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Fundamental Limits of Information Dissemination in
Wireless Ad Hoc Networks—Part I: Single-Packet Reception

Zheng Wang, Student Member, IEEE, Hamid R. Sadjadpour, Senior Member, IEEE,
J. J. Garcia-Luna-Aceves, Fellow, IEEE, and Shirish S. Karande, Member, IEEE

Abstract—We present the first unified modeling framework
for the computation of the capacity-delay tradeoff of random
wireless ad hoc networks. This framework considers information
dissemination by means of unicast routing, multicast routing,
broadcasting, or different forms of anycasting. We introduce
(n,m, k)-casting as a generalization of all forms of one-to-
one, one-to-many, and many-to-many information dissemination
in wireless networks. In this context, n, m, and k denote
the total number of nodes in the network, the number of
destinations for each communication group, and the actual num-
ber of communication-group members that receive information
(k < m), respectively. We describe the capacity-delay tradeoff for
(n, m, k)-casting in wireless ad hoc networks in which receivers
perform single-packet reception (SPR). Our results are consistent
with prior results in wireless networks and extend them to the
general (n,m, k)-cast case.

Index Terms—Capacity, delay, scaling law, wireless ad hoc
networks, (n, m, k)-cast.

I. INTRODUCTION

HE seminal work by Gupta and Kumar [1] on the
capacity of wireless networks has sparked a growing
amount of interest in the understanding of the fundamental
capacity limits of wireless ad hoc networks. Many researchers
focused on improving the capacity of wireless networks with
unicast communications [2]-[4]. A number of studies on the
capacity of ad hoc networks concentrated on broadcasting
(e.g., [5], [6]) and multicasting (e.g., [7], [8]). The work
presented in this paper is motivated by the fact that, to date,
there has been no unified treatment on the capacity and delay
scaling laws of wireless networks subject to different types of
forwarding disciplines.
We present the first unified modeling framework for the
computation of fundamental limits of capacity-delay trade-
offs in wireless ad hoc networks in which information is

Manuscript received October 20, 2008; revised March 11, 2009 and July
20, 2009; accepted September 21, 2009. The associate editor coordinating the
review of this letter and approving it for publication was N. Pavlidou.

This work was partially sponsored by the U.S. Army Research Office under
grants W911NF-04-1-0224 and W911NF-05-1-0246, by the National Science
Foundation under grant CCF-0729230, by the Defense Advanced Research
Projects Agency through Air Force Research Laboratory Contract FA8750-
07-C-0169, and by the Baskin Chair of Computer Engineering. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Government.

Z. Wang and H. R. Sadjadpour are with the Department of Electrical
Engineering, University of California, Santa Cruz, 1156 High Street, Santa
Cruz, CA 95064, USA (e-mail:{wzgold, hamid}@soe.ucsc.edu).

J. J. Garcia-Luna-Aceves is with the Department of Computer Engineering,
University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064,
USA, and the Palo Alto Research Center (PARC), 3333 Coyote Hill Road,
Palo Alto, CA 94304, USA (e-mail:jj@soe.ucsc.edu).

S. S. Karande is with Philips Research Bangalore, No.1, Murphy Road,
Ulsoor, Bangalore, 560 008, India (e-mail:shirish.karande @philips.com).

Digital Object Identifier 10.1109/TWC.2009.12.081408

disseminated by means of unicast routing, multicast routing,
broadcasting, or different forms of anycasting, and in which
receivers are capable of single-packet reception (SPR). Our
conclusions in this paper are consistent with the results by
Gupta and Kumar [1]. In the second part of this paper, we
analyze the scaling laws for multi-packet reception (MPR),
which allows a single node to receive and decode multiple
simultaneous transmissions.

We define (n,m,k)-casting as a generalization of all
forms of one-to-one, one-to-many and many-to-many infor-
mation dissemination in wireless networks. In the context of
(n,m, k)-casting, n, m, and k denote the number of nodes
in the network, the number of destinations for each com-
munication group, and the actual number of communication-
group members that receive information optimally!, respec-
tively. Section III describes the network model and necessary
concepts for the development of our framework.

We address the capacity and delay scaling laws of (n, m, k)-
casting under the protocol model in Section IV. Section V
discusses several possible implications of our new model and
concludes the paper.

