
days prior to the planned time – improves the likelihood of correct recall.
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the task is recalled in t and ct ≤ st . We denote first-best strategy for given
memory parameters (p,θ) by s∗(p,θ) = (s∗1(p,θ ), s∗2(p,θ), · · · , s∗T (p,θ))). This
concept of a first-best strategy is referred to as “perception-perfect strategy”
[62], which they define as “a strategy that in all periods (even those after the
activity is performed) a person chooses the optimal action given her current
preferences and her perceptions of her future behavior.”

Furthermore, define the following:

1. mt as a random variable equal to 1 if the task is recalled in period t
and 0 otherwise, with m = (m1, · · · , mT ). We will assume in this paper
that m1 = 1. Note that since mt is binary the set of all possible recall
outcomes is just 2T ;

2. µt(m, p,θ ) as the probability from the time t perspective of memory
sequence m conditional on mt = 1;

3. πt,t ′(s, p,θ |m) as the probability from the time t perspective that the
agent will not complete the task before t ′ > t given the memory se-
quence m if the agent chooses to defer the task in t and follows strategy
s thereafter;

4. Vt(s, p,θ) as the utility from the time t perspective of the task, given
that it has not been completed before time t, and that the agent follows
strategy s8. Vt is a random variable that depends on current and future
values of c and m, and we will write its time t expectation in a Bellman
equation below.

Note that

πt,t ′(s, p,θ |m) =





1 if t ′ = t + 1
t ′−1∏

i=t+1
1−mi F(si) if t ′ > t + 1.

That is, the probability of arriving in period t+1 without having completed the
task conditional on deferring in period t is 1, and for every following period

8We consider the effects of present-biased preferences on agent behavior in Section 1.6.
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is the joint probability of drawing a cost above the threshold for each period
that the task is recalled (i.e. where mt = 1).

We can write the following Bellman equation for Et(Vt) by recognizing that
the value of a task from the time t perspective is the maximum of exercising
in t and deferring to t + 1, which sets up a recursive system.

Vt = max{mt(b− ct), Vt+1}, and

Et(Vt(s, p,θ)) = max[mt(b− ct), Et(Vt+1(s, p,θ))].

The continuation value from deferring in period t is the second term in the
max expression. It is equal to the probability of task execution multiplied by
the expected utility conditional on task execution in each proceeding period
from t + 1, ..., T . Two alternative expressions for Vt involve V 1 and V 0 terms,
one using same period V s and the other next period V s:

Vt(s, p,θ) = max[mt(b− ct), pV 1
t+1+ (1− p)V 0

t+1)]
= mt V

1
t + (1−mt)V

0
t

Finally, let Q(s, p,θ) denote the ex ante probability of task execution over all
T periods, such that

Q(s, p,θ) =
T∑

t ′=1

∑

m∈2T

µt(m, p,θ)π0,t ′(s, p,θ |m)mt F(st).

Define p̂ and θ̂ as the agent’s beliefs about the memory process. The agent
will solve for her strategy s based on these beliefs by backwards induction.
Note that in periods where mt = 0 and the agent forgets the task, the value of
st is not relevant. So we define the optimal strategy only in periods for which
mt = 1:

s∗t (p̂, θ̂ ) =

(
b if t = T, mt = 1

b− Et(Vt+1(s, p̂, θ̂)|mt = 1) if 1≤ t < T, mt = 1
(1)

1.3.2 Some Results Involving Hazard Rates of Completion

We now consider how imperfect memory affects the time-pattern of hazard
rates, where the hazard rate at t is defined as the probability of executing a
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task at period t ′ without having executed the task. To do so, we first distin-
guish between agents with perfect memory, and agents with imperfect mem-
ory, but accurate beliefs about memory.

We define a “Perfect Rememberer” (PR) as an agent with p = p̂ = θ = θ̂ =
1, and agent with perfect memory and correct beliefs about memory.

We define a “Sophisticated Forgetter” (SF) as an agent with imperfect
memory, that is with p < 1 and θ < 1, but correct beliefs about memory,
that is p = p̂ and θ = θ̂ .

Define ht to be the hazard rate of task completion at time t, and note that

ht(s, p,θ ) = Prob(mt = 1 and ct ≤ si) = E(mt)F(st)

That is, the hazard rate equals the probability of remembering the task at t
conditional on forgetting the task or drawing a cost over the threshold in each
previous period, multiplied by the probability that the current period cost is
below the current period threshold.

Theorem 1. For a PR, hazard rates strictly increase in time.

This follows directly from the fact that s∗t , the PR’s threshold cost, is in-
creasing in time, which can be seen in the iterative solution for s∗ in equation
1. Since E(mt) = 1 for all t for PRs, and F(s∗t ) is increasing in t, it follows that
ht(s∗, 1, 1) is increasing in t.

Proof of Theorem 1 . We will show that s∗t (1, 1), the PR’s optimal st , is increas-
ing in t. Since ht = E(mt)F(st) and F is increasing in st , this will establish the
claim.

Note that a PR is defined by m = (1, 1, · · · , 1) with probability 1. We show
that the continuation value to a PR of deferring in time t, Vt , is decreasing in
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t:

Vt =
T∑

t ′=t+1

∑

m∈2T

µt(m)πt,t ′(·|m)mt ′F(st ′)
�

b− E
�
ct ′ |ct ′ ≤ st ′

��

=
T∑

t ′=t+1

πt,t ′(·|(1, · · · , 1))F(st ′)
�

b− E
�
ct ′ |ct ′ ≤ st ′

��

= πt,t+1(·|(1, · · · , 1))F(st+1)
�

b− E
�
ct+1|ct+1 ≤ st+1

��
+ Vt+1,

Since the first term is always non-negative we see that Vt > Vt+1 as claimed.

Then since s∗t = b− Vt , s∗t is increasing in t.

Theorem 2. For any SF, with a sufficiently large T hazard rates will strictly
decrease in time over some interval.

The intuition for Theorem 2 is that as T grows large, the hazard in the
last period converges to zero, because the fraction of the surviving population
that remember in the last period goes to zero. However, the hazard in the first
period is bounded below, even for arbitrarily large T .

Proof of Theorem 2. First, we argue that the hazard at a given number of pe-
riods away from the deadline converges to zero as the length of the deadline
grows. In our notation,

lim
T→∞

hT− j = 0,∀ j, p,θ

The argument is as follows: consider an infinite population of identical SFs,
and examine those that have not completed by the deadline. Note that the
fraction of these individuals who complete in period T is by definition the
hazard at time T . Some fraction will have mT = 1, and those individuals
complete at rate F(b), since s∗T = b. However, the rest with mT = 0 will
complete at rate 0. Rerun this same experiment for a larger T . The fraction
with mt = 0 will increase, and in fact will converge to 1 as T grows. This
same argument holds for mT − j, for each fixed j, as T grows. This argument
establishes the claim.

We can prove this formally by noting that with strictly positive probability,
an SF forgets and never remembers. We establish this in the following two

13



lemmas by noting that {Nt} forms a Markov Chain, and showing that 0 is a
transient state:

Lemma 1. The process returns to zero almost surely, i.e. P(Nt+k = 0 for some k ≥
1 | Nt = 0) = 1, if and only if (1− p0)(1− p1)...(1− pn)→ 0 as n→∞.

Proof. Let R be the (random) time of the first return to zero, conditional on
the process beginning at zero. Note that

P(Nt+k = 0 for some k ≥ 1 | Nt = 0) = 1

if and only if

P(R=∞) = 0.

That is, the process returns to zero almost surely if and only if R is finite almost
surely. Next, observe that

{R> n} ↓ {R=∞}, i.e.

{R> 1} ⊃ {R> 2} ⊃ · · ·
∞⋃

n=1

{R> n}= {R=∞}.

So, by the downward continuity of the measure P we have

P(R> n) ↓ P(R=∞).

Thus

P(R=∞) = 0

if and only if

P(R> n)→ 0.

The result follows from the fact that

P(R> n) = (1− p0)(1− p1)...(1− pn−1).

Lemma 2. P(Nt+k = 0 for some k ≥ 1 | Nt = 0} < 1. That is, there is a strictly
positive probability that the individual forgets forever.
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Proof. By Theorem 1, we need only show that

(1− p0)(1− p1)...(1− pn) = (1− p)(1− pθ ) · · · (1− pθ n) 6→ 0

as n→∞.

This is equivalent to showing that

log[(1− p)(1− pθ)...(1− pθ n)] 6→ −∞ as n→∞,

which is in turn equivalent to showing that
∞∑

k=0

log(1− pθ k)

converges. Note that

log(1− pθ k) =−pθ k +O(θ 2k) as θ 2k→ 0.

Thus
∞∑

k=0

log(1− pθ k) =
∞∑

k=0

[−pθ k +O(θ 2k)],

and this series converges if and only if θ < 1, which is true by assumption.

Next, we claim that h1 for a SF is bounded below for all T . This will
establish the result. For fix j, and suppose h is the lower bound on h1. By
the above, for a sufficiently large T we can get hT− j < h. But then hT− j < h1,
which shows the hazard must decrease at some point.

To show that h1 is bounded below, we show that s∗1 is bounded below, since
h1 = F(s∗1). The argument is as follows: suppose h1 were not bounded below.
Then as T grows, h1→ 0. This implies that in the infinite-horizon problem the
expected completion time is infinite; the intuition is that the SF waits around
forever for an arbitrarily low cost draw. But this cannot be optimal, because in
following this strategy the SF will at some point forget and never remember,
with probability one. For we have argued above that 0 is a transient state of
Nt , and so each period of remembrance carries a constant, positive probability
that the SF will forget in the next period and never remember again. So
the probability of such an eternal forgetting occurs with probability 1 in the
infinite horizon problem. This implies that the expected utility from such a
strategy is zero, which cannot be optimal. Therefore h1 must be bounded
below.
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1.3.3 A Simple Example

To illustrate the solution employed by rational agents, and the resulting time
pattern of hazard rates, we consider an example where T = 3, b = 1, c ∼
U[0, 2].

First consider the PR’s backwards-induction reasoning. In the last period
of the model, the PR will set s∗3 = 1 and will thus execute the task in period
3, conditional on having arrived at period 3 without already completing the
task, with probability 0.5.

Now consider the period 2 problem. The continuation value V2(s∗) from
deferring equals F(s∗3)(b− E(c3|c3 ≤ s∗3)) = 0.5(1− 0.5) = 0.25. Thus the PR
will set s∗2 = 1− 0.25= 0.75.

Finally, in period 1 the PR will set s∗1 = b− F(s∗2)(b− E(c2|c2 ≤ s∗2))− (1−
F(s∗3)F(s

∗
3)(b−E(c3|c3 ≤ b))) = 1−(0.375(1−0.375))−(0.625)(0.5)(1−0.5) =

0.61. This implies an ex ante expected utility V0(s∗) = 0.48 and the probability
of task completion Q(s∗) = 0.78. The solution for the PR is summarized in
Table 1.

Period Optimal Threshold Hazard Rate Contribution to Contribution to Task’s
Cost (s∗t ) (ht) Prob of Executing Expected Utility

1 0.61 0.31 0.31 0.21
2 0.75 0.38 0.26 0.16
3 1.00 0.50 0.21 0.11

Total 0.78 0.48

Table 1: PR Behavior for b = 1, ct U[0, 2], T = 3

Now consider a SF. Assume the memory process is characterized by p =
0.5,θ = 0.2. In period 3, conditional on recall the SF acts just like the PR: as
long as the realization of c3 is less than or equal to b, she will execute that
task. In our notation she uses s∗3(0.5, 0.2) = s∗3(1, 1) = b = 1.

However, in period 2 the SF realizes that her continuation value is lower
due to imperfect memory and uses s∗2(0.5, 0.2) > s∗2(1, 1) accordingly. In par-
ticular V2(s∗(p,θ ), p,θ ) = pV2(s∗(1, 1), 1, 1) = (0.5)(0.25) = 0.125, and so
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s∗2 = 0.875.

In period 1, the SF uses s1 = b− V1(s), where

V1(s) =
3∑

t ′=2

∑

m∈23

µ1(m, p,θ)π1,t ′(s, p,θ |m)mt F(s1)(b− E(ct ′ |ct ′ ≤ st ′))

= pF(s2)(b− E(c|c ≤ s2)) + [(1− p)θ p+ p2(1− F(s2))]F(s3)(b− E(c|c ≤ s3))
= (0.5)(0.4375)(1− 0.4375) + (0.05+ 0.14)(0.5)(1− 0.5)
= 0.17.

So, s∗1 = 0.83. this implies an ex ante expected utility V0(s) = 0.19 and a
probability of task completion Q(s) = 0.33. Table 2 summarizes SF behavior.

Period Optimal Threshold Hazard Rate Contribution to Contribution to Task’s
Cost (s∗t ) (ht) Prob of Executing Expected Utility

1 0.83 0.21 0.21 0.12
2 0.87 0.11 0.08 0.05
3 1.00 0.06 0.04 0.02

Total 0.33 0.19

Table 2: SF Behavior for b = 1, ct U[0, 2], T = 3, p = 0.5,θ = 0.2

Note that in this particular example, hazard rates are decreasing in time
for the SF and increasing for the PR.

Figure 1 shows the sensitivity of the ex ante probability of task completion
Q to p and θ . Figure 2 shows the sensitivity of V0 to p and θ .

1.4 Overconfidence in Prospective Memory

Thus far we have assumed that agents, despite their fallible memory, have
correct beliefs over their prospective memory processes, and account for this
perfectly in calculating threshold costs each period. We now discuss augment-
ing the model by allowing for systematic errors in prospective memory beliefs.
Specifically, we consider prospective memory overconfidence – in the context
of the model, p̂ > p and/or θ̂ > θ .
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Figure 1: Sensitivity of Q to p and θ .

Figure 2: Sensitivity of V0 to p and θ .

1.4.1 Overconfidence Literature

Experimental and survey studies have found that the average individual ex-
hibits overconfidence over a wide range of skills, abilities, and personal traits.
Most people believe they are more intelligent [93], more sociable and better
leaders [19], more productive [66], and better drivers than the average per-
son [82]. To the extent that remembering things is a skill or ability like those
above, assuming overconfidence in memory is a natural extension of these
findings.

Most of the evidence on memory overconfidence, until recently, has been in
retrospective contexts – that is, individuals are overconfident in the accuracy
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of their recollections.9 For instance, eyewitnesses tend to be overconfident in
the accuracy of lineup identifications of criminal suspects, and the details of
their trial testimony (see [52] and [10]). However, two recent studies – Silk
[77] and Ericson [27] – find evidence of prospective memory overconfidence
in experimental designs that broadly fit the task model presented in Section
1.3.

