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ABSTRACT 

Together with OSIsoft LLC as its private sector partner and matching sponsor, the Lawrence 
Berkeley National Laboratory (Berkeley Lab) won an FY09 Technology Commercialization 
Fund (TCF) grant from the U.S. Department of Energy. The goal of the project is to 
commercialize Berkeley Lab’s optimizing program, the Distributed Energy Resources Customer 
Adoption Model (DER-CAM) using a software as a service (SaaS) model with OSIsoft as its first 
non-scientific user. OSIsoft could in turn provide optimization capability to its software clients. 
In this way, energy efficiency and/or carbon minimizing strategies could be made readily 
available to commercial and industrial facilities. Specialized versions of DER-CAM dedicated to 
solving OSIsoft’s customer problems have been set up on a server at Berkeley Lab. The objective 
of DER-CAM is to minimize the cost of technology adoption and operation or carbon emissions, 
or combinations thereof. DER-CAM determines which technologies should be installed and 
operated based on specific site load, price information, and performance data for available 
equipment options. An established user of OSIsoft’s PI software suite, the University of 
California, Davis (UCD), was selected as a demonstration site for this project. UCD’s 
participation in the project is driven by its motivation to reduce its carbon emissions. The 
campus currently buys electricity economically through the Western Area Power 
Administration (WAPA). The campus does not therefore face compelling cost incentives to 
improve the efficiency of its operations, but is nonetheless motivated to lower the carbon 
footprint of its buildings. Berkeley Lab attempted to demonstrate a scenario wherein UCD is 
forced to purchase electricity on a standard time-of-use tariff from Pacific Gas and Electric 
(PG&E), which is a concern to Facilities staff. Additionally, DER-CAM has been set up to 
consider the variability of carbon emissions throughout the day and seasons. Two distinct 
analyses of value to UCD are possible using this approach. First, optimal investment choices for 
buildings under the two alternative objectives can be derived. Second, a week-ahead building 
operations forecaster has been written that executes DER-CAM to find an optimal operating 
schedule for buildings given their expected building energy services requirements, electricity 
prices, and local weather. As part of its matching contribution, OSIsoft provided a full 
implementation of PI and a server to install it on at Berkeley Lab. Using the PItoPI protocol, this 
gives Berkeley Lab researchers direct access to UCD’s PI data base. However, this arrangement 
is in itself inadequate for performing optimizations. Additional data not included in UCD’s PI 
database would be needed and the campus was not able to provide this information. This report 
details the process, results, and lessons learned of this commercialization project.  

 

 

Keywords: building optimization, forecasting, distributed energy resources, DER-CAM 

Please use the following citation for this report: 

Stadler Michael, Chris Marnay, Jon Donadee, Judy Lai, Olivier Mégel, Prajesh Bhattacharya, 
Afzal Siddiqui, (2011): ”Distributed Energy Resource Optimization Using a Software as Service 
(SaaS) Approach at the University of California, Davis Campus” Lawrence Berkeley National 
Laboratory.  



iv 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS .................................................................................................................. i 

ACRONYMS and ABBREVIATIONS ............................................................................................. ii 

ABSTRACT ........................................................................................................................................ iii 

PROJECT HIGHLIGHTS ................................................................................................................... 1 

Motivation and Background ............................................................................................................ 1 

Accomplishments ............................................................................................................................. 1 

Example Results ................................................................................................................................ 2 

Conclusions, Lessons Learned ......................................................................................................... 3 

Technical Details ................................................................................................................................. 5 

Project Overview .............................................................................................................................. 5 

The Demonstration Site - Segundo Dining Commons ................................................................... 7 

WebOpt ................................................................................................................................................. 9 

Distributed Energy Resources Customer Adoption Model (DER-CAM) .................................. 10 

DER-CAM Optimization Engines ................................................................................................. 10 

PI Server and PI System ................................................................................................................. 11 

Data Collection .................................................................................................................................. 13 

Data from UC Davis ....................................................................................................................... 13 

California Independent System Operator (CAISO) Data ............................................................ 13 

Weather Data .................................................................................................................................. 13 

Automated Data Download Tool .................................................................................................. 14 

Marginal CO2 Emissions Data ....................................................................................................... 16 

Input Data Forecast ........................................................................................................................... 18 

Energy Demand Forecast for Week-Ahead Optimization........................................................... 18 

CO2 Emissions Forecast .................................................................................................................. 20 

Results ................................................................................................................................................. 20 

Investment Analyses ...................................................................................................................... 20 

Operational Analyses ..................................................................................................................... 23 

Load Rescheduling Experiments ................................................................................................... 24 



v 

References .......................................................................................................................................... 27 

APPENDIX A: CAISO System Load and California CO2 Emission Rates Comparison ........... 28 

APPENDIX B: Background on DER-CAM ..................................................................................... 35 

APPENDIX C: Background on PI Server and PI System .............................................................. 38 

APPENDIX D: Unified Data Manager (UDM) .............................................................................. 39 

 



1 

PROJECT HIGHLIGHTS 

Motivation and Background 

The goal of this TCF project is to set up and commercialize Berkeley Lab’s optimizing program, 
the Distributed Energy Resources Customer Adoption Model (DER-CAM) as a web-based 
software service. The objective of the model is to minimize the cost of DER technology adoption 
and operation or carbon emissions, or combinations thereof. It determines which technology 
should be operated based on specific site load, price information, and performance data for 
available equipment options.  

The site used is the University of California, Davis (UCD), specifically, the Segundo Dining 
Commons. Because UCD utilizes OSIsoft’s PI system for gathering and storing sub-metering 
data, Berkeley Lab has been able to access the historical and real-time electricity, natural gas, 
steam, and chilled water usage information for Segundo through OSIsoft’s PItoPI service.  

The campus currently buys electricity through the Western Area Power Administration 
(WAPA) at an essentially flat, favorable tariff of $0.085/kWh. Berkeley Lab set out to investigate 
the hypothetical scenario wherein UCD has to purchase electricity on a time-of-use (TOU) tariff 
from Pacific Gas and Electric (PG&E), and therefore, has to consider the variability of carbon 
emissions throughout the day and seasons.  

Accomplishments 

The following are some of the key accomplishments of this project: 

• A PI server at Berkeley Lab has been installed and PItoPI link between UCD and 
Berkeley Lab servers has been established. 