II. RELATED WORK

Many contributions have been made on the capacity of
wireless networks subject to unicasting, and we mention only
a few of them. A number of papers have extended the results
by Gupta and Kumar. Franceschetti et al. [2] used percolation
theory to close the gap between the upper and lower bounds
of the unicast capacity under the physical model reported by
Gupta and Kumar [1]. Recently, Ozgur et al. [3] proposed a
hierarchical cooperation technique based on virtual MIMO to
achieve linear per source-destination capacity. Cooperation can
be extended to the simultaneous transmission and reception
at the various nodes in the network, which can result in
significant improvement in capacity [4].

Considerable prior work has focused on the capacity of
broadcasting in wireless networks. Tavli [5] was the first to
show that © (nil) is a bound on the per-node broadcast
capacity of arbitrary networks. Keshavarz et al. [6] presented
the most general work on the computation of the broadcast
capacity for any number of sources in the network. Our work
in this paper was inspired by some of the contributions in [6].

There are prior contributions on the multicast capacity of
wireless networks [7], [8]. Jacquet and Rodolakis [7] proved
that the scaling of multicast capacity is decreased by a factor
of O(y/m) compared to the unicast capacity result by Gupta
and Kumar [1] where m is the number of destinations for each

1Optimality is defined as the k closest (in terms of Euclidean distance of
the tree) destinations to the source in an (n, m, k)-cast group.
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source. Li et al. [8] compute the capacity of wireless ad hoc
networks for unicast, multicast, and broadcast applications.
While the results by Li et al [8] are equivalent to our capacity
results for (n,m, k = m)-casting, it is worth noting that our
derivation of the capacity is different than the work by Li et
al [8]. In addition, our derivation is for the case of (n,m,k)-
cast which is more general than only unicast, multicast and
broadcast communications. More importantly, this is the first
paper to present a capacity-delay tradeoff study for all kinds
of information dissemination as a general function of the
transmission range, r(n).

III. NETWORK MODEL AND PRELIMINARIES

We assume a random wireless network with n static nodes
distributed uniformly in the network area. Our analysis is
based on dense networks, where the area of the network is
a square of unit value and the density of the network goes to
infinity as n goes to infinity. Our capacity analysis is based
on the protocol model for dense networks. To simplify our
analysis, the network area is assumed to be unit-square area
but similar results can be achieved with torus or sphere shape
area. All nodes use a common transmission range r(n) for all
their communication.

Definition 3.1: The Protocol Model: Node i at location X;
can successfully transmit to node j at location X if, for any
node Xy, k # ¢ that transmits at the same time as X;, we have
|X; — X <r(n) and | X5 — X;| > (1 + A)r(n).

Lemma 3.2: Connectivity criterion for protocol model in
dense networks [1]: To ensure that there is no isolated node
in the network, the transmission range 7(n) in random dense
networks satisfies 2.

r(n) =2 (Viogn/n). (1)

In this paper, we study the case in which all n nodes in
the network act as sources that communicates with a group
of m receivers (with m < n) and that k of those receivers
obtain the information reliably. We call this characterization of
information dissemination from sources to receivers (n, m, k)-
casting. This characterization is useful because it can model
all forms of one-to-one, one-to-many and many-to-many in-
formation dissemination in wireless networks.

Definition 3.3: Feasible throughput capacity of (n,m,k)-
cast: A throughput of A(n) bits per second for each node
is feasible if we can define a scheduling transmission scheme
that allows each node in the network to transmit A(n) bits per
second on average to its k£ out of m destinations.

The per-node throughput capacity of the network is defined
as the number of bits per second in Definition 3.3 that every
node can transmit to its destination.

Definition 3.4: Order of throughput capacity: A(n) is
said to be of order ©(f(n)) bits per second if there exist
deterministic positive constants ¢ and ¢’ such that

lim Prob (A(n) = cf(n) is feasible) = 1
n—oo

2
liminf, o Prob (A(n) = ¢ f(n) is feasible) < 1.
2Given two functions f(n) and g(n). We say that f = O(g(n)) if
sup, (£(n)/g(n)) < oc. We say that f(n) = (g(n)) if g(n) = O(f(n)).
I@f(b(zth))f(n) = O(g(n)) and f(n) = Q(g(n)), then we say f(n) =
g(n)).
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Computing the throughput capacity of a network of n
nodes requires us to consider the minimum (7, m, k)-cast trees
between sources and their intended receivers. Furthermore,
computing this capacity requires that the selection of k out of
m receivers be optimum. The rest of this section introduces
additional concepts necessary for the computation of the
throughput capacity of a random ad hoc network.