Silk contains an experimental condition where subjects are offered a rebate
and are asked for their “redemption confidence” (i.e., a subjective probability
of redemption), as well as their expectation of the overall redemption rate in
the population (i.e., a base rate estimate). Those who choose to accept the
rebate offer are, on average, 93.5% confident they will submit it, while the
ultimate redemption rate is only 60%. Their population (or base rate) esti-
mates are much more in line with the true redemption rates, suggesting that
prospective memory is yet another trait where individuals systematically eval-
uate themselves as being “above average.” On the other hand, those who reject
the rebate offer have subjective probability rates that are slightly lower than
both their base rate estimates and the eventual redemption rate, suggesting
heterogeneity in prospective memory overconfidence.

Ericson uses an incentive-compatible design to elicit subjects’ beliefs that
they will remember to claim a future contingent payment, then compares these
beliefs with actual claim behavior. Subjects are asked for their preference be-
tween a conditional payment of $20 (contingent on the subject sending an
email to the experimenter in a 5-day window 3-4 months in the future) and
an automatic payment $x, where x varies from $5 to $20 in $0.75 increments
(each subject gives their preference between the contingent payment and the
automatic payment for each potential value of x). Subjects are then randomly
assigned to one of three conditions – 1) receiving a $20 automatic payment;
2) receiving a $20 contingent payment; or 3) the choice they made between
the $20 contingent payment and a $x automatic payment for a randomly se-
lected value of x. The threshold values of $x for which subjects switch their
preference from the contingent payment to the automatic payment are used
to infer subjects’ beliefs about their likelihood of claiming the contingent pay-
ment. The claim probability implied by the preferences of the subjects in the
contigent payment condition was 0.76, while the actual claim rate was 0.53 –

9Mullainathan [60] makes a related assumption that individuals have limited memories,
but assume their recollections to be perfectly accurate.
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a significant difference at the 99.9% level and evidence of prospective memory
overconfidence in the subject pool.

1.4.2 Overestimating p vs Overestimating θ

Overestimating p can be interpreted as being overconfident in the base level of
future recall probability. In the extreme case, when p̂ = 1, the agent believes
that she will recall the task with probability 1 in every future period – that is,
that she believes she is a perfect rememberer. Cohen [18] notes that “people’s
beliefs about their own [prospective] memories are based on their experience
and success and failure in everyday life.” In this light, overestimating p can
be viewed as a “recency bias” – an agent who correctly remembers the task in
period t may upwardly revise PM beliefs above the true value of p for periods
t + 1, ..., T .

Overestimating θ can be interpreted as underestimating the rate at which
a specific memory weakens once forgotten. In the extreme case, when θ̂ =
1, the agent believes the recall probability in all future periods is identical
(and equal to p̂). Overestimating θ can be interpreted as a form of projection
bias, as defined by Loewenstein, O’Donoghue, & Rabin [51]. While these
authors use the term to describe the tendency to project current preferences
on future selves, in this case agents project the current memory state onto
future selves. When an agent is in a state of recall, as she must be whenever
assessing whether to perform the task or not, the likelihood of recall in the
next period is p. If an agent believes θ̂ > θ , she underestimates the effect
that forgetting will have on eroding her current memory state – that is, she
estimates the probability of recall for every possible Nt to be closer to the
next period probability of recall than it actually is. As with agents exhibiting
projection bias, agents overestimating θ underappreciate how a change in
circumstances will affect some parameter.

Despite these different interpretations, the effects of overestimating either
parameter in our model are similar – in both cases, agents overestimate the
continuation value of deferral and set inefficiently low threshold costs – and
thus we do not emphasize the distinction in what follows.

20



1.4.3 PM Overconfidence as Information Projection

Both instances of prospective memory overconfidence – that is, overestimating
p or θ – are closely related to other examples of “information projection” such
as hindsight bias10 and curse of knowledge11. Hindsight bias is the tendency
to feel like we knew the outcome of some probabilistic event (e.g., a football
game, political election, or business investment) all along. It is generated by
the inability to fathom ever being without the information that we have after
the fact – i.e., the inability to imagine having been in a different information
state. PM overconfidence is similarly caused by the difficulty of imagining
being without information we have in the present, only now projecting that
information state on the future rather than the past.

“Curse of Knowledge” refers to the inability to ignore information in mak-
ing economic decisions, even when internalizing that information is harmful.
Thaler [83] writes of the curse of knowledge, “once we know something, we
can’t ever imagine thinking otherwise. This makes it hard for us to realize that
what we know may be less than obvious to others who are less informed.”
In the case of prospective memory overconfidence, the (potentially) less in-
formed “others” are our future selves. We find it difficult to imagine not know-
ing (or remembering) what we know (or are aware of) in the present, and thus
are overoptimistic in our capacity to later recall information that is currently
top of mind.

1.5 Effects of PM Overconfidence on Agent Behavior

We can immediately establish several results about PM overconfidence and ex
ante task completion and welfare:

Theorem 3. For any agent with imperfect memory and overconfident beliefs, the
ex ante likelihood of task completion decreases in the level of overconfidence.

Proof of Theorem 3. The statement is that Q(s∗, p̂, θ̂ ) decreases in p̂ and θ̂ for
p̂ ≤ p, θ̂ ≤ θ .

10See [29]
11See [11]
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First we will show that st(p,θ ) is decreasing in p and θ , by induction on t.
Recall that sT = b, and observe that sT−1 = b− ET−1(VT |mT−1 = 1). Then note
that

ET−1(VT |mT−1 = 1) = ET−1(max(mT (b− ct), VT+1|mT−1 = 1))
= ET−1(mT (b− cT )|mT−1 = 1)
= p(b− ET−1(cT ))

which is clearly increasing in p. Next suppose that st is decreasing in p,θ .
This implies that Et(Vt+1|mt = 1) is increasing in p,θ . Recall that st−1 =
b− Et−1(Vt |mt−1 = 1) and Vt =max(mt(b− ct), Vt+1), so

Et−1(vt |mt−1 = 1) = Et−1(max(mt(b− ct), Vt+1|mt−1 = 1))
= max(p(b− Et − 1(ct)), Et−1(Vt+1|mt−1 = 1))
= max(p(b− Et − 1(ct)), pEt(Vt+1|mt = 1, mt−1 = 1) +
(1− p)Et(Vt+1|mt = 0, mt−1 = 1))

The first term in the max in clearly increasing in p. Consider the second term,
pEt(Vt+1|mt = 1, mt−1 = 1)+(1− p)Et(Vt+1|mt = 0, mt−1 = 1)). The first term
is increasing in p,θ by the induction hypothesis. The second term is as well,
since we can continue writing Vt+1 in terms of Vt+2 and so forth, using the in-
duction hypothesis each time to deal with terms of the form Et− j(Vt− j+1|mt− j =
1). The only term we will need to deal with is of the form ET−1(VT |mT−1 =
0, mT−2 = 0, · · · , mt−1 = 1), which is clearly increasing in p,θ . Finally, note
that Et(Vt+1|mt = 1, mt−1 = 1) > Et(Vt+1|mt = 0, mt−1 = 1), so increasing
its weight, namely p, will increase the entire quantity. The same argument
applies for the weights that expand out of the second term

Therefore st(p,θ ) is decreasing in p and θ . Since an overconfident agent
follows the exact same strategy as a sophisticated forgetter with the same p̂, θ̂ ,
and since we have just established that her reservation costs will be uniformly l
ower than an agent with the same true memory parameters but less overconfi-
dence, we have established that the probability of task completion, Q(s∗, p̂, θ̂),
is decreasing in p̂ and θ̂ .

Theorem 4. For any agent with imperfect memory and overconfident beliefs, the
ex ante expected utility of a task is decreasing in the level of overconfidence. Here
we assume the ex ante utility is computed knowing the true memory parameters,
and independently of the memory beliefs.
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The intuition for these results is that agents with PM overconfidence over-
estimate the continuation value of task deferral, and thus set cost thresholds
below the optimal level every period before T . In our notation, st(p̂, θ̂ ) <
st(p,θ)∀t < T . The lower probability of task completion follows immediately
from following a strategy with lower threshold costs (holding the true memory
parameters constant).

To see that utilities are lower, note that these lower threshold costs imply
that for every period before T , an overconfident agent defers the task for a
range of cost realizations when the first-best strategy would dictate executing
the task. Thus, it must be that V0(st(p̂, θ̂), p,θ) ≤ V0(s(p,θ ), p,θ ). More
generally, cost thresholds are decreasing in the level of PM overconfidence, as
we show in the proof.

Proof of Theorem 4. The statement is that E0(V0(s∗, p̂, θ̂ )) decreases in p̂ and θ̂
for p̂ ≤ p, θ̂ ≤ θ .

From the previous proof, we have shown that as (p̂, θ̂ ) go to (1, 1), the
strategy of the NF converges monotonically away from that of the PR and
towards that of the PR. We claim (without proof) that as the NF’s strategy
moves monotonically away from the PR’s strategy as (p̂, θ̂) go to (1, 1), that
the utility loss increases monotonically as well. Put another way, the farther
the strategy is from the optimal, the greater will be the utility loss, and we
have established that the distance from the NF’s strategy to the optimal PR’s
strategy increases in the degree of naivete.

In comparing the behavior of agents with PM biases to rational agents
(PRs and SFs), we find it useful to define an agent exhibiting extreme bias
with respect to PM beliefs:

We define a “Naive Forgetter” as an agent with p < 1,θ < 1 but p̂ = 1. NFs
incorrectly anticipate perfect recall in all future periods. Note that for NFs,
s = s∗ – that is, they employ the same set of threshold costs as PRs, only this
strategy is inefficient given their true memory parameters.
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1.5.1 Some Results Involving Length of Deadline

We now investigate the effect of lengthening the deadline on task completion
for the PR, SF, and NF. We update the notation by adding time subscripts to
s, st , h, Vt , and Q to represent the number of periods in the particular problem.

Theorem 5. For a PR, the probability of task completion and the expected utility
of the task are strictly increasing in the time allotted. In our subscripted notation,
we claim that V0,T+δ(s∗T+δ)> V0,T (s∗T ) and QT+δ(s∗T+δ)>QT (s∗T ) for all T,δ.

Theorem 6. For a SF, the expected utility of the task is strictly increasing in the
time allotted for any p > 0.

Theorem 7. For a NF, given any two deadline lengths T and T +δ,

1. There exist sufficiently poor memory parameters such that the probability
of task completion is lower for the longer deadline. That is, there exists
some p′,θ ′ such that for 0 < p < p′ and θ < θ ′, QT+δ(s∗T+δ, p,θ) <
QT (s∗T , p,θ )

2. There exist sufficiently poor memory parameters such that the ex ante ex-
pected utility from task completion is lower for the longer length of dead-
line. That is, there exists some p′,θ ′ such that for 0 < p < p′ and θ < θ ′,
V0,T+δ(s∗T+δ, p,θ )< V0,T (s∗T , p,θ).

For the intuition behind this result, consider the case where p is small
and θ = 0. In this case, the overall probability of task execution is approxi-
mately equal to the probability of task execution in the first period, since the
probability of task execution at t = 1 is proportional to p, and for all other
periods, is proportional to some higher order power of p. In particular, the
ex ante probability of completing the task in period k is proportional to pk.
But the probability of task execution in period 1, pF(s∗1,T ), is decreasing in the
length of deadline T , since s∗1,t+δ < s∗1,t implies F(s∗1,t+δ) < F(s∗1,t). Thus, for
p small and θ = 0, QT+δ(s∗T+δ, p,θ ) ≈ pF(s∗1,T+δ) < pF(s∗1,T ) ≈ QT (s∗T , p,θ).
Since QT+δ(s∗T+δ, p,θ) and QT (s∗T , p,θ) are continuous functions of p and θ ,
QT+δ(s∗T+δ, p,θ ) − QT (s∗T , p,θ ) is continuous in p and θ and thus the result
holds for some range of sufficiently p,θ .
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The analogous result for ex ante expected utility can be demonstrated in
a similar manner. The ex ante expected utility from executing in period 1 –
pF(s∗1,T )E(c|c < s∗1,T ) – approximates overall expected utility for small p and
θ = 0, since it is proportional to p and expected utility contributions for all
future periods are proportional to some higher order power of p. As long as
s∗1,t < b (which must always hold), the ex ante expected utility from executing
in period 1 is decreasing in t, since s∗1,t is decreasing in t. Again, by the
continuity of V0,T+δ and V0,T in p,θ , their difference is continuous in p,θ , thus
expected utility for a NF is decreasing in the length of deadline for some range
of sufficiently small p,θ .

Proof of Theorem 5. This theorem becomes obvious once one observes that the
structure of the last T periods of a T + δ-deadline problem is identical to the
structure of a T -deadline problem. That is, s∗T+δ,t+δ = s∗T,t for t ∈ {1, 2, · · · , T}.
Thus the probability of completing in periods 1+ δ, 2+ δ, · · · , T + δ with a
T+δ-deadline, conditional on having not completed until 1+δ, is the same as
the probability of completing in the T -deadline case. Since the probability of
completing in periods 1, 2, · · · ,δ is non-negative, it is clear that QT+δ(s∗T+δ) >
QT (s∗T ).

As for the utility from the task, a similar argument holds – since the optimal
strategy in 1 + δ, 2 + δ, · · · , T + δ for the T + δ problem is the same as in
the original 1, 2, · · · , T problem, the utility from those periods conditional on
arriving is the same as the total utility of the original problem. Then setting
s1, s2, · · · , sδ equal to b in the longer deadline case will result in the same utility
for the two problems, and by letting them be arbitrarily close but strictly below
b we can add on strictly positive utility.

Proof of Theorem 6. The argument is similar to the utility portion of Theorem
5. However, while we before relied on the fact that the PR’s optimal strategy is
identical in the ending periods of an extended deadline strategy, we will now
only rely on the fact that an SF could use the same strategy in an extended
deadline setting.

Specifically, consider extending from a T deadline to a T +δ deadline. An
SF could use s∗T for the first T periods of her sT+δ strategy. This would result
in an ex ante utility obtained during those periods equal to the total ex ante
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utility from a T deadline problem. The addition of additional ex ante utility
in the final δ periods would give the utility nod to the T + δ problem. The
fact that the SF will not in general actually use this replicated strategy does
matter; all we argue is that the replicated strategy presents a lower bound on
utility.