• Historic Segundo electricity, natural gas, chilled water, and steam usage data are 
directly downloadable on the fly. 

• Fully functional investment & planning optimization that takes into account historic 
metered data from the Segundo Dining Commons building. 

• A download tool for automatic querying of the California Independent System Operator 
(CAISO, for system load and locational marginal price data) has been written. 

• A time series database for storing and accessing CAISO and National Oceanic and 
Atmospheric Administration (NOAA) weather data has been created. 

• A “forecaster” for Segundo Dining Commons building week-ahead demand depending 
on temperature data has been implemented. 

• Week-ahead optimization has been partially implemented (user interface is missing and 
some load data regarding load shifting could not be modeled due to missing data points 
and support at Segundo Dining Commons building). 
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Example Results 

WebOpt was used to conduct a series of distributed generation (DG) investment analyses for 
the Segundo Dining Commons. Experiments were also conducted with the week-ahead DER-
CAM to assess the CO2 emissions reductions and energy cost savings from rescheduling 
electrical loads. Figure 1 shows an example result of the investment and planning optimization 
running in WebOpt. Instead of a flat WAPA tariff, the PGE E-19 TOU tariff was used (see also 
PG&E E-19). In this cost minimization example, 44.5 kWh of lead acid batteries are adopted. As 
can be seen from Figure 1, DER-CAM is scheduling battery discharging around noon to reduce 
the on-peak related TOU costs and demand charges. The investment results from the 
investment and planning optimization were used as input for the week-ahead optimization. 
The week-ahead optimization result based on Figure 1 can be found in the main body of this 
report (Figure 17). 

 

Figure 1. Investment & Planning WebOpt Result, Cost Minimization using PGE E-19 TOU Tariff 
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Figure 2 shows the example result for the week-ahead optimization based on a CO2 
minimization strategy.  

 

Figure 2: The Forecasted Energy Needs and Operating Schedule for the CO2 Minimizing Combination 

using the Week-Ahead DER-CAM1 

Conclusions, Lessons Learned 

Berkeley Lab has demonstrated that, if accurate building use data and other required inputs 
were available, it is possible for a customer to perform investment & planning as well as week-
ahead optimizations in an automated manner by using a Software as Service (SaaS) approach 
over the internet with WebOpt and without specialized hardware or software. Having 
established this capability, Berkeley Lab has made great strides towards offering near real-time 
forecasts that will impact the site’s operations.  

Having access to historical and real-time building electricity, natural gas, and steam data via 
OSIsoft’s PItoPI server was an important aspect of this project. However, several problems 
arose with regards to the carbon emissions data and data availability. For example, Berkeley 
Lab had limited possibilities to model demand response since no detailed enduse data were 
available at UCD, e.g. data for refrigeration. Also, UCD is very interested in minimizing carbon 
emissions, but the lack of accurate marginal CO2 emission data from the macrogrid made it 
difficult to estimate possible CO2 reduction potential.  

Also, the issue of data feedback to the existing Energy Management System (EMS) is not solved 
at this point since it is not supported by OSIsoft. The final fully automated SaaS should feature 
the possibility to feedback near real-time optimization results to reduce the human interaction 

and should also be able to consider uncertainty in, for example, weather data (Siddiqui et al. 

2010).  

                                                   

1 Electricity Only Loads are electric loads for services that only can use electricity. Cooling is not an 
electricity only load since waste heat / absorption cooling could be also used for cooling. Typical 
electricity only loads are lighting or computing. 
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Finally, Berkeley Lab received 40% less TCF funding than originally requested, and setting up a 
fully functional version of DER-CAM proved more difficult and significantly more time 
consuming than anticipated. Consequently, it is now clear that a larger, more substantial effort 
is needed to set up a fully functioning SaaS implementation.  
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Technical Details 

Project Overview 

Together with OSIsoft LLC as its private sector partner and matching sponsor, the Lawrence 
Berkeley National Laboratory (Berkeley Lab) won an FY09 Technology Commercialization 
Fund (TCF) grant from the U.S. Department of Energy. The goal of this TCF project is to 
commercialize Berkeley Lab’s optimizing program, the Distributed Energy Resources Customer 
Adoption Model (DER-CAM) using a software as a service (SaaS) model, with OSIsoft as its first 
non-scientific client. OSIsoft could in turn offer optimization capabilities to users of its PI 
software suite (see OSIsoft). DER-CAM is an economic-engineering model of customer DER 
adoption and operation. DER-CAM has been implemented on the General Algebraic Modeling 
System (GAMS®) optimization software platform, and has been in development at Berkeley 
Lab since 2000. The objective of the model is to minimize the cost of technology adoption and 
operation or its carbon footprint, or combinations thereof. DER-CAM determines which 
technologies should be installed and operated based on specific site energy service 
requirements typically in the form of hourly load shapes, price information, and performance 
data for available equipment options.  

A central objective for the TCF is to choose a pilot PI user and to demonstrate that optimization 
results of value to the site can be executed via an interconnection between the site’s PI 
installation and one installed at Berkeley Lab. Because UCD utilizes OSIsoft’s PI system for 
gathering and storing sub-metering data, Berkeley Lab has been able to access the historical and 
real-time electricity, natural gas, steam, and chilled water usage information for multiple UCD 
buildings through OSIsoft’s PItoPI protocol. A test building on the UCD campus was needed 
for the pilot, and after due consideration, the Segundo Dining Commons was chosen.  

UCD’s participation in this project is driven by its motivation to the reduce carbon footprint of 
its operations. The main campus currently buys its electricity through the Western Area Power 
Administration (WAPA) at essentially a flat tariff of $0.085/kWh, and some of its auxiliary sites 
buy from PG&E and Sacramento Municipal Utility District (SMUD). Throughout the mid 
2000’s, the main campus purchased a mix of PG&E and WAPA power, so the possibility of 
having to revert to a PG&E tariff exists. Berkeley Lab therefore investigated the hypothetical 
scenario wherein UCD has to purchase electricity on a standard commercial time-of-use (TOU) 
tariff from Pacific Gas and Electric (PG&E). There are two analyses of interest to UCD: optimal 
equipment choice and operation under a cost minimizing objective using the applicable PG&E 
tariff, and carbon minimizing operation.  

