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any of their employees, makes any warranty, express or implied, or assumes any legal 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or service 
by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by the United States Government 
or any agency thereof, or The Regents of the University of California. The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the United 
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Performance Evaluation for a Modular, Scalable Passive 
Cooling System in Data Centers 

1 Problem Statement 
Scientific and enterprise data centers, IT equipment product development, and research 
data center laboratories typically require continuous cooling to control inlet air 
temperatures within recommended operating levels for the IT equipment. The 
consolidation and higher density aggregation of slim computing, storage and networking 
hardware has resulted in higher power density than what the raised–floor system design, 
coupled with commonly used computer rack air conditioning (CRAC) units, was 
originally conceived to handle.  
 
Many existing data centers and newly constructed data centers adopt CRAC units, which 
inherently handle heat transfer within data centers via air as the heat transfer media. This 
results in energy performance of the ventilation and cooling systems being less than 
optimal. Understanding the current trends toward higher power density in IT computing, 
more and more IT equipment manufacturers are designing their equipment to operate in 
“conventional” data center environments, while considering provisions of alternative 
cooling solutions to either their equipment or supplemental cooling in rack or row 
systems.  
 
In the meanwhile, the trend toward higher power density resulting from current and 
future generations of servers has created significant opportunities for precision cooling to 
engineer and manufacture packaged modular and scalable systems. The modular and 
scalable cooling systems aim at significantly improving efficiency while addressing the 
thermal challenges, improving reliability, and allowing for future needs and growth. Such 
pre-engineered and manufactured systems may be a significant improvement over current 
design; however, without an energy efficiency focus, their applications could also lead to 
even lower energy efficiencies in the overall data center infrastructure. 

The overall goal of the project supported by California Energy Commission was to 
characterize four commercially available, modular cooling systems installed in a data 
center. Such modular cooling systems are all scalable localized units, and will be 
evaluated in terms of their operating energy efficiency in a real data center, respectively, 
as compared to the energy efficiency of traditional legacy data center cooling systems.  

2 Technical objectives 
The technical objective of this project was to evaluate the energy performance of one of 
the four commercially available modular cooling systems installed in a data center in Sun 
Microsystems, Inc. This report is the result of a test plan that was developed with the 
industrial participants’ input, including specific design and operating characteristics of 
the selected passive, modular localized cooling solution provided by vendor 4.  

The technical evaluation included monitoring and measurement of selected parameters, 
and establishing and calculating energy efficiency metrics for the selected cooling 
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product, which is a passive, modular, scalable liquid cooling system in this study. The 
scope is to quantify energy performance of the modular cooling unit corresponding to 
various server loads and inlet air temperatures, under various chilled-water supply 
temperatures.  

The information generated from this testing when combined with documented energy 
efficiency of the host data center’s central chilled water cooling plant can be used to 
estimate potential energy savings from implementing modular cooling compared to 
conventional cooling in data centers. 

3 Technical information on the characteristics of 
cooling systems, servers 

The evaluation tests were performed in a data center space located in Santa Clara, 
California. The datacenter area is approximately 12,800 square feet, with a ceiling height 
of 13 ft 6 inches and no raised floor. All server racks and support equipment are installed 
directly on the slab floor. There were various types of servers, rack sizes and shapes from 
various vendors. The data center was specifically designed to support racks with any type 
of IT equipment.   

Power, chilled water, and communication cables to the server racks were provided 
through overhead cable trays. 700 tons of cooling is provided to the space from the 
central chilled water plant for cooling the IT equipment. The chilled water is supplied by 
a 2,000-ton central chilled water plant. 

Power for thirty-six 150kW PDUs was provided through a 480v AC bus way system. The 
150kW power distribution units (PDUs) were located throughout the space. The PDUs 
transform the power from 480v AC to 208v AC for distribution to the server racks. The 
data center currently can support 190 watts/ft2 of floor area. The original design load per 
rack footprint in the existing data center was 5 kW/rack with growth to 9 kW/rack.  

3.1 Passive modular cooling system 
This modular, scalable cooling system is essentially a heat exchanger utilizing water at a 
temperature higher than the room dew-point temperature to transport thermal loads. It is a 
passive cooling system delivering cooling from the heat exchanger. The passive cooling 
system studied consisted of a single, 77”H x 26”W x 5.5”D modular system (air-to-water 
heat exchanger) attached to rear door of the server rack. Since the rear-door heat 
exchanger replaces the standard rear door, the installed module adds 4” to the total rack 
depth, not 5.5”. The modular system does not utilize electrical power to operate. Figure 1 
shows the side view of the passive modular cooling system with rear door open.  