Proof of Theorem 7. We begin with notation. Let QT,t be the ex ante probability
that the first task completion occurs in period t of a T -deadline problem. Then

QT =
T∑

t=1
QT,t . Note that

QT,1 = P(m1 = 1)P(c1 < sT,1)
= pF(s∗T,1),

QT,2 = P(m2 = 1)P(c1 < sT,1)(1−QT,1)
= [P(m2 = 1|N2 = 0)P(N2 = 0) + P(m2 = 1|N2 = 1)P(N2 = 1)]F(s∗T,2)(1−QT,1),

=

�
p

1− F(sT,1)
1− pF(sT,1)

p+ pθ
1

1− pF(sT,1)
(1− p)

�
F(s∗T,2)(1−QT,1), and in general

QT,t = P(mt = 1)P(ct < s∗T,t)
t−1∏

j=1

(1−QT, j)

=




t−1∑

k=0

P(mt = 1|Nt = k)P(Nt = k)


 F(s∗T,t)

t−1∏

j=1

(1−QT, j)

Recall that P(mt = 1|Nt = k) = θ kp. Also note that P(Nt = 0) is of the form
t−1∑
i=0

t−2∑
j=0

ai j p
iθ j where ai0 > 0 if and only if i = t − 1. In fact we have at−1,0 = 1,

since the only term of the double sum contributing to Nt = 0 involving pt−1
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and θ 0 corresponds to the case where m1 = 1, m2 = 1, · · · , mt−1 = 1. Thus

lim
θ→0

QT,t = lim
θ→0




t−1∑

k=0

θ kpP(Nt = k)


 F(s∗T,t)

t−1∏

j=1

(1−QT, j)

= pF(s∗T,t) limθ→0

t−1∑

i=0

t−2∑

j=0

ai j p
iθ j

t−1∏

j=1

(1−QT, j)

= pF(s∗T,t) limθ→0

t−1∑

i=0

ai0pi
t−1∏

j=1

(1−QT, j)

= pt F(s∗T,t) limθ→0

t−1∏

j=1

(1−QT, j)

From these recursions we see that limθ→0 QT,t is in fact a polynomial in p and
that the order of this polynomial is strictly greater than 1 except in the case
where t = 1, and then the order is exactly 1. Add these per-period completion
rates to form the total completion rate as

lim
θ→0

QT = lim
θ→0

T∑

t=1

QT,t

=
T∑

t=1

lim
θ→0

QT,t

=
T∑

t=1

pt F(s∗T,t) limθ→0

t−1∏

j=1

(1−QT, j)

and then compare QT to QT+δ in the limit as θ → 0:

lim
θ→0

QT

QT+δ
=

T∑
t=1

pt F(s∗T,t) limθ→0

t−1∏
j=1
(1−QT, j)

T+δ∑
t=1

pt F(s∗T+δ,t) limθ→0

t−1∏
j=1
(1−QT+δ, j)

Next we take the limit of both sides as p → 0, use the fact discussed above

that pt F(s∗T,t) limθ→0

t−1∏
j=1
(1−QT, j) is a polynomial in p, and apply L’Hospital’s rule
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to obtain

lim
p,θ→0

QT

QT+δ
=

F(s∗T,1)

F(s∗T+δ,1)

In fact s∗T,1 = s∗T+δ,1+δ > s∗T+δ,1; see the proofs for Theorems 5 and 1 for the
equality and inequality, respectively. Therefore

lim
p,θ→0

QT

QT+δ
> 1.

Then since QT is continuous in p and θ , we can find p′,θ ′ such that 0 <
p < p′, 0 < θ < θ ′ implies that

QT (s∗T ,p,θ)

QT+δ(s∗T+δ,p,θ )
> 1, i.e. that QT (s∗T , p,θ ) >

QT+δ(s∗T+δ,p,θ ). This establishes Part 1. of the Theorem.

For Part 2., we can use the intermediate result of Part 1. that as p,θ → 0
the fraction of task completion occurring during the first period converges to
1. Combine this with the fact that s∗T,1 > s∗T+δ,1 and we see that in the limit, the
set of costs for which the agent in the T -deadline problem completes the task
strictly contains those for which the T +δ-deadline agent completes, and that
the additional costs for which she completes add strictly positive utility. This
establishes Part 2.

1.5.2 Two- to Three- Period Example

Table 3 shows the change in the probability of task completion and expected
utility for SFs as the number of periods is increased from 2 to 3 (for p =
0.5,θ = 0.2, b = 1, c ∼ U[0, 2]). Consistent with Theorem 6, expected utility
increases for all combinations of p,θ .

Table 4 shows the change in the probability of task completion and ex-
pected utility for NFs as the number of periods is increased from 2 to 3. Con-
sistent with Theorem 7, the probability of task completion and expected utility
decrease for low values of p,θ .
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Change in Probability of Task Completion Change in Expected Utility
p/θ 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0
0.2 0.000 0.005 0.023 0.051 0.074 0.001 0.004 0.014 0.029 0.041
0.5 0.005 0.019 0.051 0.090 0.114 0.009 0.019 0.039 0.062 0.076
0.8 0.037 0.051 0.077 0.101 0.110 0.044 0.053 0.069 0.084 0.090
1.0 0.096 0.096 0.096 0.096 0.096 0.093 0.093 0.093 0.093 0.093

Table 3: Change in Probability of Task Completion and Expected Utility for SF,
3 Periods vs 2 Periods, b = 1, ct U[0, 2]

Change in Probability of Task Completion Change in Expected Utility
p/θ 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0
0.2 (0.014) (0.011) 0.004 0.030 0.051 (0.003) 0.000 0.010 0.025 0.037
0.5 (0.021) (0.006) 0.028 0.068 0.093 0.004 0.014 0.034 0.058 0.073
0.8 0.022 0.037 0.066 0.092 0.102 0.042 0.051 0.068 0.083 0.090
1.0 0.096 0.096 0.096 0.096 0.096 0.093 0.093 0.093 0.093 0.093

Table 4: Change in Probability of Task Completion and Expected Utility for NF,
3 Periods vs 2 Periods, b = 1, ct U[0, 2]

1.6 Extensions of the Model

1.6.1 Memory Aids and Reminders

Sophisticated agents accurately recognize the welfare loss from their fallible
memory. As such, they may have a demand for memory aids which, at some
cost, ensure (or increase the likelihood of) remembering in future periods.
This can be thought of as analogous to sophisticated hyperbolic discounters’
demand for commitment devices.

We define a memory aid a = (a1, a2, , aT ), where at ∈ {0, 1} for all t ∈
{1...T}. If at = 1 then the agent remembers the task in period t with probabil-
ity 1. Define a1 as the complete memory aid such that a1

t = 1 for all t ∈ {1...T},
and a0 as the “no aid” choice such that a0

t = 0 for all t ∈ {1, ..., T}. Let A de-
note the set of all 2T possible memory aids, and κ(a) denote the utility-price
of memory aid a, with κ(a0) = 0.

We assume that in period 0 the agent is presented with the full menu of
memory aids A and prices κ(a) for each a ∈ A. The agent can choose to
implement any memory aid at cost κ(a), and is then completely committed to
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that memory aid for the full length of the problem. A memory aid cannot be
adjusted at any time after t = 0.

We now define the following memory-aid-augmented versions of Vt and s:

1. Ut(s, p,θ , a) as the continuation value at t from executing strategy s
given memory parameters p, s, and memory aid a; and e

2. ψ(p,θ , a) as the first-best strategy given p,θ , a.

Note thatψ(p,θ , a0) = s(p,θ ) and Ut(ψ(p,θ , a0), p,θ , a0) = Vt(s(p,θ), p,θ).

Given a complete menu of memory aids at time 0, define a∗ as the memory
aid chosen by the SF. Since the SF correctly perceives her lack of memory, we
can define this memory aid as one satisfying the following property:

a∗ = argmax
a∈A

�
U0

�
ψ
�

p,θ , a
�

, p,θ , a
�− κ(a)�

The following Theorem examines the welfare loss to a SF of her forgetting.

Theorem 8. With a complete menu of memory aids, a SF’s welfare loss relative
to that of an otherwise identical PR is bounded by κ(a1) as b→∞.

When one views κ(a1) as the cost of upgrading to perfect memory, this
theorem is obvious.

Proof of Theorem 8. Trivial. For a utility-price of κ(a1) the PR can turn herself
into a SF. Thus utility loss of the PR relative to the SF is bounded by this
amount.

Memory aids provide three benefits for a forgetful agent. First, they in-
crease the ex ante expected utility contribution for every period with a re-
minder, since they increase the probability of recall in those periods to 1. But
they provide two other subtler, yet important benefits. Memory aids allow
agents to “gamble” with lower threshold costs in any period before a reminder.
Consider the case where p is small. Without memory aids, threshold costs will
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be close to b in every period, since the SF recognizes the small chance of re-
call. However, with any reminder, the SF knows that she will remember the
task for sure in some period, and thus can more aggressively set a threshold
cost away from b without worrying about wasting an opportunity to execute
the task. The third benefit of a memory aid is that it resets the memory process
to the state of recall (i.e., a reminder at t implies Nt+1 = 0), and thus increases
the chances of recall in all future periods. This benefit could be thought of as
keeping a low θ from “kicking in” – that is, mitigating the adverse effect of
repeated forgetting on the probability of recall.

What does the optimal memory aid look like, in terms of the number and
sequencing of reminders? It depends on the relative size of these three ef-
fects. The first two effects suggest that if the price of reminders across time
is constant, later reminders will be preferred to earlier reminders. Setting the
probability of recall in any period to 1 is more beneficial in later periods, since
it buys more recall. By this we mean that without memory aids, the ex ante
probability of recall is declining in time, and so a later reminder increases that
period’s recall by a larger amount than an earlier reminder would. Further-
more, later reminders provide agents with more periods to gamble with low
threshold costs.

However, the third effect, that is, mitigating the effect of θ on the like-
lihood of recall, points to another reminder structure. In particular, this ef-
fect would induce an agent to implement an intermittent reminder, where the
agent spreads reminders out as much as possible, reducing the welfare loss
caused by successive forgetting. For instance, if an agent can choose any T/2
reminders, choosing reminders every other period will eliminate θ from the
problem entirely. Thus, for low values of θ , this third effect can dominate the
first two effects, and the agent will prefer to spread reminders out rather than
concentrate them close to the deadline.

1.6.2 Three-Period Example

To illustrate the SF’s solution with a complete menu of memory aids, we return
to our 3-period example, where b = 1, and c ∼ U[0, 2]. Let ai jk denote the
memory aid with a1 = i, a2 = j, and a3 = k. For example, a011 denotes a
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memory aid with reminders in the 2nd and 3rd periods.

Table 5 below summarizes the SF’s willingness-to-pay for the 7 possible
memory aids, for 4 sets of memory parameters:
(p,θ ) ∈ {(0.1, 0.1), (0.1, 0.9), (0.9, 0.1), (0.9, 0.9)}.

p = 0.1 p = 0.9
θ = 0.1 θ = 0.9 θ = 0.1 θ = 0.9

1 reminder

a100 0.2354 0.2086 0.0413 0.0122
a010 0.2472 0.2110 0.0555 0.0143
a001 0.2372 0.2111 0.0451 0.0140

2 reminders

a110 0.3695 0.3333 0.0652 0.0240
a101 0.3704 0.3342 0.0662 0.0250
a011 0.3709 0.3347 0.0667 0.0255

3 reminders

a111 0.4544 0.4182 0.0759 0.0347

Table 5: SF’s WTP for Memory Aids, b = 1, ct U[0, 2], T = 3

Table 5 illustrates how the relative sizes of p and θ can dictate whether the
agent will prefer to spread out or backload reminders. Consider the relative
WTPs for a single reminder. When p is low and θ is high the impact of θ
on the probability of recall each period is minimized12 and the agent strictly
prefers later deadlines (see column 2). However, in all other scenarios, when
either θ is low, or θ is high but p is also high, the agent prefers the reminder
in the middle period. Note that, with memory aid a010, θ is eliminated from

12This is true because θ only appears in the expressions of expected utility when interacted
with p.
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the problem: the probability of recall in any period depends only on p, since
the number of successive forgettings entering any period is always 0. While
the expected utilities with the two other single-reminder aids are increasing
in θ , the expected utility with a010 is constant with respect to θ . Thus, for a
given p, lower values of θ improve the value of a010 relative to a100 and a001.

In contrast to SFs, NFs will never purchase memory aids. The reason is
analogous to the explanation for why naive hyperbolic discounters do not use
commitment devices. Since NFs expect to remember the task with probability
1 in all future periods, any memory aid with cost greater than 0 will be per-
ceived as a strictly welfare-reducing choice. This leads directly to the theorem
below:

Theorem 9. Even with a complete menu of memory aids, a NF’s welfare loss
relative to that of an otherwise identical PR grows arbitrarily large as b→∞.

Proof of Theorem 9. Trivial as well. Even when θ = 1, the NF’s utility from
a task is at most p times the PR’s utility of the same task. And as b → ∞,
holding the cost distribution fixed, we get that E0(V1(s∗(1, 1), 1, 1))→∞. So,
E0(V1(s∗(1, 1), 1, 1))−E0(V1(s∗(p̂, θ̂ ), p,θ))> (1−p)E0(V1(s∗(1, 1), 1, 1)) grows
arbitrarily large as well.

Thus, incorporating memory aids into the model amplifies the cost of PM
overconfidence. Without memory aids, overconfidence is welfare-reducing be-
cause agents set excessively low threshold costs. With memory aids, over-
confidence is doubly costly – threshold costs are still too low, plus the agent
abstains from purchasing welfare-improving memory aids.

Incorporating memory aids into the model provides an explanation for the
experimental finding that subjects’ retrospective and prospective memory per-
formance may be negatively correlated [89]. Consider a group of subjects who
are SFs, but with different true memory parameters. If memory aids are suffi-
ciently costly, they will only be employed by agents with poor memories. Thus,
we may observe that agents who have poorer memories (as tested through ret-
rospective recall) may perform better on prospective memory tasks, but only
because they are more likely to employ memory aids.
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1.6.3 Present-Biased Preferences and Imperfect Memory

Earlier, we asserted that Shafir and Tversky’s [75] result, that the probabil-
ity of task completion could be decreasing in the length of deadline, cannot
be derived from hyperbolic discounting alone. We will explicitly show this
by incorporating time-discounting into our prospective memory model, and
proving that any hyperbolic discounter (naive or sophisticated) with perfect
memory will be made strictly better off by lengthening the deadline.