Definition 3.5: (n,m, k)-Cast Tree: An (n, m, k)-cast tree
is a minimum set of nodes that connect a source node of an
(n,m, k)-cast with all its intended m receivers in order for
the source to send information to & of those receivers.

The construction of (n,m, k)-cast tree starts with connect-
ing the source to m destinations using minimum number of
relays or hops. After constructing this tree, we pick & out
of m nodes in this tree that have minimum total Euclidean
distance to the source. We refer to this selection of k£ nodes as
“optimum” because it results in maximum throughput capacity
for the network. Note that there are ('}') choices for selecting
k nodes and in this paper, we have selected the above criterion
for this selection.

When communicating over a broadcast channel, a transmis-
sion from a source or relay in an (n,m, k)-cast may interfere
with other transmissions in the same or different (n, m, k)-
casts. For a given (n,m, k)-cast to succeed, the packet from
the source must reach & of the m receivers in the group reliably
at least once. Furthermore, any given relay forwards a packet
only once. Accordingly, one or multiple (n,m, k)-cast trees
can be defined by the set of transmissions that reach each
relay and destination of a given (n,m,k)-cast for the first
time. When m = k, the resulting (n, m,m)-cast tree is also
called a multicast tree. For the case in which k& < m, the
selection of the subset of k receivers that correctly receive the
packet from the source is such that each of them is reached
through a branch of the (n,m, k)-cast tree.

Given the distribution of nodes in the plane and the protocol
model we assume, the possible (n, m, k)-cast trees we need to
consider include only those that render the minimum number
of transmissions for a packet from the source to reach all the
intended receivers (k or m) at least once. Because transmis-
sions occur over a common broadcast channel, this implies
that the (n,m,k)-cast trees in which we are interested are
those that involve the minimum number of relay nodes needed
to connect the source and intended receivers of an (n,m, k)-
cast. That is, we focus on (n,m,k)-cast trees built by the
aggregation of shortest paths (minimum-hop paths) between
a source and all of its intended destinations. Accordingly, we
adopt the following definition for (n,m, k)-cast trees in the
rest of this paper.

Definition 3.6: Euclidean  Minimum  Spanning  Tree
(EMST): [9] Consider a connected undirected graph
G = (V,E), where V and E are the sets of vertices and
edges in the graph G, respectively. The EMST of G is
a spanning tree of G with the total minimum Euclidean
distance of the edges of the tree.

An (n,m, k)-cast tree is a function of the transmission
range r(n). Therefore, the optimum tree that has the minimum
Euclidean distance is a function of r(n). For this reason,
changing the transmission range will change the optimum
(n, m, k)-cast tree.
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Definition 3.7: Minimum Euclidean (n,m,k)-Cast Tree
(MEMKT(r(n))): The MEMKT(r(n)) of an (n, m, k)-cast is
an (n,m, k)-cast tree in which the k destinations that receive
information from the source among the m receivers of the
(n,m, k)-cast have the minimum total Euclidean distance.

Definition 3.8: Minimum  Area  (n,m,k)-cast  Tree
(MAMKT(r(n))):  The MAMKT(r(n)) in a (n,m,k)-
cast tree with k£ out of m destinations for each source is a
(n,m, k)-cast tree that has minimum total area. The area of
a (n,m, k)-cast tree is defined as the total area covered by
the circles centered around each source or relay with radius
r(n).

Note that EMST is spanning tree that consider only the
source and destinations, while MEMKT and MAMKT are
related to a real routing tree that includes the relays needed
to connect the source with the destinations.

In our delay analysis, we assume that the delay associ-
ated with packet transmission is negligible and the delay is
essentially proportional to the number of hops from source
to destination. When the packet size is large, then the
transmission delay is considerable and we no longer can ignore
this delay. Our analysis does not consider this case and this
is the subject of future study.