The modular system has a water-cooled device that mounts on the rear of the server rack 
to cool the heated server exhaust air. A supply hose delivers above room dew point 
temperature (ADP) conditioned water to the heat exchanger. Another hose delivers 
warmed return water back to the water pump or chiller. In this report, we refer to this as a 
secondary cooling loop. The primary cooling loop supplies building chilled water to 
secondary ADP cooling loops and air conditioning units. The passive cooling module is 
designed to remove up to 102,400 BTU (30kW) of heat.  
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In order to test the effectiveness of the modular system under various supply water 
temperatures, an additional coolant distribution unit (CDU) was installed and connected 
to the modular system. The CDU consists of a water-to-water heat exchanger that 
provides isolation between the primary chilled water and secondary cooling water loops 
that are connected to the module. The CDU utilizes an internal secondary loop pump and 
measures primary and secondary water pressures, temperatures and flow rates.  

The passive rear-door modular cooling system was tested in a hot/cold aisle configuration. 
Ambient room air was drawn from the front of the servers by servers’ internal fans. Then 
the air passed through the servers while being heated by the servers and finally exhausted 
to the rear of the rack.   

3.2 Server  
The IT or heat load in each server rack was provided by 40 standard Sun V20 1U servers, 
each with a size of 28”x17”x1.75”for the one server rack tested. The maximum load per 
server rack achieved in this study was 10. 9kW per rack for all temperature set points 
tested. Details of the servers provided in this study are publicly available [1].  

Figure 1 Side View of the Passive Modular system with Rear Door Open 
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3.3 Server power management  
Using a commercially available software program as the “control program”, the load 
within each rack was effectively controlled at desired levels by dynamically turning on 
and off servers and running the program [2] at various CPU loads to achieve the desired 
power consumption and resulting heat load to test the energy efficiency of the modular 
cooling system. Prior to the test, reference measurements on each type of server that was 
being used in the rack were performed to measure idle and loaded power consumption.  

To achieve the desired partial or full power load level (kW/rack) to be tested, the number 
of servers needed to run at 100% load was calculated beforehand and the control program 
turned the rest off. For example, to achieve the desired heat load levels in the test plan, 
the numbers of servers running at full load per rack were as follows: 10 kW - 33 servers; 
7.5 kW - 25 servers; 5 kW - 17 servers; 2.5 kW - 9 servers.  

Although all of the servers used in the test configuration were the same, the initial 
reference measurements identified that they had significantly different power 
consumption due to different memory or computing configurations installed.  

Therefore, to achieve and maintain the desired full or partial power load per rack during 
each test sequence, the monitoring system collected real time measurements of server 
power from the rack power strips and the program used this information to turn on or off 
additional servers as necessary to maintain the desired power load levels.  

To monitor the temperature of inlet air being delivered to the test rack by the passive 
modular cooling system, air temperature probes were installed at the top, middle and 
bottom of the rack. To improve the response time of these sensors, the power to the 
servers installed at these rack elevations were maintained on during each testing sequence. 
Prior to starting a specific modular cooling system test sequence, the total power 
consumption of the rack was verified against the readings of the power strip and adjusted 
as needed until the power consumption was stable.  

4 Measured parameters  
The following parameters were monitored or measured during the evaluation. 

• Power demand of servers and modular system  

o Actual power demand for servers used in this study 

o Actual power demand for the CDU 

• Air temperature 

o Cold inlet air temperature to the server rack 

There were three temperature sensors (RTDs) installed at the top, middle, and 
bottom positions (0.65”, 37.5”, and 69”, respectively)  

o Hot outlet air temperature from the server racks 

There were three temperature sensors (RTDs) installed at the top, middle, and 
bottom positions (0.65.”, 37.5”, and 69”, respectively) 

• Outdoor air temperatures (dry-bulb & relative humidity). 
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• Cooling module entering and leaving chilled water temperatures 

Chilled water temperatures in the supply and return pipes were measured by 
installing two temperature sensors on the surface of the water pipes, with 
insulation material wrapped around.  

• Cooling module chilled water flow rates 

• Cooling module entering and leaving chilled water pressure differential. 

In addition to the real-time measurements taken of the test environment, the following 
parameters were recorded manually to quantify the power demand in the data center 
and the energy use of the central chilled water plant: total power demand going into 
all IT equipment; and total power demand to chiller plant.  