We choose a basic quasi-hyperbolic form of discounting, where the dis-
count factor β between the present and all future periods is less than one,
while the discount factor between all future periods δ = 1. We set δ = 1 for
analytical tractability, and maintain that choosing a δ close to, but less than 1
will not meaningfully alter our results.

Furthermore, we assume, as in O’Donoghue and Rabin [62], that upon task
execution, costs are incurred immediately, while benefits are delayed. Thus,
the utility from executing a task in period t is now β b − ct (as opposed to
b− ct in our baseline model).

Hyperbolic discounters determine their threshold costs each period in a
similar manner to agents in our baseline model, with some important dis-
tinctions. First, note that with hyperbolic discounting in any period t for
given memory parameters p,θ , the value of a particular task which we de-
note V H

t (s, p,θ ,β) is less than Vt(s, p,θ ). In particular,

V H
t (s, p,θ ,β) = βVt(s, p,θ ).

Furthermore, for partially or fully naive hyperbolic agents,13 anticipated thresh-
old costs are greater than true threshold costs. Intuitively, naive hyperbolic
agents believe that they will not discount the deferred benefit as greatly in the
future, and thus predict threshold costs will be higher than they are. Define
ŝH

t as the anticipated threshold cost in period t, from the perspective of any
period prior to t. Then:

ŝH
t =

(
β̂ b if t = T
β̂ b− Et(V H

t+1(ŝ
H , p̂, θ̂ , β̂)) if 1≤ t < T ,

13Defined in [63] as agents who anticipate the value of β in future periods – β̂ – to be
greater than its current value, β .
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while

sH
t =

(
β b if t = T
β b− Et(V H

t+1(ŝ
H , p̂, θ̂ , β̂)) if 1≤ t < T ,

Note that a naive hyperbolic agent with β̂ = 1 anticipates the same threshold
costs as a SF in our model. That is, for β̂ = 1,

ŝH
t =

(
b if t = T
b− Et(V H

t+1(ŝ
H , p̂, θ̂ , 1)) if 1≤ t < T ,

which is exactly the set of threshold costs for a SF with PM beliefs p̂, θ̂ (see
equation 1). Given this, the naive hyperbolic’s actual set of thresholds is:

sH
t =

(
β b if t = T
β[b− Et(Vt+1(ŝH , p̂, θ̂ , 1)) if 1≤ t < T ,

or simply βst(p̂, θ̂ ), which is the fraction β of the optimal cost threshold at t
if the “true” memory parameters were p̂, θ̂ .

Note, for a sophisticated hyperbolic agent with β̂ = β , ŝH
t = sH

t for all t ∈
{1, ...T}. For a given β , the sophisticated hyperbolic agent’s anticipated and
executed cost thresholds are below the naive hyperbolic agent’s anticipated
thresholds, and above the naive hyperbolic agent’s actual thresholds.

We now assess the welfare effect of lengthening the deadline on perfect-
remembering hyperbolic discounters:

Theorem 10. For any hyperbolic discounting agent with p = p̂ = θ = θ̂ = 1,
the probability of task completion and expected utility from task completion are
strictly increasing in the time allotted.

The logic behind this theorem is the same as for Theorem 5 and the proof
is similar.

Proof of Theorem 10. The proof of this theorem is virtually identical to that of
Theorem 5. Any perfectly-remembering agent, whether hyperbolic discounter
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or not, faces the exact same problem in the last T periods of a T + δ time
frame as in a T period time frame and thus over the last T periods executes the
exact same strategy with the same expected utility conditional on arriving in
that period. In the δ periods prior to this replication, a hyperbolic discounter
will only complete the task if the cost draw is low enough to increase overall
expected utility. Thus, adding periods strictly increases the expected utility
of any PR in this context, regardless of the time-discounting parameters. The
increasing probability of task execution is analogous.

While our length of deadline result cannot be generated solely from hyper-
bolic time-preferences, we do not mean to imply that hyperbolic time prefer-
ences do not importantly influence agent behavior in our model. Rather, we
believe there are positive interaction effects between naivete with respect to
fallible memory and procrastination. In particular, for agents with imperfect
memory and hyperbolic time preferences, the cost of fallible memory is in-
creasing in the tendency to procrastinate (as captured by β), and vice versa.
Table 6 shows the ex ante probability of task execution and the non-discounted
expected utility over a range of p and β for naive-forgetting, naive-hyperbolic
agents, for our 3-period model with b = 1, c ∼ U[0, 2], and θ = 0.2:

Probability of Task Completion Expected Utility
p/β 0.2 0.5 0.8 1.0 0.2 0.5 0.8 1.0
0.2 0.019 0.047 0.073 0.089 0.018 0.039 0.053 0.060
0.5 0.067 0.156 0.233 0.278 0.062 0.127 0.166 0.180
0.8 0.143 0.324 0.469 0.546 0.132 0.262 0.328 0.345
1.0 0.215 0.478 0.676 0.777 0.198 0.384 0.468 0.483

Table 6: Probability of Task Completion and Ex Ante (Non-Discounted) Ex-
pected Utility for NF Naive-Hyperbolics, b = 1, ct U[0, 2], T = 3,θ = 0.2

Note, for example, that for β = 0.8, the probability of completion goes
from 0.469 to 0.073 as p goes from 0.8 to 0.2, a reduction of 84%. For β =
0.2, the probability goes from 0.143 to 0.019, a reduction of 87%. Similarly,
fix p = 0.8 – the percentage reduction in the probability of completion for
β = 0.2 vs β = 0.8 is 70%, while for p = 0.2 the reduction is 74%. Similar
interactions hold for expected utility. These results suggest that the mixed
partials with respect to p and β of both logQ and log V0 are positive. In words,
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the percentage reduction in the ex ante probability of task execution and non-
discounted expected utility as p is lowered are decreasing in β , and decreasing
in p as β is lowered.

In our examples, we found that this same pattern – that the cost of fallible
memory is increasing in the tendency to procrastinate, and vice versa – also
holds true for naive-forgetting, sophisticated-hyperbolic agents; sophisticated-
forgetting, naive-hyperbolic agents; and sophisticated-forgetting, sophisticated-
hyperbolic agents (results not shown).

Note however, that the interaction of fallible memory and procrastination
is dependent on the agent’s relative sophistication with respect to her memory
parameters and time preferences. As discussed in Ericson [28], for a sophis-
ticated forgetter, fallible memory may effectively act as a commitment device
against procrastination, elucidating that the “now or later” choice is actually
“now or never.”

1.7 Prospective Memory Failures in the Marketplace

1.7.1 Mail-In Rebates

Many consumer goods companies (particularly electronics manufacturers) of-
fer mail-in rebates, ranging in value from less than $1 to several hundred
dollars. To claim the rebate, purchasers generally must fill out an informa-
tion card and mail it (with proof of purchase) to a provided address within
some time frame after the purchase. This time frame generally varies from 4
weeks to 3 months. Experts estimate that the rebate market has grown from
under $1 billion to $4-$10 billion in the past decade, and that the number of
rebates offered are in the hundreds of millions.14 However, typically only 5%
of outstanding rebates are ever claimed by consumers, and while claim rates
rise with the value of the rebate, redemption rates are typically less than 40%
even for “big-ticket” electronics items with rebate values greater than $20.15

While the traditional explanation for rebates is that they are a form of

14See [38]
15See [80]
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price discrimination by retailers, an increasing body of evidence suggests that
a significant amount of rebate non-redemption (or “breakage”) comes from
consumers who initially planned on redemption – a dynamic not captured by
the price discrimination model. In addition to the experimental studies cited
earlier ([77] and [27]), Silk and Janiszewski [78], in a survey of 35 marketing
managers at firms that use rebates, find that those managers estimate that
nearly two-thirds of breakage is attributable to customers that had intended
to redeem the rebate, but for some reason or another, failed to do so. One
possible reason for this breakage is that firms are exploiting naive forgetting
by consumers. Naive forgetters fully internalize rebate discounts in making
purchase decisions, failing to account for the prospective memory lapses that
often result in non-submission. Firms may have recognized that through this
naive forgetting, rebates increase the effective downward price elasticity of
demand, and consistent with profit-maximization, have made greater use of
them.

There are other explanations for rebates beyond price discrimination and
naive forgetting, both on the consumer and firm sides. Consumers may be
naive not about their forgetfulness, but rather their present-biased preferences
[62]. That is, consumers may purchase goods expecting to complete the re-
bate process, not anticipating their tendency to procrastinate on such onerous
tasks in the future. This explanation may hold true for lesser value rebates,
but is calibrationally inconsistent with low claim rates for rebates worth $100
or more. Chen, Moorthy, and Zhang [13] develop a theory of rebates for per-
fectly rational consumers, where rebates facilitate “utility arbitrage” through
state-dependent pricing. However, such a rational explanation is inconsistent
with anecdotal evidence of consumers’ ex post regret and frustration over re-
bate programs. The New York Times reported that rebate complaints to the
Better Business Bureau increased nearly three-fold from 2001 to 2005 (from
964 to 2,715), and US News and World Report more recently documented that
the complaint volume cleared 4,500 in 2007.16 Furthermore, due to pressure
from consumers and advocacy groups, legislation has been proposed in Cal-
ifornia and Texas and passed in New York to regulate rebate practices. The
New York law addresses rebate form availability, establishes a 2-week mini-
mum redemption period, requires rebate rewards to be paid within 60 days of
submissions, and restricts retailers from misleading advertising of post-rebate

16See [85] and [65]
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prices.17

On the firm side, rebates have been justified on grounds other than price
discrimination, such as collecting consumer data. While these explanations
may have some validity, rebates would not likely be as commonly offered if
claim rates were closer to 100%. Larissa Hall, the vice president of marketing
at Buy.com, stated that “the reason we can offer rebates is because not every-
body will redeem them” [16]. Analysts tracking consumer goods companies
have claimed that “rebates are a good business plan only when consumers
fail to claim them,”18 and fulfillment companies often market their services to
manufacturers by touting the low redemption rates for promotions they have
administered.

One prediction of our model is that firms should lengthen rebate dead-
lines, or even restrict rebate submissions until after some grace period, to
induce more forgetting by naive consumers. While we have no systematic ev-
idence to this effect, we have observed instances where new rebate practices
do seem geared towards further capitalizing on forgetting by consumers. For
instance, a number of fulfillment companies are now offering manufacturers
and retailers “deferred” rebate programs, where consumers have to file initial
paperwork soon after the purchase, but then must file an additional claim as
much as a full year later. These “deferred” rebate programs generally offer
substantially greater discounts than regular rebates, but these discounts are
more than offset by the lower claim rates over the lengthened rebate process.
Additionally, several on-line retailers have offered free-after-rebate deals – es-
sentially a 100% rebate – while initially pricing goods above the suggested
retail price. Indeed, a number of Internet retailers made such promotions the
core of their business strategy.19 As with deferred rebate plans, free-after-
rebate deals can be explained as an attempt by manufacturers and retailers
to further capitalize on naive forgetting by consumers. Edwards [22], in com-
menting on this increasingly evident strategy by firms, notes that one potential
issue with the New York rebate law is that “it does not set any maximum time
period....[and] some scholarship has suggested that longer deadlines can lead
to fewer rebate redemptions due to increased chances for consumer procrasti-
nation and forgetfulness.”

17See [22]
18See [55]
19See [13] for a more detailed discussion of this sales tactic.
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1.7.2 Free Trial Offers

A growing practice among firms with subscription-based products is to offer
consumers “risk-free” trials. Consumers are not billed and may cancel at any
time during the trial. However, if the trial offer is not canceled before its expi-
ration, it is automatically renewed at the full subscription price. An agent with
imperfect memory may learn during the trial that she would not be willing to
renew the subscription, but simply forget to cancel before the deadline, and
incur a loss as a result. Zaidi [95], in a field experiment with a subscription-
based website, finds that varying the strength of the reminder that subscribers
receive on their credit card bill has a significant effect on cancelation rates –
evidence that forgetting does play a role in consumer behavior with respect
to subscription-based (or more broadly, “negative option”) goods.20 Overcon-
fidence in prospective memory could further exacerbate the welfare loss from
unwanted renewals. We collected data on a free trials run by a subscription-
based website that appears consistent with the key prediction of our model in-
corporating memory overconfidence – that task incompletion caused by naive
forgetting may be increasing in the time allotted before the deadline. The
website randomly e-mailed prospective subscribers one of two trial offers –
one for 3 days, and one for 7 days. Trial subscriptions were automatically re-
newed on a monthly basis at the end of the trial. Post-trial retention was 28%
for the 3-day trial group, and 41% for the 7-day trial group. The difference in
retention rates is significant at 99% confidence.21

The proliferation of credit cards over the past 20 years has greatly facili-
tated the recurrent billing process and opened up virtually the entire US con-

20 In the field test, new members are randomly assigned to standard-pricing (e.g., $19.95)
and “camouflage” pricing (e.g., $20.13 or $19.83) groups. Assuming that consumers’ credit
card statements serve as a reminder of the subscription and of the option to cancel, the hy-
pothesis was that the camouflage pricing group would have lower cancelation rates, since
the camouflage amounts tend to blend in with other charges on a credit card bill (e.g., gas,
groceries), while standard amounts are more likely to stand out on a bill, and be noticed by
consumers who are in effect “reminded” of their subscription. The field study results sup-
ported the hypothesis as camouflage pricing lowered the odds of cancelation by roughly 10%
over the first 4 months of membership.