For each scenario, there are two distinct types of optimization: 

a) an investment and planning optimization. The first is an investment choice based on a test 
year of historic operations. This analysis suggests what equipment and operating schedule 
achieves either of the two objectives, or a combination.  
b) a week-ahead optimization. Considering temperature forecasts and changing load profiles, 
the second optimization assumes that the installed equipment is fixed, and given expected 
requirements and conditions, delivers a week-ahead forecast of building operations that 
satisfies either of the two objectives, or a combination. To minimize carbon footprint, the 
optimization has to consider the variability of carbon emissions throughout the coming week.  
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There are several key benefits to having DER-CAM’s optimization capabilities accessible via a 
SaaS implementation:  

• incorporating it into a graphical interface makes DER-CAM more usable 

• running optimizations on Berkeley Lab’s secure server and returning results to the client 
means that there is no need for specialized hardware or software on the user end 

• Berkeley Lab bears the burden of expensive licensing and maintenance costs for GAMS® 
and related mathematical solvers 

• neither the software clients nor their customers are required to enter into licensing 
agreements with U.S. DOE, the California Energy Commission, and the University of 
California Berkeley Lab for accessing DER-CAM 

• Easy central maintenance of DER-CAM 

• Simple user management and 

• User tailored DER-CAM version management. 

The following graphic shows the completed work (enclosed in dashed lines) and broader 
ultimate goals of this commercialization effort. As represented, Berkeley Lab has accomplished 
the first steps and realized the goal of making DER-CAM optimizations accessible as a SaaS.  

 

Figure 3. Final Software as Service Structure  

The final product will be a web based optimization service (WebOpt) that embeds DER-CAM 
results into existing energy management software tools, beginning with OSIsoft’s PI data 
management suite. OSIsoft clients, and in the future others, can be provided with sophisticated 
financial/environmental/engineering analysis results, cost-environmental trade-offs, and 
deployment paths without using DER-CAM directly. Marrying Berkeley Lab’s technical 
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building energy analyses and simulation capabilities with existing tools will make complex 
optimization accessible quickly to a large installed customer base. This combined skill set can 
quickly deliver effective products to a large primed market, and yield dramatic energy 
efficiency deployment and renewable adoption gains. 

The Demonstration Site - Segundo Dining Commons 

Segundo Dining Commons, see Figure 4, is a ~50,000 ft2 (~4650 m2) dining hall that serves three 
meals a day to students on weekdays and two meals on weekends, and its kitchen is 
occasionally used for catering other campus events and meetings.  

 

Birdseye View (from the south) 

Exterior Courtyard Rooftop 

 

Interior 

 

Interior 

 

Interior 
source: Birdseye view from http://www.bing.com/maps/, all others by Berkeley Lab 

Figure 4. Photos of Segundo Dining Commons 



8 

Approximately two years of historical sub-metered data (electricity, natural gas, steam, and 

chilled water) for Segundo have been made available to Berkeley Lab for this project via 

OSIsoft’s PItoPI interface. 
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WebOpt 

The structure of the Saas setup is shown in Figure 5. The blue area to the right shows the tools 
installed on Berkeley Lab’s server. The yellow area in the upper left shows the data archived in 
UCD’s PI server. The grayed out data sets are needed to complete the WebOpt capability. The 
Berkeley Lab PI server directly accesses UCD data using the proprietary PItoPI protocol. The 
data flow at the bottom shows the data collection being conducted with other data sources. A 
Java tool downloads CAISO and weather data and together with estimated marginal CO2 
emissions a demand forecast for the week-ahead optimization is performed. The role of 
WebOpt then is to establish a GAMS job to be executed by the appropriate DER-CAM version. 
There is currently no automated way of returning results to UCD, so they would need to be sent 
by alternative means such as email or can be shown directly in WebOpt. 

The final user interface, which handles the data management and DER-CAM and runs on a 
Berkeley server behind firewalls, is called WebOpt. The user executes WebOpt through a secure 
Remote Desktop Connection (Terminal Services Client 6.0) and does not need to have any 
specialized software installed or run any other program. 

WebOpt collects data from the Berkely Lab PI server using DataLink, a standard OSIsoft 
product, and also calls the format changer macro, which converts the raw PI data to a format 
DER-CAM can use. WebOpt will handle two distinct versions of DER-CAM: 

a) investment & planning optimization and 
b) week-ahead optimization 

WebOpt currently performs the investment & planning optimization which utilizes historic 
Segundo load data. However, since OSIsoft’s PI system does not currently support data feed-
back, the optimization results cannot be sent back to the building directly, and therefore, must 
currently be shown in the WebOpt interface. 

The week-ahead optimization capabilities have been developed, but are not currently 
implemented in WebOpt because strategies such as load shift measures cannot be considered 
due to missing data streams for the Segundo buildings. The week-ahead optimization runs in 
principle without any user interface on Excel and individual Java applications. 

The important forecaster (at the bottom of Figure 5) forecasts the Segundo load profiles 
depending on weather data. These forecasted loads will be sent to the week-ahead optimization 
and DER-CAM is executed. 
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Figure 5. Flow Diagram of WebOpt 

Distributed Energy Resources Customer Adoption Model (DER-CAM)  

DER-CAM finds optimal combinations of building equipment and an operating schedule, given 
the facility energy service requirement, the prevailing economic conditions, and a menu of 
supply and passive technologies to choose from. It has been developed at Berkeley Lab over 
several years, has been rigorously reported in more than 30 peer-reviewed papers as well as in 
many reports and conference proceedings, and has been used for many example building 
studies and other analysis by a worldwide user group of researchers in Australia, Austria, 
Belgium, Canada, China, Denmark, Germany, Ireland, Italy, Japan, New Zealand, Poland, 
Portugal, Spain, Taiwan, and USA. To date, it has been primarily applied to commercial 
buildings with peak electrical loads of 100 kW – 5 MW. For more information on DER-CAM, 
please refer to APPENDIX B: Background on DER-CAM (Marnay et al. 2008, Stadler et al. 2008, 
Stadler et al. 2009). 

DER-CAM Optimization Engines 

This project utilizes two different versions of DER-CAM: 

a) investment & planning optimization and 
b) week-ahead optimization. 

The investment & planning optimization delivers an optimal investment portfolio for DER 
technologies and planned operational schedule for a test year. The test year is based on historic 
UCD Segundo load profile data, collected through PItoPI and Datalink. This investment & 
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planning optimization assumes that all loads, tariffs, macrogrid emissions data, etc. are fixed 
and known. This version determines the equipment that would minimize cost or CO2 emissions.  