5 Data acquisition system 
Data collection for the test environment was performed using a commercially available 
data acquisition system [3]. Data collection for the central chilled water plant was 
collected from both the on-site energy management system and from field measurements 
taken were continuous monitoring data points were not available. Data points were 
measured over the duration of the study, gathered from the manufacturer's modular 
cooling equipment (where available), the Sun servers, the rack power strips, and an array 
of power meters, flow meters, pressure transducers, and RTD temperature sensors.  

Data was gathered by local network appliances via a variety of network and serial 
communication protocols from the meters, the servers, and various analog sensors 
through I/O modules. After initial local processing and alarm checking, data was reported 
to a remote server and stored in a relational database. Similar data points were measured 
for each rack cooling technology, and stored in a shared relational database at a remote 
server. The real-time data was available through a web application, allowing users to 
monitor and manage the study remotely in real time. Access controls ensured that each 
manufacturer could see only its own data, while the designated host had access to all data. 

Two power meters measured the energy use of the cooling unit and rack of servers. Smart 
power strips reported electric current for each rack. RTDs were placed at three heights on 
each rack, front and back, as well as at the inlet and outlet of the fan units. Ambient air 
temperatures and humidity were measured on the cold-aisle. Various internal server 
temperatures were gathered from selected servers, as reported by the servers themselves. 
Supply and return chilled water conditions were measured using a flow meter, pressure 
transducers, and RTDs. The cooling modules themselves also reported water conditions, 
fan speed, air temperatures, and cooling output power. 

6 Test procedures and operating conditions 
The parametric test matrix with varying inlet air temperature (68°F, 72°F, 76°F, 80°F) 
against elevated supply water temperature (50°F, 60°F, 70°F) and achievable server loads 
(pre-determined with a maximum of 10.9 kW/rack) is presented in the following table. 

Table 1 Set Points for Test Conditions  
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The following procedures were followed to control and maintain a pre-determined matrix  
of various inlet air temperatures and server loads.  

• Control and adjust the cold aisle air temperature (server’s inlet air temperature) at 
discrete set point of from 80°F down to 68°F, with steps of 4°F.  

• For each desired inlet air temperature level, identify the level of available and 
applicable full server load (e.g., 10.9 kW for the rack tested). Allow sufficient 
operating time, and perform steady-state testing and monitoring.  

• Decrease the server power from 100% (~10.9kW) to 50% (~ 5.5 kW/rack). 
Perform steady-state testing and monitoring at 50% load.  

• Control secondary loop water supply temperature to 70°F, 60°F & 50°F. 

Note that for the majority of the testing, we used space heaters to raise the temperature of 
air entering the inlet of servers. We observed that a reasonably small movement or 
change of the heaters could cause a noticeable change in the sensor temperatures. The 
temperature for the "entire" air volume was not uniformly adjusted however, which could 
lead to an inaccuracy of the "true” profile for actual room air temperatures. This setup 
could either overestimate or understate the performance of the water system since the 
system would have to remove more or less heat. Since we did not measure the system 
airflow and the added fan heat for each test condition, we could not reliably quantify the 
magnitude of the error or bias. Therefore, for the purposes of this evaluation we focused 
our analysis on waterside and power monitoring readings rather than airside calculations. 

100% 50%

50 68 10.9 10.9 5.5
50 72 10.9 10.9 5.5
50 76 10.9 10.9 5.5
50 80 10.9 10.9 5.5

60 68 10.9 10.9 5.5
60 72 10.9 10.9 5.5
60 76 10.9 10.9 5.5
60 80 10.9 10.9 5.5

70 - 10.9 10.9 5.5
70 72 10.9 10.9 5.5
70 76 10.9 10.9 5.5
70 80 10.9 10.9 5.5

Supply water 
temperature (F)

Inlet air 
temperature 
set point (F)

Targeted total 
server load (kW) 
for one servers 

rack

Various server loads (kW) per rack
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7 Performance metrics for the passive modular cooling  
There is no active electric power demand for operating the passive heat exchanger device 
to cool servers in the rack. However, we regard the hydraulic power of the water flow 
within the secondary loop (connecting the rear door heat exchanger with the CDU) as the 
power demand needed for operating the modular cooling device in this evaluation.  

In order to characterize its own thermal performance, we use the ratio of cooling 
delivered by the passive modular cooling system to the total hydraulic power demand for 
transporting the water flow in the secondary loop, defined as “coefficient of performance 
(COP).”  