21The free trials were offered to consumers on the website’s mailing list, most of whom were
past subscribers. To the extent that past subscribers already have a sense for the quality of the
website, the learning/information explanation for the existence of free trial offers (discussed
later in this section) is less likely to explain the disparity in retention rates.
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sumer population to be targeted by negative option marketers.22 Publishers
and other companies selling subscription-based products and services have
not only unilaterally marketed free trials, but partnered with third parties in
marketing free trials as a “bonus” item. For instance, most major US airlines
allow customers to redeem miles for short, 3-6 month magazine subscriptions
that are automatically renewed at the regular subscription rate. Retailers (par-
ticularly online) often offer these subscriptions as a “free bonus” with any
purchase.23 A relatively recent phenomenon is “incentive” marketing, where
intermediary companies offer consumers gifts for signing up for multiple trial
offers at once. These companies are paid $40-$60 per free trial signup, leaving
them a comfortable profit margin when rewarding 5-10 free trial signups with
a $100-$200 gift.24 One such company, Gratis Internet, grossed over $20M in
2005, and reported giving away over 20,000 iPods to consumers as rewards
for their signups.25

Anecdotal evidence suggests that firms are increasing the length of their
free trials, possibly to increase naive forgetting by consumers. Many weekly
magazines (such as Sports Illustrated) have increased the standard length of
their free trials from 4 issues to 3 months. In the past 5 years, AOL has in-
creased the length of their dial-up service free trial offer from 30 to 50 days.
In addition, a new class of health-related products – weight-loss supplements,
smoking-cessation aids, even teeth whiteners – has emerged via direct market-
ing channels such as the internet and infomercial programming. Their man-
ufacturers offer extended free or reduced-price trials – of lengths running in
months rather than days or weeks – ostensibly to give their new customers
as much time as possible to test and experience the benefits of their prod-

22Before credit cards were widespread, customers generally paid for subscriptions by check
or money order. According to a publishing executive we interviewed on this subject, payment
rates for free trial customers who were billed for automatic extensions through the mail were
extremely low, reducing the attractiveness of this strategy.

23One example of this is a promotion run by the Sam Goody music store chain, where
customers making a purchase were offered a three-month “free trial” subscription to Enter-
tainment Weekly magazine. Customers filed a class-action suit against the retailer in August
2003, claiming they were not informed that their billing information would be passed on to
the publisher and that their credit cards would automatically be charged for a full subscription
at the end of the trial period.

24See [87]
25See Inc.com company profile at

www.inc.com/inc5000/2007/company-profile.html?id=2005018

41



ucts, but effectively as a way to more fully capitalize on consumer forgetting.
This extended-trial tactic has garnered such artificially high takeup rates that
it has elicited a high volume of consumer complaints to the Better Business
Bureau, Federal Trade Commission, and credit card companies. “Acai Supple-
ments and Other ‘Free’ Trial Offers” ranked #1 on the BBB’s List of the Top
10 Scams and Rip-Offs in 2009.26 The BBB reported that one company sell-
ing acai berry supplements received more complaints in 2009 than the entire
airline industry combined.27 Visa recently removed 100 companies that were
marketing “deceptive free trial offers” from its authorized vendor list, after a
rash of customer complaints and chargeback requests.28 The extent of ex post
consumer regret and frustration over these offers is not only suggestive that
consumers are incurring a loss of welfare from this marketing strategy, but also
runs counter to the rational explanation for free trials – that they simply offer
consumers a free or low-cost opportunity to learn about their product before
making a greater investment. It is hard to imagine consumers generating this
volume of complaints just from learning about their preferences.

While the welfare loss from any one free trial transaction may be small,
the aggregate loss generated by this exploitation of naive forgetting may be
quite significant. Magazine industry revenues topped $20 billion in 2009,29

and many other products and services use negative option models, including
telecommunications providers, music and book clubs, and information ser-
vices (such as credit report agencies). Visa, in a survey of 1,000 cardholders
in September 2009, found that nearly 30% had been “duped” by some form of
negative option marketing. With over 575 million credit cards and 500 million

26See full BBB Bulletin at www.bbb.org/us/article/
/bbb-lists-top-10-scams-and-rip-offs-of-2009-14436

27See [90]
28See full notice to Visa customers at usa.visa.com/personal/security/

learn-the-facts/deceptive-marketing.html?ep=v_sym_negativeoption.
Chargebacks are the main drawback of this marketing tactic, according to a publishing
executive that we interviewed on the subject of automatic renewals. Credit card chargebacks
occur when customers call their credit card issuer directly to dispute a charge. The card issuer
then charges the merchant back for the amount, unless the merchant files a response. For
most merchants (including magazine publishers), the administrative cost of filing responses
is too great to contest each chargeback, and thus chargebacks usually stand. If a merchant’s
chargebacks exceed some threshold (usually around 2% of all transactions) in a billing
period, the merchant is assessed a large penalty (on the order of $100,000).

29According to year-end numbers published by the Publishers Information Bureau at
www.magazine.org/advertising/revenue/by_mag_title_ytd/pib-4q-2009.aspx

42



debit cards issued to 175 million cardholders in the US by year-end 2009,30

an extrapolation of that 30% to the broader credit-card-carrying consumer
population would suggest that the welfare loss from consumers’ prospective
memory failures is pervasive and considerable.

1.8 Areas for Future Research

As discussed in Sections 1.2 and 1.4, empirical evidence on prospective mem-
ory beliefs and performance is somewhat limited. The experimental results in
Silk [77] and Ericson [27] are strongly suggestive that naive forgetting im-
pacts consumer behavior beyond the laboratory. Rebates and free trial offers
are two ways that firms appear to exploit naive forgetting to consumers’ detri-
ment, and more field work in these areas would be valuable in calibrating the
overall welfare loss from these deviations from the standard model. Ideally,
field tests could be arranged in a “revealed-preference” design, giving sub-
jects the choice between immediate payoffs and “rebate coupons” of varying
values and deadlines to enable a precise identification of consumers’ memory
beliefs and true parameters (in the same vein as Ericson’s experimental de-
sign). Another interesting treatment would be to allow consumers to choose
their deadline length, as in Ariely and Wertenbroch [6].31 Field evidence on
rebates and free trials may also shed greater light on the equilibrium effects
of fallible memory that may be obscured in experimental settings, as memory
aids and other commitment-type devices may be effectively used to limit wel-
fare losses in “real-world” settings. For instance, consumer advocacy groups
are now touting the use of disposable, “virtual credit cards” – numbers that
are issued for a single-use only, and then invalidated – for the purposes of
avoiding unwanted takeup with negative option goods.32

From a theory standpoint, there are potentially interesting extensions of
our model that we have not yet examined. In order to compare and con-

30See link to Visa’s notice to customers references in footnote 26.
31This proposed study would be different in that the task – completing a rebate – would

have greater applicability to our PM model. Their task – completing a class project – may
have too many natural reminders to be relevant in our context.

32This service is offered by most large credit card companies, as well as payment services
such as Paypal.
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trast our findings to the present-biased preferences literature, we have thus
far focused on examining onerous tasks – that is, ones with upfront costs and
deferred benefits. We have followed the literature in assuming an environ-
ment with stochastic costs and some fixed benefit to task execution. How-
ever, our framework is more generally applicable to environments with time-
varying costs and benefits (whether stochastic or deterministic). In such envi-
ronments, it may be interesting to examine the bounds on losses (relative to
the first-best) for different types of agents.

Another important theoretical consideration concerns potential learning
about prospective memory. This learning may occur across tasks (e.g., if I
forget to submit one rebate, I submit my next rebate right away), or more
relevantly to our current framework, within tasks. In particular, it may be
that NFs update their beliefs such that after a string of recall failures, they
revise beliefs downward and correspondingly increase their threshold costs.
For instance, in everyday life, often times if we have forgotten to perform a
task for a long while and it suddenly pops into our head, we may think “better
do it now before I forget again.” However, if, by luck of the draw, the same
task continually comes to our attention, we are much more likely to think we
can defer the task and bank on future recall.
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The model of prospective memory we presented in the first chapter was de-
fined entirely at the level of the individual. The intertemporal, intrapersonal
dynamics that arose from the multi-period nature of the choice framework we
defined created game-theoretic considerations when solving the model, but
nonetheless, the model is single-actor, very much in the spirit of the Psychol-
ogy and Economics field of economic theory. The model of left tail dependence
presented in the next chapter lies at the opposite end of the spectrum, in that
it models dependence in financial markets from a purely top-down perspec-
tive, without delving into the motivations or psychologies of market partici-
pants. Despite the different methodological approaches of the two chapters,
they share a goal of modeling empirical phenomena that standard economic
models have difficulty incorporating. In the first chapter, the phenomena were
low rates of completion of worthwhile tasks even in the face of deadlines, and
the misprediction of these low rates of completion. In the second chapter,
the phenomenon is the empirical observation that left tail events occur si-
multaneously across financial markets to a degree that is surprising given the
lack of extreme dependence in the bulk of the multivariate distributions. We
model this dependence with an innovative new copula that permits arbitrar-
ily extreme dependence in the tails, while allowing for a general dependence
structure in the bulk.
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2 Left Tail Dependence

2.1 Introduction

Modeling the bulk and the tails of a multivariate distribution simultaneously
requires a balancing act that is difficult if not impossible to achieve with the
well-known copulas. In this paper we construct a multivariate density which
resembles an elliptical distribution in its bulk, but has the following two prop-
erties in its tails:

1. Association that is more extreme in the tails than in the bulk of the
distribution

2. Association that is asymmetric between the upper and lower tails

We achieve this by introducing a new “Cube copula”, that can accommodate
arbitrarily precise modeling of the joint tails. We then describe two methods
to break the link between the tails and the bulk of the distribution, copula
mixing and copula nesting, and we illustrate with an application to hedge
fund returns.

Copulas have become a key addition to the financial modeler’s toolkit in
the past decade. Formally, a copula is a multivariate cumulative distribution
function defined on the unit cube such that its marginals are uniform. A key
theorem, due to Sklar [79], lays out the use of such a function – for any
set of marginal distributions defined on the reals, and any joint distribution
function, there exists a copula that reproduces the joint distribution when
applied to the marginal distribution functions. Modulo continuity conditions
on the marginals, this copula is unique. The reason for the appeal to financial
modeling is that researchers often have better information about marginal
distributions than joint distributions, and a copula approach lets them fully use
this information, and then choose from a small menu of well-known copulas
to splice them into a joint distribution.

The set of well-known copulas leaves much to be desired when model-
ing financial returns. A brief, stylized history of univariate return modeling
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is instructive. Early modeling of financial (log) returns relied heavily on the
Gaussian distribution, primarily for its analytical tractability. However, re-
turns typically exhibit kurtosis much greater than that of the Gaussian, and
so modelers expanded into fatter tailed distributions, such as the Student’s-t
and Generalized Extreme Value. In the multivariate case, the Gaussian copula
played a similarly tractable role in early applications. The Gaussian copula is
defined (via Sklar) as that copula which composes univariate Gaussians into
a multivariate Gaussian. Just as in the univariate case, the Gaussian copula
imposes a particular structure in the joint tails of multivariate distributions
that is often empirically violated. Specifically, and we define this concept rig-
orously in section 2.2.4, the Gaussian copula requires that variables become
asymptotically independent in the tails, while in practice, dependence even in
extreme tail events often remains strong.

The “fix” has often been to simply move to a copula with a fatter joint-tail,
such as the Student’s-t copula, which is that copula that composes Student’s-t
marginals into a multivariate Student’s-t. Other popular copulas with non-zero
asymptotic tail dependence are the Archimedean copulas, which encompasses
the Clayton, Frank, and Gumbel copulas. However, in making this move, one
loses control of the ability to model both the bulk of the multivariate distribu-
tion and the joint tails. For example, the bivariate Student’s-t copula has two
parameters, η, the degrees of freedom, and correlation ρ. The amount of left
tail dependence is a decreasing function of η and an increasing function of ρ.
Thus ρ and η can serve as tuning parameters for tail dependence. However,
neither of these parameters changes solely tail dependence. The ρ parameter
is in fact the correlation of the bivariate distribution in the case of Student’s-t
marginals, so that a side effect of increasing tail dependence via increasing ρ
is a stronger dependence in the bulk of the distribution. Frequently in appli-
cations we will have an estimate of correlations in the bulk of the distribution,
and want to increase tail dependence while holding fixed the correlation in the
bulk. The η parameter is less intuitive, but has equally unattractive properties
upon scaling. First, η has limited ability to generate extreme tail dependence.
Figure 3 plots the tail dependence as a function of η for several values of ρ.

For example, with ρ = 0.3 the maximum achievable tail dependence is
0.41. Furthermore, very low values of η generate behavior that most would
consider odd in the upper left and lower right quadrants of the multivariate.

47



0 2 4 6 8 10
rho0.0

0.2

0.4

0.6

0.8

1.0

Tail Dependence

Figure 3: Tail dependence λL as a function of η for several ρ = 0.1 . . . 0.9.

Figure 4: the t copula with ρ = 0.3 for η ∈ {10, 5, 2}

Fig. 4 plots a Monte Carlo simulation of the t copula with ρ = 0.3 for
η ∈ {10, 5, 2}. Note the extreme right tail outliers in univariate Y that are
associated with left tail outliers in univariate X with increasing frequency as
η decreases. The intuition for this behavior is that the t copula needs to
enforce correlation ρ, and so must balance out what we call the “double-tail”
observations with “anti-double-tail” points.
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2.2 The Cube Copula

2.2.1 Construction in n-dimensions

Definition 1. Let X be a random variable on the sample space Ωn = [0, 1]n. Let
a be an element of Ωn. If X i ≤ ai then we say that X experiences an i-th tail
event (with respect to a).

For an arbitrary set of indices I ⊆ {1, . . . , n}, define the set

TI = {x ∈ Ωn | x j ≤ a j if and only if j ∈ I}.

Furthermore when I has cardinality |I |= k, we refer to TI as a k-tail region.

In other words, a k-tail region is a subset of the sample space with exactly
k of the variables experiencing tail events simultaneously. For any fixed k, the
number of k-tail regions equals

�n
k

�
.

Let τk,n denote the union of all k-tail regions in Ωn. The sets τk,n for various
k form a partition of Ωn; that is,

Ωn =
n⋃

k=0

τk,n, τk,n ∩τ`,n = ; if k 6= `. (2)

Figure 5 illustrates the 2-tail and 3-tail regions for n= 3 and a= (0.1, 0.1, 0.1)

Theorem 11. Consider a real vector q = (q0, . . . , qn) ∈ Rn+1 and the correspond-
ing density on Ωn:

pc(x) = qk when x ∈ τk,n. (3)

Then pc is a copula density if and only if conditions (a) and (b) below are met:

(a) Total Density Condition

Defining vk,n[a] := vol(τk,n), one has

1=
∑

k

qk vk,n[a], (4)
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Figure 5: The 2-tail and 3-tail regions for n= 3

(b) Unit Marginals Condition

Defining â( j) = (a1, a2, . . . , a j−1, a j+1, . . . , an), one has for all j:

M j,1 :=
n∑

i=1

qi vi−1,n−1[â
( j)] = 1 (5)

M j,2 :=
n∑

i=1

qi−1vi−1,n−1[â
( j)] = 1. (6)

Furthermore, one has

vk,n[a] =
∑

|I |=k

vol(TI) =
∑

|I |=k

h∏

i∈I

ai

∏

j∈I c

(1− a j)
i

. (7)

where the sum is over the
�n

k

�
subsets I ⊆ {1, 2, . . . , n} with length k, and I c is

the complement of I .