The week-ahead version of DER-CAM is used to create a rolling optimal week ahead operation 
schedule given a fixed set of DER technologies, weather, and load. The structure for real-time 
pricing is implemented in the week-ahead DER-CAM version, but was not utilized in this 
demonstration.  

This week-ahead optimization represents a big step towards a full real-time optimization based 
on user-defined timestamps. It would be also capable of real-time demand response and load 
shifting when supplied with the needed data points e.g. lighting and refrigeration loads. The 
motivation for making day-ahead scheduling decisions on a rolling week-ahead forecast is 
twofold. First, operations tomorrow naturally depend heavily on conditions tomorrow, but also 
on subsequent days and that should be recognized and considered. Second, for reliability 
purposes, it is useful to have future days’ schedules established should communications fail on 
any given day.  

PI Server and PI System 

OSIsoft’s PI Server can accept data from disparate sources, e.g., enterprise systems, databases, 
operational data sources, etc, and is capable of real-time data gathering, archiving, and 
distribution, all key capabilities for this optimization project. The PI Server strives to optimize 
the storage and retrieval of vast amounts of data so as to provide users with a comprehensive, 
real-time view into operational, IT infrastructure, and business activities. UC Davis utilizes a PI 
System to collect data from its utility meters (electricity, gas, water, steam and chilled water) in 
conjunction with Siemens’ Apogee Building Automation System (BAS).  

 

Figure 6. View of PI Processbook (Realtime Data View). Legends from the top are 1) total kW (green), 

2) cumulative counter for BTUh (blue), 3) cumulative counter for gallons of water (yellow), 4) klbs/h of 

steam flow rate (red), 5) lbs/h of steam usage (white) 
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Figure 6 shows a screencapture of PI Processbook, which allows viewing the metered data. The 
utility data is collected for every building and the BAS data is collected for a few specific 
buildings. A PI System was installed at Berkeley Lab to gather some of the data archived on the 
UC Davis PI System, using a PItoPI. 
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Data Collection 

The following subsections discuss in detail the various boxes shown in Figure 5.  

Data from UC Davis 

Historical building data for electricity, natural gas, chilled water, and steam for the Segundo 
Dining Commons are based on actual PI data collected from April 1st 2009 to present. Berkeley 
Lab has been able to access the above four points via PItoPI, as shown in the WebOpt flow 
diagram, but has not been granted access to Siemen’s APOGEE building monitoring data, 
information regarding building use (for example, when Segundo dining commins is responsible 
for extra cooking/catering for campus events) or the academic calendar (for example, 
shutdowns over holidays and term breaks). This APOGEE data would be needed for modeling 
demand response and load shifting in the week-ahead optimization version of DER-CAM. 
Historical weather as measured at UC Davis was only made available to Berkeley Lab on the 
afternoon of the last day of the project, by which time alternative sources of weather data, 
discussed in later sections, had been found and used for the demand forecaster. 

California Independent System Operator (CAISO) Data 

The following California Independent System Operator (CAISO) data dating back to April 1st 

2009 (the start of CAISO’s Market Redesign and Technology Upgrade, MRTU) have been 

downloaded and are stored on Berkeley Lab’s server: 

• Hourly actual CAISO load 

• 2-day ahead CAISO load forecast 

• Day-ahead CAISO load forecast 

• Hourly Davis area Locational Marginal Price (LMP) node information 

The following forecasts are downloaded periodically to Berkeley Lab’s server: 

• Hourly actual CAISO load (download daily) 

• Hourly Davis area Locational Marginal Price (LMP) node information (download daily) 

• 15-minute Davis area (LMP) node information (download daily) 

The LMP could be used in the week-ahead optimization considering real-time prices. 

Weather Data 

Historical weather data for the Davis area are downloaded from the California’s Irrigation 
Management Information Systems (CIMIS) website. The temperature forecasts are taken from 

National Oceanic and Atmospheric Administration (NOAA) website (see NOAA). Historical 

daily high/low temperatures are stored in Berkeley Lab’s time-series database and used as input 

into the demand forecaster regression model. Hourly high/low 7-day ahead forecasts are also 

downloaded from the above link and used as input into the forecaster. 
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Automated Data Download Tool 

In order to automate the downloading of system load, pricing, and weather data from CAISO 

and NOAA servers, specialized Java applications have been written and are being run 

continuously. The data is saved in a database and passed as flat files when needed by the 

forecaster.  

System Setup 

1. Since all the applications are Java-based, the first step was to install Java Runtime 

Environment (JRE) on the host computer. 

2. The next was to install the database program – postgreSQL, for the current version of the 

system. 

3. A setup tool has been created which includes a few text files with the database configuration 

information and a Java package which performs the actual task of setting up the initial 

database structure.  

4. The steps described above constitute the generic part of the setup process. After that the 

site-specific setup has to be performed. Essentially, it involves setting up every time-series 

point in the system with the individual details. A spreadsheet was created using specific 

headers. Each row of that spreadsheet contains information for a single point. The 

spreadsheet is then converted to a csv file which is used as the input to the system 

administration tool. Below is a screenshot of how the spreadsheet looks when it is 

populated with all the information. The column headers of the spreadsheet are essentially 

mapped to the columns in the Point table described in APPENDIX D: Unified Data Manager 

(UDM). 

 

Figure 7. Specific Header Spreadsheet 

5. After the point creation, the data collector application (app) needs to be started. Ideally 

the data collector apps should run as a service. However, at this time it is manually 

started as a batch job.  
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Operation 

Every data collector app has a unique identifier associated with it. At the time of start-up, a data 
collector app queries the database for points that match the app’s unique identifier. The details 
of the points are loaded into the memory. Then it runs in an infinite loop. It “sleeps” until the 
next poll time arrives and then performs the work of data fetching, parsing and storing and 
then again goes back to sleep until the next poll time. 

Current Features 

1. File download capability. For example, if the data is published in a csv file or an XML on a 

website or on any remote host, the file can be fetched to the local host. 

2. Unzip capability. For example, California ISO publishes its demand and price data in a 

zipped file format. One then has to unzip the file to get the actual csv or XML file. 

Unzipping is required for locally residing files as well. 

3. Generic XML file parsing. For example, 7 day hourly weather forecast data from the NOAA 

website is collected, and parsing the file for values and timestamps for different quantities is 

done. 