Definition 3.9: Delay of an (n,m,k)-Cast: In an
(n,m, k)-cast, the delay of a packet in a network is the time
it takes the packet to reach all k destinations after it leaves
the source.

We do not take queuing delay at the source into account,
because our interest is in the network delay. The average
packet delay for a network with n nodes, Dy, 1 (n), is obtained
by averaging over all packets, all source-destination pairs, and
all random network configurations.

In the rest of this paper, ||T'|| denotes the total Euclidean
distance of a tree T', #7 is used to denote the total number of
vertices (nodes) in a tree T, S(T") denotes the area of tree T’
covered and #7T denotes the total average number of vertices
(nodes) in a tree 7.

To compute the (n,m,k)-cast capacity, we use the rela-
tionship between the total Euclidean distance of MEMKT and
EMST. Steele [9] determined a tight bound for ||[EMST||(m)
of a group of m nodes and for large values of m, which we
restate in the following lemma.

Lemma 3.10: Let f(x) denote the node probability distri-
bution function in the network area. Then, for large values of
m and d > 1, the ||[EMST]||(m) is tight bounded as

C) (c(cl)md_;1 f(x)%dx) , 3)
Rd

where d is the dimension of the network. Note that both ¢(d)
and the integral are constant values and not functions of m.
When d = 2, then ||[EMST||(m) = © (v/m).

Table I summarizes key terms we use in the computation

of scaling laws for (n, m, k)-casting.

[EMST](m) —

IV. THE (n,m,k)-CAST CAPACITY
A. Upper Bound

Note that MEMKT includes intermediate relays while
EMST(m) only includes m destinations. Lemma 3.10 com-
putes the average total Euclidean distance for EMST(m).
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TABLE 1
ABBREVIATION TABLE
EMST Euclidean Minimum Spanning Tree
MEMKT Minimum Euclidean (n,m, k)-cast Tree
MEMKTC | Minimum Euclidean (n, m, k)-cast Tree Cells
MAMKT Minimum Area (n, m, k)-cast Tree
r(n) Transmission Range in Protocol Model

To compute the upper bound for (n,m,k)-cast, we will
first demonstrate the relationship between S(MAMKT) and
[[EMST]|(m).

Lemma 4.1: The average area for MEMKT(r(n)) has the
following lower bound.

S (MAMKT(r(n)) =

“)

Proof: From Lemma 3.10, if we select only m destina-
tions (m + 1 nodes including source and m destinations) out
of n nodes to construct an EMST(m), then the total average
Euclidean distance of the EMST(m) is at least ©(y/m). Given
that there are m destinations for the tree, then the average
Euclidean distance between any two nodes for this tree is
O (y/m/m), so the k closest destinations and the source
construct a tree with average length of © (y/mk/m). If we
just select the k& destinations randomly, then the problem is
an (n, k, k)-cast in our formulation and then the distance of
that tree is ©(v/k) based on Lemma 3.10. Here, we assume to
construct m multicast tree first, and then choose the optimal
(smallest length of the tree) ones as the real destinations.

It has been proved [8] that the average area of a tree
T with transmission range 7(n) is lower bounded by the
multiplication between the length of the tree and transmission
range r(n) when the number of the actual destinations satisfies
m = O (T’Q(n)). Thus, when the transmission range is not
a large value, then the total area in such a tree is lower
bounded by 2 (kr(n)/+/m). This is the top lower bound in
Eq. (4). When the transmission range is larger, given that
we only need the closest k£ nodes in the set, then the area
of that tree is lower bounded by 2 (kr?(n)) (wr%(n) is the
area covered by one node). This is the second lower bound
in Eq. (4). Once k = Q (r~2(n)), then the MAMKT(r(n))
covers the entire network and we can use (1) as the lower
bound, which is the last value in Eq. (4). The threshold for
r(n) is derived when the first two lower bounds are equal,
ie., © (kr(n)/y/m) = © (kr?(n)). The solution to the value
of my is mp = © (r~2(n)). This result means that, when
m = O(my) or m = Q(my), the lower bound of S (MAMKT)
is Q (kr(n)//m) or © (kr?(n)), respectively. [ ]

Theorem 4.2: The upper bound of the per-node (n,m, k)-
cast throughput capacity in dense wireless ad hoc networks
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is

O (Vm(nkr(n))™"), m =0 (r3(n))

0 ((ner(n))_l) , Q(k) = 12(n) = O(m)
O™, k=Q(r?*(n))

Cm k(n) =

&)

Proof: The proof is immediate by combining Lemma 4.1
with the fact that total area for a unit network was ”1”. Using
the same argument in [1], the total throughput capacity is the
total area divided by the consumed area for one (n,m, k)-cast
tree. The result is immediate by normalizing the result by n.