Proof. In order that (3) be a probability density, we must have
∫

Ωn

pc(x) d x = 1=
∑

k

vk,n[a]qk, where vk,n[a] := vol(τk,n). (8)

This is condition (a) in the theorem. To prove (7), and thus derive an explicit
formula for (4), we must calculate vk,n[a]. Note that τk,n is the union of

�n
k

�
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connected components, each a rectangular prism. Let I ⊆ {1, 2, . . . , n}; then
for k = |I | the region TI defined above is one of the

�n
k

�
components of τk,n.

The volume of such a region is the product of its side lengths, and the regions
are disjoint as noted above in eq. (2). This establishes (7).33

In order that pc(x) forms a copula density, we require the condition of
uniform marginals:

m j(x j) =

∫

[0,1]n−1

pc(x)
∏

i 6= j

d x i = 1. (9)

We claim that each m j is a step function on [0, 1], and more specifically
can be written in the form

m j(x j) =

(
M j,1 if x j ≤ a j,

M j,2 if x j > a j
. (10)

where M is an n× 2 matrix that is a polynomial function of q and â( j). We
now focus on establishing the representation (10) by calculating the required
integrals explicitly.

The marginal m j(x j) is given by the integral of pc over the lower-dimensional
“slice”

S(x j) = {y ∈ Ωn : y j = x j}
with respect to n− 1 dimensional volume, i.e.

m j(x j) =

∫

S(x j)

pc(z)
∏

i 6= j

dzi. (11)

Since pc(x) is a step function, (11) can be written as a finite sum of density
times volume; it remains to determine the explicit form of this sum.

The slice S(x j) is isomorphic Ωn−1 and hence has the same combinato-
rial structure as the original problem in one lower dimension. For each k =
0, 1, . . . , n− 1 the slice S(x j) has

�n−1
k

�
connected components which play the

role of k-tails in Ωn−1. The side lengths for the resulting partition of Ωn−1 are

33In the special case a= (a, a, . . . , a), this simplifies to vk,n =
�n

k

�
ak(1− a)n−k.
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determined by the truncated vector â( j) defined in part (b) of the theorem.
Hence our strategy is to use a form of induction on n.

First consider the case x j ≤ a j; then the q-vector relevant for calculating
the (n− 1) dimensional density on the slice is (q1, q2, . . . , qn), because S(x j)
doesn’t intersect the 0-tail in Ωn. The set of points in S(x j) where pc = qi has
the structure of an (i−1) tail region in Ωn−1, and is a subset of an i-tail in Ωn.
Hence

M j,1 =
n∑

i=1

qkvi−1,n−1[â
( j)]. (12)

For the case x j > a j the logic is the same, but instead of working with (q1, q2, . . . , qn)
we have to work with (q0, q1, . . . , qn−1) because S(x j) intersects the 0-tail but
not the n-tail in Ωn. In this case the set of points in S(x j) where pc = qi has
the structure is a subset of an (i− 1)-tail in Ωn. Hence we shift the index on q
in (12) to yield

M j,2 =
n∑

i=1

qi−1vi−1,n−1[â
( j)]. (13)

With this, we establish that formulas (5) and (6) are correct, and complete the
proof. �

Note also that for any a and for any n there is always at least one q that
trivially defines a Cube copula, namely q = (1, 1, . . . , 1). In fact we conjecture
that there are always infinitely many such consistent q; the argument involves
the degrees of freedom allowed in the Unit Marginals Condition.

For the remainder of the paper we assume that a= (a, a, . . . , a); our results
below hold more generally but this assumption simplifies notation consider-
ably. For instance, with this assumption, the Total Density Condition and Unit
Marginals Conditions of Theorem 11 simplify to just three equations:

(a) Total Density Condition

1=
∑

k

vk,nqk where vk,n =
�

n

k

�
ak(1− a)n−k (14)
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(b) Unit Marginals Condition

1=
n∑

i=1

qi vi−1,n−1 =
n∑

i=1

qi−1vi−1,n−1. (15)

2.2.2 Examples: 2 and 3 dimensions

In n= 2 dimensions eq. (7) implies

v = (v0,2, v1,2, v2,2) = ((1− a)2, 2a(1− a), a2).

We then have the copula conditions as in Theorem 11:

(1− a)2q0+ 2a(1− a)q1+ a2q2 = 1

(1− a)q1+ aq2 = 1

(1− a)q0+ aq1 = 1

These equations can of course be solved explicitly; we choose to express the
solution in terms of q2, the density in the double-tail region:

q0 =
1− 2a+ a2q2

(a− 1)2
, q1 =

aq2− 1

a− 1
.

Positivity of q0, q1 give the constraint that (2a−1)a−2 ≤ q2 ≤ a−1. This implies
0≤ q0 ≤ (1−a)−1 and 0≤ q1 ≤ a−1. These constraints are useful in maximum-
likelihood optimization to guide the optimizer and ensure that it doesn’t go
outside the valid parameter space.

In n= 3 dimensions eq. (7) implies

v = (v0,3, . . . , v3,3) = ((1− a)3, 3a(1− a)2, 3a2(1− a), a3).

Again as in Theorem 11, the conditions for a copula are:

(1− a)3q0+ 3a(1− a)2q1+ 3a2(1− a)q2+ a3q3 = 1

(1− a)2q1+ 2a(1− a)q2+ a2q3 = 1

(1− a)2q0+ 2a(1− a)q1+ a2q2 = 1
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In any number n of dimensions, we can represent this system as Aq = 1 where
A is a 3× n+ 1 matrix. Hence in n dimensions there is a space of solutions
(copulas) which is of dimension n−2+p, where p is the dimension of the null
space of A. We showed above that for n = 2, we have p = 1 and the solution
space is one-dimensional.

2.2.3 Properties of the Cube Copula

Above we referred to “tail dependence” informally, but there is a natural defi-
nition that is standard within the copula literature. We provide this definition,
and compute the tail dependence of our Cube copula. This tail dependence,
and its finite analog, serve as parameters that we can estimate/calibrate when
applying the Cube copula to data. In addition, we consider three broader
measures of association – Pearson’s product-moment correlation, Spearman’s
rank correlation, and Kendall’s τ – that we will use later to parameterize the
relationships that exist within the bulk of a multivariate distribution.

2.2.4 Tail Dependence

Tail dependence between a pair of distributions is typically formalized via a
conditional tail probability called the coefficients of tail dependence:

Definition 2. Let X , Y be random variables with cdfs FX and FY , with H as their
bivariate cdf. The lower-u tail dependence of H is

λL−u = P
�

Y < F−1
Y (u) |X < F−1

X (u)
�

=
H(F−1

X (u), F−1
Y (u))

u
Note that the bivariate cdf H is symmetric by its definition, and so lower-u tail
dependence is a symmetric property.

Similarly define the upper-u tail dependence of H as

λU−u = P
�

Y > F−1
Y (u) |X > F−1

X (u)
�

=
1− 2u−H(F−1

X (u), F−1
Y (u))

1− u
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The limits of these quantities as are the lower tail dependence and upper tail
dependence, respectively (provided that the limits exist):

lim
u↘0
λL−u = λL, lim

u↗1
λU−u = λU .

We can use Sklar’s theorem to establish tail dependence as a property of
the copula, independent of the marginals.

Theorem 12. Sklar (1959) Let X , Y be random variables with cdfs FX and FY ,
with H as their bivariate cdf. There exists a copula C such that

H(x , y) = C(FX (x), FY (y)).

If FX and FY are continuous, then C is unique.

If C is H ’s corresponding copula in the definition of λL−u and λU−u, then
by Sklar’s Theorem, λL−u =

C(u,u)
u

and λU−u =
1−2u−C(u,u)

1−u
.

Note that the CDF of the Cube copula, F , in the bivariate case is given by

F(u, v) =

∫ v

0

∫ u

0

f (x , y)d xd y

=





q2uv if u≤ a, v ≤ a

u[q2a+ q1(v− a)] if u≤ a < v

v[q2a+ q1(u− a)] if v ≤ a < u

q2a2+ q1a[(v − a) + (u− a)] + q0(u− a)(v− a) if u> a, v > a

So,

λL−u =

(
q2u if u≤ a
[q2a2+ 2q1a(u− a) + q0(u− a)2]/u if u> a

and

λU−u =





1−2+q2u
1−u

if u≤ a

1−2u+q2a2+2q1a(u−a)+q0(u−a)2

1−u
if u> a
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Note in particular, λL and λU , the limiting values, are zero. So, the Cube
copula allows for precise modeling of λL−u, but because its density is bounded,
the lower tail dependence vanishes at arbitrarily small percentiles. In section
2.4 we propose a method for modeling not just a single λL−u but a countably
infinite set of lower tail dependencies.

2.2.5 Measures of Association

Many authors have commented on the shortcomings of Pearson’s product-
moment correlation, ρP , for measuring associations in copula-based models.
The most obvious is that ρP is not defined when marginals have infinite sec-
ond moments, for example tη with η ≤ 2, and many copula applications use
such fat-tailed distributions.

A second shortcoming is that ρP is not a copula property. That is, ρP

depends on both the copula and the marginal distributions. This contrasts
with Spearman’s rank correlation and Kendall’s tau, ρS and ρτ respectively,
both of which are copula properties. Here we focus on ρS rather than ρτ, for
reasons described in Sec. 2.3 on copula mixtures.

For a copula with cdf F , we have ρS = 12
∫ 1

0

∫ 1

0
F(x , y)d xd y − 3. For the

Cube copula then we have

ρS(F) = 3(a− 1)4q0+ 3(a− 2)2a2q2− 12a(a− 1)3(a+ 1)q1− 3 (16)

Our explicit formula (16) for the Spearman correlation of a Cube copula will
prove useful in Sec. 2.3, when we consider mixing the Cube copula with an-
other copula in order to achieve a desired correlation in the bulk of the distri-
bution.

2.3 Mixing the Cube Copula

Above we constructed a copula with unusually high tail-dependence; indeed
the tail dependence arising from this copula is maximally high within the space
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of copulas that have the particularly simple structure we have laid out. How-
ever, the correlation with the bulk is zero by construction. How can we incor-
porate a non-zero bulk correlation structure together with tail dependence?
We use a simple result that any mixture of two copulas is again a copula. We
can then take a convex combination of a Cube copula with another copula
that exhibits bulk correlation, and the resulting copula will exhibit both left
tail dependence and bulk correlation.

2.3.1 Properties of Copula Mixtures

Definition 3. Let V be a real vector space, and let K ⊆ V be any convex subset.
A function f : K → R is said to be convex-linear if

f (t x + (1− t)y) = t f (x) + (1− t) f (y) for all t ∈ [0, 1], x , y ∈ K .

Note that convex-linearity extends naturally to compositions with affine
maps in either order. Specifically if f : V → R is convex-linear and φ : V → V
is an affine map defined by φ(x) = Ax + b, then f ◦φ is also convex-linear.
Similarly if φ′ : R → R is affine, then φ′ ◦ f is again convex-linear. These
statements remain true when the target space R is replaced by an arbitrary
vector space, but we will only use the real-valued case.

2.3.2 Tail Dependence

Let Ck denote the set of k-variate copulas; note that Ck is a convex subset of
the vector space of all functions from Ω2 → R, hence def. 3 applies. Consider
λL−u, the lower-u tail dependence of the previous section, as a real-valued
function defined on C2.

Let C1 and C2 be bivariate copulas, and t ∈ [0, 1]. Note that

λL−u(tC1+ (1− t)C2) =
1

u
�

tC1+ (1− t)C2

�
(u, u)

= t
C1(u, u)

u
+ (1− t)

C2(u, u)
u

= tλL−u(C1) + (1− t)λL−u(C2).
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So λL−u is convex-linear, and the lower-u tail dependence of a mixture cop-
ula is the mixture of the component copulas’ lower-u tail dependencies. Also
convex-linear is λL = limu↘0λL−u, provided that the limits of the components’
exist.

2.3.3 Correlations

Let (X1, Y1) and (X2, Y2) be independent continuous random variables with
common margins F (of X1 and X2) and G (of Y1 and Y2). Let Ci denote the
copula of (X i, Yi). Define

Q = P[(X1− X2)(Y1− Y2)> 0]− P[(X1− X2)(Y1− Y2)< 0].

as in [25]. Then

Q =Q(C1, C2) = 4

∫
C2dC1− 1=Q(C2, C1). (17)

It is immediate from (17) that Q is convex-linear in each of its two arguments,
if the other is held fixed. Let Π denote the independence copula (constant
density).

Two popular non-parametric measures of concordance are Kendall’s tau
defined as ρτ(C) =Q(C , C), and Spearman’s rho given by ρS(C) = 3Q(C ,Π).
From the observation that Q is convex-linear in each argument, it follows that
ρS(C) is convex-linear in C , while

ρτ(tA+ (1− t)B)

is a polynomial of degree 2 in t, hence cannot be convex-linear. Similarly,
Gini’s coefficient

γ= 2

∫
(|u+ v − 1| − |u− v|)dC(u, v)

and Blomqvist’s “medial correlation” β = 4C(1
2
, 1

2
)− 1 are also convex-linear

functions of C .
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Finally, we remark that the n-dimensional Spearman’s ρS, given by

ρS,n =
n+ 1

2n− (n+ 1)

h
2n−1�

∫
C dΠn+

∫
ΠndC

�− 1
i

is convex-linear on the convex cone of n-copulas.

These considerations imply that when dealing with mixture copulas, all of
the usual measures of concordance except Kendall’s τ are convex-linear and
can be summed across the components of the mixture.

2.3.4 The Cube-Gaussian Mixture Copula

Let ρ be an n× n correlation matrix. The Gaussian copula with correlation ρ
is defined by its PDF:

pg(u) = |ρ|−1/2 exp[−1

2
ζ′(ρ−1− I)ζ] where ζ= Φ−1(u).

Here Φ is the normal CDF applied componentwise to vectors, and u ∈ [0, 1]n.
Building on this we define the Cube-Gaussian mixture copula by

pgt(u) = λpc(u) + (1−λ)pg(u). (18)

Here λ ∈ [0, 1] is the mixture probability. One can view this as a hierarchical
model, where a mixing random variable defined on {0, 1} determines which
copula that X will be drawn from.