4. Structured csv or tab separated file parsing. 

5. Capability to store forecast data. Forecast data is different from actual historic data in terms 

of timestamp. In historic data, there is only one timestamp associated with a value. In 

forecast data, there is a timestamp for when the forecast was made and a second timestamp 

for the time for which the forecast was made. For example, weather forecast for Sunday, is 

made on Thursday, Friday and Saturday.  

6. Timestamp is stored in UTC millisecond. This ensures transparent operation across time 

zones. 

7. Automatic application of offset on the poll time. For example, if the poll interval for a point 

is 1 hour, the polling takes place slightly after the top of the hour. This helps in smoothing 

the load on the local host. But more importantly, it helps in avoiding time-outs and lack-of-

response from a remote server where several people send request at the top of the hour 

(such as CA ISO oasis server). 

8. Backfill mode for the text file data collector app. 

9. Multi-threaded operation of the data collector apps enables better performance and 

scalability. A thread can have one or more points for which it performs data collection. In 

the current version, a separate thread is created for every different combination of address 

of the data-source (IP address or web URL) and the poll interval. 

10. Because of the non-flat nature of the database structure, writing plain SQL queries to extract 

data can be cumbersome. Hence, a query has been built to extract the 7 day forecast of daily 

high and low temperatures. Following is a screenshot of the csv file that is generated out of 

this query, to be consumed by the WebOpt load forecaster for the UC Davis project. 
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Figure 8. Daily High and Low Temperatures for WebOpt 

More such generic queries can be built pretty easily. 

11. Backfill does not require any manual intervention, such as making manual changes in 

datatable start time (archiving start time). 

For more information on that download tool see APPENDIX D: Unified Data Manager (UDM). 

Marginal CO2 Emissions Data 

The hourly marginal emissions data are based on the Greenhouse Gas (GHG) Calculator 

developed by E3 (see E3). E3 derived the emissions by simulating the generation capacity and 

mix in the Western Electricity Coordinating Council (WECC), and the emissions represent the 

carbon contribution from energy consumed in California regardless of whether the energy was 

generated instate or out of state. Emissions were calculated for 2008 and 2020 and intermediate 

years were linearly extrapolated. 

For this project, the emission rates in the CAISO region have been assumed to be 

interchangeable with emission rates reported for the state. Berkeley Lab analyzed the CO2 data 

and found extremely high emissions volatility. Figure 9 below shows a winter/January 

comparison of CAISO load (MW, right y-axis) with average and marginal CO2 emissions 

(g/kWh, left y-axis). The month is represented by five weeks, with values for each week in color 
and the average of all weeks’ values shown in black. Weeks start from Monday; refer to 
calendar in lower right hand corner for week counts and special holiday conditions. As can be 
seen from the graphic, the hourly CAISO loads display a predictable pattern throughout the 
days and week and the hourly average carbon emissions rates remain fairly steady, around 400 
g/kWh. The behavior of the marginal emissions, however, varies wildly from hour to hour, day 
to day, and shows no discernable pattern or relationship to demand/time of day.  
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Figure 9. January CO2 Emissions and Load Comparison 

Figure 10 below shows a summer/July comparison. The CAISO loads and average emissions 
are again predictable, and the behavior of the marginals completely unpredictable. Taking week 
4 as an example, there seems to no relationship between daily peak demand and marginal 
emissions; some days the peak demand aligns with peak emissions (Tue), other days peak 
demand yields minimum emissions (Wed, Thu, Fri), and for the remainder of the week the 
marginal emissions are unremarkable (Sun and Mon). Additionally, when comparing the same 
day of the week, for example Tuesday, the peak demand seemingly correlates to an extremely 
high marginal emission rate (week 4), an extremely low marginal emissions rate (week 2 or 3), 
or falls somewhere in the middle (week 1 and 5).  

Due to such unexplained high volatility in the hourly marginal emission values, Berkeley Lab 

has elected to use averaged hourly marginal emissions based on the GHG Calculator developed 

by E3. 
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Figure 10. July CO2 Emissions and Load Comparison 

More information regarding emissions and comparison graphics for other months of the year 

can be found in APPENDIX A: CAISO System Load and California CO2 Emission Rates 

Comparison. 

Input Data Forecast 

In order for DER-CAM to create an optimal DER operating schedule for the next seven days, 
Berkeley Lab sought to predict the heating, cooling, electricity, and natural gas demands that 
must be met. Given the predicted demands, the week-ahead DER-CAM will create an operation 
schedule that minimizes cost, emissions, or a weighted combination of the two.  

Please note that this prediction is not needed for the investment & planning DER-CAM since it 
uses historic load date stored on the PI system. 

Energy Demand Forecast for Week-Ahead Optimization 

Hourly energy demands are forecasted using a multiple linear regression on the following 
factors:  

• hour of the day 

• daily high temperature 

• daily low temperature 
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• school day (binary yes or no) 

Interactions of these factors are also considered for the regression, excluding daily low 
interacting with daily high. To perform this regression, historical energy use data from UC 
Davis’s PI server and historical temperature from the California’s Irrigation Management 
Information Systems (CIMIS) website, are used. The temperature forecasts are taken from the 

National Oceanic and Atmospheric Administration (NOAA) by using the automated data 
download tool described above. Some attempts have been made to remove corrupted data 
before performing the regression, but this was not a comprehensive filtering. For example, some 
energy use data points were zero for long durations. UC Davis staff confirmed that there were 
data outages and that this data should be discarded. Regression coefficients were calculated 
using the open source statistical software R (see R-software). These coefficients, forecasted 
weather data, and estimated2 calendar of school days are then used to compute predicted 
energy needs for Segundo Dining Commons. Figure 11 and Figure 12 below are example plots 
showing the actual energy needs and forecasted energy needs for an example week in October 
2009. Note that the night of October 5th and morning of October 6th were missing energy use 
data and are replaced by a straight line with no markers. Better prediction results would likely 
be possible if more information on building occupancy or cooking schedules were available. 
There could also be non-linear relationships that our simple regression model does not account 
for. 