Note that S (MAMKT) can have some overlap for different
(n,m, k)-cast sessions. The exclusive area for each multicast
session is in the same order as the S (MAMKT).

In [1], disks of radius Ar(n)/2 centered at each receiver are
disjoint in order to guarantee the protocol model. Therefore,
the actual minimum exclusive area for each (n,m, k)-cast
session is at least
—_— Ar(n)\* 1 AN
S (MAMKT) x 7 ( 5 ) e S (MAMK”{6);

The difference is at most A?/4 which does not change the
order. Hence, the capacity is the network area divided by the
total occupied area of one (n,m, k)-cast tree normalized by
n, which leads to the per-node capacity. ]

B. Lower Bound

To derive the achievable lower bound, we use a TDMA
scheme for random dense networks similar to the approach
used in [10]. We first divide the network area into square cells.
Each square cell has an area of 72(n)/2, which makes the
diagonal length of square equal to 7(n). Under this condition,
connectivity inside all cells is guaranteed and all nodes inside
a cell are within transmission range of each other. We build
a cell graph over the cells that are occupied with at least one
vertex (node). Two cells are connected if there exist a pair of
nodes, one in each cell, which are less than or equal to r(n)
distance apart. Because the whole network is connected when
Eq. (1) is satisfied, it follows that the cell graph is connected.

To satisfy the protocol model, we should design cells in
groups such that simultaneous transmissions within each group
do not violate the condition for successful communication in
the protocol model. Let L represent the minimum number
of cell separations in each group of cells that communicate
simultaneously. Utilizing the protocol model, L is given as

L= LHWJ = |14+ V2(2 + A)] If we divide

time into L? time slots and assign each time slot to a single
group of cells, interference is avoided and the protocol model
is satisfied.Given that the parameter L is not a function of n,
the TDMA scheme does not change the order capacity of the
network.

Definition 4.3: Minimum Euclidean (n,m,k)-Cast Tree
Cells(MEMKTC(r(n))): The MEMKTC(r(n)) of an
(n,m, k)-cast tree is the total cells containing all the nodes in
the (n, m, k)-cast tree.

The following lemma establishes the achievable lower
bound for the (n,m,k)-cast capacity as a function of

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 12, DECEMBER 2009

#MEMKTC(r(n)), the total number of cells that contain all
the nodes in an (n,m, k)-cast group.

Lemma 4.4: The achievable lower bound of the per-node
(n,m, k)-cast throughput capacity in dense wireless ad hoc
networks is given by

Crne(n) = Q (1 J#MEMKTC(r(n)) x 1 /m~2(n)) G

Proof: The proof is presented as lemma 4.6 in [11]. H
Lemma 4.5: The  average number of cells in
MEMKT(r(n)) tree is tight bounded as

S} (k(\/mr(n))fl) , m
O (k), Qk) =r"2%(n) = O(m),
S} (7’_2(%)) L k=Q(r”

I
Q
—~
ﬁ\
M)
—
S
~
~—

#MEMKTC(r(n)) =

V)
—
3
~—
~—

®)

Proof: The proof is given in lemmas 4.7 and 5.5 in [11].

|

Theorem 4.6: The achievable lower bound of the (n, m, k)-
cast throughput capacity in dense wireless ad hoc networks is

Q (Vm(nkr(n))™"), m=0 (r—*(n))

Con(n) = § @ ((nkr2(m) "), Q) = 172(n) = O(m)
Q(nY), k=Q(r?*n)
©)
Proof: The proof is immediate by combining Lemmas
4.4 and 4.5. [ ]