Eq. (18) is our first example of a copula which has desirable properties
for modeling portfolios of risky assets. In the bulk of the distribution, i.e.
the region in which assets in the portfolio are not experiencing VaR events
individually, the assets behave as though they have correlation matrix ρ, but
if one or more assets is experiencing a VaR event, the conditional probability
that others are also seeing their VaR events is much higher than it could be
with a Gaussian copula or a t-copula.

One advantage of any copula of the form (18) is that, due to the result in
sec. 2.3.3 that many of the standard measures of association are convex-linear
on the space of copulas, we see that these measures will be no more difficult to
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compute for the Cube-Gaussian copula (18) than for either of its components,
and we have already shown how to compute spearman’s correlation for the
cube in sec. 2.2.5. The more advanced copulas we will introduce in Sec. 2.4
are also mixtures, and also benefit from the results in sec. 2.3.3.

Eq. (18) also lends itself well to Monte Carlo simulation, since each of the
components pc and pg is easy to simulate. Given a simulation, one can proceed
to a full portfolio-level analysis of Value-at-Risk (VaR). The simulation suffices
to compute each asset’s marginal contribution to portfolio VaR as a numerical
derivative. Fig. 6 illustrates the behavior of the Cube-Gaussian mixture via a
simulation histogram with ρ = 0.3 bulk correlation, a = 0.015 and maximal
tail dependence for these parameters.
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Figure 6: Histogram of a simulation from the Cube-Gaussian mixture with
ρ = 0.3 bulk correlation, a = (0.015, 0.015) and maximal tail dependence.

From Fig. 6 it’s intuitively clear that this copula satisfies the two desirable
properties laid out in Sec. 2.1. In particular note that there is a large probabil-
ity density in the simultaneous lower left tail, but no corresponding density in
the simultaneous upper right tail; this is typical of portfolios of financial assets,
and completely impossible to achieve with the t-Copula.

Although surely more realistic for portfolio risk modeling than either the
normal copula alone, or the t-Copula, even Eq. (18) has an important short-
coming for the intended application. Fortunately the correction for this short-
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coming is known, and leads to interesting further mathematics. This will be
the subject of the next section; for the moment, we simply expose the indicated
shortcoming.

Note that the probabilities of simultaneous tails beyond the a-th percentile
die off quickly. Suppose for illustration a Cube with a = 0.05, n= 2, and q2 =
16. This is equivalent to assuming that the chance of a double tail is twice the
chance of a single tail. Then conditional on the first asset having a 95%-VaR
event, the probability that both simultaneously have 95%-VaR events (that is,
λL−0.05) is 0.8. The corresponding probability for a Gaussian copula with ρ =
0.9 is around 0.64. However what if we consider 99%-VaR? Under the Cube,
λL−0.01 falls to 0.43, while for the Gaussian is 0.54. Given the Cube’s zero
asymptotic tail dependence we know this conditional probability converges to
zero, but it does so sufficiently quickly to cause concern in some applications,
such as in cases where one wants to forecast both 95% and 99% VaRs. The
next section introduces a modeling technique, which we call copula nesting,
that allows for modeling arbitrarily many points along the tail dependence
surface with a sequence of nested Cube copulas.

2.4 The Copula Nesting Theorem

In Sec. 2.3, we defined the Cube copula and noted that via selecting q and
a appropriately one can precisely specify λL−a. However, the tail dependence
beyond a degrades, and asymptotes to zero. Suppose that one wants to specify
tail dependence at a set of quantile points A. Figure 7 illustrates the method
we propose for doing so. The key observation is that one can nest a second
Cube copula within the lower left region of an initial Cube copula. We prove
below that the resulting function remains a copula. One can repeat this nesting
arbitrarily many times, and in doing so, precisely model λL−an

for an ∈ A.

2.4.1 The Nesting Theorem and Proof

Let f be the Cube copula density on Ω = [0, 1]n with tail parameter a and
values qk on the k-tail for each k = 0, . . . , n. Let s be any copula on Ω, which
we extend to Rn by specifying that s = 0 outside Ω. Let φ : Ω → τn,n be
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Figure 7: Cell complex underlying a doubly-nested Cube copula in two di-
mensions. The figure illustrates a cube with a = 0.4 nested inside a cube with
a = 0.2.

the bijective affine map between the indicated regions given by rescaling each
coordinate.

Consider the density

ŝ(u) = a−n s(φ−1(u)) (19)

Then by our convention ŝ vanishes outside of τn,n. Since we have multi-
plied by the inverse of the Jacobian, the overall normalization is preserved:∫

ŝ(u) du= 1.

In Theorem 13 we construct a copula f̂ which, intuitively, consists of mod-
ifying f by replacing its values in τn,n with a scaled version of s.

Theorem 13. The multivariate probability density defined by

f̂ (x) =

(
qnanŝ(x), if x ∈ τn,n

f (x) otherwise

with ŝ defined as in Eq. (19), is a copula density.

Proof. The scaling is such that the integral over τn,n is unchanged. It follows
that f̂ is a probability density. We also claim that f̂ has uniform marginals.

62



We need to show that the marginal in the x j direction is uniform for each
j = 1, . . . , n. For notational simplicity we show this for j = n; the same proof
holds in each direction. Then we may write x = (y, xn) where y ∈ [0, 1]n−1

and xn ∈ [0, 1]. The marginal function is then

m(xn) =

∫

[0,1]n−1

f̂ (y, xn) dy.

Note that if xn > a, then f̂ (x) = f (x) and hence m(xn) = 1 since m(xn) is a
marginal of the copula f . Therefore suppose xn ≤ a and split the integral as
follows:∫

[0,1]n−1

f̂ (y, xn) dy =

∫

τn−1,n−1

f̂ (y, xn) dy+

∫

τn−1,n−1
c

f̂ (y, xn) dy (20)

= qnan

∫

τn−1,n−1

ŝ(y, xn) dy+

∫

τn−1,n−1
c

f (y, xn) dy(21)

Also in the region xn ≤ a one has

qnan

∫

τn−1,n−1

ŝ(y, xn) dy = qnan

∫

τn−1,n−1

ŝ(az, xn) d(az) = qnan−1

∫

[0,1]n−1

s(z, xn/a) dz

= qnan−1 =

∫

τn−1,n−1

f (y, xn) dy

since
∫
[0,1]n−1 s(z, xn/a) dz is a marginal of s.

Plugging this back into the expression (21), we see that the sum (21) col-
lapses into an expression for the marginal of f at xn, which we know to be 1.
This completes the proof. �
Remark 1. The same argument also shows that an arbitrary copula can be
nested within the 0-tail region τ0,n. The Cube copula is essentially the only
copula that admits a nesting theorem of this form.

If the nested copula s is itself a Cube copula, then further copulas can be
nested within the inner copula s. One can in fact do this infinitely-many times,
leading to a fractal structure, though for applications in finance or engineering
one would typically stop when the tails being modeled are so low-probability
that one has no further view on tail dependence or need to model it in those
regions.
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2.4.2 Improving The Cube-Gaussian Mixture

The multiple-nesting property allows the practitioner to customize the copula’s
tail-dependence properties by specifying as ingredients not only the probabil-
ity of an a-quantile VaR event, but also the probabilities of the a/10-quantile,
a/100-quantile, etc.

In this way we can resolve the fundamental difficulty which plagued the
simple form of the Cube-Gaussian mixture discussed in Sec. 2.3.4. With nested
copulas, it need not be the case that the conditional probability of an n-tail a-
quantile event, conditioned on the occurrence of an (n − 1)-tail a-quantile
event, goes to zero as a → 0. By suitably choosing the q-vectors for the in-
ner nested copulas, one can ensure that these probabilities remain bounded
away from zero and so that the full copula has a non-zero tail dependence
coefficient.

Suppose that in n-dimensions we have the Cube copula pc(x) with param-
eters a,q and we define an inner Cube copula p̂(x) which has the same struc-
ture, but different parameters â, q̂ and a normalizing constant set according
to eq. (22) below. Note that there are no constraints on â, q̂ aside from the
general constraints set by Theorem 11 which apply to all Cube copulas.

As before, we set τk,n to be the k-tail region of the outer copula. We will
use τ̂k,n to denote the corresponding regions for the inner copula. Then the
nested copula is:

p(x) =

(
p̂(x), x ∈ τn,n

pc(x) otherwise
.

The normalizing constant for p̂ is set so that
∫

τn,n

p̂(x)dnx= qnan. (22)

Suppose, as is common in financial risk modeling, we are interested in 95%
and 99% VaR, and we wish to build a model with higher-than-normal prob-
abilities of joint tail events occurring at these quantiles. The doubly-nested
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Cube achieves this: parameters a = 0.05, â = 0.2 imply

Prob(joint 95% quantile) = (0.05)2qn

Prob(joint 99% quantile) = (0.01)2q̂n .

This illustrates that the nested copula allows us to tailor the probabilities of
these events representing joint observations of extreme outliers. After mixing
with the normal, of course the necessary integrals become more difficult to do,
but even these can easily be handled numerically.

2.5 Literature Review

Sklar introduced the mathematical structure of copulas into the probability
and statistics literature in 1959, coining the phrase “copula” with Schweizer
in their 1983 textbook [74]. The topic received much attention in decades
following its introduction, summarized nicely by Schweizer’s “Thirty Years of
Copulas” [73]. This research spawned several introductory papers and text-
books meant to introduce the advanced undergraduate or graduate student to
the topic, see for example the appropriately titled “Joy of Copulas” [36], and
the excellent texts by Joe [43] and Nelsen [61]. The concept found applica-
tions within the fields of engineering and biology, but only recently have re-
searchers applied copulas to economic data. The earliest instances came in the
insurance and operations research literature insurance during the mid 1990s.
Frees et all [31] in the Journal of Risk and Insurance consider the problem
of pricing an annuity promised on two lives, and apply Frank’s copula [30],
a special case of the Archimedean family of copulas. Jouini and Clemen [44]
investigate aggregating expert opinions, also with Frank’s copula. The first
mention of copulas within Management Science arrives in [94], who study
accident “precursors” or “near-misses”, where the joint distribution modeled
is that of the failure probability of some safety system under two states of the
world depending on whether some other safety system has or has not failed.
The first appearance of copulas in an economics journal is also via an investi-
gation into an insurance problem, in the context of a principal agent problem
with adverse selection [45]. Overall, the use of copulas in the economics
literature has been sparse and very recent. The journals of the American Eco-
nomic Association record four articles mentioning copulas, all between 2007
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and present; Econometrica records three mentions, all published in 2010; the
Journal of Political Economy records one mention [40]; while the Quarterly
Journal of Economics records none.

The use of copulas in the financial literature was also recent, but has grown
explosively in the last ten years. In their widely circulated 1999 working pa-
per, Embrechts, McNeil, and Strauman [26] introduce copulas into modeling
financial asset returns. They focus on correcting what they perceive as com-
monly held views on correlations that “arise from the naive assumption that
dependence properties of the elliptical world also hold in the non-elliptical
world” and they propose copulas and rank correlations as a remedy. With this
background, it is perhaps not surprising that the highly non-elliptical world
of credit derivatives emerged as fertile ground for copulas. Li [49] was the
earliest published instance, although he cites technical documents from the
industry that predate his research (although not explicitly using the copula
terminology).34 Soon after Li’s article, examples of copulas in credit model-
ing rapidly proliferated; key references are [32] and [72], both of which
unify Li’s approach with the latent variable approach of older industry re-
search (KMV and CreditMetrics). Bouye et al [9] provide a reading guide that
both introduces the mathematics of copulas and illustrates with applications to
credit scoring, asset returns, and risk measurement. Longin and Solnik [53]
provide the first published example of copulas used in modeling returns from
different equity markets, as well as the first mention of copulas in a top finance
journal. They use Gumbel’s copula [39], although interestingly they neither
cite the seminal statistical references nor use the phrase “copula” in their pa-
per. Other highly regarded finance journals follow suit: [12] in the Journal
of Financial and Quantitative Analysis; [5] in the Journal of Business; [68] in
the Review of Financial Studies. Interestingly, the earliest mention of copulas
in the Journal of Financial Economics is in a footnote to [4], which states that
“Embrechts et al. (1999) have recently advocated the use of copulas and rank
statistics when measuring dependence in non-normally distributed financial
data. However, because the unconditional distributions that we explore . . .
are all approximately Gaussian, the linear correlation affords the most natural
measure in the present context.” Unfortunately, the evidence presented that
the financial data they study are normal concerns only the marginal distribu-

34Li’s use of the Gaussian copula was pilloried in an article in Wired magazine dubbed
“Recipe for Disaster: The Formula That Killed Wall Street”, [71].
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tions, and not the joint distribution, which is what is relevant for determining
whether to use copulas. Finally, several textbooks provide very thorough in-
troductions to copulas in finance, namely [14] and [84].

One interesting application comes from Rosenberg and Schuermann [69].
They attempt to model the various risks that a complicated financial institu-
tion faces (market, credit, and operational) via flexible modeling of marginal
distributions each of which is allowed to have a very different shape. The
authors conclude that the VaRs of the individual components and the weights
that aggregate these components into a portfolio play a larger role in deter-
mining portfolio VaR than the choice of the copula. However, the authors
consider only Gaussian and Student’s-t copulas, which we suspect drives this
conclusion.

In general, many of the existing financial applications in the literature
seem to view the primary benefit of copulas as simply allowing for arbitrary
marginals, without much attention given to the implications of the copula for
modeling tail dependence. The emphasis, then, becomes sophisticated mod-
eling of the marginals, with the copula chosen as an afterthought. Rosenberg
and Schuermann clearly fits in this category, as do most of the early credit
modeling references provided above. A notable exception, and the approach
most similar to ours, is Hu’s [42], which estimates mixtures of Gaussian,
Gumbel, and Gumbel survival copulas using monthly returns from the S&P
500, FTSE 100, Nikkei 225, and Hang Seng. Like our application below, Hu
estimates marginals non-parameterically, focusing on the dependence struc-
ture rather than the marginals.