 

Figure 11. Actual and Forecasted Electricity Demand and Errors for One Week in October 2009 

                                                   

2 Please note that the Berkeley Lab team did not receive the UCD calendar, and therefore, Berkeley Lab 
had to estimate the calendar. 
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Figure 12. Actual and Forecasted Cooling Demand and Errors for One Week in October 2009 

CO2 Emissions Forecast 

In order to help UCD to reduce its carbon footprint, Berkeley Lab sought to forecast CO2 
emissions from utility provided electricity on an hourly basis. Although UCD purchases its 
energy through WAPA, Berkeley Lab substituted readily available information on carbon 
emissions of energy on the CAISO market as a proxy. In other words, electricity in WECC is 
assumed fully fungible such that a kWh saved by UCD is equivalent to a marginal kWh not 
traded on CAISO. Unexpectedly, review of this highly volatile data did not yield a discernable 
relationship between CAISO market demand and carbon emissions. Instead of a regression 
analysis, a table of averaged marginal carbon emissions for each hour in each month was 
created. Simulated marginal emissions data was available for the years 2008 and 2020. Data is 
interpolated to the current year before use in Operations DER-CAM. This project highlights the 
need for more access to real time carbon intensity information for grid supplied electricity. If 
real carbon intensity information were available, energy use patterns could be changed to 
minimize carbon emissions. 

More information regarding marginal emissions can be found in APPENDIX A: CAISO System 

Load and California CO2 Emission Rates Comparison. 

Results 

WebOpt was used to conduct a series of trial distributed generation (DG) investment analyses 
for the Segundo Dining Commons. Experiments were also conducted with the week-ahead 
DER-CAM to assess the CO2 emissions reductions and energy cost savings from rescheduling 
electrical loads. 

Investment Analyses 

For the investment analyses, photovoltaics (PV), lead acid batteries, and Zinc-Bromide flow 

batteries were considered. 23 000 ft2 of roof area, equal to half the square footage of Segundo, 
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was assumed to be available for installation of PV. It was assumed that energy generated by PV 
onsite or released from energy storage could be used to supply electrical or cooling needs and 
that cooling is supplied at the time of use. Figure 13 shows the WebOpt interface for the 
investment & planning DER-CAM. As already mentioned, this interface also handles data 
management and allows the user to specify the time frame for the historic Segundo load data. 
By clicking on “Update PI data” the interface executes Datalink as well as the format changer 
macro (see Figure 5) and updates the load data for the investment optimization. Figure 14 
shows the technology data used for the investment & planning runs. Example results for the 
investment decision and ideal planning are shown in Figure 15. 

 

Figure 13. Investment & Planning DER-CAM using PV and Electric Storage as Possible Options 

 

Figure 14. Technology Parameters used for the Investment & Planning DER-CAM Runs 
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Figure 15. Example Investment & Planning WebOpt Result 

Results of the four DER-CAM scenarios are shown below in Table 1. The four different 
scenarios shown in Table 1 are the cost and CO2 minimization with the current flat WAPA tariff 
and the possible E-19 TOU tariff from PG&E (PG&E E-19).  

 Cost Minimizing 
Flat Tariff 
(Base Case) 

Cost Minimizing 
PG&E E-19 
Tariff 

CO2 
Minimizing 
Flat Tariff 

CO2 Minimizing 
PG&E E-19 
Tariff 

Reduction in CO2 

Emissions (kg/yr) 
0 -1949 334,604 334,604 

Reduction in Cost 
From Base ($/yr) 

0 -104,901 -226,839 -304,632 

Battery Capacity 
Installed (kWh) 

0 44.5 0 0 

Flow Battery Power 
Installed (kW) 

0 0 76.5 76.5 

Flow Battery Energy 
Installed (kWh) 

0 0 573.8 573.8 

PV Installed (kW) 0 0 326.7 326.7 

* NOTE: negatives are increases 

Table 1: Optimal Investments and Resulting Costs based on the Investment & Planning DER-CAMA 
cost minimizing run of DER-CAM found that no DG investments are needed to achieve 
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minimum energy costs. In other words, the low $0.085/kWh flat WAPA rate makes the 
purchase and installation of equipment uneconomic. This trial did, however, provide a baseline 
energy cost and carbon emissions level for comparison to other cases. Berkeley Lab used the 
investment & planning DER-CAM to identify the CO2 minimizing combination of PV and 
electrical energy storage. DER-CAM suggests installing a PV array with a rated peak power of 
326.7 kW as well as a flow battery with a rated peak power of 76.5 kW and 573.8 kWh of energy 
storage.  

Operational Analyses 

The set of equipment from Table 1 was then used in the week-ahead DER-CAM and an example 
forecast and operation schedule were generated as shown in Figure 16.  
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Figure 16: The Forecasted Energy Needs and DG Operating Schedule for the CO2 Minimizing 

Combination of DG by using the Week-Ahead DER-CAM3 

DER-CAM was also used to determine the cost minimizing combination of PV and electrical 
energy storage if Segundo were subject to PG&E’s E-19 tariff (for customers with peak demand 
between 500 and 1000 kW). The E-19 Tariff has varying TOU pricing as well as monthly TOU 
peak demand charges. In this case, DER-CAM suggests installing a lead-acid battery bankwith 
an energy storage capacity of 44.5 kWh. Again, this set of equipment was specified in the week-
ahead DER-CAM and an example forecast and an operating schedule was generated as shown 
in Figure 17.  

                                                   

3 Electricity Only Loads are electric loads for services that only can use electricity. Cooling is not an 
electricity only load since waste heat / absorption cooling could be also used for cooling. Typical 
electricity only loads are lighting or computing. 
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Figure 17: The Forecasted Energy Needs and Cost Minimizing DG Operation Schedule under PG&E 

E-19 Tariff 

Load Rescheduling Experiments 

The week-ahead DER-CAM optimization has the capability to suggest a load schedule that 
minimizes CO2 emissions or energy costs. For these experiments, Berkeley Lab assumes that up 
to 15% of the electricity used in any hour at Segundo can be rescheduled to any other hour of 
the same day. An additional constraint is put in place such that no more than 100 kWh of 
electricity use can be reallocated to any one hour. No DG equipment is assumed to be in place 
for the following cases. Figure 18 and Figure 19 show example forecasts of energy needs as well 
the suggested rescheduling of energy use. In Figure 18, energy use is rescheduled to minimize 
cost when Segundo is charged under the E-19 Tariff. Compared to when operating without load 
shifting, volumetric electricity charges are reduced by $98, and monthly peak demand charges 
are reduced by $588. It should be noted that the monthly peak demand charge is based on the 
average of the highest 15 minute block of the month, and for the purposes of this project the 
usage in the week shown is assumed to represent the highest demand for the month.  
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Figure 18 Forecast Energy Demand and Energy Demand Rescheduled to Minimize Cost under PG&E 