Normally COP of a modular system is the ratio of the heat removed by the module to the 
work supplied to the module. The COP can be calculated under applicable operating 
conditions (a range determined by inlet air temperature, rack server load, and elevated 
supply water temperature).  

In this evaluation, the work supplied is narrowly defined as the hydraulic power required 
for transporting the water flow rate through the passive modular cooling system 
(assuming 100% transformed energy efficiency), while the heat removed is equivalent to 
the cooling provided by the rear door. Hydraulic COP can be quantified by the following 
equation.  

 

Where  

Cooling is the cooling provided by the passive modular cooling system; and  

Phydraulic is calculated by the multiplication of the water differential pressure flow rate 
using the following equation:  

Phydraulic power = 0.43506 QΔP/1000, kW 

Where  

ΔP: pressure differential between secondary-loop supply and return water flow, in psi. 
Q: Averaged water flow rate measured in gallons per minute 

Because the CDU was only used to provide variable varied chilled water supply 
temperature (e.g., 50°F. 60°F, or 70°F), the actual power required for the CDU operation 
is not considered to be part of power demand for the passive modular cooling system 
evaluated in this study.  

The actual cooling provided by the passive modular cooling system can be calculated 
from the rise in the secondary-loop chilled water temperatures, and the chilled water flow 
rate, using the following formula: 
 
Where  

60
3412.1

p wQC T
Cooling

ρ Δ
=

hydraulic

CoolingCOP
P

=
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Where  
Cooling is delivered by the passive modular cooling system, in kW. 

ρ: Water density in lb/gal, assuming water density ρ of 8.34 lbm/gal (or 62.4 lbm/ft3) 

Q: Averaged water flow rate measured in gallon per minute 
 
Cp: Specific thermal conductivity of water, 1 BTU/F-lbm 
 
ΔTw : Measured water temperatures rise, in °F  
 
Therefore,  
 

 

 

Because this passive modular cooling system requires no internal fans or additional 
pumping energy, its COP is proportional to the ratio of the secondary water temperature 
differential to the secondary water pressure differential. The tests confirmed the 
hypothesis for a sensible cooling coil such as the passive modular cooling system 
provided by vendor 4. The chiller pumping power required to deliver the chilled water 
volume in the primary-loop was ignored for this evaluation in keeping with the 
evaluation of the other vendor’s systems.  

Another performance metric is the ratio of total power divided by the cooling transported 
by the passive modular cooling system, defined as modular system efficiency (MSE). 
This is similar to chiller efficiency defined as power demand per cooling transferred. 
Represented in kW per cooling ton, a lower value of this ratio indicates a higher cooling 
energy efficiency at which the modular system is performing.  
 

 
 

 
 
where  
 
Module System Efficiency (MSE): Ratio of total hydraulic power for cooling to cooling 
delivered, in kW/ton 
Q: Averaged water flow rate measured in gallon per minute 

0.1467 wCooling Q T= Δ

337.1 w

total

TCoolingCOP
P P

Δ
= =

Δ

412(0.43506 Q P) P1.0431 10
60 p w w

MSE x
QC T Tρ

−Δ Δ
= =

Δ Δ

12000(0.43506 Q P)/1000MSE
Cooling

Δ
=
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ΔP: Measured water pressure difference between secondary-loop supply and return, in psi.  
Cooling is delivered by the passive modular cooling system, in BTU/hr. 

An alternative metric, defined as the module’s power index (PI), is the ratio of power 
demand for the passive modular cooling system to computer load under selected 
operating conditions. A higher value of the power index indicates higher cooling energy 
demand for the passive modular cooling system at a given server load under an operation 
condition.  

 

8 Summary of findings and conclusions 
The facility measurement system deployed in this study was reliable and accurate, and 
provided wide range of critical parameters under monitoring. It has also provided real-
time data display during the course of the experimental study, and supported the study's 
data analysis effectively.  

The software program used in the study effectively created various load/power 
consumption scenarios (based on the reference measures) to make sure the necessary 
power draw was generated and maintained required for all the tests in this study. Each 
rack was capable of consuming over 10 kW and depending on the server load set points; 
the program was used to set load levels by turning on/off the necessary amount of servers 
and by running the benchmarking tool at full load. 

Based on the actual sever load achieved, the level of inlet air temperature set points, 
actual water supply temperatures, and the available temperature control within the test 
space, the actual operating conditions may and may not be fully achieved as planned in 
the set point matrix shown in Table 1.  