2.6 An Application to Hedge Fund Returns

2.6.1 Data

Hedge fund returns provide a natural setting to apply our copula mixture.
We think of multivariate hedge fund return distributions as operating under
two regimes. In normal times, hedge funds strategies operate with whatever
correlations arise naturally from their common exposures to risk factors and
correlated trading strategies. However, during stress scenarios, strategies cor-
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relate to a much higher degree, as industry-wide balance sheet reductions
beget negative returns via market impact, which beget further balance sheet
reductions. The causes of these correlated portfolio liquidations can be acute,
such as when sudden losses by a large fund become common knowledge (eg
Long Term Capital Management in 1998), or more diffuse, such as a con-
traction in banks’ willingness to finance transactions or elevated redemption
requests by investors (which are two commonly-cited causes of large hedge
fund losses in the fall of 2008). Regardless of cause, the presence of simul-
taneous deleveragings creates a left tail dependency that can be much more
extreme that what one would expect from observing returns during normal
times.

To illustrate, we use the Hedge Fund Research indexes (HFRI), which HFR
describes as “a series of benchmarks designed to reflect hedge fund indus-
try performance by constructing equally weighted composites of constituent
funds, as reported by the hedge fund managers listed within HFR Database.”
While HFRI returns suffer some serious biases in their construction35, they are
generally considered the industry standard and have been used in many of the
seminal studies of hedge fund returns (Ackerman, McEnally, and Ravenscraft
[1]; Liang [50]; Agarwal and Naik [2], [3]; Getmansky, Lo, Makarov [37];
Fung and Hsieh [33]). Specifically, we investigate the joint distribution of the
Event Driven (ED) and Relative Value (RV) strategy indexes.36

Our data consist of the monthly returns for Event Driven and Relative Value
from February 1990 through August 2010, measured in excess of the US 3-
month Treasury bill rate. The cumulative returns are shown in Fig. 8, and the
scatterplots in Fig. 9. The excess returns are highly correlated, with a ρS of
0.67 over the full sample, despite strategy descriptions that would not suggest
such high correlations.

Much of this correlation is due to persistent exposure to common risk fac-
tors. We attempted to control for these exposures by OLS regression of each

35Most seriously, returns are self-reported and funds are free to self-censor.
36Event Driven includes as sub-categories: Activist, Credit Arbitrage, Dis-

tressed/Restructuring, Merger Arbitrage, Private Issue/Regulation D, Special Situations,
and Multistrategy. Relative Value includes as sub-categories: Fixed Income-Asset Backed,
Fixed Income-Convertible Arbitrage, Fixed Income-Corporate, Fixed Income-Sovereign,
Volatility, Yield Alternatives:Energy Infrastructure, Alternatives:Real Estate, and Multistrat-
egy.
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strategy against the excess total returns of several market indexes:

(a) S&P 500,

(b) Barclays Capital Aggregate Total Treasury,

(c) Barclays Capital US Corporate High Yield, and

(d) S&P Goldman Sachs Commodity.

For each HFR index, all four market indexes (a)–(d) had t-statistics above 2
(with average absolute t-statistics of 6.0 for ED and 4.8 for ED), and adjusted
R2 were 65% for ED and 52% for RV. The Spearman correlation of the residuals
to these factors drops to 0.49, but clearly, left-tail correlation remains present
even in the residualized data.

2.6.2 Methodology

We estimate the parameters of our Cube-Gaussian Mixture copula, described
in Section 2.3.4, via a two-step, pseudo-maximum likelihood estimation pro-
cedure. First, we estimate marginals via the empirical CDF, and apply an in-
verse empirical CDF to each variable to transform it into a uniform. In the
second step, we estimate the parameters of the copula on these transformed
data via maximum likelihood. Alternatively, we could estimate a full informa-
tion maximum likelihood by specifying marginals, and then maximizing a joint
likelihood function that is both a function of the parameters of the marginals
and the parameters of the copula. The benefit of using the two-step procedure
and non-parametrically estimating marginals is that if parametric marginals
are mis-specified and included in a joint likelihood, they will interfere with
the copula estimates, which are our focus. Note that the standard errors that
arise from this two-step procedure are larger than those that would be naively
computed by assuming that the transformed data were the actual data. Intu-
itively, the inverse empirical CDF does not equal the true inverse CDF, and this
source of estimation error much be accounted for in the copula’s parameter
estimates. The corrected standard errors come via a “sandwich estimator” of
the asymptotic covariance matrix; [35] provide a derivation.
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Figure 8: Cumulative Excess Log Returns and Residual Log Returns for HFRI
Event Driven and Relative Value Indexes, Monthly from Jan 1990–Aug 2010.

We chose to use a single breakpoint a, fixed in advance, which defines
double-tail region in the Cube, and we estimated the following three param-
eters: q2, which determines the likelihood of the double-tail,37 λ, the mixing
parameter, and ρ, the correlation of the Gaussian copula. Provided that a is
chosen not to coincide with one of the values of the sample, the likelihood
function is differentiable in each parameter, and the maximization was easily
solved via Matlab’s fmincon function.38 We estimated with a equal to 0.01
and 0.05, representing 95% and 99% VaR, two commonly used breakpoints

37Note from Section 2.2.2 that q1 and q0 are simple functions of q2.
38In preliminary research, we also experimented with estimating a, but this proved difficult.

The typical solution to this problem involves an a that coincides exactly with a sample value,
which creates a non-differentiability at the maximum likelihood estimate. In fact, not only
is the likelihood function not differentiable in a at such a point, it is not differentiable in q2
either. This resulted in instability in our numerical routines.
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Figure 9: Cumulative Monthly Excess and Residual Log Returns for HFRI
Event Driven (horizontal) and Relative Value (vertical) Indexes, Jan 1990-Aug
2010.

in financial risk modeling. Neither 0.01 nor 0.05 was exactly equal to an ob-
servation of our sample after it had been mapped to uniform via the inverse
empirical CDF, since our sample contained 247 observations.39

We also evaluated the fit of the Mixture copula against three competing
copulas: pure Gaussian, Student’s-t, and Clayton. We estimated the parame-
ters of each of these three copulas via maximum likelihood: ρ for the Gaus-
sian, ν and ρ for the Student’s-t, and θ for the Clayton. We evaluate each
copula’s fit via the value of the log-likelihood and two information criteria
that penalize for over-fitting: Akaike’s Information Criterion (AIC) and the
Bayesian Information Criterion (BIC).

Note that our sample consists of 247 monthly observations. With a sam-
ple this size, estimating the 95% and 99% VaRs is imprecise. To see this,
note that one can compute a confidence interval for a quantile using the sam-
ple order statistics via the binomial distribution. Letting X( j) denote the jth
largest of a collection of n iid continuously distributed random variables, and

39Had we instead had 100 observations, so that 0.01 and 0.05 would have been elements of
our U(0,1) transformed sample, we could have chosen for example an a of 0.011 and 0.051 to
avoid numerical difficulties. However, choosing 0.011 rather than 0.009 could have a sizable
impact on the estimates of the other parameters.
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qα the α-quantile, we have P(X( j) < qα < X( j+1)) =
�n

j

�
α j(1− α) j−1. Starting

from the sample α-quantile, one can expand to successively larger intervals
with order statistics as endpoints to obtain confidence intervals with increas-
ing rates of coverage. See Stark [81] for details. In particular, with a sample
of 247 observations, a 95% confidence interval for q0.05 centered at the sam-
ple 0.05-quantile is contained within [x(6), x(19)], that is, the sample 2.4%-
ile to the sample 7.7%-ile. A 95% confidence intervals for q0.01 is contained
within [−∞, x(5)], that is, from −∞ to the sample 2%-ile. If one prefers con-
fidence intervals of finite length, a 90% confidence intervals for q0.01 is con-
tained within [x(1), x(6)]; however there is no interval between the minimum
sample observation and maximum sample observation that contains a 95%
confidence interval for q0.01.

However, we don’t view this as an impediment to estimating the Cube
copula on a dataset of this size. The Cube copula is concerned with the depen-
dence between extreme observations, but not with the specific shape of the
tails of a particular marginal distribution. To see this another way, note that
our maximum likelihood procedure transforms the data into ranks before the
Cube even sees them, so that taking the most extreme observation and scaling
it by a factor of 10 along one dimension would have no impact on the Cube’s
estimates. What is a problem however, is that with a small number of obser-
vations, one may not observe extreme dependence. Thus estimating the Cube
requires confidence that one has indeed observed extreme dependence within
a sample. The uneasiness one should feel making statements about having
already observed extreme dependence suggests that in any financial applica-
tion (and perhaps any application more generally), stress-testing the Cube’s
parameters (for example for their impact on forecast VaR or contribution to
VaR) is critical.

2.6.3 Results

First we report the results of the OLS regression of the HFR indexes on the
market indexes:

Next we report the estimated parameters of the Cube-Gaussian Mixture,
both for excess and residualized HFRI returns:
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HFRI HFRI
Event Driven Relative Value

Intercept 0.005377 0.004426
(0.000762) (0.000592)

S&P 500 0.1857 0.0426
(0.0209) (0.0162)

BarCap Agg Total Treasury -0.1728 -0.0920
(0.0561) (0.0436)

BarCap US Corp High Yield 0.3172 0.2549
(0.0332) (0.0258)

S&P GS Commodity 0.0301 0.04336
(0.0121) (0.0094)

n 247 247
R2 0.655 0.523
Adj-R2 0.650 0.515

Standard errors in parentheses

Note that with a = 0.01, the corner solution of q2 = a−1 maximizes the
likelihood, and at that estimate the derivative of the likelihood function is un-
defined, so the approximate standard error is not valid. Given that only 2
observations per variable lie below the 0.01 percentile, we should expect the
estimator to be somewhat unstable. The fact that the most extreme observa-
tion for HFRI ED residual returns coincides precisely with the most extreme
observation for HFRI RV’s residual returns 40 means that fitting this highly
unlikely (from the perspective of the Gaussian) point perfectly brings a large
likelihood gain. This instability would prevent most practitioners from taking
the a = 0.01 estimates very seriously, and so we have included them solely to

40These occurred during the LTCM crisis of August 1998. The most extreme HFRI ED excess
return, also August 1998, occurred with HFRI RV’s 2nd most extreme excess return, and vice
versa during October 2008.
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a = 0.05 a = 0.01
HFRI HFRI HFRI HFRI

Excess Returns Residual Returns Excess Returns Residual Returns

q2 15.45 5.87 100.0 100.0
(37.05) (5.01) (198.1) (149.5)

λ 0.047 0.393 0.130 0.394
(0.097) (0.103) (0.090) (0.101)

ρS 0.726 0.751 0.768 0.758
(0.046) (0.039) (0.037) (0.039)

-log L -82.22 -37.09 -83.07 -38.52

Approximate standard errors in parentheses

illustrate the mechanics of the model.

Finally, we report the values of the likelihood, AIC, and BIC evaluated at
the maximum likelihood estimates for the Cube-Gaussian (at a = 0.05 and
a = 0.01), Gaussian, Clayton, and Student’s-t copulas:

On the HFRI Excess returns, Student’s-t performs best in terms of the log-
likelihood and AIC, but the heavier penalty that BIC enacts on extra estimated
parameters causes the pure Gaussian to fit the best of the five models. The
Cube-Gaussians both outperform the Clayton on AIC, but are last on BIC due
to their extra parameter.

On the HFRI Residual returns, the Cube-Gaussians perform better. BIC still
penalizes them sufficiently heavily that they are last, but both are consider-
ably better than the three competing models under AIC’s penalty. In terms
of intuition for the very different ranking achieved by AIC and BIC, note that
AIC’s penalty term is a function solely of the number of parameters, namely
2k where k is the number of estimated parameters, while BIC’s penalty term
grows with the sample size, via klog(n) where n is the sample size.

Our view of these results is that they at minimum establish that parame-
ter estimation is straightforward for the simplest version of the mixed Cube
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HFRI HFRI
Excess Returns Residual Returns

-log L

Cube-Gaussian (a = 0.05) -82.22 -37.09
Cube-Gaussian (a = 0.01) -83.07 -38.52
Gaussian -82.09 -33.43
Clayton -78.61 -33.42
Student’s-t -83.92 -36.11

AIC

Cube-Gaussian (a = 0.05) -158.45 -68.19
Cube-Gaussian (a = 0.01) -160.13 -71.04
Gaussian -162.18 -64.87
Clayton -155.21 -64.83
Student’s-t -163.84 -68.22

BIC

Cube-Gaussian (a = 0.05) -147.92 -57.66
Cube-Gaussian (a = 0.01) -149.60 -60.51
Gaussian -158.67 -61.36
Clayton -151.70 -61.33
Student’s-t -156.82 -61.20

Cube-Gaussian estimates 3 parameters; Gaussian, 1; Clayton, 1; and Student’s-t, 2

copula, and that it produces results about as good as common alternative
approaches to modeling tail dependence. However, we also view the Cube-
Gaussian as a modeling tool, rather than just a statistical tool, in the sense
that its parameters will generally require both intuition and experience in the
arena in which the tool is applied. To make this point obvious, the practitioner
who put no thought into the liquidation scenarios that could lead to simulta-
neous left tails across hedge fund strategies, but instead blindly applied our
method, would not have been much better off going into August 1998 than a
practitioner who instead used a Gaussian copula.
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2.7 Conclusions

Motivated by applications to portfolio risk modeling, we searched for a copula
which is flexible enough to accommodate a fully-general correlation matrix
in the bulk, as well as a very high conditional probability of left-tail events,
with no corresponding implication for right-tail events. Our conclusion was
that none of the well-known copulas in the literature are quite so flexible.
All of these seem to have the property that one can introduce high left tail
dependence, but only at the cost of influencing the copula in other ways which
make it inadmissible for this sort of risk modeling.

To address this problem, we created a new family of copulas which is more
“flexible” in several important ways. It allows one in particular to separately
specify the probabilities for a-quantile events, for a sequence of increasing val-
ues of a, while retaining a fixed correlation structure in the bulk and without
requiring the introduction of artificial right-tail dependence.

The new copula we propose takes the form of a nested Cube mixed with a
normal copula. The normal copula takes into account the correlation matrix,
while the nesting and the cube structure creates a sequence of increasing prob-
abilities of simultaneity in the left tails. The parameter vector q can be tuned
to make these conditional probabilities as large as mathematically possible.
Since the qi ’s are subject only to simple linear constraints, it is not difficult to
tune the q-vector while maintaining consistency.

Theorem 11 and Theorem 13 ensure that the resulting mixtures are in-
deed copulas. This structure has several desirable properties, including the
fact that certain important and widely-used measures of concordance, such as
Spearman’s rho, distribute over mixtures and can be computed explicitly for
the components.

Applications in financial engineering include a better estimation of VaR and
contributions to VaR for portfolios of assets which have moderate correlation
in normal times, but which tend to experience highly correlated drawdowns
in crisis periods.
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