It is clear that by combining Theorems 4.2 and 4.6, a tight
bound for the capacity of (n,m, k)-cast can be derived. We
notice from the above results that there are three distinct
capacity regions for (n,m,k)-casting. These three different
regions are achieved based on different values of transmission
range r(n), m, and k. In the first region, the order capacity
of wireless ad hoc networks is similar to that of unicast
communication. Therefore, we refer to this first capacity
region as unicast region. This unicast capacity region also
includes the capacity for multicasting or any type of anycast
communication. Once the number of receiver nodes is smaller
than © (7“_2(’11)), then we enter into a second capacity region,
which we call the multicast capacity region. The last region
is defined for the case when both m and k are larger than
S} (T*Q(n)). The network capacity in this region is equivalent
to the broadcast capacity of the network, and hence we call
this region the broadcast capacity region. The (n,m, k)-cast
tree associated to this region spans all the elements of the
graph and it is equivalent to a connected dominating set for
the entire network. Therefore, regardless of having multicast,
broadcast, or any type of anycast communications, the capacity
reaches its minimum possible value for a given transmission
range which is the same as broadcast capacity.

C. Delay Analysis of (n,m, k)-Cast

In this section, we present the delay of (n, m, k)-casting and
its tradeoff with capacity. As Definition 3.9 states, the packet
delay is proportional to the total number of hops required from
each source to its destinations. In order to compute this delay,
we first prove the following lemma.
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Lemma 4.7: The delay of (n, m, k)-cast in a random dense
wireless ad hoc network with SPR is

Dy i(n) =© (#MEMKTC(r(n))) .

(10)

Proof: From the definition of #MEMKTC(r(n)) and
Lemma 4.5, we conclude that #MEMKTC(r(n)) is propor-
tional to the minimum number of hops in which the informa-
tion is routed from source to all its destinations. Because we
are assuming a TDMA scheme to achieve the lower bound for
the capacity, it is clear that, to transport the information from
one cell to the next adjacent cell, one to two hops are required.
Therefore, #MEMKTC(r(n)) is also in the same order as the
total number of hops needed. Based on the definition of delay,
it is clear that #MEMKTC(r(n)) is also the same order bound
as the total delay, which proves the Lemma. ]

It is clear that we can compute a tight bound for delay in
(n, m, k)-cast as a function of 7(n) by combining lemmas 4.5
and 4.7.

Theorem 4.8: The relationship between capacity and delay
for (n,m, k)-cast is given by

Crnk(n) Dy i(n) = O ((nrz(n))il) ) (11)

Proof: The results can be easily derived by comparing
Theorems 4.6, 4.2 with lemmas 4.5 and 4.7. [ |

V. DISCUSSION OF RESULTS AND CONCLUSION

There is much valuable insight to be gained from mod-
eling the capacity of unicasting, multicasting, broadcasting
and anycasting using the same framework. Our (n, m, k)-cast
framework allows us to analyze the throughput capacity of
wireless networks as a function of the number of receivers
of a communication group, which can range from 1 up to
the number of nodes in the network, as well as a function
of the transmission range. Accordingly, the results obtained
in all prior work can be derived from our model by select-
ing the appropriate values for 7(n) and m in the capacity
results obtained in Sections IV. In addition, our framework
also provides new insight on the capacity of information
dissemination techniques that are becoming more prevalent
with the availability of in-network storage, namely anycasting,
and allows us to reason about the nature that route signaling
should be rendered more scalable wireless networks.

A. Cy i (n) as a Function of Transmission Range (r(n)) and
Group Size (m)

The relationship between C., ;(n) and the transmission
range r(n) can be seen in Fig. 1. From this figure, we see
that maximum capacity can be attained when the transmission
logn/ n) . We
can conclude the throughput capacity of dense wireless ad hoc
networks is proportional with the © (y/m/k) and inversely
proportional with the transmission range r(n). Besides, the
broadcast threshold my, will be decreased when 7(n) increases.