E-19 Tariff 
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Figure 19 shows how electricity consumption should be rescheduled to minimize CO2 emissions 

if the emissions intensity for energy consumed at Segundo. Rescheduling saves 937 kgCO2 for 

this optimized week. Please note that this run also assumes no adopted DG and all energy 

needs to be purchased from the utility. 
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Figure 19: Forecast Energy Demand and Energy Demand Rescheduled to Minimize CO2 Assuming no 

DG and All Energy From PG&E 
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APPENDIX A: CAISO System Load and California CO2 
Emission Rates Comparison 

Using the 2002 calendar, the CAISO system load and California CO2 emissions are estimated for 
2008 (emissions estimated using E3’s GHG calculator). Each plot below shows a month’s worth 
of hourly data for CAISO load, average CO2 emissions, and marginal CO2 emissions. Each 
month is represented by 5 or 6 weeks (count starts from Monday, see calendar in lower right 
hand corner). Each week is graphed separately, and the average of the weeks’ load and 
emission values for each hour is shown in black. As can be seen from the plots, there is great 
volatility from hour to hour for the marginal emissions. The average of the hourly marginal 
emissions are used by WebOpt to determine if or when carbon savings can be achieved. 
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Appendix Figure 1. January CO2 Emissions and Load Comparison 

 

Appendix Figure 2. February CO2 Emissions and Load Comparison 
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Appendix Figure 3. March CO2 Emissions and Load Comparison 

 

Appendix Figure 4. April CO2 Emissions and Load Comparison 
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Appendix Figure 5. May CO2 Emissions and Load Comparison 

 

Appendix Figure 6. June CO2 Emissions and Load Comparison 
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Appendix Figure 7. July CO2 Emissions and Load Comparison 

 

Appendix Figure 8. August CO2 Emissions and Load Comparison 
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Appendix Figure 9. September CO2 Emissions and Load Comparison 

 

Appendix Figure 10. October CO2 Emissions and Load Comparison 



34 

 

Appendix Figure 11. November CO2 Emissions and Load Comparison 

 

Appendix Figure 12. December CO2 Emissions and Load Comparison 
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APPENDIX B: Background on DER-CAM 

DER-CAM is an economic-engineering model of customer DER adoption implemented in the 

General Algebraic Modeling System (GAMS®) optimization software. This model has been in 

development at Berkeley Lab since 2000. The objective of the model is to minimize the cost or 

carbon emissions of operating on-site generation and combined heat and power (CHP) systems, 

either for individual customer sites or a µGrid. To achieve this objective, the following issues 

must be addressed: 

• Which is the lowest-cost or lowest-carbon combination of distributed generation 

technologies that a specific customer can install? 

• What is the appropriate level of installed capacity of these technologies that minimizes 

cost or carbon emissions? 

• How should the installed capacity be operated so as to minimize the total customer 

energy bill or carbon emissions? 

 

How does DER-CAM Work? 

The DER-CAM model chooses which DG and/or CHP technologies a customer should adopt 

and how that technology should be operated based on specific site load and price information, 

and performance data for available equipment options. The inputs to and outputs from DER-

CAM are illustrated below. 

 

Key Inputs into the Model are: 

1. Customer’s end-use load profiles (typically for space heat, hot water, gas only, cooling, and 

electricity only) 

2. Customer’s default electricity tariff, natural gas prices, and other relevant price data 

3. Capital, operating and maintenance (O&M), and fuel costs of the various available 

technologies, together with the interest rate on customer investment 

4. Basic physical characteristics of alternative generating, heat recovery and cooling 

technologies, including the thermal-electric ratio that determines how much residual heat is 

available as a function of generator electric output. 

 

Outputs to be Determined by the Optimization Model are: 

1. Capacities of DG and CHP technology or combination of technologies to be installed 

2. When and how much of the capacity installed will be running 

3. Total cost of supplying the electric and heat loads, and 

4. CO2 emissions. 

 

The key Assumptions are: 

1. Customer decisions are made based only on direct economic or environmental criteria. In 

other words, the only possible benefit is a reduction in the customer’s electricity bill or CO2 

emission. 
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2. No deterioration in output or efficiency during the lifetime of the equipment is considered. 

Furthermore, start-up and other ramping constraints are not included. 

3. Reliability and power quality benefits, as well as economies of scale in O&M costs for 

multiple units of the same technology are not directly taken into account. 

4. Possible reliability or power quality improvements accruing to customers are not considered 

directly. 

 

 

Appendix Figure 13. Structure of DER-CAM 

 

Simultaneous Optimization Approach: 

The next figure shows a high-level schematic of the energy flow modeled in DER-CAM. 

Possible energy inputs to the site are solar insulation, utility electricity and natural gas. For a 

given DG investment decision, DER-CAM selects the optimal combination of utility purchase 

and on-site generation required to meet the site’s end-use loads at each time step.  

 

a) Electricity-only loads (e.g. lighting and office equipment) can only be met by electricity  

b) Cooling loads can be met either by electricity or by heat (via absorption chiller)  

c) Hot water and space heating loads can be met either by recovered heat or by natural gas  

d) Natural gas-only loads (e.g. mostly cooking) can only be met by natural gas. 
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Appendix Figure 14. Sankey Showing the Energy Flows Modeled by DER-CAM 

For more information on DER-CAM please see DER at Lawrence Berkeley National Laboratory, 

Marnay et al. 2008, Stadler et al. 2009, and Stadler et al. 2008. 
 
  



38 

APPENDIX C: Background on PI Server and PI System 

The following description of the PI System is taken directly from the OSIsoft website: 

The PI System® brings all operational data into a single system that can deliver it to users at all levels of 
the company - from the plant floor to the enterprise level. This capability is often described as a Process 
Historian and the PI System is considered the standard of Process Historians. The PI System keeps 
business-critical data always online and available in a specialized time-series database by:  

• gathering event-driven data, in real-time, from multiple sources across the plant and/or 
enterprise  

• applying advanced analytical calculations and business rules to contextualize and analyze this 
data 

• configuring smart and thin client tools to distribute and visualize knowledge/ information to 
display critical operational metrics and integrate the user experience across different roles within 
the enterprise. 

The PI System functionality incorporates many features for analyzing, contextualizing, and 
visualizing real-time PI data. 