The actual operating conditions achieved in this evaluation are shown in Table 2. The 
actual inlet temperature was not able to go down to as low as 68°F as originally planned 
based on the ‘whole room’ temperature of approximately 70°F. The overall coverage of 
operating conditions ranged from 70°F to 83°F for inlet air temperatures, from 4.8 
kW/rack to 11.2 kW/rack for server loads, and from 50°F, to 60°F and 70°F for supply 
water temperatures.   

hydraulic

server

P
PI

P
=
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Table 2 shows the results from the tests performed at the facility, which include rack 
power load; average inlet/outlet air temperatures monitored at three different heights for 
the server rack; chilled water temperatures; cooling delivered by the passive modular 
cooling system (heat exchanger); hydraulic power demand of the modular system; and 
three performance metrics: hydraulic based COP; module system efficiency; and power 
index.  

Table 2 Actual Test Conditions and Results 

 
 

It is clear that different IT equipment and environmental operating conditions affected the 
cooling delivery efficiency of the modular cooling unit. Specifically, variations in server 
power load and inlet air temperature have resulted in different hydraulic COP, modular 
system efficiency (kW/ton), and power index for passive modular cooling system in this 
study, as exhibited for each of the chilled water supply with different temperatures. 

Generally, the achievable full server load was 11.2 kW/rack, with partial load being as 
low as 4.8 kW/rack in this study. Total cooling hydraulic power remained very low and 
stable at each of the rack power loads; varying between 0.04-0.05 kW for full rack power 
load and half load, respectively. Under a similar rack power load and the same chilled 
water supply temperature, the hydraulic COP of the passive modular cooling system 
tended to increase with an increase of inlet air temperature, while the module’s cooling 
MSC values (kW/ton) remained low and stable. Similarly, the PI values were also very 

Server Load 
per Rack 
(kW/rack)

Average Inlet 
Air 

Temperature 
(F)

Average 
Outlet Air 

Temperature 
(F)

Chilled Water 
Temperature 

(F)

Chilled Water 
Flowrate 
(gpm)

Total Cooling 
(kW)

Hydraulic Power 
for Cooling 
Module 
(kW)

Total  Power 
for Server 

(kW)

Hydraulic 
power 
based 
COP

Hydraulic 
power 
based
ModEff 
(kW/ton)

Hydraulic 
power 
based 
Power 
Index

10.8 70 92 52 9.9 8.1 0.047 10.8 171.7 0.02 0.004
10.8 73 120 51 10.2 9.3 0.049 10.8 190.1 0.02 0.005
10.9 76 121 53 9.7 9.1 0.046 10.9 196.2 0.02 0.004
11.2 82 129 51 11.1 12.2 0.053 11.2 229.9 0.02 0.005
10.8 70 117 60 9.1 6.3 0.043 10.8 144.1 0.02 0.004
10.8 74 120 60 9.1 6.9 0.043 10.8 159.4 0.02 0.004
10.9 76 122 60 9.0 7.4 0.039 10.9 188.8 0.02 0.004
11.1 81 129 60 9.2 8.7 0.040 11.1 219.2 0.02 0.004
10.9 70 117 70 9.7 5.1 0.042 10.9 121.4 0.03 0.004
10.9 73 120 70 9.7 5.7 0.046 10.9 122.6 0.03 0.004
11.1 82 128 70 8.9 6.9 0.043 11.1 162.5 0.02 0.004
11.2 82 129 60 9.2 8.9 0.044 11.2 202.3 0.02 0.004
5.7 73 83 49 10.7 6.0 0.051 5.7 116.5 0.03 0.009
5.8 73 118 50 9.4 5.1 0.045 5.8 113.4 0.03 0.008
5.8 79 121 50 9.8 5.6 0.047 5.8 119.6 0.03 0.008
5.8 83 122 49 11.2 7.2 0.054 5.8 134.9 0.03 0.009
5.8 73 116 60 9.0 4.0 0.043 5.8 92.0 0.04 0.007
5.8 73 116 60 8.9 3.9 0.043 5.8 92.0 0.04 0.007
5.8 78 121 60 8.9 4.2 0.043 5.8 98.1 0.04 0.007
4.8 83 121 60 9.0 4.1 0.043 4.8 95.0 0.04 0.009
5.8 73 116 70 9.4 2.9 0.045 5.8 64.4 0.05 0.008
5.8 73 116 70 9.5 3.4 0.046 5.8 73.6 0.05 0.008
5.8 79 121 70 9.3 3.5 0.044 5.8 79.7 0.04 0.008
6.6 83 122 70 9.4 3.4 0.045 6.6 76.6 0.05 0.007
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low and remained virtually unchanged for a similar rack power load with various inlet air 
temperatures. On the other hand, the total cooling delivered by the module tended to 
increase when inlet air temperature rose from 70°F to 80°F under similar server loads. 