Fig. 2 shows Cp, 1(n) as a function of m. As it was the case
for Cpym(n), if m varies from 1 to m,, = (1), the capacity

range has its minimum value, i.e., 7(n) = Q (

of the network does not change and equals © (m) For
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Cm,A (n) ~
! @(\/; / k) increase

@(n"r"(n))‘
r(n) incre

0() (i M)O(r*(M) O(n) ™

Fig. 1. C, 1 (n) as a function of transmission range 7(n), real number of
destinations k, and the number of destination group choices m.

general — case,(n,m, k) — cast,

oY1 _1
k nlogn

Optimum — case,k =1

C,.(n) @[ Jm ]
| Jnlogn
®[ J
logn

o 1
[klogn]

6[\/nllogn]

Worst —case,k =m
ol L 1
\/;‘mlogn
o
o) o[

logn

J om) "

Fig. 2. Unifying view of throughput capacity.

values of m larger than m,,, the (n, m, k)-cast order capacity
can increase or decrease depending on the value of k. The
smallest order capacity corresponds to the case when k = m,
i.e., multicasting (m < n) or broadcasting (m = n), and the
largest order capacity is attained for anycasting (k = 1). The
shaded area in the figure shows the achievable capacity for
manycasting (1 < k < m) for different values of m and k.

We observe that, regardless of the value of k, the ca-
pacity of wireless ad hoc networks becomes constant when
m = Q(n/logn) and an increase in the value of m does not
change the throughput capacity. This result can be understood
by the fact that, when the number of destinations reaches
O (n/logn), this set becomes the connected dominating set
(CDS(r(n))) of the entire network as long as the transmission
range r(n) is chosen such that the network is a connected
network. Equivalently, if a broadcast is made to the entire
network, the capacity does not change because all the nodes
in the network are either inside this set or within one hop from
an element in this set.

We note that the capacity of anycast or manycast is greater
than the capacity of unicast if £ = O (y/m), even if each node
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Fig. 3. The relationship between delay and capacity.

requires to transmit its packets to more than one destination.
This result shows that as long as k& = O (y/m), the total
number of hops required to transmit packet to k£ destinations is
always, on average, less than sending the packet from the same
source to a single randomly selected destination in unicast
communications. Equivalently, the total Euclidean distance
for a manycast tree is on average less than the Euclidean
distance between any randomly selected source and destination
in unicast communication. However, this Euclidean distances
become the same, on average, when k = O (y/m). As it can
be predicted from this figure, the total Euclidean distance in a
manycast tree increases as k increases and for k = Q (y/m),
the capacity of manycast becomes less than unicast because
of the total Euclidean distance in the manycast tree.

B. D, 1(n) as a Function of Transmission Range (r(n)) and
Tradeoff between D, 1,(n) and Cp, 1(n)

Figs. 3(a), 3(b), and 3(c) depict the relationship between
Dy, 1(n) and Cp, p(n) when SPR is used in a wireless ad
hoc network. With our model, we can generalize the unifying
relationship between capacity and delay into multicast and
broadcast, as shown in Figs. 3(b) and 3(c). In the unicast
capacity region, the transmission range r(n) should be made
as small as possible to increase the capacity of the network and
to avoid interference, with the corresponding cost of increasing
delay. To decrease the delay, the transmission range 7(n)
should be increased, so that the number of hops required
to disseminate information is reduced; however, doing so
decreases the capacity of the network by increasing multiple
access interference (MAI). In the multicast capacity region
(see Fig. 3(b)), we observe that the transmission range should
be made as small as possible to increase the capacity with
no penalty of delay increases. However for the broadcast
capacity region (see Fig. 3(c)), increasing the transmission
range decreases the delay in the network with no penalty for
capacity. In this region, maximizing the transmission range
should be the strategy.

The above results indicate that there are different tradeoffs
between the capacity C), i (n) and the delay D,;, x(n) in terms
of transmission range r(n) for the three capacity regions of
wireless ad hoc networks.

We introduced a unifying framework for the modeling of the
order capacity of wireless networks subject to different types
of information dissemination. To do so, we defined (n, m, k)-

) Qk)=r"2(n)=0(m)

o

G, (m) G, (m)

e #
klogn

© k=Q(r 2(n))

casting as a generalization of all forms of one-to-one, one-to-
many and many-to-many information dissemination in wire-
less networks. Our modeling framework provides a unique
perspective to the understanding of the capacity of wireless
ad hoc networks. Our approach unifies existing results on the
order capacity of wireless networks subject to unicasting ,
multicasting, or broadcasting and provides new capacity and
delay results for anycasting and manycasting.

The multicast throughput and delay has been investigated
recently for mobile environments [12]. Future studies should
investigate the (n,m, k)-cast for mobile ad hoc networks.
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