The PItoPI interface copies tag data from one PI server to another. Data is moved in one 
direction, meaning data is copied from the source to the receiving PI server (also referred to as 
target PI server). The interface must run on a Windows Intel-based operating system (Windows 
2000 SP4, XP, 2003, or higher). In this project, Windows Server 2008 is used. 

Interface tags are created on the receiving PI server. Each interface tag is configured to receive 
data for a unique source tag. Tags receive either archive or exception data updates from the 
source tag. Exception data is data that has not yet been subjected to compression. The type of 
data collection, exception or archive, is configured through scan class assignment. By default, all 
tags belonging to the first scan class receive exception data. Tags assigned to any other defined 
scan class receive archive data. 

The interface supports history recovery. History recovery enables users to recover data for time 
periods when the interface was not running or otherwise unable to collect data. The history 
recovery period is configurable; the default is 8 hours. Users have the option of performing 
time-range specific history recovery by specifying a start and end time. In this configuration the 
interface collects data for the specified time period then exits. We used this feature to backfill 
the LBNL PI server with data from the UC Davis PI server. The backfill data, in this case, dated 
as far back as March 01, 2009. 

There are different ways in which the PItoPI interface can be configured. We used the following 
configuration described in the user manual of the interface. 
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Appendix Figure 15. An Exceedingly Boring Image Showing two Computers Connected via TCP/IP 

APPENDIX D: Unified Data Manager (UDM) 

System Architecture 

The Figure below shows a simplified schematic diagram of the system architecture used in 
Unified Data Manager (UDM). The dotted portions attempt to depict the extensibility of the 
system. A few examples of Data Source Type are xml files, structured csv files, external database, 
bacnet, modbus, SNMP, XML SOAP etc. Currently, Data Collector Application (app) for only two 
data source types have been implemented – the xml file and the csv file. The backend database 
and the data collector app can reside either on the same host or on different hosts. Berkeley Lab 
decided to use a database that conforms to the SQL standard because the support ecosystem for 
these databases is widely available. As a first attempt, the postgreSQL database program as the 
backend database was used, keeping SQL statements as standard-oriented as possible. But still 
there are places where they are specific to postgreSQL. It should be noted here that UDM’s 
database structure is very different from the way usually Relational Databases are used for 
time-series data.  
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Appendix Figure 16. Simplified Schematic Diagram of the System Architecture used in Unified Data 

Manager (UDM) 

Every time-series data stream is a different point in the system. In its current configuration, only 
a limited amount of metadata (data about data; in this case, information about the time-series 
data) can be stored in the database. Right now all that information is stored in the database in a 
table called Point. Each row in that table is dedicated to a single time-series point. The columns 
contain information about the unique identifier for a point, the human readable description of 
it, the unique identifier for the data source type, how to gather data for this point from the data 
source, how to interpret that data, whether the data is forecast data and how often the data 
source should be polled to collect the data for this point. The time-series data is stored in tables 
dedicated for individual points. The mapping between the points and their DataTables is 
maintained in a table called Point_DataTable_Map. Every time a point is created in the system a 
new datatable, dedicated to that point, is created in the database. Similarly, when a point is 
deleted from the system, all datatables associated with it are dropped from the database. 

All the applications were built on the Java platform to make the system compatible with both 
Windows and unix operating systems. 

Since the database structure is not very flat, making changes to the system using plain SQL 
statements can prove to be cumbersome. Therefore a system administration utility has been 
developed which takes csv files as its input and outputs another csv file if there is supposed to 
be any output. The operations supported at present include point creation, point deletion and 
point import. The first two are probably self-explanatory; the point import action imports all the 
details about all the points into a csv file. 

Known Problems 

1. Although the timestamps on the data are perfect, polling takes place at GMT time. It is 

not perceivable for points with 1 hour or shorter poll interval, but is evident for points 
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with longer poll intervals. The work around has been to poll once every 8 hours for 

points that could have used a poll interval of 1 day. 

2. In the specific case of the NOAA weather forecast, The XML file Data Collector might 

fetch faulty timestamp for the first 6 days of the year. 

Proposed Near-Term Enhancements 

1. Package all the files necessary for initial installation (jar libraries, UDM class files, 

database configuration text files) in a single container and then copy all the files into the 

respective directories during installation. This would simplify installation. 

2. Implement logging. 

3. Incorporate string datatype for header_alue_pair in method getPoints() of class 

PointUtility. This would help in creating better search for points. 

4. Build generic queries. 

5. Take care of the changes in the CLASSPATH so that user does not have to do it 

separately. 

6. Right now, file download takes place in the bin directory under the UDM root directory. 

User should be able to specify this directory. It should be accepted as an input for the 

data collector app. 

7. Link the starttime constraint of the datatable to the starttime stored in the 

Point_DataTable_Map as opposed to a hard number. 

8. Portal-based visualization 

9. RDBMS Data Collector 

10. BACNet Data Collector 

11. Modbus Data Collector 

12. The method sendToDatabase of the DataCollector class, under realtime mode, creates 

the SQL query to INSERT all the data values for all the points in the thread in a single 

query. This enhances performance. However, if even one point has a duplicate key value 

existing in the database, the INSERT attempt would fail and none of the other values 

would get stored. In the catch block of this portion, a second attempt needs to be made 

where the rogue data point(s) will be identified and be excluded from the INSERT 

attempt. 

13. Right now, the data collector apps query the database only at the time of start-up and 

cache that information for the rest of its life. It should check for changes in the system on 

a regular basis. 

14. The timestamp finding technique in the Text File Data Collector should be made more 

generic. 

15. Implement all the different scenarios left as TODO in the code (e.g. when timestamp is 

system generated). 

16. Poll time offset should be calculated to distribute load more evenly. Right now it is 5% 

of the poll interval. It has to take the data throughput at a particular time under 

consideration. 
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17. In case of download or unzip, append the filenames with “backfill” so that backfill and 

realtime mode processes can run simultaneously without any conflict. 

18. UPDATE and UPSERT option for backfill mode: right now, in the backfill mode, only 

those data can be inserted for which the timestamp does NOT already exist. However, 

under different situations (such as performing a rerun of a calculation after making 

changes to the model), one might be interested in overwriting existing data. Not only 

that, one might be interested in overwriting existing data as well as inserting new data. 

19. Forecast interval, such as 2 day forecast or 7 day forecast, should be user defined.  
 