In this study, we have examined how this passive modular cooling system performed 
under different chilled water supply temperatures. Specifically, the performance of the 
passive modular cooling system with the range of 50°F-70°F supply water was tested and 
evaluated for full and partial rack power loads, by the installation of a secondary water 
loop. Under different chilled water supply temperatures (50°F, 60°F, and 70°F) and 
similar operating conditions (e.g., rack power loads); the hydraulic COP tended to 
decrease with an increase in inlet air temperature, while the MSC values (kW/ton) and PI 
values remained basically unchanged.  

Hydraulic COP decreased as the rack power load decreased. In general, the MSC values 
(kW/ton) and PI values increased with an increase in rack power loads, with the 
magnitude of change in kW/ton of 0.02 to 0.05 kW/ton, and PI of 0.004 to 0.009. This 
indicated that rather insignificant power was required for transporting chilled water flow 
through the passive rear door heat exchanger system.  

We also found that at elevated supply water temperature (50°F-70°F), the passive 
modular cooling system performed well, delivering reasonable cooling to the server rack 
with partial server load as well as with full server load in this study. The testing indicates 
that this technology is significantly more energy-efficient than traditional CRAH cooling 
units.  

Overall, the hydraulic COP ranged from 64 to 220; module system efficiency (kW/ton) 
values ranged from 0.02 to 0.05 kW/ton; and PI was constant at less than 0.01, exhibiting 
highly energy efficient operation under the various operating and environmental 
conditions (rack power load, inlet air temperature load and supply water temperature) 
tested in this study. The passive cooling system performed effectively with higher supply 
water temperature (from 50°F to 70°F) tested in this study. Because the power demand 
for this passive modular cooling system was estimated based upon hydraulic power, a 
direct comparison of this set of metrics with those of other modular cooling systems 
would not be necessarily appropriate. Instead, the purpose of performing such 
calculations for the energy metrics based upon the hypothetical hydraulic power in this 
study is to compare the passive system’s performance under various operation conditions 
(inlet air temperature, server load, and chilled water temperatures) when applying this 
system into data centers.  

It should be noted that this cooling technology relies on the ability of the server fans to 
support air movement and overcome the static pressure drop across the heat exchanger. In 
this study,  the cooling ability of the passive cooling system was tested only for cooling 
requirements of the IT equipment housed in the selected rack, assuming the ambient air 
temperature within the data center being neutralized by other means. In fact, its cooling 
effectiveness in the entire data center would also be influenced by the surrounding 
conditioned air that might require additional cooling from other systems within the data 
center. Furthermore, it should be noted that the passive system in the study exhibited no 
direct capability or effectiveness in the control of inlet air temperatures due to its design. 
This may inherit potential risks of compromising the ability to control air temperatures 
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effectively within the entire data center, if the passive system is not implemented or 
integrated with the rest of the data center systems carefully.  

This evaluation does not include the assessment of the potential energy savings possible 
if this cooling system technology was used for the entire data center, while the use of 
modular, scalable cooling systems, such as the unit in this evaluation, may increase the 
overall data center efficiency especially when optimized with the central cooling plant. 
The results of our testing support the hypothesis that these types of liquid cooling systems 
may be able to perform effectively without chillers using only evaporative cooling in cool, 
dry climates.   

The findings from this study indicate that by implementing liquid cooling in lieu of 
traditional CRAH units, the overall kW/Ton in the data center could be reduced. This 
type of modular cooling system also provides increased flexibility in data center 
configuration and layout. Therefore, integration of such modular, scalable cooling 
systems within the “traditional” data center infrastructures should be to be carefully 
planned and evaluated for effectively cooling in data centers. 

In summary, this study recommends that the reader consider not only the energy 
efficiency performance of the modular scalable cooling system, but also the system’s 
design capability, its effectiveness to control and maintain server inlet air temperature 
(e.g., within ASHRAE recommended levels), and its potential dependence on other 
cooling or humidification in data centers. In order to quantify or estimate the impact of 
modular, scalable cooling systems on overall data center energy efficiency, one must also 
assess their integration with the rest of the data center eco-system, the temperature range 
of chilled water available from the plant (cooling tower or chiller), the local weather 
conditions, and the power density characteristics of the data center. 
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